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Γe φ⃗
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D Diffusion coefficient
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L System matrix
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M Highest order of the Legendre polynomial in 1D

P Legendre polynomial

Q Particle or neutron distribution function

S Neutron source term

S̃ Extended neutron source, including the scattering between energy

groups, fission, and the external neutron source
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Lower case Greek letters

α Coefficient of the boundary condition

β Coefficient of the boundary condition

γ Coefficient of the boundary condition

δ Kronecker delta

ϵ Basis vector of the coordinate system
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(global) coordinate system



θ0 Angle between the neutron travelling direction before and after the

scattering event

µ cos(θ)

µ0 cos(θ0)

ν Number of neutrons emitted per fission reaction

π Mathematical constant, which is equal to the ratio of the circle

circumference to its diameter

ρleakage Reactivity due to leakage

τ Coefficient describing the type of external boundary condition

ϕ0 Zeroth order, or scalar, neutron flux

ϕ1 First order neutron flux

ϕ2 Second order neutron flux

ϕ3 Third order neutron flux

φ Test, or basis, function of the prismatic finite element

χ Fission spectrum

ψ Directional or angular neutron flux distribution

ω Angle between the neutron travelling direction and the y axis of the

(global) coordinate system

Capital greek letters

Γ Spatial problem domain

∆ Laplacian operator

∆x Difference between x and x0, hence x− x0

Σ Macroscopic cross section

Ω Travelling direction

Symbols

∇ Nabla operator or gradient

∂ Partial derivative

∂Γ Boundary of Γ

∀ For all

∈ Belonging to



∞ Infinite

→ Transition from the initial state (left hand side) to the final one (right

hand side)

⇒ From which it follows

= Equal to

≡ Equivalent to/defined as

≈ Approximately equal to

· Product for scalars and scalar product for vectors∑
Summation∫
Integral

∩ Intersection

Acronyms

1D One dimensional

3D Three dimensional

ATHLET Analysis of Thermal-Hydraulics of LEaks and Transients

CEFR China Experimental Fast Reactor

CR Control Rod

ESFR European Sodium Fast Reactor

FEM Finite Element Method

GRS Gesellschaft für Anlagen- und Reaktorsicherheit

HCO Heat-conduction object

HPMR Heat Pipe Micro Reactor
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MMR Micro Modular Reactor

MOOSE Multiphysics Object-Oriented Simulation Environment
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PARCS Pardue Advanced Reactor Core Simulator

PEMTY Python External Meshing Tool with Yaml input

PN N -th order spherical harmonics

PSI Paul Scherrer Institut

PWR Pressurized water reactor

RE Regulating rods

RMS Root Mean Squared

SA Subassemblies

SA-1, SA-2, SA-3 Safety rods

SFR Sodium fast reactor

SH Shim rods
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SN N -th order discrete ordinate

SP3 Third order simplified spherical harmonics

SP3 TR SP3 approach using the transport cross section to define the zeroth

order diffusion coefficient

SPN N -th order simplified spherical harmonics

SPH Superhomogeneisation

SS Stainless steel

TFO thermo-fluid dynamic object
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Upper scripts

Lower case letters

e Finite element within the geometry

h Exponent of the Legendre polynomial
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η Coefficient indicating the face of the prismatic finite element
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x First axis of the coordinate system
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Capital letters

G Slowest energy group

N Order of the spherical harmonics or of the Legendre polynomial

Numbers

0 Zeroth order

1 First order

2 Second order

3 Third order

Hats

□̄ Average

□̃ Extended neutron source
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Abstract

The interest in (very) Small Modular reactors ((v)SMRs) and Micro Modular

reactors (MMRs) is increasing. These reactor systems show complex geometries

and high neutron flux gradients. Therefore, adequate neutronic codes to model

such geometries must be developed. To perform the safety assessment of (v)SMRs

and MMRs, it is essential to simulate their core behaviour. For the neutronic

simulation, one option would be to use transport codes. These provide a high

accuracy, but also high computational costs, even if they are deterministic. The

required computational resources increase even more in case of Monte Carlo codes.

The necessary resources increase drastically for the simulation of transient scenarios.

To reduce the computations costs, approximations can be applied to the neutron

transport equation. The most widely used is diffusion theory. However, this theory

shows limitations for small and heterogeneous configurations, which are characteristic

of (v)SMRs and MMRs. Therefore, it arises the necessity to find an alternative

approximation to the neutron transport equation, capable to compute calculations in

a shorter time, compared to transport simulations, and providing a higher accuracy

compared to diffusion theory.

One possibility is to use the SP3 approximation. This is derived from the one

dimensional P3 approximation, which is obtained by expanding the angular terms of

the neutron transport equation with the first four Legendre polynomials. To obtain

the SP3 equations, the one dimensional P3 approximation is transformed to three

dimensions, keeping the Legendre polynomials, without replacing them with spherical

harmonics.

In order to perform the safety assessment of (v)SMRs and MMRs, the GRS neutronics

code FENNECS, based on the finite elements approach, was equipped with a steady

state SP3 solver. Therefore, beside the derivation of SP3 methodology, including its

boundary conditions, it was necessary to obtain the Galerkin form of the steady state

SP3 equations. To implement them in FENNECS, algorithms were designed and

implemented in the code.

The solver implementation was followed by its verification. Within this process,

test cases with various geometry complexities and sizes as well as with a different

amount of energy groups in the macroscopic cross section libraries were used. Firstly,

exercises with given homogenised neutron macroscopic cross sections libraries, defined



by the authors of the benchmark, were modelled. This allowed to prove the correct

implementation of the solver, excluding effects caused by the cross section generation.

Secondly, examples where the libraries were generated using codes capable to calculate

homogenised multi-energy-group neutron macroscopic cross sections were used to

verify the new solver. The results were assessed based on several parameters: effective

multiplication factor, normalized power and neutron distributions, loss in reactivity

due to the leakage, as well as control rod worth. The results of the FENNECS SP3

solver were evaluated with respect to a reference, obtained from more accurate codes,

like for example transport based ones, in order to calculate the deviation of the

obtained results. For most of the test cases, the evaluation involved also other SP3

solvers to show that the new FENNECS solver calculates similar results. Additionally,

the outcomes were also compared to diffusion solvers to evaluate the improvement in

accuracy, which arises from the application of a more expensive methodology.

From the verification process, based on the comparison of the results of the FENNNECS

SP3 solver with other SP3 solvers, as well as with transport or Monte Carlo codes,

the proper functionality of the new FENNECS steady state SP3 solver was proven.

In addition, based on the test cases analysed, the limitations and strengths of this

methodology were identified. With this regards, very good results were obtained by

the new FENNECS SP3 solver for example for the Hébert benchmark, as well as the

fuel assemblies of the C5G7 benchmark. On the contrary, the new solver showed

difficulties in modelling configurations with fully inserted control rods. Furthermore,

for the FENNECS code, the improvement in accuracy due to the application of the SP3

methodology, with respect to diffusion theory, was evaluated. Concerning this point, it

was proven that increasing the heterogeneity of the geometries, a larger improvement

of the results can be obtained using the FENNECS SP3 solver, instead of the diffusion

approximation. For the scenarios with fully inserted control rods, using the FENNECS

diffusion solver with SPH corrected cross sections delivered better results, than the SP3

methodology, where no corrections were applied to the nuclear data.



Zusammenfassung

Ein steigendes Interesse in (v)SMRs und MMRs kann zur Zeit beobachtet werden.

Diese weisen komplexe Geometrien und hohe Neutronenfluss-Gradienten auf.

Aus diesen Grund besteht die Notwendigkeit passende Neutronikcodes für deren

Sicherheitsbewertung zu entwickeln. Das Reaktorkernverhalten von (v)SMRs und

MMRs zu simulieren ist essentiell um deren Sicherheitsbewertung durchzuführen. Eine

Möglichkeit für die Neutroniksimulation besteht darin Transportcodes zu verwenden,

welche eine hohe Genauigkeit bieten. Codes die auf diesem Prinzip basieren haben

jedoch hohe Rechenkosten, auch wenn diese deterministisch sind. Die notwendigen

Rechenressourcen steigen weiter im Fall von Monte Carlo Codes. Dies führt dazu, dass

Simulationen von Transienten, basierend auf deterministischen Transportcodes oder

Monte Carlo Codes, für alltägliche Berechnungen nicht verwendet werden können.

Näherungen können auf die Transportgleichung angewandt werde um die Rechenkosten

zu reduzieren. Die am meisten genutzte Näherung ist die Diffusionstheorie. Diese

Theorie weißt jedoch Beschränkungen auf für kleine und heterogene Geometrien,

die für (v)SMRs und MMRs charakteristisch sind. Aus diesem Grund besteht

die Notwendigkeit eine alternative Näherung zur Transporttheorie zu finden, die

Rechnungen in kürzerer Zeit als die Transportsimulation und mit höherer Genauigkeit

als die Diffusionstheorie ermöglicht.

Eine Möglichkeit ist die Verwendung der SP3 Näherung. Diese wird aus der

eindimensionalen P3 Näherung hergeleitet. Die P3 erhält man durch das Entwickeln

nach den ersten drei Legendre Polynomen der winkelabhängigen Terme in der

Transportgleichung. Um die SP3 Gleichungen zu erhalten wird die eindimensionale

P3 Näherung in 3D gebracht, wobei die Legendre Polynome beibehalten werden und

diese werden nicht durch sphärische harmonische Funktionen ersetzt.

Um die Sicherheitsbewertung von (v)SMRs und MMRs zu ermöglichen wurde, der

GRS Neutronikcode FENNECS, welche auf der Finite Elemente Methode basiert,

mit einen stationären SP3 Löser ausgerüstet. Aus diesem Grund war es nötig die

Galerkin Form der stationären SP3 Gleichungen, inklusive Randbedingungen, zu

herleiten. Darauf basierend wurden Ad-hoc Algorithmen entwickelt und in den Code

implementiert.

Auf die Implementierung des Lösers folgte dessen Verifizierung. Diese

beinhaltete Testfälle mit verschiedenen Geometriekomplexitäten und -Größen



und mit unterschiedlicher Anzahl an Energiegruppen bei den makroskopischen

Wirkungsquerschnitte. Erstens wurden Beispiele gerechnet mit vorgegebenen

homogenisierten maskroskopischen Wirkungsquerschnittsbibliotheken. Das

erlaubte die Funktionalität des neuen Löser zu zeigen. Danach wurden Modelle

gerechnet in denen die Bibliotheken mittels Programmen erzeugt wurden, die

homogenisierte Mehrenergiegruppen-Wirkungsquerschnitte berechnen können. Für

die Ergebnisauswertung wurden die effektiven Multiplikationsfaktoren genutzt. In

einigen Fällen wurde die Auswertung ergänzt durch Vergleiche mit der normalisierten

Leistungs- oder Neutronenflussverteilungen oder des Reaktivitätsverlustes aufgrund

der Leckage oder der Steuerstabswirksamkeit. Die Ergebnisse des FENNECS SP3

Lösers wurden im Verhältnis zu einer Referenz ausgewertet, die von einem genaueren

Code berechnet wurde, wie z.B. einem Transportcode, um die Abweichung der

Ergebnisse zu auswerten. Die Auswertung der meisten Testfälle involvierte auch

andere SP3 Löser, um zu beweisen dass der neue FENNECS SP3 Löser ähnliche

Ergebnisse liefert. Zusätzlich wurden die Ergebnisse auch mit Diffusionslösern

verglichen, um die Verbesserung der Genauigkeit zu quantifizieren, welche durch die

Anwendung des rechenintensiveren SP3 Lösers erhalten wird.

Die Funktionalität des stationären FENNECS SP3 Lösers wurde im Rahmen des

Verifizierungsprozesses bewiesen. Dafür wurden die Ergebnissen aus dem FENNECS

SP3 Löser mit denen aus verschiedenen SP3 Lösern, Transportlösern und auch

Monte Carlo Codes genutzt. Zusätzlich, basierend auf den betrachteten Testfällen,

wurden die Beschränkungen und Stärken dieser Methode identifiziert. Diesbezüglich

lieferte der FENNECS SP3 Löser sehr gute Ergebnisse, z.B. im Fall des Hébert

Benchmark und der Brennelemente des C5G7 Benchmarks. Im Gegensatz dazu

wies der neue Löser Schwierigkeiten bei der Modellierung von Zuständen mit

komplett eingefahrenen Kontrollstäben auf. Außerdem wurde für FENNECS die

Verbesserung der Genauigkeit unter der Verwendung der SP3 Methode, im Verhältnis

zur Diffusionstheorie, ausgewertet. Diesbezüglich, wurde gezeigt, dass mit steigende

Heterogenität der Geometrie, eine größere Verbesserung der FENNECS SP3 Ergebnisse

beobachtet werden kann, im Verhältnis zur Diffusionsnäherung. Für das Szenario mit

komplett eingefahrenen Kontrollstäben wurden bessere Ergebnisse mit dem FENNECS

Diffusionlöser mit SPH korrigierten makroskopische Wirkungsquerschnittbibliotheken

geliefert, als die aus dem SP3 Löser, der keine Wirkungsquerschnittskorrektur nutzt.
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Chapter 1

Introduction

1.1 Motivation

In order to design efficient reactors, which fulfil the economic operation and inherent

safety requirements, it is essential to predict their behaviour. For this purpose, nuclear

simulation codes are a very powerful tool: they allow to simulate operational as well

as incident scenarios, allowing to estimate consequences of potential accidents, which

can be considered in the design, in order to prevent and mitigate them. The reliable

and safe operation of a reactor is coupled to the reliability of its simulation [19]. This

means that using simulations results, which precisely predict reactor core parameters,

like the neutron flux, is of vital importance. To precisely calculate the neutron flux

allows to accurately predict criticality, power and temperature distributions as well as

feedback coefficients of reactivity, hence the reactor behaviour. Therefore, it arises the

necessity to have a tool to reliably simulate the neutronic behaviour of the reactor.

The tool must be developed such that it is able to reliably model compact cores, like

Micro Modular Rectors (MMR) and (very) Small Reactors ((v)SMR), which are of big

interest nowadays, due to the advantages that will be explained in subsubsection 1.1.2.2.

Reliable simulations are of vital importance in order to be able to perform the safety

assessment of these reactor systems.

The idea behind neutronic simulation programs is to solve the equation describing the

neutronic behaviour of the system. Therefore, an appropriate equation describing it,

which takes into account the neutrons gain and loss phenomena, taking place in the

nuclear reactor core, must be found [13, 64].

1



1. Introduction

1.1.1 Calculation method

1.1.1.1 The neutron transport equation

A possible approach is to use the neutron transport equation, or Boltzmann equation,

which is derived performing a neutrons balance on the differential volume element,

as it will be shown in chapter 3. This equation accurately describes the directional

neutron flux in an inhomogeneous fissile medium, considering neutron scattering,

fission, capture and external neutron sources, as well as neutrons streaming in and

out of the control volume [15].

However, to solve the transport equation is difficult and costly, due to the presence of

seven independent variables: five of them describe the space-angular dependency and

the remaining two account for the time and the energy [4, 13, 34]. In order to reduce

the computational costs as well as the calculations duration, approximations must be

applied to the transport equation.

1.1.1.2 The diffusion approximation

The most widely used approximation is the diffusion theory. To derive the diffusion

equation, which is based on the Fick’s law, the following assumptions are applied on

the neutron transport equation:

1. scattering is isotropic,

2. neutron absorption is much less probable than scattering, hence Σa << Σs,

3. the neutron flux varies slowly in space (the first-order Taylor expansion can be

applied)

[4, 16, 44, 57].

The first assumption is fulfilled in case of low energy neutron scattering with heavy

mass nuclei [16]. The second point is not true for strong absorbers, which are the

constituents of the control elements in a nuclear reactor [16, 20]. Furthermore, for large

(compared to the mean free path, defined as the inverse of the macroscopic total cross

section) homogeneous media, having an uniform source distribution, the third condition

is satisfied only a few neutron mean free paths away from the medium boundary [16].

Therefore, this last point is not applicable for compact cores, e.g. MMRs and (v)SMRs

and near material interfaces [6, 16]. The complete derivation of the diffusion theory

can be found for example in [57].
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1.1. Motivation

1.1.1.3 The third order simplified spherical harmonics (SP3) approximation of

the neutron transport equation

Due to the inapplicability of the diffusion approximation on MMR and (v)SMR,

discussed in subsubsection 1.1.1.2, and the high costs for solving the Boltzmann

equation, addressed in subsubsection 1.1.1.1, it arises the necessity to find an alternative

approximation to the transport equation, which allows to describe the neutronic

behaviour in compact cores. A suited candidate for this task is the N -th order

Simplified Spherical Harmonics, or SPN , approximation. Its results are more accurate

compared to the diffusion approximation, since it considers a larger part of the

transport effects [46]. This approach is derived from the N -th order Spherical

Harmonics, or PN , approximation of the neutron transport equation [4]. Here, functions

present in the Boltzmann equation, which show a directional dependency, are expanded

with the first N spherical harmonics functions [4, 65]. The three-dimensional SPN

approximation is obtained from the one-dimensional PN equations by replacing the 1D

spatial differential operators by the 3D differential operators [4, 46]. The advantage of

the SPN , with respect to the PN approximation, is the reduced calculation time, due

to the smaller number of coupled differential equations, without showing a substantial

reduction in the computational accuracy [4, 46].

In this work, the SPN method with N = 3 is chosen. The choice of the third

order Simplified Spherical Harmonics, or SP3, approximation of the neutron transport

equation is motivated by the reduced amount of memory and computational time

required by this approach compared to higher order SPN equations. Furthermore, the

SP3 method is constituted by two equations having a similar structure to one of the

diffusion approximation [4]. Therefore, it can be implemented more easily in programs,

which already provide a diffusion solver [4].

1.1.2 Nuclear reactors with compact cores

1.1.2.1 Definition

Reactors with compact cores include (v)SMRs as well as MMRs. The first part of

the acronym, hence ”(very) small” and ”micro” is related to their size as well as to

the delivered power rating [3, 54]. The reduced size causes a high leakage, due to the

low volume to surface ratio, leading to large flux gradients [54]. Regarding their power

rating, according to the International Atomic Energy Agency (IAEA), if this parameter

is below 300MWe, the facility is considered as a Small Modular Reactor (SMR) [3].

In particular, very Small Modular Reactors (vSMRs), a subcategory of SMRs, are
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1. Introduction

Figure 1.1: Geometry of the Hot Pipe Micro Reactor (HPMR) with control drums. The figure was
taken from [30].

distinguished by the power rating below 15MWe [3]. MMRs are generation-IV reactors,

having a power rating between 1MWe and 20MWe [3].

The second letter of the acronym, hence the concept of ”modular”, is related to their

construction, which allows to achieve a serial production [31]. This can be accomplished

only for reactor concepts having a power ratio below the upper limit of SMRs [31]. The

modularization concept is applied to the unit assembly of the nuclear steam supply

system (NSSS) [31]. This can be assembled from one or multiple modules, depending

on the desired power rating [31]. Furthermore, the modules can be added over time

[31].

Additionally, these systems are characterised by irregular, complex and strongly

heterogeneous geometries [54]. Their configuration can deviate from the regular lattices

[54]. Furthermore, they can show a heterogeneous material composition due to the

presence of special fuels and controlling elements, like for example control drums [54],

as shown in Figure 1.1.

1.1.2.2 Advantages

The modular construction offers multiple advantages. Firstly, it allows to adapt the

desired output power over time [31]. Therefore, this parameter can be changed to fit
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the regional load growth or to compensate for old generating stations, which are being

dismantled [31].

Secondly, from this characteristic, it follows a second advantage: the possibility to

invest less at the beginning, giving the chance to increment the investment, hence the

power output, over time [31]. Therefore, at the beginning, the financial risk is reduced

[31]. Nevertheless, there is the possibility to increment the investment by using the

revenues to increase the desired power by adding modules [31].

Thirdly, the building time is less compared to big facilities [31]. In case of large nuclear

reactors, the desired power output must match the load needed many years in the

future [31]. On the contrary, here, a projection of the load demand in just a few years

must be done, still having the chance to increment the power output later on [31].

Fourthly, remote regions can be supplied matching their small loads [31]. For the same

reason, they are used also for industrial applications [31].

Finally, one advantage of MMRs, over (v)SMRs, is their transportability [3]. For all

the reasons stated here, the interest in these concepts is increasing.

1.2 Objectives

Due to the increasing interest in (v)SMRs and MMRs, motivated in

subsubsection 1.1.2.2, it arises the need to develop a neutronic tool, able to

reproduce the characteristics of these systems, listed in subsubsection 1.1.2.1, in

order to perform their safety assessment. For this reason, a steady state SP3 solver

is implemented in the neutronics code Finite ElemeNt NEutroniCS (FENNECS),

developed at Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, which

relies on the finite elements method and it offers a high geometrical flexibility. Then,

its verification is carried out. As described in section 2.2, this code already provides

a diffusion solver. Therefore, as discussed in the previous paragraph, it results

convenient to implement an SP3 solver here.

1.3 Methodology

To achieve the goals of this work, discussed in section 1.2, a work plan is developed. As

shown in Figure 1.2, this includes multiple working packages, grouped in the following

three phases:
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� theoretical derivation of the steady state SP3 methodology in the Galerkin

formalism

� implementation of the steady state SP3 solver in the FENNECS code

� verification of the steady state SP3 solver.

The packages included in the three phases have to be completed in the order shown.

Firstly, the theoretical derivation of the SP3 approximation is carried out. The first step

here is to set up the neutron transport equation in 3D as in subsection 3.1.1, which

is then simplified to 1D, as shown in subsection 3.1.2. Since no transient scenarios

are of interest in this work, the time dependency is removed, as in subsection 3.1.4.

Expanding the angular terms present in the steady state transport equation in 1D

with the first N Legendre polynomials, the steady state PN approximation in 1D is

obtained in subsection 3.2.2. By imposing N = 3, in section 3.3, which includes [41],

the P3 approximation in 1D is obtained, from which, performing a simplified transition

to 3D, the steady state SP3 equations in 3D is set up. In addition, also the boundary

conditions, are obtained. These are then included in the two SP3 equations. In [41],

also the last step of this phase is performed, which consists in obtaining the Galerkin

representation of the steady state SP3 equations, including the boundary conditions.

This step is essential for the implementation of the equations in a finite element based

code, like FENNECS.

Secondly, ad hoc algorithms are designed to solve the Galerkin form of the SP3

equations and these can be found in section 3.3. The required algorithms are created

from scratch or they are designed expanding the idea behind the ones used for the

diffusion solver. The algorithms of the first step of the second phase are then written

in the same programming language as FENNECS, hence FORTRAN, and included in

the GRS neutronics program.

Thirdly, in the last phase, explained in chapter 4, the verification of the new solver is

carried out. At the beginning, this is performed using test cases, where the macroscopic

cross section libraries were not generated, but freely defined by the authors of these

exercises. This step allows to prove the correct functionality of the work designed in the

second phase, excluding effects of the cross section generation process. Then, to show

also the applicability of the new SP3 solver on realistic nuclear data, test cases with

macroscopic cross section libraries generated with appropriate programs are simulated.

For the analysis, reference results, obtained from a more accurate approach, than the

one of the FENNECS SP3 solver, were used. For example, in many test cases, the

reference results were obtained with Monte Carlo codes. Deviations, with respect to

the reference, were calculated for the results of the FENNECS SP3 solver, as well as
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Figure 1.2: Working packages for the implementation and verification of a steady state SP3 solver
in FENNECS.

other SP3 and diffusion solvers. Comparing the deviations of the FENNECS SP3 solver

with the ones of other SP3 solvers has the goal to prove the correct implementation of

the new FENNECS solver. The evaluation of the results deviations for the FENNECS

SP3 solver and diffusion solvers aims to evaluate the gain in accuracy by using the new

method.

Finally, in chapter 5, the conclusions can be found. Additionally, further improvements

and extensions of the code are proposed.
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Chapter 2

State of the art

The aim of this chapter is to give to the reader a short overview of the available

neutronic codes. In section 2.1, this topic will be addressed with the focus on the

applicability on compact cores, like (v)SMRs, and MMRs, whose characteristics were

described in subsubsection 1.1.2.1. Finally, in section 2.2, the features of FENNECS

will be shown. In particular, in subsection 2.2.2, an application of the FENNECS code,

performed before the implementation of the SP3 solver, will be shown.

2.1 Neutronics codes available

Two main options are available to model the neutronic behaviour of reactor systems

with a high neutron leakage as well as complex and irregular geometries, as (v)SMRs

MMRs. The first one is to use Monte Carlo codes, which will be discussed in

subsection 2.1.1. The second option is given by deterministic codes and some examples

will be given in subsection 2.1.2.

2.1.1 Monte Carlo codes

Monte Carlo codes allow to get the best available knowledge regarding the neutron

interactions [36]. Additionally, this kind of codes offers a high geometrical flexibility,

which is particularly advantageous for complex and irregular geometries, like the ones

of (v)SMRs and MMRs [63]. Furthermore, this family of codes is able to calculate

group constants [36]. Beside these powerful advantages, this method suffers also

from limitations. The biggest disadvantage is the large requirement of computational

resources, which makes them unsuited for routine calculations as well as for transient

simulations [36]. Additionally, it should be considered that the results are obtained
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through a stochastic process [27].

An example of a Monte Carlo code is Serpent, which has been developed at the VTT

Technical Research Centre in Finland [35]. In particular, it is a 3D continuous energy

code [36]. In this work, Serpent will be used in chapter 4 for the generation of the

multi-energy-groups macroscopic cross sections libraries as well as to calculate the

reference results.

2.1.2 Deterministic codes

On the contrary to Monte Carlo codes, deterministic codes provide an exact solution

[36]. Furthermore, they are computationally cheaper, allowing them to perform

transient calculations [36]. In the next paragraphs, some examples for this type of

codes will be given.

One example of 3D neutron kinetics code suited for complex geometries is GeN-Foam,

which has been developed at the Paul Scherrer Institut (PSI) [22]. It is a multiphysics

code based on OpenFOAM, offering originally only a diffusion solver [21]. The

discretization and solution of the partial differential equations are performed using

the Finite Volume Method [21]. GeN-Foam couples three sub-solvers, which treat the

thermal-hydraulics, thermal-mechanics, and neutron diffusion [21]. Successively, to

better model the CROCUS reactor [48], an SP3 solver was included [22].

A second example is Rattlesnake that has been developed at the Idaho National

Laboratory [61]. It is an application for the calculation of radiation transport, based

on MOOSE (Multiphysics Object-Oriented Simulation Environment) [61]. In the code,

this phenomenon is described with the linear Boltzmann transport equation or the

radiation transport equation, depending on whether the neutron flux or radiation is

of interest [61]. The geometry discretization is performed by finite elements with an

unstructured grid [60, 61]. The angular discretization is performed with the diffusion

approximation, the discrete ordinates (SN), as well as the spherical harmonics (PN)

expansion method [61].

A further example is DYN3D. It has been developed at the Helmholtz-Zentrum

Dresden-Rossendorf (HZDR) [19]. DYN3D is capable to model quadratic as well as

hexagonal lattices [7]. It solves the steady state as well as transient diffusion equation

[7, 25]. Successively, it was equipped with a steady state SP3 solver [19]. To solve the

neutronic equation, the nodal expansion method is used [7]. Additionally, DYN3D has

been already coupled to the thermal hydraulics codes Analysis of THermal-hydraulics

of LEaks and Transients (ATHLET) and RELAP5/MOD3 [25].

10
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An additional code is the Purdue Advanced Reactor Core Simulator (PARCS).

However, its SP3 solver can be used only to calculate Cartesian geometries [18]. The

multigroup calculation can be performed for steady state as well as transient scenarios

[18]. PARCS provides a two group diffusion solver, as well as an SP3 solver [18].

The last example is FEMFUSION [58], which is based on the finite element method.

The continous Galerkin approach is used for the spatial discretization [58]. It is capable

to solve the multigroup diffusion as well as the SPN equations in up to three dimensions

[23]. This code is open source and written in C++ [14, 59].

Further examples of neutronic codes will be encountered in chapter 4. Here, these will

be used, together with some of the programs mentioned here, to perform the verification

of the SP3 solver in FENNECS.

2.2 FENNECS

2.2.1 Main features of FENNECS

The SP3 approximation of the neutron transport equation was implemented in

FENNECS, a 3D few-group neutron kinetics code, based on the finite element method

(FEM) [55]. This code does not show limitations for the modelling of (v)SMRs or

MMR, like it was the case for some of the codes listed in section 2.1, which suffered,

for example, from a long calculation duration, or a limitation to two energy groups.

Before the implementation of the SP3 solver, FENNECS provided the solution of the

time dependent as well as steady state three dimensional few-group diffusion equation

in the Galerkin finite element representation [9, 55]. Upright triangular prism with

linear basis functions are used as spatial elements [9, 55].

The meshing can be performed for regular quadratic and hexagonal lattices, using the

internal meshing module. Besides this tool, a further tool to generate the mesh data

needed by FENNECS is offered, which is the Python External Meshing Tool with Yaml

input (PEMTY) [8]. This can be used also in case of irregular geometries, typical of

(v)SMRs, and MMRs [8, 9]. For example, it is able to model also control drums [9].

In order to get the thermal-hydraulic feedback, FENNECS can be run coupled

to ATHLET [8, 9]. Macroscopic cross sections libraries in NEMTAB format are

required to run the calculations [9]. This holds for coupled as well as stand-alone

calculations. Furthermore, the libraries can be parametrized with respect to up to six

thermal-hydraulic feedback parameters using linear cross-section interpolation [9]. In

11



2. State of the art

addition, to accelerate the convergence of the eigenvalue problem, Wieland iteration

can be applied [55]. FENNECS also allows to perform pre- and post-processing

for displaying the input geometry and the materials distribution as well as the

distribution of the output parameters, like the power density, the neutron flux and

thermal-hydraulic quantities [9].

2.2.2 Demonstration of FENNECS applications

In this section, an application of the FENNECS diffusion solver will be shown. Here,

the China Experimental Fast reactor (CEFR) was modelled and compared to the results

obtained with Serpent [43].
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ABSTRACT  

Within the frame of the IAEA Coordinated Research Program I31032, FENNECS was used to simulate 
Neutronic Start-up Tests, performed at the China Experimental Fast Reactor (CEFR). The FENNECS 
simulations showed a good agreement with the measurements as well as with the results obtained by 
Serpent. In addition, a high-fidelity coupled FENNECS/ATHLET model of a single CEFR fuel assembly 
using pin cell-homogenized and parameterized cross section libraries was developed for first test 
calculations. 

 

CEFR NEUTRONIC START-UP TESTS 

The China Experimental Fast Reactor CEFR is a pool-type sodium cooled fast reactor with a thermal 
power of 65 MW and UO2 as fuel. The first core loading consisted of up to 79 fuel subassemblies (SA), 
8 control SAs, one neutron source SA, 394 stainless steel (SS) SAs, and 230 boron shielding SAs. The 
control SAs comprehend two regulating rods (RE-1 and RE-2) and three shim rods (SH-1, SH-2, SH-3), 
which form the first shut down system, as well as three safety rods (SA-1, SA-2, SA-3), constituting the 
second shut down system. In the shim and safety rods, the enrichment of 10B in the B4C absorber is 
90% and 20% in the regulating rods.  

During the CEFR physical start-up in 2010, the obtained measurements of several experiments (e.g., 
net criticality, control rod integral and differential worth, void reactivity effects and subassembly 
exchange reactivity effects [1]) were provided in the frame of an IAEA CRP for benchmark analysis.  

 

THE NEUTRON KINETICS CODE FENNECS 

The Finite ElemeNt NEutroniCS code FENNECS is a steady-state and time-dependent 3-d few-group 
finite element-based diffusion code [2][3]. It applies the continuous Galerkin weighted residual approach 
using upright triangular prisms with linear basis functions as spatial elements. FENNECS provides a 
high geometrical flexibility that allows to model complex and irregular geometries. For the spatial 
meshing of the problem geometry, the Python Enhanced Meshing Tool with Yaml input PEMTY is 
developed [4]. PEMTY can also provide the mesh with pin cell-wise resolution for high-fidelity coupled 
simulations of cartesian and hexagonal lattices, as well as of e.g., control drums.  

FENNECS requires macroscopic cross sections libraries in a NEMTAB-like format that may be 
parameterized with respect to thermal hydraulic feedback parameters with linear cross section 
interpolation. Thermal-hydraulic feedback is considered by a coupling with the GRS thermal-hydraulic 
system code ATHLET [5]. 
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MONTE CARLO MODELS IN SERPENT 

Two types of Monte Carlo models were built to provide a comparison for FENNECS and to generate the 
cross sections. For both, the Serpent version 2.1.31 with ENDF/B-VII.0 nuclear basis data was used. 
To compare the FENNECS results of the start-up tests, full core Monte Carlo calculations were 
performed. Here, the geometry was reproduced in detail. The thermal expansion was considered in the 
geometric dimensions as well as in the mass and nuclide densities using linear thermal expansion 
correlations. This effect was included in the Monte Carlo simulations using an extended Serpent version 
[6] based on version 2.1.31. For the cross sections generation, a single full-scale fuel assembly was 
modelled in a radial infinite lattice. Assemblies containing non-fissile materials were simulated using 
supercell models (according to the approach described in [7]): the model includes a non-fuel assembly 
surrounded by six fuel SAs halves. The macroscopic cross sections are generated in 10 energy groups. 

 

DETERMINISTIC MODELS IN FENNECS 

In the FENNECS model of the CEFR, each hexagonal assembly is composed radially by at least six 
triangular prismatic finite elements. The axial mesh size ranges between 0.006 cm and 7 cm, leading to 
58 layers. Consequently, the geometry comprehends 247776 elements, represented by 131924 nodes.  

The nuclear data generated by Serpent were directly used as input for FENNECS, except the absorption 
cross sections of strong neutron absorbers, hence the highly enriched B4C axial section, located in shim 
and safety rods. A suited correction must be applied to these cross sections to avoid that the reactivity 
of the control rods is overestimated. Therefore, the absorption cross sections of the highly enriched B4C 
axial section were multiplied by an iteratively determined factor of 0.9158333 (applied to all energy 
groups) such that FENNECS exactly reproduces the Serpent multiplication factor of keff = 1.01427. 

 

SIMULATION RESULTS OBTAINED BY FENNECS 

FUEL LOADING AND CRITICALITY  

Before the start-up, the fuel positions were loaded with mock-up fuel SAs. Criticality was reached by 
substituting them stepwise with fuel SAs. Actually, during the experiment at the CEFR, when the core 
was loaded with 71 fuel SAs, this was subcritical, as foreshown by the calculation. FENNECS predicted 
supercriticality with 72 fuel SAs. Accordingly, the final criticality state was reached with 72 fuel rods at a 
measured temperature of 245 °C and with RE2 positioned at 70 mm, as shown in Table 1. 

Table 1: Core states and criticality obtained for various fuel loading with 7 control rods out of the core. 

Number of 
fuel SAs 
loaded 

Position of 
RE2 

Core state 
keff 

FENNECS 
keff 

Serpent 

Reactivity 
difference w.r.t. 
Serpent (pcm) 

70 Out-of-core Subcritical 0.99296 0.99533 -240 

71 Out-of-core End of subcritical process 0.99751 0.99936 -186 

72 190 Supercritical 1.00146 1.00301 -154 

72 70 Critical (Predicted) 1.00100 1.00260 -159 
 

CONTROL ROD WORTH 

During the control rod worth experiments, the core uniform temperature was 250°C and it contained 79 
fuel assemblies and two additional SS SAs. The control rod worth is derived from the reactivity difference 
arising from the insertion of one or multiple rods. 14 scenarios were simulated and their description, 
together with the obtained results, can be found in Figure 1. The FENNECS results agree with the 
experiments within the measurement errors and slightly overestimate the rod worths, except for RE1 
and RE2. For RE2, SA3 and the first shutdown system with SH1 stuck, the highest discrepancies (up to 
14 %) were observed. In the other cases, the difference was below 4.2%. 
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Figure 1: Control rod worth simulations obtained with FENNECS (blue) in comparison with measurements 
(orange). Differences are shown in grey bars. Error bars denote measurement errors. 

Additionally, integral and differential control rod worth curves were determined with FENNECS as well 
as with Serpent. From both graphs, depicted in Figure 2, the different characteristics of the SAs are 
clearly visible: regulating rods, containing natural 10B abundance, show flatter curves compared to rods 
made of enriched 10B. For all rods, the FENNECS results satisfactory match the Serpent simulations. 

 

Figure 2: Integral (left) and differential (right) control rod worth curves for the eight control rods obtained by 
FENNECS (solid lines) and compared with Serpent (dashed) lines. 

SODIUM VOID REACTIVITY 

The sodium void reactivity is measured by replacing a fuel rod with a voided one in combination with the 
measurement of the change in the critical control rod position. The replaced SA are marked with blue 
labels in the right panel of Figure 3. 

As shown in the left panel of Figure 3, the void reactivity is negative for all measurement positions. This 
can be attributed to the small size of the CEFR. Therefore, the (negative) neutron leakage contribution 
dominates over the positive spectrum hardening effect due to the voiding. Even though, the 
measurements are slightly overestimated, the FENNECS results are within the measurement errors. 
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Figure 3: Left: Sodium void reactivity calculated by FENNECS (blue) in comparison with measurements 
(orange). Error bars denote measurement errors. Right: Active core region with assembly labels. 

SUBASSEMBLY SWAP REACTIVITY 

To simulate the consequences of fuel loading errors, the swap reactivities were measured for 6 fuel rods 
and 2 SS SAs that are indicated with pink labels in the right panel of Figure 3. In this experiment, the 
positions of single control rods as well as multiple rods were adjusted and the results can be seen in the 
left and right panel of Figure 4, respectively. FENNECS slightly underestimates the measured swap 
reactivities, with deviations between 27 pcm and 118 pcm. However, all calculation results are still within 
the measurement uncertainties. 

  

Figure 4: FENNECS results (blue) for the control rod swap reactivities obtained by multiple (left) and single 
control rods (right) in comparison with measurements (orange). Error bars denote measurement errors. 

 

COUPLED PIN-BY-PIN FENNECS/ATHLET MODEL OF A CEFR SUBASSEMBLY 

In the scope of this work, coupled pin-by-pin FENNECS/ATHLET models of the active axial section of a 
single CEFR fuel assembly and a minicore using pin cell-homogenized and parameterized cross section 
libraries were developed. This extends the coupled high-fidelity multiphysics simulation methods already 
available for LWR [8][9][10] to Generation IV and other innovative systems. 

Although there are considerable efforts in extending the subchannel code CTF to simulate sodium [11], 
a release of CTF for sodium is not yet available. Therefore, fluid dynamic and heat transfer are simulated 
by the thermal hydraulic system code ATHLET [12] in a subchannel-like approach [13]. In this model, 
the parallel subchannels of the sodium flow around pins, which included 37 inner, 18 edge and 6 corner 
ones (see left panel of Figure 5), were simulated by individual thermo-fluid-dynamic objects (TFO). The 
heat transfer between pin and sodium was treated by the heat-conduction objects (HCO). It should be 
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noted that simulation limitations arise from the restriction of the current rod model of ATHLET, where a 
HCO can be coupled to only one TFO. In FENNECS, a pin cell-resolved neutron kinetics model of both 
a single CEFR assembly and a minicore consisting of seven assemblies has been developed (see right 
panel of Figure 5). The pin cell-homogenized cross section libraries have been calculated by Serpent 
based on the models described above and are parameterized with respect to fuel temperature, sodium 
density, cladding temperature and pin lattice pitch to capture thermal hydraulic feedback. For the fuel 
temperature, six support points have been set between 518 K and 2100 K. For each of the remaining 
feedback parameters, three support points have been chosen, for the sodium density between 
0.74 g/cm3 and 0.927 g/cm3, for the cladding temperature between 518 K and 1200 K, and for the pin 
lattice pitch between 6.124 cm and 6.1996 cm. 

  

Figure 5: Left: Schematic description and ATHLET mesh setup of the CEFR fuel assembly with inner (I), edge 
(E) and corner (C) channels. Right: Material (cross section library) distribution in inner (blue), edge 
(green) and corner (yellow) pin cells of a minicore model in FENNECS. 

Both for the single CEFR fuel assembly and the minicore, a 1-by-1 feedback mapping between 
FENNECS and ATHLET is applied, i.e. one pin cell of FENNECS is coupled to only one parallel 
subchannel in ATHLET. The left panel of Figure 6 shows the steady state fuel temperature distribution 
in the minicore axial midplane. The temporal evolutions of the minicore power as well as the average 
and maximum fuel temperature obtained by FENNECS/ATHLET for a transient initiated by a temporary 
200 K inlet temperature decrease is shown in the right panel of Figure 6. Although the applicability of 
ATHLET is questionable for such modeling requirements, the results appear physically plausible and 
demonstrate the basic applicability of FENNECS to coupled SFR multiphysics simulations including 
transients. In the future, ATHLET is expected to be replaced by the subchannel code CTF to simulate 
sodium flow and heat transfer. 

  

Figure 6: Left: Steady state fuel temperature distribution at the core midplane of the CEFR minicore obtained by 
FENNECS/ATHLET. Right: FENNECS/ATHLET simulation of a transient in a CEFR fuel assembly. 
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SUMMARY AND CONCLUSION 

In this paper, CEFR start-up tests were simulated with the deterministic neutron kinetics code FENNECS 
in the frame of an IAEA coordinated research project. The criticality, control rod worth, as well as sodium 
void and subassembly swap reactivities were simulated with FENECCS. Satisfactory agreements were 
obtained between FENNECS and measurements as well as with Serpent Monte Carlo simulations, thus 
contributing to the validation of FENNECS. Finally, coupled pin-by-pin steady state and transient 
simulations were performed for a CEFR single fuel assembly as well as for a minicore using 
FENNECS/ATHLET. The obtained results demonstrate the basic applicability of FENNECS to coupled 
SFR multiphysics simulations including transients.  
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Chapter 3

Mathematical models

In this chapter, following the steps of the first phase, described in Figure 1.2, the

SP3 equations in the Galerkin formalism, including the boundary conditions, will

be obtained. The starting point will be the neutron transport equation, which

will be derived in section 3.1. Then, the PN approximation will be obtained in

subsection 3.2.2, from which the SP3 approximation will be gained in section 3.3. Here,

the steady state SP3 equations will be taken into the Galerkin form, in order to allow

their implementation in the finite element code FENNECS. In the same section, the

algorithms developed within the first step of the second phase, hence the ones necessary

to solve the system of SP3 equations in the Galerkin formalism, will be explained.

3.1 Derivation of the steady state neutron transport equation

in 1D with discretized energy groups

3.1.1 The neutron transport equation in 3D

At time t, the number of neutrons at position r⃗, travelling in direction Ω⃗, and having

an energy equal to E is described by the particle distribution function Q(r⃗, Ω⃗, E, t).

Q(r⃗, Ω⃗, E, t)dr⃗dΩ⃗dE describes the total number of neutrons contained in the volume

element dr⃗ at position r⃗ with energy in the range between E and E+dE, which move in

the cone of directions dΩ⃗ in direction Ω⃗, depicted in Figure 3.1 [37]. An expression for

Q(r⃗, Ω⃗, E, t) can be found, performing a balance on the differential cylindrical volume

element. As depicted in Figure 3.2, this has a cross section area equal to dA, which

surrounds the neutron direction of motion, and a length of dl [37]. The length of the
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3. Mathematical models

Figure 3.1: Differential volume element for particles in dr⃗ located in r⃗, which move in the cone dΩ⃗
in direction Ω⃗.

differential cylindrical volume element can be expressed as

dl = v(E)dt (3.1)

where v(E) is the energy-dependent neutron speed [37]. Firstly, the rate of change

of the number of neutrons inside the control volume, hence ∂
∂t
Q(r⃗, Ω⃗, E, t)dr⃗dΩ⃗dE,

depends on the rate of neutrons moving in the cone dΩ⃗ in direction Ω⃗ and energy

between E and E + dE that are entering and leaving the considered volume [57].

v(E)Q(r⃗, Ω⃗, E, t) is the rate of neutrons travelling in direction Ω⃗, which enter the

cylindrical control volume from the left side [57]. To this quantity, the rate of neutrons

leaving the cylindrical control volume from the right cross section, hence at position

r⃗ + Ω⃗dl, must be subtracted [37]. This rate is given by v(E)Q(r⃗ + Ω⃗dl, Ω⃗, E, t) [37].

Secondly, for the evaluation of ∂
∂t
Q(r⃗, Ω⃗, E, t)dr⃗dΩ⃗dE, also sources of neutrons must

be considered. The first source of neutrons is scattering of neutrons in r⃗, whose

direction of travelling and energy will change from Ω⃗′ to Ω⃗ (Ω⃗′ → Ω⃗) and from

E ′ to E (E ′ → E), respectively, due to the event [57]. Quantities followed by an

apostrophe address the neutrons before a scattering or fission event. The scattering

contribution to the rate of change of neutrons in the control volume is expressed by∫∞
0

{∫ 4π

0

[
Σs(r⃗, Ω⃗

′ → Ω⃗, E ′ → E)v(E)Q(r⃗, Ω⃗′, E ′, t)dr⃗dΩ⃗dE
]
dΩ⃗′
}
dE ′, where Σs is the
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3.1. Derivation of the steady state neutron transport equation in 1D with discretized energy
groups

macroscopic scattering cross section. The integration over Ω⃗′, from 0 to 4π, and E ′,

between 0 and infinity, is necessary to consider all the neutrons that after the scattering

event travel in direction Ω⃗ with energy E, independently from their original properties.

The second source is related to neutrons in r⃗ with energy between E ′ and E ′ + dE ′

that cause fission events [57]. This fission event produces neutrons, which travel in

direction Ω⃗ with energy between E and E + dE [57]. This source is described by
χ(r⃗,E)
4π

∫∞
0

{∫ 4π

0

[
ν̄(r⃗, E ′)Σf (r⃗, E)v(E

′)Q(r⃗, Ω⃗′, E ′, t)dr⃗dΩ⃗dE
]
dΩ⃗′
}
dE ′, where χ(r⃗, E),

ν̄(r⃗, E ′), and Σf are the fission spectrum, the average number of neutrons emitted per

fission reaction, and the macroscopic fission cross section, respectively. The last source

of neutrons is represented by an external source of neutrons, which emits neutrons

in r⃗ that move in direction Ω⃗ with energy between E and E + dE [57]. The rate of

neutrons emitted by the external source is described by Sex(r⃗, Ω⃗, E)dr⃗dΩ⃗dE. Thirdly,

sinks of neutrons inside the control volume must be evaluated. Losses are caused

by absorption and scattering of neutrons. The rate at which neutrons are lost is

[Σa(r⃗, E) + Σs(r⃗, E)] v(E)Q(r⃗, Ω⃗, E, t)dr⃗dΩ⃗dE, where Σa is the macroscopic absorption

cross section [57]. Summarizing all these considerations, the balance can be expressed

by the following equation:

∂

∂t
Q(r⃗, Ω⃗, E, t)dr⃗dΩ⃗dE = v(E)

[
Q(r⃗, Ω⃗, E, t)−Q(r⃗ + Ω⃗dl, Ω⃗, E, t)

]
dAdΩ⃗dE+

+

∫ ∞

0

{∫ 4π

0

[
Σs(r⃗, Ω⃗

′ → Ω⃗, E ′ → E)v(E)Q(r⃗, Ω⃗′, E ′, t)dr⃗dΩ⃗dE
]
dΩ⃗′
}
dE ′+

+
χ(r⃗, E)

4π

∫ ∞

0

{∫ 4π

0

[
ν̄(r⃗, E ′)Σf (r⃗, E)v(E

′)Q(r⃗, Ω⃗′, E ′, t)dr⃗dΩ⃗dE
]
dΩ⃗′
}
dE ′+

+Sex(r⃗, Ω⃗, E)dr⃗dΩ⃗dE − [Σa(r⃗, E) + Σs(r⃗, E)] v(E)Q(r⃗, Ω⃗, E, t)dr⃗dΩ⃗dE.

(3.2)

The cylindrical volume element dr⃗, depicted in Figure 3.2, can be written in terms of

the differential cross section area and length of the differential volume, hence in the

following manner:

dr⃗ = dAdl ⇒ dA =
dr⃗

dl
(3.3)

[37]. Applying Equation 3.3, the streaming term, present in Equation 3.2, can be

rewritten as

v(E)
[
Q(r⃗, Ω⃗, E, t)−Q(r⃗ + Ω⃗dl, Ω⃗, E, t)

]
dAdΩ⃗dE = v(E)

[
Q(r⃗, Ω⃗, E, t)+

−Q(r⃗ + Ω⃗dl, Ω⃗, E, t)
]dr⃗
dl
dΩ⃗dE.

(3.4)
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Figure 3.2: Cylindrical differential volume element for neutrons located in r⃗, which move in direction
Ω⃗.

Dividing Equation 3.2 by dE and dr⃗ and inserting Equation 3.4, leads to the following

formulation of the balance equation:

∂

∂t
Q(r⃗, Ω⃗, E, t)dΩ⃗ = v(E)

[
Q(r⃗, Ω⃗, E, t)−Q(r⃗ + Ω⃗dl, Ω⃗, E, t)

] dΩ⃗
dl

+

+

∫ ∞

0

{∫ 4π

0

[
Σs(r⃗, Ω⃗

′ → Ω⃗, E ′ → E)v(E)Q(r⃗, Ω⃗′, E ′, t)dΩ⃗
]
dΩ⃗′
}
dE ′+

+
χ(r⃗, E)

4π

∫ ∞

0

{∫ 4π

0

[
ν̄(r⃗, E ′)Σf (r⃗, E)v(E

′)Q(r⃗, Ω⃗′, E ′, t)dΩ⃗
]
dΩ⃗′
}
dE ′+

+Sex(r⃗, Ω⃗, E)dΩ⃗− [Σa(r⃗, E) + Σs(r⃗, E)] v(E)Q(r⃗, Ω⃗, E, t)dΩ⃗.

(3.5)

The new formulation of the streaming term in Equation 3.5 can be rewritten in the

following way, by swapping the order of the in and out streaming terms:

v(E)
[
Q(r⃗, Ω⃗, E, t)−Q(r⃗ + Ω⃗dl, Ω⃗, E, t)

] dΩ⃗
dl

= −v(E)
[
Q(r⃗ + Ω⃗dl, Ω⃗, E, t)+

−Q(r⃗, Ω⃗, E, t)
]dΩ⃗
dl
.

(3.6)

Equation 3.6 can be further manipulated recalling the definition of derivative. The
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derivative of any function w(x) at a fixed point x0 is defined as

dw(x0)

dx
= lim

x→x0

w(x)− w(x0)

x− x0
= lim

∆x→0

w(x0 +∆x)− w(x0)

∆x
(3.7)

where ∆x = x − x0 [12]. The definition given by Equation 3.7 can be applied to

Equation 3.6, leading to the following reformulation of the streaming term:

−v(E)
[
Q(r⃗ + Ω⃗dl, Ω⃗, E, t)−Q(r⃗, Ω⃗, E, t)

]dΩ⃗
dl

= −v(E)dQ(r⃗, Ω⃗, E, t)
dl

dΩ⃗ (3.8)

[37].

Here, the term d
dl

can be rewritten in terms of Cartesian coordinates as

d

dl
=

∂

∂x

dx

dl
+

∂

∂y

dy

dl
+

∂

∂z

dz

dl
(3.9)

where

dx

dl
= Ω⃗ · ϵ⃗x (3.10)

dy

dl
= Ω⃗ · ϵ⃗y (3.11)

dz

dl
= Ω⃗ · ϵ⃗z (3.12)

[37]. In Equation 3.10, 3.11, and 3.12 the vectors ϵ⃗x, ϵ⃗y, and ϵ⃗z are the three basis

vectors of the coordinate system. Inserting these three equations in Equation 3.9 leads

to the following expression:

d

dl
= Ω⃗ · ϵ⃗x

∂

∂x
+ Ω⃗ · ϵ⃗y

∂

∂y
+ Ω⃗ · ϵ⃗z

∂

∂z
= Ω⃗ · ∇⃗ (3.13)

[37]. After inserting Equation 3.13 in Equation 3.8, the streaming term takes the

following form:

−v(E)dQ(r⃗, Ω⃗, E, t)
dl

dΩ⃗ = −v(E)Ω⃗ · ∇⃗Q(r⃗, Ω⃗, E, t)dΩ⃗. (3.14)
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3. Mathematical models

Figure 3.3: Scattering event of a particle travelling in direction Ω⃗′. After the scattering process, its
direction will be Ω⃗. The angle between the two directions of motions is θ0.

Including Equation 3.8 in Equation 3.5, the balance equation can be formulated as:

∂

∂t
Q(r⃗, Ω⃗, E, t)dΩ⃗ = −v(E)Ω⃗ · ∇⃗Q(r⃗, Ω⃗, E, t)dΩ⃗+

+

∫ ∞

0

{∫ 4π

0

[
Σs(r⃗, Ω⃗

′ → Ω⃗, E ′ → E)v(E)Q(r⃗, Ω⃗′, E ′, t)dΩ⃗
]
dΩ⃗′
}
dE ′+

+
χ(r⃗, E)

4π

∫ ∞

0

{∫ 4π

0

[
ν̄(r⃗, E ′)Σf (r⃗, E)v(E

′)Q(r⃗, Ω⃗′, E ′, t)dΩ⃗
]
dΩ⃗′
}
dE ′+

+Sex(r⃗, Ω⃗, E)dΩ⃗− [Σa(r⃗, E) + Σs(r⃗, E)] v(E)Q(r⃗, Ω⃗, E, t)dΩ⃗.

(3.15)

In Equation 3.15, the neutron distribution is always multiplied by the neutron velocity.

Therefore, at this stage, it results convenient to introduce the directional or angular

flux distribution, which is defined as:

ψ(r⃗, Ω⃗, E, t) = v(E)Q(r⃗, Ω⃗, E, t) (3.16)

[37, 57]. By replacing the definition of directional flux and by dividing Equation 3.15

by dΩ⃗, the following more compact formulation is achieved:

1

v(E)

∂

∂t
ψ(r⃗, Ω⃗, E, t) + Ω⃗ · ∇⃗ψ(r⃗, Ω⃗, E, t)+

[Σa(r⃗, E) + Σs(r⃗, E)]ψ(r⃗, Ω⃗, E, t) =

=

∫ ∞

0

{∫ 4π

0

[
Σs(r⃗, Ω⃗

′ → Ω⃗, E ′ → E)ψ(r⃗, Ω⃗′, E ′, t)
]
dΩ⃗′
}
dE ′+

+
χ(r⃗, E)

4π

∫ ∞

0

{∫ 4π

0

[
ν̄(r⃗, E ′)Σf (r⃗, E)ψ(r⃗, Ω⃗

′, E ′, t)
]
dΩ⃗′
}
dE ′+

+Sex(r⃗, Ω⃗, E).

(3.17)
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Before arriving at the final expression of the neutron transport equation, some

considerations regarding the macroscopic scattering cross sections are necessary.

Firstly, assuming isotropic scattering, a scattering event from Ω⃗′ to Ω⃗, like in Figure 3.3,

depends only on Ω⃗′ · Ω⃗ [57]. Here, applying the definition of scalar product between

the two vectors and considering that Ω⃗′ as well as Ω⃗ are unitary vectors, leads to the

following expression

Ω⃗′ · Ω⃗ =
[
|Ω⃗′| · |Ω⃗|

]
cos(θ0)

=cos(θ0)
(3.18)

where θ0 is the angle between the two directions of motions [11, 56]. Now, the following

notation can be introduced:

µ0 ≡ cos(θ0). (3.19)

Equation 3.18, together with Equation 3.19, can be used to rewrite

Σs(r⃗, Ω⃗
′ → Ω⃗, E ′ → E) as

Σs(r⃗, Ω⃗
′ → Ω⃗, E ′ → E) = Σs(r⃗, Ω⃗

′ · Ω⃗, E ′ → E)

= Σs(r⃗, µ0, E
′ → E).

(3.20)

Secondly, based on the scattering and on the absorption macroscopic cross sections,

the total macroscopic cross section can be introduced:

Σt(r⃗, Ω⃗
′, E) = Σa(r⃗, Ω⃗

′, E) +

∫ 4π

0

Σs(r⃗, Ω⃗
′ → Ω⃗, E)dΩ⃗. (3.21)

Both sides of the equation can be integrated by dΩ⃗′ as follows:∫ 4π

0

Σt(r⃗, Ω⃗
′, E)dΩ⃗′ =

∫ 4π

0

Σa(r⃗, Ω⃗
′, E)dΩ⃗′+

+

∫ 4π

0

[∫ 4π

0

Σs(r⃗, Ω⃗
′ → Ω⃗, E)dΩ⃗.

]
dΩ⃗′

(3.22)

Computing the integrals leads to the following definition of the total macroscopic cross

section:

Σt(r⃗, E) = Σa(r⃗, E) + Σs(r⃗, E) (3.23)

[57]. The expressions for the scattering and total cross sections, given in Equation 3.20,

and 3.23, respectively, can be inserted in Equation 3.17, leading to the transport
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equation, formulated as follows:

1

v(E)

∂

∂t
ψ(r⃗, Ω⃗, E, t) + Ω⃗ · ∇⃗ψ(r⃗, Ω⃗, E, t) + Σt(r⃗, E)ψ(r⃗, Ω⃗, E, t) =

=

∫ ∞

0

{∫ 4π

0

[
Σs(r⃗, µ0, E

′ → E)ψ(r⃗, Ω⃗′, E ′, t)
]
dΩ⃗′
}
dE ′+

+
χ(r⃗, E)

4π

∫ ∞

0

{∫ 4π

0

[
ν̄(r⃗, E ′)Σf (r⃗, E)ψ(r⃗, Ω⃗

′, E ′, t)
]
dΩ⃗′
}
dE ′+

+Sex(r⃗, Ω⃗, E).

(3.24)

The last two lines of the equation represent both neutron sources. These are the

fission and external source. These two terms can be summarised by the source term

S(r⃗, Ω⃗, E, t) that is defined as

S(r⃗, Ω⃗, E, t) =
χ(r⃗, E)

4π

∫ ∞

0

{∫ 4π

0

[
ν̄(r⃗, E ′)Σf (r⃗, E)ψ(r⃗, Ω⃗

′, E ′, t)
]
dΩ⃗′
}
dE ′+

+Sex(r⃗, Ω⃗, E).

(3.25)

3.1.2 The neutron transport equation for a slab

Before arriving at the neutron transport equation for a slab, some considerations are

necessary. Firstly, as it can be seen from Figure 3.4, the direction vector Ω⃗ can be

described through the angles ω and θ, where

µ ≡ cos(θ) (3.26)

[11]. This definition can be used to develop the expression present in the second term

of Equation 3.24 as

Ω⃗ · ∇⃗ = µ
∂

∂x
+ sin(θ)cos(ω)

∂

∂y
+ sin(θ)sin(ω)

∂

∂z
(3.27)

[11]. Secondly, for Ω⃗, the following relationship can be established:∫ 4π

0

dΩ⃗ =
1

4π

∫ 2π

0

dω

∫ 1

−1

dµ⇛ dΩ⃗ =
dωdµ

4π
(3.28)

where the factor 1
4π

is due to normalization [37]. Thirdly, in Equation 3.24, the

dependency on r⃗ is substituted by the one on x. The dependency of the angular flux on

r⃗ as well as on Ω⃗ is replaced by x and µ, respectively. Therefore, no dependency on ω

is introduced, since a planar geometry is considered. Including these considerations
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Figure 3.4: Coordinate system used for the derivation.

in Equation 3.24 leads to the following form of the transport equation for planar

geometries:

1

v(E)

∂

∂t
ψ(x, µ,E, t) + µ

∂

∂x
ψ(x, µ,E, t) + Σt(x,E)ψ(x, µ,E, t) =

=
1

4π

∫ ∞

0

{∫ 1

−1

[∫ 2π

0

Σs(x, µ0, E
′ → E)ψ(x, µ′, E ′, t)dω′

]
dµ′
}
dE ′+

+S(x, µ,E, t)

(3.29)

where

S(x, µ,E, t) =
χ(x,E)

4π

∫ ∞

0

{∫ 1

−1

[ ∫ 2π

0

ν̄(x,E ′)Σf (x,E
′)·

·ψ(x, µ′, E ′, t)dω′
]
dµ′
}
dE ′ + Sex(x, µ,E).

(3.30)

Here, the fission term has no dependency on the angle ω′. Furthermore, µ′ affects only

the directional flux. Therefore, the integrals can be computed. Integrating the angular

flux over ω′ and µ′, the angular dependency is lost and the scalar flux ϕ0(x,E
′, t) is
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obtained. Therefore, Equation 3.30 can be written as:

S(x, µ,E, t) = χ(x,E)

∫ ∞

0

[ν̄(x,E ′)Σf (x,E
′)ϕ0(x,E

′, t)] dE ′ + Sex(x, µ,E). (3.31)

3.1.3 Energy discretization

Since in FENNECS input cross sections have a discrete spectrum, at this point, it

is convenient to introduce the energy discretization in the derivation. The energy

spectrum is divided in G groups, where g ∈ (1, ...G) [19]. Here, g = 1 corresponds to

the fastest energy group [19]. Therefore, the energy dependence will be replaced by an

index g, or g′, and the integrals by summations from 1 to G, hence from the fastest

to the slowest energy group. Consequently, considering energy group g, Equation 3.29

and 3.31 can be written as:

1

vg

∂

∂t
ψg(x, µ, t) + µ

∂

∂x
ψg(x, µ, t) + Σt,g(x)ψg(x, µ, t) =

=
1

4π

G∑
g′=1

{∫ 1

−1

[∫ 2π

0

Σs,g′g(x, µ0)ψg′(x, µ
′, t)dω′

]
dµ′
}
+ Sg(x, µ, t)

(3.32)

Sg(x, µ, t) = χg(x)
G∑

g′=1

[ν̄g′(x)Σf,g′(x)ϕ0,g′(x, t)] + Sex,g(x, µ). (3.33)

3.1.4 The one dimensional steady state neutron transport equation with

energy discretization

Considering steady state scenarios leads firstly to the loss of the time dependancy in

all the terms present in Equation 3.32 and 3.33. Secondly, the derivative over the time

becomes zero, such that the first term of Equation 3.32 vanishes. Thirdly, the external

neutron source Sex,g(x, µ) is set to zero, and the effective multiplication factor keff is

introduced. Therefore, as in [11, 19, 37, 57], Equation 3.32 and 3.33 can be written as

µ
∂

∂x
ψg(x, µ) + Σt,g(x)ψg(x, µ) =

=
1

4π

G∑
g′=1

{∫ 1

−1

[∫ 2π

0

Σs,g′g(x, µ0)ψg′(x, µ
′)dω′

]
dµ′
}
+ Sg(x, µ)

(3.34)
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3.2. The steady state PN -approximation of the transport equation

Sg(x, µ) =
χg(x)

keff

G∑
g′=1

[ν̄g′(x)Σf,g′(x)ϕg′(x)] . (3.35)

3.2 The steady state PN-approximation of the transport

equation

As already mentioned, the SP3 approximation is derived from the PN approximation.

Here, the angular dependencies of the transport equation are modelled with spherical

harmonics expansions in multi-dimensions and with Legendre polynomials in case of

one dimension [24, 26, 65]. Therefore, to derive the PN approximation of Equation 3.34

and 3.35, which are for planar geometries, the Legendre polynomials will be used.

3.2.1 Theorems of the Legendre polynomials

Before starting to insert the Legendre polynomials in the derived transport equation,

some considerations about them are necessary. Firstly, the property of the Legendre

polynomials that will be mostly used hereafter is the orthogonality relation, which is∫ 1

−1

Pn(µ)Pm(µ)dµ =
2

2n+ 1
δnm (3.36)

where Pn(x) and Pm(x) are Legendre polynomials of order n and m, respectively, with

n,m ∈ N, which is the set of the natural numbers [57]. δnm is the Kroneker delta,

defined as

δnm =

1, for n = m

0, for n ̸= m
(3.37)

[45].

Secondly, the recursion rule will be useful, which is defined as:

µPn(µ) =
n

2n+ 1
Pn−1(µ) +

n+ 1

2n+ 1
Pn+1(µ) (3.38)

[37, 57].
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Thirdly, another useful property is the addition theorem, which reads as follows

Pn(µ0) =
n∑

h=−n

(n− h)!

(n+ h)!
P h
n (µ)P

h
n (µ

′)eih(ω−ω′)
(3.39)

where h indicates an exponent [57].

Finally, any function w(µ), continuous in µ ∈ [−1, 1], can be expressed in this interval

in terms of Legendre polynomials as

w(µ) =
∞∑

m=0

wmPm(µ) (3.40)

where wm must be found [11, 37, 32]. By multiplying both sides of the equation by

Pn(µ) and by integrating µ from −1 to 1 leads to∫ 1

−1

w(µ)Pn(µ)dµ =
∞∑
n=0

wm

∫ 1

−1

Pn(µ)Pm(µ)dµ (3.41)

[32]. For the integral on the right hand side, the orthogonality theorem can be applied

[32]. Therefore, inserting Equation 3.36 in 3.44 leads to∫ 1

−1

w(µ)Pm(µ)dµ =
2

2m+ 1
wm (3.42)

[32]. From Equation 3.42, a definition of wm can be found, which is

wm =
2

2m+ 1

∫ 1

−1

w(µ)Pm(µ)dµ (3.43)

[32]. Inserting the definition of wm in Equation 3.40 leads to

w(µ) =
∞∑

m=0

2

2m+ 1
Pm(µ)

∫ 1

−1

w(µ)Pm(µ)dµ =
∞∑

m=0

(2m+ 1)Pm(µ)wm (3.44)

where

wm =
1

2

∫ 1

−1

w(µ)Pm(µ)dµ (3.45)

[32].
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3.2. The steady state PN -approximation of the transport equation

3.2.2 Mathematical derivation of the PN method

The PN method consists in approximating the angular dependency present in the

transport equation with the first N + 1 Legendre polynomials. Therefore, firstly,

the variables, which were showing an angular dependency in Equation 3.34 must be

identified. These are the angular flux ψg(x, µ), Σs,g′g(x, µ0), and Sg(x, µ). In order to

derive the Legendre expansion of these three quantities, Equation 3.44 and 3.45 can

be applied. However, in order to derive the PN equations, the angular dependency

is approximated using only the first N + 1 Legendre polynomials. Therefore, in

Equation 3.44 and 3.45, the summations up to infinity will be replaced by summations

up to N . Consequently, the Legendre expansion of the angular flux takes the following

form:

ψg(x, µ) ≈
N∑

m=0

(2n+ 1)Pn(µ)ϕn,g(x) (3.46)

where

ϕn,g(x) =
1

2

∫ 1

−1

ψg(x, µ)Pn(µ)dµ (3.47)

[11, 37, 57]. ϕn,g(x) represents the n-th order neutron flux. Similarly, also the scattering

cross section can be expanded as

Σs,g′g(x, µ0) ≈
N∑

m=0

(2n+ 1)Pn(µ)Σs,n,g′g(x) (3.48)

where

Σs,n,g′g(x) =
1

2

∫ 1

−1

Σs,g′g(x, µ0)Pn(µ0)dµ0 (3.49)

[11, 37, 57]. In Equation 3.48 and 3.49, Σs,n,g′g(x) is the n-th order macroscopic cross

section for the scattering from g to g′. The same procedure can be repeated also for

the source term:

Sg(x, µ) ≈
N+1∑
m=0

(2n+ 1)Pn(µ)Sn,g(x) (3.50)

where

Sn,g(x) =
1

2

∫ 1

−1

Sg(x, µ)Pn(µ)dµ (3.51)
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[11, 37, 57]. Sn,g(x) is the n-th order source distribution.

Now, Equation 3.46, 3.48, and 3.50 can be inserted step by step in the transport

equation, hence in Equation 3.34. At the beginning, only the scattering term of

Equation 3.34 is considered. Firstly, the scattering cross section is expanded, hence

Equation 3.48 is inserted as follows:

1

4π

G∑
g′=1

{∫ 1

−1

[∫ 4π

0

Σs,g′g(x, µ0)ψg′(x, µ
′)dω′

]
dµ′
}

≈

≈ 1

4π

∫ 1

−1

{∫ 2π

0

N∑
n=0

[
(2n+ 1)Pn(µ0)

G∑
g′=1

Σs,n,g′g(x)ψg′(x, µ
′)

]
dω′

}
dµ′.

(3.52)

Successively, the addition theorem of Equation 3.39 can be applied leading to

1

4π

∫ 1

−1

{∫ 2π

0

N+1∑
n=0

[
(2n+ 1)Pn(µ0)

G∑
g′=1

Σs,n,g′g(x)ψg′(x, µ
′)

]
dω′

}
dµ′ =

=
1

4π

∫ 1

−1

{
N∑

n=0

[
(2n+ 1)

G∑
g′=1

(
ψg′(x, µ

′)·

·
n∑

h=−n

P h
n (µ)P

h
n (µ

′)eim(ω−ω′)Σs,n,g′g(x)

)]
dω′

}
dµ′ =

=
1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n

[
P h
n (µ)

∫ 2π

0

eim(ω−ω′)dω′·

·
∫ 1

−1

G∑
g′=1

ψg′(x, µ
′)Σs,n,g′g(x)P

h
n (µ

′)dµ′

]}
.

(3.53)

[57]. The obtained expression can be further manipulated by applying the product rule

of the exponents, defined in the following way:

exey = ex+y (3.54)
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3.2. The steady state PN -approximation of the transport equation

[33]. Therefore, with the help of Equation 3.54, Equation 3.53 can be written as:

1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n

[
P h
n (µ)

∫ 2π

0

eih(ω−ω′)dω′·

·
∫ 1

−1

G∑
g′=1

ψg′(x, µ
′)Σs,n,g′g(x)P

h
n (µ

′)dµ′

]}
=

=
1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n

[
P h
n (µ)

∫ 2π

0

eihωe−ihω′
dω′·

·
G∑

g′=1

(
Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)P h

n (µ
′)dµ′

)]}
=

=
1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n

[
P h
n (µ)e

ihω

∫ 2π

0

e−ihω′
dω′

·
G∑

g′=1

(
Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)P h

n (µ
′)dµ′

)]}
.

(3.55)

Depending on the value of h, it can be distinguished between two cases: for h different

from zero and for h equal to zero. For the first case, hence h different from zero, the

evaluation of the first integral in Equation 3.55 leads to

1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n,h=−n

[
P h
n (µ)e

ihω

∫ 2π

0

e−ihω′
dω′·

·
G∑

g′=1

(
Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)P h

n (µ
′)dµ′

)]}
=

=
1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n,h ̸=0

[
P h
n (µ)e

imω
[
e−ihω′

]ω′=2π

ω′=0
·

·
G∑

g′=1

(
Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)P h

n (µ
′)dµ′

(
− 1

ih

))]}
.

(3.56)

In order to evaluate the last term, the Euler’s formula can be applied, which is defined

as:

eix = cos(x) + isin(x) (3.57)

[49]. Therefore, inserting Equation 3.57 in the expression obtained for Equation 3.56
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leads to the following formulation:

1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n,m ̸=0

[
− 1

ih
P h
n (µ)e

imω [cos(hω′)− isin(hω′)]
ω′=2π
ω′=0 ·

·

(
G∑

g′=1

Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)Pm

n (µ′)dµ′

)]}
=

=
1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n,m ̸=0

[
− 1

ih
Pm
n (µ)eimω (cos(2πh)− isin(2πh)+

−cos(0 · h) + isin(0 · h))

(
G∑

g′=1

Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)P h

n (µ
′)dµ′

)]}
(3.58)

where

cos(2πh) = h

sin(2πh) = 1

cos(0 · h) = 1

sin(0 · h) = 0.

(3.59)

Inserting these considerations in Equation 3.58 leads to

1

4π

N∑
n=0

{
(2n+ 1)

n∑
h=−n,h ̸=0

[
− 1

ih
P h
n (µ)e

ihω(1− 1) ·

·

(
G∑

g′=1

Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)P h

n (µ
′)dµ′

)]}
= 0.

(3.60)

For the second case, hence h equal zero, Equation 3.55 can be evaluated as:

1

4π

N∑
n=0

[
(2n+ 1)Pn(µ)

∫ 2π

0

dω′
G∑

g′=1

(
Σs,n,g′g(x)

∫ 1

−1

ψg′(x, µ
′)Pn(µ

′)dµ′
)]

=

=
N∑

n=0

[
(2n+ 1)Pn(µ)

G∑
g′=1

(
Σs,n,g′g(x)

∫ 1

−1

1

2
ψg′(x, µ

′)Pn(µ
′)dµ′

)]
.

(3.61)

The last integral is equivalent to Equation 3.47. Therefore, the scattering term takes
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3.2. The steady state PN -approximation of the transport equation

the following form:

N∑
n=0

[
(2n+ 1)Pn(µ)

G∑
g′=1

(
Σs,n,g′g(x)

∫ 1

−1

1

2
ψg′(x, µ

′)Pn(µ
′)dµ′

)]
=

=
N∑

n=0

[
(2n+ 1)Pn(µ)

G∑
g′=1

Σs,n,g′g(x)ϕn,g′(x)

]
.

(3.62)

Inserting the evaluated scattering term, hence Equation 3.60, and 3.62, and the

Legendre expansion for the angular flux, hence Equation 3.46, in Equation 3.34, leads

to the following expression:

µ
∂

∂x

[
N∑

n=0

(2n+ 1)Pn(µ)ϕn,g(x)

]
+ Σt,g(x)

N∑
n=0

(2n+ 1)Pn(µ)ϕn,g(x) =

=
N∑

n=0

[
(2n+ 1)Pn(µ)

G∑
g′=1

Σs,n,g′g(x)ϕn,g′(x)

]
+ Sg(x, µ).

(3.63)

Multiplying both sides by 1
2
Pm(µ) and integrating over the domain of µ, leads to

1

2

∂

∂x

[
N∑

n=0

(2n+ 1)ϕn,g(x)

∫ 1

−1

µPm(µ)Pn(µ)dµ

]
+

+
1

2
Σt,g(x)

N∑
n=0

[
(2n+ 1)ϕn,g(x)

∫ 1

−1

Pm(µ)Pn(µ)dµ

]
=

=
1

2

N∑
n=0

[
(2n+ 1)

G∑
g′=1

Σs,n,g′g(x)ϕn,g′(x)

∫ 1

−1

Pm(µ)Pn(µ)dµ

]
+

+
1

2

∫ 1

−1

Pm(µ)Sg(x, µ)dµ.

(3.64)

For the integrals present in the second and third line, the orthogonality relation, defined

in Equation 3.36, can be applied. Furthermore, the last term corresponds to Sm,g(x),

as given in Equation 3.51 [57]. After the insertion of these considerations and some

mathematical manipulations, Equation 3.64 takes the following form:

1

2

N∑
n=0

[
∂ϕn,g(x)

∂x

∫ 1

−1

(2n+ 1)µPm(µ)Pn(µ)dµ

]
+ Σt,g(x)

M∑
m=0

ϕm,g(x) =

=
M∑

m=0

[
G∑

g′=1

Σs,m,g′g(x)ϕm,g′(x) + Sm,g(x)

] (3.65)
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[11, 37, 57].

For the first integral of the equation, the recursion theorem of Equation 3.38 can be

applied as follows:∫ 1

−1

(2n+ 1)µPm(µ)Pn(µ)dµ =

∫ 1

−1

µPm(µ) [nPn−1(µ) + (n+ 1)Pn+1(µ)dµ] =

=n

∫ 1

−1

Pm(µ)Pn−1(µ)dµ+

+ (n+ 1)

∫ 1

−1

Pm(µ)Pn+1(µ)dµ.

(3.66)

For both integrals, the orthogonality relation of Equation 3.36 can be applied, leading

to

n

∫ 1

−1

Pm(µ)Pn−1(µ)dµ+ (n+ 1)

∫ 1

−1

Pm(µ)Pn+1(µ)dµ =
2n

2m+ 1
δn−1,m+

+
2(2n+ 1)

2m+ 1
δm,n+1

(3.67)

[37]. By inserting this formulation in Equation 3.65, the following expression is

obtained:

1

2

N∑
n=0

{
∂ϕn,g(x)

∂x

[
2n

2m+ 1
δn−1,m +

2(2n+ 1)

2m+ 1
δm,n+1

]}
+ Σt,g(x)

M∑
m=0

ϕm,g(x) =

=
M∑

m=0

[
G∑

g′=1

Σs,m,g′g(x)ϕm,g′(x) + Sm,g(x)

]
.

(3.68)

[37]. At this point, the two Kronecker deltas must be evaluated. From the first one, it

follows n − 1 = m, hence n = m + 1. The second one, imposes m = n + 1, therefore

n = m− 1. Including these in Equation 3.68 leads to

M∑
m=0

[
m+ 1

2m+ 1

∂ϕm+1,g(x)

∂x
+

m

2m+ 1

∂ϕm−1,g(x)

∂x

]
+ Σt,g(x)

M∑
m=0

ϕm,g(x) =

=
M∑

m=0

[
G∑

g′=1

Σs,m,g′g(x)ϕm,g′(x) + Sm,g(x)

] (3.69)

where, from Equation 3.35,

Sm,g(x) =
χg(x)

keff

G∑
g′=1

[ν̄g′(x)Σf,g′(x)ϕ0,g′(x)] . (3.70)
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It should be remarked that ϕ0 is the scalar neutron flux [11, 37, 57].

The scattering term can be splitted into scattering within the same energy group and

scattering between different energy groups, hence

G∑
g′=1

Σs,m,g′g(x)ϕm,g′(x) =

Σs,m,gg(x)ϕm,g(x), for g′ = g∑G
g′=1 Σs,m,g′g(x)ϕm,g′(x), for g′ ̸= g

=

=Σs,m,gg(x)ϕm,g(x) +
G∑

g′=1,g′ ̸=g

Σs,m,g′g(x)ϕm,g′(x).

(3.71)

Including the separation of the scattering term in Equation 3.69, the following

expression is obtained:

M∑
m=0

[
m+ 1

2m+ 1

∂ϕm+1,g(x)

∂x
+

m

2m+ 1

∂ϕm−1,g(x)

∂x

]
+ Σt,g(x)

M∑
m=0

ϕm,g(x) =

=
M∑

m=0

[
Σs,m,gg(x)ϕm,g(x) +

G∑
g′=1,g′ ̸=g

Σs,m,g′g(x)ϕm,g′(x) + Sm,g(x)

]
.

(3.72)

The scattering between energy groups can be seen as a neutron source, therefore it

can be included in the source term, together with the external neutron source and the

fission source. Relabelling m with n, the source term takes the following form

S̃n,g(x) =
G∑

g′=1,g′ ̸=g

Σs,n,g′g(x)ϕn,g′(x) + Sn,g(x) =

=
G∑

g′=1,g′ ̸=g

Σs,n,g′g(x)ϕn,g′(x) +
χg(x)

keff

G∑
g′=1

ν̄g′(x)Σf,g′(x)ϕ0,g′(x)

(3.73)

[57]. Finally, relabelling also in Equation 3.72 m with n and M with N , the general

formulation of the one dimensional PN approximation can be achieved, which is

constituted by Equation 3.73, together with the following expression:

N∑
n=0

{
n+ 1

2n+ 1

∂ϕn+1,g(x)

∂x
+

n

2n+ 1

∂ϕn−1,g(x)

∂x
+

+ [Σt,g(x)− Σs,n,gg(x)]ϕn,g(x)

}
=

N∑
n=0

S̃n,g(x)

(3.74)

[11, 37, 57].
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3.3 Towards the steady state SP3 approximation of the

transport equation, to its Galerkin representation and the

algorithms implemented in FENNECS to solve it

For the SPN approximation, a review of its mathematical as well as numerical aspects

can be found in [53]. In [41], which is included in this section, the derivation of

the steady state P3 approximation of the neutron transport equation in 1D will be

carried out, starting from the one-dimensional steady state PN method, described by

Equation 3.73, and 3.74. The P3 approximation of the neutron transport equation in

1D will be used to obtain the three dimensional steady state SP3 approximation of

the neutron transport equation, together with the boundary conditions. These will

be incorporated in the two coupled equations of the SP3 methodology. As next step,

the SP3 equations, including the boundary conditions, will be taken into the Galerkin

form, necessary to implement this methodology in a finite element based code, like

FENNECS. With this last step, the first phase of Figure 1.2 is concluded.

In [41], the first step of the second phase is accomplished: the algorithms, necessary

to solve the steady state SP3 equations (in Galerkin form), which were not present

in FENNECS, or which had to be modified to support the new methodology, are

explained.
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A B S T R A C T

Codes based on the neutron transport equation require large computational resources if the code is determinis-
tic, and even more if the code is Monte Carlo based. Additionally, the amount of required resources increases
drastically for transient scenarios, particularly for Monte Carlo codes. Approximations can be applied to reduce
the costs. Diffusion theory is the most widely used. However, it shows limitations for small and heterogeneous
configurations, like (v)SMR and MMR. An alternative is the SP3 approximation. Therefore, the GRS neutronics
code FENNECS was extended by a steady state SP3 solver in order to be able to perform the safety assessment
of (v)SMR and MMR. In this work, firstly, the system of the steady state SP3 equations was derived, including
the boundary conditions. Since FENNECS is a finite element based code, the Galerkin form of the equations
was obtained. Finally, the algorithms used to solve the SP3 equations are briefly explained.

1. Introduction

(Very) small modular reactors ((v)SMR) and micro modular rectors
(MMR) are receiving a big interest in the last years. As consequence, it
follows the necessity to find adequate neutronics tools for their safety
assessment.

The search starts by analysing the two main families of neutronic
codes: Monte Carlo and deterministic ones (Ghasabyan, 2013). The
codes of the first category are renomated for their high geometri-
cal flexibility, essential to model small and heterogeneous systems,
like (v)SMR and MMR, but also for the long calculation time, which
makes them quite unpractical for routine calculations (Ghasabyan,
2013; Willert et al., 2013; Cao and Wu, 2021). Furthermore, Monte
Carlo results suffer from statistical fluctuations (Harrison, 2010). On
the contrary, deterministic codes deliver in a short time invariated
results (Ghasabyan, 2013). Due to their shorter computational times,
they are more practical to simulate transient scenarios.

There exist various types of deterministic codes, depending on if
they solve the neutron transport equation or just and approximation of
it and if this is the case, on which approximation they solve. Codes
solving the neutron transport equation, which describes the angular
neutron flux, are the most accurate ones (Cox et al., 2019). However,
to solve the neutron transport equation is computationally expensive,
due to the presence of seven independent variables (Cao and Wu, 2021;
Avvakumov et al., 2019). Therefore, to reduce the calculation times, it
is necessary to apply approximations.

∗ Corresponding author.
E-mail address: silvia.lo-muzio@grs.de (S. lo Muzio).

The most popular one is diffusion theory, which is derived from
Fick’s law (Stacey, 2007; Mohanakrishnan et al., 2021). This approxi-
mation of the neutron transport equation consists in assuming isotropic
scattering, much smaller probability of absorption compared to scat-
tering and a slow varying neutron flux in space (Avvakumov et al.,
2019; Stacey, 2007; Marguet, 2018; Devan and Bachchan, 2021). The
first assumption is true for low energy scattering with heavy mass
nuclei (Devan and Bachchan, 2021). The second one is not fulfilled for
strong absorbers, like the control elements (Devan and Bachchan, 2021;
Hore-Lacy, 2010). Regarding the last assumption, even for large and
homogeneous media, this is satisfied only a few mean free paths away
from the medium boundary (Devan and Bachchan, 2021). Thus, the
diffusion approximation may not be applicable near material interfaces
and for small and heterogeneous cores, like (v)SMR and MMR (Devan
and Bachchan, 2021; Bal and Ryzhik, 2000).

A more accurate approximation, suited for the modelling of (v)SMR
and MMR, is the third order simplified spherical harmonics approxi-
mation of the transport equation (SP3), originally proposed in Gelbard
(1960). It is obtained by expanding the angular terms of the 1D
transport equation with Legendre’s polynomials up to the third order
and by extending the equations to 3D, without replacing the Legendre’s
polynomials with spherical harmonics functions (Stacey, 2007).

Independently on the equation solved by the code, a program
able to model the complex and heterogeneous geometries of (v)SMR
and MMR must be found. A candidate is Finite ElemeNt NeutroniCS

https://doi.org/10.1016/j.anucene.2023.110303
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(FENNECS), originally a diffusion code, whose main advantage is its
geometrical flexibility (Seubert, 2020). Since the diffusion as well as
the SP3 equations have a similar structure, it is particularly convenient
to extend FENNECS by an SP3 solver, in order to be able to perform the
safety assessment of (v)SMR and MMR with a high accuracy, but low
resources demand.

Since FENNECS is not the only code offering an SP3 solver, in
Section 2 a short overview of similar codes will be given. Afterwards,
in Section 3, the main features of FENNECS will be explained, in order
to understand why this code is different from the others. Then, starting
from the neutron transport equation, the two equations of the steady
state SP3 approximation are obtained. Finally, since FENNECS is based
on the finite element method, in order to implement the derived SP3
equations in FENNECS, their Galerkin form is found.

2. Codes offering an SP𝟑 solver

Examples of codes, which offer an SP3 solver are PARCS, TRIVAC,
FEMFFUSION, SPNDYN and the Denovo radiation transport code. These
will be shortly introduced in the next paragraphs.

The first code able to solve the multigroup SP3 equations is the
Purdue Advanced Reactor Core Simulator (PARCS), which additionally
provides a diffusion solver (Downar et al., 2012). With the PARCS SP3
solver, only Cartesian configurations can be modelled. Steady state as
well as in transient scenarios can be reproduced (Downar et al., 2012).

Another example is developed at ’’École Polytechnique de Montréal’’
and is a multigroup and multidimensional code, capable to calculate the
neutron flux for hexagonal as well as Cartesian configurations (Hébert,
2012). The calculation is based on the discretization of the diffusion
or SP𝑁 equations, forming a matrix system (Hébert, 2012). The dis-
cretization is done with multiple techniques, like mesh centred finite
difference or finite element method (Hébert, 2012). This system is then
solved using iterative methods, like preconditioned or inverse power
method, as well as triangular factorization (Hébert, 2012).

Also FEMFFUSION is based on the finite element method and the
spatial discretization is performed with the continuous Galerkin ap-
proach (Vidal Ferràndiz et al., 2023). It solves the diffusion as well as
SP𝑁 equations in up to three dimensions (Vidal Ferràndiz et al., 2023).

A further neutronic code, based on the continuous Galerkin finite
element approach and which offers an SP3 solver is SPNDYN (Babcsány
et al., 2022). This code is also able to calculate the hybrid finite
element solution of these equations (Babcsány et al., 2022). This ap-
proach provides also a module for the calculation of discontinuity
factors (Babcsány et al., 2022).

Finally, in Hamilton and Evans (2015), the implementation of
the SP𝑁 equations in the Denovo radiation transport code is ex-
plained. Here, multiple eigensolvers based on different methodologies
are available (Hamilton and Evans, 2015). These are the power, inverse
power and Rayleigh quotient iteration as well as Arnoldi and Davidson
method (Hamilton and Evans, 2015). For each of them, in total three
different preconditioners are considered (Hamilton and Evans, 2015).
These are firstly a threshold incomplete LU factorization, secondly an
algebraic multigrid and thirdly a multigrid in energy (Hamilton and
Evans, 2015).

3. FENNECS

FENNECS is a deterministic neutronics code, recently developed at
Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH (GRS) (Seubert
et al., 2021). At the beginning, it was a 3D few group finite element
based steady state and transient diffusion code (Seubert et al., 2021;
Bousquet et al., 2020). FENNECS applies the finite element method
(FEM) with the Galerkin weighted residual approach, where the spatial
discretization is performed with upright triangular prisms with linear
basis functions (Bousquet et al., 2020). The code, written in FORTRAN,

is a module of the GRS code package AC2 (ATHLET, ATHLET-CD,
COCOSYS).1

4. The finite element method

The definition of the Finite Element Method is based on two pillars.
The first one is the discretized problem domain (Zienkiewicz et al.,
2013). Therefore, the geometry is subdivided into a finite number of
parts, hence elements, that are upright triangular prisms in the case of
FENNECS, which are connected to each other through nodes (Bousquet
et al., 2020; Zienkiewicz et al., 2013, 2005b). The behaviour of the
elements is described by their properties. The second pillar concerns
the solution of the set of elements: all the elements obey to the same
rules (Zienkiewicz et al., 2005b).

In the first step, for each of the in total 𝐾 elements composing
the geometry, the linear local system of equations must be set up.
This is done by defining, for all 𝐾 elements, a matrix with the nodes
properties that must be multiplied by the searched unknown quantity
of each node (Zienkiewicz et al., 2005b). Then, all the local matrices
are assembled together and a global system matrix, known as ’’stiff-
ness matrix’’ in structural mechanics, is composed (Zienkiewicz et al.,
2005b). This matrix is multiplied by a vector containing the unknowns
for each node, which are displacements in the case of structural me-
chanics (Zienkiewicz et al., 2005b). In the next step, a vector for each
element with the remaining properties not subjected to a multiplication
by the searched unknowns is assembled. The obtained 𝐾 vectors are
then assembled. Afterwards, the boundary conditions are included in
the system of equations. This step is essential in order to solve the
system of equations. Finally, the linear system of equations is solved.

In structural mechanics, the unknown quantities are normally the
displacements. Consider a set of differential equations, where the func-
tion 𝐹 (𝑟) is the unknown function, such that the right hand side of all
equations is zero (Zienkiewicz et al., 2005a). Similarly holds also for
the boundary conditions. The solution for a certain element 𝑒 may be
approximated as

𝐹 𝑒(𝑟) ≈
𝐽
∑

𝑗=1
𝜑𝑗 (𝑟)𝑓 𝑒𝑗 = �⃗�(𝑟)𝑓 𝑒,∀𝑟 ∈ 𝑒 (1)

where 𝐽 is the number of nodes of the finite element, 𝜑𝑗 the shape or
test function of node 𝑗 and the unknown quantity 𝑓 is the expansion
coefficient related to node 𝑗 in the element 𝑒 (Zienkiewicz et al.,
2005a). It should be remarked that the test functions are defined locally
for the elements (Zienkiewicz et al., 2005a). Considering the set of
differential equations and boundary conditions, the weak, or Galerkin
approach consist in imposing that the integral over the problem domain
of the set of differential equations, multiplied by the test functions
added to the boundary conditions multiplied by the test functions and
integrated over the domain boundary must be zero (Zienkiewicz et al.,
2005a).

5. From the neutron transport equation to the system of SP𝟑 equa-
tions

For the derivation of the steady state SP3 approximation, the start-
ing point is the one dimensional steady state neutron transport equation
with discretized energy groups, obtained from (Stacey, 2007; Burrone,
2018; Dürigen, 2013; Lewis and Miller, 1984), which looks as follows:

𝜇 𝜕
𝜕𝑥
𝜓𝑔(𝑥, 𝜇) + 𝛴𝑡,𝑔(𝑥)𝜓𝑔(𝑥, 𝜇) =

= 1
4𝜋

𝐺
∑

𝑔′=1

{

∫

1

−1

[

∫

2𝜋

0
𝛴𝑠,𝑔′𝑔(𝑥, 𝜇0)𝜓𝑔′ (𝑥, 𝜇′)𝑑𝜔′

]

𝑑𝜇′
}

+ 𝑆𝑔(𝑥, 𝜇)
(2)

1 A copy of the current FENNECS release can be obtained from GRS upon
request
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where

𝑆𝑔(𝑥, 𝜇) =
𝜒𝑔(𝑥)
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1

[

�̄�𝑔′ (𝑥)𝛴𝑓,𝑔′ (𝑥)𝜙𝑔′ (𝑥)
]

+ 𝑆𝑒𝑥,𝑔(𝑥, 𝜇) (3)

is the neutron source term. The energy discretization is performed such
that 𝑔 ∈ (1,… , 𝐺), where 𝑔 = 1 is the fastest energy group and 𝑔 = 𝐺 the
slowest one. In Eq. (2), 𝜇 is the cosine of 𝜃, which together with 𝜔, are
the angles of the neutron travelling direction with respect to the 𝑥 and
𝑦 axis, respectively. The main quantity of interest is 𝜓 , which describes
the angular neutron flux. The cross sections are represented by 𝛴
and the subscripts 𝑡, 𝑠, and 𝑓 indicate the total, scattering and fission
cross sections, respectivelly. The quantities followed by an apostrophe
represent the neutron state before the scattering or fission reaction.
In particular, 𝛴𝑠,𝑔′𝑔(𝑥, 𝜇0) is the scattering from energy group 𝑔′ to 𝑔,
where 𝜇0 is the cosine of the angle between the travelling direction
before and after the scattering event. In Eq. (3), 𝜒 , 𝑘𝑒𝑓𝑓 , and �̄� are
the fission spectrum, the effective multiplication factor and the average
number of neutrons emitted per fission reaction, respectively. Finally,
𝜙 is the scalar flux and 𝑆𝑒𝑥 is an external neutron source.

5.1. The one dimensional P3 approximation

Since the SP3 is a simplification of the third order spherical (P3)
approximation of the transport equation, which is derived from the 𝑁-
th order spherical harmonics (P𝑁 ) approximation, the first step is to
obtain the equations for the P𝑁 approximation in 1D. This last approach
consists in expanding with 𝑁 Legendre’s polynomials the angular terms
of the one dimensional neutron transport equation (Stacey, 2007; Lewis
and Miller, 1984). From Burrone (2018), Lewis and Miller (1984),
Kaplan (1992), for any function 𝑤(𝜇), its expansion reads as follows:

𝑤(𝜇) ≈
𝑁
∑

𝑛=0
(2𝑛 + 1)𝑃𝑛(𝜇)𝑤𝑛 (4)

where

𝑤𝑛 =
1
2 ∫

1

−1
𝑤(𝜇)𝑃𝑛(𝜇)𝑑𝜇. (5)

Here, 𝑃𝑛 is the 𝑛-th order Legendre’s function. Therefore, by replacing
with Eq. (4) the terms of Eq. (2), which have an angular dependency,
hence the angular neutron flux, the scattering cross section, and the
source term, the P𝑁 approximation is obtained (Stacey, 2007; Burrone,
2018; Lewis and Miller, 1984; Dürigen, 2013). At this point, the P3 ap-
proximation is obtained by inserting 𝑛 = 0, 1, 2, 3, hence by considering
only the first four orders, obtaining the following four equations
𝜕𝜙1,𝑔(𝑥)
𝜕𝑥

+
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,0,𝑔𝑔(𝑥)
]

𝜙0,𝑔(𝑥) = �̃�0,𝑔(𝑥) (6)

2
3
𝜕𝜙2,𝑔(𝑥)
𝜕𝑥

+ 1
3
𝜕𝜙0,𝑔(𝑥)
𝜕𝑥

+
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,1,𝑔𝑔(𝑥)
]

𝜙1,𝑔(𝑥) = 0 (7)

3
5
𝜕𝜙3,𝑔(𝑥)
𝜕𝑥

+ 2
5
𝜕𝜙1,𝑔(𝑥)
𝜕𝑥

+
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,2,𝑔𝑔(𝑥)
]

𝜙2,𝑔(𝑥) = 0 (8)

3
7
𝜕𝜙2,𝑔(𝑥)
𝜕𝑥

+
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,3,𝑔𝑔(𝑥)
]

𝜙3,𝑔(𝑥) = 0 (9)

where

�̃�0,𝑔(𝑥) =
𝐺
∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑠,0,𝑔′𝑔(𝑥)𝜙0,𝑔′ (𝑥) + 𝑆0,𝑔(𝑥) =

=
𝐺
∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑠,0,𝑔′𝑔(𝑥)𝜙0,𝑔′ (𝑥)+

+
𝜒𝑔(𝑥)
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1
�̄�𝑔′ (𝑥)𝛴𝑓,𝑔′ (𝑥)𝜙0,𝑔′ (𝑥) + 𝑆𝑒𝑥,0,𝑔(𝑥)

(10)

(Stacey, 2007; Burrone, 2018; Dürigen, 2013; Lewis and Miller, 1984).
Similarly to Dürigen (2013), also here, it is assumed that the higher

order scattering between energy groups is neglected. From this assump-
tion, the within-group form is obtained (Dürigen, 2013). If the higher
order scattering between energy groups would be considered, to solve
such system would require a very large resources demand Dürigen
(2013). However, in Section 6, an approach is presented to account
for the first order scattering between energy groups, without increasing
the resources demand. Furthermore, the external neutron source can be
assumed to be isotropic, implying that only 𝑆𝑒𝑥,0,𝑔(𝑥) is unequal zero.
From Eq. (7), the neutron current 𝜙1,𝑔(𝑥) can be obtained:

𝜙1,𝑔(𝑥) = −𝐷0,𝑔(𝑥)
𝜕
𝜕𝑥

[

𝜙0,𝑔(𝑥) + 2𝜙2,𝑔(𝑥)
]

(11)

(Dürigen, 2013). Using Eq. (9), an expression for the third order flux
can be written:

𝜙3,𝑔(𝑥) = −𝐷1,𝑔(𝑥)
𝜕
𝜕𝑥
𝜙2,𝑔(𝑥) (12)

(Dürigen, 2013). Here, 𝐷0,𝑔 and 𝐷1,𝑔 are the zeroth and first order
diffusion coefficients, respectively, which are defined as

𝐷0,𝑔(𝑥) =
1

3
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,1,𝑔𝑔(𝑥)
] (13)

𝐷1,𝑔(𝑥) =
3

7
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,3,𝑔𝑔(𝑥)
] (14)

(Stacey, 2007; Dürigen, 2013). By defining 𝐹0,𝑔(𝑥) and 𝐹1,𝑔(𝑥) as follows

𝐹0,𝑔(𝑥) = 𝜙0,𝑔(𝑥) + 2𝜙2,𝑔(𝑥) (15)

𝐹1,𝑔(𝑥) = 𝜙2,𝑔(𝑥). (16)

Eq. (11), and (12) can be rewritten as

𝜙1,𝑔(𝑥) = −𝐷0,𝑔(𝑥)
𝜕
𝜕𝑥
𝐹0,𝑔(𝑥) (17)

and

𝜙3,𝑔(𝑥) = −𝐷1,𝑔(𝑥)
𝜕
𝜕𝑥
𝐹1,𝑔(𝑥) (18)

respectivelly.
The next step is to insert the equations with an odd 𝑛 in the ones

with an even 𝑛. Therefore, in Eqs. (6) and (8), the definitions of the
neutron current, third order flux as well as of 𝐹0,𝑔 and 𝐹1,𝑔 are inserted,
leading to

− 𝜕
𝜕𝑥

[

𝐷0,𝑔(𝑥)
𝜕
𝜕𝑥
𝐹0,𝑔(𝑥)

]

+ 𝐹0,𝑔(𝑥)
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,0,𝑔𝑔(𝑥)
]

+

−2𝐹1,𝑔(𝑥)
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,0,𝑔𝑔(𝑥)
]

= �̃�0,𝑔(𝑥)
(19)

−2
3
𝐹0,𝑔(𝑥)

[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,0,𝑔𝑔(𝑥)
]

− 𝜕
𝜕𝑥

[

𝐷1,𝑔(𝑥)
𝜕
𝜕𝑥
𝐹1,𝑔(𝑥)

]

+

+𝐹1,𝑔(𝑥)
{4
3
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,0,𝑔𝑔(𝑥)
]

+ 5
3
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,2,𝑔𝑔(𝑥)
]

}

=

= −2
3
�̃�0,𝑔(𝑥).

(20)

Including also in the source term the definitions for 𝐹0,𝑔 and 𝐹1,𝑔 , this
is expressed as follows:

�̃�0,𝑔(𝑥) =
𝐺
∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑠,0,𝑔′𝑔(𝑥)

[

𝐹0,𝑔′ (𝑥) − 2𝐹1,𝑔′ (𝑥)
]

+

+
𝜒𝑔(𝑥)
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1
�̄�𝑔′ (𝑥)𝛴𝑓,𝑔′ (𝑥)

[

𝐹0,𝑔′ (𝑥) − 2𝐹1,𝑔′ (𝑥)
]

+ 𝑆𝑒𝑥,0,𝑔(𝑥).

(21)

6. Alternative definition of the zeroth order diffusion coefficient

At this point, some considerations must be made regarding the
zeroth order diffusion coefficient. For this quantity, an alternative
definition can be found, if the first order scattering between energy
groups is not neglected. Hence, considering the zeroth as well as first
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order scattering between energy groups, the zeroth order diffusion
coefficient is written as follows

𝐷0,𝑔(𝑥) =
1

3
[

𝛴𝑡,𝑔(𝑥) −
∑𝐺
𝑔′=1 𝛴𝑠,1,𝑔′𝑔(𝑥)

] . (22)

As explained in Bell and Glasstone (1970), considering a continuous
energy spectrum, the following assumption can be adopted:

∫ 𝛴𝑠,1(𝑥,𝐸′ → 𝐸)𝜙1(𝑥,𝐸′)𝑑𝐸′ ≈ ∫ 𝛴𝑠,1(𝑥,𝐸 → 𝐸′).𝜙1(𝑥,𝐸)𝑑𝐸. (23)

This assumption is based on the argument that for the left hand side
of Eq. (23) the contribution from the slowing down region, hence
from scattering processes with 𝐸′ > 𝐸, is nearly the same as the
one from the slowing down region for the right hand side, hence for
scattering processes with 𝐸 > 𝐸′ (Bell and Glasstone, 1970; Beckert
and Grundmann, 2007).

Reformulating the macroscopic scattering cross section of first or-
der, the left hand side can be written as

∫ 𝛴𝑠,1(𝑥,𝐸 → 𝐸′)𝜙1(𝑥,𝐸′)𝑑𝐸′ = 𝛴𝑠,0�̄�0(𝑥,𝐸)(𝑥,𝐸 → 𝐸′)𝜙1(𝑥,𝐸)𝑑𝐸

(24)

where �̄�0(𝑥,𝐸) is the average cosine of the scattering angle, which is
𝜃0 (Beckert and Grundmann, 2007).

�̄�0(𝑥,𝐸) is also involved in the definition of the macroscopic trans-
port cross section, which can be written as

𝛴𝑡𝑟(𝑥,𝐸) ≡ 𝛴𝑡(𝑥,𝐸)∫ 𝛴𝑠,1(𝑥,𝐸 → 𝐸′)𝑑𝐸′ = 𝛴𝑡(𝑥,𝐸) − �̄�0(𝑥,𝐸)𝛴𝑠,0(𝑥,𝐸)

(25)

(Beckert and Grundmann, 2007).
Discretizing the energy spectrum in Eq. (25), the following defini-

tion of the transport cross section is obtained

𝛴𝑡𝑟,𝑔(𝑥) ≡ 𝛴𝑡,𝑔(𝑥) −
𝐺
∑

𝑔′=1
𝛴𝑠,1,𝑔′𝑔(𝑥) (26)

(Beckert and Grundmann, 2007).
Inserting Eq. (26) in the definition of 𝐷0,𝑔(𝑥), hence Eq. (22), leads

to the following alternative formulation of the zeroth order diffusion
coefficient:

𝐷0,𝑔(𝑥) =
1

3𝛴𝑡𝑟,𝑔(𝑥)
(27)

(Beckert and Grundmann, 2007). Based on the assumption of Eq. (23),
this approach allows to consider for the first order scattering between
energy groups, without drastically increasing the resources demand for
the computation. In FENNECS, both definitions of the zeroth order
diffusion coefficient are implemented. However, the definition given
in Eq. (13) is the most used one, and therefore it is the default option.

6.1. The SP3 approximation

The SP3 approximation of the transport equation is obtained by
extending the one-dimensional P3 approximation to three-dimensional,
without substituting the Legendre’s polynomials with spherical har-
monics functions (Stacey, 2007). As explained in Section 4, in the
finite element method, the geometry is discretized into elements. At
this point, a first step towards the finite elements discretization can be
done: it is assumed that the nuclear data are constant within the finite
element 𝑒. Consequently, the two equations of the SP3 approximation
can be written as
{

−𝐷𝑒
0,𝑔𝛥 +

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]}

𝐹0,𝑔(𝑟) − 2
[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐹1,𝑔(𝑟) =

= �̃�0,𝑔(𝑟),∀𝑟 ∈ 𝑒
(28)

Fig. 1. Neighbouring elements 𝑒 and 𝑒 + 1, touching in 𝑥𝑏.

−2
3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐹0,𝑔(𝑟) +
{

𝐷𝑒
1,𝑔𝛥 + 4

3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

+

+ 5
3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,2,𝑔𝑔

]}

𝐹1,𝑔(𝑟) = −2
3
�̃�0,𝑔(𝑟),∀𝑟 ∈ 𝑒

(29)

with

�̃�0,𝑔(𝑟) =
𝐺
∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑒
𝑠,0,𝑔′𝑔

[

𝐹0,𝑔′ (𝑟) − 2𝐹1,𝑔′ (𝑟)
]

+

+
𝜒𝑒𝑔
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1
�̄�𝑒𝑔′𝛴

𝑒
𝑓 ,𝑔′

[

𝐹0,𝑔′ (𝑟) − 2𝐹1,𝑔′ (𝑟)
]

+ 𝑆𝑒𝑥,0,𝑔(𝑟),∀𝑟 ∈ 𝑒

(30)

and

𝐹0,𝑔(𝑟) = 𝜙0,𝑔(𝑟) + 2𝜙2,𝑔(𝑟) (31)

𝐹1,𝑔(𝑟) = 𝜙2,𝑔(𝑟). (32)

6.2. Interface boundary condition

The interface, or continuity, boundary condition has the goal to
ensure that the angular neutron flux is continuous between finite
elements. As it was done for the two SP3 equations, the derivation will
be firstly carried out in 1D and then extended for 3D. To ensure the
continuity for the two elements 𝑒 and 𝑒 + 1, represented in Fig. 1, it
must be imposed that the angular neutron flux must be identical in the
touching point 𝑥𝑏, hence

𝜓𝑒𝑔 (𝑥𝑏, 𝜇) = 𝜓𝑒+1𝑔 (𝑥𝑏, 𝜇) (33)

(Dürigen, 2013). Here, applying the P3 approximation, hence expand-
ing the angular flux in terms of Legendre’s polynomials up to the third
order, leads to the following four equations:

𝜙𝑒𝑚,𝑔(𝑥𝑏) = 𝜙𝑒+1𝑚,𝑔 (𝑥𝑏), 𝑚 = 0, 1, 2, 3 (34)

(Dürigen, 2013).
After the inclusion of the expressions for the neutron current, third

order flux, 𝐹0 and 𝐹1, these four equations can be written compactly as

𝐹 𝑒𝑘,𝑔(𝑥𝑏) = 𝐹 𝑒+1𝑘,𝑔 (𝑥𝑏), 𝑘 = 0, 1 (35)

𝐷𝑒
𝑘,𝑔

𝜕
𝜕𝑥
𝐹 𝑒𝑘,𝑔(𝑥𝑏) −𝐷

𝑒+1
𝑘,𝑔

𝜕
𝜕𝑥
𝐹 𝑒+1𝑘,𝑔 (𝑥𝑏) = 0, 𝑘 = 0, 1 (36)

(Dürigen, 2013). Inserting the first equation in the second one leads to

[

𝐷𝑒
𝑘,𝑔 −𝐷

𝑒+1
𝑘,𝑔

] 𝜕
𝜕𝑥
𝐹 𝑒𝑘,𝑔(𝑥𝑏) = 0, 𝑘 = 0, 1. (37)

This equation is fulfilled if

𝐷𝑒
𝑘,𝑔 −𝐷

𝑒+1
𝑘,𝑔 = 0, 𝑘 = 0, 1 (38)

or
𝜕
𝜕𝑥
𝐹 𝑒𝑘,𝑔(𝑥𝑏) = 0, 𝑘 = 0, 1. (39)

Eq. (38) is true if the coefficients of both finite elements are identical
and this cannot be guaranteed. Therefore, Eq. (39) must hold and it
constitutes the continuity boundary condition. Extending to 3D, the
equation can be written as

∇𝐹𝑘,𝑔(𝑟) = 0, 𝑘 = 0, 1,∀𝑟 ∈ 𝜕𝛤 𝐼 . (40)
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Fig. 2. Representation of the external boundary condition.

Here, 𝜕𝛤 𝐼 is the common face of the prismatic elements 𝑒 and 𝑒 + 1.
Actually, it is the intersection between the two finite elements, hence
𝜕𝛤 𝐼 = 𝜕𝛤 𝑒 ∩ 𝜕𝛤 𝑒+1. More in general, Eq. (40) can be written as

𝐷𝑘,𝑔∇𝐹𝑘,𝑔(𝑟) = − 1
𝛾(𝑟)

[

𝛽𝑘(𝑟)𝐹0,𝑔(𝑟) + 𝛼𝑘(𝑟)𝐹1,𝑔(𝑟)
]

, 𝑘 = 0, 1,∀𝑟 ∈ 𝜕𝛤 𝐼 (41)

where, for the continuity boundary condition, the following holds:
1
𝛾(𝑟)

= 0,∀𝑟 ∈ 𝜕𝛤 𝐼 . (42)

6.3. External boundary conditions

Also for the external boundary conditions, firstly the one-dimensional
geometry will be considered. As depicted in Fig. 2, at the external
boundary of the geometry, the angular flux at the boundary, hence
𝜓𝑔(𝑥𝑏, 𝜇), is equal to the incoming 𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇) angular flux, if −1 ≤ 𝜇 ≤ 0,
hence:

𝜓𝑔(𝑥𝑏, 𝜇) = 𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇),−1 ≤ 𝜇 ≤ 0. (43)

By expanding 𝜓𝑔(𝑥𝑏, 𝜇) with the first three Legendre’s polynomials and
by multiplying both sides of the equation by 𝑃𝑚(𝜇), after the integration
over 𝜇, Eq. (43) can be written as
3
∑

𝑛=0
𝜙𝑛,𝑔(𝑥𝑏)∫

0

−1
𝑃𝑛(𝜇)𝑃𝑚(𝜇)𝑑𝜇 = ∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃𝑚(𝜇)𝑑𝜇,−1 ≤ 𝜇 ≤ 0. (44)

Since only the odd Legendre’s polynomials indicate the directionality,
after the evaluation of the integrals for 𝑚 = 1 and 𝑚 = 3, the following
two equations are obtained:

−1
2
𝜙0,𝑔(𝑥𝑏) + 𝜙1,𝑔(𝑥𝑏) −

5
8
𝜙2,𝑔(𝑥𝑏) = ∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃1(𝜇)𝑑𝜇 (45)

1
8
𝜙0,𝑔(𝑥𝑏) −

5
8
𝜙2,𝑔(𝑥𝑏) + 𝜙3,𝑔(𝑥𝑏) = ∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃3(𝜇)𝑑𝜇. (46)

The so-called Marshak boundary condition is obtained by inserting the
expressions for the odd order fluxes as well as for 𝐹0 and 𝐹1, obtaining
the following expressions:

−1
2
𝐹0,𝑔(𝑥𝑏) +

3
8
𝐹1,𝑔(𝑥𝑏) −𝐷0,𝑔

𝜕
𝜕𝑥
𝐹0,𝑔(𝑥𝑏) = ∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃1(𝜇)𝑑𝜇 (47)

1
8
𝐹0,𝑔(𝑥𝑏) −

7
8
𝐹1,𝑔(𝑥𝑏) −𝐷1,𝑔

𝜕
𝜕𝑥
𝐹1,𝑔(𝑥𝑏) = ∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃3(𝜇)𝑑𝜇 (48)

(Dürigen, 2013).

At this point, 𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇) must be evaluated, which depends on the
type of boundary condition. For the three types of boundary conditions,
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇) can be expressed as

𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇) = 𝜏(𝑥𝑏)𝜓𝑔(𝑥𝑏,−𝜇),−1 ≤ 𝜇 ≤ 0 (49)

with

𝜏(𝑥𝑏) =

⎧

⎪

⎨

⎪

⎩

0, vacuum boundary condition, hence ∀𝑥𝑏 ∈ 𝜕𝛤 𝑉

1, reflective boundary condition, hence ∀𝑥𝑏 ∈ 𝜕𝛤𝑅

−1, zero-flux boundary condition, hence ∀𝑥𝑏 ∈ 𝜕𝛤𝑍𝐹
(50)

where 𝜕𝛤 𝑉 , 𝜕𝛤𝑅, and 𝜕𝛤𝑍𝐹 are the vacuum, reflective and zero flux
boundary of the geometry, respectivelly (Dürigen, 2013). In Eq. (49),
the angular flux can be expanded in terms of Legendre’s polynomials
and then multiplied by 𝑃1(𝜇) and 𝑃3(𝜇). After the integration over the
domain of 𝜇, the following two equations are obtained:

∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃1(𝜇)𝑑𝜇 =

=𝜏(𝑥𝑏)∫−1

[

𝑃1(𝜇)𝑃0(−𝜇)𝜙0,𝑔(𝑥𝑏) + 3𝑃1(𝜇)𝑃1(−𝜇)𝜙1,𝑔(𝑥𝑏)+

+5𝑃1(𝜇)𝑃2(−𝜇)𝜙2,𝑔(𝑥𝑏) + 𝑃1(𝜇)𝑃3(−𝜇)𝜙3,𝑔(𝑥𝑏)
]

𝑑𝜇

(51)

∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃3(𝜇)𝑑𝜇 =

=𝜏(𝑥𝑏)∫−1

[

𝑃3(𝜇)𝑃0(−𝜇)𝜙0,𝑔(𝑥𝑏) + 3𝑃3(𝜇)𝑃1(−𝜇)𝜙1,𝑔(𝑥𝑏)+

+5𝑃3(𝜇)𝑃2(−𝜇)𝜙2,𝑔(𝑥𝑏) + 𝑃3(𝜇)𝑃3(−𝜇)𝜙3,𝑔(𝑥𝑏)
]

𝑑𝜇.

(52)

As stated in Phillips (2006), the order of the Legendre’s polynomial
indicates if the function is odd or even: if the Legendre’s polynomial
has an even order, it will be an even function and on the contrary,
if the order is odd, the function will be odd. For even functions, the
following holds:

𝑔(−𝑥) = 𝑔(𝑥) (53)

(Powers, 2007). Similarly, odd functions, obey to the following relation:

𝑔(−𝑥) = −𝑔(𝑥) (54)

(Powers, 2007). Inserting these properties in Eqs. (51) and (52) and
including the formulations for 𝐹0 and 𝐹1, as well as for the odd order
fluxes, leads to

∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃1(𝜇)𝑑𝜇 = 𝜏(𝑥𝑏)

[

−1
2
𝐹0,𝑔(𝑥𝑏) +

3
8
𝐹1,𝑔(𝑥𝑏) +𝐷0,𝑔

𝜕
𝜕𝑥
𝐹0,𝑔(𝑥𝑏)

]

(55)

∫

0

−1
𝜓 𝑖𝑛𝑔 (𝑥𝑏, 𝜇)𝑃3(𝜇)𝑑𝜇 = 𝜏(𝑥𝑏)

[ 1
8
𝐹0,𝑔(𝑥𝑏) −

7
8
𝐹1,𝑔(𝑥𝑏) +𝐷1,𝑔

𝜕
𝜕𝑥
𝐹1,𝑔(𝑥𝑏)

]

.

(56)

Here, on the left hand side, the right hand side of the Marshak boundary
condition can be recognized. Therefore, Eqs. (47) and (48) can be
replaced in Eq. (55), and (56), leading to

−1
2
𝐹0,𝑔(𝑥𝑏) +

3
8
𝐹1,𝑔(𝑥𝑏) −𝐷0,𝑔

𝜕
𝜕𝑥
𝐹0,𝑔(𝑥𝑏) =

= 𝜏(𝑥𝑏)
[

−1
2
𝐹0,𝑔(𝑥𝑏) +

3
8
𝐹1,𝑔(𝑥𝑏) +𝐷0,𝑔

𝜕
𝜕𝑥
𝐹0,𝑔(𝑥𝑏)

]
(57)

1
8
𝐹0,𝑔(𝑥𝑏) −

7
8
𝐹1,𝑔(𝑥𝑏) −𝐷1,𝑔

𝜕
𝜕𝑥
𝐹1,𝑔(𝑥𝑏) =

= 𝜏(𝑥𝑏)
[ 1
8
𝐹0,𝑔(𝑥𝑏) −

7
8
𝐹1,𝑔(𝑥𝑏)+ +𝐷1,𝑔

𝜕
𝜕𝑥
𝐹1,𝑔(𝑥𝑏)

]

.
(58)

From Eqs. (57) and (58), the vacuum boundary condition can be
obtained inserting 𝜏(𝑥𝑏) = 0. Finally, generalizing the equations to 3D
and using the structure of Eq. (41) leads to

𝐷0,𝑔∇𝐹0,𝑔(𝑟) = −1
8
[

4𝐹0,𝑔(𝑟) − 3𝐹1,𝑔(𝑟)
]

,∀𝑥𝑏 ∈ 𝜕𝛤 𝑉 (59)
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Fig. 3. Representation of the reflective boundary condition.

𝐷1,𝑔∇𝐹1,𝑔(𝑟) = −1
8
[

−𝐹0,𝑔(𝑟) + 7𝐹1,𝑔(𝑟)
]

,∀𝑥𝑏 ∈ 𝜕𝛤 𝑉 . (60)

The reflective boundary condition, represented in Fig. 3, can be
obtained with 𝜏(𝑥𝑏) = 1. Therefore, the equations for 3D can be written
as

𝐷0,𝑔∇𝐹0,𝑔(𝑟) = 0,∀𝑟 ∈ 𝜕𝛤𝑅 (61)

𝐷1,𝑔∇𝐹1,𝑔(𝑟) = 0,∀𝑟 ∈ 𝜕𝛤𝑅. (62)

Hence, using the notation of Eq. (41), the reflective boundary condition
can be expressed using the following coefficients
1
𝛾(𝑟)

= 1,∀𝑟 ∈ 𝜕𝛤𝑅, (63)

𝛽0(𝑟) = 0,∀𝑟 ∈ 𝜕𝛤𝑅, (64)

𝛽1(𝑟) = 0,∀𝑟 ∈ 𝜕𝛤𝑅, (65)

𝛼0(𝑟) = 0,∀𝑟 ∈ 𝜕𝛤𝑅, (66)

𝛼1(𝑟) = 0,∀𝑟 ∈ 𝜕𝛤𝑅. (67)

The zero-flux boundary condition, depicted in Fig. 4, can be ob-
tained including 𝜏(𝑥𝑏) = −1. The obtained equations in 3D are the
following

𝐷0,𝑔∇𝐹0,𝑔(𝑟) = ∞,∀𝑟 ∈ 𝜕𝛤𝑍𝐹 (68)

𝐷1,𝑔∇𝐹1,𝑔(𝑟) = ∞,∀𝑟 ∈ 𝜕𝛤𝑍𝐹 . (69)

Hence, using the notation of Eq. (41), for the zero-flux boundary
condition, the coefficients take the following values
1
𝛾(𝑟)

= ∞,∀𝑟 ∈ 𝜕𝛤𝑍𝐹 , (70)

𝛽0(𝑟) = 4,∀𝑟 ∈ 𝜕𝛤𝑍𝐹 , (71)

𝛽1(𝑟) = −1,∀𝑟 ∈ 𝜕𝛤𝑍𝐹 , (72)

𝛼0(𝑟) = −3,∀𝑟 ∈ 𝜕𝛤𝑍𝐹 , (73)

𝛼1(𝑟) = 7,∀𝑟 ∈ 𝜕𝛤𝑍𝐹 . (74)

Fig. 4. Representation of the zero-flux boundary condition.

7. The Galerkin representation of the SP𝟑 equations

To derive the Galerkin form of the SP3 equations, the same approach
explained in Section 4, which was used for the diffusion equation in
FENNECS, described in Seubert (2020), will be used. Considering that
FENNECS uses prismatic upright prism, depicted in Fig. 5, six basis, or
test, functions 𝜑𝑖(𝑥𝑒, 𝑦𝑒, 𝑧𝑒), where 𝑖 ∈ {1,… , 6}, are necessary. The six
test functions are defined as follows:

𝜑1(𝑥𝑒, 𝑦𝑒, 𝑧𝑒) =
1
2
(1 − 𝑧𝑒)𝑥𝑒 (75)

𝜑2(𝑥𝑒, 𝑦𝑒, 𝑧𝑒) =
1
2
(1 − 𝑧𝑒)𝑦𝑒 (76)

𝜑3(𝑥𝑒, 𝑦𝑒, 𝑧𝑒) =
1
2
(1 − 𝑧𝑒)(1 − 𝑥𝑒 − 𝑦𝑒) (77)

𝜑4(𝑥𝑒, 𝑦𝑒, 𝑧𝑒) =
1
2
(1 + 𝑧𝑒)𝑥𝑒 (78)

𝜑5(𝑥𝑒, 𝑦𝑒, 𝑧𝑒) =
1
2
(1 + 𝑧𝑒)𝑦𝑒 (79)

𝜑6(𝑥𝑒, 𝑦𝑒, 𝑧𝑒) =
1
2
(1 + 𝑧𝑒)(1 − 𝑥𝑒 − 𝑦𝑒) (80)

(Seubert et al., 2023). As explained in Section 4, the Galerkin repre-
sentation is obtained by firstly multiplying the two derived equations,
hence Eqs. (28) and (29), by the test functions. After integration over
𝛤 𝑒, hence the finite element domain, the following two equations are
obtained:

∫𝛤 𝑒
𝜑𝑖(𝑟)

{

−𝐷𝑒
0,𝑔𝛥 +

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]}

𝐹0,𝑔(𝑟)𝑑𝑉 𝑒+

−∫𝛤 𝑒
2𝜑𝑖(𝑟)

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐹1,𝑔(𝑟)𝑑𝑉 𝑒 = ∫𝛤 𝑒
𝜑𝑖(𝑟)�̃�0,𝑔(𝑟)𝑑𝑉 𝑒

(81)

−∫𝛤 𝑒
2
3
𝜑𝑖(𝑟)

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐹0,𝑔(𝑟)𝑑𝑉 𝑒+

+∫𝛤 𝑒
𝜑𝑖(𝑟)

{

𝐷𝑒
1,𝑔𝛥 + 4

3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

+ 5
3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,2,𝑔𝑔

]}

𝐹1,𝑔(𝑟)𝑑𝑉 𝑒 =

= −∫𝛤 𝑒
𝜑𝑖(𝑟)

2
3
�̃�0,𝑔(𝑟)𝑑𝑉 𝑒.

(82)

After a closer look to the terms ∫𝛤 𝑒 𝜑𝑖(𝑟)𝐷
𝑒
𝑘,𝑔𝛥𝐹𝑘,𝑔(𝑟)𝑑𝑉

𝑒, with 𝑘 = 0, 1,
it can be observed that these can be obtained by applying the product
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Fig. 5. Local coordinate system of the upright prismatic finite element used in FENNECS, composed by the axes 𝑥𝑒, 𝑦𝑒, and 𝑧𝑒.

rule of differentiation on 𝐷𝑒
𝑘,𝑔∇

[

𝜑𝑖(𝑟)∇𝐹𝑘,𝑔(𝑟)
]

, explained for example
in Berresford and Rockett (2012), hence

∫𝛤 𝑒
𝐷𝑒
𝑘,𝑔∇

[

𝜑𝑖(𝑟)∇𝐹𝑘,𝑔(𝑟)
]

𝑑𝑉 𝑒 = ∫𝛤 𝑒
𝐷𝑒
𝑘,𝑔∇𝜑𝑖(𝑟)∇𝐹𝑘,𝑔(𝑟)𝑑𝑉

𝑒+

+∫𝛤 𝑒
𝐷𝑒
𝑘,𝑔𝜑𝑖(𝑟)𝛥𝐹𝑘,𝑔(𝑟)𝑑𝑉

𝑒, 𝑘 = 0, 1.
(83)

Here, on the left hand side, the Gauss theorem, described for example
in Tang (2007), can be applied:

∫𝛤 𝑒
𝐷𝑒
𝑘,𝑔𝜑𝑖(𝑟)𝛥𝐹𝑘,𝑔(𝑟)𝑑𝑉

𝑒 = −∫𝛤 𝑒
𝐷𝑒
𝑘,𝑔∇𝜑𝑖(𝑟)∇𝐹𝑘,𝑔(𝑟)𝑑𝑉

𝑒+

+∫𝜕𝛤 𝑒
𝐷𝑒
𝑘,𝑔𝜑𝑖(𝑟)∇𝐹𝑘,𝑔(𝑟)𝑑𝐴

𝑒, 𝑘 = 0, 1.
(84)

Eq. (84) can now be inserted in Eqs. (81) and (82) leading to

∫𝛤 𝑒

{

𝐷𝑒
0,𝑔∇𝜑𝑖(𝑟)∇ +

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝜑𝑖(𝑟)
}

𝐹0,𝑔(𝑟)𝑑𝑉 𝑒+

−∫𝛤 𝑒
2𝜑𝑖(𝑟)

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐹1,𝑔(𝑟)𝑑𝑉 𝑒 = ∫𝛤 𝑒
𝜑𝑖(𝑟)�̃�0,𝑔(𝑟)𝑑𝑉 𝑒+

+∫𝜕𝛤 𝑒
𝐷𝑒

0,𝑔𝜑𝑖(𝑟)∇𝐹0,𝑔(𝑟)𝑑𝐴
𝑒,∀𝑟 ∈ 𝑒

(85)

− ∫𝛤 𝑒
2
3
𝜑𝑖(𝑟)

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐹0,𝑔(𝑟)𝑑𝑉 𝑒+

+ ∫𝛤 𝑒

{

𝐷𝑒
1,𝑔∇𝜑𝑖(𝑟)∇ + 4

3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝜑𝑖(𝑟) +

+ 5
3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,2,𝑔𝑔

]

𝜑𝑖(𝑟)
}

𝐹1,𝑔(𝑟)𝑑𝑉 𝑒 =

= −∫𝛤 𝑒
2
3
𝜑𝑖(𝑟)�̃�0,𝑔(𝑟)𝑑𝑉 𝑒 + ∫𝜕𝛤 𝑒

𝐷𝑒
1,𝑔𝜑𝑖(𝑟)∇𝐹1,𝑔(𝑟)𝑑𝐴

𝑒,∀𝑟 ∈ 𝑒.

(86)

Since in FENNECS, the eigenvalue problem is solved, no external
neutron source can be present. Therefore, 𝑆𝑒𝑥,0,𝑔(𝑟) = 0 and the neutron
source can be written as

∫𝛤 𝑒
�̃�0,𝑔(𝑟)𝜑𝑖(𝑟)𝑑𝑉 𝑒 = ∫𝛤 𝑒

𝜑𝑖(𝑟)

{ 𝐺
∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑒
𝑠,0,𝑔′𝑔

[

𝐹0,𝑔′ (𝑟) − 2𝐹1,𝑔′ (𝑟)
]

+

+
𝜒𝑒𝑔
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1
�̄�𝑒𝑔′𝛴

𝑒
𝑓 ,𝑔′

[

𝐹0,𝑔′ (𝑟) − 2𝐹1,𝑔′ (𝑟)
]

}

𝑑𝑉 𝑒,∀𝑟 ∈ 𝑒.

(87)

The next step consists in expanding the neutron flux distributions in
terms of the test functions, as given by Eq. (1), hence

𝐹𝑘,𝑔(𝑟) =
6
∑

𝑗=1
𝜑𝑗 (𝑟)𝑓 𝑒𝑘,𝑔,𝑗 ,∀𝑟 ∈ 𝑒, 𝑘 = 0, 1. (88)

where 𝑓 𝑒𝑘,𝑔,𝑗 are the expansions coefficients. The flux expansions can
now be inserted, leading to the weak form of the equations, hence

6
∑

𝑗=1
𝑓 𝑒0,𝑔,𝑗 ∫𝛤 𝑒

{

𝐷𝑒
0,𝑔∇𝜑𝑖(𝑟)∇𝜑𝑗 (𝑟) +

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝜑𝑖(𝑟)𝜑𝑗 (𝑟)
}

𝑑𝑉 𝑒+

−
6
∑

𝑗=1
𝑓 𝑒1,𝑔,𝑗 ∫𝛤 𝑒

2𝜑𝑖(𝑟)𝜑𝑗 (𝑟)
[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

)𝑑𝑉 𝑒 = ∫𝛤 𝑒
𝜑𝑖(𝑟)�̃�0,𝑔(𝑟)𝑑𝑉 𝑒+

+
6
∑

𝑗=1
𝑓 𝑒0,𝑔,𝑗𝐷

𝑒
0,𝑔

5
∑

𝜂=1
∫𝜕𝛤 𝑒

𝜑𝑖(𝑟)∇𝜑𝑗 (𝑟)𝑑𝐴𝑒,𝜂 ,∀𝑟 ∈ 𝑒

(89)

−
6
∑

𝑗=1
𝑓 𝑒0,𝑔,𝑗 ∫𝛤 𝑒

2
3
𝜑𝑖(𝑟)𝜑𝑗 (𝑟)

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝑑𝑉 𝑒+

+
6
∑

𝑗=1
𝑓 𝑒1,𝑔,𝑗 ∫𝛤 𝑒

{

𝐷𝑒
1,𝑔∇𝜑𝑖(𝑟)∇𝜑𝑗 (𝑟)+

+ 4
3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝜑𝑖(𝑟)𝜑𝑗 (𝑟) +
5
3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,2,𝑔𝑔

]

𝜑𝑖(𝑟)𝜑𝑗 (𝑟)
}

𝑑𝑉 𝑒 =

= −∫𝛤 𝑒
2
3
𝜑𝑖(𝑟)�̃�0,𝑔(𝑟)𝑑𝑉 𝑒+

+
6
∑

𝑗=1
𝑓 𝑒1,𝑔,𝑗𝐷

𝑒
1,𝑔

5
∑

𝜂=1
∫𝜕𝛤 𝑒

𝜑𝑖(𝑟)∇𝜑𝑗 (𝑟)𝑑𝐴𝑒,𝜂 ,∀𝑟 ∈ 𝑒

(90)

with

∫𝛤 𝑒
�̃�0,𝑔(𝑟)𝜑𝑖(𝑟)𝑑𝑉 𝑒 =

=
6
∑

𝑗=1
∫𝛤 𝑒

𝜑𝑖(𝑟)𝜑𝑗 (𝑟)

{ 𝐺
∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑒
𝑠,0,𝑔′𝑔

[

𝑓 𝑒0,𝑔′ ,𝑗 − 2𝑓 𝑒1,𝑔′ ,𝑗
]

+

+
𝜒𝑒𝑔
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1
�̄�𝑒𝑔′𝛴

𝑒
𝑓 ,𝑔′

[

𝑓 𝑒0,𝑔′ ,𝑗 − 2𝑓 𝑒1,𝑔′ ,𝑗
]

}

𝑑𝑉 𝑒,∀𝑟 ∈ 𝑒.

(91)
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Table 1
Values of the boundary conditions coefficients.

1
𝛾𝑒,𝜂

𝛽𝑒,𝜂0 𝛽𝑒,𝜂1 𝛼𝑒,𝜂0 𝛼𝑒,𝜂1

Interface boundary condition, ∀𝑟 ∈ 𝜕𝛤 𝐼 0 0 0 0 0
Vacuum boundary condition, ∀𝑟 ∈ 𝜕𝛤 𝑉 1

8
4 −1 −3 7

Reflective boundary condition, ∀𝑟 ∈ 𝜕𝛤𝑅 1 0 0 0 0
Zero flux boundary condition, ∀𝑟 ∈ 𝜕𝛤𝑍𝐹 ∞ 4 −1 −3 7

Here, the integral over the surface area of the finite element, hence 𝑑𝐴,
was split into five integrals, one for each face of the prismatic finite
element. Each face of the element is addressed with 𝜂.

Now, it arises the necessity to evaluate the last term of Eqs. (89)
and (90). The same term is actually obtained by transforming Eq. (41)
in the Galerkin form, which consists in performing the multiplication
by the test functions, integrating over the surface area and expanding
the flux terms. After these steps, Eq. (41) can be written as

𝑓 𝑒𝑘,𝑔,𝑗𝐷
𝑒
𝑘,𝑔

5
∑

𝜂=1
∫𝜕𝛤 𝑒,𝜂

𝜑𝑖(𝑟)∇𝜑𝑗 (𝑟)𝑑𝐴𝑒,𝜂 =

=
5
∑

𝜂=1

[

− 1
𝛾𝑒,𝜂

]

[

𝛽𝑒,𝜂𝑘 𝑓 𝑒0,𝑔,𝑗 + 𝛼
𝑒,𝜂
𝑘 𝑓 𝑒1,𝑔,𝑗

]

∫𝜕𝛤 𝑒,𝜂
𝜑𝑖(𝑟)𝜑𝑗 (𝑟)𝑑𝐴𝑒,𝜂 ,

𝑘 = 0, 1,∀𝑟 ∈ 𝜕𝛤 𝑒.

(92)

Finally, the general formulation for the boundary conditions, hence
Eq. (92), can be inserted in the SP3 equations. To express the SP3
equations to implement in FENNECS, the matrix- vector notation will
be used. The vectors have 𝑗 = 6 elements. The SP3 equations, including
the source term, can be written as

𝑓 𝑒0,𝑔

{

𝐷𝑒
0,𝑔𝐵

𝑒 +
[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐶𝑒 −𝐻𝑒

[

−
5
∑

𝜂=1

𝛽𝑒,𝜂0
𝛾𝑒,𝜂

]}

=

= 𝐶𝑒
{ 𝐺

∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑒
𝑠,0,𝑔′𝑔

[

𝑓 𝑒0,𝑔′ − 2𝑓 𝑒1,𝑔′
]

+

+
𝜒𝑒𝑔
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1
�̄�𝑒𝑔′𝛴

𝑒
𝑓 ,𝑔′

[

𝑓 𝑒0,𝑔′ − 2𝑓 𝑒1,𝑔′
]

}

+

+ 𝑓 𝑒1,𝑔

{

2
[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐶𝑒 +𝐻𝑒

[

−
5
∑

𝜂=1

𝛼𝑒,𝜂0
𝛾𝑒,𝜂

]}

(93)

𝑓 𝑒1,𝑔
{

𝐷𝑒
1,𝑔𝐵

𝑒 +
[ 4
3

(

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

)

+ 5
3

(

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,2,𝑔𝑔

)]

𝐶𝑒+

+𝐻𝑒

[

−
5
∑

𝜂=1

𝛼𝑒,𝜂1
𝛾𝑒,𝜂

]}

= −2
3
𝐶𝑒

{ 𝐺
∑

𝑔′=1,𝑔′≠𝑔
𝛴𝑒
𝑠,0,𝑔′𝑔

[

𝑓 𝑒0,𝑔′ − 2𝑓 𝑒1,𝑔′
]

+

+
𝜒𝑒𝑔
𝑘𝑒𝑓𝑓

𝐺
∑

𝑔′=1
�̄�𝑒𝑔′𝛴

𝑒
𝑓 ,𝑔′

[

𝑓 𝑒0,𝑔′ − 2𝑓 𝑒1,𝑔′
]

}

+

+ 𝑓 𝑒0,𝑔

{

2
3

[

𝛴𝑒
𝑡,𝑔 − 𝛴

𝑒
𝑠,0,𝑔𝑔

]

𝐶𝑒 +𝐻𝑒

[

−
5
∑

𝜂=1

𝛽𝑒,𝜂0
𝛾𝑒,𝜂

]}

.

(94)

The matrices 𝐵, 𝐶, and 𝐻 , which have a size of 6 by 6, are obtained
by evaluating the following integrals:

𝐵𝑒 = ∫𝛤 𝑒
∇�⃗�𝑇 (𝑟)∇�⃗�(𝑟)𝑑𝑉 𝑒,∀𝑟 ∈ 𝑒 (95)

𝐶𝑒 = ∫𝛤 𝑒
�⃗�𝑇 (𝑟)�⃗�(𝑟)𝑑𝑉 𝑒,∀𝑟 ∈ 𝑒 (96)

𝐻𝑒 =
5
∑

𝜂=1
∫𝜕𝛤 𝑒,𝜂

�⃗�(𝑟)�⃗�(𝑟)𝑑𝐴𝑒,𝜂 , 𝑘 = 0, 1,∀𝑟 ∈ 𝜕𝛤 𝑒. (97)

Here, the upper script 𝑇 indicates the transposed vector. For the
coefficients 𝛼𝑒,𝜂 , 𝛽𝑒,𝜂𝑘 , and 𝛾𝑒,𝜂𝑘 , since each of them correspond to a prisms
face, their value must be inserted depending on the boundary condition.
These values can be found in Table 1.

8. Algorithm

As stated at the beginning of this paper, FENNECS is a steady
state and – for the diffusion approximation only – time-dependent neu-
tron kinetics code. The solution procedure adopts the well-established
scheme of nested inner–outer iterations. The outer iteration is dedicated
to solve the eigenvalue problem (by either power or inverse vector
iteration by Wielandt), based on the current iterate of the fission
source distribution which, in turn, depends on the current iterates of
the group-wise neutron flux distributions. The inner iteration solves
the within-group problems for each energy group taking into account
group-to-group scattering. The finite element method applied in FEN-
NECS is used for the spatial discretization. As described by Eqs. (93)
and (94), the within-group problem can be cast into a system of linear
equations for each energy group. This system of equations and its
solution method are explained in the following.

Since FENNECS is a finite element code, as explained in Section 4, it
is necessary to formulate the equations with a global system matrix, a
vector of unknowns and the so-called load vector, located on the right
hand side of the equation. Therefore, firstly, we define the system for
each single element, so Eq. (93), and (94) are written as two systems
of linear equations, hence

𝐿𝑒𝑘,𝑔𝑓
𝑒
𝑘,𝑔 = �⃗�𝑒𝑘,𝑔 , 𝑘 = 0, 1. (98)

Here, 𝐿𝑒𝑘,𝑔 , the system matrix of equation 𝑘 and energy group 𝑔 of the
element 𝑒, which contains the terms present in the curly bracket on
the left hand side and it has a size of 6 by 6, since in FENNECS the
prismatic elements have 6 nodes. �⃗�𝑒𝑘,𝑔 , load vector of the element 𝑒,
includes all the right hand side of the equation. In particular, this term
can be separated into �⃗�𝑒𝑘,𝑔,𝑠𝑜𝑢𝑟𝑐𝑒, which contains the contribution due
to scattering and fission, and into the last line of the equation, which
depends on the term containing the fluxes. The 𝐾 systems of equations,
where 𝐾 is the number of elements in the geometry, are assembled in
a single global system of equations, hence

𝐿𝑘,𝑔𝑓𝑘,𝑔 = �⃗�𝑘,𝑔 , 𝑘 = 0, 1. (99)

In this section, it will be explained in a very simplified way how
the systems of equations are solved. The main steps, which will be
explained hereafter, are the following:

• Initialization
• Outer convergence loop

– Inner convergence loop for the first equation (𝑘 = 0)
– Inner convergence loop for the second equation (𝑘 = 1).

The first step consists in the initialization of the global components of
the system of equations, as explained in algorithm 1. As next step, the
outer convergence loop, described in algorithm 2 is entered. This last
algorithm is repeated until convergence is achieved. Within this loop,
firstly, the matrices 𝐿0,𝑔 and 𝐿1,𝑔 are assembled, based on algorithm
3. Afterwards, the right hand side is defined, firstly by adding the
neutron fission and scattering sources, as in algorithm 4, and then the
last line of Eq. (93), and (94), as in algorithm 5. The next step is the
calculation of 𝑓0,𝑔 and 𝑓1,𝑔 . These are obtained based on the system
matrices and load vectors, when the inner convergence loop, based on
the preconditioned conjugate method, called here PConjGrad achieves
the convergence. Due to the presence of two equations, this procedure
is performed twice. Then the scalar flux and effective multiplication
factors are obtained. Finally, in the outer loop, based on the power
method, the convergence is checked.



Annals of Nuclear Energy 200 (2024) 110303

9

S. lo Muzio and A. Seubert

Algorithm 1 Initialization
1: for 𝑔 = 1, 𝐺, 1 do
2: for 𝑘 = 0, 1, 1 do
3: Set the entries of, 𝐿𝑘,𝑔 , 𝑓𝑘,𝑔 and �⃗�𝑘,𝑔 to 0.
4: end for
5: end for

Algorithm 2 Outer convergence loop
1: while convergence=FALSE do
2: for 𝑔 = 1, 𝐺, 1 do
3: AssembleSysMatrix(𝐿0,𝑔)
4: AssembleSysMatrix(𝐿1,𝑔)
5: end for
6: for 𝑔 = 1, 𝐺, 1 do
7: AssembleSourceTerm( �⃗�0,𝑔)
8: AddFluxTerm(�⃗�0,𝑔 , 𝑓1,𝑔)
9: AssembleSourceTerm( �⃗�1,𝑔)

10: AddFluxTerm(�⃗�1,𝑔 , 𝑓0,𝑔)
11: end for
12: for 𝑔 = 1, 𝐺, 1 do
13: PConjGrad(𝐿0,𝑔 , �⃗�0,𝑔 , 𝑓0,𝑔)
14: PConjGrad(𝐿1,𝑔 , �⃗�1,𝑔 , 𝑓1,𝑔)
15: end for
16: for 𝑔 = 1, 𝐺, 1 do
17: 𝜙0,𝑔 = 𝑓0,𝑔 − 2𝑓1,𝑔
18: end for
19: Calculation of 𝑘𝑒𝑓𝑓
20: Convergence check fission source
21: end while

Algorithm 3 AssembleSysMatrix
1: for 𝑒 = 1, 𝐾, 1 do
2: Calculate 𝐵𝑒, 𝐶𝑒, and 𝐻𝑒

3: if 𝐿0,𝑔 is given as argument then
4: Calculate 𝐿𝑒0,𝑔
5: Insert 𝐿𝑒0,𝑔 in 𝐿0,𝑔
6: end if
7: if 𝐿1,𝑔 is given as argument then
8: Calculate 𝐿𝑒1,𝑔
9: Insert 𝐿𝑒1,𝑔 in 𝐿1,𝑔

10: end if
11: end for

9. Conclusion

To allow FENNECS to perform the safety assessment of (v)SMR
and MMR, the code was extended by an SP3 solver. In order to equip
the FENNECS code with a steady state SP3 solver, firstly, starting
from the one dimensional transport equation, the SP3 approximation
of the neutron transport equation was derived, including the boundary
conditions. The derived two equations were cast into the Galerkin form.
This step was necessary since the FENNECS code is based on the finite
elements formalism. Finally, an overview was given regarding how the
algorithms are structured in the SP3 solver of FENNECS.

As next step, the implemented new solver will be applied on simple
core configurations, in order to prove its functionality.
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Chapter 4

Verification

This chapter presents a collection of all the test cases that were used to verify the

newly implemented SP3 solver in FENNECS. Figure 4.1 explains more in detail the

approach used for the validation of the solver, including the test cases that were used.

The methodology developed is based on two approaches: the source of the macroscopic

cross section libraries involved in the simulation and the type of code used for the

comparison with the FENNECS SP3 solver.

Regarding the first approach, firstly, the verification was performed, based on test cases

with cross section libraries, which were freely defined by the authors of the exercise.

Hence, no cross section generation programs were used. Since the cross sections were

defined, and not generated, errors or influences coming from the cross section generation

process could be excluded. This step is essential to isolate the functionality of the

FENNECS SP3 solver. Therefore, hereby, it is proven that the SP3 approach was

correctly designed from the point of view of the mathematical model as well as the

idea behind the algorithms. Additionally, it is demonstrated that these were correctly

implemented in FENNECS. Test cases belonging to this category were found in the

literature. Examples of test cases belonging to this group are the homogeneous and

heterogeneous slabs, the 2D Cartesian planar benchmark, and the Hébert benchmark.

These will be discussed in section 4.1 and more details about the last two can be

found in section 4.2. Once this step was completed, the verification could be continued

with test cases, where the macroscopic cross section libraries were generated using

appropriate codes, like Serpent [35], ERANOS [50], or HELIOS [62]. In this step,

the functionality of the new solver was proven using realistic cross section libraries.

Hence, beyond the solver functionality, it is proven that it can be applied to realistic

nuclear data. Furthermore, this stage allows to observe the effects of the methodology

behind the cross section generation program on the SP3 results. A first attempt to

49



4. Verification

Figure 4.1: Methodology used for the verification of the FENNECS SP3 solver and the test cases
used for this purpose.

address this phenomenon was done within the test case of the three cores with cross

sections generated by Serpent [35] and ERANOS [50], discussed in section 4.1. Here,

the cross section libraries and the geometries could be found in the literature. In other

cases, the libraries were generated within this work and the geometries were found in

the literature or designed ad hoc. The advantage of freely design the geometry of the

test case to analyse is that particular aspects of the solver can be addressed, like for

example particular boundary conditions. This was the case for the highly enriched

uranium fuel assembly, whose results are discussed in section 4.1. Here, further test

cases with generated cross section libraries are mentioned, which are the C5G7 [10]

test cases and the European Sodium fast reactor (ESFR) [51]. However, their detailed

analysis can be found in section 4.3, and 4.4, respectively.

The second aspect of the methodology used for the verification deals with the solver

used for the comparison with the new FENNECS solver. The comparison can be

performed with other SP3 solvers or with diffusion ones. To perform the evaluation, the

first step was always to calculate the discrepancy for the results of the FENNECS SP3

solver with respect to a reference. The reference results were obtained for example with

Serpent [35] or the transport code ONEDANT [17]. This procedure allows to evaluate
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4.1. The homogeneous and heterogeneous slabs, three cores with cross sections generated by
Serpent and ERANOS, and the highly enriched uranium fuel assembly

the loss in accuracy of the results due to the use of the SP3 approximation of the neutron

transport equation. The discrepancy with respect to the reference is also calculated for

results obtained with the other solver considered for the analysis. To use another SP3

solver for the comparison allows to verify the correct functionality of the FENNECS

SP3 solver, by showing that from both SP3 solvers similar deviations in the results are

obtained. Furthermore, diffusion solvers can be used for the evaluation. On one hand,

the SP3 solver delivers more accurate results, compared to the diffusion method. On the

other hand, more calculation resources are needed, compared to diffusion simulations.

By comparing the discrepancy obtained by the FENNECS SP3 solver and the one

resulting from the diffusion solver, the gain in accuracy by the application of the SP3

solver can be quantified. This evaluation allows to identify where the increased costs

due to computational resources are worth with respect to an increase in the results

accuracy. Since FENNECS provides also a diffusion solver, this type of evaluation

was performed for all test cases presented here. On the contrary, the comparison with

another SP3 solver was done only for the homogeneous and heterogeneous slab, the

Hébert benchmark and the test cases with cross sections generated by Serpent [35] as

well as ERANOS [50].

To evaluate the results, various parameters were used. The effective multiplication

factor was used in all test cases. In addition, in some situations, also the normalized

power or neutron flux distributions were analysed. These quantities were evaluated

with the help of the maximum and minimum deviations as well as the root mean

squared (RMS) error. In [39], also the control rod (CR) worth was used for the analysis.

Additionally, in [42], the loss in reactivity due to the leakage was considered.

4.1 The homogeneous and heterogeneous slabs, three cores

with cross sections generated by Serpent and ERANOS,

and the highly enriched uranium fuel assembly
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A B S T R A C T

FENNECS, originally a diffusion code developed at GRS, was equipped with a steady state solver based on the
Third Order Spherical Harmonics approximation of the transport equation (SP3). After the theoretical derivation
of the SP3 approximation and its implementation in the code, it was necessary to perform its verification.

In this work, all test cases used for the verification of the new FENNECS SP3 solver are included. For
the verification of the solver, test cases having geometries of various sizes and complexity were chosen. The
cross section libraries used were obtained with various approaches. Furthermore, the obtained results were
compared with transport codes as well as other SP3 and diffusion solvers.

1. Introduction

The Finite ElemeNt NeutroniCS (FENNECS) code was developed at
Gesellschaft für Anlagen und Reaktorsicherheit gGmbH (GRS). It offers
a steady state as well as a transient 3D diffusion solver, based on the
Galerkin, or finite element, approach (Seubert et al., 2021; Bousquet
et al., 2020). To exploit its advantageous geometrical flexibility, FEN-
NECS was extended by a steady state solver based on the simplified
Third Order Spherical Harmonics approximation of the transport equa-
tion (SP3), in order to be able to perform safety assessments of (very)
small modular reactors ((v)SMR) and micro modular rectors (MMR).
These reactor systems are characterized by complex and heterogeneous
geometries (Schaffrath et al., 2021).

The implementation of a new solver must be followed by its veri-
fication. On one hand, this step is essential to check its correct imple-
mentation. On the other hand, it is useful to evaluate the deviation in
the results with respect to a reference code relying on a more accurate
method, like for example codes based on the transport equation or
Monte Carlo codes. With this regard, it is as well useful to compare
these reference results with the ones from codes based also on the SP3
approximation in order to check if the obtained deviations for the new
FENNECS SP3 solver are in the same order of magnitude, like the ones
of other codes providing the same methodology. For this purpose, codes
like DYN3D and TRIVAC were used. Also lower order codes were used
for the comparison, because their results were also compared with the
reference in order to quantify the improvement in the results given by
the use of the SP3 methodology. Here, the diffusion solver of FENNECS
was used.

∗ Corresponding author.
E-mail address: silvia.lo-muzio@grs.de (S. lo Muzio).

Following the described principle, the verification was carried out
with test cases with manufactured given cross section libraries as well
as with some where their generation was carried out using appropri-
ate codes. For this last category, the libraries could be found in the
literature or they were generated by the authors. The first category of
samples is essential in order to look only at the functionality of the
solver, since influences in the cross section generation can be excluded
and the comparison is performed with codes using the same cross
section libraries. However, it is difficult to find many of these examples
with all necessary nuclear data. Therefore, additional geometries are
modelled firstly to generate the cross section libraries and then these
are used within the verification process. This approach allows also to
freely choose the geometry on which to test the new solver.

The FENNECS SP3 calculations reported in this work were per-
formed neglecting higher order scattering between energy groups,
based on the following definition of the (zeroth order) diffusion con-
stant, given in lo Muzio and Seubert (2024):

𝐷0,𝑔(𝑥) =
1

3
[

𝛴𝑡,𝑔(𝑥) − 𝛴𝑠,1,𝑔𝑔(𝑥)
] . (1)

As also derived in lo Muzio and Seubert (2024), the first order scatter-
ing between energy groups can be considered by defining the diffusion
constant as

𝐷0,𝑔(𝑥) =
1

3𝛴𝑡𝑟,𝑔(𝑥)
. (2)

In this work, this definition of the (zeroth order) diffusion coefficient
is only used when marked explicitly. This is the case in Section 2.2.1.
In all other cases, Eq. (1) is used.

https://doi.org/10.1016/j.anucene.2023.110304
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Table 1
Mono-energetic macroscopic cross sections (1∕𝑐𝑚) for the homogeneous slab for the
energy group 𝑔 = 1 (Ragab Fayez, 2016).
𝛴𝑡,1 𝛴𝑠,0,11 𝜈𝛴𝑓,1

1 0.9 0.25

Table 2
For the homogeneous slab, difference in the effective multiplication factor (𝑝𝑐𝑚)
between the reference, which is ONEDANT, and the ones obtained with FENNECS,
and the h-p FEM analytical and numerical method from Ragab Fayez (2016).

Diffusion solver SP3 solver SP5 solver

FENNECS −19375 −2308
h-p FEM analytical −19375 −2309 −554
h-p FEM numerical −19375 −2309 −554

2. Verification

In Section 2.1, cores with already given cross sections libraries
were modelled in order to prove the correct functionality of the solver,
excluding the influence of the cross section generation procedure. Ge-
ometries and related nuclear data were found in the literature. Within
this category, a homogeneous and a heterogeneous slab, the Cartesian
benchmark and the Hébert benchmark were reproduced. The authors
of these benchmarks defined the geometry as well as the nuclear data.
Hence, no cross section generation was carried out. On the contrary, for
the geometries reproduced in Section 2.2, the cross sections libraries
were produced with ERANOS, HELIOS or Serpent. For these test cases,
the cross section generation was carried out by the authors, except for
the three cores of differnt size, which can be found in Section 2.2.1.

2.1. Test cases with given cross section libraries

2.1.1. Homogeneous slab
The first test case is a homogeneous one-dimensional slab, having

a thickness of 2 cm, described in Ragab Fayez (2016). It is modelled
as infinite along the 𝑥- and 𝑦-axis, hence imposing reflective boundary
conditions, and vacuum boundary conditions are applied in 𝑧 direction,
hence on the 𝑥𝑦-plane. The related one-energy-group macroscopic cross
sections can be found in Table 1. For this test case, in Ragab Fayez
(2016), effective multiplications factors calculated with an analytical as
well as finite element based numerical diffusion, SP3, and SP5 solvers
are provided. This test case was chosen for three reasons. Firstly, these
results allow to see whether the ones of the newly implemented SP3
solver are similar, proving its correctness. In Ragab Fayez (2016),
also a solution obtained with the multigroup transport numerical code
ONEDANT (Douglas O’Dell et al., 1982), based on the discrete-ordinates
approximation, is given, which is used as reference. For ONEDANT, the
angular quadrature set S96 was used (Ragab Fayez, 2016). Therefore,
secondly, it can be shown by how much the solution of the SP3 solvers
deviates from the more accurate direct transport solution. Thirdly, due
to the small thickness of the slab, a strong spatial variation of the
neutron flux is expected (Ragab Fayez, 2016). Therefore, finally, using
the results of the diffusion solvers, the deficiencies, with respect to SP3
solvers, for such small configurations can be shown.

Firstly, from Table 2, it can be observed that the effective multiplica-
tion factors calculated by the FENNECS solvers, the h-p FEM analytical
as well as numerical SP3 solvers are very similar. In particular, for the
FENNECS SP3 solver, the effective multiplication factor is 0.65296. This
result deviates from the other SP3 solutions considered here by less than
1 pcm. The closeness of the results of the three solvers shows that the
FENNECS SP3 solver works properly. Secondly, comparing the effective
multiplication factor of the FENNECS SP3 solver and ONEDANT, a
discrepancy of −2308 pcm can be calculated, which is very high. On one
hand, by using both SP5 solvers of the h-p FEM method the discrepancy
is reduced to −554 pcm, which is still high. Therefore, with the SP5

Fig. 1. Geometry of the heterogeneous slab.

Table 3
Mono-energetic macroscopic cross sections (1∕𝑐𝑚) for the heterogeneous slab for the
energy group 𝑔 = 1 (Ragab Fayez, 2016).

Material 𝛴𝑡,1 𝛴𝑠,0,11 𝜈𝛴𝑓,1

Fuel 0.416667 0.334 0.178
No fuel 0.370370 0.334 0.0

Table 4
For the heterogeneous slab, difference in the effective multiplication factor (𝑝𝑐𝑚)
between the reference, which is ONEDANT, and the ones obtained with FENNECS,
and the numerical h-p FEM method from Ragab Fayez (2016).

Diffusion solver SP3 solver SP5 solver

FENNECS −3736 −1011
h-p FEM numerical −3736 −1011 −363

solvers, an improvement is obtained, since it is a more accurate method,
but the discrepancy remains still high due to the very small size of the
geometry considered. Thirdly, on the other hand, the discrepancy in
the case of the three diffusion solvers is much larger, compared to the
one of the SP3 solvers: in the case of the FENNECS diffusion solver,
the discrepancy in the k𝑒𝑓𝑓 is −19375 pcm, which is unacceptable. This
result shows that by using the SP3 method, instead of the diffusion
approximation, the effective multiplication factor can be improved by
more than a factor of eight. Overall, it can be concluded that this result
shows also that the diffusion approximation is highly inadequate to
model such small geometries.

2.1.2. Heterogeneous slab
As second verification example, a heterogeneous slab is modelled,

which, as the previous test case, was also taken from Ragab Fayez
(2016). As depicted in Fig. 1, the 18 cm thick infinite slab is con-
stituted by fuel and no fuel materials. Like the homogeneous slab, it
was modelled as infinite in the 𝑥 and 𝑦 direction, where reflective
boundary conditions were applied, and vacuum boundary conditions
were applied along the 𝑧 axis, hence on the 𝑥𝑦 plane. The cross sections
can be found in Table 3. This geometry deviates from the one described
in Section 2.1.1, such that it is more heterogeneous. To evaluate the
effective multiplication factor, the results of the numerical program
h-p FEM are used for the direct comparison with FENNECS and the
solution of ONEDANT, based on the angular quadrature set S96, is taken
as reference (Ragab Fayez, 2016).

As it can be observed in Table 4, comparing the results of FENNECS
and of the h-p FEM code, it can be observed that the same solution
methods of the two programs deliver the same results. This holds for
the diffusion as well as SP3 solvers. This proves the correct imple-
mentation of the new solver and also of the diffusion approximation
in FENNECS. Furthermore, using the SP3 solver, instead of diffusion
theory, reduces the error with respect to ONEDANT by more than one
third. However, the SP3 solver of FENNECS as well as of h-p FEM
calculate results showing deviations, with respect to ONEDANT, in the
order of 1000 pcm, hence which are very far away from the reference.
This can be explained by the very small size of the geometry and
by its strong heterogeneity. Due to the consideration of higher order
Legendre’s polynomials, an improvement can be achieved with the SP5
approximation. However, we can see that such strong heterogeneities
are a significant issue also for this method. Although, the SP5 solver is
available only for h-p FEM and not for FENNECS.
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Table 5
Mono-energetic macroscopic cross sections (1∕𝑐𝑚) for the Cartesian and the Hébert
benchamrk for the energy group 𝑔 = 1 (Hébert, 2010; Dürigen, 2013).

Material 𝛴𝑡,1 𝛴𝑠,0,11 𝛴𝑠,1,11 𝜈𝛴𝑓,1

Fuel 0.025 0.013 0.0 0.0155
Reflector 0.025 0.024 0.006 0.0
Absorber 0.075 0.334 0.0 0.0

Fig. 2. Geometry of the Cartesian benchmark, constituted by a central region made
of fuel (blue), surrounded by a reflector (green) and an absorber (red). The black
line represents the vacuum boundary condition. In axial direction, reflective boundary
conditions are imposed. The mesh used here divides each assembly in 16.

2.1.3. 2D Cartesian planar benchmark
This 2D Cartesian planar benchmark geometry is composed by

squared assemblies, having a pitch of 40 cm (Hébert, 2010). It is
constituted by an outer ring made of a pure absorber, which contains
a ring of reflector, as depicted in Fig. 2 (Hébert, 2010). The inner
part of the core is made of fuel assemblies and its total mean free
path is 40 cm, hence it is equivalent to the assembly pitch (Hébert,
2010). Radially, vacuum boundary conditions are applied (Hébert,
2010). Since it is a 2D geometry, axially, reflective boundary conditions
are imposed. Therefore, this benchmark presents a small geometry and
strong variations between the material properties. For this reason, this
is particularly suited to show the performance of the newly imple-
mented SP3 solver in FENNECS. Within this benchmark, the nuclear
data are provided. These are mono-energetic, i.e. they have only one
energy group (Hébert, 2010). In this benchmark, the macroscopic cross
sections are given and their values can be found in Table 5.

As discussed in lo Muzio and Seubert (2022a), the results of the
FENNECS SP3 and diffusion solvers were compared with two SP3
solvers of TRIVAC, which are both based on the Raviart–Thomas zeroth
order solution. The first one uses analytical integration and the other
numerical integration by Gauss–Legendre quadrature (Hébert, 2010).
In FENNECS, the calculations were performed with various axial sizes.
The discrepancies of the effective multiplication factors obtained by
these solvers were evaluated with respect to the solution obtained by
the TRIVAC SP5 solver based on the Raviart–Thomas second order
solution with Gauss–Legendre quadrature using a mesh with 16 radial
elements per assembly. The k𝑒𝑓𝑓 obtained here, which will be used as
reference, is 0.992160 and this value, including all the results of the
TRIVAC calculations were taken from Hébert (2010).

Fig. 3 plots the difference between the effective multiplication
factors obtained and the reference as a function of the number of
radial elements per assembly, hence the mesh refinement. Firstly, as
stated in lo Muzio and Seubert (2022b), it can be observed that for
all the solvers considered the discrepancy with the reference decreases
by using a finer mesh, hence increasing the number of radial elements

Fig. 3. For the Cartesian benchmark, difference between the reference and the effective
multiplication factors obtained with the FENNECS diffusion solver (blue), FENNECS SP3
solver (orange), TRIVAC SP3 solver with Raviart–Thomas with zeroth order solution
(RT0) and analytical integration (AI) (green), and TRIVAC SP3 solver with Raviart–
Thomas with zeroth order solution (RT0) and Gauss–Legendre quadrature (GLQ) (red),
versus the number of radial elements per assembly used for the mesh.

per assembly. In particular, for the FENNECS SP3 solver, the first mesh
refinement step reduces the error, with respect to the reference, to
less than a half, whereas for the diffusion solver the improvement
is only weak. Starting from 2116 radial elements per assembly, for
the FENNECS SP3 solver, no changes can be observed in the effective
multiplication factor if the mesh size is further reduced. In this case,
the discrepancy is only 106 pcm. Secondly, from the comparison of the
three SP3 solvers involved in this work, it can be observed that for the
same mesh, the TRIVAC solvers deliver a k𝑒𝑓𝑓 closer to the reference.
Finally, the results of the two FENNECS solvers can be compared. The
results of the diffusion solver are very far away from the reference,
because for both meshes considered, the difference with the reference
is above 4000 pcm. This shows that the diffusion approximation is not
suited to model such small and heterogeneous cores. In this cases, the
FENNECS SP3 solver should be applied, which shows results by orders
of magnitude closer to the reference.

2.1.4. Hébert benchmark
As it can be observed in Fig. 4, the geometry of the Hébert bench-

mark is very similar to the one of the Cartesian benchmark: it is
constituted by the same three materials (fuel, reflector, and pure ab-
sorber). The only difference is the shape of the assemblies: it consists of
hexagonal fuel assemblies with a pitch of 32.9 cm (Dürigen, 2013). Also
the nuclear data structure is similar to the Cartesian benchmark and the
values for the one-energy-group cross sections can be found in Table 5.
For this benchmark, the comparison is done using the TRIVAC SP3
solver as reference, as it was done in Dürigen (2013). As in lo Muzio and
Seubert (2022a), the SP3 solver of DYN3D is used for the comparison
as a code based on the SP3 method. For this benchmark, the effective
multiplication factor, as well as the normalized flux distributions are
used as basis for the evaluation. The results of TRIVAC as well as
DYN3D were taken from Dürigen (2013).

Fig. 5 shows the discrepancy in the effective multiplication factor
of the FENNECS and DYN3D solvers, with respect to the TRIVAC
solution, which is 𝑘𝑒𝑓𝑓 = 1.000332. For the FENNECS diffusion solver,
for both meshes used, hence 6 and 24 radial elements per assembly,
the deviation in the effective multiplication factor is above 4000 pcm,
hence not tolerable. Furthermore, the mesh refinement here improves
the results minimally. For the calculation with the FENNECS SP3 solver,
for the coarsest mesh, the discrepancy, with respect to TRIVAC, is
less than one ninth of that of the diffusion solver for the same mesh,
hence 502.4 pcm. However, for the same mesh, the error obtained
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Fig. 4. Geometry of the Hébert benchmark, constituted by a central region made
of fuel (blue), surrounded by a reflector (green) and an absorber (red). The black
line represents the vacuum boundary condition. In axial direction, reflective boundary
conditions are imposed. The mesh used here divides each assembly in 24.

Fig. 5. For the Hébert benchmark, difference between the reference and the effective
multiplication factors obtained with the FENNECS diffusion solver (blue), FENNECS
SP3 solver (orange) and the DYN3D SP3 solver (green), versus the number of radial
elements per assembly used for the mesh.

by the DYN3D SP3 solver is significantly lower: it is only −76.7 pcm.
Refining the mesh, the SP3 solvers rapidly approach the reference. This
holds particularly for FENNECS: starting from 384 radial elements per
assembly, the effective multiplication factor of the FENNECS SP3 solver
is closer to the reference, compared to the one of the same solver of
DYN3D. These results indicate that the new FENNECS solver shows a
strong dependency on the mesh.

For this benchmark, also the normalized flux distributions of the
FENNECS and DYN3D solvers were analysed with respect to the refer-
ence. To perform the evaluation, the root mean squared (RMS) error
of the normalized flux distribution was calculated and this can be
found in Fig. 6. Furthermore, in Table 6, the maximum and minimum
errors can be found. As it can be observed in Fig. 7, and by analysing
the RMS and maximum error, for coarse meshes, with DYN3D, results
closer to the reference are obtained. Like the effective multiplication
factor, also the RMS error of the normalized flux distribution decreases
with increasing number of radial elements per assembly. In particular,
as it was the case for the effective multiplication factor, also for the
error in the nominalized power distribution, a strong decrease can be

Fig. 6. For the Hébert benchmark, RMS error (%) of the normalized flux distribution,
with respect to the reference, for the FENNECS SP3 solver (blue) and the DYN3D SP3
solver (orange), versus the number of radial elements per assembly used for the mesh.
The 𝑦-axis has a logarithmic scale.

Table 6
For the Hébert benchmark, maximum errors (%) in the normalized flux distribution,
with respect to the reference, for the SP3 solver of FENNECS and DYN3D.

Radial elements per assembly FENNECS SP3 DYN3D SP3

6 8.3 −2.5
24 3.2 −1.9
96 1.0 1.4

1536 −0.3 −0.5

observed. Actually, starting from 96 radial elements per assembly, with
the FENNECS SP3 solver better results from the point of view of the
RMS and maximum error of the normalized flux distribution can be
obtained, compared to DYN3D.

2.2. Test cases with generated cross sections

In this section, results of test cases, where the cross section libraries
were generated with appropriate codes, are given. Here, the code used
for the cross section generation is used also for the reference solution
in order to evaluate the errors arising from the diffusion and SP3
approximation.

2.2.1. Three cores of different size with cross sections generated by Serpent
and ERANOS

These exercises were taken from Babcsány et al. (2022), where
the goal was to study the effects of flux weighting during the cross
section generation process on the solution of the SP3 approximation
of the transport equation with the code SPNDYN. As for the previous
examples, in this section, the cross sections were found in the reference,
together with the geometry description. However, in the previous
examples only the solver functionality, excluding possible influences
due to the cross sections generation method, were studied. In the three
exercises which follow in this section, the macroscopic cross section
libraries were generated with ERANOS and Serpent, hence two sets
of cross sections are given. Since FENNECS as well as SPNDYN use
the same libraries, discrepancies arising from different cross sections
generation procedure can be excluded. Hence, here, the FENNECS
results can be compared with the ones of SPNDYN and the influence
of the cross section generation process can be observed. The two sets
of cross sections are assembly-wise homogenized and have two energy
groups. Within these sets of macroscopic cross sections, the (zeroth
order) diffusion constant were included, which is equivalent to Eq. (2).
Therefore, calculations with the SP3 solver with the (zeroth order)
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Fig. 7. Deviations (%) from the reference of the normalized neutron flux distributions for the SP3 solvers of FENNECS (left) and DYN3D (right) with 6 (upper figures) and 96
(lower figures) radial elements per assembly. The red numbers are the maximum deviations. The blue, green and red regions represent the fuel, reflector and absorber assemblies,
respectively.

diffusion constant from the reference as well as calculating the diffusion
constant as dependent from the total and first order scattering cross
sections, based on Eq. (1), will be performed.

Now, some information about the macroscopic cross section gener-
ation process is provided. Two families of codes are used for the cross
section generation. The first one includes codes designed to generate
cross sections for diffusion codes (Babcsány et al., 2022). Generally,
they can generate also multi-group higher order anisotropic scattering
data, where these are all weighted by the scalar flux, and not by
the flux of the same scattering order (Babcsány et al., 2022). Exam-
ples of codes performing this scalar flux weighting for higher order
anisotropic scattering data are SCALE, the model of HELIOS-2 based
on the collision probability method, and Serpent 2 (Babcsány et al.,
2022). According to Babcsány et al. (2022), this approach can cause
an insufficient accuracy for codes using these higher order scattering
data, especially for systems having a small size, or high leakage or
for fast reactors. Actually, in the case of Serpent, scattering data up
to the seventh order can be obtained. However, their applicability
in higher order deterministic codes was not properly verified and
validated yet (Cai, 2014). Actually in Lin and Yang (2020), the authors
stated that the anisotropic scattering cross sections of Serpent 2 may not
be adequate for fast reactors, where the consideration of the anisotropic
scattering may be more relevant than, for example, for light water
reactors (LWR). Furthermore, also the topic of the influence of the
statistical uncertainties for the higher order scattering data should
be addressed, particularly when the values of the scattering data are
small. The codes of the second family perform higher-order angular
flux weighting, hence the neutron flux of the corresponding scattering
order is used (Babcsány et al., 2022). An example of a code in this
category is the MoC method implemented in HELIOS-2, which applies
the angular flux-moment weighting (Babcsány et al., 2022). Therefore,
it condenses the anisotropic scattering matrices by performing the
current weighting (Babcsány et al., 2022). The angular flux-moment
weighting is a generalization of the P1 consistent method implemented
in the ECCO module of the ERANOS program (Babcsány et al., 2022).

In the test case shown here, 3 cores of different radial sizes, having
an assembly pitch of 18.45 cm, are modelled. The three cores are a small
one, a medium one and a large one, consisting of 3 × 3, 9 × 9, and
19 × 19 standard rectangular fuel assemblies, respectively, which are
depicted in Fig. 8. Radially, vacuum boundary conditions are applied
and axially reflective ones. In addition, with the same cross sections,
also a core of infinite size, hence with radially and axially reflective
boundary conditions, was modelled. The results of the FENNECS SP3
and diffusion solver will be compared with the ones of SPNDYN, which
provides the same solution methods. Concerning the SP3 solvers, here,
the results will be obtained using the (zeroth order) diffusion constant,
hence 𝐷0 as defined in the first part of this work, where the definition is
based on the total and first order macroscopic scattering cross section,
hence as in Eq. (1), as well as using the (zeroth order) diffusion
constant as defined in the diffusion approximation, based on Eq. (2).
In the following tables, with SP3 the simulations relying on the first

approach, hence on Eq. (1), will be meant. Calculations performed
with the second approach will be addressed with SP3 TR, since they
rely on the transport cross section, as it can be seen in Eq. (2). As
reference, effective multiplication factors obtained from the respective
Serpent reference model will be used, independently of the set of cross
sections applied. Additionally, in order to obtain the reactivity decrease
due to the reactor size, hence due to the leakage, also the effective
multiplication factor for the infinite core is calculated, hence 𝑘∞. These
reactivity due to the neutron leakage is calculated as the difference
between the inverse of 𝑘∞ and the inverse of the obtained 𝑘𝑒𝑓𝑓 with
the same solver mesh and cross sections, hence as follows:

𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 =
1
𝑘∞

− 1
𝑘𝑒𝑓𝑓

. (3)

This quantity is used to measure the leakage of each geometry, hence
the normalized leakage rate, expressed in 𝑝𝑐𝑚. The evaluation of this
quantity is performed to judge the ability of the methodology in mod-
elling systems with different magnitudes of leakage. The cross sections
as well as the results of SPNDYN, Serpent and ERANOS are taken
from Babcsány et al. (2022).

The deviations between the infinite multiplication factors and Ser-
pent and ERANOS references, which are 1.312280 ± 0.00004 and
1.307050, respectively, can be found in Table 7. Here, it can be
observed that if the same set of cross sections is used, all the three
solvers of both codes deliver the same errors, with respect to the same
reference. This is reasonable, since in the infinite multiplication factor
no leakage is considered. Therefore, here the infinite multiplication
factor just shows that the numerics of the codes are correct and it can
be seen as a verification test. In particular, in the case where Serpent is
used for the cross sections generation as well as a reference, the error
is within the statistical uncertainty. The error becomes slightly higher
if ERANOS cross sections are used: if the comparison is performed with
ERANOS, the error is around 16 pcm and if Serpent is used as reference,
the error is one order of magnitude higher and this is the only case
where the error is negative. Hence, the multiplication factor is underes-
timated. This high deviation can be explained by the fact that different
codes are used for the cross sections generation and as reference.

Firstly, the large core will be analysed. As it can be observed in
Table 8, the results obtained by FENNECS and SPNDYN differ by
maximum 2 pcm. Like for 𝑘∞, considerable differences can be observed
if Serpent is used as reference and if Serpent or ERANOS cross sections
are used. With this regard, the 𝑘𝑒𝑓𝑓 obtained with Serpent cross sections
show smaller discrepancies to the Serpent effective multiplication fac-
tor, which is 𝑘𝑒𝑓𝑓 = 1.30151 ± 0.00002. For the FENNECS calculations,
refining the mesh, hence from 4 radial elements per pin cell to 16, does
not influence the effective multiplication factor. Here, the best results
are given by the SP3 solver using the diffusion coefficient calculated by
Serpent. Similar results are given also by the diffusion solvers. Larger
deviations are given by the SP3 solvers, which calculate the diffusion
coefficient based on the higher order scattering cross sections. In par-
ticular, here, the effective multiplication factor as well as the reactivity
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Fig. 8. One fourth of the geometry of the small (left), medium (center) and large core (right) with the mesh using 16 radial elements per pin cell. The black line represents the
vacuum boundary condition.

Table 7
Deviations (𝑝𝑐𝑚) between the 𝑘∞ of Serpent or ERANOS and the one calculated with the FENNECS or SPNDYN diffusion and SP3 solvers, where
𝐷0 is obtained based on Eq. (1) (SP3) or Eq. (2) (SP3 TR). The results were obtained using Serpent as well as ERANOS cross sections.

Cross sections Serpent ERANOS

Reference Serpent ERANOS Serpent

Program FENNECS SPNDYN FENNECS SPNDYN FENNECS SPNDYN

Diffusion 4 4 16 16 −289 −289
SP3 4 4 16 15 −289 −290
SP3 TR 4 4 16 15 −289 −290

Table 8
For the large geometry, discrepancy between the 𝑘𝑒𝑓𝑓 and 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 of Serpent
and the ones calculated using Serpent cross sections together with the FENNECS
or SPNDYN diffusion and SP3 solvers, where 𝐷0 is obtained based on Eq. (1)
(SP3) or Eq. (2) (SP3 TR). Gray cells indicate the results with the best agreement
with the reference. FENNECS calculations were performed with two meshes: 4
(F - 4) and 16 (F - 16) radial elements per pin cell.

Discrepancy in k𝑒𝑓𝑓 [𝑝𝑐𝑚] Discrepancy in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 [𝑝𝑐𝑚]
Program F - 4 F - 16 SPNDYN F - 4 F - 16 SPNDYN
Diffusion −25 −24 −24 −28 −28 −27
SP3 147 148 146 144 145 142
SP3 TR −24 −23 −22 −28 −27 −26

are overestimated, hence 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is underestimated. These findings hold
for FENNECS as well as SPNDYN. According to the Serpent calculations,
this reactivity is −631 ± 4 pcm.

The deviations in the effective multiplication factors significantly
increase if ERANOS cross sections are used, as shown in Table 9. This
was the case also for the infinite geometry. Also in this case, the
FENNECS and SPNDYN results differ by maximum 2 pcm. Furthermore,
the mesh refinement affects the effective multiplication factor by max-
imum 2 pcm. Here, the best results are obtained by the SP3 solver,
which does not use the Serpent transport cross section. This shows a
strong dependency of the results on the method used to generate the
macroscopic cross sections. Consequently, if the diffusion constant is
calculated using the first order scattering cross section and if the higher
order scattering cross sections are weighted with the higher order
fluxes, as in ERANOS, better results, concerning the 𝑘𝑒𝑓𝑓 , compared
to the diffusion solver, can be obtained. However, if the 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is
evaluated, which is −631±4 pcm, errors within the Serpent calculation
uncertainties are obtained with the diffusion and the SP3 solver using

the transport cross section and the errors of the SP3 solver are within
twice of the uncertainty.

Secondly, the medium core is analysed. Here, the Serpent reference
k𝑒𝑓𝑓 and the reactivity decrease due to the smaller size of the core are
1.26735 ± 0.00002 and −2702 pcm, respectively. Also here, the results
of SPNDYN and FENNECS are very similar. As it can be observed
in Table 10, if the Serpent cross sections are used, the error in the
effective multiplication factor and the reactivity due to the size are
the lowest for the SP3 solver using the transport cross section provided
by Serpent: with FENNECS using the mesh with 36 radial subdivisions
per assembly, the error in the k𝑒𝑓𝑓 and in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 are −125 pcm and
−129 pcm, respectively. Since, for the diffusion solver as well as for the
SP3 solver using the transport cross section provided by Serpent, the
discrepancies are negative, the leakage is overestimated.

Using ERANOS cross sections, as it was the case for the large
geometry, the lowest error in the effective multiplication factor and
in the reactivity is obtained with the SP3 solver, which does not use
the transport cross section, as shown in Table 11. Even though, with
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Table 9
For the large geometry, discrepancy between the 𝑘𝑒𝑓𝑓 and 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 of Serpent
and the ones calculated using ERANOS cross sections together with the
FENNECS or SPNDYN diffusion and SP3 solvers, where 𝐷0 is obtained based
on Eq. (1) (SP3) or Eq. (2) (SP3 TR). Gray cells indicate the results with the
best agreement with the reference. FENNECS calculations were performed with
two meshes: 4 (F - 4) and 16 (F - 16) radial elements per pin cell.

Discrepancy in k𝑒𝑓𝑓 [𝑝𝑐𝑚] Discrepancy in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 [𝑝𝑐𝑚]
Program F - 4 F - 16 SPNDYN F - 4 F - 16 SPNDYN
Diffusion −292 −291 −291 −3 −1 −1
SP3 −284 −283 −285 5 6 5
SP3 TR −292 −290 −290 −2 −1 0

Table 10
For the medium geometry, discrepancy between the 𝑘𝑒𝑓𝑓 and 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 of Serpent and the ones
calculated using Serpent cross sections together with the FENNECS or SPNDYN diffusion and SP3
solvers, where 𝐷0 is obtained based on Eq. (1) (SP3) or Eq. (2) (SP3 TR). Gray cells indicate the
results with the best agreement with the reference. FENNECS calculations were performed with
three meshes: 4 (F - 4), 16 (F - 16), 36 (F - 36) radial elements per pin cell.

Discrepancy in k𝑒𝑓𝑓 [𝑝𝑐𝑚] Discrepancy in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 [𝑝𝑐𝑚]
Program F - 4 F - 16 F - 36 SPNDYN F - 4 F - 16 F - 36 SPNDYN
Diffusion −160 −143 −138 −136 −164 −147 −141 −140
SP3 574 588 593 582 571 585 589 578
SP3 TR −152 −132 −125 −122 −155 −136 −129 −126

Table 11
For the medium geometry, discrepancy between the 𝑘𝑒𝑓𝑓 and 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 of Serpent and the ones
calculated using ERANOS cross sections together with the FENNECS or SPNDYN diffusion and SP3
solvers, where 𝐷0 is obtained based on Eq. (1) (SP3) or Eq. (2) (SP3 TR). Gray cells indicate the
results with the best agreement with the reference. FENNECS calculations were performed with
three meshes: 4 (F - 4), 16 (F - 16), and 36 (F - 36) radial elements per pin cell.

Discrepancy in k𝑒𝑓𝑓 [𝑝𝑐𝑚] Discrepancy in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 [𝑝𝑐𝑚]
Program F - 4 F - 16 F - 36 SPNDYN F - 4 F - 16 F - 36 SPNDYN
Diffusion −345 −328 −323 −321 −55 −38 −34 −32
SP3 −305 −287 −281 −289 −15 3 9 0
SP3 TR −335 −316 −310 −308 −45 −26 −20 −18

Table 12
For the small geometry, discrepancy between the 𝑘𝑒𝑓𝑓 and 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 of Serpent and the ones calculated
using Serpent cross sections together with the FENNECS or SPNDYN diffusion and SP3 solvers, where
𝐷0 is obtained based on Eq. (1) (SP3) or Eq. (2) (SP3 TR). Gray cells indicate the results with the
best agreement with the reference. FENNECS calculations were performed with three meshes: 4 (F -
4), 16 (F - 36), and 36 (F - 36) radial elements per pin cell.

Discrepancy in k𝑒𝑓𝑓 [𝑝𝑐𝑚] Discrepancy in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 [𝑝𝑐𝑚]
Program F - 4 F - 16 F - 36 SPNDYN F - 4 F - 16 F - 36 SPNDYN
Diffusion −1974 −753 −687 −663 −1978 −757 −691 −668
SP3 3836 4868 4935 4840 3832 4864 4930 4836
SP3 TR −1608 −341 −249 −217 −1612 −346 −254 −221

36 radial elements per pin cell, the error in the effective multiplication
factor is −281 pcm, but the deviation in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is only 9 pcm. This error
is even lower and below the Serpent uncertainty if the mesh with 16
radial elements per pin cell is considered.

Thirdly, the small core is analysed. For the FENNECS results, a
very strong dependency on the mesh could be observed. Here, similar
effective multiplication factors to the ones of SPNDYN could be only
obtained with FENNECS using the mesh, which divides radially each
assembly in 36. As shown in Table 12, if Serpent cross sections are used,
the best results are obtained with the SP3 solver using the transport
cross section of Serpent. In this case, both errors for SPNDYN as
well as FENNECS with 36 radial subdivisions are at the maximum
−254 pcm. This holds for the effective multiplication factor as well
as the reactivity due to the leakage. This highly negative discrepancy
shows a strong overestimation of the leakage. This overestimation is
considerably larger for the diffusion solver.

As shown in Table 13, if ERANOS cross sections are used, the
scenario is more complex than in the previous cases. For the FENNECS
diffusion solver, the errors decrease with increasing mesh refinement,
such that with 36 radial element per assembly, the error in the reactiv-
ity due to the size reduction is only 7 pcm, which is quite surprising,
due to the small size of the core and the known limitations of diffusion

theory in modelling heterogeneous media. For the FENNECS SP3, for
both types of diffusion constants used, it can be observed that both
types of errors are strongly negative for the coarsest mesh. Refining
the mesh, the error approaches zero and it is positive for the mesh
with 36 radial elements per pin cell. Therefore, the best solver for this
geometry cannot be identified uniquely, like it was the case for the
previous geometries, because here the mesh shows a very strong impact
on the results. Furthermore, a correlation between the method used
to generate the cross sections and the most suited SP3 approach, with
regards to the diffusion constant, cannot be established. If the error in
the effective multiplication factor is considered, the best agreement is
obtained with the SP3 solver, which does not use the transport cross
section, and with the mesh with 36 radial elements per assembly. If
the error in the reactivity due to size reduction is considered, as said
before, the best agreement is obtained with the diffusion solvers: the
one of FENNECS, which uses 36 elements per assembly, and the one of
SPNDYN show errors of only 7 pcm and 93 pcm, respectively.

For the calculations using the Serpent cross sections, it should be
remarked that a considerable difference could be observed between the
results obtained with the SP3 and the SP3 TR: using this last method,
the discrepancy in the 𝑘𝑒𝑓𝑓 is always at least halved, compared to
the one obtained using the first order scattering cross section, for the
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Table 13
For the small geometry, discrepancy between the 𝑘𝑒𝑓𝑓 and 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 of Serpent and the ones calculated
using ERANOS cross sections together with the FENNECS or SPNDYN diffusion and SP3 solvers, where
𝐷0 is obtained based on Eq. (1) (SP3) or Eq. (2) (SP3 TR). Gray cells indicate the results with the
best agreement with the reference. FENNECS calculations were performed with three meshes: 4 (F -
4), 16 (F - 36), and 36 (F - 36) radial elements per pin cell.

Discrepancy in k𝑒𝑓𝑓 [𝑝𝑐𝑚] Discrepancy in 𝜌𝑙𝑒𝑎𝑘𝑎𝑔𝑒 [𝑝𝑐𝑚]
Program F - 4 F - 16 F - 36 SPNDYN F - 4 F - 16 F - 36 SPNDYN
Diffusion −1473 −558 −282 −196 −1184 −269 7 93
SP3 −837 87 374 379 −548 376 663 668
SP3 TR −1050 −119 169 277 −761 170 458 566

Table 14
Deviations (𝑝𝑐𝑚), with respect to Serpent, of the effective multiplications factor for
the highly enriched uranium fuel assembly obtained with the FENNECS SP3 and
diffusion solver, with different axial (3 and 59 axial layers) and radial (4 and 16
radial subdivisions per assembly) spatial discretizations.

Solver SP3 Diffusion

Number of radial elements per assembly 4 16 4 16

Number of axial elements per assembly 3 5724 523 27393 20 235

59 5574 371 27179 20 022

calculation of the diffusion coefficient. Where ERANOS cross sections
are used, the results obtained with the two SP3 approaches are closer to
each other. At this point, it remains difficult and premature to affirm,
which is the best approach to use, depending on the cross sections
used, also due to the good results, shown in the next sections, obtained
with the SP3 method, calculating the diffusion coefficient with the
first order scattering cross section and using Serpent cross sections.
Furthermore, the best approach to use, from the point of view of the
diffusion coefficient, as well cross sections generation, could be strongly
influenced by the type of system analysed, whether fast or thermal, as
well as on the size of it. For this reason, also for these test cases, further
studies should be performed, in order to obtain more insights about
the effects of the cross section generation methodology on the results.
These could comprehend the comparison of the power distributions
or the 2 energy groups neutron flux distributions, which were not
provided for these three cores.

2.2.2. Highly enriched uranium fuel assembly
This test case consists of a very simplified squared fuel assembly

with uranium fuel having an enrichment of 96𝑤𝑡 − %. The enrichment
was chosen in order to obtain a system close to criticality. The fuel
assembly was modelled in a very simplified way, as a fuel parallepiped
having a width and a height of 21.42 cm, and 100 cm, respectively. On
all the surfaces of the geometry, the vacuum boundary conditions are
applied. The two energy groups assembly-wise homogenized macro-
scopic cross sections, as well as the reference effective multiplication
factor, were obtained with Serpent. Since this is the only example
where vacuum boundary conditions are applied on all surfaces of the
geometry, here the performance of the SP3 solver, compared to the one
of the diffusion solver, is also analysed with respect to the axial spatial
discretization. As reference, 𝑘𝑒𝑓𝑓 = 0.86590 ± 0.00008 was used, which
was calculated by Serpent.

Table 14 shows the deviations, with respect to Serpent, in the effec-
tive multiplication factors obtained with the SP3 and diffusion solver
of FENNECS for the different axial and radial spatial discretizations.
Firstly, for both solvers, high deviations with respect to Serpent are
observed. This can be explained by the very small size of the geometry
and its high heterogeneity due to the vacuum boundary conditions.
Secondly, the results show a higher dependency on the radial discretiza-
tion, compared to the axial one: with the SP3 solver, refining the mesh
radially, improves the results by one order of magnitude. Thirdly, for
the diffusion solver, the deviations in the effective multiplication factor
are orders of magnitude larger, compared to the ones of the SP3 solver,
independently of the mesh. The errors of the diffusion solver are above

Table 15
Deviation (𝑝𝑐𝑚), with respect to HELIOS, of the effective
multiplications factor for the UO2 assembly obtained with the
FENNECS SP3 and diffusion solver, with different meshes (4
and 16 radial subdivisions per pin cell).

Number of radial elements
per pin cell

4 16

Diffusion 66 53
SP3 42 27

20000 pcm, and therefore unacceptable. Here, mesh refinement only
weakly improves the results. Fourthly, from results of the SP3 solver,
it can be concluded, that for such small geometries in radial direction,
the mesh with only 4 radial subdivisions per assembly is too coarse
and the one with 16 radial subdivisions must be used. For such radial
discretization and with 59 axial layers, an error of 371 ± 8 pcm can be
achieved, which is an acceptable result for such very small geometry.

2.2.3. C5G7
This example is based on the UO2 and MOX fuel assemblies de-

scription of the C5G7 benchmark, taken from Smith et al. (2003). In
this work, these are modelled individually with reflective boundary
conditions. As described in lo Muzio et al. (2022), the pin cell-wise
homogenized cross section libraries are generated with the HELIOS-
1.12 solver based on the collision probabilities. The pin cell-wise
homogenized cross section libraries were validated with the multigroup
transport code TORT-TD, based on the discrete ordinates approach,
developed at GRS (Seubert et al., 2008). For the calculation of the pin
power distribution, HELIOS-1.12 was used. In particular, for these two
fuel assemblies, hence for these two distinct geometries, on which two
kinds of meshes were applied, the effective multiplication factors as
well as pin power distributions were analysed.

For the UO2 fuel assembly, depicted in Fig. 9, HELIOS calculated
an effective multiplication factor of 1.32705. As it can be seen from
Tables 15 and 16, for the UO2 fuel assembly, deviations in the same
order of magnitude for both solvers are obtained, but the results of the
SP3 solver show a better agreement with the reference. In particular, for
this solver, the mesh refinement halves the deviation in the effective
multiplication factor as well as the one in the normalized pin power
distribution, as stated by the root mean squared (RMS) and maximum
errors. It should be remarked that for the finest mesh, hence the one
with 16 radial elements per fuel pin, the deviation in the effective
multiplication factor is only 27 pcm and the RMS and maximum error of
the normalized power distribution only 0.23% and 0.55%, respectively.
With FENNECS v0.2.17, the calculations with the finest mesh using the
diffusion and SP3 solver took 3.8 s, and 14.0 s, respectively. These were
performed with 8 shared memory (OpenMP) threads.

The Tables 17 and 18 show that a good agreement between the
results of the SP3 solver and HELIOS are obtained also for the MOX
fuel assembly. As it can be observed in Fig. 10, the geometry of this
fuel assembly is more heterogeneous. The limitation of the diffusion
approximation in modelling such more heterogeneous (compared to
the UO2 assembly) geometries is reflected in the errors in the effective
multiplication factors as well as in the RMS and maximum error in
the normalized power distribution, which are higher compared to the
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Fig. 9. Representation of UO2 fuel assembly with the mesh using 16 radial elements
per pin cell performed by PEMTY. The blue region contains UO2 fuel pins. The green
and red cells contain guide tubes and the fission chamber, respectively.

Table 16
For the UO2 assembly, RMS and maximum error (%), with respect to HELIOS, of the
normalized power distributions obtained with the FENNECS SP3 and diffusion solver,
with different meshes (4 and 16 radial subdivisions per pin cell).

RMS error Max error

Number of radial elements per pin cell 4 16 4 16

Diffusion 0.54 0.25 1.43 0.68
SP3 0.52 0.23 1.48 0.55

Table 17
Deviation (𝑝𝑐𝑚), with respect to HELIOS, of the effective
multiplications factor for the MOX assembly obtained with the
FENNECS SP3 and diffusion solver, with different meshes (4
and 16 radial subdivisions per pin cell).

Number of radial elements per pin cell 4 16

Diffusion −85 93
SP3 −51 −51

UO2 assembly. Also the difference between the deviations arising from
the diffusion and SP3 solver is higher compared to the previous case.
For the MOX assembly, the mesh refinement causes an improvement
of the results only from the point of view of the normalized pin power
distribution. In particular, here the RMS error in the normalized power
distribution is above 1.11% for the calculation with the diffusion solver
and the coarsest mesh. With the finest mesh, the SP3 solver delivers a
deviation in the effective multiplication factor and an RMS error in the
power distribution of −51 pcm and 0.46%, respectively.

2.2.4. European Sodium Fast Reactor (ESFR)
In this subsection, the ESFR, a large sodium cooled fast reactor,

described within the project ’’European Sodium Fast Reactor Safety
Measures Assessment and Research Tools’’ (ESFR-SMART) (Rineiski
et al., 2018), is modelled. The calculation results presented in this
subsection aim firstly to prove the ability of the new FENNECS solver
in modelling also large cores.

For this test case, the mascroscopic cross sections in 10 energy
groups were obtained using Serpent. For this purpose, three-dimensional
models of the assemblies were prepared. In particular, the Control

Fig. 10. Representation of MOX fuel assembly with the mesh using 16 radial elements
per pin cell performed by PEMTY. The blue, light blue, and green regions contain fuel
pins made of 4.3%, 7.0%, and 8.7% MOX, respectively. The red and yellow cells contain
guide tubes and the fission chamber, respectively.

Table 18
For the MOX assembly, RMS and maximum error (%), with respect to HELIOS, of the
normalized power distributions obtained with the FENNECS SP3 and diffusion solver,
with different meshes (4 and 16 radial subdivisions per pin cell).

RMS error Max error

Number of radial elements per pin cell 4 16 4 16

Diffusion 1.11 0.64 1.95 1.54
SP3 0.88 0.46 1.44 1.00

Shutdown Device (CSD) and the Diverse Shutdown Device (DSD) rods
were modelled as surrounded by 6 half of fuel assemblies. These
libraries were used to model with the FENNECS diffusion and SP3
solver the ESFR core in nominal condition, hence all rods out (ARO),
plus in further 11 core scenarios with different positions of the CSD
and the DSD rods, where the last position is all rods in (ARI). In
the ARO scenario, using the version v0.21.7 of FENNECS and with
8 shared memory (OpenMP) threads, the calculation duration was
1560.4 s and 991.8 s with the SP3 and diffusion solver, respectively.
As in all exercises, except in Section 2.2.1, in all SP3 calculations,
the definition of the zeroth order diffusion coefficient given in Eq. (1)
was used. For the 12 configurations, reference solutions were obtained
with Serpent. Additionally, for this exercise, the Superhomogeneisa-
tion (SPH) method was applied to the cross section libraries of the
absorber materials, hence to the natural and enriched boron contained
in the CSD and DSD rods. For this purpose, three-dimensional Serpent
models of the absorber materials were developed, where the boron is
surrounded by 6 half of fuel assemblies. Using the cross section libraries
obtained by such models, the calculation of the SPH corrected cross
sections was performed by the external tool PEMTY, which uses the
FENNECS diffusion solver for the calculation of the fluxes. The SPH
correction implemented in PEMTY relays on the approach originally
described by Hébert in Hébert and Benoist (1991), as well explained
in Bousquet (2021). The implementation of the SPH correction in
PEMTY was also demostrated in Henry et al. (2021). Using for the
absorber materials the SPH corrected cross section libraries, for the 12
scenarios, FENNECS diffusion calculations were performed. The SPH
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Table 19
For the ESFR core, error in the effective multiplication factor (𝑝𝑐𝑚) and control rod (CR) worth (𝑝𝑐𝑚) as well as RMS and maximum error (%) in the normalized power distributions,
with respect to Serpent, obtained with the diffusion (D) and SP3 solver of FENNECS as well as with its diffusion solver, where the SPH correction was applied to the cross section
libraries.

Error in keff (𝑝𝑐𝑚) Error in CR worth (𝑝𝑐𝑚) RMS error power (%) Max error power (%)

D SP3 SPH D SP3 SPH D SP3 SPH D SP3 SPH

0 −88 73 120 1.33 1.22 1.18 3.23 2.52 4.11
1 −90 74 130 2 −1 14 1.50 1.38 1.24 3.42 2.86 4.49
2 −91 80 153 3 −7 56 1.45 1.33 1.22 2.77 2.54 3.83
3 −126 56 161 38 17 71 1.70 1.51 1.36 4.00 3.60 4.18
4 −185 14 158 97 58 64 2.46 2.16 1.42 5.70 4.92 4.28
5 −262 −43 143 174 116 36 3.76 3.25 1.32 8.87 7.54 3.77
6 −345 −105 120 257 178 1 5.61 4.84 1.24 13.41 11.40 4.32
7 −417 −160 98 329 233 −27 7.74 6.68 1.57 18.47 15.85 4.13
8 −495 −222 65 407 295 −60 9.85 8.50 1.85 23.67 20.37 4.74
9 −558 −270 42 470 343 −77 11.98 10.35 2.43 28.57 24.66 6.43

10 −615 −315 23 526 388 −91 13.98 12.15 3.38 33.08 28.79 8.86
11 −664 −355 7 576 428 −101 15.71 13.77 4.66 35.85 31.43 11.14

corrected cross sections were used only to run diffusion calculations. No
SP3 simulations were performed with the SPH corrected cross sections,
since the SPH method in PEMTY relays on the diffusion solver.

This study is based on the evaluation, with respect to the reference,
of the effective multiplication factor as well as the root mean squared
(RMS) and maximum error in the normalized assembly-wise power dis-
tribution. Secondly, simulations with different control rod positions will
analyse the ability of the FENNECS SP3 solver in modelling controlled
states, with respect to the diffusion solver, for which these scenarios are
challenging. Thirdly, the FENNECS SP3 solver results will be evaluated
also with respect to the results of the diffusion solver, where the SPH
method was applied to the cross sections.

In all Serpent calculations the statistical uncertainty of the effective
multiplication factor was never above 4.90 pcm. As discussed in lo
Muzio and Seubert (2023), in Table 19, it can be observed that for all
parameters analysed, the results of the FENNECS SP3 solver are always
closer to the reference compared to the ones of the diffusion solver.
From this first observation, it can be already stated that improvements
by the SP3 method can be achieved from the point of view of the
effective multiplication factor as well as power distribution for states
going from the uncontrolled ones to the strongly controlled ones using
the FENNECS SP3 solver, with respect to the diffusion solver. The fact
that, also for large cores, the SP3 approximation is able to deliver more
accurate results is not surprising, since it accounts, to a certain extent,
also for neutron flux anisotropies and anisotropic scattering.

Based on the obtained results, it can be distinguished between the
weakly controlled states and the more controlled ones. For the first
ones, hence the ARO configuration as well as the first two insertion
steps, the magnitude of the errors found is very similar for the SP3 and
diffusion solver. Hence, in these cases, using the SP3 solver only weakly
improves the results. This holds particularly for the effective multipli-
cation factor and control rod (CR) worth. It should be remarked that for
these two quantities, the error obtained by the SP3 has an opposite sign,
compared to the one of the diffusion solver: the value is positive. Hence,
the k𝑒𝑓𝑓 is overestimated, leading to a more conservative approach. On
the contrary, the diffusion solver underestimates it, leading to issues
from the point of view of the safety. A visible improvement of the effec-
tive multiplication factor and RMS error of the power distribution could
be obtained only by performing the SPH correction on the cross section
libraries before using the diffusion solver. However, from the maximum
and RMS error, it can be concluded that the error distributions are more
flat for the results of the SP3 solver.

For the medium controlled states, good results could be achieved
with the SP3 solver. For instance, in step 5 the error in the effective
multiplication factor is only −43 pcm. On the contrary, for the diffusion
solver it is above 200 pcm. In some cases, regarding the effective
multiplication factor and CR worth, the results are even better than
with the SPH corrected cross sections. For example, this is the case in
step 4.

For the strongly controlled scenarios, large errors were obtained
by the diffusion as well as SP3 solver, even though, the last one
delivered results closer to the reference. For example, in ARI, the error
in the effective multiplication factor is −664 pcm and −355 pcm for the
diffusion and SP3 solver, respectively. This result proves again that the
diffusion solver is not suited to model strongly controlled scenarios, if
no correction is applied to the cross sections. In the meantime, it shows
that also the SP3 solver has difficulties in such cases. In particular, from
the safety point of view, issues arise, since both solvers overestimate the
CR absorption capability. For such configurations, reasonable results
are obtained only for the calculations with SPH corrected cross sections
and the diffusion solver. However, also here the maximum error in the
power distribution is still too high: for the ARI configuration, the error
is above 10%. These results prove that to model such controlled states,
for the SP3 solver, further development is necessary. An option could be
the implementation of the SPH correction for this solver. Alternatively,
a more suited energy groups structure could be studied.

3. Conclusion

In this paper, all works performed for the verification of the newly
implemented SP3 solver in the GRS neutronic code FENNECS were
presented. To validate the code, test cases with already given cross
section libraries as well as with cross section libraries generated by the
authors were used. In the first case, using reference results, obtained
from codes relying on more accurate methods, the FENNECS SP3 solver
results were compared to the ones obtained from other programs
offering also an SP3 solver, as well as to results of the diffusion solver.
For test cases where the cross sections were generated by the authors,
the results of the FENNECS SP3 solver were compared to the ones of
the FENNECS diffusion solver, where to generate the reference solution
the same program used for the cross section generation was used. The
calculation results analysed were the effective multiplication factor and
in some cases the reactivity due to the finite size of the geometry,
the normalized neutron flux or power distributions or the control rod
worth.

Firstly, for all the cases discussed in this work, the FENNECS SP3
solver showed results much closer to the reference compared to the
ones of the diffusion solver. In some cases, the deviations arising from
the diffusion solver were orders of magnitude higher compared to
the ones of the SP3 solver. This shows the necessity of using this
newly implemented solver to model accurately heterogeneous and
small geometries with a very high leakage.

Secondly, in all the test cases analysed, a good agreement between
the reference effective multiplication factor, normalized power and
neutron flux distributions was achieved. This shows that the SP3 ap-
proximation was correctly implemented in the GRS neutronic code
FENNECS. The good agreement could be achieved even for very small
geometries.
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Thirdly, in this work, also controlled states were modelled. Here, the
FENNECS SP3 solver calculated power distributions, effective multipli-
cation factors and control rod worths near to the reference solutions for
weakly controlled states. For strongly controlled states, the limitations
of this methodology were visible. Here, better results, compared to the
diffusion solver were obtained. However, the usage of SPH corrected
cross sections in the diffusion solver delivered results closer to the ref-
erence, compared to the SP3 approach. This point shows the necessity of
further improving the solver in order to be able to model also strongly
controlled states.

Fourthly, in this work, the effect on the effective multiplication
factor of using different approaches for the macroscopic cross section li-
braries was shown and depending of the approach used to generate the
libraries different definitions of the zeroth order diffusion coefficient
should be used. With this regard, further investigations are necessary.

In the future, the steady state FENNECS SP3 solver will be tested on
more realistic (v)SMRs and MMRs configurations, in order to prove its
ability to perform their safety assessment. Furthermore, the solver will
be extended to be able to perform transient calculations.
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4.2. The 2D Cartesian planar benchmark and the Hébert benchmark

4.2 The 2D Cartesian planar benchmark and the Hébert

benchmark

In [38], for some quantities, a slightly different notation was used compared to [41] and

the rest of this work. The matrices Be, Ce, and He are indicated in [38] with d, c, and

p, respectively. The index h, indicating the face of the element, is addressed in [41]

with η.
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ABSTRACT 

From the worldwide growing interest in Small Modular Reactors (SMRs) and Micro 

Modular Reactors (MMRs), it arises the necessity to employ a proper neutronic calculation tool 

for their safety assessment. Most of the deterministic neutronic solvers rely on the diffusion 

approximation that is derived assuming isotropic scattering, low probability of neutron 

absorption compared to scattering, as well as a weakly varying neutron flux in space. This last 

assumption may not hold for small cores, like the ones of SMRs and MMRs: here, due to their 

reduced size and often their heterogeneity, high neutron flux gradients are present. An 

alternative to the use of the diffusion equation is the application of the third order Simplified 

Spherical Harmonics (SP3) approximation of the neutron transport equation, which is expected 

to perform better for SMRs and MMRs. 

For this reason, the Finite ElemeNt NeutroniCS (FENNECS) code, currently under 

development at GRS, which already provides a diffusion solver, was expanded by a steady state 

SP3 solver. FENNECS offers a high geometrical flexibility, which is essential to model complex 

systems like SMRs and MMRs.  

In this paper, starting from the transport equation, the steady state SP3 approximation of 

the neutron transport equation is derived. Then, in order to implement the SP3 equations in the 

FENNECS code, which is based on the Finite Element Method, these are cast into the Galerkin 

(weak) form. Finally, based on benchmark exercises, the correct functionality of the SP3 solver 

implemented in FENNECS is shown. 

1 INTRODUCTION 

The neutron transport equation describes the neutron population in a medium. Here, 

taking into account the spatial as well as the angular dependency, the neutrons sinks and sources 

are described. On one hand, thanks to its exact description of the phenomena, very accurate 

results can be obtained. On the other hand, to solve the transport equation using deterministic 

or with Monte Carlo codes is computationally expensive in both cases. This problem can be 

solved, by applying approximations [1–4]. 
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The most commonly used approximation of the transport equation is diffusion theory. 

This is based on three assumptions, which are isotropic scattering, a very small probability of 

absorption compared to scattering (Σ𝑎 ≪ Σ𝑠), and a weak variation of the neutron flux in space 

(in particular, the neutron current is proportional to the flux gradient according to Fick’s law). 

The first criterion is fulfilled only by heavy nuclei. The second one is not true for fuel and 

control materials. Finally, the last assumption is satisfied for homogeneous and large media 

(with respect to the mean free path length �̅�𝑛) at a distance of a few �̅�𝑛 away from the boundary. 

Consequently, this approximation may not be applicable near material interfaces and for small 

cores, like (v)SMR and MMR [5–7]. 

For the safety assessment of these systems, an appropriate approximation to the neutron 

transport equation is essential. One suited candidate is the Simplified Spherical Harmonics 

approximation of third order, or SP3. This can be derived expanding the angular terms of the 

transport equation with Legendre’s polynomials, even in 3D, without performing the transition 

to spherical harmonics [4,8,9]. 

In order to model (v)SMR and MMR, the Finite ElemeNt NeutroniCS (FENNECS) code, 

outlined in section 2, must be extended by an SP3 solver. For this reason, in section 3, the steady 

state SP3 approximation in the Galerkin (weak) form, as it is already used for the FENNECS 

diffusion solver, is derived. Finally, in section 4, validation with benchmark exercises is 

performed. 

2 FENNECS 

FENNECS was recently developed at Gesellschaft für Anlagen- und Reaktorsicherheit 

gGmbH (GRS). Originally, it was a 3D few group finite element based diffusion code, capable 

to model steady state as well as transient core configurations. FENNECS is based on the 

Galerkin weighted residual approach, where upright triangular prisms with linear basis 

functions are used as spatial elements. Due to its geometrical flexibility, it is capable to model 

complex and irregular geometries, like most often occurring in various (v)SMR and MMR 

concepts. The spatial meshing is performed by the Python Enhanced Meshing Tool with YAML 

input, PEMTY. To run the calculations, cross section libraries in NEMTAB format are applied 

[10,11].   

3 DERIVATION OF THE STEADY STATE SP3 APPROXIMATION IN THE 

GALERKIN FORMALISM 

The SP3 approximation is derived from the one dimensional transport equation, which can be 

found in [6] and [12], having 𝐺 discretized energy groups, as in [13], where 𝑔𝜖(1, … , 𝐺) and 

𝑔 = 1 is the lowest energy group. Firstly, to obtain the Spherical Harmonics approximation of 

third order (P3), the variables showing an angular dependency are expanded with Legendre 

polynomials up to the third order, as in [12]. Similarly to [13], also here it is assumed that higher 

order scattering between energy groups is neglected. Hence, between different energy groups 

only the zeroth order scattering is considered.  By doing a first step towards the spatial finite 

elements discretization, it is assumed that all nuclear data are constant within a finite element 

𝑒. From the one-dimensional P3 equations, the three-dimensional SP3 approximation can be 

obtained by keeping the Legendre expansions, by simply replacing the double derivative with 

the Laplacian and the 𝑥 -dependency with 𝑟. For the even order neutron fluxes, hence 𝜙0, which 

is the scalar flux, and 𝜙2, the following notations are used: 
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𝐹0,𝑔(𝑟) = 𝜙0,𝑔(𝑟) + 2𝜙2,𝑔(𝑟)  (1) 

𝐹1,𝑔(𝑟) = 𝜙2,𝑔(𝑟).  (2) 

Finally, the following formulation of the SP3 system of equations is obtained: 

−Δ𝐹0,𝑔(𝑟)𝐷0,𝑔
𝑒 + 𝐹0,𝑔(𝑟)(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,0,𝑔𝑔
𝑒 ) − 2𝐹1,𝑔(𝑟)(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,0,𝑔𝑔
𝑒 ) = 𝑆0,𝑔(𝑟), 

∀ 𝑟 ∈ 𝑒  
(3) 

−
2

3
𝐹0,𝑔(𝑟)(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,0,𝑔𝑔
𝑒 ) − Δ𝐹1,𝑔(𝑟)𝐷1,𝑔

𝑒 + 𝐹1,𝑔(𝑟) (
4

3
(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,0,𝑔𝑔
𝑒 ) +

5

3
(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,2,𝑔𝑔
𝑒 ))  = −

2

3
𝑆0,𝑔(𝑟), ∀ 𝑟 ∈ 𝑒 

(4) 

where 

𝑆0,𝑔(𝑟) =
𝜒𝑔

𝑘𝑒𝑓𝑓
∑ 𝜗𝛴𝑓,𝑔′

𝑒𝐺
𝑔′=1 (𝐹0,𝑔′(𝑟) − 2𝐹1,𝑔′(𝑟)) + ∑ 𝛴𝑠,0,𝑔′𝑔

𝑒 (𝐹0,𝑔′(𝑟) −𝐺
𝑔′=1,𝑔′≠𝑔

−2𝐹1,𝑔′(𝑟)), ∀ 𝑟 ∈ 𝑒. 

(5) 

Here, the variables with the apostrophe describe the neutron state after the scattering event. 𝜗 

is the fission yield and 𝛴𝑡, 𝛴𝑠 and 𝛴𝑓 are the total, scattering and fission macroscopic cross 

sections, respectively. In Eq. (5), 𝜒𝑔 and 𝑘𝑒𝑓𝑓 are the group fission spectrum and the effective 

multiplication factor, respectively. Furthermore, in Eq. (3) and (4), 𝐷0,𝑔 and 𝐷1,𝑔 are the zeroth 

and first order diffusion coefficients, defined as 

𝐷0,𝑔 =
1

3(𝛴𝑡,𝑔−𝛴𝑠,1,𝑔𝑔)
  (6) 

𝐷1,𝑔 =
3

7(𝛴𝑡,𝑔−𝛴𝑠,3,𝑔𝑔)
 . (

(7) 

The Galerkin (weak) form can be obtained following the approach described in [14]. 

Therefore, firstly, considering that in FENNECS the discretization is performed with upright 

triangular prisms as finite elements, Eq. (3) and (4) must be multiplied by the test functions 

𝜑𝑇(𝑟) = (𝜑1(𝑟), … , 𝜑6(𝑟))𝑇. Secondly, integration over the volume Γ𝑒 of the triangular 

prismatic finite element 𝑒 is performed. Thirdly, the Gauss theorem is applied to transform 

second order to first order spatial derivatives. Then, 𝐹0,𝑔 and 𝐹1,𝑔 must be expanded in terms of 

the basis functions as 

𝐹𝑘,𝑔(𝑟) = ∑ 𝜑𝑗(𝑟)𝑓𝑘,𝑔,𝑗
𝑒 = (

𝜑1(𝑟)
⋮

𝜑6(𝑟)
) ∙ (

𝑓𝑘,𝑔,1
𝑒

⋮
𝑓𝑘,𝑔,6

𝑒
)

6

𝑗=1

= �⃗⃗�(𝑟)𝑓𝑘,𝑔
𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗ , ∀ 𝑟 ∈ 𝑒, 𝑘 = 0,1 (8) 

Consequently, the Galerkin formulation of the SP3 approximation takes the following form: 
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[𝐷0,𝑔
𝑒 d + (𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,0,𝑔𝑔
𝑒 )𝑐 − ∑ (−

𝛽0,ℎ
𝑒

𝛾ℎ
𝑒 ) 𝑝5

ℎ=1 ] 𝑓0,𝑔
𝑒⃗⃗ ⃗⃗ ⃗⃗⃗ = 

𝑐 [
𝜒𝑔

𝑘𝑒𝑓𝑓
∑ 𝜗𝛴𝑓,𝑔′

𝑒𝐺
𝑔′=1 (𝑓0,𝑔′

𝑒⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗ − 2𝑓1,𝑔′
𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + ∑ 𝛴𝑠,0,𝑔′𝑔

𝑒 (𝑓0,𝑔′
𝑒⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗ − 2𝑓1,𝑔′

𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )𝐺
𝑔′=1,𝑔′≠𝑔 ] +

[2(𝛴𝑡,𝑔
𝑒 − 𝛴𝑠,0,𝑔𝑔

𝑒 )𝑐 + ∑ (−
𝛼0,ℎ

𝑒

𝛾ℎ
𝑒 ) 𝑝5

ℎ=1 ] 𝑓1,𝑔
𝑒⃗⃗ ⃗⃗ ⃗⃗⃗ 

(9) 

{𝐷1,𝑔
𝑒 d + [

4

3
(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,0,𝑔𝑔
𝑒 ) +

5

3
(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,2,𝑔𝑔
𝑒 )] 𝑐 − ∑ (−

𝛼1,ℎ
𝑒

𝛾ℎ
𝑒 )5

ℎ=1 𝑝} 𝑓1,𝑔
𝑒⃗⃗ ⃗⃗ ⃗⃗⃗ =  

−
2

3
𝑐 [

𝜒𝑔

𝑘𝑒𝑓𝑓
∑ 𝜗𝛴𝑓,𝑔′

𝑒𝐺
𝑔′=1 (𝑓0,𝑔′

𝑒⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗ − 2𝑓1,𝑔′
𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + ∑ 𝛴𝑠,0,𝑔′𝑔

𝑒 (𝑓0,𝑔′
𝑒⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗ − 2𝑓1,𝑔′

𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )𝐺
𝑔′=1,𝑔′≠𝑔 ] +

[
2

3
(𝛴𝑡,𝑔

𝑒 − 𝛴𝑠,0,𝑔𝑔
𝑒 )𝑐 + ∑ (−

𝛽1,ℎ
𝑒

𝛾ℎ
𝑒 ) 𝑝5

ℎ=1 ] 𝑓0,𝑔
𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗  

(10) 

where 

𝑑 = ∫ ∇𝜑(𝑟)∇𝜑𝑇(𝑟)
 

Γ𝑒 𝑑𝑉,  ∀ 𝑟 ∈ 𝑒 (11) 

𝑐 = ∫ 𝜑𝑖(𝑟)𝜑𝑗(𝑟)
 

Γ𝑒 𝑑𝑉, ∀ 𝑟 ∈ 𝑒 (12) 

𝑝 = ∫ ∇𝜑(𝑟)𝜑𝑇(𝑟)𝑑𝐴
 

𝜕Γ𝑒 , ∀ 𝑟 ∈ 𝑒. (13) 

The terms ∑ (−
𝛽0,ℎ

𝑒

𝛾ℎ
𝑒 )5

ℎ=1 , ∑ (−
𝛼0,ℎ

𝑒

𝛾ℎ
𝑒 )5

ℎ=1 , ∑ (−
𝛼1,ℎ

𝑒

𝛾ℎ
𝑒 )5

ℎ=1 , and ∑ (−
𝛽1,ℎ

𝑒

𝛾ℎ
𝑒 )5

ℎ=1  describe the 

boundary condition at the five faces of the finite element and their values are listed in Table 1. 

Table 1: Values for 1/𝛾ℎ
𝑒, 𝛽0,ℎ

𝑒 , 𝛽1,ℎ
𝑒 , 𝛼0,ℎ

𝑒  and 𝛼1,ℎ
𝑒  depending on the boundary condition. 

 1/𝛾ℎ
𝑒 𝛽0,ℎ

𝑒  𝛽1,ℎ
𝑒  𝛼0,ℎ

𝑒  𝛼1,ℎ
𝑒  

Interface boundary condition: 𝜕Γℎ
𝑒 ∈ 𝜕Γ 

𝐼 0 0 0 0 0 

Vacuum boundary condition: 𝜕Γℎ
𝑒 ∈ 𝜕Γ 

𝑉 1/8 4 −1 −3 7 

Reflective boundary condition: 𝜕Γℎ
𝑒 ∈ 𝜕Γ 

𝑅 1 0 0 0 0 

Zero flux boundary condition: 𝜕Γℎ
𝑒 ∈ 𝜕Γ 

𝑍𝐹 ∞ 4 −1 −3 7 

4 VALIDATION WITH ACADEMIC EXERCISES 

The first part of the solver validation process consists in testing it on simple models. For this 

reason, academic exercises are particularly suited. Two examples will be analysed here. The 

first one is constituted by quadratic fuel assemblies and the second one by hexagonal ones. 

4.1 Cartesian benchmark 

The geometry description and cross sections of the Cartesian benchmark are given in [15], 

where this is modelled with the SP3 solver of TRIVAC, a modular neutronic code for design 

applications and fuel management [15,16]. This benchmark is a small two-dimensional core 

with vacuum boundary conditions, having assemblies with a pitch of 40 cm, made of fuel, 

reflector and a pure absorber that are disposed concentrically, as depicted in Figure 1. Due to 

its small size and the strong variation between the material properties, it is particularly suited 

to show the limitations of the diffusion theory and to demonstrate the performance of the SP3.  
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Figure 1: Mesh of the Cartesian benchmark with 4 radial elements per assembly. The blue, 

green, and red regions are composed by fuel, reflector, and pure absorber, respectively. The 

thick black lines represent the vacuum boundary condition. 

The calculations were performed with the SP3 and the diffusion solver of FENNECS with 

different meshes. The obtained multiplication factors are compared to the ones from the 

TRIVAC SP3 solver based on the Raviart–Thomas zeroth order (RT0) solution with analytical 

integration (AI) and with Gauss-Legendre quadrature (GLQ). As in [15], the reference used is 

keff = 0.992160, which was calculated by the TRIVAC SP5 solver based on the Raviart–Thomas 

second order (RT2) solution with GLQ and 16 radial elements per assembly. 

As shown in Table 2, the discrepancies between the multiplication factors of TRIVAC 

and FENNECS and the reference value, were evaluated. In the case of the FENNECS diffusion 

solver, the disagreements are striking: for 4 as well as for 16 radial elements per assembly the 

difference is above 4300 pcm. This result clearly shows that the diffusion approximation is not 

well suited to model such very small cores. However, these high discrepancies should be further 

investigated. If the cross sections would have been generated with Serpent, and not already 

given, it would have been possible to apply the superhomogenization (SPH) method [17], from 

which an improvement of the results is expected.  

Table 2: Multiplication factors for the Cartesian benchmark from FENNECS and TRIVAC 

with their deviations from TRIVAC SP5 RT2 GLQ with 16 radial elements per assembly.  

Program Solver 
Radial elements 

per assembly 
keff 

Difference with the 

reference (pcm) 

FENNECS Diffusion 4 0.94575 -4946 
16 0.95129 -4330 

SP3 4 0.98079 -1168 
16 0.98793 -432 
36 0.98960 -261 
64 0.99024 -195 

144 0.99073 -145 
400 0.99099 -119 

2116 0.99112 -106 
TRIVAC 

RT0 AI 

SP3 4 0.995780 366 
16 0.992535 38 
36 0.991794 -37 

TRIVAC 

RT0 GLQ 

SP3 4 0.989783 -242 
16 0.990796 -139 
36 0.990989 -119 

The results from the FENNECS SP3 solver show smaller discrepancies and the agreement 

with the reference drastically increases by reducing the mesh size: with 2116 radial elements 

per assembly the discrepancy is only 106 pcm. At this point, mesh refinement does not affect 

the keff. On the contrary, increasing the number of elements from 4 to 16, leads to significant 

improvements: the discrepancy is halved. Regarding the better agreement of TRIVAC with the 

reference, this can be explained by the use of AI or GLQ, hence more accurate methods.  
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4.2 Hébert benchmark 

The Hébert benchmark, depicted in Figure 2, is very similar to the exercise above. The 

main difference are the hexagonal assemblies, having a pitch of 32.9 cm. Here, the comparison 

is performed between results calculated by FENNECS and the ones from the SP3 solvers of 

DYN3D and of TRIVAC, which were taken from [13], together with the cross sections.  

  

Figure 2: Mesh of the Hébert benchmark with 6 radial elements per assembly. The blue, 

green, and red regions are composed by fuel, reflector, and pure absorber, respectively. The 

thick black lines represent the vacuum boundary condition. 

Table 3 shows the multiplication factors and their deviations from the reference, which is 

the TRIVAC SP3 solver, where keff = 1.000332. Here, it can be observed that the discrepancies 

between the keff from the FENNECS diffusion solver and the reference are again above  

4300 pcm. Also here, if Serpent generated cross section would have been used, the SPH method 

could have been applied, from which a decrease of the discrepancy is expected. 

Table 3: Multiplication factors for the Hébert benchmark from FENNECS and DYN3D and 

their deviation from TRIVAC SP3 reference.  

Program Solver 
Radial elements 

per assembly 
keff 

Difference with the 

reference (pcm) 

FENNECS Diffusion 6 0.95641 4590.9 
24 0.95845 4368.3 

SP3 6 0.99533 502.4 
24 0.99861 172.4 
96 0.99975 58.2 

384 1.00009 24.2 
1536 1.00019 14.2 
2166 1.00021 12.2 

DYN3D SP3 6 1.001100 -76.7 
24 1.000085 24.7 
96 0.999939 39.3 

384 1.000039 29.3 
1536 1.000156 17.6 
6144 1.000238 9.4 

For both SP3 solvers, the discrepancies are drastically smaller: the difference between the 

reference and the keff from the FENNECS SP3 solver with 6 radial elements per assembly is 

only 502.4 pcm, whereas for the SP3 solver of DYN3D it is -76.7 pcm, hence it is lower. 

However, refining the mesh, the keff of FENNECS and DYN3D approach closer the reference. 

In particular, with the SP3 solver of FENNECS, a larger improvement can be observed 

compared to DYN3D, such that starting from 384 radial elements per assembly, the keff from 

FENNECS SP3 is closer to the reference, compared to DYN3D. Therefore, the methodology of 

FENNECS SP3 shows a stronger dependency on the mesh, compared to the one of DYN3D.  
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For this benchmark, also the normalized flux distributions from the SP3 solvers of 

FENNECS and DYN3D are evaluated and compared to the TRIVAC SP3 reference. In Table 

4, the root mean squared (RMS) and the maximum and minimum deviation for the distributions 

of the deviations from the reference of the normalized neutron flux can be found. Here, it can 

be observed that with a small number of radial subdivisions the normalized flux distributions 

from DYN3D are closer to the reference, compared to FENNECS, as seen from the RMS and 

the maximum deviations and as it can observed in Figure 3. For both solvers, the RMS and the 

maximum errors decrease with the mesh refinement. However, as it was the case for the keff, 

this decrease is stronger for FENNECS: starting from 96 radial elements per assembly, the SP3 

solver of FENNECS yields a normalized flux distribution closer to TRIVAC, compared to 

DYN3D, as stated by the RMS and the maximum deviation and as it can be seen in Figure 4.  

Table 4: RMS (%), maximum and minimum deviations of the normalized neutron flux 

distributions, depending on mesh, with respect to the reference. 

Radial 

elements per 

assembly 

RMS (%) Maximum (%) Minimum (%) 

FENNECS 

SP3 

DYN3D 

SP3 

FENNECS 

SP3 

DYN3D 

SP3 

FENNECS 

SP3 

DYN3D 

SP3 

6 4.1 1.7 8.3 -2.5 0.2 0.0 
24 1.5 1.1 3.2 -1.9 0.0 0.0 
96 0.5 0.6 1.0 -1.4 0.0 0.1 

1536 0.1 0.2 -0.3 -0.5 0.0 0.0 

                 

Figure 3: Deviations (%) from the reference of the normalized neutron flux distributions for 

the SP3 solvers of FENNECS (left) and DYN3D (right) with 6 radial elements per assembly. 

The red numbers are the maximum deviations. 

                 

Figure 4: Deviations (%) from the reference of the normalized neutron flux distributions for 

the SP3 solvers of FENNECS (left) and DYN3D (right) with 96 radial elements per assembly. 

The red numbers are the maximum deviations. 

5 CONCLUSIONS 

In this work, starting from neutron transport theory, the equations of the SP3 

approximation in the Galerkin formalism were derived. The equations obtained were used to 

implement an SP3 solver in the deterministic finite element neutronic code FENNECS.  

The functionality of the solver was demonstrated with the Cartesian and with the Hébert 

benchmarks. In the first one, the keff was used to prove the superiority of the SP3 approximation 

with respect to diffusion theory for a small heterogeneous core. In the second one, the keff as 

well as the normalized flux distributions of FENNECS and DYN3D were compared to 

TRIVAC SP3. Here, it could be observed, that the SP3 solver of DYN3D yields better results 

for coarse meshes. However, a mesh refinement leads to a significant improvement of the 

results from the FENNECS SP3 solver, such that for a finer meshes these are closer to the 
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reference compared to the ones of DYN3D. In the near future, the verification and validation 

work will be continued on more realistic test cases, e.g. PWR fuel assemblies and SFR cores. 
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Abstract:  

 Due to the worldwide growing interest in Small Modular Reactors (SMRs) and Micro 
Modular Reactors (MMRs), the development of tools for their safety assessment is of particular 
interest. These reactors have compact and complex geometries with strong neutron flux 
gradients. One possibility could be to use Monte Carlo methods, which require an enormous 
resources demand especially for transients, on the contrary to most deterministic codes. For 
this reason, the Finite ElemeNt NeutroniCS (FENNECS) deterministic code is particularly 
suited due to its geometric flexibility. FENNECS provides a solver based on the diffusion 
approximation of the transport equation. However, this approximation may not hold for small 
and heterogeneous configurations. To overcome the limitations of diffusion theory, an option 
are deterministic transport codes, but they also may be computationally expensive. An 
adequate possible solution is the third order Simplified Spherical Harmonics (SP3) 
approximation of the transport equation. 
 A short summary of the theoretical derivation of the SP3 in the finite elements formalism 
and its implementation into FENNECS will be given. To carry out validation and verification, 
the C5G7 benchmark is taken as example. Macroscopic pin cell homogenized cross sections 
and pin power distributions were generated with HELIOS-1.12 for the UO2 and MOX 
assemblies. These cross sections were verified with the transport code TORT-TD and used to 
simulate the same geometries with the diffusion as well as with the SP3 solver of FENNECS. 
Pin power distributions and multiplication factors obtained by the SP3 solver satisfactorily agree 
with the respective HELIOS results. 

1 INTRODUCTION 
 The increasing interest in small modular reactors (SMRs) and micro modular reactors 
(MMRs) requires adequate tools for their safety assessment, either Monte Carlo or 
deterministic. The first category offers a high geometrical flexibility, which is necessary to 
model the complex geometries of SMRs and MMRs. However, their biggest disadvantages are 
not sufficient maturity for transient applications and a large requirement of computational 
resources, especially for transients, making them not suited for routine applications. On the 
contrary, deterministic codes do not suffer from this limitation, allowing them to perform 
transient calculations more efficiently [1–3].  
 Neutronic codes can be also categorized depending on the physical and mathematical 
model behind them. Here, one possibility is to use codes relying on transport theory: the 
transport equation accurately describes the angular neutron flux in a medium, taking into 
account neutron sinks and sources. However, this is formulated with seven independent 
variables (five for the space-angular dependency, one for energy and one for time). Therefore, 
to solve it, a considerable amount of resources is required. A solution to this problem is to 
apply approximations to the transport equation [4–7]. 
 The most common approximation of the transport equation is diffusion theory, which 
consists in assuming isotropic scattering, only low neutron absorption compared to scattering, 
and low variation of the neutron flux in space. The first assumption holds only for heavy nuclei. 
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The second one is not fulfilled by fuel and control materials. Finally, the last consideration can 
be applied only to large (with respect to the mean free path) and homogenous media. Even in 
this case, this assumption holds only a few mean free paths away from the medium boundary. 
Thus, diffusion theory may not be suited to model the compact and inhomogeneous cores of 
SMRs and MMRs [8–10].  
 Therefore, an adequate approximation of the transport equation must be found to perform 
the safety assessment of these systems. A possible candidate for this task is the third order 
Simplified Spherical Harmonics approximation, or SP3, which is more accurate than diffusion 
theory. This approximation consists in expanding the angular dependency of the transport 
equation with Legendre polynomials, even for three-dimensional models, without the necessity 
to replace them with spherical harmonics [4,11,12]. 
 For this reason, the Finite ElemeNt NEutroniCS (FENNECS) code, described in section 2, 
was extended by a steady state SP3 solver and the mathematical model behind it is briefly 
described in section 3. Within the validation process, the UO2 and MOX fuel assemblies 
specified by the C5G7 benchmark were used. As explained in section 4, the single fuel 
assemblies were modelled with HELIOS-1.12 to generate reference eigenvalues and pin 
power distributions and the pin cell-homogenized cross sections libraries, which were validated 
with the transport code TORT-TD [13]. Finally, with the obtained libraries, the UO2 and MOX 
fuel assemblies were modelled with FENNECS. 

2 FENNECS 
 The code FENNECS was recently developed at Gesellschaft für Anlagen- und 
Reaktorsicherheit (GRS) gGmbH. Initially, it was a three dimensional few-group diffusion code 
capable to model steady state as well as transient core configurations. FENNECS relies on 
the continuous Galerkin weighted residual approach using upright triangular finite elements 
with linear basis functions as spatial elements. To run the calculations, cross-section libraries 
in NEMTAB format must be provided. Furthermore, the main advantage of the FENNECS code 
is its high geometrical flexibility, which is an essential requirement to model complex and 
irregular system, like most of the SMRs and MMRs [14,15]. 

3 MATHEMATICAL MODEL BEHIND THE SP3 SOLVER OF FENNECS  
 The steady state SP3 approximation is derived from the Spherical Harmonics 
approximation of third order (P3), which consists in expanding the angular terms of the steady 
state one dimensional transport equation with Legendre polynomials up to the third order. The 
transition to the SP3 approximation is performed by moving to 3D solely by replacing the double 
derivative with the Laplacian operator and without the necessity to replace the Legendre 
polynomials with spherical harmonics [10,16–18].  
 As mentioned in section 2, FENNECS relies on the Galerkin finite element approach. 
Therefore, the steady state SP3 equations must be casted into the Galerkin formalism, as it is 
explained in [19].  

4 C5G7 TEST CASES 
 The geometry specifications of the C5G7 fuel assemblies were taken from [20]. The 
geometry of the C5G7 benchmark consists of a minicore made of four fuel assemblies in total, 
where two of them are made of UO2 and the remaining two of MOX.  
 In this work, single-assembly models of the two types of fuel assemblies were considered 
using reflective boundary conditions. The calculations were performed firstly with  
HELIOS-1.12, using the collision probabilities solver, from which the reference values for the 
effective multiplication factors and for the pin power distribution, together with the pin cell-wise 
homogenized macroscopic cross-section libraries were obtained. The libraries were validated 
with the deterministic transport code TORT-TD. Then, using the validated cross sections, 
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calculations with the diffusion as well as with the SP3 solver of FENNECS using various mesh 
refinements (4 and 16 radial elements per pin cell) were performed. Finally, the multiplication 
factors as well as the normalized power distributions calculated by FENNECS were compared 
with the HELIOS reference calculations results. In particular, in the case of the multiplication 
factors, the analysis was performed calculating the reactivity deviation from the refence, and 
for the normalized power distributions the root mean square (RMS) as well as the maximum 
and minimum value of the deviation for each pin was considered. 

4.1 UO2 fuel assembly 
 The multiplication factor calculated by HELIOS for the UO2 fuel assembly, illustrated in 
Figure 1, is 1.32705 and this value is used as refence. As it can be observed in Table 1 and 
Table 2, for both FENNECS solvers, the discrepancies in the effective multiplication factors, 
as well as in the RMS and the maximum error of the power distribution, decrease with 
increasing number of radial elements per pin cell. 

  
 

Figure 1: UO2 fuel assembly (left) and its FENNECS model (right) of the C5G7 minicore with a mesh using 4 
radial elements per pin cell. In the FENNECS model, the green cells contain UO2 fuel pins. The blue cells contain 

the guide tubes and the central red cell is the fission chamber.   

Table 1: Multiplication factors calculated with the diffusion and SP3 solvers of FENNECS with 4 and 16 radial 
elements per pin cell and the respective deviations from the HELIOS reference for the UO2 fuel assembly. 

Radial elements 
per pin cell 

Solver keff from FENNECS 
Deviation from 
HELIOS (pcm) 

4 
Diffusion 1.32821 66 

SP3 1.32798 53 

16 
Diffusion 1.32779 42 

SP3 1.32752 27 

Table 2: RMS (%), maximum and minimum value of the deviation of the normalized power distribution with respect 
to the HELIOS reference for the UO2 fuel assembly. 

Radial elements 
per pin cell 

Solver RMS Maximum error Minimum error 

4 Diffusion 0.54% 1.43% -0.06% 

SP3 0.52% 1.48% -0.17% 

16 Diffusion 0.25% 0.68% 0.08% 

SP3 0.23% 0.55% 0.00% 
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 With both meshes, the FENNECS SP3 solver delivers an effective multiplication factor 
closer to HELIOS and a smaller RMS of the power distribution, compared to the diffusion 
calculation: with 16 radial elements per pin, for the SP3 solver the discrepancy in the 
multiplication factor is only 27 pcm and the RMS 0.23%, proving also the correct 
implementation of the methodology. However, it should be noted that the difference between 
the results of the two solvers is very small: for the keff, with 4 and 16 radial elements per pin, 
this is only 13 pcm and 15 pcm, respectively, and 0.02% for the RMS with mesh sizes. This 
can be explained by the very homogeneous composition of the UO2 of fuel assembly. 

4.2 MOX fuel assembly 
 For the MOX fuel assembly, depicted in Figure 2, the reference keff obtained with HELIOS 
is 1.17632. Here, an increase in the discrepancy between the multiplication factor calculated 
by the FENNECS diffusion solver and the reference can be observed after the mesh 
refinement, as shown in Table 3. In the case of the SP3 solver, the increase in the number of 
radial elements per pin cell does not signifyingly affect the keff, whose discrepancy from the 
HELIOS reference is only 51 pcm for both meshes. On the contrary, for the normalized power 
distribution, a strong decrease of the pin power RMS, minimum and maximum error can be 
observed when decreasing the mesh size: with 16 radial elements per pin cell, the RMS and 
maximum error obtained with the SP3 solver are only 0.46 % and 1.00 %, respectively, as it 
can be seen in Table 4. Therefore, for both assemblies, the very small errors observed 
FENNECS SP3 results prove, besides its correct implementation, also that the accuracy of this 
methodology is very close to transport codes.  

  
 

Figure 2: MOX fuel assembly (left) and its FENNECS model (right) of the C5G7 minicore with a mesh using 4 radial 
elements per pin cell. In the FENNECS model, the blue, light blue, and green cells contain fuel pins made of 4.3%, 
7.0%, and 8.7% MOX, respectively. The red cells contain the guide tubes and the central yellow cell is the fission 
chamber. 

Table 3: Multiplication factors calculated with the diffusion and SP3 solvers of FENNECS with 4 and 16 radial 
elements per pin cell and the respective deviations from the HELIOS reference for the MOX fuel assembly. 

Radial elements 
per pin cell 

Solver keff from FENNECS 
Deviation from 
HELIOS (pcm) 

4 
Diffusion 1.17514 -85 

SP3 1.17562 -51 

16 
Diffusion 1.17503 -93 

SP3 1.17561 -51 
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Table 4: RMS (%) of the deviation of the normalized power distribution with respect to the HELIOS reference for 
the MOX fuel assembly. 

Radial elements 
per pin cell 

Solver RMS 
Maximum error Minimum error 

4 
Diffusion 1.11% 1.95% 0.05% 

SP3 0.88% 1.54% 0.05% 

16 
Diffusion 0.64% 1.44% 0.00% 

SP3 0.46% 1.00% -0.03% 

 Comparing the discrepancies in the multiplication factors as well as in the RMS of the 
normalized power distributions errors, it can be observed that the results from the SP3 solver 
are closer to the HELIOS reference, compared to the ones calculated by diffusion theory. 
Compared to the UO2 assembly, here the results from the FENNECS diffusion solver are more 
far away from the ones of the SP3 solver as well as of HELIOS: for the multiplication factor and 
the RMS, the difference between the two FENNECS solvers ranges between 34 pcm and  
42 pcm and between 0.18% and 0.23%, respectively, depending on the mesh. Furthermore, 
higher values for the deviation of the multiplication factor and the RMS are obtained, compared 
to the UO2 fuel assembly: in particular, with the FENNECS diffusion solver and with 4 radial 
elements per pin, the RMS of the power distribution error is above 1%. These last two 
observations can be explained by the more heterogeneous composition of the MOX fuel 
assembly compared to the UO2 assembly. Therefore, the limitations of the diffusion solver are 
emphasized and the higher accuracy of the SP3 approximation, compared to diffusion theory, 
which was mentioned in section 1, is proven.  

5 CONCLUSIONS 
 In this work, motivations for the importance of the development of an SP3 solver in the 
FENNECS code were given. Furthermore, the theoretical derivation of the SP3 equation in the 
Galerkin formalism was briefly sketched.  
 Finally using the geometry of the C5G7 benchmark, single-assembly models of its UO2 and 
MOX fuel assemblies were performed with HELIOS, which delivered the reference solutions 
and the cross sections that were used for the FENNECS calculations with the diffusion and 
SP3 solver. Here, the multiplication factors and the normalized power distribution were 
analysed. For both quantities and both assemblies, the results of the SP3 solver showed 
improvements against the diffusion approximation and a good agreement with the reference. 
In particular, in the case of the UO2 fuel assembly, only small differences were observed 
between the results calculated with the diffusion and SP3 solver, due to the homogenous 
configuration of this assembly. On the contrary, for the MOX assembly, the differences 
between the calculation results of these two solvers were larger, showing the expected benefit 
of the SP3 approximation against diffusion theory in modelling heterogenous systems.  
 Therefore, the newly developed FENNECS SP3 solver offers the possibility to model 
systems that could not be accurately modelled by the diffusion approximation, like SMRs and 
MMRs, with a precision that is very close to the one of a transport code. In the future, this 
research will be extended by modelling the whole C5G7 minicore, hence an even more realistic 
case.  
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ABSTRACT 
 

Due to the irregular and complex geometries of (very) small modular reactors ((v)SMR) and 

micro modular reactors (MMR), adequate neutronics codes are required for their safety 

assessment. Monte Carlo codes as well as deterministic transport codes are too expensive. To 

reduce the calculation time, a solution is to use diffusion codes, like the one implemented in 

the 3D neutron kinetics code FENNECS. However, diffusion theory may not be suited for 

heterogeneous and high-leakage concepts like (v)SMR and MMR. The third order Simplified 

Spherical harmonics approximation of the transport equation (SP3) could be a reasonable 

compromise. Therefore, the FENNECS code was extended by an SP3 solver. Within the 

validation process of the newly implemented solver, this was applied on the European Sodium 

Fast reactor (ESFR) at nominal condition as well as at 11 different control rods insertion depths. 

The macroscopic cross section libraries as well as reference solutions were obtained with 

Serpent. The simulations of the ESFR 12 states were performed with the preexisting 

FENNECS diffusion solver as well as with the new SP3 solver. Additionally, the diffusion 

calculations were repeated also with SPH corrected cross sections. For the nominal condition 

and the weak controlled states, a good agreement between the results obtained from the 

FENNECS SP3 solver and the ones of the reference could be observed, showing the successful 

implementation of the solver in FENNECS. For the highly controlled states, a good agreement 

with the reference could be only obtained using the SPH method and the diffusion solver. 
 

KEYWORDS: FENNECS, SP3, Sodium-cooled Fast Reactor, SPH 

 

1. INTRODUCTION 
 

Due to the small size and inhomogeneous configuration of (very) small modular reactors ((v)SMR), and 

micro modular reactors (MMR),  special tools for their safety assessment are required, especially regarding 

the simulation of the 3D neutron kinetics [1]. To model such geometries, Monte Carlo codes would be 

suited. However, due to the long calculation times, these cannot be applied for routine calculations. An 

alternative are deterministic codes, since they are cheaper, offering the possibility to simulate also transients 

[2]. However, deterministic codes relaying on the neutron transport equation are still too expensive [3,4]. 

Here, a solution is to apply approximations. The most popular one is diffusion theory, which is obtained 

from the neutron transport equation by assuming isotropic scattering, few absorption events, compared to 

scattering, and slow varying neutron flux in space [4–7]. It is obvious that these assumptions are not 

satisfied in heterogeneous and small geometries with strong neutron absorbers, like the ones of (v)SMR 

and MMR. Therefore, the diffusion approximation may not perform well for (v)SMR and MMR. Solvers 

based on the third order Simplified Spherical Harmonics Approximation of the transport equation (SP3) are 
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expected to be a compromise between the efficient, but less accurate diffusion solvers, and the CPU-

demanding, but more accurate transport codes. Therefore, to overcome the limitations of the diffusion 

equations in specific situations, for the safety assessment of (v)SMR and MMR, the Finite ElemeNt 

NeutroniCS Code (FENNECS), a deterministic code developed at Gesellschaft für Anlagen- und 

Reaktorsicherheit (GRS) gGmbH, was recently extended by a steady state SP3 solver. Since the main goal 

of the FENNECS SP3 solver is to model (v)SMR and MMR, this was already tested on small and 

heterogeneous geometries. For these systems, the results the FENNECS SP3 solver showed a very good 

agreement with the reference [8,9]. 

 

In this work, the functionality and performance of the SP3 solver will be shown on the ESFR, a large 

sodium-cooled fast reactor specified within the project “European Sodium Fast Reactor Safety Measures 

Assessment and Research Tools” (ESFR-SMART) [10]. The current work is firstly a contribution to the 

validation of the new FENNECS SP3 solver. Secondly, it aims to prove the ability of the solver in modelling 

also large cores. Thirdly, since controlled states are challenging for diffusion solvers, the ability of the SP3 

in modelling them will be tested. In these scenarios, the position of the Control Shutdown Device (CSD) 

and the Diverse Shutdown Device (DSD) rods is changed. Fourthly, to improve the results of the diffusion 

solver, the Superhomogeneisation (SPH) method [11] will be applied on the cross section libraries. 

 

2. FENNECS 
 

The Finite ElemeNt NEutroniCS code FENNECS is a 3-d few-group neutron kinetics code based on the 

Finite element method, where upright triangular prisms are used as finite elements [12–14]. It provides a 

diffusion as well as an SP3 solver , which can perform steady state calculations, but only the diffusion solver 

can calculate transient scenarios [12,13]. The code is based on the Galerkin weighted residual approach 

[14]. The meshing of the geometry is performed by the Python Enhanced Meshing Tool with Yaml input 

(PEMTY), which is also able to generate cross section libraries in NEMTAB format from Serpent output 

files [12]. Furthermore, as explained in [15], it can apply the SPH correction to the cross libraries. 

 

 

Table I: Energy groups structure used for the macroscopic cross sections. 

 
Group index 1 2 3 4 5 

Lower energy boundary 6.065307 MeV 2.231302 MeV 820.85 keV 301.9738 keV 111.09 keV 
 

Group index 6 7 8 9 10 

Lower energy boundary 40.86771 keV 15.03439 keV 5.530844 keV 2.034684 keV 0 eV 

 

 

Table II: Locations of the DSD and CSD rods, which correspond to the bottom of the control  

rod, with respect to the top of active core plane [16]. 

 
Step 0 (ARO) 1 2 3 4 5 

DSD location [cm] 5.027 0.000 -9.552  -19.103  -28.655  -38.206  

CSD location [cm] 5.027 0.000 -8.546 -17.092 -25.638 -34.184 
 

Step 6 7 8 9 10 11 (ARI) 

DSD location [cm] -47.758 -57.310 -66.861 -76.413 -85.964 -95.516  

CSD location [cm] -42.731 -51.277 -59.823 -68.369 -76.915 -85.461 
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Figure 1. Effective multiplication factor versus the CR insertion steps for the FENECS 

diffusion (blue), SP3 (green) and SPH corrected diffusion (red) solver as well as for Serpent 

(pink). The step 0 and 11 represents the ARO and ARI configuration, respectively. 
 

 

  
Figure 2. Error of the effective multiplication factor for FENECS diffusion (blue), SP3 

(green) and SPH corrected diffusion (red) solver, with respect to Serpent, versus the CR 

insertion steps. The step 0 and 11 represents the ARO and ARI configuration, respectively. 
 

 

3. METHODOLOGY 
 

The macroscopic cross sections were generated with the Monte Carlo code Serpent, based on the groups 

structure given in Table I. The cross sections were obtained by modelling the assemblies as three-

dimensional, where the CSD and DSD rods are surrounded by 6 half of fuel assemblies. To obtain the SPH 

corrected cross sections, the same approach was used to model their absorber materials, hence natural and 

enriched boron. The corrected cross section libraries were obtained applying the iterative scheme of the 

SPH method, implemented in PEMTY. 
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Figure 3. CR worth for FENECS diffusion (blue), SP3 (green) and SPH corrected diffusion 

(red) solver, with respect to Serpent, versus the CR insertion steps. The step 0 and 11 

represents the ARO and ARI configuration, respectively. 
 

 

 
Figure 4. Error in the CR worth for FENECS diffusion (blue), SP3 (green) and SPH 

corrected diffusion (red) solver, with respect to Serpent, versus the CR insertion steps. The 

step 0 and 11 represents the ARO and ARI configuration, respectively. 
 

 

Serpent was also used to calculate the reference effective multiplication factors (keff) and normalized power 

distributions of the ESFR full core for the nominal condition, hence all rods out (ARO) configuration, and 

the further 11 scenarios with different control rods insertion depths, given in Table II, where the last 

configuration is all rods in (ARI). It should be remarked that in all calculations the uncertainty of the keff 

calculated by Serpent is never above 4.90pcm. In the next sections, the performance of the SP3 solver will 

be analysed based on the discrepancy in the keff and in the control rod (CR) worth, as well as on the root 

mean squared (RMS) and maximum error of the normalized power distibutions, all with respect to Serpent. 
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Figure 5. RMS error (%) for FENECS diffusion (blue), SP3 (green) and SPH corrected 

diffusion (red) solver, with respect to Serpent, versus the CR insertion steps. The step 0 and 

11 represents the ARO and ARI configuration, respectively. 
 

 

Table III: Maximum error (%) of the power distribution with respect to Serpent. 

 
Step 0 1 2 3 4 5 6 7 8 9 10 11 

Diffusion 3.2 3.4  2.8 4.0 5.7 8.9 13.4 18.5 23.7 28.6 33.1 35.9 

SP3 2.5  2.9 2.5 3.6 4.9 7.5 11.4 15.8 20.4 24.7 28.8 31.4 

Diffusion SPH 4.1  4.5 3.8 4.2 4.3 3.8 4.3 4.1 4.7 6.4 8.9 11.1 

 

 

4. RESULTS 

 

4.1.The effective multiplication factor 

 
The discrepancy between the keff of the FENNECS SP3 solver and the one of Serpent tends towards negative 

values as the CR are inserted, as shown in Fig. 1 and 2: from step 0 to 4, the error is positive and tends to 0 

and from step 5 it becomes negative. Therefore, at the beginning, the keff is overestimated. For the diffusion 

solver, the error in the keff is always larger, compared to the one of the SP3 calculation. However, for the 

first steps, their magnitudes are similar. Additionally, since the keff of the diffusion solver is always smaller, 

compared to the reference, it is not conservative. Furthermore, for the steps 3 and 4, even if the SPH 

correction is applied, the effective multiplication factor obtained from the SP3 solver shows a smaller error.  

 

4.2.  The control rod worth 
 

As shown in Fig. 3 and 4, for the calculations without SPH correction, the error in the CR worth, with 

respect to Serpent, goes towards large negative values as they are inserted deeper in the core. The CR worth 

of the SP3 solver is always closer to the reference, compared to the one of the diffusion solver, except in 

step 2. It should be remarked, that in the first two steps, the magnitude of the errors in the CR worth of the 

two solvers are very similar. Hence, using the SP3 approximation, does not lead to significant improvements 
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for (almost) uncontrolled cores. This is not the case as the CR are inserted deeper in the core. Furthermore, 

the diffusion theory always overestimates the CR worth. This was observed also in the previous subsection. 

For the SP3 solver, this overestimation starts from step 3 and it is weaker. 

 

From the comparison between the CR worth obtained from the SP3 and the diffusion solver with SPH  

correction, it can be observed that better results are obtained starting from the ARO configuration until step 

4. Starting from step 5, the diffusion solver with SPH correction gives a CR worth closer to the reference. 

 

4.3.  The normalized power distribution 
 

Regarding the RMS error and magnitude of the maximum error of the normalized power distribution 

calculated by the SP3 method, with respect to Serpent, it can be observed that they increase as the CR are 

inserted deeper in the core, as it can be observed in Fig. 5 and Table III. The RMS error obtained with the 

SP3 solver is always smaller compared to the one of the respective diffusion solution. However, a 

considerable improvement can be observed if the SPH correction is applied before using the diffusion 

solver. In this case, a smaller RMS error is obtained, compared to the SP3 method.  

 

Also regarding the maximum error of the normalized power distribution, the SP3 solver results are closer 

to the reference, compared to the diffusion solver. Additionally, the maximum error obtained from the SP3 

is closer to zero from step 0 to 3, if compared to the SPH calculations. This means that in these steps, the 

SP3 solver calculates power distributions, where the RMS error is larger compared to the SPH diffusion 

solution, but smaller error peaks are obtained. Hence, for the SP3 solver, the spatial  

distribution of the errors is flatter. This hypothesis will be confirmed in the next subsection. Starting from 

step 4, the maximum error of the SP3 simulations is larger, than the one of the SPH diffusion calculations. 

 

 

 
 Figure 6. Errors in the power distribution obtained with the FENNECS SP3 solver with 

respect to the reference (Serpent), for the step 0, hence ARO.  



Validation of the FENNECS SP3 Solver with Control Rod Insertion Simulations of the ESFR 

7 

 

  
Figure 7. Errors in the power distribution obtained with the SPH corrected FENNECS 

diffusion solver, with respect to the reference (Serpent), for the step 0, hence ARO. 

 

 

4.4.  The nominal condition, step 1, 6, and 11 
 

For the nominal condition, in all three calculations, a very good agreement with the Serpent reference, 

which is keff = 1.03341 ± 4.9010-5, is achieved. In particular, the magnitudes of the error obtained from the 

SP3 and the diffusion solver are similar, even though the keff of the SP3 solver shows a better agreement 

with the reference. For the first solver, the discrepancy is only 73pcm and for the diffusion solver -88pcm.  

A keff closer to the reference can be obtained using the diffusion solver with SPH correction: in this case 

the deviation is only -4pcm, which is less than the uncertainty of the Serpent calculation. Similar findings 

apply also to the RMS error of the normalized power distribution with respect to Serpent. However, with 

the SP3 solver, the maximum error is closer to zero, compared to both diffusion calculations. This means, 

that the spatial error distribution is flatter for the SP3 solver, as shown in Fig. 6, compared to the one of the 

SPH corrected diffusion calculations, shown in Fig. 7, which shows error peaks at the radial boundary. 

 

Starting from step 1, the DSD and CSD are inserted in the core. From the point of view of the keff, the SPH 

corrected calculation is closer to the reference. This is not the case if the CR worth is considered: here, for 

the not-SPH corrected calculations, the errors are within the Serpent calculation uncertainty, which is 

4.90pcm. In particular, the CR rod worth deviation for the SP3 solver is only 1pcm. For the power 

distributions, the same considerations made for the ARO configuration can be applied here. 

 

In step 6, the errors obtained from the non-SPH corrected calculations start to be more pronounced also for 

the FENNECS SP3 solver. Although, the error for the effective multiplication factor is only -105pcm. In 

case of the diffusion solver, this value is more than three times larger. For the SP3 solver, the deviation of 

the CR worth is -178pcm, whereas for the diffusion solver -257pcm. Consequently, for both solvers, an 

overestimation of the CR absorption can be observed. A strong improvement of the results can be obtained 
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using the SPH correction and the diffusion solver. In this case, the error in the keff is only -3pcm and the 

one in the CR worth only -1pcm, hence less than the Serpent calculation uncertainty, which is 1.6pcm. The 

overestimation of the CR absorption is mirrored also in the normalized power distribution: for the SP3 

solver, the RMS error is smaller compared to the diffusion solver, where it is above 5%, and in both cases, 

the maximum error is larger than -10%. On the contrary, for the SPH corrected diffusion calculation, the 

RMS error is below the one of the SP3 calculation and the maximum one is -4.13%. 

 

The most interesting step is the last one, hence ARI. For the keff as well as the CR worth, the diffusion and 

the SP3 solver show errors, which are larger than -350pcm. However, with the SP3 solver, a better agreement 

with the reference is achieved. Further improvements are obtained for the SPH corrected diffusion 

calculations: here, the deviations are in the order of -100pcm. These high deviations of the diffusion and 

SP3 solver are also mirrored in the error of the normalized power distributions: for both, the RMS and the 

maximum error are larger than 13% and -30%, respectively. Whereas, for the SPH corrected calculation 

using the diffusion solver, the RMS error is still below 5%. However, the maximum error is above 10%. 

Now, it is important to investigate where such high deviations take place. As it can be seen in Fig. 8, the 

highest deviations are in the central region. As shown in Fig. 9, in these assemblies, the normalized power 

is not above 0.3, hence very low. The fact, that the high errors occur in low power region, makes them less 

safety relevant. In the hottest assembly, the error obtained from the SP3 solver is only 5.8%. 

 

5. CONCLUSIONS 
 

In this work, the ESFR in nominal condition as well as in further 11 scenarios with different CR insertion 

depths was modelled with the FENNECS diffusion and SP3 solver, using Serpent generated cross sections. 

Additionally, diffusion calculations using SPH-corrected cross sections were performed. Reference 

solutions for the 12 scenarios were obtained with Serpent.  

 

 

  
Figure 8. Errors in the power distribution obtained with the FENNECS SP3 solver with 

respect to the reference (Serpent), for the step 11, hence ARI.  
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Figure 9. Normalized power distribution obtained by the FENNECS SP3 solver for step 11.  

 

 

With the diffusion solver, larger deviations from the reference are obtained, compared to the SP3 solver. 

This holds for the keff, the CR worth and the RMS and maximum error of the normalized power distribution. 

Since the SP3 approximation accounts, to a certain extent, for angular scattering and neutron flux anisotropy, 

its better performance, compared to the diffusion theory, also in modelling large cores, is not surprising.  

 

In particular, for the ARO configuration, as well as the first two rodded states, both solvers calculated 

similar magnitudes of the errors, with respect to the reference. In these steps, the diffusion solver 

underestimates the keff, leading to issues from the safety point of view. On the contrary, the SP3 

overestimates it, not causing concerns from a safety point of view. In these states, only very small 

improvement could be achieved thanks to the use of the SP3 solver, particularly for the keff and CR worth. 

An improvement can be achieved only in the keff and RMS error of the normalized power distribution using 

SPH corrected cross sections together with the diffusion solver. However, for the normalized power, the 

spatial error distributions are flatter for the SP3, compared to the SPH corrected diffusion calculations.  

 

For the strong controlled configurations, very high errors are obtained by the diffusion solver for the keff, 

the CR worth as well as the normalized power distribution. Surprisingly, in these configurations, with the 

SP3 solver, errors in the same order of magnitude of the ones of the diffusion solver are obtained, even 

though the magnitude of the errors is considerably smaller, but they are still high. In particular, both solvers 

strongly overestimate the CR absorption power, leading to issues from the point of view of the safety. In 

these scenarios, very good results were obtained with the diffusion solver using SPH corrected cross 

sections, except for the maximum error which is still high. 

 

For this reason, as next step, the SPH correction of the cross section libraries will be suitably extended to 

be applicable to the SP3 solver, in order to improve the results of strongly controlled states and in particular 

to reduce the maximum errors in the normalized power distribution. Furthermore, the SP3 solver will be 

tested on small and strongly controlled cores. 
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Chapter 5

Conclusions and outlook

5.1 Conclusions

The goal of this work is the implementation of a new steady state solver based on

the SP3 approximation of the neutron transport equation in the GRS neutronics

diffusion code FENNECS. The new solver is necessary in FENNECS in order to

perform the safety assessment of (v)SMRs and MMRs. Such reactors are characterised

by complex and heterogeneous geometries, which are difficult to model with other

codes. These inhomogeneous and compact cores can be modelled with transport theory.

Deterministic as well as Monte Carlo codes based on transport theory are available.

Both require higher computational costs compared to a deterministic diffusion or SP3

solvers. Monte Carlo deterministic codes offer a very high geometrical flexibility,

which allows to model the complex geometries of (v)SMRs and MMRs. This feature

is typically not provided by deterministic transport codes. However, Monte Carlo

transport codes require very high computational times. This makes them unpractical

for transient calculations. Furthermore, no coupling between Monte Carlo transport

codes and ATHLET [1] or CTF [52] exists. To reduce the computational costs,

approximations are applied to the neutron transport equation. The most common one

is diffusion theory. Unfortunately, this cannot model reliably (v)SMRs and MMRs,

due to their small and heterogeneous geometries. The SP3 approximation of the

neutron transport equation offers a higher accuracy compared to diffusion theory.

Therefore, to increase the accuracy of FENNECS, originally a diffusion code, the new

SP3 solver was implemented in this code. The new SP3 solver was implemented in

FENNECS because this code offers already a coupling with ATHLET as well as CTF.

Therefore, neutronic calculations with thermal-hydraulic feedback can be performed.

Furthermore, FENNECS offers a high geometrical flexibility (see section 2.2), required
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to model the geometries of (v)SMRs and MMRs.

The steady state SP3 equations, including the boundary conditions, were derived

starting from setting up the neutron transport equation (see chapter 3). After the

derivation of the SP3 equations, their Galerkin form was obtained. This was necessary

to implement the equations in the finite elements based code FENNECS. Ad hoc

algorithms to solve the SP3 equations in the Galerkin form were developed, in order to

implement the steady state SP3 solver in FENNECS.

The SP3 solver was verified based on the following models:

� homogeneous slab [47]

� heterogeneous slab [47]

� highly enriched fuel assembly

� 2D Cartesian planar benchmark [29]

� Hébert benchmark [29]

� three homogenous cores of different size [5]

� UO2 fuel assembly of the C5G7 benchmark [10]

� MOX fuel assembly of the C5G7 benchmark [10]

� ESFR [51].

In the verification process (see chapter 4), the comparison was performed using as

reference the transport codes ONEDANT [17], Serpent [35], ERANOS [50] or HELIOS

[62] or the SP5 or SP3 solver of TRIVAC [28]. The study was also supported by

comparisons with other SP3 codes. Furthermore, diffusion theory was used, whose

results were also compared to the ones of the reference. This step makes possible

to assess the improvement in accuracy by using the more computationally expensive

method of the SP3 approach.

Firstly, the homogeneous and the heterogeneous slab [47] were analysed. These are

very simple geometries with strong heterogeneities, due to the very small size and

the vacuum boundary condition. In addition, in the heterogeneous slab, different

materials regions of small size are present. The homogeneous and the heterogeneous

slab were modelled with only one energy group. These calculations were actually

performed at the beginning of the verification phase to firstly verify the functionality

of the FENNECS SP3 solver. The reference results were obtained with ONEDANT, a

92



5.1. Conclusions

transport code. For both slabs, a high deviation between the effective multiplication

factor obtained from ONEDANT and the one calculated by the FENNECS SP3

solver was observed. This deviation ranged between −2308 pcm and −1011 pcm.

Nevertheless, this deviation was considerably smaller compared to the one obtained

from the FENNECS diffusion solver, which was between −19 375 pcm and −3736 pcm.

Hence, with the SP3 solver, an improvement was achieved. The FENNECS results

were compared also with the diffusion and SP3 solvers developed in the frame of [47].

No deviations between the results of these solvers and the ones of FENNECS could be

observed. Therefore, if the FENNECS results were compared with the same solver, an

excellent agreement was obtained. The ability of FENNECS in reproducing the same

results as the code presented in [47] shows the successful implementation of the solver.

Furthermore, it reveals the difficulty of the SP3 solvers in modelling such geometries.

Another simple test case that was analysed is a highly enriched fuel assembly with

vacuum boundary conditions. Two energy groups were used. The reference effective

multiplication factor as well as the macroscopic cross sections were obtained with

Serpent. For the FENNECS SP3 solver, the discrepancies with the reference were

between 371 pcm and 5724 pcm, depending on the mesh. Therefore, it can be

observed that refining the mesh improves the results by one order of magnitude.

This holds particularly for the radial mesh size. On the contrary, for the FENNECS

diffusion solver, the refinement only weakly improves the results. For this solver the

discrepancies were much higher and ranged between 20 022 pcm and 27 393 pcm. Hence,

a considerable improvement could be obtained with the SP3 methodology.

Further simple models analysed are three cores of different size. These have a larger

size, compared to the previous test cases. Two energy groups macroscopic cross section

libraries obtained with ERANOS and with Serpent were used. The goal was to

conduct a performance comparison between cross section calculation methodologies

in relation with the SP3 solver. For the SP3 solver, the diffusion coefficient was

calculated with two approaches. In the first one, the coefficient was defined based

on the macroscopic transport cross section and in the second one based on the total

and first order scattering cross section (see chapter 3). For both approaches, the

SP3 solvers of FENNECS and SPNDYN [5] calculated similar results. The reference

multiplication factors were calculated by Serpent as well as ERANOS. For FENNECS,

the SP3 methodology improved the accuracy of the results with respect to diffusion

theory. The improvement in the effective multiplication factor ranged between 9 pcm

and 665 pcm, depending on the core size analysed, on the applied mesh, the definition

of the diffusion coefficient and the cross sections used. The highest improvements were

observed for the smallest core. For the comparison with the reference, a key role was

played by the source program used for the cross section generation and by the approach
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used to calculate the zeroth order diffusion coefficient. If the cross sections generation

was carried out with ERANOS, which calculated the macroscopic cross sections using

the higher order fluxes, similar results were obtained for the two approaches used to

calculate the diffusion constant within the SP3 methodology. The differences between

them increased if Serpent generated cross sections were used, which are obtained using

only the zeroth order flux.

More complex models are the Cartesian and the Hébert benchmarks. These two were

modelled with only a single energy group. For the Cartesian and Hébert benchmarks,

the TRIVAC SP5 and SP3 solvers were used as reference, respectively. Additionally, in

the evaluations of the results of the Cartesian and Hébert benchmarks, the SP3 solvers

of TRIVAC and DYN3D were involved, respectively. For these geometries, using the

FENNECS SP3 solver, always improved the results by orders of magnitude, compared

to diffusion theory. As for all test cases analysed in this work, a strong dependency

on the mesh was observed. This is not surprising, since the finite element method

is characterised by a strong dependency on the mesh. For the Cartesian and the

Hébert benchmarks, deviations in the effective multiplication factor of above 500 pcm

were observed for the coarsest meshes and very good results could be achieved for

finer meshes: for meshes, were each assembly was divided in at least 10 parts in

radial direction, deviations below 120 pcm were obtained. Hence, the FENNECS SP3

solver, showed a the strong dependency of the results on the mesh also for these two

benchmarks.

In this work, also models with a larger number of energy groups were analysed. The

simplest ones are the single fuel assemblies of the C5G7. For the simulation, 7 energy

groups were used. The reference results as well as the macroscopic cross section libraries

for the UO2 and the MOX fuel assembly with reflecting boundary conditions were

obtained with HELIOS. The new FENNECS SP3 solver showed for both test cases a

good agreement with the reference: the deviations in the keff and in the normalized

power distribution were never above 66 pcm and 0.17%, respectively. The FENNECS

SP3 solver was able to improve the results from the point of view of the effective

multiplication factor as well as normalized power distribution. For keff , in case of the

UO2 fuel assembly, the improvement ranged between 13 pcm and 15 pcm, depending

on the mesh. A higher improvement was observed for the MOX fuel assembly, which

shows a more heterogeneous configuration compared to the UO2 fuel assembly: for the

effective multiplication factor, the increase in accuracy was between 34 pcm and 42 pcm,

depending on the mesh applied. Therefore, a dependency between the improvement in

accuracy and the heterogeneity of the geometry can be observed.

To a certain extend, a similar tendency can be observed also for the modelled ESFR
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configurations. For the simulations, 10 energy groups were used. These were obtained

with Serpent. The same code waas used also for the calculation of the reference results.

Also for the ESFR, except the strongly controlled states, using the FENNECS SP3

solver, a good agreement with the reference could be achieved: in the first CR insertion

step, the CR worth calculated by the FENNECS SP3 showed a deviation from the

reference of only −1 pcm. This can be judged as a very small deviation, considering

that the calculation uncertainty was only 4.90 · 10−5. Furthermore, an improvement

in the accuracy was obtained, with respect to the diffusion calculations. This is also

the case for the strongly controlled states of the ESFR: for the all rods in (ARI)

condition of the ESFR, the improvement in the keff was above 300 pcm. In this

scenario, the error obtained in the keff by the diffusion solver was almost halved using

the SP3 solver. Regarding this two arguments, three scenarios can be distinguished, as

explained hereafter. Firstly, for the low controlled states of the ESFR, the two solvers

do not show enormous differences in the results: the system is homogeneous enough,

such that the diffusion approximation is able to calculate good results. Secondly, this

is not the case if the CRs are further inserted in the core. For the medium controlled

states of the ESFR, a considerable improvement could be obtained with the FENNECS

SP3 solver. Actually, for the fifth CR insertion step, the deviation in the keff calculated

by the SP3 solver was only −43 pcm, which was less than one sixth of the one obtained

from the diffusion approximation. Thirdly, by further increasing the heterogeneities,

hence by considering the highly controlled states of the ESFR, despite the improvement

due to the SP3 methodology, the deviations with respect to the reference were too high.

For the ARI configuration calculated by the FENNECS SP3 solver, the maximum error

in the normalized power distribution was 35.85%. Even though this high deviation was

not in the hottest assembly. For these highly controlled scenarios, good results could

only be obtained by applying the SPH method to the macroscopic cross sections, before

using the diffusion solver. In this case, for ARI, the RMS error of the normalized power

distribution was below 5%.

Based on the results summarised here, besides the implementation of the steady

state SP3 methodology in the FENNECS code, this work was able to verify the

new solver, proving its functionality and its higher accuracy compared to diffusion

theory. Furthermore, the strong points as well as the limitations of the new solver were

identified.
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5.2 Outlook

The implementation of the steady state SP3 solver in FENNECS and the verification

work presented open multiple possibilities regarding further developments. The first

option is to perform further research on the implemented SP3 solver. The second one

concerns the development of the FENNECS transient SP3 solver and the third one

coupled calculations with the new solver and ATHLET.

5.2.1 Further works on the steady state FENNECS SP3 solver

The test case with the three cores of different size, where two different approaches were

used for the macroscopic cross sections generations, offers multiple ideas regarding

further research. Firstly, further studies should be performed in order to understand

the correlation between the cross sections generation program and the results obtained,

also in relationship with the type of system modelled. Secondly, additional studies on

the two possible SP3 approaches are necessary, also in relationship with the cross

sections generation methodology and the type of system modelled.

Further verification should be performed on real (v)SMRs and MMRs configurations.

A possibility would be to test the new solver on a real design, like the NuScale US600

[2].

Thirdly, the solver could be optimized from the point of view of the calculation time.

For example, the Wielandt convergence acceleration method should be implemented

for the FENNECS SP3 solver, as it is already done for the diffusion solver.

5.2.2 Development of the transient SP3 solver

At the moment, in FENNECS, only the diffusion solver is capable to perform transient

calculations. The work presented in this thesis represents the first stone for performing

calculations with complex geometries with a better resolution than diffusion theory.

This thesis represents the starting point for implementing a transient SP3 solver in

FENNECS.

5.2.3 Coupled calculations

FENNECS profits from the coupling with the GRS thermal-hydraulic code ATHLET.

Now, it is possible to perform steady state coupled simulations with higher accuracy,

taking advantage of the new FENNECS steady state SP3 solver. When this will be

96



5.2. Outlook

also capable to perform transient calculations, it will be possible to calculate transients

with the FENNECS SP3 solver and the thermal-hydraulic feedback from ATHLET.
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