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Abstract

Modern molecular biology experiments produce vast amounts of data. In a biomedical context,

such data can be leveraged to improve our understanding of complex disease patterns and, thus,

enable the development of more effective ways to diagnose and treat patients.

With changes in lifestyle in the modern world, non-communicable and metabolism-related

diseases are posing a major burden to global health. To analyze the state of metabolism, the

metabolome, the quantitative description of a large number of small biomolecules (metabolites)

in an organism, can be used. Most commonly, the metabolome is measured by mass spectrometry.

Building on the progress in mass spectrometry in the past decades, the metabolic phenotype can

nowadays be captured better than ever. Despite the possibilities for such detailed measurements,

computational methods for interpreting the resulting metabolome data are largely missing, creating

a major bottleneck for basic and translational research. In the following publication-based doctoral

thesis, computational solutions filling this gap in metabolomics data interpretation are introduced.

The first publication aims at the subdiscipline of metabolomics analyzing lipids - a special group

of hydrophobic and amphiphilic metabolites - namely lipidomics. It introduces the Lipid Network
Explorer (LINEX ), a computational approach to generate biochemical lipid networks specific

to a given dataset. Using these networks, it enables the analysis of global lipidome changes by

combining them with statistical measures and enhances their functional interpretation.

In the subsequent publication, introducing LINEX2
, the network generation concept of LINEX

is extended to comprise database-based metabolic reactions and connections to other omics dis-

ciplines. Furthermore, this publication presents a novel method for generating hypotheses on

enzymatic dysregulation using lipid metabolic networks. Such hypotheses provide starting points

for the mechanistic interpretation of lipidomics data and its integration with other types of molec-

ular (“omics”) data.

Finally, a preprint is presented introducing an algorithmic approach, termed mantra, to analyze

metabolomics data with a focus on metabolic reactions. By providing a metric to approximate

changes in metabolic reaction activity between biological conditions, it allows to focus on the

alterations in metabolism that lead to differences in metabolome composition. The proposed

metric is designed such that it can be integrated with other types of molecular data enabling

functional hypotheses on the origin of dysregulated metabolic states.

In closing, this dissertation introduces new computational methods to analyze lipidomics and

metabolomics data in a functional manner that also facilitates the integration of other omics

disciplines. Ultimately, these improvements in functional interpretation significantly speed up the

extraction of knowledge from biological and biomedical data. Thereby, they provide the basis for

novel and more precise diagnostic and treatment procedures to combat the global disease burden.
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Zusammenfassung

Moderne molekularbiologische Experimente produzieren immense Mengen und Daten. Im

biomedizinischen Kontext können diese Daten dazu genutzt werden, um unser Verständnis kom-

plexer Krankheitsmuster zu verbessern und ermöglichen damit die Entwicklung effektiverer Wege

zur Diagnose und Behandlung von Patienten.

Durch Veränderungen des Lebensstils spielen nicht-übertragbare und Metabolismus-bezogene

Krankheiten eine wichtige Rolle für die globale Krankheitslast in der modernen Welt. Um den

Zustand des Metabolismus zu analysieren, kann das Metabolom, die quantitative Beschreibung

einer großen Anzahl kleiner Biomoleküle (sogenannter Metabolite) in einem Organismus, genutzt

werden. Typischerweise wird das Metabolom durch Massenspektrometrie gemessen. Durch

den technischen Fortschritt in der Massenspektrometrie in den letzten Jahrzehnten kann der

metabolische Phänotyp heutzutage besser denn je bestimmt werden. Trotz der Möglichkeiten für

solch detailierte Messungen fehlen rechnergestützte Methoden zur Interpretation der erlangten

Metabolom-Daten. Dadurch entsteht ein Nadelöhr für Grundlagen- und translationale Forschung.

In der folgenden publikationsbasierten Dissertation werden rechnergestützte Methoden zur Inter-

pretation von Metabolom-Daten vorgestellt, die diese Lücke füllen.

Die erste Publikation zielt auf die Lipidomik, eine Unterdisziplin der Metabolomik, die Lipide

- eine spezielle Gruppe von hydrophoben und amphiphilen Molekülen - untersucht, ab. Sie

stellt den Lipid Network Explorer (LINEX), einen computergestützten Ansatz zur Generierung

biochemischer Lipidnetzwerke spezifisch für einen gegebenen Datensatz, vor. Er erlaubt die

Analyse globaler Lipidom-Änderungen durch Nutzung dieser Netzwerke in Kombination mit

statistischen Metriken und verbessert deren funktionale Interpretation.

In der darauffolgenden Publikation, die LINEX2
vorstellt, wird das Konzept der Netzwerk-

erstellung aus LINEX durch den Einbezug datenbankgestützter metabolischer Reaktionen und

Verbindungen zu anderen Omik-Disziplinen. Darüber hinaus präsentiert diese Publikation eine

neue Methode zur Generierung von Hypothesen zu enzymatischer Dysregulation mithilfe von

lipid-metabolischen Netzwerken. Solche Hypothesen dienen als Startpunkt für die mechanistische

Interpretation von Lipidom-Daten und deren Integration mit andere Omik-Daten.

Als Drittes wird ein Preprint vorgestellt, der einen Algorithmus namens mantra zur Analyse

von Metabolom-Daten mit einem Fokus auf metabolischen Reaktionen präsentiert. Indem er eine

Metrik zur Approximation von Änderungen der Aktivität metabolischer Reaktionen zwischen

biologischen Gruppen bietet, erlaubt er den Fokus auf die Veränderungen zu legen, die zu Unter-

schieden in der Metabolom-Komposition führen. Diese Metrik ist so gestaltet, dass sie direkt mit

anderen molekularen Daten integriert werden kann, sodass eine funktionelle Hypothese zu den

Ursprüngen dysregulierter metabolischer Stadien erstellt werden kann.

Zusammenfassend stellt diese Dissertation neue rechnergestützte Methoden zur Analyse von

Lipidom- und Metabolom-Daten in einer funktionellen Art und Weise vor, die die Integration

anderer Omik-Disziplinen ermöglicht. Diese Verbesserungen in der funktionellen Interpretation
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beschleunigen letztlich die Generierung von Wissen aus biologischen und biomedizinischen Daten.

Dadurch bilden sie die Basis für neue, präzisere diagnostische und therapeutische Verfahren zur

Bekämpfung der globalen Krankheitslast.
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1 Motivation

Through progress in (bio)medical research, life expectancy has increased by around ten years from

1970 to 2021 in Germany [1]. However, in recent years the growth of life expectancy in Germany

has fallen behind compared to other high-income countries, except for the U.S., where stagnation

is observed despite the highest per-capita health expenditures [2, 3]. One aspect fueling this lag in

longevity is underperforming primary care and disease prevention [2]. Consequently, improving

early diagnosis and intervention treatments is a critical factor in enabling affordable long-term

health.

Caused by shifts in lifestyle, especially diet and physical activity, non-infectious diseases nowa-

days account for the largest share of the disease burden, being responsible for 3 out of 4 deaths

[4, 5]. One major class of non-infectious diseases are so-called metabolic diseases [6]. These are

diseases involving dysregulation of metabolism, such as Type 2 Diabetes (T2D), hypertension,

Non-Alcoholic Fatty Liver Disease (NAFLD), and obesity. Due to the high relevance of metabolic

diseases and the need to improve prevention, diagnostics, and treatment, studying dysregulations

of metabolism is an important factor for (bio)medical research. In particular, an in-depth under-

standing of how metabolic alterations contribute to the progression of diseases is essential for

reducing the burden caused by metabolic diseases.

In order to get such mechanistic insights that allow treating causes instead of symptoms, molecular

data describing the metabolic state, best reflected by the metabolome, is necessary [7]. Owing to

progress in analytical technology, such measurements can nowadays be done in a high-throughput

fashion. Consequently, the amounts of metabolic data available are far too large to be analyzed

manually and computational methods extracting patterns and mechanistic hypotheses are a key

factor for tackling the prevention, diagnosis, and treatment of metabolic diseases [8]. Despite this

urgent need, algorithms concerned with the interpretation of metabolomics data lack the level of

maturity present in algorithms designed for other types of molecular data. Therefore, the overall

theme of this thesis is to develop methods that allow biological and biomedical researchers to better

extract key insights from metabolomics data and speed up the process of generating validatable

hypotheses that ultimately enable the discovery of new biomarkers and treatment targets.

In particular, this publication-based dissertation targets two specifically understudied areas of

computational metabolomics: the functional interpretation of metabolomics data and multi-omics

integration.

In the first publication introduced in this thesis, summarized in Section 4.1, I introduce a tool named

Lipid Network Explorer (LINEX) [9] focusing on generating biochemical networks representing

the metabolic connections between lipid species. Generating such networks enables a structured

analysis of lipidomics data. By combining them with statistical measures and complex, interactive

visualizations LINEX gives rise to quantitative lipidomics analyses that incorporate the biochemical

1



1 Motivation

connections between lipid species.

The second publication, summarized in Section 4.2, introduces an extension of the idea from [9]

termed LINEX
2

[10]. Using metabolic reactions between lipid species, it allows the identification

of metabolic reactions with the highest change in activity between biological conditions. This is

especially relevant for biological and clinical researchers to enable faster and more interpretable

interpretation of their data.

Together, these two publications offer a solution for the objective of delivering accessible com-

putational methods that allow mechanistic interpretation of metabolism-related data and are thus

a first step towards improved diagnostic and treatment options.

The third project, a preprint included as unpublished work (Section 5.1), presents Metabolic

Network Reaction Analysis (mantra), a framework for the functional analysis of metabolic reaction

activity [11]. This functional aspect enables the identification of metabolic reactions which may

serve as drug target candidates or subtype-biomarkers. Furthermore, mantra is designed to integrate

data from other omics disciplines, such as transcriptomics or metagenomics, to generate more

fine-grained hypotheses on the mechanisms behind altered metabolic activity. Thereby, it targets

both objectives of making metabolomics data more functionally interpretable and integratable.

Outline of the Thesis

The following chapter will introduce general concepts of molecular biology and computer science

to provide the background necessary to understand the methods of this thesis and the greater

context of their relevance. The first section starts with an introduction to the layers of molecular

biology, which are integrated with multi-omics approaches, and the basics of metabolism, crucial

to understanding the design of both LINEX and mantra. Subsequently, I will give an overview

of the analytical techniques used to produce the data analyzed in this thesis. This knowledge is

particularly important when discussing the limitations originating from them and how future de-

velopments will expand the applicability of my work. The second section provides the background

on computational and mathematical techniques used in the publications that this thesis is based

on.

The subsequent chapters provide an overview of the methods I developed during my doctorate

and the publications they are presented in.

Finally, the last chapter is composed of a critical classification of the presented methods with

an in-depth discussion of how they advance the field and how they open up new possibilities

for future research. To conclude, I provide an outlook on where the field is headed and how

new developments in other areas of computational biology and computer science will impact

computational metabolomics in the coming years.
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2 Background

Computational biology is, as already obvious from its composed name, an inherently interdis-

ciplinary area. As a result, a certain familiarity with biology and computer science concepts is

necessary to comprehend methods in computational biology and understand their degree of nov-

elty and impact. Therefore, the following chapter gives an introduction to the biological and

computational concepts that were either used directly in or as inspiration for the work presented

in this thesis and the background required to understand them. The first part will cover essential

parts of molecular biology, including analytical techniques to collect high throughput data. Fol-

lowing is an introduction to common computer science and mathematical approaches used in

computational biology, focusing on those relevant to computational metabolomics and lipidomics.

2.1 Metabolism and Molecular Biology

Molecular biology is a subdiscipline of biology concerned with processes happening on a micro-

scopic level. It studies mechanisms involving all “layers” of cellular molecules and their interactions.

The main layer this thesis is concerned with is metabolism, the extraction of energy from food, and

the synthesis of so-called metabolites, molecules used in cellular processes.

While molecular biology nowadays lays the foundation for many breakthroughs in, e.g., biomedicine

and food production, the field itself only evolved in the last century. This section briefly intro-

duces major aspects of the field and different levels of information flow and signaling relevant to

metabolomics.

2.1.1 The Central Dogma of Molecular Biology

The central dogma of molecular biology (Figure 2.1), first proclaimed in 1958 by Francis Crick (and

published in 1970 [12]), is a key model describing the information flow in molecular biology. Based

on the knowledge available at the time, the central dogma states that information can be transmitted

from Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA), but not proteins
1
. More

precisely, Crick divides all theoretically possible types of information transfer between different

polymers (DNA, RNA, and proteins) into three categories:

I common with evidence

II rarely occurring (without evidence)

III not occurring

1

The description of the dogma provided here is based on the article from 1970 [12], which clarifies the proposal made

in a lecture in 1958, including new findings made in the meantime.
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2 Background

OH

O

HO OPO

O
—

O—

Figure 2.1: The central dogma of molecular biology as it was originally proposed by Crick [12] (black

arrows) and additions based on modern knowledge of metabolism and the environment

(blue lines). Solid black lines represent flows of information deemed as “common” while

dashed lines represent “special” types of flow. Figure created with BioRender.

While different modifications and additions to the original dogma have been suggested [13, 14,

15, 16, 17], its original form is still widely known. Here, I will use the dogma to introduce the

basic “layers” of molecular biology and their interactions before expanding the view to entities not

covered by Crick. In light of this thesis’ aim of developing methods that help to understand the

molecular origin of diseases better, the dogma has a central role, as this goal can also be seen as

trying to reconstruct aberrant information flows.

2.1.1.1 DNA

Deoxyribonucleic Acid (DNA) is a biomolecule made up of two chains of so-called polynucleotides.
Nucleotides are (deoxy)ribose molecules with one to three phosphate groups at the carbon atom

at position five (“C5”) and a so-called nucleobase at the C1 position. DNA contains four different

nucleobases: Adenin (A) and Thymine (T), and Cytosine (C) and Guanine (G). Two nucleobases

each, called complementary, form a base pair through hydrogen bonds; A with T and C with G.

Nucleotides, especially their triphosphate versions, will also be important players in metabolism,

as we will see later. Each DNA strand is formed by polymerization from a condensation reaction

between the phosphate group of one nucleotide at the C5 - the so-called 5’ end - and the hydroxy

group at the C3 - the 3’ (pronounced 3 prime) end - of another nucleotide. While the exact

positions may seem unimportant at this point, they are crucial for understanding the sequencing

technologies introduced in Section 2.1.4 (Sequencing-Based Technologies).

The two strands, called forward and reverse strand, are oriented in opposite directions, and

4
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2 Background

the bases at each position (with respect to the inverse directionalities) are complementary. The

information in a DNA section is encoded by the sequence of base pairs. It can either be transferred

in the classical sense of the central dogma, by replication or transcription, or through regulatory

functions, such as forming binding sites for proteins that regulate transcriptional processes. While

replication simply “copies” DNA molecules, transcription (“gene expression”) transforms the

information into RNA. As shown in Figure 2.1, there is also an inverse transformation to tran-

scription, which turns RNA code into DNA. This process is called reverse transcription, a process

utilized by retroviruses, which carry their genetic information as RNA and insert it into host cells

as DNA.

The transcriptional process is tightly regulated, as the transcriptional program of a cell is ex-

tremely specific for each cell type, condition, signal, etc.. One aspect of regulation are the so-called

transcription factors. These are proteins that promote or suppress gene expression by binding to

specific DNA regions. Another way cells regulate transcription is by epigenetic factors. One of

them is the methylation of cytosines, which can prevent regulators of transcription from binding

[18] and takes part in mediating chromatin formation [19, 20]. Chromatin refers to a complex

of DNA and specific proteins called histones, around which DNA strands are wrapped. While

its main function is to provide a more densely packed form, post-translational modifications of

histones are the second way of regulating gene expression epigenetically. Modifications causing

tighter packaging in some areas (“Heterochromatin”) make genes inaccessible, while less dense

packaging produces open regions (“Euchromatin”) available for replication and transcription.

2.1.1.2 RNA

Ribonucleic Acid (RNA) is a (mostly
2

) single-stranded polynucleotide, in contrast to the double-

stranded DNA, that is also made up of a four-nucleotide “alphabet”. Another biochemical

difference to DNA is that Thymine is replaced with Uracil (U). This represents an interesting

evolutionary trade-off, as Uracil is more energy efficient to produce than Thymine, the methylated

form of Uracil, at the expense of having undetectable C→U mutations through spontaneous

Cytosine-deamination [22]. Since a single RNA copy only leads to a limited number of translations,

such occasional mutations are acceptable. DNA, on the other hand, needs to be as stable as possible

as mutations persist and are even inherited at cell division
3
. Therefore, the additional cost of

forming Thymine is justifiable for DNA but not for RNA.

While the main function of RNA is to carry the information for protein synthesis (the so-called

messenger RNA (mRNA)), it has a diverse range of additional functions executed by different

flavors of RNA, canonically referred to as non-coding RNA. Some of these functions come

from the single-stranded nature that enables a diverse range of structures through base pairings

within the same strand. To translate mRNA into proteins, transfer RNA (tRNA) and ribosomal

RNA (rRNA) are required, making them essential players in the central dogma of molecular

biology. Even though mRNA is often considered the main function of RNA, the cellular RNA

content is heavily dominated by rRNA, comprising around 80%. Together with ribosomal proteins,

the latter forms the so-called ribosome, a complex “translating” genetic code from a RNA sequence

2

Double-stranded RNA (dsRNA) molecules also occur in nature, e.g., in viral infections, which the innate immune

system can even recognize through dsRNA receptors [21]. However, single-stranded RNA is much more common.

3

This is, of course, only relevant for non-terminally differentiated cells.
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to a peptide sequence. This function is carried out by recruiting tRNA molecules, which carry a

specific peptide on one end and a corresponding three-nucleotide sequence called “anticodon” on

the other. The genetic code encoded by mRNA is divided into nucleotide triplets called “codons”,

to which the anticodons are complementary. This way, the mRNA sequence encodes a specific

peptide sequence.

In addition to translation-related non-coding functions, RNA can also mediate signaling, for

example, through RNA interference (RNAi) - small interfering RNA (siRNA) molecules (20 to

24 bp long) adhering to complementary RNA sections forming dsRNA that is subsequently used

as a marker for digestion [23].

2.1.1.3 Proteins

The terminal end of information flow in Crick’s central dogma is the level of proteins. Un-

like nucleic acids, they are not made up of nucleotides, but instead of (20
4

proteinogenic) α-

Amino Acids (AAs). These are molecules in which a carbon atom connects an amino group

(“N-terminus”), a carboxy group (“C-terminus”), and a specific residue. AAs can be chained

to peptides via a condensation reaction between the N-terminus of one and the C-terminus of

another AA.

A protein’s linear AA sequence is referred to as the primary structure. Based on chemical

and physical interactions between AAs, secondary structures are formed. Generally, secondary

structures are divided into α-helices and β-sheets plus linker and unstructured regions. The 3-

dimensional assembly of these secondary structures, a crucial factor for protein function, is referred

to as the tertiary structure. Sometimes, multiple proteins associate and act as one large complex.

This assembly of tertiary structures is then called quaternary structure.

Certain motifs occur frequently despite the immense diversity of protein sequences and struc-

tures within and between organisms. Usually, such motifs exhibit specific functions, such as

anchoring proteins in membranes or catalyzing specific reactions like the phosphorylation of

specific residues of other proteins or the breakage of specific molecular bonds. Thus, they can also

be used to classify proteins into functional categories.

2.1.1.4 Metabolites

An entity not covered in the central dogma are metabolites. They are a chemically diverse class

of (small) molecules generated by metabolism. Though never clearly stated by Crick
5
, leaving

metabolites out is a logical step when considering the sole idea of characterizing genetic information

flow. Nevertheless, metabolites play an essential role. For one, they are required to build all three

entities of the dogma and provide the energy for their synthesis. Furthermore, they can act as

signaling molecules influencing the “expression” of DNA, RNA, and proteins, as well as their

interactions.

The functions of metabolites are as diverse as their chemical and structural properties. Of-

ten considered as the main function of metabolism, metabolites are intermediates and storage

4

In addition to the 20 “standard” proteinogenic AAs a special 21
st α-AA, called selenocysteine exists.

5

To the best of my knowledge, there is no record of Francis Crick commenting on metabolites and metabolism as a

potential part of the dogma.
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products of energy taken up from food in the form of nucleoside phosphates, such as Adeno-

sine Triphosphate (ATP) or Guanosine Triphosphate (GTP), Glycogen or Triacylglycerols (TGs).

Other examples of metabolite functions are signal transduction in various ways, defense mech-

anisms (e.g., antimicrobial peptides), and even communication between individual organisms,

such as pheromones or molecules involved in quorum sensing. A special class of hydrophobic and

amphiphilic metabolites are lipids. They are essential for life as a whole due to their ability to form

vesicles and membranes, which are used for compartmentalization to separate intra-cellular space

from the outside. For a more detailed examination of metabolism and the role of metabolites and

lipids, refer to Section 2.1.2 (Metabolism in Health and Disease).

2.1.1.5 Environmental Interactions

Taking the idea of adding new entities even further, one can also consider the influence of environ-

mental factors. Such features can be both living organisms as well as nutrients or toxins taken up

from the environment.

Interactions with the environment lead to mostly temporary, non-heritable responses. For

example, the metabolites produced by the gut microbiome have regulatory effects on the host’s

immune system and even the nervous system
6

[24, 25, 26]. Also, the recognition of (pathogenic)

microbial antigens directly triggers an immune response [27], including alterations in genetic

information flow.

Similar to microbial products, metabolites from nutrition can alter human gene expression [28,

29]. In addition to such short-term effects, it has been shown that conditions like malnutrition can

lead to long-term alteration of the genetic information flow, e.g., through sustained differential

methylation [30]. Even transgenerational, thus inheritable, alterations caused by starvation - the

absence of essential metabolites - were observed in Caenorhabditis elegans [31], showing that

environmental factors have a substantial influence on the genetic information used. One might

add mutagenic molecules as a class that can directly alter genetic code. However, since these are

usually unwanted effects organisms try to evade as much as possible, they are not considered here.

This expanded view on the central dogma of molecular biology assigns a central role to the

metabolome as the level reflecting the phenotype most closely and an organism’s interface with the

environment. Thus the metabotype is an important reflector of the status of an organism.

2.1.2 Metabolism in Health and Disease

In general, metabolism is mostly seen as the process of breaking down nutrients from food and

extracting the energy they contain, as well as synthesizing small molecules required to maintain

a dynamic equilibrium (homeostasis). Metabolic reactions are biochemical processes modifying

metabolites by adding or removing certain other metabolites. These reactions are usually not
spontaneous, i.e. they require some form of catalyzation. This makes them energy-consuming but,

at the same time, more controllable. To have an efficient way of controlling them, organisms use

enzymes, proteins - or protein complexes - that bind to the respective metabolite(s) and catalyze

the reaction in a so-called active site.

6

The so-called gut-brain axis
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Figure 2.2: Overview of carbohydrate metabolism. The light blue box in the center represents

Glycolysis; hexagons represent glucose, pentagons fructose and triangles C3-bodies.

The green box on the right schematically shows Pentose Phosphate Pathway. The left

box shows Gluconeogeneis. Figure created with BioRender.

Enzymes are ubiquitously present and we can observe their impact in everyday life, whether we

chew some bread for too long and it suddenly starts tasting sweet or yogurt tastes bitter after being

mixed with kiwi fruit or papaya. The former is caused by salivary amylases breaking down starch

into its components - sugars. The latter are cysteine proteases digesting milk proteins. While these

examples are single reactions, metabolic processes are usually complex, tightly controlled chains

of reactions - referred to as pathways. Deregulation of these can have dramatic effects, leading to

disorders and diseases. The deregulation of cellular energy metabolism, for example, is recognized

as an emerging hallmark of cancer, a characteristic that any cancer needs for rapid growth [32].

The following section will give a more detailed introduction to the basic pathways of (energy-

)metabolism and their relevance for the development of certain diseases. It is divided into three

parts, one for each class of macronutrients.

When reading this section, please bear in mind that my descriptions are only scratching the

surface of each pathway and one could write an entire thesis about researching a single metabolic

reaction, let alone the interaction and co-regulation between pathways happening in each and

every cell. That said, the following pages might be a good point to appreciate all the astounding

capabilities of our bodies and the incredibly complex, fine-tuned machinery it is.

8
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2.1.2.1 Carbohydrate Metabolism

Carbohydrates, organic compounds composed of chains of monosaccharides (sugar molecules), are

a main source of energy. Mammals can both catabolize and synthesize these molecules. Catabolic

activity, on the one hand, uses the energy stored in carbohydrate molecules to generate directly

usable units of energy such as ATP or GTP and electron donors, e.g. Nicotinamide Adenine

Dinucleotide (NADH) and Flavin Adenine Dinucleotide (FADH2). The energy in ATP and GTP

is stored in the phosphoric anhydride bonds. Hydrolysis of these bonds releases energy that can

be used to fuel reactions with a positive free energy balance, i.e. energy-consuming reactions, to

synthesize metabolites. The energy from electron transfer is used, for example, in electron transport

chains such as the mitochondrial respiratory chain to generate a proton gradient between two

sides of a membrane. This gradient can then power different processes, e.g. the synthesis of ATP.

Anabolic activity, on the other hand, invests energy to produce mono- and polysaccharides.

Glucose Catabolism One of the major pathways to extract energy from carbohydrates is

glycolysis. It converts one glucose molecule, a monosaccharide, into 2 pyruvate molecules and

reduces 2 NAD+ to 2 NADH while generating 2 ATP molecules (net)
7
.

Monosaccharides other than glucose can also be processed through this pathway by convert-

ing them into glucose- or fructose-6-phosphate, the first intermediates of the glycolysis pathway

generated via hexokinase phosphorylation and glucose-6-Phosphate isomerase interconversion.

Despite the positive net balance, the first step and third steps each consume one molecule of ATP

per molecule of glucose. The resulting molecule, Fructose-1,6-biphosphate, can be broken down

into 2 Glyceraldehyde-3-Phosphate (GAP), one of them via an isomerase reaction from Dihydrox-

yacetone, which can also be converted to glycerol. Subsequently, each GAP is phosphorylated

with a free phosphate, reducing NAD+ and releasing a free proton. This bound phosphate group

can then be used to generate the first molecule of ATP, and after an enolase reaction, the second

phosphate group - coming from the first step of glycolysis - is transferred onto a molecule of ATP,

essentially recovering the investment from the first/third step.

While glycolysis is generally catabolic, all but the phosphorylation steps are reversible. Three

intermediates of the pathway, glucose-6-phosphate, fructose-6-phosphate, and GAP, are shared

with the Pentose Phosphate Pathway (PPP). It is an anabolic pathway producing, among other

molecules, ribose-5-phosphate, the basis for synthesizing nucleotides, and erythrose-4-phosphate,

the basis for aromatic amino acid metabolism [33].

Under aerobic conditions, the product of glycolysis - pyruvate - is oxidized to acetyl-Coenzyme

A (CoA), again reducing NAD+, and passed into the Tricarboxylic Acid Cycle (TCA cycle). As

part of aerobic respiration, the TCA cycle is also one of the links between carbohydrate, lipid, and

amino acid metabolism [34]. While it also produces 2 ATP per molecule glucose
8
, the main aspect

for energy, however, is the reduction of 6 NAD+ and 2 FAD. The resulting electron donors - 6

7

Glycolysis produces 4 molecules of ATP per molecule of glucose in total. However, it also consumes 2 ATP in the

first steps of the pathway.

8

Technically, the TCA cycle produces 1 GTP per acetyl-CoA. However, GTP can easily be used to generate ATP by

transferring one of its phosphate groups onto Adenosine Diphosphate (ADP), and each glucose molecule yields 2

acetyl-CoA, hence the 2 molecules of ATP.
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NADH and 2 FADH2 - can subsequently be used in the Oxidative Phosphorylation (OxPhos) to

generate up to 34 molecules of ATP by building a proton gradient with the energy released from

electron transfer, which then powers an ATP synthase.

Blood Glucose Regulation Both very high as well as very low blood glucose levels can be

detrimental to humans. Therefore, glucose homeostasis tightly regulates the balance between

pathways metabolizing glucose, such as glycolysis and glycogenesis, and those synthesizing glucose,

such as glycogenolysis and gluconeogenesis [35]. Glycogenesis is the process of turning glucose

monomers into glycogen, a polysaccharide to store glucose. Glycogenolysis refers to the reverse reac-

tion. Both processes can occur in the liver, which acts as body-wide glucose storage by performing

glycogenesis in high blood glucose situations and glycogenolysis when blood glucose is low, and

the muscles, which exclusively use the generated glucose for themselves.

When its glycogen stores are depleted, for example, after a longer period of fasting, the liver

can also activate gluconeogenesis, an anabolic pathway generating glucose from lactate, glycerol, or

amino acids, thus connecting carbohydrate metabolism with lipid and amino acid metabolism. It

allows the liver to maintain blood glucose levels by digesting lipids and proteins.

Central Carbon Metabolism in Disease Central Carbon Metabolism (CCM) - glycolysis,

PPP, and the TCA cycle - alterations are associated with a wide range of disease conditions, such

as cancer, Parkinson’s Disease, or COVID-19 [36, 37, 38]. Arguably, the most prominent case of

a metabolic alteration (potentially) paving the way for disease progression is the Warburg effect.

Named after its discoverer, Noble Prize winner Otto Warburg, it describes an increase in glucose

degradation and lactate production through fermentation, thus avoiding the TCA cycle and

OxPhos, in tumor cells compared to “normal” cells [39, 40]. Under anaerobic conditions, with

which tumors are often faced, this poses an advantage as oxidative stress is avoided. Surprisingly,

at first sight, this change in metabolic activity is observed regardless of the presence of oxygen,

even though it reduces the efficiency of ATP production. When considering more recent findings,

especially with respect to the metabolic differences between quiescent and proliferating cells [41], it

becomes clear that tumor cells also mimic the behavior of “normal” proliferating cells to maintain

their high growth rates [42]. The reason why proliferation is accompanied by a bypass of the TCA

cycle and OxPhos is that their anabolic activity uses intermediates of glycolysis as well as cytosolic
acetyl-CoA

9
to synthesize lipids (Section 2.1.2.2), nucleotides, and amino acids (Section 2.1.2.3)

[42].

In breast cancer, an application case for the mantra paper presented in this thesis (Section 5.1),

alteration in CCM have also been reported in a similar way as explained for tumors in general [43].

In addition, Richardson et al. [43] also report an increase in nucleotide hexoses, such as Uridine

Diphosphate-Glucoronate (UDP-GlcN), synthesized from intermediates of glycolysis, the PPP,

and glutamine degradation (see Section 2.1.2.3), in tumor cells. This is an interesting showcase

of the intersection of altered metabolic activity and signaling, as UDP-hexoses are precursors for

Hyaluronic Acid, which has numerous signaling functions and is important for metastatic activity

[44].

9

in contrast to mitochondrial acetyl-CoA in the TCA cycle
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2.1.2.2 Lipid Metabolism

Lipids form a specific sub-class of metabolites that play a major role in numerous physiological

processes. They are usually characterized as hydrophobic or amphiphilic metabolites. Despite their

structural diversity, lipids are less diverse compared to the extremely high diversity all metabolites

have as a whole.

Above all, they enable the main prerequisite for life - compartmentalization - due to their ability

to form biological membranes in the form of mono- and bilayers. These are mostly composed of

amphiphilic lipids, namely glycerophospholipids, sphingomyelins, and cholesterol (Figure 2.3a

c and d). Another main function of lipids, arguably the most prominent one, is energy storage

in the form of TGs. These are stored in lipid droplets inside the cytoplasm and can be used to

generate energy and glucose when necessary. Dedicated tissue types exist to handle lipid storage,

the so-called adipose tissue, which also constitutes our (not so beloved) body fat. Furthermore,

lipids can also be important players in signaling cascades.

11



2 Background

CoA

CoA
15

CoA

CoA

CoA

CoA

SFA MUFA, PUFA

TCA Cycle

P

Glutamine Metabolism

Glycolysis

G3P

citrate

acetateCoA

L-Serine

Glycerol

Phosphatic Acid

Glycerophosphocholine

Glycerophosphoethanolamine

Glycerophosphoserine

Ceramide

Sphingomyelin

Glycerophosphoglycerol

Glycerophosphoinositol

Cardiolipin

(a)

CH2 CH2 CH2 CH2 CH3C

O

OH2C

CH2 CH2 CH2 CH2 CH3C

O

O

CH2 CH CH CH2 CH3C

O

O

HC

H2C

OH2C

CH2 CH2 CH2 CH2 CH3C

O

O

CH2 CH2 CH2 CH2 CH3C

O

O

HC

H2C

H

O CH2

CH2 CH2 CH2 CH2 CH3C

O

OH2C

HC CH2 CH CH2 CH3C

O

O

PO

O

O—

CH2CH2N+H3C

CH3

CH3

O CH2

CH2 CH2 CH2 CH2 CH3C

O

OH2C

HC CH2 CH2 CH3C

O

O

PO

O

O—

—

O CH2

CH2 CH2 CH2 CH2 CH3C

O

OH2C

HC CH2 CH2 CH2 CH2 CH3C

O

NH

PO

O

O—

CH2CH2N+H3C

CH3

CH3

HO CH2

CH2 CH2 CH2 CH2 CH3C

O

OH2C

HC CH2 CH2 CH2 CH2 CH3C

O

NH

Glycerolipids Glycerophospholipids Sphingolipids

Diacylglycerol

Triacylglycerol

Phosphatic Acid

Glycerophosphocholine

Ceramide

Sphingomyelin

CH2 CH2

CH2

(b)

Figure 2.3: Schematic overview of lipid metabolism and examples of common complex lipid struc-

tures. (a) Overview of lipid metabolism. The blue depicts Fatty Acid metabolism from

acetyl-CoA to Palmitic Acid (C16). Together with Glycerophosphate from Glycolysis,

fatty acids are turned into Lyso-Phosphatidic Acid and Phosphatidic Acid. The yellow

box shows Glycerolipid metabolism with Diacylglycerol at its center and connecting to

Glycerophospholipid metabolism (green box). Cardiolipins are generated from com-

bining two Phosphatidylglycerols and are thus also connected to Glycerophospholipid

metabolism. Sphingolipid metabolism is shown in the red box on the left. Connections

to carbohydrate and amino acid metabolism are shown at the top and the bottom. (b)
Examples of complex lipid structures.
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Figure 2.3: The first column shows Glycerolipids, Diacylglycerol and Triacylglycerol, respectively,

with the glycerol group colored in orange (the color scheme matches a) and fatty acids in

yellow. In the second column Phosphatidic Acid and Phosphatidylcholine are shown.

Glycerol is again colored orange, the phosphate group in Phosphatidic Acid (PA) in

brown, and the phosphocholine group of Phosphatidylcholine (PC) in blue. The last

column shows Ceramide (Cer) and Sphingomyelin (SM) with their sphingosine colored

in light blue and light green, respectively. The orange box indicates the carbon hydro-

gens originating from glycerol. The phosphocholine group in Sphingomyelin (SM) is

indicated by the blue box. Figures created with BioRender.

Structurally, complex lipids are composed of a backbone, an (optional) head group, and one or

multiple Fatty Acids (FAs) (Figure 2.3b). In reflection of this composition, the next paragraphs

will first outline FA and, subsequently complex lipid metabolism.

Fatty Acid Metabolism The precursor of FA synthesis is acetyl-CoA, usually coming from

mitochondria-exported citrate, that was produced in the TCA cycle, or cytoplasmic acetate (Fig-

ure 2.3a a). In the first step of FA biosynthesis, it is transformed to malonyl-CoA by carboxylation.

The malonyl-moiety is subsequently elongated in steps of 2 carbon atoms by transferring the

hydrocarbons from acetyl-CoA until palmitate is reached [45]. The elongation process is also the

reason that FAs with an even number of carbon atoms are more common, as odd-chain FAs need

to start synthesis from propionyl-CoA [46]. Palmitate is commonly annotated as “16:0” due to

its hydrocarbon chain containing 16 carbon atoms and zero Double Bonds (DBs) between them.

DBs are structurally very important properties, as they induce bends in the 3D structure of FAs.

Such non-linear structures reduce the density in which FAs/complex lipids containing DBs can be

packed, impacting, for example, membrane fluidity
10

. Furthermore, the altered molecule geometry

causes differences in binding affinities, which make the number and position of DBs an important

criterion for signaling cascades [47] and FA-preferences of certain types of complex lipid metabolism

enzymes [48]. As FAs with no double bonds are called “saturated”, the process of introducing DBs

is referred to as “desaturation”. In every desaturation step, two hydrogen atoms are transferred

onto FAD, introducing a single DB. Because only certain FAs can be desaturated
11

, some FAs need

to be taken up by diet. The two prominent families of such FAs are ω-3 and ω-6 fatty acids, such

as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) [50]. They are typically found in fish

and vegetable oils and play an important role in the regulation of inflammatory processes.

To use lipids for energy storage, the human body also needs to be able to break down FAs into

molecules that can be used to generate ATP. The main way of degrading FAs is β-Oxidation [51].

The process, happening predominantly in mitochondria, similar to FA synthesis, is a sequential

removal of C2-bodies in the form of acetyl-CoA until only acetyl-CoA itself (or propionyl-CoA) is

10

For example, the lipid “packing” in butter is high, due to a high degree of saturated FAs, making it solid at room

temperature. Plant oil, on the contrary, is liquid at room temperature as it contains a higher rate of unsaturated FAs.

11

For example, the KEGG [49] pathway for unsaturated FA synthesis lists only a total of 22 possible desaturation

reactions.

13
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left
12

(Figure 2.3a a). β-Oxidation thereby fuels ATP production via the TCA cycle and oxidative

phosphorylation [51]. Furthermore, in low-glucose scenarios, acetyl-CoA can also be used to

produce ketone bodies, which can serve as a substitute for glucose in e.g. the brain and skeletal

muscles [52, 53].

Lipid Class Metabolism The first steps in the de-novo synthesis of complex lipids, the

so-called Kennedy pathway, are the transfers of acyl moieties from acyl-CoA onto Glycerol-3-

Phosphate (G3P) followed by another acyl-transfer onto the reaction product, Lyso-Phosphatidic

Acid (LPA), resulting in a PA [54]. Note that this is a generic acyl transfer instead of a specific fatty

acyl transfer. This initial reaction links both fatty acid metabolism, which produces acyl-CoA, and

carbohydrate metabolism, which produces dihydroxyacetone phosphate (see Section 2.1.2.1), a

precursor for G3P, to complex lipid metabolism. PA serves as the starting point for synthesizing

two major lipid categories: glycero- and glycerophospholipids.

Glycerolipid anabolism via G3P begins with the dephosphorylation of PA to Diacylglycerol (DG)

[55]. Additionally, DG can be synthesized via acylation of Monoacylglycerol (MG), usually coming

from the breakdown of dietary nutrients [56, 57, 58]. Since glycerol carries three hydroxy groups

and DG consists of two FAs esterified to glycerol, another FA can be bound, which results in a TG.

For a more comprehensive review of glycerolipid synthesis, see [54] and [59].

Two glycerophospholipid classes, namely PC and Phosphatidylethanolamine (PE), are also

formed from DG by transferring their headgroups - phosphocholine and phosphoethanolamine,

respectively - onto the free hydroxy group of DG [60, 61, 62]. While Phosphatidylserine (PS) can

be synthesized from PC and PE [63, 64], a second route via cytidine diphospho-DAG (CDP-

DAG) exists in yeast [65]. CDP-DAG, obtained via a transfer of cytidine diphosphate onto PA,

is the precursor for PS, Phosphatidylinositol (PI), and Phosphatidylglycerol (PG) [66]. All three

are formed by transferring the respective characteristic head group moiety onto the DG-bound

phosphate group and releasing cytidine monophosphate.

Sphingolipids form the third major category of lipids. The most abundant sphingolipid classes,

Ceramide (Cer) and SM, are structurally similar to DG and PC, respectively. However, they are

synthesized in a separate pathway as they don’t have a glycerol backbone but a so-called long chain

base. It is formed during the synthesis of Cer via a palmitoyl transfer onto serine followed by a

reduction step [67, 68, 69]. In a condensation reaction, a fatty acyl is added to the amino group. A

subsequent desaturation yields Cer [70, 71]. By adding a phosphocholine onto the hydroxy group

of the sphingosine backbone, Cer is converted to SM.

Lipid Nomenclature A major issue when analyzing lipid data from a bioinformatics point

of view is the naming of specific lipid species, as the names following the International Union of

Pure and Applied Chemistry (IUPAC) nomenclature can get extremely long and thus shorthand

conventions are typically used. Multiple shorthand notation schemes exist, e.g. from Liebisch

et al. [72] or Pauling et al. [73], that describe the combination of lipid class and fatty acid, including

the level of resolution with which the respective lipid species could be identified. For example,

PC(16:0/18:1) describes a Phosphatidylcholine (PC) with a saturated FA with 16 carbon atoms

12

This is also possible for unsaturated FAs through auxiliary enzymes [51].
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at the sn-1 position and a FA with 18 carbon atoms and one double at the sn-2 position
13

in the

nomenclature from Liebisch et al. [72]
14

. This level of identification is often referred to as sn-specific.

If it is unclear in which order the fatty acyls are located, the lipid species is referred to as molecular

lipid species and denoted as PC(16:0_18:1) for our example. The most coarse-grained identification

level is the sum lipid species level: PC(34:1). In this case, only the total sum of carbon atoms and

double bonds, not the exact fatty acyl composition, could be inferred. An explanation of how

these identifications work and why coarse-grained annotations are still common is given later in

Section 2.1.3.

In addition to the mentioned FA properties, the exact double bond position and orientation

can also be specified. However, these properties cannot be identified at a larger throughput with

the current state-of-the-art analytics.

Complex Lipids The above example shows that lipids are a combination of fatty acids and

their backbones/head groups. While fatty acid modifications only happen on free fatty acids (as

acyl-CoAs), lipid class reactions happen on complex lipids. Depending on the enzyme catalyzing a

specific reaction, the fatty acid composition of a complex lipid often influences the conversion rate.

Often, multiple enzymes catalyze the same reaction but with different fatty acid preferences. Un-

fortunately, such preferences are rarely known, let alone quantified, making it hard to incorporate

them into bioinformatic pipelines. In fact, not even metabolic networks for lipid species are estab-

lished, preventing a variety of computational approaches (see Section 2.2) from being applicable

to lipidomics data. Taking a first step in this direction is one of the main projects presented in this

thesis.

Lipid Metabolism in Disease Due to the fundamental roles of lipids, lipid metabolism

is involved in many types of diseases, among them cardiovascular diseases, diabetes, obesity, and

cancer [74].

As already teased in the previous sections, lipids play a crucial role in tumors as they are required

for proliferation and signaling. Consequently, different oncogenes can activate de-novo FA syn-

thesis and lipogenesis [75]. For example, the Hypoxia-Inducible Factor 1 increases FA synthesis

expression, and hypoxia in cancer can lead to increased synthesis of cytoplasmic acetyl-CoA from

acetate providing the necessary precursors for FA synthesis [76, 77, 75]. Despite these effects of

tumorigenesis on lipid metabolism, lipids themselves can also drive cancer development. One of

the ways this influence is manifested can be seen in obesity, where high lipid content - especially

of Cer and DG - causes defective insulin signaling, triggering a release of insulin and Insulin-like

Growth Factor, both tumor-promoting factors [78, 79, 75].

Obesity is, by definition - an excess of body fat [80] - directly linked to lipids. To accommodate

for the increased volume of lipids stored, adipocytes increase in size (“hypertrophic obesity”) or

number (“hyperplastic obesity”) during the development of obesity [81]. Due to both hypertrophy

and hyperplasia requiring specific lipids for cell membrane remodeling or organization, cells need

to adapt their lipid metabolism to account for these needs. Furthermore, de-novo FA synthesis

13

The sn-position indicates to which carbon atom the hydroxy group, to which the fatty acid is esterified, is connected.

14

For the specific example, the number of hydroxylations is implicitly given as 0, as only carbon and double bond

numbers are given, but they can also be specified if present. A single hydroxylation of the FA 16:0 would be denoted

as PC(16:0;OH/18:1).
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Essential Conditionally Essential Nonessential

Histidine Arginine Alanine

Isoleucine Cysteine Asparagine

Leucine Glutamine Aspartate

Lysine Glycine Glutamate

Methionine Proline

Phenylalanine Tyrosine

Threonine Serine

Tryptophan

Valine

Table 2.1: Amino Acids categorized by essentiality. Adapted from Figure 1 in Chandel [85].

and lipogenesis are regulated depending on the degree of obesity. One hypothesis, based on the

current literature, is that they are upregulated in earlier stages, when body fat is built up, and

downregulated in later stages, putatively to restrict the total fat content [82, 83, 84]. The changes in

lipid metabolism in obesity also play an important role in one of the main papers Appendix A.2

presented in this thesis when demonstrating the capabilities of LINEX
2

.

2.1.2.3 Amino Acid Metabolism

Human AAs are α-AAs, which indicates that the functional groups are linked through a central

carbon atom. Depending on the type of residue, specifically its charge or hydrophobicity, they can

be classified into different chemical categories.

Furthermore, proteinogenic AAs can be separated into three groups depending on their role in

metabolism:

1. essential

2. conditionally essential

3. nonessential

By definition, the first group, spanning nine AAs, cannot be synthesized by humans and needs to

be taken up through the diet or be produced by the gut microbiome [86], as plants and bacteria are

able to synthesize all AAs [87]. The seven conditionally essential AAs can generally be synthesized

by humans and only become essential under certain conditions, such as low-birth-weight infants

[88]. In contrast, nonessential AAs do not have to be taken up, as the human body can synthesize

them on its own.

AA synthesis generally builds on intermediates of the CCM pathways. However, humans are

incapable of PPP-based amino acid biosynthesis. Therefore, Tyrosine, for example, can only be

synthesized directly from the essential AA Phenylalanine (by mammals). The biosynthesis of AAs

is not only important for protein synthesis but also for other metabolic processes, as they serve as

precursors for neurotransmitters and nucleotides, among others [85].

Excess AAs are degraded to intermediates that can enter the TCA cycle or be used for gluco-

neogenesis. AA breakdown can be separated into two parts: metabolization of the amino group
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at the α position and processing of the carbon backbone. α-amino groups are removed by first

converting an (α-)AA
15

to glutamate, yielding an α-keto acid as a side product. These reactions

are catalyzed by a family of enzymes called transaminases. This group of enzymes will reappear

again later in Section 5.1. Glutamate can then be dehydrogenated to serve as a substrate for the

urea cycle, which is used to excrete excess nitrogen in the form of urea. Interestingly, the urea cycle

is linked to the TCA cycle and both were discovered by Hans Krebs
16

[85]. Some AAs can also be

deaminated directly without requiring the transaminase step.

Subsequently, the remaining carbon skeleton is processed. AAs that can be directly converted

to acetyl- or acetoacetyl-CoA are called ketogenic because acetyl-CoA is used to produce ketone

bodies. Glucogenic AAs are processed to pyruvate or TCA cycle intermediates and can be used to

fuel gluconeogenesis. Only two AAs are purely ketogenic - Leucine and Lysine - 14 are exclusively

glucogenic and four can be both [90].

Amino Acid Metabolism in Disease AA degradation, especially of glutamine, is of great

importance for the energy metabolism of tumor cells by producing citrate as a precursor for

lipogenesis in hypoxia [91], showcasing how crucial the interplay of CCM, lipid and AA metabolism

for disease progression is. As glutamine deprivation induces apoptosis, tumor cells further modify

amino acid metabolism to increase the production of cellular asparagine to suppress their death

[92]. Despite their “main” function as building blocks of proteins and their role in energy and lipid

metabolism, AAs also serve as precursors for nucleotides and contribute to epigenetic regulation

and immunosuppression in tumors [93].

AAs and their metabolism are also known to impact Inflammatory Bowel Disease (IBD) on both

the host as well as the microbiome side [94]. Indeed, dietary supplementation of some AAs is even

used as a treatment for some forms of IBD, yet other AAs can also have a pro-inflammatory role

and dietary intake of these should thus be restricted [94, 95]. Although IBD and the influence of

the microbiome have been studied extensively, many aspects of disease progression, the (potentially

causal) role of the microbiome, and its interaction with host metabolism remain unclear [96].

In my work on developing an approach to infer alterations of metabolic reaction activity from

metabolomics data and integrating it with microbiome data, I demonstrate how mantra can be

used to gain further insights into the metabolic changes under IBD.

While the CCM is often considered the most fundamental part of metabolism, all introduced

pathways are essential for human life. As already highlighted, they are all connected through shared

metabolites, mostly via CCM. From a biological perspective, this means that limited resources can

introduce trade-offs between different pathways. Thus, tight regulation is required, and changes in

one part of metabolism can affect metabolism as a whole. From a bioinformatics perspective, this

gives rise to interesting properties of biological systems that can be exploited for certain applications

but also complicate inference tasks (more on this in Section 2.2). The introduced pathways are

generally well understood under healthy conditions. However, many questions regarding regulatory

mechanisms, the interaction with the environment, and especially the role of dysregulation in

disease progression remain unanswered in many cases. Especially mechanistic hypotheses, which

15

Any amino acid except for Lysine can be directly transaminated [89].

16

Therefore, an alternative name for the TCA cycle is “Krebs cycle”.
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aim at not only identifying aberrant phenotypes but also pinpointing possible modes of action,

are needed to move the field forward.

2.1.3 Measuring Small Molecules

Analytical chemists have been trying to accurately identify and quantify molecules for a long time,

with the earliest approaches dating back to the 18
th

century [97]. The technologies that enabled mod-

ern metabolite analyses are Nuclear Magnetic Resonance (NRM) and Mass Spectrometry (MS).

Using a magnetic field NRM induces chemical shift and spin-spin coupling, yielding spectra char-

acteristic for a given molecule. In contrast, MS is concerned with measuring the mass-to-charge

ratio (m/z) of ionized molecules. While NRM is still used for structural elucidation and analysis

of living samples, among others, the standard for high-throughput metabolomics is nowadays

MS. One of the major reasons for this is the 10 to 100-fold increased sensitivity of MS, leading to a

much higher number of possible identifications [98]. Nowadays, the acquisition of hundreds to

thousands of molecules can be achieved with workflows lasting 30 minutes or less [98]. While the

acquisition of lipids follows the same general workflow as for metabolites, the individual steps are

typically optimized for either lipids or metabolites.

Züllig, Trötzmüller, and Köfeler [99] divide a typical lipidomics (or metabolomics) workflow into

four steps:

1. Sample Preparation

2. Data Acquistion

3. Data Processing

4. Data Interpretation

This section provides an introduction to the first two steps, while steps three and four are covered

in Section 2.2.

2.1.3.1 Molecule Extraction

While it is possible to directly analyze complex, even living, samples with NRM, analysis via MS

requires specific extraction protocols. These aim at isolating specific classes of metabolites and re-

moving unwanted molecules, such as polynucleotides and proteins. Naturally, due to the structural

diversity of metabolites, different extraction protocols favor different types of metabolites.

Two major components in metabolite extraction are the choice of solvent(s) and the technique

chosen [100]. Solvents should typically have a high solubilization strength and a low selectivity

towards metabolite classes. For metabolites, typical solvents are methanol and acetonitrile [101]. For

lipids, which have more distinct properties, methanol, choloroform, and methyl-tert-butyl ether

(MTBE) are commonly used solvents [102, 103, 104]. A technique applicable to both metabolites

and lipids is the so-called liquid-liquid extraction [105, 106]. It uses two solvents with different

polarity and/or water solubility to separate molecules based on their chemical properties [99]. By

retaining only one of the two phases, unwanted molecules are removed. Depending on the type of

pre-separation (see Section 2.1.3.3) and the categories of metabolites to target, derivatization after

extraction can enhance analytical capabilities [107].

18
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In addition to the above-explained considerations, sample handling prior to extraction is critical.

Due to short turnover times and the highly dynamic nature of metabolism, sampling time should

be kept as short as possible [108, 100]. Subsequent storage conditions need to prevent spontaneous

chemical modifications, such as oxidation. Furthermore, all best practices for experiment design

and sampling in molecular biological experiments, for example, adequate randomization and

sufficient controls, apply to metabolomics experiments, too.

Once metabolites/lipids are extracted, samples are ready to be analyzed. Generally, the measure-

ment is divided into 5 steps:

1. Pre-Separation

a) Chromatography

b) Ion-Mobility Spectrometry

2. Ionization

3. Measuring intact molecules

4. Fragmenting molecules

5. Measuring fragments

with steps 1, as well as 4 and 5 (together), being optional.

2.1.3.2 Separation by Mass

To understand how metabolites are identified and quantified in modern high-throughput experi-

ments, a brief introduction to the workings of mass spectrometers is necessary.

While different types of mass spectrometers exist, they are all unified by the idea of ionizing

molecules (i.e. giving them a charge) and subsequently using the acquired charge for detecting their

mass-to-charge ratio by manipulating their trajectory with electromagnetic forces. The process of

ionization is happening in a so-called ion source. Different ways of achieving ionization have been

developed, with the most common nowadays being Electrospray Ionization (ESI) [109, 110]
17

.

Once ionized molecules enter a drift tube, guiding them via electromagnetic forces. To measure

the mass of an “intact” molecule, the so-called precursor ion, analytes enter a mass analyzer. All

mass analyzers measure molecules dependent on both their mass and their charge. Therefore, mass

spectrometers report the mass-to-charge ratio (m/z). The charge of any ion can be inferred using

what is referred to as its isotopic pattern, and thus, molecule masses can (easily) be computed. Two

common types of mass analyzers are Time-of-Flight (TOF) and orbitrap. The principle behind

TOF, as its name already suggests, is to use the proportional relationship between an ion’s m/z

and the time it takes to cover a specific distance in the flight tube after acceleration by a voltage

difference. At the end of the flight tube, a detector releases electrons when hit by an ion. The

number of ions can be quantified, as it is proportional to the number of electrons released. The

reported “intensity” cannot be directly used to calculate concentrations or absolute quantities of

molecules unless specific internal standards are included. This is due to unknown molecule-specific

17

ESI is the most widely employed method for liquid samples. For applications such as MS imaging, different ionization

modes have to be used.
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Figure 2.4: Schematic overview of the fragmentation pattern of PC(16:0_18:2) in positive mode.

Experimental spectrum data was obtained from the MassBank of North America

(MoNA) (https://mona.fiehnlab.ucdavis.edu/spectra/display/LipidBlast060656; ac-

cessed on 5 September 2023). Molecule depiction was generated from the SMILES

string of PC(16:0/18:2(9Z,12Z) from the LipidMaps Structure Database [113] using

OpenBabel. The expected fragments were taken from the ALEX
123

database with H+

as adduct [73].

ionization efficiencies. In contrast to TOF analyzers, where ions are destroyed when hitting the

detector, orbitraps use non-destructive detectors. This is possible because they determine m/zs by

circling ions around an electrode
18

, creating axial oscillations
19

[111]. The axial oscillations lead to

an image current [111], which can be Fourier-transformed into frequencies and translated to m/z

values. Intensities are determined through the strength of the signal.

Obtaining m/zs for precursor ions and their corresponding charge state allows for the identification

of metabolites to a certain degree. Generally, these masses can be matched against databases to

obtain one or multiple candidate molecules - a process termed accurate mass search. As expected,

the higher the accuracy, the further the number of candidate molecules can be narrowed down.

However, many metabolites are isobaric, i.e. their masses are identical. For example, Opialla, Kempa,

and Pietzke [112] showed that less than half of all metabolites in the KEGG database [49] have

unique masses. In lipidomics, this problem is even more dramatic, as all sum species (recall the

definition from Section 2.1.2.2) have the same precursor mass. Consequently, accurate mass search

can only get us so far in terms of identification, and additional ways of telling isobaric compounds

apart are required.

Fragmentation One way to resolve isobaric compounds is by fragmenting compound ions.

To get “clean” fragmentation patterns, single precursor m/zs are isolated using mass filters, most

18

The orbitrap also contains two outer electrodes in addition to the inner electrode around which ions are oscillating.

19

Additionally, radial movement is induced, and balancing the electric fields is a delicate balance [111]

20

https://mona.fiehnlab.ucdavis.edu/spectra/display/LipidBlast060656
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commonly quadrupoles, and guided into a fragmentation chamber. A typical fragmentation

technique used to identify small molecules is Collision-Induced Dissociation (CID) [114, 115]. It

works by accelerating ions inside a neutral-gas-filled collision cell such that precursor ions colliding

with the chemically inert gas physically break them apart. The exact position and proportion of

bond breakage are dependent on the energetic state [116]. After passing through the fragmentation

chamber, the product ions are guided to the mass analyzer to determine their m/zs. A fragmentation

event in metabolomics typically leads to one charged product ion and one uncharged (neutral)

ion, whose m/z cannot be detected. When distinguishing isobaric or even isomeric molecules, the

fragmentation pattern serves as a fingerprint specific to each compound [115]. However, in practice,

oftentimes not all product ions are observed, and certain types of isomers, such as cis-trans-isomers,

are indistinguishably in state-of-the-art high-throughput experiments
20

[118]. Therefore, each

molecule identification comes with its own degree of uncertainty.

To get even more fine-grained identification with MS only, it is also possible - with certain

instrumental setups - to pass fragment ions into the fragmentation chamber one or multiple times

[119]. Doing experiments with one round of fragmentation is referred to as MS/MS, tandem MS,

or MS2, while higher orders of fragmentation are denoted as MSn, where n is the number of

fragmentation steps + 1. Accordingly, MS experiments without fragmentation are called MS1.

To showcase what fragmentation patterns look like and how they influence the level of com-

pound annotation, PC(16:0_18:2) is going to serve as an example. Figure 2.4 depicts the fragments

measured/expected in positive mode with CID. It shows that PCs fragment at bonds connecting

the components of complex lipids - head group and FAs. While this principle is true for both

positive and negative charge mode, the exact fragments measured differ between the charge modes.

Characteristic for PCs is the peak at around 184.07 (green peak), representing the protonated

Phosphocholine breaking off from the glycerol backbone (for a compilation of major Phospholipid

head group fragments, see Table 2.2). Additionally, a loss of the Phosphocholine (uncharged)

would be expected but is not observed in this spectrum (red dotted line). Because the lost moiety

weighs
21

around 183 Da (184.07 minus the mass of a proton), the peak would be expected at the

precursor mass minus 183 (≈ 575).

In addition to these lipid class-specific peaks, FA-specific peaks can be observed. These allow the

identification of molecular lipid species. Each FA can produce two distinct peaks from losses in

positive mode because both bonds surrounding the ester bond break frequently. For this particular

example, this results in peaks at 478 and 496 Da for the 18:2 FA (blue peaks) and 502 and 520 Da

for the 16:0 FA (cyan peaks). In negative mode, FA fragments instead of losses would be observed.

The remaining peak in the spectrum (grey) represents unfragmented precursor ions. Generally,

the higher the collision energy, i.e. the kinetic energy of the ions in the collision cell, the lower the

intensity of the precursor ion in the MS2 spectrum.

Because fragmentation patterns allow to distinguish between isobaric and some isomeric com-

pounds, metabolomics experiments can be run by directly injecting sample extracts into a mass

spectrometer. In lipidomics, this approach is commonly referred to as shotgun mass spectrom-

20

The recent revival of alternative fragmentation techniques such as Electron-Activated Dissociation (EAD) [117],

together with improvements in pre-separation, promises progress in isomer-differentiation in the future.

21

Note that the 183 is not a m/z as it describes a neutral molecule, which thus has no charge.
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Lipid Class Head Group Fragment m/z values

Positive Mode (+H+) Negative Mode (-H+)

PC 184.07

PE 140.01, 196.03

PG 153.00, 171.01

PI 153.00, 223.00, 241.01

PS 153.00

Table 2.2: Characteristic head group fragments for five major glycerophospholipid classes as con-

tained in the ALEX123 database [73]. Fragment m/z values are rounded to the second

digit after the comma. All values in positive mode are for proton adducts and negative

mode for proton loss. Neutral losses of head group fragments are excluded.

etry
22

. While it saves time to use direct infusion, it can come at the cost of sensitivity
23

, due to

a phenomenon known as ion suppression [99]. It describes a decreased efficiency of ionization

leading to low abundant analytes becoming potentially undetectable [121, 99]. One factor thought

to influence is the amount of (especially) poorly- or non-volatile compounds[120, 121]. Naturally,

shotgun mass spectrometry leads to large amounts of compounds at the same time, as the entire

sample is continuously injected. One possibility to reduce these effects is to use pre-separation

techniques.

2.1.3.3 Separation by Chemical Properties

Chromatography Chromatography is a general technique in analytical chemistry to separate

compounds on the basis of chemical properties. Roughly speaking, chromatography guides

analytes through a column in which they chemically interact with the material present on the

inside of the column. More technically speaking, chromatography uses two components for

separation, a mobile phase, which carries molecules through the column, and a stationary phase,

the material on the inside of the column. While traveling through the column, analytes chemically

interact with both the mobile and the stationary phase, for example, through van-der-Waals forces.

The time spent inside the column, the Retention Time (RT), of a compound depends on how

strong the association with the mobile phase is relative to the association with the stationary

phase (the higher, the shorter). Two common types of chromatography for lipidomics are Liquid

Chromatography (LC) and Gas Chromatography (GC), which have a liquid and a gaseous mobile

phase, respectively.

In exploratory metabolomics experiments, a common approach is to have two runs (for each MS

charge mode) with different Liquid Chromatography (LC) columns separating based on different

chemical forces. One example of a column combination is Reversed Phase Chromatography (RP)

and Hydrophilic Interaction Chromatography (HILIC) [122]. HILIC columns have a polar

stationary phase and a more organic mobile phase
24

, thus separating hydrophilic molecules well

22

Note that the use of the word “shotgun” in lipidomics is distinct from the use in proteomics.

23

The degree of ion suppression also depends on the ionization technique, with ESI being rather susceptible [120].

24

To elute hydrophilic molecules, the hydrophobicity of the mobile would be gradually decreased throughout the

22
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[123]. For the separation of hydrophobic molecules, such as lipids, RP columns are used. These

contain an organic stationary phase, and the mobile will go from hydrophilic to hydrophobic

during the course of a sample run.

Ion Mobility Spectrometry In contrast to chromatography, Ion Mobility Spectrometry (IMS)

is a technology that does not use chemical properties of ions for separation, but size and shape

[124]. Different drift-times can be achieved through different IMS architectures, e.g. by using

an asymmetric electrical field or a neutral gas flow [124, 125]. While it is not fully orthogonal to

mass spectrometry, as mass also plays a role for the drift time [126], IMS has shown to improve

the identification of isomers, e.g. in lipidomics [127, 128, 129, 130, 125]. Because IMS needs ion-

ized compounds, it can either be used as a sole pre-separation step or follow a chromatographic

separation prior to injection into the mass spectrometer.

Both chromatography and IMS not only improve the detection of compounds inside the mass

spectrometer but also serve as additional filtering steps for identification [131, 132]. For example,

reference RT windows, from in-silico prediction or experimentally determined, can be used to filter

out unlikely compound candidates. Similarly, the drift-time from IMS can be used to compute

an ions Collisional Cross-Section (CCS), which can then be compared to the expected CCS of

candidate molecules.

Nowadays, a number of software suites for the identification of metabolites from mass spectra

exist. Some prominent examples are MS-DIAL [133], OpenMS [134], and MetaboAnalyst [135].

These platforms can handle all typical combinations of pre-separation and mass spectrometer

variations. While they are also capable of identifying lipids, the special requirements of Lipidomics

led to various specialized tools for lipid identification, such as ALEX
123

[73], LipidXplorer [136],

LipidMatch [137], and LipidHunter [138].

Although the work I will present in the following chapters is not focused on identifying small

molecules, the approaches presented for both lipidomics [9, 10] and metabolomics [11] rely on

accurate (and large-scale) identifications. Furthermore, some of the student projects I supervised

that do not appear in this thesis aim at improving lipid identification.

A major downside of current MS-based metabolomics workflows - irrespective of instrument type,

analysis mode, and pre-separation - is that it is hardly possible to multiplex. With acquisition

times of up to 30 minutes, this displays a clear disadvantage compared to sequencing technologies

(Section 2.1.4) or MS-based proteomics, where multiplexing approaches such as tandem mass tag

(TMT) labeling are available [139].

2.1.4 Sequencing-Based Technologies

Nucleotide sequencing has become a standard technique in molecular biology in the last decades.

The earliest report of sequencing dates back to 1968 [140], but methods efficient enough to decode

more than a few tens of nucleotides were not developed until 1976 [141]. In this year, two methods

with different approaches were developed by Sanger, Nicklen, and Coulson [142] and Maxam and

analysis time.
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Gilbert [143]. The first method is based on synthesizing copies of a gene, but instead of supply-

ing exclusively “regular” nucleotides, small fractions of modified nucleotides missing a hydroxy

group
25

thus ending elongation are added [142]. This way, one partial fragment for each base is

produced - in small fractions. Subsequent sorting of fragments by length via electrophoresis with

one lane per type of dideoxy nucleotide allows to “read off” the sequence. Sequencing with chain-

terminating bases followed by electrophoresis separation was later coined as Sanger sequencing.

Maxam and Gilbert [143] approached sequencing from the “other” side - doing restriction instead of

elongation. By having cleavages that are specific to each nucleotide with labeled fragments, the

sequences can be read off in a similar manner to the method by Sanger, Nicklen, and Coulson [142].

These first approaches used radioactive labeling. Later, fluorescence labeling versions of Sanger

sequencing were developed that allowed to sequence thousands of base pairs in an automated

fashion [141]. This way of sequencing is nowadays often referred to as First Generation Sequencing.

Next Generation Sequencing (NGS), also referred to as massively parallel sequencing, describes

a new approach that does not require electrophoresis and allows to highly multiplex. The basic

principle is to ligate adapters to the end of each fragment, serving as both an identifier and to

mount the fragment to sequences followed by synthesizing copies in a way that emits a light signal

at every iteration. Three general flavors of this so-called sequencing-by-synthesis approach were

proposed - pyrosequencing [144], ligase-mediated label transfer [145], and polymerase-mediated

labeling [146, 147]. Nowadays, the most widely used method is polymerase-mediated synthesis [141].

It adds a single base per cycle by using fluorescence-labeled nucleotides that terminate elongation.

Subsequently, the labeling for each fragment is read off, and the fluorescence tag, as well as the

group preventing further elongation, are removed so the next cycle can start.

Recently, a third generation of methods has been developed. In contrast to first and second-

generation methods, which require cutting DNA into small fragments, these methods aim at

measuring large DNA strands. One such approach uses nanopores, small transmembrane pores,

through which one single strand of DNA is guided. During this process, nucleotides (3 to 7)

passing through the pore lead to a characteristic electric signal [148].

Sequencing Microorganism One aspect of health that caught attention in the last decades

is the microbiome [149]. Initially, the analytics of quantifying bacteria focussed on detecting a

specific subunit of bacterial rRNA - the 16S unit - with DNA sequencing [150]. Thus, this type

of analysis is often referred to as 16S sequencing. By using specific primers “spanning”
26

the 16S

gene, small mutations within the sequence can be used to bin them into so-called Operational

Taxonomic Units (OTUs) based on the similarity of their 16S sequence [151]. While this has

been the most widely used strategy for years, it comes with the great limitation of not being able

to resolve microbial species and identify non-bacterial microorganisms at all. Therefore, with

the decreasing cost of NGS, Metagenomic Sequencing (MGS) became more popular as it allows

species, and possibly strain-level, resolution [153]. Furthermore, it opens up the possibility to

sequence individual genes, which can give a more functional view of microbial composition, for

25

The dideoxy nucleotides used for chain termination lack the hydroxy group at the C3. Recalling the mode of

polymerization of nucleotides from Section 2.1.1.1, the 3’ hydroxy group is the one forming the ester bond with the

phosphate group of another nucleotide.

26

Different strategies for designing primers exist, and the choice heavily affects the outcome of OTU grouping and

quantification [150, 152]
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example, by determining the metabolic capacities of communities [154]. In a nutshell, MGS is

done by sequencing sites of the microbiome, such as stool or mucosa from different body sites,

and mapping the resulting sequences against a database of known microbial genomes.

While I’ve worked on different projects integrating 16S with metabolomics data that are not part

of this thesis for brevity (e.g. [155]), MGS plays an important role in supporting the results of

the mantra algorithm[11] - one of my main publications presented here. Additionally, mantra is

developed to improve the interpretation of multi-omics data, especially of MS-based metabolomics

and sequencing data.

2.2 Computational Biology and Bioinformatics

Bioinformatics is a subdiscipline of computer science concerned with the development of al-

gorithms for the analysis of biological data, while computational biology is the application of

computational methods to biological data [156]. The first bioinformatics methods, working on

de-novo assembly of peptide sequences, date back to the 1960s [157]. While the field was originally

mostly dealing with analyzing sequencing data, predicting protein structures, and generating

databases, it has since evolved to cover a vast bandwidth of applications [157]. One notable demon-

stration of the need for computational biology was the initial sequencing of the human genome

[158], as the vast amount of sequencing data produced could not have been aligned without the use

of computational algorithms. A more recent example of a computationally driven breakthrough

in biology is the introduction of AlphaFold2 [159], which is able to deliver accurate predictions of

protein structures for many cases. Especially with the recent advent of machine and deep learning,

a broader data science community has found interest in biological applications.

Computational metabolomics is the sub-field analyzing metabolomics-related experiments, all

the way from processing and annotating mass spectra to interpreting and integrating metabolomics

data. Despite this broad definition, the main focus of the field still lies in the annotation of mass

spectra. Although this rather narrow focus of the community has started to shift, approaches for

metabolomics data analysis, integration, and interpretation are still lagging behind compared to

proteomics or transcriptomics. Parts of this apparent gap are addressed by the work in my thesis.

In the following, I will introduce aspects of computer science relevant to understanding the

methods presented in the next chapter as well as understanding the discussion of my work in a

broader context.

2.2.1 Graphs in Biology

A central part of this thesis is leveraging prior knowledge in the form of metabolic information to

guide data interpretation methods for metabolomics. Like many other types of prior knowledge

in biology, metabolism can be represented as a graph. A graph G = (V,E) is a mathematical

structure defined as a pair of two sets: the set of vertices (or “nodes”) V and the set of edges E.

Vertices can represent one or multiple entities, for example, proteins in Protein-Protein Interaction

networks (PPI networks) or metabolites and metabolic reactions in metabolic networks. Depending

on whether E consists of ordered or unordered 2-tuples, a graph is said to be directed or undirected.
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Edges can also be assigned weights representing e.g. the strength of association of two vertices
27

.

PPI networks, on the one hand, are typically undirected as they represent the interaction between

two proteins, which is a symmetric relationship. Chemical reaction systems, on the other hand,

are inherently directed as each reaction has a specific direction
28

. If two types of vertices are

contained in a graph and every edge e ∈ E represents a connection between a vertex of one

type with a vertex of the other type, the graph is referred to as bipartite. Metabolic networks are

typically represented as (directed) bipartite graphs, as only connections between metabolites and

reactions exist. Computationally graphs can be represented with different types of data structures.

The choice of data structure is usually dependent on the application, as each allows for certain

operations to be implemented efficiently. For example, determining the degree - the number of

direct neighbors - of a vertex in an unweighted adjacency matrix, a binary n× n matrix where 1
indicates edge existence and 0 edge absence, requires to sum over the ith row (or column). With an

adjacency list - a list containing the list of neighbors for each vertex - the degree can be determined

by taking the length of the respective neighbor list.

In addition to representing direct interactions of molecules, graphs are also used to define

knowledge representations, such as ontologies. Gene Ontology (GO), for example, is a hierarchical

grouping of genes in functional categories, that models the hierarchy between classes as a Directed

Acyclic Graph (DAG) [160]. Another specific case of an acyclic graph frequently occurring in

computational biology is a tree. In a tree, any pair of vertices u, v ∈ V is connected by not more

than one path. Trees are commonly used to show the evolutionary relationship between organisms

in a so-called phylogenetic tree. These can be useful for visualizing evolutionary distances or for

finding common ancestors and partitioning groups of organisms, e.g. by tree-based clustering

[161].

Graphs are not only useful for intuitively representing systems and relationships but they can

also be used as data structures to efficiently solve various types of questions. A famous example of

an early use case is the problem of the seven bridges of Königsberg. It asks whether it is possible

to walk through the city of Königsberg, crossing each of its 7 bridges exactly once (Figure 2.5a).

Leonhard Euler famously solved the problem by removing all geometric information and only

considering the connectivity between parts of the city - modeled as a graph (Figure 2.5b). Using the

vertex degrees, Euler went on to determine that no such walk exists [162]. He stated that every vertex

in the graph must have an even degree for a walk traversing every edge exactly once to exist, giving a

solution to a generalization of the specific problem. Paths traversing every edge of a graph exactly

once are now referred to as Eulerian paths. In contrast, a path traversing each vertex exactly once is

called a Hamiltonian path. Despite the seemingly abstract nature of the solution, Eulerian paths

and cycles are relevant for computational biology, for example, for traversing de-Bruijn graphs in

genome assembly [163]. With his representation of the problem, Euler initiated not only the field

of graph theory but also laid the foundation for algebraic topology
29

[164] through the idea of

considering the connectivity irrespective of the exact geometry.

27

In the case of weighted edges, they can be represented as 3- instead of 2-tuples, where the third value indicates the

edge weight. Alternatively, a weighted graph can be represented as G = (V,E,W ) where each wi ∈ W gives the

weight of edge ei ∈ E.

28

Reversible reactions are represented with two directed edges, one for the forward and one for the reverse reaction.

29

Among other contributions, Euler is famous for the Euler characteristic (χ), a fundamental topological invariant

describing the relation between the number of vertices, edges, and faces (F ) in a polyhedron (χ = |V |− |E|+ |F |)

26
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(a)

(b)

Figure 2.5: Illustration of the problem of the seven bridges of Königsberg. (a) Schematic of the

old city of Königsberg where the river is indicated in blue, bridges in yellow, and

city grounds in green. (b) Graph representation of the problem with every vertex

representing a part of the city and every edge indicating a bridge connecting the two

respective parts. Figures created with BioRender

27
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Nowadays, graph theory is almost ubiquitously used in computer science from navigation

systems [168] and web searches [169] all the way to databases [170]. The first application uses a

common class of algorithms trying to compute the shortest paths between vertices. A shortest

path between two vertices is defined as the path containing the minimal sum of edge weights
30

.

Multiple algorithms tackling the problem of finding the shortest paths exist, covering different

scenarios concerning edge weights, e.g. non-negativity, sparsity, or single-source vs. all-pairs. In

bioinformatics, shortest path algorithms have been used to infer Gene Regulatory Network (GRN)

[171], for example. Because graphs induce a metric space together with the shortest path distance, it

is also useful to transfer concepts from geometry, such as curvature [172, 173], to a discrete setting.

Recently, curvature has gained interest in applications such as Geometric Deep Learning (GDL)

[174], an interesting field for the future of computational metabolomics. Furthermore, Ollivier-

Ricci Curvature (ORC) [173], one specific extension of Ricci curvature to discrete settings, was

originally developed on Markov models. Markov models are one natural way of representing

reaction networks with the transition probabilities as the probability that one metabolite is con-

verted into another metabolite [175]. Together with extensions of ORC to hypergraphs [176] -

another way of representing metabolic networks [177] - such concepts hold interesting possibilities

for prior-knowledge driven metabolomics methods in the future (see Chapter 6 for an in-depth

discussion).

Closely connected to Markov Models are so-called random walks on graphs. Random walk

matrices are stochastic square matrices where each element defines the probability of “walking”

from vertex A to vertex B with a single step. A nice property of such matrices is that n-step

walks can easily be simulated by raising the matrix to the nth
power. The principle of random

walks is, for example, used by PageRank [169], the algorithm initially used by Google for web

page recommendation. Frainay et al. [178] have adapted the concept of PageRank to develop a

recommendation system for metabolic fingerprints.

A common use-case of graphs in bioinformatics and computational biology outside computa-

tional metabolomics is active module identification with many specific methods developed over

the years [179, 180, 181, 182, 183, 184, 185, 186, 187]. Active modules are connected subgraphs with the

highest change in biological signal between conditions [188]. The idea behind such modules is that

they pinpoint to main areas of biological “processes”, similar to pathways, affected by a knock-out,

disease, or other condition. To identify active modules, an NP-hard problem [189], approximation

techniques from combinatorial optimization, such as Ant Colony Optimization [190], Genetic

Algorithms [191], or Local Search with Simulated Annealing [192], are used. While many methods

for active module identification are doing so-called de-novo pathway enrichment [193] - because

they define “disease pathways” - making them unbiased towards pathway-definitions, they are still

highly dependent on the quality of biological networks they use. Lazareva et al. [194] have shown

that this is especially problematic for approaches relying on generic PPI networks, which usually

have a high degree of bias. Because PPI networks suffer from both technical [195] as well as study

bias [196], this displays a crucial limitation for many of the proteomics and transcriptomics analyses

based on this type of method.

[165]. It is nowadays still used to develop new approaches for biological [166] or machine-learning [167] applications,

for example.

30

For an unweighted graph, this amounts to the path containing the least edges.
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Figure 2.6: Representations of Metabolism. (a) Weighted Bipartite Graph. Metabolites are rep-

resented as blue circles, metabolic reactions as triangles. Edge weights represent the

number of molecules of each metabolite. (b) Stoichiometric Matrix. Each row rep-

resents a metabolite; each column a metabolic reaction. Negative values indicate the

number of molecules required as substrate, positive values the number of molecules as

products of a given reaction.

Metabolic networks, in contrast, are generated very differently and are much less prone to false

positive reactions, although it is known that current networks are incomplete [197]. Therefore,

developing enrichment methods for metabolic networks holds great potential to give more noise-

robust and interpretable results. This idea is used in two of the main publications of this thesis,

LINEX
2

[10], which also tackles the limited availability of lipids in metabolic networks, and mantra

[11].

In addition to graph theory-inspired analyses, metabolic networks can also be used to formulate

a mathematical representation of metabolism, typically by defining a stoichiometric matrix. A

stoichiometric matrix is a matrix in which every row represents a metabolite, every column a reaction

and the value of a cellxij defines whether metabolite i takes part in a reaction j (xij ̸= 0) and if yes

how many of this molecule act as substrate (xij < 0) or product (xij > 0) (Figure 2.6). Together

with the law of mass conservation - no mass is lost or gained during a reaction
31

- this gives rise to a

system of linear functions that, can be used to find the flux values of each reaction to maximize a

given objective under certain constraints [198]. However, this approach is limited to reporting

fluxes in steady-states but cannot give information with respect to metabolite concentrations

[199]. Dynamic modeling, which uses highly parametrized differential equation systems, allows for

insights into concentrations and dynamics, yet it is limited by the parameterization required [199,

200]. Consequently, despite their ability to accurately model dynamical systems, constraint-based

and dynamic modeling are limited in their practical applicability [10]. Hence, there is a lack of

methods that allow researchers to learn about changes in metabolic reactions from metabolomics

data, especially in a data-driven way. Both LINEX
2

[10] and mantra [9] address this gap.

Despite the confidence of annotated metabolic reactions, consideration of the possible biases

introduced by integrating prior knowledge into data interpretation algorithms should always be

taken into account when designing them and interpreting their results. Another drawback
32

31

Omitting the mass defect, i.e. the mass gained or lost due to changes in binding energy.

32

In fact, this can also be seen as another form of bias, as different instrumentation, reference databases, etc., lead to
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of such methods is that they omit features that cannot be mapped onto databases. To include

unknown features or have completely unbiased analyses, data-driven approaches can be used.

One option to still apply graph-based methods is to use correlation networks. In these graphs,

every edge indicates an absolute correlation above a chosen cutoff between the two connected

metabolites. Despite the common use of correlation networks in metabolomics data analysis

[201], the topology of these graphs can be highly sensitive to the choice of parameters [202]. For

conducting purely data-driven analyses without the use of graph-like structures, statistical and

machine-learning algorithms are commonly used nowadays.

2.2.2 Statistical & Machine Learning

The most basic ways to analyze metabolome and lipidome data in a hypothesis-free manner are

still methods from univariate statics, most prominently statistical hypothesis tests and fold-change

analyses [203]. These methods are sufficient to identify “significantly” changing metabolites.

However, they are not able to take into account the interactions between variables and identify

more complex patterns.

A typical first analysis step in computational biology is to visualize the - inherently high-

dimensional - data in two or three dimensions. Dimensionality reduction techniques employed

for this purpose are matrix factorization and manifold learning approaches. Matrix factorization

methods decompose the original matrix to obtain a lower dimensional representation of the orig-

inal data, e.g. using eigendecomposition [204]. In Principal Component Analysis (PCA) [205],

which belongs to this class of methods, principal components are computed by the dot product

between the original data and the loading matrix - the eigenvectors of the covariance matrix [206].

Each principal component is a linear combination of the observed dimensions and principal

components are orthogonal to each other. Because the eigenvalues of each principal component,

relative to the sum of all eigenvalues, correspond to the relative variance of the original data it

explains the principal components can be sorted in a meaningful way. Furthermore, due to the

principal components being linear combinations of the original feature vector, the contribution of

each feature to a given principal component is known. This is an advantage over manifold learning

methods.

To not be limited by the assumption of Euclidean spaces [207], non-linear methods from

manifold learning, such as diffusion maps [208], t-distributed Stochastic Neighbor Embedding

(t-SNE) [209], Uniform Manifold Approximation and Projection (UMAP) [210], or Potential

of Heat diffusion for Affinity-based Transition Embedding (PHATE) [211], can be used. These

methods generally don’t assume that the underlying manifold of the data is a Euclidean space and

try to approximate the manifold structure. Especially in the analysis of sequencing data, t-SNE,

and UMAP have nowadays replaced PCA as the default method for dimensionality reduction.

The basis of manifold learning methods is the so-called manifold hypothesis [212]. This hypothesis

states that observed high-dimensional data is typically coming from a lower-dimensional manifold.

It is generally assumed that due to interactions and redundancies between features, the observed

biological data is sampled from such a lower-dimensional manifold [213].

Another more recent way of reducing dimensionality is by employing autoencoders. Autoen-

coders are models consisting of an encoder that “encodes” the original data into a latent space,

biases in metabolite identification.
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which is typically low dimensional, and a decoder that reconstructs the original features from the

encoded data [214]. The latent space thus contains all relevant information, as long as the decoder

is able to sufficiently reconstruct the original data. Autoencoders have been shown to meaningfully

compress metabolomics data across cohorts [215].

During my doctorate, dimensionality reduction techniques played a vital role in visualizing the

results of the substructure analysis of LINEX
2

[10] and the reaction activity change in mantra [11],

as both lead to a latent space. Furthermore, I employed (multi-omics) dimensionality reduction

methods in most of my co-author papers.

Machine Learning (ML) methods can be broadly categorized by the degree to which they use

sample labels during training. Supervised ML methods are models using sample labels or values

and thus solve two types of tasks:

1. Classification: predicting labels

2. Regression: predicting values

In the typical notation, the sample data X is classically referred to as the independent variables,

and the values to predict Y are called the dependent variables. The goal of supervised models is to

learn the parameters θ of a function f that describes the relationship between the dependent and

the independent variables, i.e. Y = fθ(X). “Learning” the relationships between X and Y can

have two rationales: discovering them per se, e.g. to uncover regulatory effects, or predicting unseen
samples with the learned model.

The samples used for training parameters are called training set, while the test and validation set

are used to evaluate model robustness

One of the most basic classifiers is the k-Nearest Neighbor (kNN) classifier. For a given sample

xi, it predicts the class label ci as the most frequent class among the k-closest samples in the training

data.

The simplest way of predicting continuous dependent variables is linear regression. When

looking at linear regression from a geometric point of view it can be formulated as ŷ = xTβ + ϵ -

essentially learning the parameters of a straight line
33 β [216]

34
plus independent random noise ϵ.

A typical assumption is that noise follows a Gaussian distribution with 0 mean and variance σ2
, i.e.

ϵ ∼ N
(
0, σ2

)
. The probability of predicting a class label y given the independent variables and

the model can be defined as P (y|x, β) = N
(
y|xTβ, σ2

)
(if following the Gaussian distribution

assumption) and thus a conditional probability density [217].

To describe the variance unexplained by the model, the residual, the difference between the

predicted value ŷi and the actual value yi, is used. An aggregated statistic based on the residuals is

the Residual Sum of Squares (RSS), defined as

RSS =
N∑

i

(
yi − xTi β

)2
=

N∑

i

|ϵi|2

33

Strictly speaking an n-dimensional plane.

34

Formulated as a line equation, linear regression can also be written as yi = β0 + xT
i β1, where β0 is the intercept

(scalar value) and β1 is a scalar if xi is one otherwise it is a vector of the same dimensionality as xi.
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[217]. Dividing the RSS by the number of samples N gives the Mean Squared Error (MSE), a

common metric for evaluating regression tasks in ML. A common metric for evaluating the model

fit of a linear regression model is the coefficient of determinationR2
. It is defined asR2 = 1−RSS

TSS ,

where TSS is the total sum of squares

N∑

i

(yi − ȳi)
2

. As RSS describes the variance unexplained

by the model and TSS describes the variance of the dependent variable,
RSS
TSS simply quantifies

the proportion of unexplained variance.

Because of the first fact, linear models can also be used to correct for covariates. To perform such

correction, for each feature in the dataset, a linear model is fitted with the feature as the dependent

and all covariates as the independent variables. The residuals of these models then display the

variance that cannot be explained by the covariates, i.e. the data corrected for these covariates.

The residuals and explained variance of linear models between the substrates and products of

metabolic reactions play a crucial role in the inference of the reaction activity in one of the main

publications introduced in this thesis [11].

To fit the parameters β of a linear regression, the residuals are also used as the objective of the

so-called Ordinary Least Squares (OLS) method which minimizes the RSS (or equivalently the

MSE). This is a very intuitive way to define the regression objective, as it simply tries to minimize

the distance between the regression line and the observed data points. Interesting, it leads to the

same solution as Maximum Likelihood Estimation (MLE), a procedure to fit the parameters of a

distrubtion that maximizes the likelihood given some observed data [217]. This can easily be seen

when defining the log-likelihood of a linear regression model (that MLE tries to maximize)

ℓ(X,Y, β) =

N∑

i

log p(yi|xi, β)

=

N∑

i

log

(
1

σ
√
2π

exp

[
−1

2

(
yi − xTi β

σ

)2
])

= −N

2
log
(
σ22π

)
− 1

2σ2
RSS

(2.1)

which shows that minimizing the RSS maximizes the log-likelihood - thereby maximizing the

likelihood of the model.

Linear models and the theory behind residuals have a pivotal role in the idea of approximating

changes in metabolic reaction activity in mantra [11] (Section 3.2, which, intuitively speaking,

uses a metric derived from the residuals to measure how reaction activity deviates between sample

groups, such as healthy and disease.

According to the Gauss-Markov theorem, the OLS estimator is the best unbiased estimator of

β [218, 219]
35

. However, when data is noisy or collinear
36

, introducing bias to reduce the variance

can be advantageous. The problem of fitting parameters to the random noise present in training

35

Briefly, a model’s MSE can be decomposed into the sum of variance and squared bias - the so-called bias-variance

tradeoff. By showing that the OLS minimizes the variance, it can be concluded that only biased estimators may

result in a smaller MSE.

36

Arguably the default for biological data
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Figure 2.7: Schematic of the k-fold Cross-Validation (CV) procedure. Each row indicates one

iteration, each column one set of samples in the overall training data set. In every

iteration, all blue sample subsets are used for training the model and only samples in

the orange subset are used to evaluate model performance.

data is referred to as overfitting [220]. In general, the higher dimensional (relative to the number of

samples) the data and the more parameters a model has the more likely it is to run into overfitting

[220]. For regression models, Ridge and Lasso regression, both shrinkage methods that aim to

maximize the product of the log-likelihood and a prior distribution over the model parameters, are

commonly used to reduce overfitting [217]. In Ridge regression, a Gaussian prior is used, leading

to the penalty being the squared 2-norm of the parameters (ℓ2 regularization) ∥β∥22, whereas in

Lasso, the prior distribution is a Laplace distribution and the penalty is simply the sum of the

absolute parameter values (ℓ1 regularization) ∥β∥1 [216]
37

,
38

.

A more general way to assess a model’s degree of overfitting is CV. In k-fold CV, for example,

the training samples are split into k subsets (see Figure 2.7). The model to assess is trained and

evaluated k times, each time leaving out a different subset of samples. Left-out samples are used

to evaluate the model’s performance on unseen data after training. Evaluation metrics or curves

obtained this way can be used to estimate the actual performance of the model [216]. Naturally,

CV cannot rule out all factors rendering model evaluations incorrect, and correct data processing

and splitting is crucial to avoid the rather widespread phenomenon of leakage [221].

Especially for my contributions to analyzing the clinical data in Häcker and Siebert et al. [222] CV

played an important role in demonstrating the robustness of the results on (noisy) patient data.

Having established the most basic concepts of regression, we now move on to prediction tasks

37

The added penalties represent a form of bias, thus using shrinkage methods trade in variance for bias in the hope of

reducing the MSE.

38

In contrast to the normal distribution, in which yi − xT
i β is squared in the exponential, the probability density of

the Laplace distribution only uses the absolute difference. This leads to a higher probability for µ in the Laplace

distribution and thus sparser β when using ℓ1 regularization.
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starting with a simple example of binary classification with the classes labeled 0 and 1, i.e. y ∈
{0, 1}. In fact, feeding the results of a regression into a sigmoid function and treating the output

as a probability for class 1 one obtains a prediction model. The log-likelihood can be derived

analogous to Equation (2.1) with p(yi|xi, β) = Ber(yi|sigm(xTi β)), where Ber(·) indicates

the Bernoulli distribution and sigm(·) the sigmoid function, as

ℓ(X,Y, β) =

N∑

i

log p(yi|xi, β)

=

N∑

i

yi log sigm(xTi β) + (1− yi)log(1− sigm(xTi β))

(2.2)

The negative version of this function is called the cross-entropy - a very common loss function for

prediction tasks [217]. Unlike linear regression, logistic regression does not have a closed-form

solution. One way of learning its parameters β is by gradient ascent/descent, a simple optimization

method that uses the gradient of a function with respect to its parameters for stepwise optimization.

The parameters in the nth
iteration are updated as βn+1 = βn + η ∂ℓ

∂β
39

.

While linear models have not been used for prediction tasks in my main projects, they are the

basis for a number of analysis pipelines developed and used in co-author publications, such as

Coleman and Sorbie et al. [155] and Häcker and Siebert et al. [222].

While different types of ML algorithms such as Random Forests [223], Gradient Boosting [224],

or Support Vector Machines [225] are commononly used, a large focus nowadays lies on Artificial

Neural Networks (ANNs). The earliest networks developed were so-called Multilayer Percep-

trons (MLPs) - multiple layers of regressions with non-linear “activation” functions, such as the

sigmoid [217]. Already in 1989, Hornik, Stinchcombe, and White [226] showed that such networks,

if arbitrarily deep, are theoretically capable of approximation any function - the so-called Uni-

versal Approximation Theorem. To train MLPs, a procedure termed backpropagation is used.

It is based on a simple idea: because an MLP is composed of individual functions - regressions

and non-linearities - the gradient for any layer can be computed by consecutively applying the

chain rule to the loss function, and thus gradient descent be employed for training. Nowadays, a

plethora of computational frameworks capable of automatic differentiation, such as PyTorch [227],

Tensorflow [228], and JAX [229] have been developed, greatly facilitating the implementation of

ANNs.

Expanding on the MLP, numerous general architectures, such as Convolutional or Recurrent

Neural Networks, were developed to tackle different types of problems. More recently, GDL,

focussing on the analysis of non-Euclidean data [230], has gained traction holding interesting

promises for the analysis of structured (biological) data. Even more prominently, the introduction

of the Transformer architecture in 2017 by Vaswani et al. [231] has allowed for great progress not

only in natural language processing [232] but also bioinformatics tasks, such as protein structure

prediction [159]. While these architectures have not been directly used in this thesis, they will play

39

Note that the formula is showing gradient ascent, because Equation (2.2) defines the log-likelihood, which requires

maximization. In typical ML literature gradient descent (θn+1 = θ − η ∂L
∂θ

) is described, where L describes the

loss function (e.g. for logistic regression the cross-entropy loss) to be minimized.
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Predicted Label
Positive Negative

Tr
ue

La
be

l

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 2.3: Layout of the confusion matrix describing typical performance evaluation metrics.

Metric Formula

Sensitivity
TP

TP+FN

Specificity
TN

TN+FP

Precision
TP

TP+FP

Recall
FN

TP+FN

Table 2.4: Performance metrics for classification tasks based on the confusion matrix. The selection

presented is based on the scores used to assess generalization performance in the mantra

paper [11] (Section 5.1).

a key role in the discussion of the future direction of the field later on.

Irrespective of the architecture of a ML model, it is crucial to have good evaluation metrics. For

a binary classification task, a simple metric is the accuracy - the proportion of correct predictions.

To define it more formally, we can use the elements of the (binary) confusion matrix (Table 2.3):

Acc =
TP + TN

TP + FP + TN + FN

While this looks like a good first guess, the accuracy can be tricked very easily. Consider the case

where 95% of all samples have a positive label. A classifier that simply always predicts a positive

label will have 95% accuracy, despite not having learned any relationship between features and

labels.

A better metric to use is, for example, the Area under the Receiver Operating Characteristic

Curve (ROC-AUC) [233]. The Receiver Operating Characteristic (ROC) curve is based on two

metrics that can be computed directly from the confusion matrix: sensitivity and specificity (see

Table 2.4). The former describes the proportion of positive cases detected, i.e., the true positive

rate, while the latter specifies the fraction of negative samples classified correctly, i.e., the true

negative rate. Intuitively it is easy to see that both these metrics should be high. Take the example

of COVID-19 diagnostic tests: a test should detect as many infected people as possible - a high

sensitivity - while reporting as few uninfected people as “positive” as possible - a high specificity -

to avoid unnecessary restrictions.
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In contrast to an actual binary test, a classification model will typically give a probability to which

a cutoff has to be applied to get a class label. The ROC curve is generated by computing sensitivity

and specificity for “all” cutoffs between 0 and 1 [234]. This way, the ROC curve also shows how

confident classifier predictions are. To get a single metric out of a ROC curve, the Area Under

the Curve (AUC) is computed. It is a value in the range [0, 1] where 0.5 is considered random

classification (for a binary task) and 1 is a perfect classifier. Besides ROC, Precision Recall (PR)

(Table 2.4) is another commonly used curve, computed analogously to the procedure described

above.

While there are many more evaluation metrics with properties suited for different scenarios, the

selection presented in this thesis is based on those metrics relevant for the evaluations in Köhler

et al. [11], which is presented in more detail in Section 3.2 and Section 5.1, as well as the results of

my contribution in Häcker and Siebert et al. [222].

Approaches not using training labels, such as dimensionality reduction and clustering, are called

unsupervised. With respect to clustering, a large range of approaches has been developed.

Algorithm 1 Pseudocode to compute k-means clustering

Input
Data points to cluster: X = {x0, x1, . . . , xN−1|xi ∈ Rn}
Number of clusters: k ∈ Z+

Output
Cluster assignment for each data point:

c = {c0, c1, . . . , cN−1|ci ∈ Z+
<k}

1: µ0, µ1, . . . , µk−1 ∈ Rn ← random()
2: while not converged do
3: for all i < N do
4: ci = argmin

j
∥xi − µj∥

5: end for
6: for all j < k do

7: m =
N∑

i

[ci = j]

8: µi =
1
m

∑

i<N ;ci=j

xi

9: end for
10: end while

In general, they all try to aggregate similar samples into the same cluster and dissimilar ones

into different clusters. One very simple example of a clustering algorithm is k-means [235] - a short

overview of its workings is given in Algorithm 1. Two downsides of k-means are that the number

of clusters k has to be decided a-priori, which is not always trivial, and that it is non-deterministic

due to the randomly initialized centroids. Hierarchical clustering, in contrast, is an example of a

deterministic clustering method. Different types of clustering exist, for example, simple step-wise

merging or separating samples by similarity in a hierarchical fashion [236] or using the idea that
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clusters are more dense regions [237, 238].

While clustering groups either samples or features based on their similarity, biclustering is an

extension of “1D” clustering to simultaneously group subsets of samples and subsets of features.

Biclustering is a cornerstone of two publications I co-authored during my doctorate ([239] and

[240]).

2.3 Objectives

With this chapter having provided an introduction to the topics relevant to understanding the

work in this thesis, we can now proceed to define what its objectives are and where they come

from. The overarching goal underlying this thesis is the apparent gap between the availability of

metabolomics and lipidomics experiments paired with their relevance for understanding socially

and economically important disease conditions and the lack of computational methods for efficient

interpretation and mechanistic hypothesis generation. Not only is this lack of algorithmic solutions

hindering the progression of the field itself it also slows down the integration with multi-omics data

and translational research. Therefore, the main objective of my work is to introduce algorithmic

solutions that make lipidomics and metabolomics data interpretation more readily available to

non-computational researchers and reduce the workload required to get to testable and mechanistic

hypotheses.

The theme unifying all projects is the use of graph-theoretic approaches, in particular metabolic

networks. As the availability of networks for lipid metabolism is very limited, the first main

aspect of my work focused on making lipid metabolic networks available and analyzable in two

consecutive first-author publications introducing the Lipid Network Explorer (LINEX) platform

[9, 10]. The first publication lays the foundation by describing a method for generating lipid

metabolic networks specific to a given data lipidomics data set. To demonstrate the usefulness of

such graphs, it also shows that including quantitative measurements by superimposing statistical

metrics on them allows for the direct extraction of biological insights. The second publication

extends the network generation procedure to a database-driven scheme, providing a starting point

to mechanistically incorporate lipidomics with, for example, proteomics. Furthermore, this paper

introduces a novel enrichment algorithm for extracting mechanistic hypotheses from lipidomics

data. Their underlying methodology is described in Section 3.1.1 and Section 3.1.2 while the

publications are summarized in Section 4.1 and Section 4.2.

The third first-author publication of my thesis focuses on generalizing the idea of using graphs to

identify aberrant metabolic reactions [11]. It introduces a metric that approximates how metabolic

reactions change their activity between conditions in a sample-specific manner allowing for the

integration with genome, transcriptome, proteome, and microbiome data. Together with a novel

multi-omics network enrichment method, the publication tackles the unavailability of methods

for interpreting metabolomics data with respect to alterations in metabolic reactions. The approxi-

mation and network enrichment algorithm are presented in Section 3.2, and the publication is

summarized in Section 5.1.
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The following chapter will provide an overview of the methods developed during my dissertation,

with the first part focussing on lipid network analysis in two sequential publications (for full publi-

cations, see Appendix A.1 and Appendix A.2). The second part introduces the mantra framework

for analyzing metabolic reactions in a multi-omics context (full publication in Appendix A.3).

Both parts provide a comprehensive summary of the algorithms; readers interested in the full

details are referred to the respective publications.

3.1 Lipid Network Analysis

3.1.1 Rule-Based Lipid Network Analysis for Functional Lipidomics
Analysis

The Lipid Network Explorer (LINEX) [9] is a framework for generating and analyzing lipid

metabolic networks specific to the lipids measured in a given lipidomics experiment. An overview

of its workflow is provided in Figure 3.1.

Naturally, the first step of the pipeline is generating the network. However, due to the non-

standardized nomenclature in lipidomics, obtaining a unified lipid species representation before

computationally processing lipid names is crucial. For this purpose, LINEX internally converts all

lipid names into the same nomenclature style using LipidLynxX [241].

The procedure LINEX utilizes builds on the fact that lipid metabolism is essentially composed of

Fatty Acid (FA) and complex lipid metabolism (recall Section 2.1.2.2). For every possible pair of

lipid species, the network contains an edge if one of the following mutually exclusive conditions is

satisfied:

1. (Lipid Class Connection) Both lipids have the same FA composition, and the reaction rules

allow a conversion between the two lipid classes.

2. (Fatty Acid Connection) Both lipids have the same lipid class, all but one FAs are identical,

and there exists a reaction rule that allows the conversion between the non-identical FAs.

For lipid class connections, one “special” case is lipid species pairs with the same head group but

different numbers of FAs, e.g., Lyso-Phosphatidylcholine (LPC) and PC (1 and 2 FAs) or DG and

TG (2 and 3 FAs). In this case, the lipid species with one more FA must contain all FAs that the

lipid species with one less FA
1
contains. The “missing” FA must be in a list of user-defined FAs that

should be specific to the organism from which the analyzed samples originate.

1

A special exception is the case of MG and TG, which have the same head group but their number of FAs differs by 2.

In this case, LINEX does not infer metabolic connection.
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Figure 3.1: Overview of the LINEX workflow as described in [9]. The top left shows the input

required: lipidomics data and metabolic rules used to generate the lipid metabolic

network (top right). Subsequently, metrics for condition-specific changes for all nodes

(lipid species) and associations between metabolically associated lipid species under

biological conditions are computed. A combined visualization can be achieved by

superimposing these metrics onto the network (bottom panel). The figure is originally

from Köhler and Rose et al. [9] (unmodified) and distributed under the CC BY license.

39

https://creativecommons.org/licenses/by/4.0/


3 Methods

A second special case that can occur due to current technical limitations of lipid identification

is that two lipid species were measured on different levels of resolution (recall Section 2.1.3), i.e.,

one is a sum (only the sum of FAs is known) and the other a molecular lipid species (the exact

FAs composition is known). The coarser identification level is used in this case, as it can be easily

inferred for the more detailed lipid species.

For fatty acid connections, there are three possible reactions (by default):

1. Elongation

2. Desaturation

3. Hydroxylation

Elongation refers to increasing the chain length by 2, desaturation to increasing the number of

double bonds by 1, and hydroxylation increasing the number of hydroxy groups by 1. In the case of

sum species lipids, the sums are used as proxies for the FAs. This is justifiable under the assumption

that the FA pool is the same for both lipid species. It is important to note that fatty acid connections

are not directly happening, as only free fatty acids are modified, and thus de- and re-acetylation are

required. Nevertheless, adding these types of reactions increases the network’s connectivity in a

biochemically meaningful way, improving the visualization of biological effects and downstream

analyses. As all pairwise combinations of measured lipid species need to be evaluated to generate

the full metabolic network, n ∗ (n − 1) checks of the above rules are required. Nevertheless,

network generation for typical lipidomics datasets is fast, even on standard laptop hardware.

While the lipid network generated is specific to the measured data, it does contain any informa-

tion regarding changes between biological conditions. To enable such analyses quantitatively,

LINEX computes commonly used statistical metrics, most prominently p-values from (parametric

or non-parametric) hypothesis tests and log-Fold Changes (logFCs) for all vertices (lipids) and

(partial) correlations per group and their changes between groups (pairwise) for each edge. By

superimposing these measures onto the network, biological changes are easily visualized together
with the biochemical connections between lipids.

3.1.2 Enzyme-Focussed Lipid Network Enrichment to Infer Mechanistic
Hypotheses

Because of its customizability, which is especially interesting for research on less-studied organisms,

LINEX does not contain connections to databases and thus cannot draw direct connections to

proteins. Therefore, LINEX
2

[10] is not based on reaction rules for lipid class connections but

instead uses metabolic reactions from Rhea [242] and Reactome [243] to infer lipid metabolic

networks. Additionally, the procedure of drawing FA connections between pairs of lipids involving

at least one sum species was modified. Instead of comparing these lipids on the sum level, all

possible molecular species combinations are enumerated based on the list of expected FAs. This

increases the runtime, especially for datasets with a high number of TG and Cardiolipins (CLs)

sum species, which carry three and four FAs, respectively, but allows for more detailed qualitative

inference.

With the database-based lipid class connections, including enzyme annotations for each reaction,

the basis for algorithms inferring mechanistic hypothesis on enzyme level using lipidomics data

40



3 Methods

(a)

+ + ...

0.4 0.5 0.2 0.1 0.3 0.4
0.5 0.7 0.3 0.1 0.5 0.6
0.6 1.2 0.2 0.3 0.6 0.9

0.1 0.2 0.1
0.2 0.3 0.1
0.4 0.2 0.3

Sample 1

Sample 2

Sample 3

Lipidomics data

Moiety 
deconvolution

(Combined) lipid 
moiety data Statistical analysis

(b)

Figure 3.2: Schematic of novel lipid-specific algorithms introduced by LINEX
2

[10]. (a) Schematic

of the Lipid-Enzyme enrichment algorithm. Starting with a lipid-lipid graph (1), a

lipid-enzyme graph is generated by connecting each lipid to an enzyme node if it

catalyzes a reaction involving it. All substrate-product-enzyme n-tuples are converted

into hyperedges (3), which then serve as the nodes of a “reaction graph” in which every

node is a hyperedge and every edge indicates a shared lipid species (4). The substrate-

product ratio is computed for every reaction node in this graph, serving as a proxy for

the change in enzymatic activity. Using combinatorial optimization, a subgraph (sub-

optimally) maximizing the change in substrate-product ratio between two biological

conditions is identified and reported as a mechanistic hypothesis. The figure is originally

a subfigure from Rose and Köhler et al. [10] (unmodified) and is distributed under the CC

BY license. (b) Schematic of the substructure analysis. All individual substructures in

the original lipidomics data are identified, and all pairwise combinations are enumerated.

For each substructure (combination), the total abundance of all lipid species containing

it is calculated per sample, leading to a new feature matrix that can be used as input for

downstream analyses. The figure is originally from the supplementary material of Rose

and Köhler et al. [10] (unmodified) and is distributed under the CC BY license.
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only is laid. Therefore, LINEX
2

introduces a network enrichment algorithm specifically tailored

to the peculiarities of lipid metabolism. First and foremost, it utilizes the fact that each lipid class

reaction is (typically) observed more than once, as many pairs of lipid species display substrates and

products of the same reaction. For example, any PE species will be transformed into the respective

PC species via tri-methylation. To leverage this multispecificity, the first step of the proposed

enrichment algorithm is to turn the lipid-lipid network into a hypergraph-like structure, where

each hyperedge is a n-tuple of the substrate and product species as well as the class-reaction node,

that contains information about the enzyme catalyzing the reaction (steps 2 and 3 in Figure 3.2a).

Subsequently, the ratio of substrate to product concentrations for each hyperedge is computed

while accounting for the number of substrates and products. The change in this ratio between

biological conditions can then be used as a proxy for the degree of enzymatic dysregulation. To

obtain a mechanistic hypothesis on the enzymatic changes between conditions, a local search

together with simulated annealing aiming to maximize the mean change in substrate-product ratio

is used. Local search is a local optimization approach that iteratively performs single modifications

to the current solution, i.e., the subgraph that improves a given objective function. Because of its

local nature, it can easily get stuck in local optima. To increase the chances of finding the globally

optimal solution, simulated annealing randomly allows accepting solutions with a worse objective

score.

In addition to this network enrichment algorithm, which focuses on identifying changes in

the relationships of lipids, LINEX
2

also contains a complementary substructure analysis that

aims at identifying changes in the abundances of lipid substructures (head group, backbone, sum

composition, etc.). It is based on a method for analyzing glycomics data from Bao et al. [244].

Essentially, for each combination of substructures, the abundances of all lipids containing them

are summed, generating a sample × substructure matrix (Figure 3.2b). These newly generated

features are then analyzed statistically to find the most changing substructures.

Both LINEX versions are fully open-source and available in a web tool, including interactive result

visualization, to make it accessible to the entire lipidomics community regardless of programming

knowledge. LINEX
2

is additionally available as a pip-installable python package on PyPI.

3.2 Inferring Changes in Metabolic Reaction Activity and
Reaction-Centered Multi-Omics Integration

The third main publication of my thesis introduces a method called Metabolic Network Reaction

Analysis (mantra) [11] that approximates changes in reaction activity between biological conditions

and allows their integration in a multi-omics context.

The first step in the mantra pipeline (Figure 3.3) is the generation of data-specific metabolic

networks. In order to have a comprehensive knowledge basis covering mammalian and microbial

metabolism, a merged database combining KEGG [49], Reactome [245], and Virtual Metabolic

Human [246] was generated. Before computing the data-specific subgraph, the metabolomics data

given as input needs to be mapped to the identifiers used in the database. For this purpose, internal

identifier maps, if input metabolites already have database identifiers, or the MetaboAnalyst [247]

name conversion API, if the input is metabolite names, are employed.
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Figure 3.3: Overview of the mantra [11] workflow.The input data, metabolomics data containing

identified metabolite abundances (grey box), is mapped onto a combined database to

obtain a bipartite metabolic network only consisting of metabolic reactions with at least

one measured substrate and one measured product (green box, top). For each reaction

in the subgraph, a linear model is fitted to approximate the change in reaction activity

(green box, bottom). Using the distributions of these estimates, a network enrichment

algorithm identifies subgraphs of reactions that maximally change between biological

conditions (purple box). Given multi-omics data, correlations between metabolic

reactions and the multi-omics features can be computed (red box). These correlations

can also be used for multi-omics network enrichment. The figure is originally from

Köhler et al. [11] (unmodified) and is distributed under the CC BY license.
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The metabolic network contained in the database is a bipartite, directed graph (recall the defini-

tion from Section 2.2.1) containing metabolite and reaction nodes. In addition, the graph contains

information on which genes encode the enzymes catalyzing a given reaction and which organisms

carry these genes. To subset this graph for the given input metabolites, all metabolites, as well as all

“reactions for which at least one substrate and one product are measured” [11], are extracted.

With the assumption that quantitative relations between substrate and product abundances

change when metabolic reactions change their activity, we can quantify the degree of activity

change by the degree to which substrate-product relations change. Therefore, for every reaction in

the subgraph, a linear model with substrate abundances as independent and product abundances

as dependent variables is computed using the samples of one group. Subsequently, the change in

reaction activity for all samples is approximated by the change in residuals, which quantify the

unexplained variance (recall Section 2.2.2) and thus the degree to which the relationships change.

To obtain a relative value independent of the number of products, the final estimate is defined as

a = 1− residual

TSS

with TSS being the total sum of squares. This way of approximation yields a sample× reaction

change matrix. For testing how statistically significant a change in the activity of a given reaction is,

a p-value from a Wilcoxon rank sum test is reported as well.

While the obtained p-values are sufficient to rank metabolic reactions, deriving hypotheses from

such lists without knowing the relations between them can be difficult. Therefore, mantra also

introduces a network enrichment for providing mechanistic hypotheses in the form of metabolic

subgraphs. Since the method is focused on the change in metabolic reaction activity, the bipartite,

directed graph is first converted into an undirected graph only containing reaction nodes, where

an edge indicates two reactions sharing at least one metabolite. The enrichment algorithm uses

local search with simulated annealing similar to the enrichment of LINEX
2

[10] with adaptions to

deal with the differences between general metabolic and lipid-specific metabolic networks. The

objective to maximize is the change of reaction activity per node in the subgraph.

Besides metabolomics-only analyses, sample-wise reaction estimates enable the integration with

other omics data, such as microbiome or proteome data. mantra leverages this fact by computing

correlation coefficients between reaction activity estimates and multi-omics data. Furthermore,

genome, transcriptome, proteome, and microbiome data can be mapped onto the database to

restrict non-zero correlation coefficients to known connections. In this case, the proposed frame-

work also includes a modified version of the enrichment algorithm with the objective of finding a

subgraph maximizing the correlation between the multi-omics features and metabolic reactions

simultaneous to maximizing the change in reaction activity.

mantra is open-source and available as a python package on PyPI. The database is provided as a

download for local usage or can be queried online via a REST API.
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4 Publication Summaries

4.1 Investigating Global Lipidome Alterations with the
Lipid Network Explorer

Citation

Nikolai Köhler
†
, Tim Daniel Rose

†
, Lisa Falk and Josch Konstantin Pauling “Investigating global

lipidome alterations with the lipid network explorer” Metabolites 2021, 11 (8), 488;

doi: 10.3390/metabo11080488

†
These authors contributed equally

Summary

The analytical side of lipidomics has seen great progress in the last decade, and lipidomics ex-

periments are popular in biological and biomedical studies. Nevertheless, data interpretation

algorithms for lipidomics are still understudied. Comprehensive lipid metabolic networks, in

particular, are unavailable due to the discrepancy between measurements being on species-level

but databases separating lipid class and fatty acid metabolism (recall Section 2.1.2.2).

To bridge this gap and allow lipidomics data interpretation to use graph-theoretic approaches for

focussing on metabolic reaction, we introduce the Lipid Network Explorer (LINEX), a framework

for generating lipid metabolic networks based on metabolic rules specific to the lipids measured in

an experiment. The method uses metabolic rules for both lipid class and fatty acid metabolism

to infer direct metabolic connections between all lipid species measured in an experiment. By

superimposing statistical metrics for lipid species and correlations for all metabolically associated

pairs of lipids onto the network, LINEX visualizations enable the derivation of quantitative

functional associations.

To showcase its capabilities, we used LINEX to analyze publicly available lipidomics data from

three independent publications that span a range of common experimental setups. The first dataset

measured lipids on sum-species level in cancerous and normal mucosa from colorectal cancer

patients. We show that while the original paper did not find globally changing patterns in lipid

abundances, the LINEX network highlights that a few highly connected subgraphs exist in which

the correlation between lipid species changes significantly between “healthy” and cancer mucosa.

On a second dataset with much lower coverage, we demonstrate how the incorporation of fatty

acid connections facilitates interpretation and how missing lipid classes (or even species) can lead

to unconnected components. Lastly, we illustrate how the novel visualizations highlight changes

in metabolically connected areas.

Because LINEX is made available as a web service, it offers a new way of analyzing lipidomics data

complementary to existing approaches to all researchers in the lipidomics community regardless of
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their programming knowledge.

Contributions

Together with co-first author Tim Daniel Rose I developed and implemented the method for

network generation, all visualizations, and the web service, as well as contributing to the analysis

presented, writing, and revision of the manuscript.

Contributions as stated in the original publication: “Conceptualization: N.K., T.D.R. and J.K.P.;

Software: N.K., T.D.R. and L.F.; Validation: N.K. and T.D.R.; Writing—original draft: N.K.,

T.D.R. and J.K.P.; Writing—reviewing & editing: N.K., T.D.R. and J.K.P.; Supervision: J.K.P. All

authors have read and agreed to the published version of the manuscript.” [9]

Availability, Rights & Permission

The publication is available in Appendix A.1, including links to the source code and web applica-

tion.

Rights & Permission as stated in the original publication: “©2021 by the authors. Licensee MDPI,

Basel, Switzerland. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution (CC BY) license (

https://creativecommons.org/licenses/by/4.0/).” [9]
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4.2 Lipid network and moiety analysis for revealing
enzymatic dysregulation and mechanistic alterations
from lipidomics data

Citation

Tim Daniel Rose
†
, Nikolai Köhler

†
, Lisa Falk, Lucie Klischat, Olga Lazareva and Josch Konstantin

Pauling “Lipid network and moiety analysis for revealing enzymatic dysregulation and mecha-

nistic alterations from lipidomics data” Briefings in Bioinformatics 2023, 24 (1), bbac572; doi:

10.1093/bib/bbac572

†
These authors contributed equally

Summary

Despite some recent progress in lipidomics data interpretation on the side of pathway enrichment,

no de-novo network enrichment methods are available. With the development of LINEX, we laid

the foundation for such approaches, yet without introducing a specific network-analysis algorithm

with it.

Therefore, we developed LINEX
2

, an extended version of LINEX addressing limitations in

network generation that restrict multi-omics connections by using database information for lipid

class reactions. Furthermore, we introduce a novel enrichment algorithm specifically designed

for the peculiarities of lipid metabolism, aiming at generating hypotheses on changes in enzyme

activity.

As a proof of concept, we applied the enrichment algorithm to a lipidomics dataset containing

wild-type and MBOAT7 knockout mice. Our results show that LINEX
2

successfully identifies

the reaction catalyzed by MBOAT7 as the most dysregulated, even indicating the known fatty acid

preferences of MBOAT7. To further showcase the applicability to clinical data, we applied our

enrichment method to white adipose tissue lipidomics data from lean and obese humans, with

the resulting hypothesis indicating changes in membrane composition for adipocyte expansion.

Additionally, we analyzed this data with a substructure analysis method introduced in LINEX
2

. It revealed particular patterns of increased abundances in neutral lipids depending on the sum

composition.

Our results showed that LINEX
2

can recover knocked-out reactions purely from lipidomics

data and thus provide reasonable hypotheses on the dysregulation of lipid metabolic enzymes. In

combination with the complementary analysis of lipid substructures, the framework can identify

different types of influences on the lipidome providing valuable interpretations.

Contributions

Together with Tim Daniel Rose (co-first author) I developed the web service and, additionally

with Olga Lazareva, the network enrichment method. Furthermore, I ran parts of the evaluation

and co-wrote and revised the manuscript.

Contributions as stated in the original publication: “J.K.P. supervised the project and secured

the funding. N.K., T.D.R. and J.K.P. planned and conceptualized the work. N.K. and T.D.R.

47

https://doi.org/10.1093/bib/bbac572


4 Publication Summaries

developed the web service. N.K., O.E.L. and T.D.R. designed and implemented the network

enrichment procedure. L.F., L.K. and T.D.R. parsed and curated the reaction databases, and

implemented the network extension. N.K. and T.D.R. applied, validated and interpreted the

approach on lipidomics data. N.K., O.E.L., T.D.R. and J.K.P. wrote the manuscript. All authors

read, reviewed and accepted the manuscript in its final form.” [10]

Availability, Rights & Permission

The publication is available in Appendix A.2, including links to the source code, analysis code,

and web application.

Rights & Permission as stated in the original publication: “©The Author(s) 2023. Published by

Oxford University Press. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is

properly cited.” [10]
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5 Unpublished Results

5.1 Identification and Integration of Key-Metabolic
Reactions from Untargeted Metabolomics Data

At the time of submission, the following manuscript was still undergoing peer-review. However, it

reflects a significant contribution to my research as a doctoral candidate and is therefore included

in this thesis. This chapter summarizes the manuscript, which is published as a preprint [11] and

available in full in Appendix A.3, as well as my contributions.

Citation

Nikolai Köhler, Vivian Würf, Tim Daniel Rose and Josch Konstantin Pauling “Identification and

Integration of Key-Metabolic Reactions from Untargeted Metabolomics Data” bioRxiv 2023; doi:

10.1101/2023.05.15.540613

Summary

Despite the popularity of metabolomics in biological and biomedical research, computational

methods for data interpretation are still a (if not the) major bottleneck in the metabolomics work-

flow. Available methods commonly focus on computing significances and incorporate (metabolic)

relations between features only downstream, if at all.

In this publication, we introduce Metabolic Network Reaction Analysis (mantra), an approach

to estimate how metabolic reactions change between biological conditions by exploiting the rela-

tionships between their substrates and products. mantra allows the identification of metabolic

subnetworks corresponding to areas of high metabolic changes as well as integrating metabolomics

data and metabolic reactions with multi-omics data.

To demonstrate the ability of mantra to approximate how metabolic reactions change their

activity, we applied the activity estimation method to untargeted metabolomics data from a study

of breast biopsies of Triple-Negative Breast Cancer patients and non-Breast Cancer subjects. Our

results showed that our proposed method was able to recover metabolic reactions whose catalyzing

enzymes are either associated with breast cancer risk or prognostic biomarkers.

We also presented results of the enrichment algorithm on stool metabolomics comparing non-

Inflammatory Bowel Disease and Crohn’s Disease patients. These showed that the subnetwork

identified contains reactions whose catalyzing enzymes are significantly differentially abundant in

metagenomics results of the same samples, except for one reaction. Furthermore, we could show

that a simple random forest classifier trained on the reaction activity estimates of the discovery

cohort is able to classify patients from an independent validation cohort. To showcase the ability

of our framework to integrate reaction activity changes with multi-omics data, we further showed
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how correlation analyses with microbial species abundances yield interesting patterns connecting

microbes and metabolic reactions.

In conclusion, we have shown that mantra is able to generate valid hypotheses on the change

in activity of metabolic reaction and its effectiveness in providing a mechanistic approach for the

multi-omics integration of metabolomics data.

Contributions

I designed and implemented the methods and the python package containing it, ran the evaluations,

wrote the manuscript draft, and revised it. Furthermore, I supervised the parsing and merging of

the metabolic databases.

Contributions as stated in the original publication: “NK and JKP planned the work. NK designed

and implemented the reaction activity estimation method. NK and TDR designed the network

enrichment procedure and NK implemented it. NK ran the evaluations. VW parsed and merged the

reaction databases. NK, JKP, VW and TDR wrote and reviewed the manuscript. JKP supervised

the project and secured the funding. All authors accepted the manuscript in its final form.” [11]
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Owing to improvements in Mass Spectrometry (MS)-based analytics, metabolomics and lipidomics

are suitable for studying large-scale experiments and clinical cohorts nowadays. However, their use,

both in isolation and integrated with other omics data, is limited by the availability of computational

methods to interpret the vast amounts of data generated. This restricts not only the progress of

the field itself but also the speed by which insights from biological and biomedical research can

be acquired. Therefore, alleviating the bottleneck of data interpretation is critical to fulfilling the

promises both fields hold [248, 249]. To address this gap in computational metabolomics, this

thesis provides new approaches to interpret metabolomics and lipidomics data mechanistically

and integrate them with other omics disciplines.

Designing such methods in a robust way requires dealing with multiple peculiarities of metabo-

lomics and lipidomics data. Some of these are general to all biological data, particularly noisiness,

sparsity, and high variance. At the same time, the (comparably) small number of samples per

experiment, due to a lack of true multiplexing methods and single-cell approaches, is more drastic

than in other omics disciplines. This leads to an especially challenging starting point as smaller

sample numbers make it harder to estimate noise in data and, thus, approximate underlying dis-

tributions or manifolds. Furthermore, combined with the high dimensionality of (untargeted)

experiments, the curse of dimensionality [250] presents a major issue, requiring careful evaluation

of potential overfitting in supervised settings. When incorporating prior knowledge, lipidomics

suffers from a lack of available metabolic models. For metabolomics, the main limitation factor

is still the identification of metabolites and the mapping of identified metabolites onto database

identifiers.

The previous chapters have provided an overview of the computational and biological back-

ground and presented the methods and results originating from my doctorate. In the following

sections, I will put these into the context of the current state-of-the-art of the field, discuss how

future developments can build on them, and conclude with an outlook on the open problems of

the field.

6.1 Mechanistic Lipidomics Analysis via Biochemical
Graphs

Mechanistic lipidomics data interpretation is largely done manually by experts reviewing coarse-

grained statistical results summarizing changes in lipid species, lipid class, or FA-related abundances.

Automatic identification of hypotheses requires incorporating prior knowledge, for example, in

the form of metabolic networks. Besides the LINEX framework introduced in this thesis, only one

other freely available method capable of generating biochemical lipid networks, termed BioPAN

[251, 252], exists.
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As discussed in Rose and Köhler et al. [10], LINEX
2

includes reactions not included in BioPAN

and enables the generation of more detailed lipid networks. In particular, LINEX
2

networks are

capable of utilizing molecular lipid species resolution and can easily be modified to cover sn-species

resolution and modified lipids (oxidized, sulfonated, etc.) [253], so-called epilipids
1
. Current

improvements in analytical lipidomics, such as the re-introduction of Electron-Activated Disso-

ciation (EAD) [254] and Electron Impact Excitation of Ions from Organics (EIEIO) [255], are

promising techniques to improve the structural resolution of high-throughput lipidomics experi-

ments in the future
2

. Such developments will enable more fine-grained LINEX
2

networks and

analysis results, thus facilitating the knowledge that can be extracted from lipidomics experiments.

With the availability of such comprehensive networks, LINEX
2

also opens up two largely uncharted

areas in computational lipidomics: graph theory and metabolic modeling, both of which have

been successfully studied in other contexts of computational biology [256, 257].

One common use case of graph theory in bioinformatics is finding disease signatures [258]. Typ-

ically, such methods use combinatorial optimization to identify subgraphs in which the measured

vertices, representing molecules, “significantly” (e.g., via p-values) differ between experimental con-

ditions. Applying this paradigm to lipidomics data neglects the multispecificity of lipid metabolic

enzymes and the non-mechanistic nature, as the observed changes in lipid concentrations are

usually the consequence of changes in metabolic activity. Exclusively using statistical metrics such

as p-values in this context also prevents the utilization of quantitative relationships between lipid

species, which are potential indicators for changes in underlying lipid metabolic reactions. By

focusing on these associations between lipid substrates and products (Section 3.1.2), LINEX
2

enables mechanistic interpretations, making it more interpretable than enrichment algorithms

developed for PPI networks or GRNs, which can (mostly
3

) be applied to lipid metabolic networks

as well.

Furthermore, LINEX
2

leverages the multispecificity ubiquitous in lipid metabolism in contrast

to BioPAN [251, 252], which ranks individual “reaction chains”. Multispecificity is explicitly

encoded in the objective function used by LINEX
2

, which includes a penalty for the number

of reaction nodes, thereby incentivizing solutions containing lipid species reactions representing

the same lipid class reaction. This approach is sufficient for the enrichment analysis of LINEX
2

but does not allow incorporating multispecificity into non-enrichment analyses. Future research

could develop this approach further by computing substrate-product ratio distributions for each

lipid species reaction instead of averaging them per group. This would enable the definition of

new metrics characterizing lipid species reactions in the context of their “parent” class reaction.

Furthermore, lipid species reactions from the same class reaction can be clustered into subgroups

using distributional similarities. This subgrouping can potentially uncover differences in FA

specificity within the same lipid class reaction, for example. To generate hypotheses on the FA

specificity of different lipid metabolic enzymes, which are largely unknown [259] and resource-

1

During my doctorate, I also contributed to a review about the current status and future of computational methods

for epilipidomics [253].

2

Among other projects, I have supervised the development of an automated pipeline for lipid identification from

EAD mass spectra.

3

For example, the DOMINO algorithm from Levi, Elkon, and Shamir [182] cannot be used for lipid-species network

enrichment as it relies on GO terms.
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intensive to experimentally measure, additional omics data is required. For example, correlating the

expression or phosphorylation status of enzymes catalyzing a given lipid class reaction - acquired via

proteomics analysis - with the substrate-product ratios of each subgroup could be a first approach

to computationally obtain hypotheses of FA enzyme specificity.

Because of their connections between lipid metabolic reactions and enzymes LINEX
2

networks

enable the integration of multi-omics data, in particular genomics, transcriptomics, and proteomics,

beyond conjecturing about FA specificity. Unlike general-purpose multi-omics methods, for

example, those embedding different modalities into one latent space [260, 261], such integration

methods would focus on mechanistically explaining connections between omics-layers instead of

aiming to find signatures or axes of variation shared between them. Different classes of methods

from other omics disciplines [262] could be adapted to analyze multi-layer networks centered

around lipid metabolism.

In addition to multi-omics integration, multi-layer networks - now containing data from dif-

ferent steps of the lipidomics pipeline instead of different omics data - can also inform lipid

identification with data interpretation and vice versa. Building experimental networks representing

mass-spectral similarity or mass differences, e.g., through Global Natural Products Social Molecular

Networking (GNPS) [263], and combining them with lipid metabolic networks can, therefore,

help to improve both lipid identification as well as network generation itself [201]. The reason

for this approach being especially promising for lipids lies in the fragmentation patterns of lipids,

which are fairly analogous between lipid classes (Section 2.1.3.2) and mostly differ in their head

group fragment and loss masses. Therefore, most types of reactions covered by LINEX
2

repre-

sent lipid modifications that (under optimal analytical conditions) result in spectrum shifts, e.g.,

through head group modifications or FA elongation or desaturation. Due to the limited number

of mass shifts that can occur for a given lipid species, such approaches are promising candidates for

advancements in computational lipidomics.

Lipid species have been largely excluded from metabolic modeling so far due to the difficulty of

matching lipid species onto (genome-scale) metabolic models [264]. With its ability to generate

lipid species-level metabolic networks - including non-lipid metabolites - LINEX
2

can easily be

extended to generate stoichiometric matrices. The availability of such matrices enables constraint-

based modeling approaches, such as Flux Balance Analysis (FBA), to be extended to cover lipid

species in addition to “regular” metabolites contained in genome-scale metabolic models.

6.2 Metabolic Reaction Analysis

In contrast to lipids, metabolic networks for non-lipid metabolites have been available for longer.

Therefore, computational methods utilizing these have been developed in the past [265], targeting

various use cases and underlying assumptions. One vast area of research is constraint-based and

dynamic modeling, which is used for metabolic engineering [266], in-silico analysis of microbial

communities [267], or simulation of metabolic alterations in tumors [268]. While modeling can

give exact results, it relies heavily on model assumptions and complex parametrization [269], which

are often inferred in lab conditions and may vary under differing environmental conditions [270].

Therefore, usability is often limited to cases where vast amounts of data for parameter estimation

are available under the conditions intended to study [271].
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Frainay et al. [178] use genome-scale metabolic models in a different way to recommend metabolic

fingerprints based on an initial seed, e.g., metabolites with significantly altered abundances be-

tween conditions, using a graph-theoretic approach. Furthermore, approaches utilizing multiple

levels of knowledge, for example, the KEGG [49] hierarchy, have been used to predict metabolic

entities affected by biological conditions based on metabolite significances [272]. By building upon

estimates of statistical significance, these methods are limited to discovering changes in metabolic

abundances and making qualitative statements about associations.

The Metabolic Network Reaction Analysis (mantra) method, developed as part of my doc-

torate, is, to the best of my knowledge, the first method that aims to overcome these limitations

by directly using the quantitative relationships between substrates and products when dealing

with (untargeted) metabolomics data. By enabling a fine-grained functional interpretation of

metabolomics experiments, the results presented in Köhler et al. [11] show that mantra can generate

clinically relevant hypotheses on changes in metabolic reaction activity. Because it only requires the

abundances of identified metabolites as input, it can significantly speed up the process from initial

(exploratory) measurements to hypothesis validation. Furthermore, the approximation procedure

of mantra is designed in a way that allows the correlation of multi-omics data with the inferred

relative reaction activity. Therefore, it provides a way to perform step-wise functional integration

of metabolomics into a multi-omics context by constructing multi-layer networks with a hybrid

knowledge-data approach.

Although mantra requires less detailed biochemical prior knowledge than modeling approaches,

its current major limitation is the mapping of measured metabolites onto the metabolic network.

For one, identifiers (IDs) are not unified between databases, for example, due to different hierarchy

structures, making it hard to map IDs [273]. This is especially problematic, as metabolites might

not be available in all databases at the identified level of resolution. Furthermore, metabolites can

have many synonyms following different naming conventions [274] and, thus, cannot be easily

matched via common names. While some available tools, such as MetaboAnalyst [247], are tackling

this issue, the comprehensive mapping of metabolites remains an open problem.

In addition to mapping database IDs, the number of metabolites is affected by the rate of feature

annotation in MS-based metabolomics. With state-of-the-art technology, around a thousand

metabolites are identified in a Tandem Mass Spectrometry (MS/MS) experiment, while thousands

of features remain unannotated. Recently, approaches using deep learning have been developed to

improve feature annotation [275] and in-silico spectrum prediction[276]. Simultaneously, multi-

level networks are used to combine mass spectra-based networks with prior knowledge networks

to infer correct annotations [201]. As feature annotation is still the most researched area in compu-

tational metabolomics by far, one can expect drastic improvements in metabolite identification

in the future. This progress in feature annotation will boost the comprehensive applicability and

performance of mantra. Furthermore, mantra itself can be a starting point to enhance metabolite

annotation. For example, its reaction activity models could be used to rank multiple possible

annotations of one mass spectral feature by the fit of the model for each annotation candidate.

An advantage of metabolic networks over other biological networks, e.g., PPI networks, is their

low false positive rate. However, they suffer from a certain level of incompleteness, making manual

curation necessary [177, 277, 278]. Furthermore, computational metabolomics methods using
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metabolic networks, such as mantra, can only be applied to data from organisms for which such

networks are available. While this is no issue for biomedical applications, it limits their applicability

to other research areas and organisms.

These shortcomings are addressed by methods that aim at speeding up and reducing the manual

curation needed during the reconstruction process [279] and methods to fill gaps in metabolic

networks [177, 280, 281, 282]. For the latter, both “classic” flux-based, as well as ML-based link

prediction methods exist. One shortcoming of these methods is that they mainly focus on adding

new reactions to metabolic networks but not metabolites. Therefore, these cannot be used to add

metabolites that could not be matched to any database ID, not to mention unidentified features.

Including methods with this ability into the pre-processing pipeline of mantra would eliminate its

two major limitations.

In other fields of bioinformatics research, data-driven inference of regulatory or signaling net-

works is a well-studied problem. For example, many recent methods for GRN inference have been

proposed [283, 284, 285, 286, 287, 288, 289] following different ideas that could be adapted to the

setting of metabolomics. Metabolic network inference, however, is arguably more difficult. One

aspect is that regulatory mechanisms are represented as pairwise interactions in GRNs, whereas

metabolic reactions are biochemical relations between one or more substrates and one or more

products. Therefore, instead of inferring (pairwise) edges, metabolic network inference requires

predicting higher-order interactions. Additionally, GRN inference can leverage large amounts

of data
4

due to the multiplexing capabilities of sequencing technologies as well as the advanced

single-cell technology in transcriptomics. This is especially problematic when considering that

the inference of higher-order interactions is an inherently more complex problem than pairwise

interactions and, thus, would require an increased number of training data points. Although

some approaches to include unmatched or unidentified metabolites, such as the strategy proposed

by Benedetti et al. [202], into metabolic networks, true data-driven de-novo inference remains an

unsolved problem that has the potential to not only improve biomedical data interpretation but

generalizes to all areas in which metabolomics experiments are used.

The reaction estimation of mantra, as well as its downstream methods, currently require sample

group annotations. While this supervised case is a common setting, metabolomics is also used

for disease subtyping [290, 291, 292]. In addition to its current implementation, the reaction

estimation procedure can easily be adapted to work in an unsupervised setting. The new feature

space (sample× reaction change matrix) resulting from this can be directly used as input for (bi-

)clustering algorithms, giving rise to a method for metabolic-reaction subtyping. This approach,

however, does not have the mechanistic nature of the mantra enrichment algorithm, as it disregards

the biochemical connections between metabolic reactions. To allow for mechanistic subtyping,

the objective function would be rewritten to represent a clustering metric based on the reactions

(and potential multi-omics associations) within a given subgraph. Alternatively, other graph-based

approaches for subtyping, such as the one developed by Lazareva et al. [293] for gene expression data,

could be adapted to the specific structure of metabolic networks. A mechanistic metabolomics

subtyping algorithm would be an important step forward for Systems Medicine, as many diseases

have unknown metabolic subtypes [294, 295]. Directly understanding their underlying mechanism

enables the effective development of treatments specific to each subtype. Transferring the mantra

4

In this case, “large amounts of data” refers to both a high number of dimensions and a high number of samples.
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algorithm to an unsupervised setting, as described above, is a promising approach for future

research to fill this gap.

The second main contribution of mantra, in addition to mechanistic metabolomics analysis, is the

ability to perform knowledge-based multi-omics integration of metabolomics data. In contrast to

previously developed approaches, which are either overrepresentation analysis-like, which suffer

from a lack of the reaction-mechanistic component as they rely on p-values or constraint-based

modeling, which requires strong assumptions [273], mantra is able to integrate metabolic reactions

without requiring metabolite concentrations. This is especially advantageous as it offers wet-

lab researchers with a way of analyzing their data that directly provides them with a mechanistic

hypothesis on which multi-omics features are associated with the underlying changes in metabolism.

Furthermore, it gives a starting point for multi-omics subtyping, which can reveal more fine-grained

patterns compared to separate omics-analyses [296]. Given the steadily increasing popularity

of multi-omics experiments to study diseases [297], mantra is an important step towards better

understanding metabolic alterations under disease conditions and developing treatment approaches

targeting them instead of symptomatic treating.

The attentive reader may have noticed that so-far lipidomics, albeit a subset of metabolomics,

has been treated separately. Because of the structural and biochemical particularities of lipids,

compared to general metabolites, lipidomics data analysis uses specialized methods that are ad-

vantageous over universal metabolomics methods. In terms of knowledge-based analyses, the

difficulty of integrating lipid measurements with metabolomics data is the discrepancy between

lipid metabolism in databases, which separates FA and lipid classes, and the actual lipid species

measured. Due to the ability of LINEX
2

to generate metabolic networks on the level of lipid

species, it paves the way for integrating lipidomics into metabolic networks. Since untargeted

metabolomics experiments also measure lipid species, combining metabolomics and lipidomics in

knowledge-based approaches will be a highly demanded analysis approach. The main contributions

of this thesis, mantra and LINEX, offer a solid starting point for such integration. In fact, joint net-

works can already be computed by first generating a mantra network for all non-lipid metabolites

and subsequently using the non-lipid reaction participants of the lipid-specific LINEX
2

network

to connect both graphs. Methods analyzing such a joint network can also build on the ideas for

scoring metabolic dysregulation presented in this thesis. However, they will require careful design

to avoid introducing biases toward lipid or non-lipid reactions due to the multispecificity present

in lipid metabolism but absent in other parts of metabolism.

6.3 The Future of Metabolomics Data Interpretation and
Multi-Omics Integration

Both computational metabolomics and lipidomics data interpretation methods are still in their

infancy compared to the current standings of computational methods for other omics disciplines.

While this fact is becoming more widely recognized and the community is starting to give more

attention to the aspect of data interpretation, several challenges lie ahead for the field to catch up -

some of them shared between lipidomics and metabolomics and some specific to each.

Currently, both fields suffer from a lack of standardized naming conventions limiting the
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automated processing for generating data-specific metabolic networks, such as the ones in LINEX

and mantra, or other knowledge-based approaches. For lipids, two tools, LipidLynxX [241], and

GOSLIN [298], unifying multiple nomenclature styles have been developed. Even though they

do not cover all available ways of annotating lipids, they are a major improvement and enable a

wider and more user-friendly user interface for LINEX. I expect them to cover more nomenclature

approaches in the future, enabling standardization across different lipidomics platforms. For

metabolomics, however, incompatibilities between databases, and thus the naming conventions,

are larger and less straightforward to overcome due to different hierarchies that are more difficult

to resolve. Even though molecules can, theoretically, be matched via their structure, e.g., in the

form of canonical SMILES (Simplified Molecular Input Line Entry System) [299] strings or InChI

(International Chemistry Identifier) representations [300], the different levels of isomer resolution

in databases can prevent 1-to-1 matching. Therefore, it may not be possible to have a one-approach-

fits-all solution, and thus, it will be important for the field to agree on standardized approaches

that researchers can follow.

Knowledge-based approaches, which are the focus of my thesis, rely not only on database

matching but also on confident identifications. Despite the currently rather low rates of metabolite

identification, the improvements in molecular networking [301, 302] and ML-based approaches

[275, 276] will boost them, consequently also enhancing the capabilities of methods relying on

them.

In addition to metabolite annotation, advances in ML/Deep Learning (DL) will serve as the

foundation for novel data-driven solutions to analyze metabolomics and lipidomics data. Arguably,

the most widely discussed area, Natural Language Processig (NLP), has already proven useful in

scraping knowledge from publication databases, allowing the generation of biological knowledge

graphs [303] and possibly metabolic networks in the future. Due to the fast pace with which such

methods keep improving, it is not far-fetched to expect their resulting models will be used heavily.

Therefore, a crucial task will be to establish mechanisms to ensure their validity on a large scale.

Besides NLP, Geometric Deep Learning (GDL) has seen great progress since the term was

coined [230]. Various applications of GDL, such as RNA structure prediction [304], antimicrobial

peptide prediction [305], drug discovery [306], and representation learning on molecules [307],

have shown its potential for biological applications. As these examples show, a major focus of

these approaches lies in structural biology problems. However, many other types of biological

problems can profit from progress in GDL due to the non-euclidean nature of biological data

and the manifold uses of graphs, such as metabolic networks. Due to their close connection with

(first order) Markov models and random walks (Section 2.2.1), which are extensively studied in the

context of graph neural networks, biochemical reaction networks are a natural application case

for GDL. Furthermore, when interpreting information propagation of message-passing neural

networks [308] as the metabolic “information” transmitted through a reaction, one may be able to

leverage a phenomenon known as over-squashing. Over-squashing refers to messages not being

diffused to far away nodes because the information from many nodes gets “squashed” in bottlenecks

[309]. While such bottlenecks are problematic for ML tasks focusing on large-range interactions

between nodes [308], they may represent interesting properties in the case of metabolic networks,

for example, critical reactions that serve to regulate certain parts of metabolism (i.e. “gatekeepers”

of subgraphs). Therefore, using properties such as graph curvature to detect bottleneck edges [174]
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may be a useful surrogate when analyzing metabolic reaction networks.

Aside from viewing metabolic networks from a graph point of view, advancements in ML also

open up new possibilities for analyzing metabolomics data from a dynamical system position (recall

Section 2.2.1 for why metabolic networks describe dynamical systems). Particularly interesting

developments in this direction have happened in the field of Neural Differential Equations (NDEs).

They use some form of neural networks to approximate differential equations subsequently evalu-

ated by a solver and can handle continuous time-series data [310]. In real-world applications, this

allows, for example, to forecast how the state of a system, such as a cell, will evolve in the future

and can be used for tasks such as predicting drug response effects [311]. Especially interesting for

clinical applications, where data cannot always be sampled at the same time points, specific models

to deal with irregular time series have been developed [312, 313]. Neural Ordinary Differential

Equations, for example, have already been used to model gene expression dynamics [311]. Training

neural networks, of course, requires relatively large amounts of data, which may be difficult in a

metabolomics setting. However, it is also possible to prime NDEs with inductive bias by encod-

ing certain properties of the system to study (i.e., metabolism) [314]. Therefore, NDEs have the

potential to bridge the gap between classic modeling and “purely” data-driven approaches and

thus enable a more fine-grained understanding of the dynamics of metabolism. Additionally, such

inductive bias can reduce the number of model parameters and thus the need for large amounts of

training samples.

Nonetheless, data availability remains a major roadblock for computational metabolomics data

interpretation, especially when developing specialized approaches for lipid data. Despite the

availability of multiple databases, such as MetaboLights [315], METASPACE [316], and MassBank

[317], public availability of published metabolomics data is still much less common than in other

omics disciplines [318, 319]. This is not only problematic in the context of science’s reproducibility

crisis but also hinders computational research, as exclusively computational labs often have to rely

on experimental collaborators to join their projects to validate or even develop their methods. For

less established/connected labs, such factors might almost act like a gatekeeping mechanism. From

a larger perspective, having large amounts of data publicly available would also fuel methods that

aim to transfer patterns from one experimental platform (e.g., organism, analytical platform, etc.)

to another to enhance analyses of understudied settings.

An additional point to be considered in future computational metabolomics research is the fact

that metabolism is a rapidly changing dynamic system, yet we only measure static snapshots. For

control-case (e.g., healthy vs. disease) study designs, where the goal is to identify how the case group

differs from the control group on a mechanistic level during disease progression, the dynamic

nature of the system cannot accurately be captured with a single time point measured for each

group. Consequently, to truly understand how metabolism changes during disease progression,

time series data is required to learn the overall dynamics. Therefore, while both LINEX and

mantra have been designed to work with the currently (by far) most common experimental setups,

extending their methodology to consider temporal dynamics will be crucial as such data becomes

more available.

Due to the limited availability of metabolomics data, especially in the highly sought-after single-

cell context, a currently popular approach is to use (single-cell) RNA sequencing (RNAseq) data
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to model metabolic states. These methods are typically based on classic modeling approaches, such

as FBA or kinetic modeling, and offer great potential to be extended by DL [320]. For example,

Wagner et al. [321] proposed a method termed Compass, which uses single-cell gene expression data

to penalize metabolic reactions in FBA solvers. While these approaches mitigate the data availability

issues in metabolomics, they suffer from the same limitations as classic modeling. Furthermore,

even though the expression of enzyme-encoding genes may be proportional to enzymatic activity

in some cases, many other factors can reduce their correlation. One such factor is the translation

rate influencing the correlation between gene expression and protein abundance, as single-cell

transcriptome data has been reported to have higher variability than single-cell proteome data [322].

Even for enzymes, for which gene expression patterns are correlated with protein abundances, post-

translational modifications could regulate the activity and, thus, uncouple transcript abundance

and enzymatic activity [323].

With advances in multi-omics data acquisition and processing, especially on the side of proteomics,

it is likely that these limitations will be overcome to a certain extent. Additionally, recent progress

in protein structure prediction [159] is a promising starting point for incorporating structural

aspects when analyzing metabolism, for example, by considering the effects of (non-silent) muta-

tions or alternative splicing events. Nevertheless, a crucial aspect often overlooked when trying

to model metabolism entirely without metabolite abundances, is the effect metabolite concen-

trations can have on metabolic flux, e.g., through allosteric regulation [324]. Considering this

form of metabolite-guided modulation, accurate modeling of metabolism will require a certain

degree of metabolomics data. By finding ways to rank metabolites by their importance for pre-

dicting metabolic states, one may be able to get more precise approximations while staying within

the limitations of current (targeted) metabolomics capabilities. Nonetheless, integrating high-

throughput metabolomics data will eventually result in the most accurate representation once

analytical techniques have caught up.

6.4 Conclusion

With the progress in MS-based metabolomics and lipidomics in the last decade, the need for

computational methods to aid their interpretation has emerged. Yet tools tackling this need are

mostly absent. Having such methods available offers great value for biological, biomedical, and

clinical research.

In this dissertation, I aimed to address this gap by introducing graph-driven methods for inter-

preting lipidome and metabolome data in a way that allows the inclusion of biochemical prior

knowledge and integration with other omics data.

For lipidomics data interpretation, this thesis introduces the Lipid Network Explorer (LINEX),

an approach to generate lipid-metabolic networks describing the biochemical reactions between

lipids measured in an experiment. These networks enable the functional analysis of lipidomics

data and the identification of dysregulated lipid-metabolic enzymes. Thereby, LINEX provides a

link between changes in lipidome composition and other omics-layers, in particular proteomics,

transcriptomics, and genomics.

Currently, a major issue when using prior knowledge in lipidomics data analysis is the poor
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standardization of lipid naming conventions. With the community actively tackling the standard-

ization and translation between nomenclature styles, I expect to see fewer and fewer such issues

in the next years. Another current limitation of lipid metabolic networks is the resolution of

lipid structures, especially with respect to fatty acid structures. Due to recent improvements in

alternative fragmentation approaches, lipid-metabolic network analysis could become an even

more powerful tool, given that the technological promises of approaches, such as EAD, hold.

Regardless of this progress, the work presented in this thesis already demonstrated how lipid net-

work analysis boosts the interpretability of lipidomics experiments and enables the identification

of enzymes potentially responsible for the biological mechanisms behind altered lipidome compo-

sition. It, therefore, helps researchers in identifying lipid-related disease mechanisms, ultimately

improving time and specificity in the development of diagnostic and therapeutic procedures.

The second major framework presented in this thesis is Metabolic Network Reaction Analy-

sis (mantra), an approach to approximate changes in metabolic reaction activity. Its design allows

to directly and quantitatively link multi-omics data to the change in activity of a given reaction. As

shown in this dissertation, mantra thereby contributes a faster derivation of mechanistic hypotheses

that can be used, for example, in translational research.

Even more drastic than for lipidomics is the issue of mapping between metabolite annotations

and onto metabolic networks. While there certainly will be progress in this area, I see great potential

in hybrid network approaches that combine mass spectral similarity and metabolic networks, thus

combining identification and interpretation into a single step. Furthermore, with the open data-

sharing mindset spreading further in the community, it could be possible to eventually learn

models predicting metabolic network structure, either purely from data or in hybrid approaches

combining real-world and synthetic data. Having such models then eliminates the need to identify

metabolites when conducting prior knowledge-driven interpretation. Instead, identification is

then only required for a selected subset of metabolites.

Despite the aforementioned limitations, the work introduced in this dissertation already shows

how mantra enables the identification of metabolic subgraphs representing hypotheses of the

biological mechanisms. These can then serve as a starting point in biomarker or drug discovery

and thus aid translational research.

Overall, the amount of biological and biomedical data available will grow even faster with

improvements in experimental technology. The computational interpretation of biological data

will greatly profit from this trend, as it opens the world of omics data analysis to a large number

of data-driven approaches. Therefore, biological problems will continue to attract researchers

(especially) from the ML/DL community. Combining expertise in this area with expertise in

computational biology has been fruitful in the past decade and is likely the most promising path

forward for the field in general.

In particular, for disciplines such as metabolomics and lipidomics, for which data is still limited,

a crucial factor will be how data-driven approaches can be adapted to scarcer settings. Whether the

solution will lie in combining experimental with synthetic data, altered model designs and training

schemes, including prior knowledge, or a combination of these remains to be seen.
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A.1 Investigating Global Lipidome Alterations with the
Lipid Network Explorer
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Abstract: Lipids play an important role in biological systems and have the potential to serve as
biomarkers in medical applications. Advances in lipidomics allow identification of hundreds of
lipid species from biological samples. However, a systems biological analysis of the lipidome, by
incorporating pathway information remains challenging, leaving lipidomics behind compared to
other omics disciplines. An especially uncharted territory is the integration of statistical and network-
based approaches for studying global lipidome changes. Here we developed the Lipid Network
Explorer (LINEX), a web-tool addressing this gap by providing a way to visualize and analyze
functional lipid metabolic networks. It utilizes metabolic rules to match biochemically connected
lipids on a species level and combine it with a statistical correlation and testing analysis. Researchers
can customize the biochemical rules considered, to their tissue or organism specific analysis and
easily share them. We demonstrate the benefits of combining network-based analyses with statistics
using publicly available lipidomics data sets. LINEX facilitates a biochemical knowledge-based
data analysis for lipidomics. It is availableas a web-application and as a publicly available docker
container.

Keywords: computational lipidomics; computational systems biology; network biology; bioinfor-
matics; lipidomics; lipids; metabolic networks

1. Introduction

Lipids play a central role in biology for membranes, energy metabolism and signaling
processes. Lipidomics is gaining impact in systems biology and medicine as lipids are an
important molecular dimension for the investigation of biological mechanisms, stratifi-
cation of patients, and disease subtyping. Recent advances in extraction protocols, high
resolution Mass Spectrometry (MS) and methods for the identification and quantification
of lipids allow for more comprehensive and complex lipidomes to be measured. However,
the analysis of lipidomics data does not end with quantification. To interpret changes of
the lipidome and embed them into a systems biological context, dedicated computational
approaches are necessary. The software tools lipidr [1] and LipidSuite [2] provide statistical
methods to mine and perform differential analysis of lipidomics data. They implement a
“Lipid Set Enrichment Analysis” and “Lipid chain analysis” to investigate the regulation of
lipid classes, carbon chains or saturations. These approaches incorporate lipid-specific char-
acteristics into the statistical analysis. However, the possibility to investigate associations
between lipids is missing.

Association networks from molecular omics data can offer benefits for data analysis,
as biological networks carry information about functional interactions of biomolecules.
Examples are Protein-Protein Interaction (PPI) networks, Gene Regulatory (GR) networks,
or metabolic networks. In the case of lipid metabolic networks, these characterize trans-
formations of lipids catalyzed by enzymes. Dedicated bioinformatics tools such as Key-
PathwayMiner [3,4], DOMINO [5] or HotNet2 [6] have been developed, which extract
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functionally associated network modules enriched with deregulated genes/proteins from
PPI networks in a case/control setting. Such network modules can hint towards bio-
chemical mechanisms, which connect a phenotype to its underlying molecular machinery.
Applying network-based computational methods on lipidomics data remains challenging.
One reason is that reaction databases carry information mainly on a lipid class level but
not on a molecular species level [7,8]. Since modern lipidomics experiments provide mea-
surements on the sum or molecular species level, more fine-grained reaction information
can be utilized. Therefore, (partial) correlation networks of lipids species can be used to
investigate data-driven interactions between lipids.

Correlation networks are a common method for the analysis of metabolomics/lipidomics
data [9–11]. They show relationships between lipids entirely based on pairwise correlations
over all measured samples. While they can reveal novel relationships between lipids, they
do not describe functional associations between them. Recently it was shown that corre-
lation networks can profit from incorporating prior knowledge into cut-off selection [12],
providing an alternative to purely data-driven or purely knowledge-driven metabolic
networks. An interplay between functional and data-driven associations could therefore
be beneficial for the analysis of lipidomics experiments.

Functional analysis of lipid data is already possible with tools such as LION/web [13]
or BioPAN [14], which enrich lipids based on an ontology or pathways. LION/web
identifies lipid-associated terms in lipidomes [13] and associates biological functions to
lipidomics data. BioPAN visualizes biochemical pathways of lipids, which can be investi-
gated on the lipid class, species or fatty acid (FA) metabolism level. Additionally, BioPAN
provides quantitative scores for the activity of pathways. However, they focus on the
enrichment of pathways or reaction chains rather than on a global analysis of the lipidome.

Another approach for the global qualitative analysis of the lipidome is the LUX
Score [15]. The methodology embeds the lipidome in a chemical space, such that lipids are
close to each other if they exhibit a high chemical similarity (based on SMILES notation of
chemical structures). The LUX Score also operates on the lipid species level. It provides an
overview of chemical properties and a qualitative comparison of lipidomes.

Here we present the Lipid Network Explorer (LINEX), a flexible web-application (app)
to create, visualize and analyze functional lipidomics networks. It combines enzymatic
transformations between lipids with correlations and statistical properties that can be
superimposed onto the network. This enables a global and a local view on the lipidome.
The tool thereby provides a basis for introducing graph-theoretical and network-topological
approaches into the analysis of lipidomics data. We further present applications of LINEX
on available lipidomics data sets and show the benefits of a network-based analysis.

2. Results

We developed LINEX to visualize and analyze functional associations of lipids on
networks (Figure 1), enabling the investigation of lipidomics data in the context of metabolic
reactions. In such networks, lipids are represented as nodes, while edges indicate a
connection via enzymatic reactions of lipid classes or FAs (Figure A2a in Appendix A).
These reactions are encoded as rules customizable by the user. This way, condition-,
tissue-, or organism-specific lipid metabolic properties can be incorporated into an analysis
with LINEX. As default settings, common reactions of glycero-, glycerophospho- and
sphingolipids as well as typical FA modifications are included. LINEX then combines
reactions of lipid class and FA metabolism into one network to give a comprehensive
overview of lipid species metabolism.

On the basis of experimental lipidomics data, and optional sample group annotation,
data specific metabolic networks are computed. Supported by a data driven lipid network
exploration, correlation analysis and hypothesis testing can be added to the network
representation (Figure 1) for a combined analysis.

A Appendix

63



Metabolites 2021, 11, 488 3 of 19

Lipidomics
data

Conversion of 
lipid names

Metabolic
rules

Class 
conversions

Fatty 
acid 

conversions

LINEX
Metabolic network creation

PC (16:0_18:1) 

Cer (d18:1;1_20:0) 
LPC (16:0)

SM (d18:1;1_20:0)

Hypothesis testing

* T-test
* Wilcoxon test
* Fold change claculation

Condition specific changes
of the lipidome

Correlation analysis

* Pearson correlation
* Partial correlation
* Significance testing

Correlations between lipids
under different conditions

Network analysis

Lipid classes Hypothesis testing Correlations

Combined

LPC
16:0 PC

32:1

DAG
32:1

PE
32:1

PE
30:1

PE
32:0

LPC
16:1

LPE
16:1

LPC
16:0 PC

32:1

DAG
32:1

PE
32:1

PE
30:1

PE
32:0

LPC
16:1

LPE
16:1

LPC
16:0 PC

32:1

DAG
32:1

PE
32:1

PE
30:1

PE
32:0

LPC
16:1

LPE
16:1

LPC
16:0 PC

32:1

DAG
32:1

PE
32:1

PE
30:1

PE
32:0

LPC
16:1

LPE
16:1

Data-driven lipid 
network exploration

Figure 1. Workflow of the LINEX approach. Lipidomics data and optionally customized metabolic rules are uploaded
by the user. The data are used to generate an experiment-specific lipid network, which can be visualized together with
statistical measures such as correlation and fold change.

LINEX is available as a web-app (https://exbio.wzw.tum.de/linex/ (accessed on 27
July 2021)), where lipidomics data can be uploaded (Figure A2a), networks computed
and interactively visualized (Figure A2b). The lipidomics data have to be uploaded as
one table (data from two ion modes have to be processed and combined by the users to
one table prior to the analysis with LINEX). Additionally, the networks and all computed
statistical measures can be downloaded (Figure A2c). In the following, we apply LINEX to
three publicly available lipidomics datasets. They were selected to cover technical aspects
such as MS1, MS2 and lipidome coverage and experimental designs such as case-control,
time series and multi-group conditions. On those, we present our workflow to analyze
combined metabolic and data driven lipid networks.

All networks shown in the results section are available as interactive HTML files
(Supplementary Data 1–3).

2.1. Lipidomics of Colorectal Cancer

We investigated lipidomics data from Wang et al. [16] about a lipidomics characteriza-
tion of colorectal cancer patients. The authors identified and quantified 342 lipid species
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from 20 different lipid classes. According to the authors, no global changes of the lipidome
were detected, but alterations in individual lipids were observed.

The network computed by LINEX (Figure 2a, interactive network: Supplementary
Data 1) shows a global view on the changes of the lipidome between colorectal tumor
and normal mucosa. In the network, each node represents a lipid species, and each edge
between a pair of lipids indicates a biochemical reaction capable of transforming the lipids
into each other on the class or FA level. Edges are colored by changes of correlation from
healthy to cancer condition. Node colors represent the log fold change between healthy
and cancer samples, with red indicating increased and blue indicating decreased lipid
levels under healthy conditions. Node sizes indicate the negative log10 FDR-values of
a lipid between the two conditions, where more strongly altered lipids are displayed as
larger nodes.
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Figure 2. Lipid network of colorectal cancer lipidomics data from Wang et al. [16]. (a) Full lipid
network with node size scaled by negative log10 of p-values for comparison between healthy and
cancer tissue. Lipids are colored by log fold change between healthy and cancer tissue. Blue colors
indicate lower levels of lipids in the healthy condition compared to the tumor and red higher levels
in healthy samples. Edges are colored by changes of correlation for lipids from the healthy to cancer
condition. For example, green indicates a non-statistically significant correlation in the healthy
condition and a statistically significant correlation in the tumor, where the correlation has the same
sign. (b) Subnetwork showing PC and LPC nodes. (c) Subnetwork showing mainly unsaturated
glycerophospholipids.
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At first glance, it can be observed that the majority of reactions (edges) between lipid
species do not represent significant correlations in either of the two conditions (FDR < 0.05,
used throughout the manuscript as the significance cut-off). However, highly intracon-
nected parts of the network (local communities) can be observed, which exhibit significant
correlations, indicated by colored edges. Some examples are triacylglycerol (TG) and
diacylglycerol (DG) species (Figure A3a). While the fold changes of individual species are
heterogeneous, a trend of higher unsaturated TG species increasing in tumor tissue and
higher saturated TG species decreasing is observable. In particular, correlations between
highly unsaturated TGs (52:5, 54:5, 54:6, 54:7) remain significant over both conditions,
while others occur (green) or disappear (cyan) when comparing normal mucosa to tumor
mucosa. This indicates changes in the regulation of the FA metabolism related to neutral
lipids.

A big part of the network comprises the metabolism of GPLs. The network shows
a set of phosphatidylcholine (PC) and lyso-phosphatidylcholine (LPC) species, which
decrease in tumor samples and are metabolically closely related via reactions catalyzed by
the MBOAT7 and PLA2 enzymes (Figure 2b). MBOAT7 expression has previously been
associated with gastrointestinal cancer risk [17] as well as lipid-linked liver diseases [18],
which we were able to link to lipidome alterations by only considering the LINEX network.
The respective set of lipids is surrounded by PC, phosphatidylethanolamine (PE) and LPC
species, which show the opposite behavior. We could also observe an interesting pattern
of correlation of poly-unsaturated GPLs (Figure 2c). Here, PC, phosphatidylserine (PS)
and PE species which have a sum composition of 40:4, and were all found to be signifi-
cantly upregulated in the original publication additionally show functional correlations
between each other, independent of the condition. This is a strong indication of a common
mechanism regulating these lipid species.

In the metabolism of phosphatidylinositol (PI), high fold changes could be observed
in poly-unsaturated PI species, while some highly connected lyso-phosphatidylinositol
(LPI) species 18:2 and 16:0 did not seem to be influenced by the tumor (Figure 2a, left).
The authors argued that ether lipids might play a role in tumor progression, especially
lower levels of phosphatidylethanolamine ether (PEO) indicating higher oxidative stress.
Our analysis shows a close biochemical connection between downregulated PEO species
(Figure A3c). Other PEO species (e.g., PE(O-38:5) to PE(O-36:5), or PE(O-40:6) to PE(O-
40:7)), which increase in the tumor condition only show significant correlation in healthy
samples, revealing a diverging pattern in ether-PE. A reaction chain of ceramides with
significant correlations could be observed in the sphingolipid metabolism component of the
network (Figure A3b). While the Cers themselves are not significant, their correlations show
a clear co-regulation. This shows that changes of individual lipids might not always be
significant, but a combined network analysis with functional interactions and correlations
can nevertheless reveal interesting relations between lipids as well as indicate putative
common regulatory mechanisms.

2.2. Lipidome Alterations in Aging Brain of Mice

Next, we investigated a lipidomics experiment from Tu et al. [19] about lipidome
changes in the aging brain of mice between the age of 4 weeks to 52 weeks. Although
not compatible with the LipidLynxX [20] converter, we manually added Sulfatide and
Hex2Cer to the metabolic rules. In contrast to the previous data set, we could observe
very few correlations between lipids (Figure A4). To standardize the coloring of lipids in
networks, we developed a unified color scheme on the lipid class level (see Section 4). The
types of reactions forming edges between lipids are mainly chain length modifications
and desaturations. Lipid headgroup modifications can be observed primarily between
GPLs (Figure 3, interactive network: Supplementary Data 2). FA additions/removals are
only found between DG(18:1_22:0) and three TG species. Figure 3 shows a subnetwork of
highly saturated TG species, which are only connected via FA reactions. We first observed a
decrease of TG species from 4 to 12 weeks, followed by a strong increase of TG levels starting
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from the age of 32 weeks. This may be an indication for increased de novo lipogenesis,
which might be explained with FAS (fatty acid synthase, preferentially synthesizes palmitic
and stearic acid) , SCD-1 (stearoyl-CoA desaturase, synthesizes palmitoleic and oleic acid),
and GPAT-1 (glycerol-3-phosphate acyltransferase, preference for saturated FAs) enzyme
activity [21]. This is an advantage of LINEX, which can depict relations of lipids also
based on FA metabolism. The example also shows the importance of coverage of the
lipidome. The more species available, the better connections between lipids can be inferred,
ultimately helping to understand lipid metabolic alterations. The particular example lacks
lyso-glycerophospholipids, which play a central role in the metabolism. Many lipids
remain unconnected in this example or form components of less than four lipids, which
makes the biological interpretation of the lipidome in the network context challenging
(Figure A4).
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Figure 3. Part of the lipid network of the lipidomics data from Tu et al. [19]. Shown are the two
main components of the GPL metabolism. Nodes are colored by lipid class, and edges are colored by
reaction type. Node sizes represent the degree.

In the previous example on the lipidome of colorectal cancer patients, one GPL
component could be observed. Based on the data of Tu et al. [19], multiple such components
can be found. The two biggest components can be seen in Figure 3. Both share a similar
set of FAs from C16 to C22. The topological structures of both components also show
similarities. Many triangles of PC, PE and PS species can be found, which share the
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same FA signature and are converted into each other by headgroup modifications (e.g.,
PC(18:0_18:1), PE(18:0_18:1), PS(18:0_18:1) or PC(18:0_20:4), PE(18:0_20:4), PS(18:0_20:4)).
In some cases, additional connections to phosphatic acid (PA) or phosphatidylglycerol
(PG) can be found. Other GPLs are connected purely via FA reactions (e.g., PE(22:5_22:6)).
This pattern shows that certain FA combinations for GPLs seem favorable for enzymatic
reactions, because they do not only occur in pairs but directly for up to five different lipid
classes, which can be converted into each other.

Tu et al. [19] reported an overall decrease of GPLs and increase of sphingolipids
and neutral lipids. With LINEX, we could visualize this trend on the whole lipidome
(Figure A5). The global changes from the 4 week to the 12 week measurements were
specific on the molecular species level, with small fold changes from 12 to 24 week old mice.
The next change from 24 to 32 week probes showed the previously mentioned effect clearly
with the GPL components being mainly decreased (red) and the rest mainly increased
(blue). Interestingly, the ether lipids increased and therefore behaved opposite to the other
GPLs. Finally, the comparison of 32 to 52 week old mice showed a similar pattern as the
previous comparison, but with increased fold changes, especially in highly connected GPL
such as PE(18:1_18:1), PC(16:0_20:4) or PE(22:4_22:6).

2.3. Healthy Human Reference Plasma Lipidome in Aging

As a third example, we are showcasing plasma lipidome data from a human reference
population presented in Kyle et al. [22], which comprises 136 samples and 302 lipids,
mostly identified as molecular species. All patients do not suffer from any diagnosed
disease and represent the United States population in terms of age and sex distribution. To
enable statistical comparisons, we grouped the patients by age (see Section 4 for details)
and investigated the changes of the lipidome from young to old.

Many edges in the network (Figure 4, interactive network: Supplementary Data 3)
show non-statistically significant correlations in any of the age groups, as indicated by the
large fraction of gray edges, especially in the area rich in PCs and PEs in the upper right part
of the lipid network (compare Figure A6). Those areas, which show statistically significant
correlations, do so in half of the groups, namely at the ‘Toddler’, ‘Child’ and ‘Elder’ stage.
While these reactions affect PCs and PEs with a variety of molecular compositions, most
of these reactions are FA related, which becomes especially clear for PC species with odd-
chain FA on the lower right side of the subnetwork. Interestingly, many lipids in this
subnetwork show differential abundances between toddlers and children (Figure A6a),
which is accompanied by a higher density of strong correlations. For comparisons including
young adults (Figure A6c,d), both the number of lipid species with a higher probability
of being different between sample groups and the number of edges with changes in
correlation are much lower in this area of odd-chain PCs. Considering the general structure
of the subnetworks shown in Figure A6, these two groups show an interesting behavior
with respect to the position of lipid species with high absolute fold changes, which are
located mostly on the outside of the network, corresponding to lower node degree and
betweenness centrality. Most changes in correlation, however, are happening in the inner
part around higher connected nodes, especially lyso-species. A possible explanation for this
phenomenon is that changes in the center of the network are propagated to more peripheral
parts, while intermediate nodes stay nearly unaffected in their abundances, as reactions
producing and transforming them are changing their activities to the same degree.

In contrast to the part of the network shown in Figure A6, the subnetwork depicted
in Figure A7 mainly comprises TG species and is only lightly connected. This is possibly
due to few reported DG species, which would be connected to multiple TGs similar
to LPC species connecting PCs. Considering all four age comparisons ((i) Toddler vs.
Child (ii) Child vs. Teenager (iii) Teenager vs. Adult (iv) Adult vs. Elder), most edges
are either statistically significantly correlated in multiple comparisons or in none. This
indicates constant metabolic activities shared across different age stages. Generally patients
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grouped as children, teenagers and young adults (see Section 4 for details) only show
minor differences in TG levels (Figure A7b,c).
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Figure 4. Global age-related plasma lipidome changes in a healthy human reference population
from Kyle et al. [22]. Node colors represent log fold-changes with blue being negative, i.e., lower
in the first condition, and red being positive. Node sizes are proportional to -log10(FDR) values.
Edge colors indicate changes in correlation values between the respective conditions. For edge color
groups see legend in Figure 2b. (a) Toddler vs. Child (b) Child vs. Teenager (c) Teenager vs. Adult
(d) Adult vs. Elder.

Investigating the changes from toddler to child in Figure A7a, shows that most TGs,
which are differentially abundant, exhibit a chain length of 44 to 48 and 0 to 3 double
bonds. On the one hand, most of these lipids are connected by edges representing strong
correlations in both age groups. On the other hand, connections to unchanged lipids are
mostly connected via edges that are only significant in the children group and represent FA
elongations. As most of the species are only identified as sum species, potential FA-specific
patterns cannot be observed. However, because the described changes apply to a very
limited set of total chain lengths, FA-specific elongation patterns may play a major role in
changing TG levels between toddlers and children.

For the comparison of adults to elder (Figure A7d), the previously described TG
species are not differentially abundant, even though they are strongly correlated with each
other. However, the few species with low p-values in the subnetwork comprise longer
fatty acyls (a sum of 54 to 58 hydrocarbons), are more unsaturated (6 to 11 double bonds),
and are located in two separate areas of the subnetwork. These lipids are sequentially
connected via edges of the same type of correlation change ("ssignificant to insignificant",
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referring to a statistically significant correlation in younger adults between two lipids,
which is not statistically significant in older adults), e.g., TG(58:9), TG(58:10) and TG(58:11).

3. Discussion

Existing bioinformatics tools for lipidomics data analysis are mainly based on the
lipid class metabolism, ontologies, the chemical space or correlations. With LINEX, a new
type of analysis for lipidomics is available. We combined established statistical measures
as already used in other lipidomics analysis approaches such as lipidr [1] and functional
associations between lipids. The tool BioPAN [14] offers an analysis of lipid networks
and aims to find active reaction chains. LINEX takes a different approach and focuses on
visualizing statistics on networks and hence revealing global trends of the lipidome and
local shifts of lipids through metabolic reactions. The LUX Score [15] also visualizes global
alterations of the lipidome but does not show functional associations between lipids as
LINEX does.

We applied LINEX to publicly available lipidomics data and were able to reveal new
insights into the regulation of lipid metabolism in addition to the originally reported ones
showing the advantages of a combined lipid network analysis for the biological interpreta-
tion of lipidomics experiments. Going beyond statistical comparisons of individual lipids,
but considering functional associations between lipids together with correlations and a
differential analysis of sample groups, we move towards a systems biological approach for
the analysis of complex lipidomes.

With its versatile visualization options, LINEX offers lipid researchers the possibil-
ity to investigate lipidome changes on a global scale while also revealing specific local
associations of lipids. Furthermore, the possibility to visualize changes in (partial) cor-
relations between lipid pairs along with reaction types allows for a more holistic view
on enzymatic changes affecting lipid metabolism to develop hypotheses about biological
mechanisms. The visualized networks can be downloaded and shared as fully interactive
standalone files.

As with all correlation analyses, LINEX can suffer from induced spurious correlation
through indirect effects. Especially in the case of unmeasured reaction partners, both
correlations and partial correlations are subject to possible false-positives. Therefore,
results based on these metrics should always be interpreted with caution. Beyond the issue
of spurious, undetectable lipids and low coverage can limit the interpretability of LINEX
results, as important connections between different parts of the network may be missing.
Future work on lipid metabolic networks has to aim at reducing the impact of these effects
on data interpretation and the selection of putatively interesting subnetworks.

A particular challenge is the multi-specificity of many enzymes catalyzing lipid
metabolic reactions, meaning they can catalyze conversions of multiple molecular lipid
species belonging to the same lipid class. Hence, lipid metabolic networks have to be
generated specifically for each dataset. This makes the workflow for lipid-metabolic net-
works fundamentally different to working with PPI or GR networks. Dedicated algorithms
such as KeyPathwayMiner [3,4], DOMINO [5] or HotNet2 [6] perform an enrichment of
deregulated genes on the whole network of possible interactions. However, with lipid
species networks, the networks themselves carry information about the composition of
the lipidome and its associations. Therefore, a direct application of common network
enrichment tools for other biological networks is not possible. With the availability of
molecular reaction networks by LINEX, we enable a combined analysis of lipidomics data
and provide a basis to develop algorithms specifically for lipid networks, which integrate
network (topological) approaches with statistical techniques. They hold the potential to
associate changes in individual lipid species with global patterns in the lipid reaction
network, thereby allowing them to go beyond pathway enrichment algorithms. This lays
the foundation for further improvements in the analysis of lipid metabolic networks, in-
tegrating biochemical and statistical measures. With such approaches, the discovery of
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condition-specific network motifs will be possible. These motifs can then be used to define
disease (sub-)types and to link conditions similar in their molecular lipid network patterns.

LINEX can be used to compare multiple conditions and switch between different
network views to investigate systemic trends of lipidome changes. The versatility of LINEX
allows users to create dataset-specific lipid-reaction networks, visualize and analyze the
networks utilizing topological and statistical properties, as well as a standardized lipid class
color scheme, and adapt the analysis to specific organisms, compartments or conditions,
without requiring any programming knowledge, making it accessible not only to bioinfor-
maticians but all lipidomics researchers. LINEX provides a novel view on the lipidome
and can help to mechanistically understand remodeling of the lipidome. It can assist the
community in mechanistic interpretation of lipid alterations and hypothesis generation.

4. Materials and Methods
4.1. Webtool

The LINEX web tool was implemented in python using the Django web framework.
It is publicly available at https://exbio.wzw.tum.de/linex/ (accessed on 27 July 2021). The
code is available at https://gitlab.lrz.de/lipitum-projects/linex (accessed on 27 July 2021).
Interactive network visualizations were generated using the visjs-network library along
with utilities from the pyvis [23] package. To achieve simple portability to other platforms
with all dependencies, LINEX is running in a Docker environment and can be deployed
locally.

4.2. Lipid Name Conversion

Lipidomics data often uses different lipid naming conventions. LINEX uses Lipid
LynxX [20] to convert and standardize lipid names in order to recognize them. All lipids
recognized by Lipid LynxX can be used by LINEX, if lipid class information and lipid class
conversions are available. If they are not available by default, they can be extended by
the user.

4.3. Dynamic Network Creation

The inference of lipid metabolic networks in LINEX is implemented in a modular
way by splitting transforming reactions into two broad categories: class or headgroup-
related transformations and fatty acid-related (FA-related) transformations. Two given
lipid species are connected in the network if they either share all their FA(s) and their
headgroups are connected by a reaction, or if both lipids have the same headgroup and
exactly one FA pair is transformable, according to a set of input rules. If two lipids from
different classes only differ in the number of FAs, e.g., a PC and a LPC, a connection is
drawn if the “larger” (PC) lipid species contains all FAs present in the “smaller” (LPC) lipid
and the missing FA is in a user-defined pool of possible FAs. The decision process with
pre-defined FA rules is depicted in Figure A1a. Additionally, FA reactions are evaluated
(elongation, desaturation and oxidation), connecting lipids of the same class if they differ
in a chain length of two, a desaturation or oxidation (on the molecular species level this
is considered for individual FAs). While this type of inferred connection is based on
biochemical reactions, it only represents a heuristic. All edges of this type can interactively
be hidden with one click. Further details for matching between lipids of different structural
resolutions with examples can be found in Appendix B.

Due to the nature of the matching procedures, it is not possible to cover many-to-
many reactions such as the modification of a ceramide with a phosphocholine group from
a phosphatidylcholine to a sphingomyelin and a diacylglycerol.

Default rules for both lipid class reactions and FA reactions are available. The default
lipid classes and their connections are shown in Figure A1b. Because of the versatility of
the implementation, user-defined customization to any desired condition and organism are
possible for both sets of rules. Furthermore, it is possible to manually customize enzyme
annotation for all headgroup modifying reactions.

A Appendix

71



Metabolites 2021, 11, 488 11 of 19

LINEX can handle three levels of FA resolution, sum composition, molecular species
and sn-specific lipid annotations, but profits from identification of all FAs, due to higher
specificity of the assigned edges. In order to utilize the maximum amount of informa-
tion, mixed identification levels within a dataset are allowed. When matching species
on sum composition level to species of higher structural resolution, the list of allowed
FAs (Table A1) is used to determine whether a FA addition is possible under the given
conditions. The only requirement for using LINEX is a lipid nomenclature compatible with
Lipid LynxX [20], as internal lipid mapping depends on a unified nomenclature.

4.4. Lipid Class Color Scheme

We developed a color scheme to color lipids based on their class. This scheme is
available in Supplementary Data 4 and on the linex website: https://exbio.wzw.tum.de/
linex/download (accessed on 27 July 2021). It supports colors for 46 common lipid classes.
Groups of lipids have similar colors, with lyso-species being brighter and ether classes
darker. Colors are available as hex codes.

4.5. Statistical Methods

For analyzing changes between sample groups, multiple statistical measures are
included, which can be separated into lipid species, i.e., nodes, specific and reaction, i.e.,
edge, specific metrics.

To compare lipid abundances, (log) fold-changes and binary statistical tests are avail-
able. End-users can choose between parametric (t-test) and non-parametric (Wilcoxon
signed-rank test [24]) depending on their data distributions. All p-values are automatically
reported as Benjamini-Hochberg corrected False Discovery Rates (FDR) [25]. These can be
visualized as node color or size.

Additionally, three theoretical graph measures are computed for each note, namely
degree, betweenness centrality [26] and closeness centrality [27]. These are, in contrast to
the above metrics, independent of sample groups and visualized as node size or color.

Edge-related measures are based on correlations and partial-correlations. In order
to compare two groups, (partial) correlation changes are sorted into five discrete groups,
which represent whether the correlation between two lipids stayed (in-)significant, turned
(in-)significant or changed its sign. In the network visualization, they are represented by
the coloring of edges.

All statistical measures were computed using scipy [28] and scikit-learn [29]. For
graph-related measures, the NetworkX [30] package was used.

LINEX does not provide data pre-processing options. Therefore, input data has to
be readily processed (sample normalization, batch correction, normalization to internal
standards or log-transformation). Future updates will be announced on the website:
https://exbio.wzw.tum.de/linex/(accessed on 27 July 2021).

4.6. Experimental Data Processing

For the evaluation, publicly available lipidomics datasets were used. The data from
Wang et al. [16] was reformatted and lipid names converted with Lipid LynxX [20]. No
further modifications were done to the quantified measurements. Lipidomics data from
Tu et al. [19] was downloaded from the MetaboLights database [31] (Study ID: MT-
BLS562 and MTBLS495). Prior to uploading the data, reported as peak areas, it was
quotient-normalized [32] and generalized log2 transformed. Healthy human reference
population data of the plasma lipidome was taken from Kyle et al. [22]. Unsupported lipid
classes, namely Sulfatide and Carnitine, two Endocannabinoids and Co-Enzyme Q10 were
removed, and LPE-P was manually added to the lipid class settings file. Three ceramide
species were measured in positive and negative mode. For these, only the negative mode
information was used. Lipidomics data were downloaded from the MassIVE repository
at https://doi.org/10.25345/C5P11F (MSV000085508; accessed on 27 July 2021). Patient
metadata used can be found on figshare [33]. In order to compare age-related changes,
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patients were grouped into 4 groups. Toddler: 0 to 36 months; Child: 4–12 years; Teenager:
13–19 years; Adult: 20–49 years; Elderly: 50–81 (old patient).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11080488/s1, Supplementary Data 1: Interactive HTML of the network shown in
Figure 2, Supplementary Data 2: Interactive HTML of the network shown in Figure 3, Supplementary
Data 3: Interactive HTML of the network shown in Figure 4, Supplementary Data 4: Lipid Class
Color Scheme.
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Appendix A

Table A1. LINEX Default Fatty Acids. This list is used when lipids from different classes that
only differ in the number of FAs are matched. Users can customize this list for their specific
experimental conditions.

Saturated FAs Monounsaturated FAs Polyunsaturated FAs

14:0 16:1 18:2
15:0 18:1 20:2
16:0 20:1 20:3
17:0 20:4
15:0 20:5
20:0 22:4
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Table A1. Cont.

Saturated FAs Monounsaturated FAs Polyunsaturated FAs

22:5
22:6
24:6

a

b

Cer

CE

DG

HexCer

LPA

LPC

LPCO

LPEO

LPI

LPE LPG

LPS

MG

PA

PC

PE
PG

PI

PS

SM

TG

Chol

PEO

PCO

PEP

PCP

Same

Lipid Class
Yes

C-atoms
±2

No

Classes
connected

Yes

FA Composition
equal

Yes No

FalseTrue

Yes

No

Number DBs
equal

Yes

No

False

C-atoms
equal

No

False

Yes

Number DBs
±1

Yes

True

No

False

Number OHs
equal

Yes No

FalseTrue

Yes

Number OHs
equal

Yes No

FalseTrue

No

Number DBs
equal

No

False

Number DBs
±1

No

False

Yes

Yes

Same Number
of FAs

No

Yes No

FalseTrue

Missing FA
possible

Figure A1. LINEX Default Reaction Rules. (a) Decision workflow for lipid connections with default
fatty acid reaction rules. Due to the internal logic, lipid classes with different numbers of fatty acids
have to have the same head group if they are connected. (b) Default lipid class connections. PEP:
PE—Plasmalogen; PCP: PC—Plasmalogen.
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a c

b

Figure A2. Main interfaces of the LINEX web-app. (a) Upload of lipidomics data with optional
group labels for samples. Statistical methods can be selected for the visualization on the resulting
network. Additionally, information about metabolic reactions and lipid classes can be uploaded to
extend the network. (b) Analysis page. Here, the lipid networks can be interactively investigated
and statistical or biochemical properties can be shown. (c) Download page. The network can be
downloaded including all computed statistical measures.
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Figure A3. Detailed views on subnetworks of the lipidomics data of Wang et al. [16] showing the
metabolism of (a) TG and DG, (b) ether lipids, and (c) sphingolipids. The full network can be seen
in Figure 2. Nodes are colored by fold change and node size is scaled by−log10 of multiple testing
corrected p-value. Edges are colored by correlation changes (see Figure 2).
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Figure A4. Lipid networks of the lipidomics data from Tu et al. [19]. Nodes are colored by lipid
class and edges show correlations between lipids for each mouse age group. Significant and negative
correlations are blue, significant and positive correlations red, and insignificant correlations gray.
Other time points show similarly less significant correlations (not shown here).
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Figure A5. Fold changes of lipids visualized on lipid networks of the lipidomics data from
Tu et al. [19]. Node size scaled by negative log10 of the p-values for comparison between healthy and
cancer tissue. Lipids are colored by log fold change between mouse brain age groups. Blue indicates
negative fold changes and red positive fold changes (e.g., higher levels in 12 weeks compared to
4 weeks are red). Edges are colored by reaction type. Chain length modification (blue), desaturation
(orange), fatty acid addition (green) and head group modification (red).
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Figure A6. Detailed view on the PC/PE subnetwork from Kyle et al. [22] comparing (a) Tod-
dler to Children, (b) Children to Teenager, (c) Teenager to Young Adults and (d) Young Adults to
Older Adults.
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Figure A7. Neutral lipid subnetwork based on Kyle et al. [22] comparing (a) Toddler to Children,
(b) Children to Teenager, (c) Teenager to Young Adults and (d) Young Adults to Older Adults.

Appendix B

In order to give a better intuition on how the rules work, we want to give three examples
representing the basic types of reactions possible based on molecular species annotations.
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PC(16:0_18:0)—PC(18:1_16:0): Both lipids share the same headgroup and have the
same number of FAs. Therefore, the only possible reaction can be on FA level. Since 16:0
is shared in both, the remaining FAs need to be transformable. According to the default
rules (Figure A1a), 18:0→ 18:1 fulfills the criteria for a desaturation, because the number
of carbon atoms as well as the number of hydroxy groups stay the same, while the number
of double bonds is changed by exactly one. As such fatty acid modifications are not known
for esterified fatty acids, this edge represents a heuristic rather than a direct biochemical
reaction. Users can remove all edges of this type in the interactive network visualization.

DG(16:0_18:0)—TG(18:1_18:0_16:0): While these lipids share the same headgroup
they differ in the number of FAs. The first step in the further workflow is now to check
whether the FAs in the DG, the species with fewer FAs, are both present in the putative
reaction partner. As this is the case, we know that DG(16:0_18:0) and TG(18:1_18:0_16:0)
are connected via the addition of an 18:1 FA. If these lipids were given as sum species, the
difference between their sum compositions—34:0 and 52:1, respectively—would have been
used to find the missing FA and a subsequent check of whether the resulting FA 18:1 is
in the list of allowed FAs (see Table A1 for the default values) would have decided over
whether the reaction is considered possible or not.

PE(16:0_18:0)—PC(16:0_18:0): The two species are composed of different headgroups;
hence, the only possible reaction is a headgroup modification. For such a reaction, the
lipids need to have the exact same FA composition. On sum species level, this requirement
is loosened to both lipids having to have the same number of FAs and the same sum
composition. Subsequently, the lipid class connection table (Figure A1b) is queried to
validate whether a reaction transforming one headgroup into the other exists. Because
this is the case, based on default settings, PE(16:0_18:0) and PC(16:0_18:0) are connected in
the network.
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Abstract

Lipidomics is of growing importance for clinical and biomedical research due to many associations between lipid metabolism and
diseases. The discovery of these associations is facilitated by improved lipid identification and quantification. Sophisticated compu-
tational methods are advantageous for interpreting such large-scale data for understanding metabolic processes and their underlying
(patho)mechanisms. To generate hypothesis about these mechanisms, the combination of metabolic networks and graph algorithms
is a powerful option to pinpoint molecular disease drivers and their interactions. Here we present lipid network explorer (LINEX2), a
lipid network analysis framework that fuels biological interpretation of alterations in lipid compositions. By integrating lipid-metabolic
reactions from public databases, we generate dataset-specific lipid interaction networks. To aid interpretation of these networks, we
present an enrichment graph algorithm that infers changes in enzymatic activity in the context of their multispecificity from lipidomics
data. Our inference method successfully recovered the MBOAT7 enzyme from knock-out data. Furthermore, we mechanistically
interpret lipidomic alterations of adipocytes in obesity by leveraging network enrichment and lipid moieties. We address the general
lack of lipidomics data mining options to elucidate potential disease mechanisms and make lipidomics more clinically relevant.

Graphical Abstract

Lipid network explorer (LINEX2) is a framework to visualize and analyze quantitative lipidomics data. The included algorithms offer
new perspectives on the lipidome and can propose potential mechanisms of dysregulation.

Keywords: network enrichment, lipid metabolic networks, lipidomics, disease mechanisms

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac572/6966533 by guest on 16 June 2023

A Appendix

82



2 | Rose et al.

Introduction
Lipids play a fundamental role in cells across all domains of life.
They are not only crucial for the long-term storage of energy
but can also influence the activity and occurrence of membrane
proteins [1], as well as signaling and inflammatory processes [2,
3]. Therefore, diseases are also influenced by lipids. This is known
not only for liver and metabolic diseases [4, 5] but also, e.g. various
cancers [6–9]. Despite their essential role in many biological pro-
cesses, excessive accumulation of lipids, especially in non-adipose
tissues can lead to lipotoxicity [10, 11]. Hence, to fully understand
diseases on the molecular level, changes in the lipidome have to
be characterized and their regulation understood.

Nowadays, an increasing part of the lipidome can be identi-
fied and quantified using mass spectrometry (MS). Lipidomics, is
becoming more relevant for clinical applications [12], potential
biomarkers have been discussed [13–15] and disease stratifica-
tions based on lipidomics proposed [16, 17]. To gain more insights
into disease mechanisms, it is necessary to propose functional
interpretations of lipid changes and links to other omics layers.
Due to the complexity of both acquired lipidomics data as well as
the regulatory mechanisms behind lipid metabolism, dedicated
computational tools are of great importance for unraveling these
associations.

Such interactions can be studied through biological networks.
On the metabolic level, these networks describe reactions
between metabolites that are catalyzed by enzymes. When
considering lipid metabolic networks an additional constraint
is the inherent complexity of the lipidome and its chemical
reactions. One lipid enzyme usually catalyzes a reaction for a
group of lipids that, e.g. belong to one lipid class but differ in
their fatty acyl composition. This is reffered to as multispecifity
[18]. The combinatorial complexity makes generating lipidome
scale metabolic networks for an organism inefficient but instead
requires data-specific networks [19–21].

Metabolic networks are commonly studied with dynamic mod-
eling or constraint based modeling. These techniques allow pre-
dictions of the system dynamics, for example the distribution of
energy resources. Parameterization of such models requires large
amounts of data covering the entire molecular state [22]. Espe-
cially metabolic fluxes and well-characterized enzyme kinetics
are important, which are often not available in a clinical setting.

Another way to analyze biological networks is through net-
work enrichment. By comparing two experimental conditions,
the goal is to find highly connected molecular subnetworks that
are enriched with significant features. The rationale behind this
approach is to propose a mechanistic hypothesis for observed dys-
regulations. Many algorithms have been developed over the years
[23–27], mainly with a focus on protein–protein interaction (PPI) or
gene-regulatory networks. A dedicated method for metabolomics
data is included in the MetExplore software [28]. Their Metab-
oRank [29] algorithm is a network fingerprint recommendation
method. For lipid networks, the BioPAN software generates lipid
networks and identifies active reaction chains [20, 21]. However,
operates only on the lipid sum species level and identifies only
linear reaction chains. The shiny GATOM method [30] performs
a network enrichment for lipids based on the Rhea reaction
database. Additionally, the software is able to include gene expres-
sion data for enzymes. We previously developed the lipid network
explorer (LINEX) [19], which addresses this. It combines lipid class
and fatty acid metabolism to provide comprehensive networks
for computational analysis and lipidomics data interpretation.
Using the LINEX framework we showed that new insights into

lipidome-wide data can be generated using lipid networks and
that central alterations are often metabolically highly related [19].
A limitation is that lipid class reactions beyond the default have to
be entered by users, which requires detailed knowledge about lipid
metabolism. In contrast to de-novo network enrichment, pathway
enrichment identifies significantly altered categorized pathways.
For metabolites, this can be performed with the KEGG [31] or
Reactome database [32]. A recent lipid-specific method is the Lipid
Ontology web service (LION/web), which performs an ontology-
based enrichment incorporating biological and chemical proper-
ties of lipids [33]. So far, no method is available, that puts the
multispecifity of lipid enzymes into the center of interpreting
lipidomic changes.

Here we present LINEX2, a redesigned and extended frame-
work, which addresses the shortcomings of lipid-network based
methods. Lipid reactions are based on database information. This
provides links to other omics disciplines. Furthermore, we devel-
oped a lipid-network enrichment algorithm, that incorporates
multispecific enzyme links. The method enables the generation
of mechanistic hypothesis from lipidomics data. We successfully
applied our method to lipidomics data of a knock-out study and
reveal potential dysregulations of the lipid metabolism in the
adipose tissue of obese humans. This can help to better translate
lipidomics into clinical application [34, 35] and improve our under-
standing of the role of lipid metabolism in disease mechanisms.

Materials & Methods
Database parsing & curation
We obtained lipid-related reactions from the Rhea [36] and Reac-
tome [32] databases. From Rhea, all reactions involving lipids were
parsed (based on ChEBI ontology, a subclass of CHEBI:18059). All
reactions included in the category ‘Metabolism of Lipids’ for all
available organisms (e.g. R-HSA-556833 for Homo sapiens) were
parsed from Reactome.

After parsing, all lipids and reactions were manually curated.
Lipids were annotated and assigned to classes according to an
updated version of lipid nomenclature from Pauling et al. [37] with
107 lipid classes (Supplementary Table S1). Lipids are commonly
composed of a headgroup, a backbone and a set of attached
fatty acids. From the databases, we extracted reactions showing
conversions between common lipid classes, which are usually
based on changes in one of these three attributes of lipids. We
classified these lipid class reactions with at least one annotated
lipid available into different categories: headgroup modification
(e.g. PS ↔ PE), headgroup addition/removal (e.g. DG ↔ PA), fatty
acid addition/removal (e.g. LPC ↔ PC), lipid merging (e.g. PA + PG
↔ CL) (see next section and Supplementary Figure S1 for more
detailed descriptions). Fatty acid reactions on complex lipids are
heuristics and can be manually added or banned by the user.
Default available reactions are fatty acid elongation (increasing
the chain length by 2), fatty acid desaturation (adding one double
bond) and hydroxylation/oxidation (adding one hydroxylation/ox-
idation to a fatty acid).

Network extension to species level
Curated class reactions from databases are used to infer lipid
species networks. To properly evaluate the reactions, molecular
lipid species are required. This means that for each lipid the
attached fatty acid must be available. Therefore, all lipid species,
which are only available as sum species, are converted into a set
of possible molecular species. As an example, a PC(40:2) has to be
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converted into possible molecular species such as PC(20:0_20:2)
or PC(22:2_18:0). For this, possible common (class-specific) fatty
acids can be added by the user. Only if at least one molecular
species can be generated that has the same sum formula as the
original sum species, it is considered for the network extension.

Extension of lipid class metabolic networks to lipid species
networks can be divided into two steps: extension of the class
metabolism and fatty acid metabolism. A detailed explanation
can be found in the Supplementary Methods.

Network enrichment
We developed a novel network enrichment algorithm for lipid
networks. The methodology involves 1) building a reaction net-
work from a LINEX2 network and calculation of substrate-product
changes per reaction. 2) Utilization of a local search algorithm to
find the heaviest connected subgraph (i.e. the subgraph with the
largest average substrate-product change) and 3) an empirical P-
value estimation. All steps are described below.

Reaction network building
To convert the lipid network to a reaction network, we generate a
unique reaction identifier for each reaction (edge) in the network
extension. This is especially important for reactions with more
than one substrate and product, with multiple edges correspond-
ing to one lipid species reaction. In the next step, all lipid species
reactions are converted to a new network representation with
reactions as nodes. Edges between two reaction nodes are drawn,
if the reaction belongs to the same lipid class reaction or at least
one lipid species can be found in both reactions.

Substrate-product change calculation Substrate-product
changes are calculated using the lipidomics data matrix L = Rl×n

consisting of l lipids and n samples. Samples are assigned either
to the disease condition D = {d1..dx} or to the control condition
C = {c1..cz}. The score is calculated independently for each
reaction ri for all reactions R. A reaction ri is a subsets of lipids
that participate in the reaction as substrates S(ri) or products P(ri).
The absolute substrate product difference �a for reaction ri for of
the disease samples D is calculated as:

�a,D
ri

=
∑

d∈D

(
1

|P(ri)|
∑

p∈P(ri)
Lp,d − 1

|S(ri)|
∑

s∈S(ri)
Ls,d

)

|D| .

Similarly, the relative substrate–product difference �r:

�r,D
ri

=
∑

d∈D

(
(
∏

p∈P(ri)
Lp,d)

1
|P(ri )| /(

∏
s∈S(ri)

Ls,d)
1

|S(ri )|
)

|D| .

Within the calculation, the mean or root is used to correct
for bias towards reactions with multiple products or substrates.
The final score for each reaction node in the network is then
calculated as follows:

Score(ri) =
∣∣∣�D

ri
− �C

rii

∣∣∣
�C

ri

.

As previously explained, reactions of the fatty acid metabolism
or ether lipid conversions are heuristic, to improve network con-
nectivity. They do not occur directly on the lipid level. For that
reason, they are also considered in the network enrichment but

penalized (default = –1) to favor the selection of the non-heuristic
reactions.

Local search and simulated annealing
Local search optimization investigates the search space by apply-
ing local changes to candidate solutions, such that the objective
function value is increasing. The changes are applied until no
more local improvements can be made. To avoid stagnation in a
local maximum, the simulated annealing procedure [38] allows
non-optimal solutions and thus increases the exploration space.
The probability of accepting a suboptimal solution depends on the
temperature parameter T, which decreases over time at rate α:

T = T0 · αn

where T0 is the initial temperature, α is the rate of decrease
and n is the iteration number. If no more local improvements
are possible, a random solution is accepted under the following
condition:

e
on−1−on

−T > uniform(0, 1)

where on−1 and on are objective function scores at iterations n-1
and n correspondingly.

We employ local search on the reaction network G = (V, E).
Starting from a (random) set of connected starting nodes, also
called seed, the local search can perform three actions for
improvement in the objective function scores: node addition,
node deletion and node substitution. A minimum and maximum
size for the subnetwork have to be entered as parameters,
preventing the algorithm from selecting too small or big solutions.
The action that allows improving the current value of the
objective function is accepted, and thus a candidate solution
is modified at each iteration. The algorithm terminates when a)
no further improvements are possible, b) the simulated annealing
condition is not satisfied or c) the number of maximum iterations
is reached. The best-identified subnetwork is returned. The
objective function score of a reaction subnetwork G∗ = (V∗, E∗)
is computed as follows:

o =
∑

vi∈V∗ Score(vi)

|V∗| × (p × |CR(V∗)|)

with a user defined penalty p for the number of different lipid
class reactions in the subnetwork and CR(V∗), the set of different
lipid class reactions in the set nodes V∗. If the reaction network
consists of unconnected components, the local search is run for
each component independently and a subgraph for each compo-
nent is returned.

Subnetwork p-value
The network enrichment algorithm results in a subnetwork with
a score for each run. To indicate if this subnetwork/score provides
a significant insight compared to an equally sized random set of
reactions, we compute an empirical P-value. For that, we sample
reactions in the range of the minimum and maximum subnet-
work size. These reactions are not connected, as in the subnetwork
of the enrichment. This creates a distribution of scores. The
distribution is then used to estimate a P-value for the solution
found by the enrichment. The number of samples can be decided
by the user, with more samples giving a better estimate of the
distribution at increased runtime. The rationale behind sampling
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unconnected solutions is to estimate how much the connected
(mechanistic) subnetwork scores compared to unconnected (non-
mechanistic) solutions.

Reaction ratio plots
Visualizations of reaction ratios were performed for each lipid
class reaction individually. Reaction ratios per sample are com-
puted in the same as for the substrate–product change calcula-
tion, without averaging over all individuals:

(∏
p∈ri

pn

) 1
|p|

(∏
s∈ri

sn

) 1
|s|

All ratios per experimental condition are compiled into a list
and the density for each considered experimental condition is
plotted.

Lipid moiety analysis
The (combined) abundance of lipid features was implemented
inspired by the glycan substructure method by Bao et al. [39].
We used the same vectorization and weighting as the authors,
but with lipid substructures as features. These were: headgroup,
backbone, independent fatty acyls, sum length of fatty acyls,
sum double bonds of fatty acyls and fatty acyl hydroxylations.
The features were weighted independently or in combination of
pairs by occurrence in each lipid per sample. To find the most
discriminative feature combinations, we train a regression model
with sample groups as target variables and extract its coefficients.
A summary of the workflow can be found in Supplementary
Figure S2.

Analyzed data sets
The lipidomics data for MOBAT7 WT and knockout mice were
taken from Thangapandi et al. [40]. The data contain 16 knockout
samples and 14 WT samples with 244 lipids from 18 lipid classes.
No further processing was done and the data were analyzed as
provided by the authors. Data for the Adipo Atlas were used as
provided in the supplement of Lange et al. [41]. It contains 18
samples, 6 lean and 12 obese, with 674 lipids from 16 lipid classes.
The comparison of mesenchymal stem cells (MSC) to adipogenic
cells is coming from the supplement of Levental et al. [42]. Lipid
species measured in less than 50% of all samples were removed
before analysis with LINEX2. The processed data contains 577
lipid species from 21 lipid classes and 4 samples per analyzed
sample group (undifferentiated PM untreated and adipogenic PM
untreated).

For all data sets analyzed with LINEX2, HTML files with
the LINEX2 output are available at https://doi.org/10.6084/m9.
figshare.20508870.

Results
A framework for lipid network creation and
analysis
The workflow of a lipidomics experiment can be divided into
five steps: sampling, sample preparation, data acquisition, data
processing and data interpretation [43]. LINEX2 is aiming at
the biological interpretation of lipidomics data (Figure 1). The
LINEX2 builds data-specific lipid metabolic networks. To obtain
these networks, we developed a network extension algorithm
(Figure 1, purple box), where metabolic reactions on the lipid

class level and fatty acid reactions are extended to the lipid
species level. Network extension is possible with molecular
species (e.g. DG(16:0_18:1)) or sum species data (e.g. DG(34:1)).
Sum species are internally converted to molecular species, to
incorporate modifications or additions/removals of fatty acids.
This is achieved by finding sets of fatty acyls matching the sum
composition using fatty acids commonly observed in lipid classes
(e.g. DG(16:0_18:1), DG(16:1_18:0) or DG(14:0_20:1) for DG(34:1)).
These can be adapted for each experimental setup. If molecular
species are identified but not quantified they can be used instead
of inferring fatty acyl sets, as reported in other studies [16]. An
example for the network extension is the lipid class reaction
between a Phosphatidylcholine (PC) and a Diacylglycerol (DG)
(PC → DG), where the phosphocholine headgroup is cleaved
off, is applied to the molecular lipid species PC(16:0_18:1) →
DG(16:0_18:1) (for a detailed description see Materials & Methods
section Network extension). Also, fatty acid reactions, such as
elongation or desaturation can optionally be added to the network
as heuristics, e.g. for Lyso-PC(18:0) (LPC(18:0)) → LPC(18:1). Since
such reactions usually do not occur on complex lipids directly,
but rather as activated fatty acids, they help to visualize fatty
acid-specific effects on the network, as previously shown [19],
and facilitate network analysis.

Comprehensive curation of lipid-metabolic
reactions
The basis for our network extension are publicly available
metabolic reaction databases. To provide a comprehensive
overview of lipid metabolism, we curated lipid class reactions
from the Rhea [36] and Reactome [32] databases (Figure 2A).
During curation, we removed all transport reactions and spe-
cialized modifications such as oxidations or fatty acid branching,
which cannot be annotated to standardized lipid classes or are
not generalizable for automated network extension. Curation
resulted in over 3000 annotated reactions from both databases
combined (Figure 2A) across organisms, including organism-
specific reactions from Reactome. The top three organisms
including the most reactions from Reactome are H. sapiens (HSA),
R. norvegicus (RNO) and M. musculus (MMU) (Figure 2B). After
database processing, LPC is the lipid class participating in most
reactions (Figure 2C), followed by DG. All reaction identifiers are
individually linked, providing a reference to the original database
entries in the network.

To keep the freely available LINEX2 software up-to-date, user
contributions for new lipid classes and lipid-metabolic reactions
can be made using an online form (https://exbio.wzw.tum.de/
linex2). This way LINEX2 can be updated in a community effort
to enhance support for less studied parts of the lipidome.

An approach to analyzing lipid networks
For interpreting quantitative changes in molecular networks, net-
work enrichment can be a powerful approach. In the context of
metabolic or lipid networks, such methods can reveal underly-
ing changes in enzymatic activity. In PPI networks, changes in
protein abundances correspond directly to functional changes
of the nodes, representing proteins, in the network. However,
when analyzing (lipid-)metabolic networks enzymatic changes
can only be approximated from changes in metabolite abun-
dances between experimental conditions. In lipid-metabolic net-
works, an additional challenge comes from the multispecificity
of involved enzymes. In LINEX2-networks (as implemented in
the network extension) every edge between two lipid species
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Figure 1. Lipidomics data are used as an input to LINEX2. The lipids are then utilized to perform network extension that converts lipid class and fatty acid
metabolic networks to lipid species, which are then visualized together with statistical measures such as t-tests or correlations. The network is also used
as a basis for lipid substructure, compositional and lipid chain analysis. A lipid network enrichment algorithm, which takes enzymatic multispecificity
into account, can be used to generate hypotheses for enzymatic dysregulation.

Figure 2. (A) Number of lipid-reactions parsed from Reactome and Rhea databases (black), after curation for available lipid classes and number of
curated reactions (dark-gray), for which Uniprot or gene name annotations were available (light-gray). (B) Curated reactions per organism from the
Reactome database (Rhea does not list details about organisms). Legend: HSA - Homo sapiens, RNO - Rattus norvegicus, MMU - Mus musculus, DRE - Danio
rerio, SSC - Sus scrofa, XTR - Xenopus tropicalis, CFA - Canis familiaris, GGA - Gallus gallus, BTA - Bos taurus, CEL - Caenorhabditis elegans, DDI - Dictyostelium
discoideum, DME - Drosophila melanogaster, SCE - Saccharomyces cerevisiae, SPO - Schizosaccharomyces pombe, PFA - Plasmodium falciparum. (C) Top 10 lipid
classes with the most curated class reactions.
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Figure 3. (A) Description of network enrichment workflow. In brief, the lipid network is converted into a hypernetwork, in which hyperedges correspond
to lipid species reactions. Based on the computed dysregulation per hyperedge, an optimization algorithm finds the subnetwork with the maximum
dysregulation. (B) Optimal subnetwork predicted by the enrichment algorithm for mice liver lipidomics data by [40]. The comparison is between wild-
type and MBOAT7 knock-out samples. The resulting subnetwork shows the LPI ↔ PI reaction at the center, surrounded by polyunsaturated PI species
and two LPI species. (C) Progression of the objective function score during optimization that yielded the subnetwork in (B). (D) Substrate–product ratio
distribution for the LPI ↔ PI class reaction for all lipid species reactions per genotype (MBOAT7 deficient (KO) and wild type (WT)). (E) Principal component
analysis of full lipidomics data and (F) of a subset of the lipidomics data containing only the lipids from the enriched subnetwork from (B). The color
code is the same as in (D) for both plots.

corresponds to an enzymatic reaction, therefore enzymes can
correspond to multiple edges.

Our method is designed to explicitly take multispecificity into
account. Therefore, a hypernetwork, establishing connections not
only between lipids but also reactions, is required. Based on this
representation, the enrichment algorithm can connect solutions
from the same class reaction, promoting solutions explainable
by a few metabolic reactions. Figure 3A shows the workflow of
the enrichment analysis (for details see the Materials & Methods
section Network enrichment). We start with a LINEX2-network,
where reactions are represented as edges (1). In the next step,
we add lipid class reactions as a second type of nodes to the
network (2). Edges between a class reaction node and all lipid
species participating in this reaction are introduced, in addition
to lipid–lipid edges, that represent conversions. This network is
converted to a hypernetwork, where each hyperedge represents
a lipid species reaction with lipid–substrates, –products and -
reaction nodes (3). For each hyperedge (lipid species reaction),
the dysregulation is quantified by the relative change of the lipid
substrate–product ratio or difference between two experimen-
tal conditions (4). Considering both substrates and products is
especially important for reversible reactions [44]. The reaction
network is then used to find a maximally dysregulated subnet-
work by employing a simulated annealing-supported local search

(5). Heuristic reactions are penalized in the objective function of
the network enrichment and serve only to increase connectivity.
Additionally, the number of class reactions in the network can be
penalized to favor parsimonious solutions with a simple mecha-
nistic explanation.

Inferring known enzymatic dysregulation from a
knock-out study
As a proof of principle for the enrichment, we selected data from
Thangapandi et al. [40]. In this study, the authors compared liver
lipidomics of mice with a hepatospecific deficiency of MBOAT7
(KO) to wild-type (WT) mice under non-alcoholic fatty liver dis-
ease (NAFLD) condition. MBOAT7 catalyzes the class reaction
fatty acyl-CoA + LPI → PI + CoA with a specific preference for
Arachidonic acid (20:4(ω-6), AA) [45]. The data from Thangapandi
et al. [40] are well suited for testing our enrichment algorithm
because the enzymatic origin of lipidomic changes in liver tissue
is known and the lipidome is affected by the disease.

Figure 3B shows the score progression during the optimiza-
tion of the algorithm. The temporary plateau at a score of 25
shows the need for global approximation methods such as sim-
ulated annealing. In Figure 3C, the optimal subnetwork is shown
(full interactive network available at https://doi.org/10.6084/m9.
figshare.20508870). It consists only of PI, LPI species and one
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Figure 4. LINEX2 application on the AdipoAtlas data. (A) Subnetwork returned by the introduced enrichment algorithm. The enriched subnetwork
contains three reaction nodes, all representing fatty acid transfer between lysophospho- and phospholipids. Furthermore, the network shows a
preference for long-chain polyunsaturated fatty acids. (B) LION enrichment using the lipids in the subnetwork (A) as targets in the target list mode.
(C) Distribution of the substrate to product changes (see Methods - Substrate–product change calculation) for the three reactions present in A over
all possible lipid species combinations from the AdipoAtlas data. (D) Distribution of the substrate to product changes using only the lipid species
combinations identified in A. In both C and D ratios are shown as per-reaction z-scores.

class reaction. This class reaction represents the transformation
between LPI and PI. LINEX2 cannot differentiate between the
exact enzyme for this reaction. However, in contrast to e.g. PLA2,
MBOAT7 only catalyzes LPI → PI class reactions. Additionally,
MBOAT7 is known for a higher affinity for AA [45]. This preference
can also be observed in the solution in Figure 3C for the edge
between LPI(18:1) and PI(38:5), under the assumption that this
reaction can only occur if the molecular composition of PI(38:5)
is PI(18:1_20:4). Furthermore, all other reactions between LPIs
and PIs are only possible for the addition/removal of fatty acyls
with at least 20 carbon atoms and 4 double bonds. These results
are not surprising, because of the structural similarity of AA to
other (very)-long-chain polyunsaturated fatty acids (Supplemen-
tary Figure S3). A recently published preprint by [46] elucidated
the structure and catalytic mechanism of MBOAT7 and found that
saturated acyl-CoAs are less likely to bind, supporting our results.
To further showcase how our method prefers the right fatty
acid preference, we plotted the distribution of all lipid species

for MBOAT7 (Supplementary Figure S4A) and the same distri-
butions for only those lipid species reactions in the subnetwork
(Supplementary Figure S4B). While the former plot shows very
similar distributions between WT and KO, the selected species
plot clearly shows that while the WT reactions are staying close to
zero, the KO distributions show high absolute ratios in a bimodal
fashion.

While LINEX2 is not able to directly pinpoint MBOAT7, the
results demonstrate its capability to find strong hypotheses for
enzymatic dysregulation from lipidomics data. To evaluate the
enrichment results, we implemented an empirical P-value esti-
mation procedure (detailed description in Materials & Methods
section Network enrichment). The MBOAT7 enrichment result
(Figure 3C) has a P-value of 0.0018, indicating the likeliness of the
mechanistic solution.

When investigating the distributions of the LPI ↔ PI class reac-
tion (i.e. over all respective lipid species reactions) per genotype
(Figure 3D), no strong distribution shift in one direction can be
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observed. The distributions show a peak around zero, indicating
that many reaction ratios are not influenced by the MBOAT7
knock-out (KO). However, two more peaks around 1 and –1 can
be observed for both conditions, where the peaks of the KO are
shifted slightly more towards absolutely higher values. Despite
these subtle differences, it is not possible to draw a hypothesis
towards a mechanistic explanation including fatty acid-specific
effects. In Figure 3E, we plotted the principal component analysis
(PCA) of the full lipidomics data. In contrast, Figure 3F shows the
PCA plot based only on the lipidomics data for the lipid species
present in the enrichment subnetwork (Figure 3C). In the PCA of
all lipids, PC2 reflects the variance corresponding to the genotype,
explaining 23% of the total variance. However, after selecting the
LPI and PI species from the enrichment solution, the genotypic
difference makes up for the majority of the variance with almost
86%. This means that the lipids in the subnetwork (Figure 3C)
represent the effect of the MBOAT7 knock-out almost entirely.

These results demonstrate the ability of the enrichment analy-
sis to develop reasonable hypotheses on enzymatic dysregulation
based on lipidomics data. The result not only shows an increased
variance corresponding to the genotype but also allows mecha-
nistic lipid species-specific explanations.

A mechanistic hypothesis for adipocyte
expansion in obesity
We further aimed at improving our understanding of the changes
in lipid-metabolism of lipid-related diseases. For this purpose,
we selected the AdipoAtlas [41], a reference lipidome of adipose
tissue in lean and obese humans. The authors identified 1636
molecular lipid species, out of which 737 were quantified.

Network analysis indicates a mechanism for adipocyte
expansion
We used our network enrichment algorithm, which resulted in
the subnetwork shown in Figure 4A. The subnetwork contains
three reactions, which all represent an acyl-transferase reaction
between Lyso-Phospholipids. Investigating the reaction ratios of
these three class reactions over all possible species reactions
shows equal distributions between obese and lean (Figure 4C).
However, considering the species reactions present in the sub-
network reveals differences between the groups with respect to
the reaction ratios (Figure 4D). These reactions are catalyzed by
the Phospholipase A2 Group IVC (PLA2G4C) and the asparaginase
(ASPG), which both have lipase and acyl-transferase activity. It
has been shown that PLA2 Group IV members preferably act
on the sn-2 position and that polyunsaturated fatty-acyls are
commonly transferred by them [47]. This preference is reflected
in the subnetwork. Literature research shows that PLA2G4C has
been reported to be differentially expressed in obese individuals
[48, 49] and products of (c) PLA2 activity are known mediators of
adipose tissue metabolism [50].

The prevalence of acyl-transferase reactions in the subnetwork
suggests a transfer of FAs between lipids with a Phosphocholine
and a Phosphoethanolamine headgroup and their respective Lyso-
Phospholipid species. The ratio of LPC/LPE to PC/PE as well as the
ratio of lipids with a Phosphocholine headgroup to lipids with
a Phosphoethanolamine headgroup influences the membrane
curvature [51, 52]. This property is important because adipocytes
expand in obesity [53]. A change in this ratio has also been
associated with altered membrane integrity and fluidity [54, 55].
We confirmed this with a Lipid Ontology (LION) enrichment anal-
ysis [33], where we used the lipids of the enriched subnetworks
as a target list (Figure 4B). The analysis resulted in membrane

curvature and other membrane-related terms. Additionally, we
observed similar behavior in the development of mesenchymal
stem cells to adipogenic cells based on data from [42] (Supple-
mentary Figure S5B). These insights further support the practical
feasibility of our reaction enrichment approach.

Lipid moieties show alterations in neutral lipid composition
Despite changes in the Glycerophospholipid composition that are
an indication for adipocyte expansion, synthesis and accumula-
tion of neutral storage lipids is a major hallmark for obesity. This
is also reflected in the network representation of the AdipoAtlas
lipidome (Figure 5). It shows increased TG and DG levels in obese
samples, and an overall decrease in Glycerophospholipids. Neu-
tral lipid species containing poly-unsaturated FAs have especially
high fold changes (Figure 5, Supplementary Figure S6). Concern-
ing chain length, we observe that TG species with a sum length
>30 and <57 are accumulated in obese samples (Supplementary
Figure S7A). Since TGs and DGs are synthesized de-novo, they
were not picked up by the network enrichment as strong alter-
ation between lipid classes, we wanted to further investigate the
compositional changes of neutral lipids. For this, we developed a
lipid moiety analysis. It quantifies common substructures of lipids
across the lipidome to show trends in changes of the lipidome
composition (Supplementary Figure S2). Especially lipid species
with a sum length >45 and 2–3 double bonds show a sharp
increase in obesity, predominantly TG species with a length of 49
and 53 (Supplementary Figure S7B). Also Sterol esters show sig-
nificant changes in disease progression. The observed changes in
the TG composition are in accordance with previously published
results [56]. This analysis can provide additional insights into the
lipid metabolism and complement the network analysis.

LINEX2 software
The LINEX2 software framework for analysis and visualization
of lipid networks is available as a web service at https://exbio.
wzw.tum.de/linex2. Lipidomics data can be used to perform not
only network enrichment and visualization, but also summa-
rizing statistics, lipid chain analysis [57], and moiety analysis.
Results can be viewed and downloaded in an interactive format.
For high-throughput analysis, a python package is also available
(https://pypi.org/project/linex2/). The details of the implementa-
tion can be found in the Supplementary Materials.

Discussion
We present a method to generate and analyze lipid-metabolic
networks. Using curated lipid class reactions from common
metabolic databases our method computes data-specific lipid
networks. Furthermore, we developed a network enrichment
algorithm, to propose hypotheses for enzymatic dysregulation
from lipidomics data. As a proof of principle, we applied the
approach to liver lipidomics data, where the deficient MBOAT7
enzyme was successfully identified from the data.

The challenge in generating mechanistic hypothesis from
metabolomics or lipidomics data lies in the fact that dysregulation
on the enzymatic level is not measured directly. Instead it can only
be inferred based on changes in the metabolome, unless full-scale
proteomics experiments are run in addition. For lipid networks,
only one tool, BioPAN, is available so far [20]. In contrast to our
proposed network enrichment algorithm, this method is search-
ing for activated reaction chains between lipids of the same sum
composition. The scope of the LINEX2 enrichment differs from
BioPAN, by searching for dysregulation of multispecific enzymes
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Figure 5. Lipidomics data from the AdipoAtlas visualized with LINEX. In the network lipids are represented as circular nodes. The red color of lipid nodes
represents a positive fold change from lean to obese condition, and blue a negative fold change. Edge color indicates the type of reaction connecting two
nodes. An interactive version of the network as well as all other analyses conducted with LINEX are available in an HTML file at https://doi.org/10.6084/
m9.figshare.20508870.

that likely affect lipids of the same class with different sets of
fatty acyls. Another difference is in the network computation.
LINEX2 includes fatty acyl addition/removal, enabling insights
such as the MBOAT7 example we show in this work. To illustrate
how LINEX2 compares to BioPAN [20], we computed the BioPAN
network (Supplementary Figure S8A) as well as the predicted
list of active reactions. The results do not include LPI species
and only one reaction chain with a PI species (Supplementary
Figure S8B). Therefore a hypothesis on MBOAT7 dysregulation
cannot be drawn from this method. Similarly for the application
of Shiny GATOM [30] on the same data (Supplementary Figure S9).
The subnetwork contains many reactions but misses reactions
of PI with more than 40 carbon atoms and does not attribute
reactions between PI and LPI to MBOAT7. [21] performed a
network optimization based on changes in lipid abundances and
literature mining of lipid–enzyme interactions. However, they do
not infer quantitative values for reactions and no implementation
is available. Hence, LINEX2 lipid network enrichment is the only
available method that aims at inferring enzymatic dysregulation
from lipidomics data. An important aspect of the method is
the usage of hypernetworks, to take the multispecificity of

lipid enzymes into account, which increases confidence in the
retrieved mechanism.

A limitation of our enrichment algorithm is that it computes
substrate–product ratios independent from each other. In reality,
however, reactions are linked through shared substrates or
products and metabolic changes are propagated through the
network. These effects can be due to, e.g. metabolic self-
regulation [58] and structural or signaling functions. Since
each lipid species takes part in a plethora of reactions, results
of altered enzymatic activity might not be observed directly
for the substrates and products of that reaction. This is also
the case for multiple reactions, which form a consecutive
transformation sequence that change at the same time. However,
assuming the principle of maximum parsimony, disordered
conditions are most likely caused by alterations in only a
few enzymatic steps, making the settings for such inaccurate
approximations rare cases. Our network extension method
depends on generalizable reaction rules. Therefore, manual
curation of reaction databases was necessary. Due to a bet-
ter coverage of commonly measured lipid classes, metabolic
databases may be susceptible to research bias. We address

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac572/6966533 by guest on 16 June 2023

A Appendix

90



10 | Rose et al.

this bias by using lipid class reactions instead of enzymes, to
prevent well-studied enzymes participating in many reactions
from being favorably selected. Additionally, the network enrich-
ment is avoiding bias by correcting for the number of lipid
participants in the reaction. Our method is constrained to
returning a set of candidate enzymes, which are attributed to the
same type of reaction, without pinpointing individual enzymes.
With more data available, such as the work from Hayashi et al. [47],
better estimates for fatty acid-specific subnetworks can be made.

With the ability to connect enzymatic activity to lipidomics
data, LINEX2 provides the basis for a knowledge-driven integration
of lipidomics with proteomics data. The inclusion of quantitative
proteome information could further improve the performance
of the enrichment algorithm presented in this paper and open
up the possibility of directly identifying causal proteins. This
could be of great value for the causal interpretation of lipidome
changes, which would directly translate into relevance for clinical
applications, due to the many associations of lipids with various
disorders [7, 8, 13, 16, 49].

With our LINEX2 web service, we offer new analysis methods
for lipidomic data, ranging from network visualization to gen-
erating hypotheses for dysregulation. Freely available through a
user-friendly interface, lipidomics researchers do not need to be
experts in bioinformatics to perform sophisticated analyses of the
lipidome in a metabolic context. Moreover, LINEX2 networks can
be the basis for further methodological developments that help to
enhance the biological interpretability of lipidomics experiments
by enabling inference of metabolic regulation from lipid data.

Key Points

• Data-specific lipid networks are computed based on
reactions from the Rhea and Reactome databases.

• A novel enrichment method identifies enzymatic dys-
regulation in custom lipidomics datasets.

• Moiety analysis elucidates relevant lipid structural fea-
tures contributing to dysregulation.

• We apply the approach on clinically relevant lipidomics
data to generate mechanistic hypotheses adipocyte
expansion.

• LINEX2 is freely available as a web service at https://
exbio.wzw.tum.de/linex2.
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Abstract

Metabolomics has become increasingly popular in biological and biomedical1

research, especially for multi-omics studies, due to the many associations of2

metabolism with diseases. This development is driven by improvements in metabo-3

lite identification and generating large amounts of data, increasing the need for4

computational solutions for data interpretation. In particular, only few computa-5

tional approaches directly generating mechanistic hypotheses exist, making the6

biochemical interpretation of metabolomics data difficult. We present mantra, an7

approach to estimate how metabolic reactions change their activity between biolog-8

ical conditions without requiring absolute quantification of metabolites. Starting9

with a data-specific metabolic network we utilize linear models between substrates10

and products of a metabolic reaction to approximate deviations in activity. The11

obtained estimates can subsequently be used for network enrichment and inte-12

gration with other omics data. By applying mantra to untargeted metabolomics13

measurements of Triple-Negative Breast Cancer biopsies, we show that it can14

accurately pinpoint biomarkers. On a dataset of stool metabolomics from Inflam-15

matory Bowel Disease patients, we demonstrate that predictions on our proposed16

reaction metric generalize to an independent validation cohort and that it can be17

used for multi-omics network integration. By allowing mechanistic interpretation18

we facilitate knowledge extraction from metabolomics experiments.19

Keywords Metabolic networks · Multi-omics Integration · Network Enrichment · Disease
mechanisms
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1 Introduction

Metabolites display the product of metabolism and thereby the metabolic state of an organism.20

Their chemical structures are as diverse as their functions, ranging from pure energy metabolism to21

immune modulation and environmental sensing [1]. Owing to the essential nature of many of these22

functions, metabolism is tightly regulated through the control of enzymatic activity. This regulation23

can happen on different levels, such as the amount of enzyme, post-translational modifications, or24

allosteric regulation by other metabolites [2, 3, 4, 5, 6]. Since metabolite concentrations are also25

highly influenced by environmental factors such as diet, medication, or a host’s microbiome [7], the26

metabolic phenotype is the highly complex result of internal metabolic processes and environmental27

factors. The resulting metabolic phenotype is often referred to as the “metabotype” [8].28

Metabolomics, the large-scale study of metabolites, is used to characterize the changes in metabolite29

levels. Due to the importance of metabolic processes for almost any aspect of life, metabolomics is30

becoming increasingly popular for biological and biomedical research. Even though the chemical31

analysis of metabolites, most commonly via Mass Spectrometry (MS), has made great progress in32

the last decade confident large-scale identification remains difficult, and especially reliable absolute33

quantification is only possible for a small set of target metabolites. These shortcomings make it34

particularly challenging to apply metabolomics for exploratory purposes with no clear hypothesis35

when trying to understand the molecular mechanisms behind different biological conditions.36

In addition to such analytical challenges, computational metabolomics, outside molecule identifica-37

tion, is still a small field. Consequently, a rather small number of methods for the computational38

interpretation of metabolomics data are available. The most commonly used analyses are “classical”39

univariate statistical tests and fold-changes as well as multivariate approaches such as Principal Com-40

ponent Analysis (PCA) and Partial Least Squares(-Discriminant Analysis) (PLS(-DA)) [9]. While41

these methods allow it to extract significantly altered metabolites and get an overview of how different42

the metabolome in different conditions is, they do not allow for direct biochemical interpretation43

of the results. Instead, specific over-representation or pathway enrichment methods, e.g. MSEA44

[10] or IMPaLA [11], are used to obtain high-level summaries. Despite delivering biochemically45

more coarse-grained and comprehensible results, they don’t allow for the generation of mechanistic46

hypotheses on the level of de-novo pathways or quantitatively for individual reactions.47

To computationally propose such mechanistic interpretation, metabolic networks can be utilized.48

They can be represented as directed bipartite graphs in which metabolites and reactions are nodes49

connected by (directed) edges - substrate or product relations - which are catalyzed by specific50

enzymes [12]. Such networks are available for many organisms nowadays, e.g. from KEGG [13] or51

BioCyc [14], but only cover parts of the entire metabolome, therefore limiting the scope to known52

metabolic reactions.53

One way to leverage such networks is metabolic modeling, more precisely kinetic or constraint-based54

modeling [15]. The advantage of such methods is that they are able to make precise predictions on55

how metabolism behaves, given that the underlying model assumptions are valid. However, this56

dependence is also a major weak point since, particularly for eukaryotes, the correct parameterization57

of these models is hard, yet critical for the predicted outcome to the extent of yielding possibly58

contrasting results [16].59

Another strategy to incorporate prior-knowledge networks into data analysis is to use graph theoretic60

approaches. Especially network enrichment, which aims at identifying subgraphs characterized by61

high changes between conditions, has been extensively used and studied in genomics, transcriptomics,62

and proteomics [17]. For metabolomics, only a few such methods are available [12]. One of63

them is the MetaboRank algorithm [18]. It turns the metabolic network into a Markov model by64

defining transition probabilities between substrate-product pairs on the basis of the proportion of65

mapped atoms. The “metabolic fingerprint”, as the authors call it, is then computed by performing66

random walks via a variation of Personalized Page Rank [19]. Another method also using random67

walks/diffusion to assign relevance to entities in a metabolic graph was introduced by Picart-Armada68

et al. [20]. In contrast to using metabolic networks, this approach uses a KEGG graph including69

different hierarchies from compounds down to the level of modules and pathways. This makes it one70

of the few methods that gives results on metabolic reactions directly. To compute the relevance of71

each node in the graph, heat diffusion is simulated with only significantly altered metabolites being72

able to introduce heat into the system. Each node’s relevance is then determined by the heat flow73

2
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Figure 1: Overview of the mantra workflow. Starting with identified (untargeted) metabolomics data
(gray box), a metabolic network containing only measured metabolites is constructed. It is a directed
bipartite graph with metabolites depicted as blue circles and metabolic reactions as orange triangles.
For each metabolic reaction in this network, the reaction activity relative to the activity in the control
group is estimated using a linear model between the substrate and product abundances (green box).
These activities can either be directly used for network enrichment (purple box) or together with
multi-omics data (red box). In the latter case, the estimated per-sample activity values are correlated
with the expression of each feature in the multi-omics data.

going through or the proportion of random walks including it and then compared to the outcome of a74

null model in which significances are randomly permuted to avoid structure-based biases.75

One drawback of the available methods is, that they either only consider the network-topological76

properties of metabolites or incorporate only significances, which solely rely on univariate tests and a77

p-value threshold. In this work, we tackle these shortcomings by presenting an approach we named78

mantra (Metabolic Network Reaction Analysis), to estimate how the activity of individual metabolic79

reactions changes between biological conditions on the basis of relative metabolite intensities. In80

contrast to existing graph-based metabolomics methods, our approach does not rely on computing81

univariate statistics for all metabolites but uses metabolite abundances to obtain samplewise estimates.82

It thereby avoids the need for a significance threshold prior to enrichment and allows for the integration83

of additional omics layers via their biochemical connections.84

Using two independent clinical studies, we demonstrate how our approach conserves a significant85

proportion of the original variation while enabling the generation of hypotheses on the metabolic86

mode of action. Furthermore, we show the capability of our method to improve the integration of87

metabolomics into a multi-omics context and how it can be used to define de-novo disease pathways.88

These characteristics make it a promising concept for advancing the mechanistic interpretation of89

metabolomics data in a clinical context. The idea presented can be used as a basis to develop a new90

class of approaches for metabolic network analysis.91

3
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2 Results92

We first start by briefly giving an overview of our approach before presenting its application on93

independent clinical data sets. A more detailed explanation of each step of the workflow is given in94

Materials & Methods.95

The input to the proposed method is simply a table of normalized metabolite intensities and, optionally,96

a metabolic network. If no metabolic network is given, the metabolites are first mapped onto internal97

identifiers to generate a network from a custom database built from KEGG [13], Reactome [21]98

and Virtual Metabolic Human (VMH) [22]. Its structure is schematically shown in the top right of99

Figure 1. To estimate the activity of each reaction in the network, a linear model with the substrates as100

the predicting and the products as the dependent variables is computed. Next, the explained variance101

for each sample is computed from the distance of the predicted product values to the actual product102

values. The intuition behind this step is that the higher the activity of a metabolic reaction, the103

higher the dependence structure between substrate and product concentrations (and thus the measured104

intensities) will be. If a reaction now changes its activity, the association persists, but the coefficients105

describing it will likely change. Therefore, this alteration can be observed in a change of residuals.106

These values can now directly be used to perform network enrichment where the objective is to find107

a connected subgraph in which the difference between residual distribution is maximized for two108

given sample groups. Since our proposed metric is per-sample, it can also be used to correlate them109

to features from other omics layers, for example, microbial abundances. The associations can also110

be restricted to known interactions if provided with the metabolic network or provided at network111

generation when using our custom database. To avoid assumptions on distributions these interactions112

are computed using Spearman’s rank correlation.113

2.1 mantra Recovers Known Key Reactions in Triple-Negative Breast Cancer114

To demonstrate the capabilities of our approach to metabolomics, we chose a data set by Xiao et al.115

[23]. The processed data contains 330 Triple-Negative Breast Cancer (TNBC) and 149 control116

samples, and 594 identified metabolites with their corresponding intensities. Mapping the metabolites117

onto our database yielded a network with 173 metabolites and 254 reactions (Figure 2a). The reduced118

number of metabolites is due to metabolites not being matched to database identifiers present in our119

database or not being connected to any reaction for which at least one substrate and one product were120

measured.121

Most nodes in the network have between 2 and 5 connections (Supplementary Figure S1). Metabolic122

reaction nodes do not range higher than this, which is expected, considering that reactions generally123

don’t have a large number of substrates and products. For metabolite nodes, however, there are some124

hub nodes, which take part in up to 50 metabolic reactions. Metabolites with a node degree above 10125

are listed in Supplementary Table S1.126

To evaluate how well our proposed metric for relative reaction activity conserves the variance127

contained in the original metabolomics data, their PCA plots are shown in Figure 2b (metabolome128

data) and c (reaction data). Sub-figure b shows a separation of the control and the TNBC samples129

along PC1, which explains around 47% of the total variance. In comparison, PC1 of the reaction data130

in Figure 2c explains a little less variance. Although the variance between control samples is low,131

there are few outliers on the far right. The TNBC group, on the other hand, shows a much higher132

variation than in the general metabolome data. Nevertheless, Figure 2c shows that our approach is133

able to retain biological variance and separate the clinical conditions.134

Going into a more detailed analysis on which metabolic reactions are identified as the most changing135

between conditions, 18 reaction nodes appear as highly significant (Figure 2d). Some of these136

reaction nodes represent more than one metabolic reaction, as some reactions have the same measured137

substrates and products, making the possibly involved catalytic enzymes indistinguishable. The138

details of the reactions from Figure 2d are given in Supplementary Table S2.139

Most of these reactions involve nucleotides, most prominently Uridine Mono-Phosphate (UMP) and140

Uridine Di-Phosphate (UDP), and different glycosylation reactions. Both of these reaction classes,141

but especially UDP-related reactions have been identified as key players in breast cancer [24, 25, 26,142

27, 28, 29]. Notably, enzymes catalyzing 4 of the significant reactions - UDP-glucuronosyltransferase143

(UGT), UMP-CMP kinase (CMPK1) and UDP-glucose-dehydrogenase (UGDH) - are known to144

4
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Figure 2: mantra results on Control vs. Triple-Negative Breast Cancer (TNBC). a Metabolic network
build with the metabolites measured and identified in Xiao et al. [23]. Metabolites are shown as
blue circular nodes, reactions as orange triangles. b PCA of the processed metabolite data with
samples colored by condition. Despite a few overlapping samples, the groups are clearly separated
by PC1, which explains almost half of the variance in the data. c PCA of the reaction activity
estimates calculated by mantra with samples colored by condition. Similar to b, sample groups are
separated by PC1, with only a minor reduction in the fraction of explained variance. In contrast to
the original metabolome data, control samples show a reduced within-group variance, while tumor
samples show a higher within-group variance. d Distributions of activity estimates for the most
significantly changing reactions. Significance values were computed with a Wilcoxon rank sum test
and Bonferroni correction. **** indicates a corrected p-value < 0.001.

be associated with breast cancer risk or are significant prognostic biomarkers [24, 19, 26, 27].145

Furthermore, Adenylate Kinase 4 was found to regulate resistance to Tamoxifen treatment [29],146

which is used to treat Estrogen Receptor (ER) positive breast cancer patients. This is especially147

interesting since UGT enzymes conjugate ER ligands, forming a direct link between these reactions148

on a signaling level. These findings indicate that our approach is able to generate both usable and149

testable hypotheses on changes in metabolic activity.150

In addition to this non-metabolic link between significant reactions, the reactions from Figure 2d151

form a connected subgraph of the metabolic network in Figure 2a, shown in Supplementary Figure S2.152

This supports our hypothesis, that in addition to metabolic networks being small-world networks,153

changes in metabolic activity are often constrained to a smaller subgraph of metabolic reactions,154

despite changes on metabolite level usually being observed throughout a larger part of the graph.155

Linking dysregulation of individual reactions back to broader metabolic mechanisms additionally156

allows one to elucidate mechanistic relations on a higher level. Because the computed activity values157

are computed for each sample, it is also possible to identify sub-populations within the group of158

disease samples. In combination with the mechanistic character of our method, this enables insights159

into metabolic alterations down to a patient-specific level making it a promising tool for precision160

medicine applications.161

5
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Figure 3: mantra results on Control vs. Crohn’s Disease stool samples from Franzosa et al. [30] a
Subgraphs identified by the local search-based enrichment, repeated 5 times with different random
starts. Two disconnected subgraphs are identified, one representing a part of cholic acid metabolism
and the other one a part of amino acid metabolism. b Precision Recall (PR)-curve showing the
predictive performance of a random forest model on the validation cohort trained on the PRISM
cohort (both from Franzosa et al. [30]). The Expected performance by a random model is depicted by
the red dashed line, the blue curve indicates the performance of the reaction activity data. With a
PR-Area Under the Curve (AUC) of 0.79 the reaction estimate-based prediction seems to generalize
well to the validation cohort. c PCA of the processed metabolite data. Samples colored by condition,
which are mainly separated by PC1, explaining 20% of the variance in the dataset. Generally, control
samples are more similar to each other than CD samples. d PCA on the basis of the reaction activity
values computed with mantra with samples colored by condition. Even though PC1 explains a larger
proportion of variance, the separation between sample groups is less clear than for the metabolome
data.

2.2 Application to Inflammatory Bowel Disease and Multi-omics Integration162

The second analysis we present here is applying the mantra approach to data from the PRISM cohort163

from Franzosa et al. [30]. It consists of 155 stool samples, 34 control and 121 Inflammatory Bowel164

Disease (IBD) samples, which are grouped into 68 Crohn’s Disease (CD) and 53 Ulcerative Colitits165

(UC) samples. For the presented analysis only control and CD samples were used. After filtering and166

mapping the metabolites and microbial species onto the internal database (for details see Materials &167

Methods), 138 metabolites and 70 microbial species were retained and 108 metabolic reactions were168

included in the metabolic network.169

Linking Metabolomics-based Reaction Activity to Differential Enzymatic Potential An170

overview of the variance in the processed metabolome data and the computed reaction activity171

data are shown using PCA in Figure 3 c and d, respectively. Generally, both spaces seem to dis-172

criminate the patient groups well. Sub-figure c shows a good separation of CD and control samples173

along PC1, which explains around 20% of the total variance. Notably, CD samples appear to be174

metabolically more diverse than control samples. While the separation between CD and control along175

PC1 in based sub-figure d, which is based on our proposed reaction activity estimates, is a little less176

clear with some control outliers, the explained variance along this component is increased to around177

33%.178

To find a metabolically connected subgraph with high changes in reaction estimates between control179

and CD samples, we employed Simulated Annealing (SA) together with a local search, where the180

objective is to maximize the difference in distributions between control and CD samples (for details181

see Materials & Methods). This strategy is essentially an extension of the analysis presented in the182

previous section. Figure 3a, depicting the subgraph identified by the enrichment analysis, shows183
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Figure 4: Spearman’s rank correlation-based associations between microbial species and enriched
metabolic reactions. Reaction IDs matching the following reactions in Figure 3a: GLUSx, GLUSy,
GLFRDOi: Glutamate synthase; LEUTA, LEUTAm: Leucine Transaminase; TYRTA, TYRTAm:
Tyrosine Transaminase; TRPTA: tryptophan transaminase; R12055: methionine:indole-3-pyruvic
acid aminotransferase. a Correlation matrix showing the difference in correlation coefficient between
control and Crohn’s Disease (CD) samples for the reactions identified in the network enrichment
and all microbial species. All correlation coefficients with a p-value > 0.05 are set to zero prior to
computing the differences. b Correlation network resulting from the correlation matrix in a. Node
color and shape indicated node type, edge color indicates the respective difference in correlation
coefficient.

that exclusively amino acid interconversion reactions, mostly involving glutamate, are identified.184

Since Franzosa et al. [30] also performed metagenomics to quantify the differences in enzymatic185

capabilities in the gut lumen of control and CD samples, we checked whether any enzymes catalyzing186

the reactions in the subgraph are found to be significantly different (Supplementary Dataset 7 in187

[30]). Indeed, for 4 out of the 5 reactions, at least one enzyme capable of driving them is found to188

be differentially abundant between conditions (Supplementary Table S3). The only non-significant189

reaction, matched to Branched-chain-amino-acid transaminase, has a corrected q-value of 0.054,190

making it just barely missing the q-value cutoff of 0.05 used by the authors of [30]. With the general191

discussion about the choice of p-values and cutoffs in mind, one can conclude that the metabolic192

reactions identified with mantra are well reflected by the results of the metagenomics analysis.193

The identified conversion between glutamine and glutamate is especially well-connected to IBD194

literature due to the role of glutamine-based signaling in the regulation of tissue integrity, inflammatory195

processes, and apoptosis [31]. The regulation of apoptosis is directly influenced by the conversion of196

glutamine to glutamate, which is then used to produce the reduced form of glutathione (GSH) together197

with cysteine and glycine [32, 33]. GSH is then used to regulate the redox potential via the binding198

of 2 GSH, resulting in the oxidized form of glutathione (GSSG). While only glutamate synthase was199

previously directly associated with IBD, tryptophan, tyrosine, and methionine metabolism have also200

been linked to CD [34, 35]. The results of this analysis in combination with the fact that all reactions201

are represented by differentially abundant enzymes, suggest that the subgraph identified by the local202

search algorithm on the basis of our proposed reaction activity metric yields a hypothesis consistent203

with additional measurements on expected enzyme levels and existing literature.204

In addition to the PRISM cohort, which was used in the analyses presented above, Franzosa et al. [30]205

also introduce a validation cohort from a different hospital containing 22 control and 20 CD samples.206

We used this cohort to evaluate how well a predictive model trained on our reaction activity metric207

can generalize to a different cohort. The PR curve of this evaluation is shown in Figure 3b. The208

AUC of 0.79 demonstrates that the reaction activity estimation introduced is also generalizing across209

independent cohorts, making it suitable for clinical analyses. Additionally, the Receiver Operating210

Characteristic (ROC) curve for the same evaluation (AUC of 0.74) is shown in Supplementary211

Figure S3.212
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Associating Metabolic Reaction Activity with Microbial Species Abundances A major advan-213

tage of using the residual variance instead of e.g. correlation coefficient is that they give per-sample214

estimates. Hence, they can be used to compute associations of metabolic reaction activity with215

features from other modalities. Computing all pairwise Spearman’s correlation coefficients between216

reaction values and microbial species resulted in 249 significant associations (q-value < 0.05) in the217

control group and 300 in the CD group, with 25 shared associations between the two groups. While218

these numbers appear rather low, the proportion of significant metabolite-microbe associations found219

by Franzosa et al. [30] is also below 10%. The correlation matrices and networks over all features220

are shown in Supplementary Figure S4. Since interpreting these networks without further analyses221

is a tedious task given their size and complex structure, we continue our analysis of multi-omics222

associations using the amino acid-reaction subgraph identified in the previous subsection (Figure 3a).223

More specifically, we look at the differences in correlations between control and CD patients. The224

rationale behind taking this approach is that a change in correlation potentially indicates a difference225

in the association between the features under the two conditions. In total, 35 microbial species have at226

least one significant association with a metabolic reaction that is different between the sample groups227

(Figure 4a). A large proportion of associations that are more positive in the control group are between228

a set of species and the three transaminase reactions, as well as the glutamate synthase reaction. The229

species with significant correlation changes to the methionine-related reaction, in contrast, are almost230

exclusively correlated with this reaction. Positively valued species are dominated by Clostridium,231

whereas those with negative values are dominated by Streptococcus.232

3 Discussion233

In this work, we introduced an approach to estimate the changes in reaction activity between biological234

conditions using untargeted metabolomics data and metabolic networks. We demonstrate the ability235

of the proposed heuristic to recover known key reactions in biopsies of healthy and TNBC tissue and236

in stool samples of CD and non-IBD patients as a proof of concept. Furthermore, we showcase the237

possibility of computing multi-omics associations to these relative reaction activities via correlation238

metrics.239

Despite the increasing use of metabolomics to study biological and biomedical phenomena, computa-240

tional methods for a mechanistic interpretation of metabolomics data are rare. Especially metabolic241

reactions are only targeted when using metabolic modeling or when doing enrichment analyses using242

metabolite p-values (e.g. in [20]). The former is exact but often not feasible due to the requirements243

for data and model parameterization [36]. The latter option considers the biochemical connections244

between metabolites but disregards their quantitative relations and discards valuable information245

by discretizing with a threshold value. Inferring metabolic reaction activity without absolute quan-246

tification is hard, as values (i.e. MS intensities) are typically on metabolite-specific scales. Hence,247

even with a complete metabolic model, exact modeling is not possible. The approach we introduce248

circumvents these shortcomings by investigating the relative change of metabolite relations between249

sample groups on the basis of linear models. Based on the rationale that metabolites participating in250

the same active metabolic reaction show correlating properties [37], captured by the linear model,251

we propose that a change in the coefficients, describing the substrate-product relations, can be used252

as an indicator for a change in reaction activity. Following this idea, we use the residuals of two253

conditions for the same model as a proxy for this change of coefficients. The general applicability of254

our approach to generate mechanistic hypotheses is demonstrated by the results depicted in Figure 2d255

and Figure 3a and b, where we show that it pinpoints reactions by only using untargeted metabolomics256

data that were previously validated as key players in more complex experiments. Nevertheless, our257

approach may be limited with respect to non-linear behavior in reactions [37].258

An advantage of using linear models is that correction of covariates, especially relevant in clinical259

studies, as well as the usage of regularized models such as elastic net [38] is simple and already260

implemented in the published code (see Code Availability Statement). Since each reaction is described261

by a separate model, our method considers each metabolic reaction in isolation, whereas in reality,262

reactions are connected through molecules participating in both reactions and many changes are263

propagated through the network. In cases where a consecutive sequence of reactions is actually264

changing, this might lead to the method only picking up the flanking reactions of this sequence.265

Additionally, in studies where the effect of external metabolite administration is “directly” given to266

the tissue/body site of sampling, like dietary interventions paired with gut/stool metabolomics, our267
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method can be biased toward reactions in which the administered metabolites participate. Despite268

many disease-unrelated metabolic changes constantly happening, it is unlikely that such changes269

are picked up by the model. Especially in clinical studies, where high inter-sample heterogeneity is270

common, these effects will mostly remain as noise, whereas the true underlying changes are more271

constant across samples.272

While this manuscript only evaluates application cases in a supervised form, the proposed idea can273

also be used in an unsupervised context. Therefore, applications such as de-novo subtyping need274

to be evaluated with respect to the robustness of similar metrics in future work. While the main275

focus of this work is the evaluation of a metabolic reaction activity metric, we also introduce a local276

search-based enrichment method to perform subgraph enrichment. Despite the good results, this277

approach is influenced by hyperparameter selection, such as temperature and allowed solution sizes278

for SA, and can become slow depending on the size of the network and the parameter settings. For279

example, the initial temperature T0 in SA controls the probability of accepting a random solution and280

thus the degree of exploration across the objective function landscape. Consequently, the choice of281

initial temperature is a trade-off between exploration and exploitation, and inappropriate temperature282

settings can lead to unstable or considerably sub-optimal solutions.283

The participation of some metabolites in a large number of metabolic reactions may also be prob-284

lematic from a graph-topological point of view due to their high connectivity within the metabolic285

network. Since our analysis does not include the neighborhood of a reaction, this does not affect the286

metric but only possible downstream applications acting on the network. However, it is not possible287

to distinguish reactions with the same substrates and products, as these will result in the same linear288

model, as well as the directionality of the reaction. In practical applications, this can mean that the289

hypothesis can include a larger number of possible enzyme candidates and, thus, more laborious290

hypothesis validation, even when the size of the results themselves is rather small.291

Despite these limitations, the demonstrated ability of our method to accurately propose mechanistic292

hypotheses makes it a promising approach to improve the functional interpretation of metabolomics293

data in many experimental setups. By providing a metric for the quantitative approximation of294

reaction activity changes, it paves the way for a novel class of metabolomics data analysis methods.295

Given the wide-spread associations between functional metabolic changes in diseases [39, 40, 41, 42],296

we believe these developments can directly impact clinical research. In addition, the presented results297

give rise to the development of new strategies for prior knowledge-guided functional multi-omics298

integration to further strengthen biological and biomedical research on the level of metabolism.299

4 Materials & Methods300

4.1 Network Generation & ID mapping301

To have a comprehensive database for human and microbial metabolism, we use a custom database. It302

contains the merged information from the Virtual Metabolic Human project [22], the KEGG [13], and303

the Reactome [21] database. The database is available through the provided Python package either304

through a public API or locally via a docker application provided (Code Availability Statement).305

For a given metabolomics dataset, the identified metabolites are first mapped onto the internal306

database, either by directly using database identifiers, if given or by using the Metaboanalyst [43]307

name conversion API (http://api.xialab.ca/mapcompounds). Subsequently, the metabolic308

subnetwork containing all measured and mapped metabolites and all metabolic reactions for which309

at least one substrate and one product are measured is extracted. Metabolites not connected to any310

reaction in the subnetwork are removed.311

4.2 Estimating Changes in Reaction Activity312

The estimation of relative activity is based on reaction-wise linear models. This is based on findings313

from Krumsiek et al. [37] who showed that metabolites involved in active metabolic reactions have314

correlating properties. Prior to computing these models, all metabolites are mean-centered and315

scaled to unit variance to avoid scale-based biases in the residuals for each reaction. The input316

data is assumed to be normalized and transformed to follow (approximately) a normal distribution.317

Intuitively, our model tries to capture the change in relations between the substrates and products of a318

metabolic reaction between two conditions. The underlying assumption is that if reaction activity319
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stays the same, so should the model coefficients, while they are expected to change if activity changes.320

Hence, while there can be similar correlation strength in both sample groups, the quantitative relation321

describing this correlation can change.322

For each reaction in the metabolic network, the substrate abundances (S) are the predicting (i.e.
independent) variables, and the product abundances (P ) are the dependent variables. Therefore,
each reaction model can be a multiple and/or multivariate regression, depending on the number of
substrates and products that were measured for a particular reaction. The model for each reaction is
formally defined as

P = βS

where β are the coefficients of the model and P and S are the intensities of the products and substrates323

of the respective reaction. Reactions with the same substrates and products, such as transport reactions,324

are skipped because P = S. The fitting of the model coefficients is happening in one of the sample325

groups. To avoid corruption of models by outliers, for each reaction, Cook’s distance [44] is computed326

for every sample. It is defined as the change of prediction relative to the model’s error when a sample327

is left out. For a sample i its Cook’s distance Di is computed as328

Di =

∑n
j=1

(
ŷj − ŷj(i)

)2

ps2
(1)

with ŷj and ŷj(i) being the predicted product intensities of the total model and the model without329

sample i respectively, for each product j of a reaction, s2 representing the model’s mean square error,330

and p the rank of the model. Generally, a high Cooks’s distance indicates a high influence of a sample331

and thus makes it more likely to be an outlier. If any sample has a distance value above a user-defined332

threshold, the model is fitted again without those samples. Alternatively, if no distance threshold is333

defined, we use the survival function of an F-distribution to provide p-values for selecting outliers334

to remove. Subsequently, the coefficient of determination (R2) is used to filter out all models that335

fail to describe the relation between substrate and product values adequately. Under the assumption336

that some metabolic reactions may only be active in one of the sample groups, this might mean that337

reactions are removed, which potentially describes a major difference between conditions. Therefore,338

we provide the option to re-compute models that fail in one group on samples from another group.339

The reaction-wise models computed with the procedure explained above are then used to compute the340

reaction values for all samples. More specifically, the reaction activity estimates are calculated as the341

(normed) proportion of explained variance. For a sample i and a reaction r this estimate is defined as342

air = 1− RSSir

TSSr
= 1− (yir − ŷir)

2

∑n
j=1 (yjr − ȳr)

2 (2)

where ŷ represents the predicted product values and ȳ the mean product values. The summation in343

the denominator over j represents the total sum of squares (TSS), i.e. the residual sum of squares344

summed over all samples. Subsequently, the estimates are mean-centered and scaled to unit variance.345

To obtain p-values describing how statistically different the activity estimate distributions between346

groups are, a Wilcoxon rank sum test is calculated for each reaction on the basis of the activity347

estimates computed as described before. The reported p-values are family-wise error rate (Bonferroni)348

corrected.349

4.3 Multi-Omics Associations350

To compute multi-omics associations, we use Spearman’s rank correlation implemented in the scipy351

package [45]. Corresponding p-values above a user-defined threshold are used to set the respective352

correlation coefficients to zero. Subsequently, all reactions and multi-omics features without a single353

significant correlation coefficient are removed. Correlations can either be computed for each group354

individually or over all samples.355

4.4 Network Enrichment356

The combinatorial optimization algorithm used for the network enrichment is an adapted version357

of a local search approach used in Rose and Köhler et al. [46]. Local search generally examines a358

search space in a greedy manner by iteratively testing local candidate solutions for the one with an359
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optimal objective function. Candidate solutions are generated by applying one of three operations:360

node insertion, deletion, and substitution to the solution from the last iteration or a randomly selected361

subgraph in the first iteration.362

While this procedure is sufficient to find local maxima, it cannot escape them, and thus, the resulting
optimal solution is highly dependent on the initial starting point and the landscape of the objective
function over the entire graph. Therefore, we use SA [47] to avoid stagnation and increase the
chances of finding a global maximum. SA allows accepting non-optimal subgraphs with a probability
decreasing with the number of iterations. This decrease is implemented through a temperature
parameter T exponentially decaying by a rate α with the number of iterations n. Whenever the local
search reaches a local maximum, a sub-optimal solution is accepted if

e
on−1−on

−T > uniform(0, 1)

where on and on−1 are the values of the objective function in the current and last iteration.363

The objective function is defined as

o =
1

|SG|
∑

r∈SG

1−W (ar,x, ar,y)

where SG indicates the set of vertices forming the current solution and W is the p-value of a Welch’s364

test comparing group x against group y. It is defined such that the local search maximizes the365

difference between the reaction activity estimate distributions between the two sample groups.366

Even when using SA, finding a global optimum is not guaranteed and in some cases, multiple global367

optima might exist. Hence, the enriched subgraph is dependent on the randomly chosen initial368

solution. Therefore, our method runs the enrichment algorithm multiple times with different seeds369

and returns the union of all solutions. Another option instead of using the union would be the370

intersection of all repeats (an option in the package). In an intuitive sense, the union subgraph would371

give a lower probability of “false negatives“ at the expense of a higher chance of including “false372

positives”. In practice, the choice also depends on the settings of other hyperparameters, such as the373

allowed solution size and the downstream experiments that the enrichment results should be used for.374

4.5 Data Processing and Experiments375

Common to both experiments presented in this manuscript is the usage of the networkx [48] and376

matplotlib [49] packages for handling network visualization and the scikit-learn library [50] for377

generating PCAs.378

4.5.1 Triple-Negative Breast Cancer Data Set379

The metabolomics data provided by Xiao et al. [23] gives already normalized metabolite data.380

Therefore, only missing-value imputation with half of the feature-wise minimum, mean centering,381

and unit variance scaling was applied. To map the measured metabolites to our internal database, the382

HMDB [51] and KEGG [13] identifiers provided with the feature annotation were used together with a383

mapping database provided with the python package (see Code Availability Statement). Following the384

name mapping step, the data-specific metabolic network was also generated with package-provided385

functions using a neo4j database that we made publicly available (see Code Availability Statement).386

For analyzing and visualizing the residual distributions, the scipy [45] and seaborn [52] libraries were387

used.388

4.5.2 Inflammatory Bowel Disease Data Set389

For the metabolomics data from Franzosa et al. [30] missing values were imputed using half the390

feature-wise minimum. Subsequently, samples were quotient normalized [53] to account for sample-391

specific dilution effects and log-transformation was applied, such that features are approximately392

normally distributed. All features were then mean-centered and scaled to unit variance. To avoid393

leakage between the PRISM (discovery) and the validation cohort, the PRISM cohort was processed394

and parameters for each (parameter-dependent) step were retained. The validation cohort was then395

processed with the parameters from the discovery cohort.396
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Since the available data did not contain database identifiers, we used the Metaboanalyst [43] name397

conversion API (http://api.xialab.ca/mapcompounds) to obtain HMDB and KEGG IDs for398

all metabolites. The remaining name mapping and network generation steps are the same as described399

above for the other analyzed data set.400

Microbial species data was imputed by setting all zero values to the total minimum divided by the401

number of zero values before applying centered log-ratio transformation [54].402

For assessing the generalization of the predictive model using our reaction activity metric, the random403

forest implementation from the scikit-learn package [50] was used with the default parameter (no404

hyperparameter optimization was done). Reaction models were computed on the discovery, followed405

by training the classifier on the resulting values. Subsequently, PR and ROC curves were computed on406

the validation samples with reaction values estimated using the reaction models fitted on the discovery407

cohort control samples. The curves shown were also generated with scikit-learn and matplotlib [49]408

functions.409

Multi-omics correlations were computed based on the computed reaction metrics and the processed410

microbial species data using Spearman’s correlation coefficient.411

Data Availability Statement412
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CMPK1 UMP-CMP kinase
CV Cross Validation
ER Estrogen Receptor
IBD Inflammatory Bowel Disease
MS Mass Spectrometry
PCA Principal Component Analysis
PLS(-DA) Partial Least Squares(-Discriminant Analysis)
PR Precision Recall
ROC Receiver Operating Characteristic
SA Simulated Annealing
TNBC Triple-Negative Breast Cancer
UC Ulcerative Colitits
UDP Uridine Di-Phosphate
UGDH UDP-glucose-dehydrogenase
UGT UDP-glucuronosyltransferase
UMP Uridine Mono-Phosphate
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Supplementary Figures
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Supplementary Figure S1: Node degrees of the metabolic network based on the data from Xiao et al.
[23] a Metabolic network presented in Figure 2a showing the node degree by color. Node shapes
indicate whether a node is a metabolite or a metabolic reaction. b Distributions of node degrees from
a for metabolite and reaction nodes separately.
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Supplementary Figure S2: Induced subgraph using the reactions identified as significantly altered
in activity in Figure 2d.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve

RandomForest with mantra (AUC = 0.74)
RandomForest with metabolite data (AUC = 0.87)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision Recall Curve

RandomForest with mantra (AP = 0.79)
RandomForest with metabolite data (AP = 0.90)

Supplementary Figure S3: Receiver Operating Characteristic (ROC) and Precision Recall (PR)
curves for the prediction of CD labels from the validation cohort of Franzosa et al. [30] on the
processed metabolome data (orange) and the mantra estimates (blue).
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Supplementary Figure S4: Significant correlations between metabolic reactions and microbial
species in the PRISM cohort [30]. a Correlation matrix between metabolic reactions and microbial
species showing the differences between non-IBD and CD. b Correlation matrix between metabolic
reactions and microbial species showing the averages of non-IBD and CD. c Correlation network
from the correlation differences in a. d Correlation network from the correlation averages in b.
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Supplemetary Tables

Label Name Degree

ahcys s-adenosylhomocysteine 13
gdp guanosine diphosphate 12
adp adp 50
pyr pyruvic acid 15
udp uridine 5’-diphosphate 14
amp adenosine monophosphate 40
amet s-adenosylmethionine 15
gly glycine 13
asp_L l-aspartic acid 12

Supplementary Table S1: Node degrees of metabolites with a degree of at least 10 from the Triple-
Negative Breast Cancer data set ([23])
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Short Name Formula Description

URIDK1 atp[c] + ump[c] -> adp[c] + udp[c] Uridylate kinase (UMP)
BPNT h2o[c] + pap[c] -> amp[c] + pi[c] 3’, 5’-Bisphosphate Nucleotidase
ADK1 amp[c] + atp[c] <=> 2.0 adp[c] Adenylate Kinase
UTPATPT amp[c] + utp[c] <=> adp[c] + udp[c] Uridine triphosphate:AMP phosphotransferase
R00155 UDP + H2O <=> UMP + Orthophosphate UDP phosphohydrolase
R00287 UDP-glucose + H2O <=> UMP + D-Glucose 1-phosphate UDP-glucose glucophosphohydrolase
NDPK1 atp[c] + gdp[c] <=> adp[c] + gtp[c] Nucleoside-Diphosphate Kinase (ATP:GDP)
GMPR gmp[c] + 2.0 h[c] + nadph[c] -> imp[c] + nadp[c... GMP Reductase
R00181 AMP + H2O <=> IMP + Ammonia AMP aminohydrolase
R08615 UDP-glucuronate + H2O <=> UDP + D-Glucuronate UDP-glucuronate glucuronohydrolase
R00414 UDP-N-acetyl-alpha-D-glucosamine + H2O <=> N-Ac... UDP-N-acetyl-D-glucosamine 2-epimerase
R00589 L-Serine <=> D-Serine serine racemase
HMR_0873 fucgalfucgalacglcgalgluside_hs[c] + gdp[c] + h[... 3-Galactosyl-N-Acetylglucosaminide 4-Alpha-L-Fu...
R05327 n UDP-N-acetyl-alpha-D-glucosamine + n UDP-gluc... None
R00286 UDP-glucose + H2O + 2 NAD+ <=> UDP-glucuronate ... UDP-glucose:NAD+ 6-oxidoreductase
HMR_0863 galacglcgalgluside_hs[c] + gdpfuc[c] -> gdp[c] ... HMR_0863
HMR_0859 galgluside_hs[c] + uacgam[c] -> acglcgalgluside... Lactosylceramide 1, 3-N-Acetyl-Beta-D-Glucosami...
R04491 UDP-glucose + 5-(D-Galactosyloxy)-L-lysine-proc... UDPglucose:5-(D-galactosyloxy)-L-lysine-procoll...
GLCNACPT_L 0.1 dolp_L[c] + uacgam[c] -> 0.1 naglc2p_L[c] +... UDP-GlcNac:Dolichol-Phosphate GlcNac Phosphotra...
UGT1A1r estrone[r] + udpglcur[r] -> estroneglc[r] + udp... UDP-Glucuronosyltransferase 1-10 Precursor, Mic...
R05804 ADP + D-Glucose <=> AMP + D-Glucose 6-phosphate ADP:D-glucose 6-phosphotransferase

Supplementary Table S2: Detailed descriptions of the significant reactions from Figure 2d.
The table is also available as a .csv file in the additional supplements.
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Sub-graph reaction Matched EC Number q-value

Glutamate syntase 1.4.1.14 0.00497
Tyrosine Transaminase 2.6.1.57 0.00678
tryptophan transaminase 2.6.1.57 0.00678
methionine:indole-3-pyruvic acid aminotransferase 2.6.1.88 0.0126
Leucine Transaminase 2.6.1.42 0.0545

Supplementary Table S3: Comparing the reactions from the network enrichment results (Figure 2a)
to metagenomics-based functional profiling. The table shows the name of the reaction displayed
in the original subgraph plot together with the respective EC number and its respective corrected
p-value (q-value) in Supplementary Dataset 7 in Franzosa et al. [30].
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EAD Electron-Activated Dissociation

EIEIO Electron Impact Excitation of Ions from Organics

ESI Electrospray Ionization

FA Fatty Acid

FADH2 Flavin Adenine Dinucleotide

FBA Flux Balance Analysis

G3P Glycerol-3-Phosphate

GAP Glyceraldehyde-3-Phosphate

GC Gas Chromatography

GDL Geometric Deep Learning

GO Gene Ontology

GRN Gene Regulatory Network

GTP Guanosine Triphosphate
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