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ABSTRACT
Regression testing aims to determine whether a change to a system
introduces new bugs or can be merged safely. Flaky tests, which
are tests that fail non-deterministically and unrelated to the change,
can undermine this effort. In research and practice alike, it is of-
ten assumed that limited test execution resources can lead to test
flakiness. We hypothesize that hitting resource limits during test
execution can lead to changed timing behavior, which in turn pro-
motes timing-related flakiness. However, there is no empirical ev-
idence indicating whether hitting these resource limits increases
the likelihood of test flakiness. To shed light on this, we created a
dataset of 20 open-source projects for macOS, which contains a to-
tal of 232 UI test cases, with 23 of them being flaky. For all tests, we
measured the CPU usage continuously during test execution. We
discovered that executions of flaky tests spend significantly more
time at the CPU limit than executions of non-flaky tests. Contrary
to our expectations, we found that failing runs of flaky tests spend
less time at the CPU limit than passing runs.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion.
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1 INTRODUCTION
Regression testing aims to find newly introduced bugs in changes
to the system [1, 2]. Flaky tests, which are tests that fail non-
deterministically and independently of changes to the test or the
system under test (SuT) [3, 4, 5], are a major challenge in regression
testing [6, 7] faced by many tech companies [8, 9, 10, 11, 12]. Stud-
ies in a variety of programming languages and domains such as
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JavaScript [13, 14], Android apps [15], user interface (UI) tests [16],
and language and domain-independent environments [5], have
shown that timing-related root causes, like async wait and concur-
rency, are the most prevalent causes of flaky tests. Timing-related
flakiness stems from simultaneous concurrent tasks, which can
introduce non-deterministic event sequencing and potentially re-
sult in flaky test outcomes. For instance, a race condition occurs
when access to a shared variable is improperly synchronized be-
tween threads, making the final state dependent on the thread that
accesses the variable first.

The underlying hypothesis of our work is that reaching CPU
limits during test execution promotes timing-related flakiness. Em-
pirical studies [17] and developer surveys [18, 19], where profes-
sionals reported that insufficient computational power such as CPU
and RAM were major causes of flaky tests, support this hypothe-
sis. Accordingly, researchers have suggested approaches that use
this perceived characteristic to detect flaky tests and determine
their root causes. For example, Silva et al. stress the CPU and RAM
during test execution, thus increasing the likelihood of detecting
flaky tests [20]. Similarly, Terragni et al. propose utilizing resource
limitations to identify the root cause of flaky tests [21]. They claim
that if a test passes without limited network bandwidth, but fails
when the network bandwidth is limited, for instance, the root cause
can be attributed to the network.

While previous studies have applied artificial resource limits to
provoke test flakiness, to our knowledge no works exist that in-
vestigate whether actually hitting (natural) resource limits impacts
test flakiness. To fill this gap, we conduct a study on a total of 232
test cases from 20 open-source projects. Out of these 232 test cases,
23 show multiple test verdicts and are hence considered flaky and
further used for our study. We limited our selection to projects
for macOS, because the cost of a macOS build server is usually
higher than Linux orWindows1, thereby prompting increased use
of weaker and cheaper hardware. We further limit ourselves to UI
tests since they have been found to be particularly susceptible to
flakiness [16]. Taking into account 30 executions of each test case,
we (1) identify which tests show flakiness and (2) measure their
CPU usage to answer our research questions:
RQ1: To what extent do executions of flaky tests reach the
CPU limit compared to executions of non-flaky tests?
To answer this question, we contrast executions of flaky tests with
executions of non-flaky tests in terms of howmuch time they spend
in CPU limits, that is when the CPU usage is at 100%. In our dataset,
executions of flaky tests spend significantly more time in CPU limits
compared to their total runtime than executions of non-flaky tests.

1Price per minute on GitHub: Linux (4 vCPUs): $0.016; Windows (2 vCPUs): $0.016;
macOS (3 or 4 vCPUs): $0.080; source https://docs.github.com/en/billing/managing-
billing-for-github-actions/about-billing-for-github-actions#per-minute-rates
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RQ2: To what extent do failing executions of flaky tests reach
the CPU limit compared to passing executions?
Considering only executions of flaky tests, we examine the propor-
tion of time failing executions spend in CPU limits compared to
passing executions. Contrary to expectations, we find that failed
executions of flaky tests spend relatively less time in CPU limits
than passed ones.

In summary, the contributions of this paper are as follows:
• Evaluation: Our study is the first to assess the impact of
reaching CPU limits on test flakiness.

• Dataset:We present the first flaky test dataset2 containing
resource usage information, along with the first dataset of
flaky tests for macOS. The dataset comprises 232 test cases
(with 23 of them identified as flaky) from 20 open-source
projects.

• Software: We provide open-source access to our GitHub
action3 designed to record resource usage and instructions
on how to expand the presented dataset4. This tool can aid
researchers and practitioners in studying the influence of
resource limits on test flakiness in their systems.

2 RELATEDWORK
Evidence that resource constraints cause flaky tests. According to

a survey conducted by Parry et al., flaky test failures can occur due
to resource exhaustion [18]. Respondents reported that unrelated
system load, including antivirus scans, can also lead to flaky test
failures. In another survey conducted by Habchi et al., developers
pointed out that resource limits, specifically related to CPU and
RAM, can cause tests to become flaky [19]. Presler-Marshall et al.
conducted a test suite of approximately 500 Selenium tests under
various configurations [22]. The study revealed that a more pow-
erful CPU can reduce the chance of a test failing inconsistently
between 55% and 70% compared to a weaker CPU.

Approaches actively limiting resources. A study by Silva et al.
actively limited CPU, RAM, disk, and network [17]. The study con-
cluded that resource limits affected 47% of all the flaky tests included
in the study. Specifically, the study revealed that tests written in
Java and JavaScript are more susceptible to CPU limits, while tests
in Python are more sensitive to RAM limits. In their work, Silva
et al. proposed Shaker, a tool designed to increase the probability
of detecting flaky tests by adding stressor tasks that target the CPU
and RAM to produce asynchronous waiting and concurrency [20].
An empirical evaluation found this approach to significantly in-
crease the efficacy of rerunning tests in detecting flaky tests. Parry
et al. assessed the efficacy of test rerunning for detecting flaky tests
and introduced four distinct noise types during test execution, two
of which were resource-related: threads were arbitrarily depriori-
tized, which resulted in reduced CPU time, and network speed was
randomly restricted [23]. Although the effectiveness of each type of
noise was not reported, the study revealed a nearly doubled number
of flaky tests with noise compared to those without. Terragni et al.
suggested limiting various resources, including CPU, RAM, and

2Dataset: doi.org/10.6084/m9.figshare.24639174.v1
3GitHub action: github.com/tum-i4/workflow-telemetry-action
4Evaluation scripts: github.com/tum-i4/On-the-Impact-of-Hitting-System-Resource-
Limitations-on-Test-Flakiness

network bandwidth, to identify the root cause of flaky tests [21].
However, they neither implemented this approach nor evaluated it.

Gap. Anecdotical evidence suggests that limited resources can
potentially increase or cause test flakiness, and some approaches
have successfully induced flakiness by actively limiting resources.
However, previous research has not probed whether running into
resource limits, for example reaching the CPU limit, in normal,
unrestricted testing environments enhances a test’s flakiness.

3 DATA COLLECTION
Recall that the underlying hypothesis of our work is that reaching
the CPU limit during test execution promotes timing-related flaki-
ness. Prior to empirically investigating this hypothesis in the next
section (see Section 4), we first assemble a dataset suitable to answer
our research questions. To create this dataset, we have implemented
a GitHub action designed to record resource usage, including CPU
usage during test execution, and subsequently applied it to a series
of open-source projects.

In the following sections, we initially introduce the GitHub
action we utilized to record resource usage in Section 3.1, then
subsequently present the dataset we compiled in Section 3.2.

3.1 GitHub Action: Measuring Resource Usage
To emulate the “real-world” continuous integration (CI) processes as
closely as possible, we opt for usingGitHub’s CI infrastructure. We,
therefore, implemented our tool for measuring resource usage as a
GitHub action, which is a single task that can be added to aGitHub
workflow, which is GitHub’s term for a CI pipeline. It builds on the
existing GitHub action telemetry-action5. This action employs
the node.js systeminformation package to record the usage of
CPU, RAM, disk and network once per second. Upon completion
of a workflow, the action generates a series of graphs that are
appended to the workflow’s summary. However, this existing action
presents two fundamental drawbacks for our purposes: First, the
sampling frequency is set to a constant value of once per second.
A higher frequency is desirable to capture short-term spikes in
resource usage. Second, the only output format is a visual series
of graphs, which makes further analysis inefficient. We therefore
forked this action and modified it to accommodate our needs by
setting the sampling frequency to 10 times per second and storing
the recorded measurements as a JSON file.

To evaluate the overhead introduced by our action, we ran it for
25 minutes in a GitHub workflow. We applied the default process
status command (ps) to evaluate the CPU utilization of the GitHub
action at one-second intervals. In our experiment, the mean CPU
usage was 14.2%, with a minimum and maximum of 10.0% and
54.4% respectively. We expected a high CPU workload at the end
of our measurement when the action saves all the data. However,
we also detected short-duration spikes of high CPU load during
the execution of the action. Even though these might sporadically
influence the test execution, we contend that similar short-term
CPU spikes may also occur on CI servers due to other processes.

5https://github.com/catchpoint/workflow-telemetry-action
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Table 1: Projects used in the study. The full project names
and URLs are available in the dataset.

Name Test Suite

Project Stars Tests Runtime [min]

Maccy 7735 128 5.30
Sparkle 6409 3 4.40
Pine 3170 8 1.00
phpmon 2706 1 1.33
tip 916 2 0.13
fluentui-apple 783 9 3.00
clocker 520 39 4.00
formvalidator-swift 499 1 0.53
SlimHUD 262 17 0.50
mac-ibm-notifications 261 5 0.53
macos-menubar-wireguard 193 4 0.13
Komet 160 62 19.83
Calendr 150 30 3.70
Json-Model-Generator 80 1 0.63
AboutThisApp 76 2 0.20
StatusItemController 63 2 0.20
Splitter 38 12 2.33
prose-app-macos 23 1 0.50
TelegramColorPicker 12 3 0.73
Timer 2 2 1.63

3.2 Executing Open-source Test Suites
To empirically study the impact of CPU usage on flakiness, we
compile a dataset of flaky test cases and executions. Since the cost
of macOS build servers is typically higher than for other operating
systems, and macOS has not yet been studied in the context of flaky
tests, we opt to create a dataset of UI tests in macOS projects.

We use the SourceGraph search engine6 to find open-source
macOS projects containing UI tests using the following query:
select:repo (type:file content:XCUIApplication lang:Swift)

(repo:has.tag(macos) OR
repo:has.tag(osx) OR
repo:has.topic(macOS))

At the time of our search in May 2023, this query returned a
sample of 236 repositories. We manually filter out repositories that
do not contain UI tests, only contain default tests auto-generated
by the integrated development environment (IDE), or those that
have no commits post-2018 and fail to compile. This leaves us with
the 20 projects listed in Table 1. All these projects are written in
Swift, and contain at least one macOS-compatible target and a test
suite based on the XCTest7 framework.

Given the limited number of available projects and the conse-
quently low expected number of flaky tests, we manually look for
commit messages that address flaky tests in all projects containing
10 or more tests. For the two projects where we find such a com-
mit (Maccy and clocker), we use the commit before the repairing
commit as the version of the project, rather than the latest commit.

6https://sourcegraph.com
7https://developer.apple.com/documentation/xctest

For all other projects, we use the latest commit. The used commit
hashes are available in the dataset accompanying this paper.

To obtain test results and measure CPU usage, we fork each
repository and add a workflow that starts our GitHub action to
record resource usage and then execute all UI tests in the repository
30 times. These test executions are performed on a GitHub hosted
runner with 3 CPU cores. We then combine the files containing
the logs and those containing the resource measurements into one
aggregated file. For seven test cases, our dataset includes fewer than
30 executions, as some executions concluded before a measurement
could be taken. From the total of 232 test cases, 23 show multiple
test verdicts and are therefore considered flaky. These tests are
from five projects, with project SlimHUD contributing the highest
number of flaky tests, with eight such tests. We manually categorize
these flaky tests according to the classifications of flaky UI tests
provided by Romano et al. [16]. We identify Environment and Test
Runner API Issue as the most common root causes. In our dataset,
10 flaky tests result from Environment, split between Platform Issue
(6 tests) and Layout Difference (4 tests). An additional 13 flaky tests
result from Test Runner API Issue, split between DOM Selector Issue
(7 tests) and Incorrect Test Runner Interaction (6 tests).

4 EVALUATION
Using the dataset obtained in Section 3, we examine the impact of
reaching CPU limits on the flakiness of test executions. First, we
present a formal framework for our evaluation in Section 4.1, and
then we use it to address our research questions concerning the
executions of flaky vs. non-flaky tests and passes vs. failures of flaky
tests in Section 4.2 and Section 4.3, respectively.

4.1 Evaluation Framework
For our evaluation, a test execution 𝑡 is a sample from a test case,
modeled as a random variable 𝑇 . Each test execution is a tuple
𝑡 = (𝑟, 𝑙CPU), comprised of a test verdict 𝑟 ∈ {𝑃, 𝐹 } and the relative
test execution time spent in CPU limits 𝑙CPU. The relative time spent
in CPU limits is calculated as the ratio of the time spent in CPU
limits to the total execution time of the test. A value of 𝑙CPU = 0.5,
for example, indicates that the CPU limit was reached for half of
the execution time. We consider the CPU limit to be reached when
the CPU usage is at 100%. Following Kowalczyk et al., we use the
entropy of the observed test verdicts 𝐻𝑟 (𝑇 ) to measure a test’s
flakiness [10].

4.2 Executions of Flaky vs. Non-flaky Tests
The first research question aims to determine whether executions
of flaky tests spend more time in CPU limits than executions of non-
flaky tests. Using our framework from Section 4.1, we formalize
our first research question. The expected value of the relative time
spent in CPU limits of test case 𝑇 is denoted by E𝑙CPU [𝑇 ].

E𝑙CPU [𝑇 ]
?
> E𝑙CPU [𝑇

′] for 𝐻𝑟 (𝑇 ) > 0 ∧ 𝐻𝑟 (𝑇 ′) = 0

For each test execution 𝑡 , we calculate the relative time spent in
CPU limits, 𝑙CPU. We then partition the executions into two groups:
executions of flaky tests (with 𝐻𝑟 (𝑇 ) > 0) and executions of non-
flaky tests (with 𝐻𝑟 (𝑇 ) = 0).

https://sourcegraph.com
https://developer.apple.com/documentation/xctest
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Figure 1: Flaky vs. non-flaky tests: cumulative distribution
of the relative time spent in CPU limits.

Figure 1 shows the cumulative distribution of the relative time
spent in CPU limits for both groups. This plot can be interpreted
as follows: for a given value 𝑥 on the x-axis, the corresponding
value 𝑦 on the y-axis indicates that 𝑥% of the executions of the
corresponding group spent less than 𝑦 time in the CPU limit. For
instance, 75% of the executions of non-flaky tests spent less than 7%
of their execution time in CPU limits. For flaky tests, this value is
56%. Visually, the cumulative distribution of the relative time spent
in CPU limits for flaky tests is higher than for non-flaky tests. This
impression can be put into numbers by calculating the integral of
the cumulative distribution function, intuitively speaking, the area
under the curve. This is 0.29 for flaky tests and 0.09 for non-flaky
tests.

The visual impression of flaky tests spending relativelymore time
in CPU limits than non-flaky tests is supported by the statistical
measurements: For the cumulative function at hand, the integral
corresponds to the mean of the relative time spent in CPU limits for
the corresponding group. Thus, from our observations, the expected
value of the time spent in CPU limits for a flaky test is its mean,
0.29, while it is 0.09 for a non-flaky test.

E𝑙CPU [𝑇 ] > E𝑙CPU [𝑇
′] for 𝐻𝑟 (𝑇 ) > 0 ∧ 𝐻𝑟 (𝑇 ′) = 0

0.29 > 0.09

We conduct a Mann-Whitney U test, given the non-parametric data,
to assess statistical significance. For this test, the null hypothesis
asserts no significant difference exists between the two dataset
groups. The test yielded a u-statistic of 2.9 · 106 and a p-value of
5.2 · 10−77, which is far below the commonly accepted threshold
𝛼 = 0.05. This allows us to confidently reject the null hypothesis,
suggesting a significant difference in the relative time spent in CPU
limits between flaky and non-flaky tests. Flaky tests spent more
time in CPU limits than non-flaky tests in our dataset.

RQ1 (Executions of Flaky vs. Non-flaky Tests): In the
dataset at hand, executions of flaky tests spent relative to
their execution time significantly more time in CPU limits
than executions of non-flaky tests.
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Figure 2: Passes vs. failures of flaky tests: cumulative distri-
bution of the relative time spent in CPU limits

4.3 Passes vs. Failures of Flaky Tests
The second research question explores the relation between passed
and failed executions of flaky tests and reaching CPU limits. In
this section, we only consider executions of flaky tests. Once again,
we use our framework from Section 4.1 to formalize our second
research question. The expected value of the relative time spent
in CPU limits of test case 𝑇 considering only failed executions
is denoted by E𝑙CPU |𝑟=𝐹 [𝑇 ]. The expected value considering only
passed executions is accordingly denoted by E𝑙CPU |𝑟=𝑃 [𝑇 ].

E𝑙CPU |𝑟=𝐹 [𝑇 ]
?
> E𝑙CPU |𝑟=𝑃 [𝑇 ] for 𝐻𝑟 (𝑇 ) > 0

We calculate the relative time spent in CPU limits 𝑙CPU for each
test execution 𝑡 and split the results into two groups: passed and
failed executions.

Figure 2 shows the cumulative distribution of the relative time
spent in CPU limits for failed and passed runs of flaky tests. The
integrals of the cumulative distribution functions for failed and
passed runs are 0.25 and 0.34, respectively. Again, the integrals
correspond to the means of the relative time spent in CPU limits.
Thus, from our observations, the expected value of the time spent
in CPU limits for a failed run of a flaky test is 0.25, while it is 0.34
for a passed run.

E𝑙CPU |𝑟=𝐹 [𝑇 ] ≯ E𝑙CPU |𝑟=𝑃 [𝑇 ] for 𝐻𝑟 (𝑇 ) > 0
0.25 ≯ 0.34

To test for significance, we once more employ a Mann-Whitney U
test with the null hypothesis stating that there is no significant dif-
ference between the two groups in the dataset. The Mann-Whitney
U test yielded a u-statistic of 7.5 · 104 and a p-value of 1.8 · 10−9
indicating a significant difference between the two groups.

RQ2 (Passes vs. Failures of Flaky Tests): In our dataset,
failed test executions of flaky tests spent relatively less time
in CPU limits than passed ones.
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4.4 Discussion
The underlying hypothesis of our study is that reaching CPU limits
fosters timing-related flakiness. In our study, we find indications
that both support and contradict this hypothesis. When address-
ing RQ1, we find that executions of flaky tests spent significantly
more time in CPU limits than executions of non-flaky tests, thereby
supporting our hypothesis. Conversely, in RQ2 considering only
executions of flaky tests, we find that passed runs spent more time
in CPU limits than failed runs.

The positive result of RQ1 (Executions of Flaky vs. Non-flaky
Tests) might not result from a causal relationship between reaching
CPU limits and flakiness. According to previous research [24], large
tests are more likely to be flaky (where large might refer to binary
size or RAM usage). It is reasonable to assume that large tests also
spend more time in CPU limits. Therefore, the findings of RQ1
might result from a correlation between reaching CPU limits and
the flakiness of the tests, mediated by the hidden state of the test’s
size.

The negative results of RQ2 (Passes vs. Failures of Flaky Tests)
could potentially indicate that our hypothesis is incorrect. Indeed,
we did not find quantitative explanations for this result. We initially
assumed that some failed runs of flaky tests might fail directly after
starting due to some unmet precondition. However, the data do not
support this assumption.

Drawing from the findings of both RQs, we find evidence for
both support and contradiction of our hypothesis. However, we
consider the results of our study interesting and promising enough
to warrant further research.

4.5 Threats to Validity
We identified several threats to the validity and generalizability
of the findings from this study, and have taken steps to minimize
these threats where possible. Firstly, our dataset is relatively small,
consisting of 232 test cases, of which 23 are flaky. Although we
work with test executions rather than test cases, giving us larger
numbers from which we can draw more significant conclusions,
adding more executions of the same test case does not necessarily
increase the variance and generalizability of our findings. Like all
empirical studies, our results are only valid for the projects we have
selected. Secondly, we rely on the boolean decision of whether a test
is flaky or not. This simplifies the problem, as tests might be flaky to
a certain degree. Also, using rerunning to determine flakiness could
potentially lead to some tests being misclassified as non-flaky [25].
Thirdly, our tool only records resource usage every 100ms, so we
may miss spikes in resource usage. However, we have observed the
CPU usage to be relatively stable over multiple iterations of our
tool. Fourthly, our tool may affect the test execution and thereby
influence the results. However, as numerous processes run on CI
servers, we believe our tool merely adds noise to the system that
could equally be caused by any other process running on CI servers.
Lastly, the implementation of our tool or analysis scripts may have
bugs. All crucial parts were implemented or reviewed by at least
two authors of this study. We also publish our code alongside this
paper, allowing it to be independently verified.

5 FUTURE RESEARCH DIRECTIONS
We presented our study evaluating the impact of reaching CPU
limits on the flakiness of test executions, and we discussed the
significance of our results. To further strengthen the conclusions,
four concrete areas can be addressed in future research:

Study Size: To improve the statistical significance of our results,
more projects from a wider range of domains can be included in
the study. To improve the validity when differentiating flaky from
non-flaky tests, the number of reruns per test should be increased.

Additional Resource Types: As reaching limits other than CPU
limits can also impact test flakiness, future research should comprise
additional resource types. Although RAM, disk and network usage
are currently recorded and included in the dataset, these aspects
have been excluded from our study. The reason for this exclusion
was the absence of meaningful conclusions from the comparatively
sparse data available. RAM usage (not reaching limits) showed a
correlation with flakiness, however, we suspect this is again due to
a correlation with the size of the tests.

Lighter Tooling: Although our tool’s mean overhead of 14.2%
should not significantly impact test execution, the overhead should
still be reduced for further research. We hypothesize the overhead
is primarily due to the node.js runtime. Transitioning the imple-
mentation language of the tool to a compiled language or a more
lightweight runtime should significantly reduce the overhead.

Integration Into Actual CI Processes: To achieve the highest pos-
sible impact in practice, we strive to emulate “real-world” CI pro-
cesses as closely as possible. We accomplish this by using the same
infrastructure services as the projects in our study, namely GitHub
actions. This could be further enhanced by measuring the resource
usage within the actual CI processes. Even though our tool is imple-
mented as a GitHub action, which makes this technically feasible,
we anticipate difficulties convincing projects to integrate our tool
into their CI processes. This research direction seems especially
promising for industry research collaborations.

6 CONCLUSION
Flaky tests pose a considerable challenge in regression testing. Prior
research suggests that timing-related issues are the predominant
causes of flaky tests. We hypothesize that timing-related flakiness is
exacerbated when test execution reaches resource limits. To exam-
ine this hypothesis, we execute a study involving a total of 232 test
cases from 20 open-source projects. We ran each test case 30 times
and logged the verdicts and resource usage for each execution. From
the 232 cases, 23 exhibit multiple test verdicts and are, therefore,
classified as flaky. Our findings reveal that flaky test executions
spend more time in CPU limits than non-flaky test executions. How-
ever, only considering flaky test executions, we discover that failed
test executions spend less time in resource limits than passed ones.
These findings offer contradictory results towards our hypothesis
that reaching CPU resource limits during test execution promotes
timing-related flakiness.

In order to formulate clearer conclusions, we outline future re-
search directions. In adherence to open research practices, we make
our dataset and GitHub action to record resource usage publicly
available to enable other researchers to conduct related investiga-
tions.
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