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Abstract—In automated driving, predicting and accommodat-
ing the uncertain future motion of other traffic participants is
challenging, especially in unstructured environments in which the
high-level intention of traffic participants is difficult to predict.
Several possible uncertain future behaviors of traffic participants
must be considered, resulting in multi-modal uncertainty. We
propose a novel combination of Belief Function Theory and
Stochastic Model Predictive Control for trajectory planning of the
autonomous vehicle in presence of significant uncertainty about
the intention estimation of traffic participants. A misjudgment
of the intention of traffic participants may result in dangerous
situations. At the same time, excessive conservatism must be
avoided. Therefore, the measure of reliability of the estimation
provided by Belief Function Theory is used in the design of
collision-avoidance safety constraints, in particular to increase
safety when the intention of traffic participants is not clear. We
discuss two methods to leverage on Belief Function Theory: we
introduce a novel belief-to-probability transformation designed
not to underestimate unlikely events if the information is uncer-
tain, and a constraint tightening mechanism using the reliability
of the estimation. We evaluate our proposal through simulations
comparing to state-of-the-art approaches.

I. INTRODUCTION

This work has been accepted to the 2024 American Control Conference.

A fundamental challenge enabling fully automated driving
is the ability to deal with the unpredictability of the future
motion of traffic participants (TPs). Model Predictive Con-
trol (MPC) [1] is often used to plan the future trajectory
of the automated vehicle, named here Ego Vehicle (EV),
because is one of the few approaches that allows constrained
motion planing and control. In particular, safety collision-
avoidance constraints are directly included in the planning
of the EV trajectory. Yet, safety constraints are based on the
future position of TPs, which is unknown. Therefore, safety
constraints must be enforced accounting for the uncertainty
about the nominal prediction of the future trajectory of TPs.
In addition, the EV is generally unaware of the high-level
intention of TPs, such as making a left turn, changing lanes,
or starting to cross. Different behaviors result in different un-
certain candidate trajectories, therefore the uncertainty caused
by the unknown future behavior of TPs is multi-modal. Several
algorithms have been proposed to predict the nominal future
trajectory of TPs and quantify the uncertainty around such
prediction, as summarized in the recent survey [2]. Then,
safety collision-avoidance constraints must be designed and
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included in the MPC optimal control problem, accounting for
the uncertainty around the prediction. Balancing the trade-off
between safety and efficiency of the planned EV trajectory is
especially challenging if multiple candidate TP trajectories are
considered, as the safe area for the EV is significantly limited.

In Stochastic MPC (SMPC) safety constraints are enforced
probabilistically, that is, they are required to hold only up to a
user-defined risk parameter. This proves beneficial to rule the
trade-off between safety and efficiency, and approaches have
been proposed to guarantee safety by addressing the remaining
probability of collision [3], [4]. When the intention of TPs is
not clear, the risk parameter must be appropriately selected
for each candidate TP trajectory. Both enforcing collision-
avoidance only for the most likely trajectory [5] and for all
candidate trajectories with equal required risk parameter [6]
is not a good trade-off. In [7], the risk parameter for each
candidate trajectory is linked to the estimated probability of
that candidate future trajectory, increasing efficiency while
still accounting for multiple candidate behaviors. Nevertheless,
if the estimated probabilities are not reliable because of
especially ambiguous TP behaviors or because of incomplete
information, the EV might misjudge the traffic scenario.

The estimated probabilities of the candidate trajectories are
obtained comparing recorded data and expected behaviors
from nominal models with the measurements collected online
by onboard EV sensors and possibly intelligent infrastructure,
as discussed in the surveys [8], [9]. When the motion of the TP
is ambiguous, the estimated probabilities change quickly over
time and are not reliable. Belief Function Theory (BFT) [10] is
a suitable framework to deal with estimates of the probability
of candidate TP trajectories, since it provides a quantitative
measure of the epistemic uncertainty around the estimation
by means of the “uncertainty” parameter [11]. In [12], BFT is
used to combine information collected by different sensors in
a reliable estimate of the probability of candidate behaviors of
TPs. Contradictory movements of the TPs result in an increase
in the uncertainty parameter. In turn, the assessment of the
intended TP behavior does not change too rapidly.

In this work, we introduce a novel combination of BFT
and SMPC to design collision-avoidance safety constraints for
highly uncertain traffic scenarios. Although previous works
have discussed the derivation of probabilities from BFT es-
timates [13], [14], to the best of our knowledge, it was not
addressed how the BFT estimates can be used to design
safety constraints for SMPC, leveraging on the measure of the
reliability of the estimation provided by BFT. We explore how
the design of SMPC safety constraints can take advantage from
the estimation provided by BFT, i.e., considering the reliability



of the information, rather than from standard probability.
We present two approaches to combine BFT and SMPC.

Firstly, we introduce a novel transformation of the BFT
estimates into probabilities with a view at not underestimating
the probability of seemingly unlikely future trajectories, if
the estimation is very uncertain. Such probabilities can be
used as risk parameter in the SMPC formulation. Further, we
propose a second approach, in which the uncertainty measure
provided by the BFT estimation is used to tighten constraints,
restricting the motion of the EV if the intention of TPs is not
clear. However, the combination of BFT and SMPC does not
result in overly conservative EV trajectories, if the intention of
TPs is clear. Finally, we discuss how neglecting the reliability
of the estimation produces overconfident and dangerous EV
behaviors. We analyze the properties of the novel combina-
tion of BFT and SMPC through numerical simulations and
comparison with approaches from literature [5], [6], [7].

Section II recalls the main concepts of BFT and of SMPC-
based trajectory planning. Section III introduces the two ap-
proaches to combine BFT and SMPC for trajectory planning.
The comparison simulations with the state of the art are
presented in Section IV. The conclusion is in Section V.

II. PRELIMINARIES

A. Belief Function Theory

In this section, we recall BFT and explain how it is used
within the scope of this work. BFT, also known as Dempster-
Shafer Theory [10], is a framework used to combine the
information content provided by different sources, taking into
account the reliability of the sources. For each given event,
BFT defines a belief and a plausibility that lower and upper
bound the probability of this event. Thus, BFT is well suited
to represent the epistemic uncertainty of the information.

In this work, the BFT framework is used to represent the
estimated probabilities of M candidate future trajectories of
TPs, giving a quantification of the reliability of the estimates
themselves. As frame of discernment Θ = {θ1, . . . , θM} we
consider a set of M mutually exclusive candidate (nominal) TP
trajectories. We assume that an upstream estimation module
provides an assessment of how likely each candidate future
TP trajectory is and a quantitative measure of the subjective
confidence in the reliability of the estimation, see e.g. [12].
Formally, in BFT a mapping m : 2Θ → [0, 1] is introduced,
assigning a probability mass to every element of the power set
2Θ, where 2Θ contains every possible subset of Θ, satisfying∑

S∈2Θ

m(S) = 1. (1)

The quantity bS = m(S) assigned to subsets S ⊆ Θ is
called belief mass of S and indicates how likely is that one of
the outcomes in S will occur. The strength of BFT consists
in allowing probability assignment not only to singletons
b{θ1} = m({θ1}), but also to union of events of the frame of
discernment, e.g., b{θ1,θ2,θ3} = m({θ1, θ2, θ3}) [15]. Among
beliefs assigned to subsets of the frame of discernment,
bΘ = m(Θ) is especially relevant [11], being the probability

that any of the considered outcomes θ1, . . . , θM occurs and
representing the gap between 1 and the sum of the belief
masses of any other subset of Θ. Thus, bΘ is understood as
a measure of the epistemic uncertainty around the estimation,
representing belief mass that cannot be allocated and anyhow
further specified given the available evidence. For this reason,
bΘ is called uncertainty and is denoted by µ. The BFT
estimation is summarized as the opinion vector

ω =
[
bθ1 , . . . , bθM , b{θ1,θ2}, . . . , µ

]⊤
, (2)

where µ is inversely proportional to the subjective confidence
in the opinion. Because of property (1), opinions are 1-norm
unit vectors. For a subset S ⊆ Θ, the plausibility of S is

Pl(S) =
∑

S̃∩S ̸=∅

m(S̃), (3)

i.e., the sum of belief masses of propositions S̃ that do not
exclude S. Pl(S) ≥ 0 characterizes the non-negation degree
of S, thus is an upper bound of the probability of S [14].
Coherently with such interpretation, it holds that Pl(Θ) = 1.

Our previous works [7], [12] discussed some features on
the choice of the candidate trajectories and how to obtain
BFT estimations from data. In Section III, we discuss how
the uncertainty quantification provided by the BFT framework
is exploited in the design of SMPC safety constraints.

B. SMPC-Based Trajectory Planning

In MPC, the trajectory of the EV is iteratively planned
by solving a finite-horizon optimal control problem account-
ing for constraints. In particular, enforcing safety in terms
of avoiding collisions between the EV and TPs requires
a prediction of the future trajectory of TPs. However, the
uncertainty about the prediction of the future TP trajectory
must be considered. In SMPC, the probability distribution of
the uncertainty is used to derive regions that contain the future
position of the TP at least with probability equal to the risk
parameter 0 ≤ β ≤ 1, and constraints are designed to prevent
the future EV trajectory from entering such regions. If multiple
uncertain future trajectories for each TP are considered, the
approach is repeated for each candidate future trajectory.

For a prediction horizon N , the EV trajectory is planned
solving the following optimal control problem with respect to
the sequence of future inputs UN = [u⊤

0 , . . . ,u
⊤
N−1]

⊤

min
UN

J(ξ0,UN ) (4a)

s.t. ξk+1 = f(ξk,uk), ∀k = 0, . . . , N − 1 (4b)
ξk ∈ Xk, ∀k = 1, . . . , N (4c)

Pr[ξk ∈ S(ξTP
k,i)] ≥ βi, ∀k = 1, . . . , N,∀i = 1, . . . ,M,

(4d)

where ξ is the state of the EV, f(·, ·) represents the discrete-
time dynamics of the EV, and Xk is the constraint set for
the EV state at prediction step k, representing physical limi-
tations of the EV and traffic rules. Conditions (4d) are safety
constraints, requiring the EV to stay in the set of collision-free



states S(ξTP
k,i) with respect to the i-th candidate trajectory of

the TP ξTP
k,i. Although the set S(·) of collision-free EV states

with respect to a realization of a TP trajectory is deterministi-
cally obtained, the exact realization is not known in advance.
Thus, the TP trajectory is stochastic, and constraint (4d) is
a chance constraint, i.e., it is required to hold with a given
probability equal to the risk parameter βi. When multiple TPs
are in the proximity of the EV, one probabilistic constraint (4d)
is designed for each candidate future trajectory of each TP.

The literature offers several approaches to generate deter-
ministic constraints given future nominal trajectories ξTP

k,i and
the associated uncertainty [5], [16]. In this work, we focus on
the choice of the risk parameter βi, which plays an important
role in balancing the trade-off between safety and efficiency.

In general, the collision avoidance risk parameter βi can
be chosen differently for each candidate trajectory ξTP

k,i and
the choice impacts considerably the planned trajectory of the
EV [17]. In [7], the risk parameter βi for the i-th candidate
TP trajectory is set equal to the estimated probability of
that candidate trajectory, regardless of the reliability of the
estimated probabilities of the candidate TP trajectories. In
Section III, we propose novel approaches to select the risk
parameter for each trajectory based on the reliability of the
estimated probabilities provided by the BFT framework.

III. METHOD

In this section, we present our novel methods to integrate
the BFT opinion for the TP candidate future trajectories in the
SMPC scheme. In Section III-A, we propose a new belief-
to-probability transformation, designed not to underestimate
the probability of unlikely events if the estimation is highly
uncertain. Such probabilities are suitable as risk parameter for
SMPC constraints. In Section III-B we propose a different
approach, in which the BFT information is used to tighten
constraints, depending on the reliability of the estimation.

A. Inverse Plausibility Transformation
In this section, we present the inverse plausibility trans-

formation, a novel transformation of opinions (2) provided
by the perception module into probabilities. The goal is to
obtain probabilities of candidate TP trajectories suitable as
risk parameter for SMPC chance constraints [7] even when
the estimation is highly uncertain. The probabilities obtained
are in fact subjective probabilities [18], as in other approaches
to convert belief assignments into probabilities [13].

We rely on the concept of plausibility in equation (3) with
a view at not underestimating the probability of seemingly
unlikely trajectories when the estimate is not reliable, i.e.,
when the uncertainty µ is large. The idea is to increase the
probability of trajectories with respect to their belief masses
bθi , which represents the amount of evidence that uniquely
determines θi, if a significant amount of evidence does not
exclude θi, i.e., if the plausibility Pl({θi)} is large.

We compute the probability of TP candidate trajectories as

pθi = bθi +
∑
S∈2Θ

{θi}⊂S

bSδ(θi, S), (5)

where S is any subset of the power set which has the singleton
{θi} as a proper subset. S represents belief mass that is not
uniquely associated to θi, but that does not contradict θi itself.
δ(θi, S) is a redistribution factor determining the amount of
belief mass bS of set S to be added to bθi and is obtained as

δ(θi, S) =
(Pl({θi)})−1∑

θj∈S

(Pl({θj)})−1
. (6)

The plausibility Pl({θi}) represents an upper bound to the
probability of θi, computed summing the belief mass of all
subsets that contain θi, i.e., the belief mass of all evidence
not uniquely supporting θi, but that does not exclude θi.
Thus, by redistributing the belief mass of bS among can-
didate trajectories θi ∈ S using the inverse plausibility,
we give more belief mass to candidate trajectories θi that
might incorrectly seem less likely. For example, in opinion
ω = [bθ1 , bθ2 , µ] = [0.4, 0.1, 0.5], the relative ratio between
the beliefs is 4:1. However, depending on how the unspecified
belief mass µ is allocated, ω could correspond to probabilities
pθ1 = pθ2 = 0.5, that is, an equal probability between the two
trajectories. Therefore, it is important not to rely too much
on the individual beliefs when the uncertainty is large. In
this basic example, the probabilities obtained from the inverse
plausibility transformation are pθ1 = 0.6, pθ2 = 0.4: θ1 is
recognized as dominant, but the probability of θ2 is increased
more than proportionally with respect to the beliefs bθ1 , bθ2 ,
because the uncertainty µ = 0.5 is large. By contrast, deducing
the probability of candidate trajectories from the relative ratio
of beliefs and scaling them so that they add up to one, i.e.,

pi =
bθi∑M
j=1 bθj

∀i = 1, . . . ,M, (7)

is not advisable, since the relative ratio between the probability
of the trajectories could be significantly different depending
on how the still unspecified belief mass µ is allocated. In the
considered example, the latter approach yields probabilities
p1 = 0.8, p2 = 0.2 and the probability of θ2 to occur is
underestimated, potentially with dangerous consequences.

The belief masses of singletons bθi are not redistributed
in (5). Hence, the redistribution of belief mass plays a major
role only if the estimation is not reliable, that is, if the
uncertainty µ is large. If the estimation is reliable and most
of the belief mass is allocated to singletons, the probabilities
obtained from (5) reflect the ratio between beliefs.

The inverse plausibility transformation (5) preserves the
bounds coherent with the definitions given in Section II-A.

Theorem 1. The inverse plausibility transformation (5) satis-
fies the upper-lower-boundary consistency [13], i.e.,

bθi ≤ pθi ≤ Pl({θi}) ∀θi ∈ Θ. (8)

Proof. Since Pl({θi}) ≥ 0 ∀θi ∈ Θ, then δ(θi, S) ≥ 0
∀θi,∀S. Therefore, since bS ≥ 0 ∀S ∈ 2Θ, it holds that
pθi = bθi +

∑
S∈2Θ

{θi}⊂S

bSδ(θi, S) ≥ bθi . From δ(θi, S) ≤ 1,

it is obtained that pθi ≤ bθi +
∑

S∈2Θ

{θi}⊂S

bS = Pl({θi}).



The inverse plausibility transformation (5) is designed to
consider the indefiniteness of the estimation in presence of
large uncertainty. The decision making relying on probabilities
so obtained will tend not to be overconfident, and rather to
account for all outcomes that are not ruled out by the evidence
collected. This approach is opposite to the transformation
proposed in [14], in which probabilities are generated with
a view at boosting for confidence in the decision making.
In autonomous driving, such approach would lead to risky
behaviors of the EV. By contrast, the probabilities obtained
from (5) are designed to be robust against unlikely but not
excluded events if the uncertainty is large, so that the EV can
still promptly react to such TP behaviors.

Probabilities obtained from the inverse plausibility transfor-
mation (5) are well suited as risk parameters in the SMPC
collision-avoidance constraints [7] even in presence of un-
clear motions of TPs. If the estimated probabilities changed
repeatedly and significantly because of large uncertainty in the
estimation, the SMPC collision-avoidance constraints would
also substantially differ between consecutive iterations. Thus,
the planning would be frequently updated in possibly con-
tradictory ways, severely reducing the benefit of considering
several candidate TP trajectories. By contrast, in these cases
the BFT estimation will deliver a large uncertainty and beliefs
that do not vary frequently [12]. Consequently, the probabil-
ities obtained from (5) and, ultimately, the safety constraints,
will also not vary too suddenly. Rather, they are tightened
when the information gathered does not allow to confidently
recognize the intended behavior of the TP, and thus multiple
future trajectories must be considered in the EV planning.

B. Constraint Tightening

Here, we propose a different approach to leverage on BFT
in SMPC, consisting of constraint tightening. Rather than
obtaining probabilities from BFT opinion as in Section III-A,
the belief of singletons are directly used as risk parameter in
the SMPC constraints (4d) βi = bθi . Then, constraints are
tightened using the additional information provided by BFT.

Consider, as an example, a deterministic SMPC reformula-
tion resulting in a quadratic distance-based collision-avoidance
safety constraint for each i-th candidate TP trajectory(

ξk − ξTP
k,i

)⊤
A

(
ξk − ξTP

k,i

)
≥ 1, (9)

representing an elliptical region around the predicted position
ξTP
k,i of the TP at prediction step k, that the EV state ξk must

not enter. A > 0 is a weighting matrix determining the size
of the ellipse and it depends on the physical dimension of
the EV and of the TP, on the uncertainty around the TP state
prediction for the i-th candidate TP trajectory, represented by
covariance ΣTP

k,i, and on the risk parameter βi [3].
We tighten constraint (9) considering the reliability of the

estimates. The matrix coefficient A, governing the degree of
conservatism of the constraint, is scaled as A′ = γλA, where

λ = sgn(Pl({θi})− α)

(
µ

Pl({θi})

)sgn(Pl({θi})−α)

, (10)

where sgn(·) is the sign function. 0 < γ < 1 is a tuning
parameter that defines the minimum tightening, and 0 < α < 1
is the threshold discerning trajectories that must be neglected.
When the plausibility of a trajectory Pl({θi}) exceeds the
threshold α, the weighing matrix A is scaled depending on
the ratio between the overall uncertainty µ and the plausibility
of the trajectory Pl({θi})

γλ = γ
µ

Pl({θi}) , (11)

where, since µ ≤ Pl({θi}), it holds 0 ≤ λ ≤ 1 and, since 0 <
γ < 1, we have 0 < γλ ≤ γ ≤ 1, i.e., the weighting matrix
A is always reduced in norm and constraint (9) is strictly
tightened. The larger is the completely unspecified information
µ with respect to the evidence non-contradicting θi, Pl({θi}),
the stronger is the tightening, and the scaling factor is upper
bounded by γ. Observe that there is no tightening for µ = 0,
since the information is completely certain.

Conversely, if the plausibility of the i-th trajectory Pl({θi})
is smaller than the threshold α, i.e., the trajectory is to be
neglected, matrix A is scaled by factor

γλ = γ
−
(

µ
Pl({θi})

)−1

= γ− Pl({θi})
µ , (12)

where, since µ ≤ Pl({θi}), it holds λ ≤ −1 and, since
0 < γ < 1, we have 1 ≤ γ−1 ≤ γλ, i.e., the weighting
matrix A is strictly enlarged in norm and constraint (9)
strictly relaxed, where the minimum relaxing factor is γ−1.
The constraint is relaxed more for smaller uncertainty µ, since
in this case the estimate is reliable and outcomes with small
plausibility Pl({θi}) < α can be safely ruled out. For µ → 0,
A′ grows indefinitely (in norm) and the constraint degenerates
and is always satisfied, that is, the i-th trajectory is completely
ignored in the planning of the EV. Thus, the feasible set of
the constraint is reduced and the motion of the EV becomes
more conservative only if the information is highly uncertain.
Similar considerations can be adopted to tighten other forms
of constraints depending on their geometrical interpretation.

IV. SIMULATION RESULTS

We compare our approach with existing methods in two
numerical simulations in Matlab. We consider a highway
scenario and an urban intersection, in which the EV must
interact with TPs, whose future behavior is unclear. Not
considering the reliability of the estimate provided by BFT
results in dangerous situations or inefficient EV behavior.

The EV state ξ = [x, vx, y, vy]
⊤ consists of the lon-

gitudinal and lateral positions and velocities and the input
u = [ax, ay]

⊤ of the longitudinal and lateral accelerations.
A double integrator system with sampling time T = 0.2 s
is used for the dynamics of the EV and the SMPC optimal
control problem (4) is solved using the NMPC toolbox [19].
A precise description of the EV dynamics is beyond the
scope of this work. However, more sophisticated models can
be straightforwardly included in the framework. Collision
avoidance constraints are in the form of (9), that is, consist of
ellipsoidal regions around the predicted positions of TPs, that



Fig. 1: Initial traffic configuration and candidate trajectories
for the highway scenario.

the EV must not enter, as in [7], relying on nominal future
TP trajectories that are assumed given. The actual behavior
of TPs and the belief assignments are corrupted by significant
noise to simulate challenging scenarios.

Cost function (4a) of the SMPC optimal control problem is

J = ∥∆ξN∥2P+

N−1∑
k=0

∥∆ξk∥2Q+∥uk∥2R+∥uk−uk−1∥2S , (13)

where N = 8 is the prediction horizon, Q = P =
diag(0, 1, 1, 1), R = diag(0.1, 0.1), S = diag(0.1, 10), and
u−1 is set equal to the last applied input. The first entry
of Q and P is set to zero because the EV is assigned
only a longitudinal reference velocity, rather than reference
positions. ∆ξ = ξ − ξref, with ξref = [0, vref, ylane, 0]

⊤,
where vref is the reference longitudinal velocity and ylane is
the center of the current lane. Cost function (13) penalizes
deviations from the center of the lane and from the target
speed, and penalizes large accelerations and rapid changes
in the accelerations. In both scenarios the EV is subject to
lateral position constraints, longitudinal velocity constraints,
and lateral velocity constraints in the highway scenario.

We compare the performance of our approaches with im-
plementations of [5], in which only the most likely future TP
trajectory is taken into account in the planning, [6], in which
all candidate future trajectories are considered with the same
risk parameter, and [7], in which the risk parameter for each
trajectory is the estimated probability of the trajectory itself.
The probabilities used by non-BFT-based methods [5], [6], [7]
are obtained from the belief assignments re-scaling the belief
masses of singletons preserving the relative ratios as in (7), i.e.,
neglecting the uncertainty µ. For [5] and [6], the risk parameter
is β = 0.85. As comparison metrics, we use the cumulative
sum of the SMPC stage cost over the full simulation

Jsim =

Nsim∑
t=1

∥∆ξt∥2Q + ∥ut∥2R + ∥ut − ut−1∥2S , (14)

where all numerical values are as in the SMPC cost (13).

A. Highway Scenario

In the first scenario, the EV is initially located on the right-
most lane of a 3-lane highway and is approaching a slower
vehicle, TP1, on the same lane, whereas another vehicle, TP2,
is initially located on the left-most lane. For both vehicles we
consider two candidate trajectories, namely continuing on the
same lane and changing to the middle lane, as in Figure 1.
The belief estimation for the two vehicles is represented in
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Fig. 2: Belief assignment for the candidate TP trajectories.

Figure 2. At first, the intention of TP2 is not clear, thus the
uncertainty is large. Shortly after t = 6 s, it is clear that
TP2 has changed to the middle lane and will remain there,
thus the belief assignment is gradually updated giving higher
confidence to that maneuver, whereas TP1 shows a more
regular behavior and it is assumed to stay on the right lane.

Figures 3a and 3b show the trajectory of the EV in the traffic
scene for the considered methods. The inverse plausibility
method yields probabilities designed not to underestimate the
probability of trajectories if the uncertainty is high: at first, the
EV accounts for the fact that TP2 might move to the center
lane and proceeds cautiously while moving to the left. When
TP2 actually moves to the center lane, the EV moves back to
the right lane, after overtaking TP1. Similarly, the tightened
constraints induce a cautious behavior of the EV, so that a
sufficient safety distance can be maintained when TP2 moves
to the center lane. Yet, in this simulation, the EV does not
move back to the right lane at the end, rather remains in an
intermediate position between the right and the center lanes,
which, although safe, can be undesirable in practical situations.

The other approaches do not account for the uncertainty
around the estimation and this is reflected in the behavior of
the EV. Constraints generated based only on the most likely
future trajectory of the TPs [5] result in an overconfident
behavior of the EV, assuming that both TPs will remain in
the current lane. As a result, when TP2 moves to the center
lane, the EV is too close and the safety distance is violated.
Eventually the EV reacts by quickly moving back to the
right lane. The safety constraints generated for each candidate
trajectory of TPs as in [6] result in a conservative behavior
of the EV, which never rules out any candidate future TP
trajectory, even when the behavior becomes clear and the
probability of some candidate trajectories becomes negligible.
Therefore, the EV never overtakes TP1, as it is considered
possible at all times that this vehicle will suddenly move to
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Fig. 3: Trajectories of TP (dashed) and of the EV (solid)
resulting from different collision-avoidance constraints.

Fig. 4: Initial traffic configuration and candidate trajectories
for the urban intersection scenario. TP1 and TP2 could turn
right, continue straight or take the bike lane on the other side,
TP3 could cross vertically or horizontally.

the center lane. Finally, constraints generated for candidate
future TP trajectory depending on the trajectory probability
as in [7] produce inconsistent behaviors when the estimated
probabilities vary frequently. At the end of the simulation, the
EV is forced to move to the left to avoid collisions.

The value of the stage cost (14) reflects the qualitative
comparison between the approaches. The constraints generated
with the inverse plausibility method and with the constraint
tightening yield cost Jsim = 617 and Jsim = 1722, respectively.
The method from [6] yields a significantly higher cost Jsim =
3883, since the velocity of the EV is considerably lower. The
cost of the methods from [5] and [7] is not informative, as
they result in dangerous situations.

B. Urban Intersection

In the second scenario we consider three TPs, whose move-
ments are less structured and therefore more uncertain. We
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Fig. 5: Belief assignment for the candidate TP trajectories.

analyze more in details how accounting for the reliability of
the BFT estimation is beneficial also in terms of performance.

The EV is located to the left of an urban intersection and
must proceed straight, safely interacting with two cyclists, TP1
and TP2, and a pedestrian, TP3, as in Figure 4. The pedestrian
is initially located to the right of the EV and could cross
either the horizontal or the vertical road, potentially crossing
the EV intended path. The two cyclists reach the intersection
on the vertical road and could continue straight, turn right, or
continue straight on the bike lane on the other side of the road.

The behavior of all TPs is initially unclear, resulting in
large uncertainty, Figure 5. Figure 6 shows the trajectory of
the EV resulting from the constraint generated based on the
probability yielded by the inverse plausibility method. At first,
the EV slows down, considering that the pedestrian and the
cyclist from above might cross the road, as eventually happens.
Then, it proceeds straight and moves to the left to overtake
the remaining cyclist, which clearly shows the intention of
proceeding straight after the right turn.

The difference between the considered approaches is visible
in the resulting longitudinal velocity of the EV, Figure 7, and
the resulting cumulative cost Jsim, Figure 8. The constraints
generated considering the reliability of the estimation from
BFT allow the EV to move safely in the uncertain environ-
ment without excessively decelerating when the pedestrian is
reached (first minimum in the velocity). By contrast, although
no dangerous situation is encountered in this scenario, all
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Fig. 6: Trajectories of TP (dashed) and of the EV (solid).
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Fig. 7: EV longitudinal speed resulting from the different
methods for the collision-avoidance constraints.

comparison methods yield a higher cost, because the reliability
of the estimation is not considered. The methods from [5],
[7] result in higher fluctuations in the EV velocity, because
the probabilities used are not reliable during the first part
of the simulation, therefore the predictions used in the EV
planning change repeatedly, resulting in incoherent behaviors.
The method from [5], in particular, produces an overconfident
behavior of the EV, which must suddenly come to a full stop
when the assumption proves wrong and the pedestrian does
not behave according to the most likely trajectory. The method
from [6] is especially inefficient, because none of the candidate
trajectories of TPs is ever ruled out even when it is safe to do
so, and the EV eventually does not pass the cyclist TP1.

V. CONCLUSION

In this work we proposed a novel framework for trajectory
planning of autonomous vehicles, in which the design of
collision-avoidance safety constraints leverages on the measure
of uncertainty provided by the BFT estimate. If the intention of
TPs is not clear, the focus is on not underestimating seemingly
unlikely future TP trajectories, inducing a cautious behavior
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Fig. 8: Cumulative cost over time.

of the EV. If the intention is sufficiently clear, excessive
conservatism is prevented. The simulations show the benefit of
accounting for the uncertainty of the information, rather than
drawing conclusions from non-reliable estimated probabilities.
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