
Boundary Enhanced Semantic Segmentation for
High Resolution Electron Microscope Images

Matthias Pollach˚, Felix Schiegg˚, Matthias Ludwig˚:, Ann-Christin Bette˚: and Alois Knoll˚
˚Technical University Munich, :Infineon Technologies AG

Abstract—This work proposes an automated semantic segmen-
tation approach for high resolution scanning electron microscope
images, which enables the detection of hardware Trojans and
counterfeit integrated circuits. We evaluate state of the art
segmentation approaches and leverage expert domain knowledge
to propose a neural network architecture tailored for our use
case. We further address the challenge of the limited availability
of training images and evaluate which pre-trained encoder can
be leveraged most effectively for the given use case. The proposed
segmentation network uses expert domain knowledge to account
for the importance of separating technology features on a fine-
grain level by introducing a separate boundary stream. The test
results compare our network to a baseline approach and to two
state-of-the-art segmentation networks.

Index Terms—counterfeit electronics, hardware Trojans, scan-
ning electron microscope image segmentation, semantic segmen-
tation, integrated circuits, machine learning, neural networks

I. INTRODUCTION

The safe operation of semiconductor devices is essential
when they are used in critical applications such as the medical
or automotive sector. For this reason, integrated device manu-
facturers put a lot of effort into electrical testing and process
control. Yet, in the horizontally distributed supply-chain, ad-
versaries got into the market and counterfeit electronics are a
multi-billion dollar market [9]. Detection schemes for forged
electronics are in high demand. We present a novel approach
building on the extension of an established analytic process:
the inspection of scanning electron microscope (SEM) images
of semiconductor device cross-sections. The proposed method
can be used for internal process characterization - process
stability, defect analysis, or root-cause-analysis - or as the
enabler for a future counterfeit detection method.
An important aspect in this context is to measure the distance
between technological features, which allow conclusions re-
garding the present technology and the production process of a
microchip. The more precisely these features can be classified,
the higher the quality of applications that use the segmentation
as an input. Throughout this work, we focus on the specific
challenges introduced by SEM images, which are addressed
by a tailored model architecture. As part of this, we leverage
certain properties of the images and expert domain knowledge
on the microchips to address the high quality demands.
The SEM images used for the present use case contain
metal layers and vertical interconnection accesses (VIAs). The
selected field of views are between 4 µm and 70 µm. In order
to reduce the deviations within the data set, only images were
chosen where the size ratios of metal layers and VIAs are in

Fig. 1: Pixel wise labelled SEM image

the same order of magnitude.
All images were recorded using two microscopes with a
resolution of either 1024 ˆ 768 or 1280 ˆ 960 pixels. To
enable supervised learning for semantic image segmentation,
the SEM images have to be annotated with respect to the
relevant classes. This requirement drastically limits the number
of available images, so the resulting data set is very small.
This inherently causes challenges like overfitting, class imbal-
ances and difficulties in optimization, which will be addressed
throughout this work. In total seven classes are identified
as being most relevant for the semantic segmentation which
is shown in figure 1. The characteristics of the visualized
structures complicate the automated reverse engineering in
several aspects. In particular, several boundary conditions have
to be taken into consideration, which are introduced by the
production process. Furthermore, these conditions vary greatly
depending on the chip technology that is to be analyzed.
The appearance of the prepared sample varies due to the
manual effort and the use of a wide variety of chemicals to
expose the cross-section. In addition, the probe is manually
cut which leads to damages and again a large variation among
probes. Iterative image acquisition with constantly increasing
magnification is performed with an electron microscope. Due
to the electron reflection at edges, SEM images show very
bright boundaries, while the majority of a component appears
as a homogeneous unit. When looking at a metal layer in figure
1, this effect is well visible. This is a stark contrast to most
semantic segmentation approaches, where objects have a more
heterogeneous appearance.

II. RELATED WORK

Machine learning methods have become increasingly in-
fluential in the field of hardware security. They are mainly
used as defensive methods against hardware Trojans and IC
counterfeits. Machine learning is also used for side-channel
attacks and to launch Physical Unclonable Functions (PUFs)
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clone models to enable IC overbuilding [5]. In the context
of hardware reverse engineering, ML models are primarily
used to analyze layout images of ICs. Botero et al. [2] list a
survey of ML-based approaches published in reverse engineer-
ing. These mainly involve both supervised and unsupervised
learning methods and aim to segment the materials of a layer,
identify standard cells, and detect malicious modifications in
the layout. For example, the authors of [11] published a fully
convolutional network with VGG-16 encoder for segmentation
of metal tracks and VIAs. In [4], the authors postulate an
unsupervised K-means approach to the same task, but they
acknowledge that this method is severely limited due to
preparation shortcomings and image variations.
The development of applied methods for counterfeit detection
has yet been exclusively limited to package analyses [1],
[6], [10]. The authors have shown different approaches to
distinguish an original sample against a counterfeit product
through computer vision techniques. Our approach presents
the first model towards an automated detection scheme on the
technology level.
Two domains where semantic segmentation is widely used are
autonomous driving and medical applications. In the context of
autonomous driving, a large variety of objects in the environ-
ment are segmented. In the medical domain, various imaging
technologies produce grayscale images of the human body.
For cancer detection, segmentation is indispensable because
of the ability to detect cancerous tissue, which is part of an
organ while having different properties compared to the regular
tissue.
Throughout this work, we select U-net as a baseline archi-
tecture, which has proven to work for small data sets across
different domains and particularly, in the medical domain,
as for example shown in the ISBI cell tracking challenge
2015 [16]. Additionally, more recent architectures like feature
pyramid network (FPN) and pyramid scene parsing network
(PSPNet), have evolved in recent years [13], [19]. Using
a pyramidal hierarchy at multiple scales, FPN is a region
proposal and classification network that creates a feature pyra-
mid. FPN has outperformed other region proposal networks
like DeepMask, SharpMask and InstanceFCN [13]. PSPNet
enriches the feature space by extracting features at multiple
scales and has shown its superiority in the ImageNet scene
parsing challenge 2016 [19]. Another architecture that has
shown great benefits in the automotive domain is the gated
shape convolutional neural network (GSCNN). It uses a two-
stream architecture that leverages shape information in a
separate stream in addition to the traditional CNN feature
stream [18].

III. PROPOSED METHODOLOGY

A. Inspection Framework

IC manufacturers have a strong need to characterize their
internal processes to validate process stability, to detect de-
fects, to execute root-cause-analysis or to perform counterfeit
detection. Figure 2 shows the automated process from IC
preparation to advanced analyses. In order to properly execute

these analyses, the chip needs to be cut vertically in a first
step. After polishing and preparing the surface, images are
taken at distinct zoom levels to investigate the relevant area
of the chip using a scanning electron microscope (SEM).
To enable automated measurements, the SEM images are

Fig. 2: Automated IC framework for SEM image segmentation
enabling advanced analyses with humans in the loop.

segmented and serve as the basis for all further stages. The
proposed process described throughout this paper provides
an automated semantic segmentation of images which is the
enabler for in depth analysis and counterfeit detection analysis
of ICs. However, a Reverse Engineer assesses the outcome of
the image segmentation step and determines if the quality is
sufficient to continue with additional analysis.

B. Data Set

All SEM images used for the present use case have a
resolution of either 1024 ˆ 768 or 1280 ˆ 960 pixels and
are stored as 8-bit grayscale images. The images contain
seven segment classes, which are shown in figure 1, that
are relevant for the desired semantic segmentation use case.
These classes are substrate, lateral isolation, polysilicon, VIA,
metal, top of die and background. The limited data set and the
structure of the probes directly results in a strong imbalance
between classes. Background (38.1%) and substrate (29,6%)
pixels are dominant with two-thirds of the overall pixels,
whereas lateral isolation (1.3%), polysilicon (0.5%) and VIA
(2.5%) occur much sparser. The arrangement and occurrence
of the defined classes are determined by the technology. The
different shades of gray result, in parts, from the different
densities of the various materials. The bright edges result
from the enhanced electron reflections at edges. The highly
specialized application of segmenting SEM images requires
data specifically labelled for the present use case. However,
due to required expert domain knowledge for annotation, the
creation of ground truth for this type of image is very resource
intensive. For the present work, two labelling approaches were
considered: A pixel level accurate annotation and a polygon
approximated annotation. The pixel level accuracy requires a
more time consuming annotation process but avoids wrongly
assigned pixels. On the other hand, the polygon approximation
is faster but pixels are falsely assigned to a class. Given the
limited availability of images, a pixel level accurate annotation
is chosen to achieve a more focused and robust training process
resulting in a total number of 40 manually labelled images.
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C. Pre-Processing

A very important aspect in machine learning applications
is data pre-processing. Neural networks create a high dimen-
sional feature space, which is used to determine the different
classes. In theory, the higher dimensional the feature space is,
the easier the separation of classes gets. The learning capacity
is directly influenced by the number of nodes and the number
of layers present in the network. An increase in the number
of layers and nodes, leads directly to an increase in learning
capacity. This enables the network to learn more complex
transfer functions. The capacity impacts the scope and types
of functions that can be approximated by the model. When
evaluating the models capacity, it is crucial to consider the
concept of overfitting and underfitting.
In our use case, we aim to exploit our expert domain knowl-
edge so that the to be approximated transfer function of the
neural network becomes less complex. For the present use
case, this means that we process the data before proving it
to the neural network in such a way, that we reduce the
complexity of the to be approximated transfer function. For the
present work, the images are then resized to 224ˆ 224 pixels
so that the images can be directly used by the neural network.
This happens to ensure feature transferability and to reduce the
memory footprint. The latter is particularly important to reduce
the training time and to manage the required computational
resources.

D. Baseline Classifier

1) Data Augmentation: A common method is to simply use
more data to allow for generalization [7]. However, this is very
costly for most applications and often data is strongly limited.
Especially in our use case, it is very expensive to generate
training data because of very complex data acquisition, which
is very human-labor-intensive and requires special equipment.
Another key element that allows for generalization is data
augmentation. Thereby, artificial training data is created by
slightly altering the original images. There is a large variety of
these techniques which have different benefits and drawbacks.
For the present work we consider the following techniques:
Optical distortion, grid distortion, elastic transformation, me-
dian blurring, Gaussian noise injection, adaptive histogram
equalization (CLAHE), random cropping and horizontal flips.
Given the boundary conditions of SEM images, which are used
as domain knowledge to simplify the classification problem,
vertical flips are not considered because it would violate some
key assumptions regarding the structure of SEM images and
the relation of different segments to each other.
All of the above listed data augmentation techniques were
evaluated using the the dice score as a performance metric,
which measures how similar a target A is to an output B:

Dice score “
2 |A X B|

|A| ` |B|
(1)

The dice score penalizes false positive class detection, which
is beneficial for our use case, due to the imbalanced data
set. To our surprise, neither Gaussian noise injection, nor

using CLAHE pre-processed images led to an improvement.
Consequently, all other listed techniques are used for data
augmentation with the exception of Gaussian noise injection
and CLAHE.

2) Encoder Selection: Due to the nature of our use case,
data is very limited and this results in a very small data set,
compared to most other supervised learning problems. Conse-
quently, it is not feasible to train a classifier from scratch, yet it
would lead to very poor classification results due to overfitting
to the training data set. We are able to address some of the
challenges by leveraging pre-trained encoders, which were
trained on much larger data sets. More specifically, we lever-
age encoders that were trained on the ImageNet data set [17].
Essentially, we adapt the encoder so that it matches our use
case of image segmentation. The underlying hypothesis is, that
we will be able to adapt an encoder to our problem leveraging
transfer learning and data augmentation. Literature shows
that neural networks leveraging transfer learning are better
performing and faster converging when compared to similar
network architectures that are trained from scratch. For our use
case, it is essential to make use of this because of the limited
data set as shown in [12], while simultaneously aiming to use
an encoder that has demonstrated high performance as shown
in [3], [14]. For the given use case, we reevaluated the fol-
lowing encoders trained on the 2012 ILSVRC ImageNet data
set [17]: ResNet18, ResNet50, ResNet101, ResNet152, SE-
ResNeXt50, SE-ResNeXt101, VGG11, VGG19, Densenet161,
Densenet201 and DPN131.
For evaluation purposes, we used a fix learning rate of 1e-
4 while ensuring that the same training and validation split
is used for all networks. Cross-validation is applied by exe-
cuting three training runs per encoder. The performance was
evaluated based on the dice score, while considering the total
number of parameters of an encoder. The best performance on
average was achieved by SE-ResNeXt50, which is used as an
encoder throughout this work.

3) Network Architecture Evaluation: An important aspect
of selecting the adequate architecture and the most suitable
encoder is the ability to compare ourselves to a baseline. We
choose to compare U-net, FPN, PSPNet in the first step, while
ensuring that the same encoder is used for the various network
architectures to allow for a fair comparison. Based on the dice
score, multi-scale and pyramid based networks perform better,
while the performance of FPN and PSP is comparable.

4) Batch size: The batch size influences the required com-
putational resources, generalization capabilities and mainly the
training dynamics. Large batch sizes allow for parallelization
during training and a more accurate estimate of the gradient
[8]. However, memory requirements increase linearly with
batch size, which is a limiting factor for many applications.
The authors of [15] showed, that a small batch size has the
ability to improve generalization capabilities while introducing
much looser memory constraints. Nevertheless, due to the
limited number of available training images, we evaluate batch
sizes between 1 and 32.
Our evaluation shows, that a batch size of four performs well,
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while smaller and larger batch sizes decrease the performance.
Due to the small data set, a small batch size leads to the
network not learning properly and a larger batch size leads to
overfitting.

E. Boundary Enhancement

A major disadvantage of using CNNs is the loss of spatial
resolution which leads to suppressing high frequency compo-
nents, which directly results in blurry edges for segmentation.
One way to address this is the use of skip connections and
feature map concatenations. This preserves more of the high
frequency components while introducing a small overhead by
passing additional components through the entire network.
However, this also leads to undesired information being passed
through the network which increases the complexity of the
segmentation problem. This results in further inefficiencies
because a large variety of features is processed within one
deep CNN [18]. A robust boundary detection is very important
for our use case, but challenging because of blurry and noisy
artifacts at edges in SEM images.

Fig. 3: PUBNet: The outputs of each stage of the encoder are
passed forward to the shape stream and to the corresponding
level in the upsampling path (highlighted in red). The size of
each feature map is indicated bellow each feature map.

1) GSCNN: Leveraging a two stream architecture for
semantic segmentation, the shape information propagates
through a separate processing branch in the network. The
focus on shape information in this branch allows for an
improved boundary detection, especially when high frequency
components are of high importance. The approach of using
a separate shape stream is described in more detail in [18].
The authors also describe why using cross entropy on its own
is not sufficient to train the network. There are two separate
predictions for segmentation and boundary, which have to be
jointly supervised. For the segmentation map, cross entropy is
used, whereas binary cross entropy is used for the boundaries.
This results in a loss LJMTL that combines both components.

LJMTL “ λ1LBCE ps, psq ` λ2LCE ppy, fq (2)

The Sobel filter in x and y direction serve as the ground truth
boundary maps ps P RHxW , whereas py P RHxW is the ground
truth for the semantic map. For the hyperparameters λ1 and
λ2 we follow the suggestion of the authors of [18] to set them
to λ1=20 and λ2=1. A major disadvantage of this network
is the number of total parameters, that need to be trained.
Consequently, we evaluate GSCNN and an adapted lightweight

version of GSCNN (L-GSCNN), using SE-ResNeXt50 as an
encoder, which has fewer parameters.

2) PUBNet: We introduce our own network architecture
PSPNet with U-Net like upsampling and boundary enhance-
ment (PUBNet) shown in 3, which is tailored to our use
case and compensates some of the known shortcomings of
the previously discussed networks. Upsampling the low di-
mensional feature map outputs of PSPNet in a single step
would result in a loss of information eliminating the desired
advantages introduced by a separate shape stream. To address
this, we use an upsampling approach comparable to U-Net.
The expansive path of the network uses 3x3 convolutional,
batch normalization and ReLu layers. Upsampling is imple-
mented using 2x2 transposed convolutions with a stride of
2 and the output of each upsampling step is concatenated
with the respective feature map from the encoder through skip
connections. Consequently, our network is based on a PSPNet
architecture that uses an usampling approach comparable to U-
Net, while leveraging a separate shape stream to preserve the
desired boundary information. Based on our evaluations and
to allow comparability, SE-ResNeXt50 is used as an encoder.

IV. RESULTS

The baseline classifier uses a PSPNet with a SE-ResNeXt50
encoder and is compared to architectures, which specifically
aim at improving boundary detection. The results are presented
in table I. All approaches improve the average performance of
the network when compared to the baseline. When comparing
GSCNN and L-GSCNN we observe a smaller variance for L-
GSCNN results, which is an indication that fewer parameters
are better suited for our use case. In addition to the dice score,
we also evaluate the networks based on mean intersection
over union, as shown in table I. We see very similar results,
which are comparable to the dice score and indicate the same
trends. In addition to the purely analytical driven evaluation,
it is important to qualitatively evaluate how well the segments
are separated. The SEM images and the according ground
truth with the resulting segmentation are shown in figure
4. We clearly see that the baseline network and the L-
GSCNN network fail at the task of separating individual fain
grained segments, whereas PUBNet is able to provide a clear
separation.

(a) Input (b) Target (c) Baseline (d) GSCNN (e) PUBNet

Fig. 4: Input-target pairs and exemplary output masks of the
Baseline, lightweight GSCNN (L-GSCNN) and PUBNet.
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Architecture Parameters Dice Score mIoU
T1 T2 T3 Avg T1 T2 T3 Avg

Baseline 26 331 511 0.852 0.855 0.840 0.849 0.372 0.361 0.355 0.363

GSCNN 137 275 118 0.889 0.850 0.927 0.889 0.38 0.366 0.439 0.395

L-GSCNN 42 525 534 0.910 0.876 0.929 0.905 0.415 0.373 0.448 0.412

PUBNet 31 073 009 0.894 0.917 0.91 0.907 0.429 0.416 0.42 0.422

TABLE I: Different shape enhancing architectures evaluated based on their number of parameters, dice score and mIoU shown
per training run (T1, T2 and T3) and average (Avg) performance.

V. CONCLUSION AND OUTLOOK

This work contributes to enabling automated in depth
analysis and counterfeit detection analysis that goes beyond
packaging analyses. Our results indicate, that our own tailored
network architecture outperforms state-of-the-art approaches
for our given use case. This is achieved by leveraging state-
of-the-art approaches from the medical and the autonomous
driving domain, while taking into account the specific chal-
lenges of our application. The knowledge of the importance
of image boundaries was exploited by introducing the separate
shape stream, so that individual components can be separated.
Our final results allow measurements, which are the basis for
more advanced hardware Trojan and counterfeit analyses. The
approach of exploiting domain knowledge offers the potential
to extend this work to other use cases in other domains.
The present work only includes a limited number of classes
that define a semiconductor device technology. The available
data for some classes is extremely limited and results in weak
performance for strongly underrepresented classes. Missing
classes not represented in the data set include for example
deep trench geometries, characteristics of the package, or gate
oxide geometries. Furthermore, the variance between different
microscope imaging settings and preparation techniques was
not addressed. Additionally, the limited number of available
annotated images did not allow for a more extensive evalua-
tion.
It is a question of further research to design experiments which
will enable the detection of counterfeits on the technological
level. The presented approach might be extended towards
multiple imaging technologies, like optical or transmission
electron microscopes. For future efforts, it is essential to gen-
erate more labelled images with a focus on having sufficient
examples of all relevant classes.
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