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Abstract

In the realm of 3D reconstruction pipelines, 2D conflict maps that indicate the presence
openings in façades such as windows and doors, represent an intermediate output
[1]. However, these maps often fall short of completeness due to insufficient coverage
or occlusions caused by objects such as vegetation. This research delves into the
exploration of deep learning strategies to address this limitation by inpainting unseen
façade objects into the 2D conflict maps. The central focus of this study revolves around
deploying the Stable Diffusion inpainting model [2, 3] and the LaMa GAN [4] for
this purpose. Specifically, I investigate in the potential of personalizing a pre-trained
Stable Diffusion inpainting model with Dreambooth [5] to facilitate its application in
inpainting unseen façade objects within 2D conflict maps. Simultaneously, I undergo
training for the LaMa GAN with a similar objective. By utilizing synthetic conflict
maps that are derived from randomly generated semantic city models [6] and such that
are derived from databases of annotated optical façade images [7] as data for training
the LaMa GAN and personalisation a pre-trained Stable Diffusion with Dreambooth, I
investigate if such data sources can facilitate the deployment of deep learning models.
My results demonstrate the general capability of deep learning based methods for
inpainting unseen objects into the 2D conflict maps. I find that the personalisation
with Dreambooth yields improvements regarding the behaviour of diffusion based
models when considering tree-shaped masks. This, and the successful training of the
LaMa GAN demonstrate the utility of synthetic conflict maps and such derived from
annotated images. The insights gained in this paper can be applied to existing pipelines
for the reconstruction of LOD3 models. This way my work contributes to improving
the reconstruction accuracy of such approaches. It also serves as the basis for further
exploration.

Keywords: machine learning, image inpainting, façade reconstruction, LOD3 recon-
struction, mobile laser scanning, Stable Diffusion, Dreambooth, LaMa GAN
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1 Introduction

Driven by pressing issues such as global climate change and the transport transition in
Germany, there is a growing interest in using detailed semantic 3D building models for
various applications such as façade solar potential estimation and testing automated
driving functions [8, 9]. However, the current demand for such models can only be
partially met due to the complex reconstruction process involved. Leveraging point
clouds from Mobile Laser Scanning (MLS) offers a promising way to reconstruct façade
details [1, 8, 10, 11]. An intermediate result in the reconstruction process is a 2D-conflict
map. It indicates semantic conflicts between the façade-surface of an LOD2 model and
an MLS point cloud that represents the respective façade. Such conflicts commonly
result from the presence of openings such as windows, doors, and underpasses. This
information can be used for LOD3 model reconstruction [1]. A challenge remains in
dealing with incomplete data, for example, caused by occlusions due to the presence of
vegetation.

Semantic image inpainting describes the process of using semantic information
within an image to artificially fill in missing regions of an image [12]. The rapid
developments in the field of machine learning have made a large number of models
efficiently applicable for a variety of purposes, including semantic image inpainting
[2, 4]. However, filling regions with semantically meaningful content and maintaining
consistency with the overall structure of an image remains challenging [13, 14].

Within the framework of this thesis, I aim to contribute to improving the recon-
struction accuracy of semantic 3D building models at level of detail 3 (LOD3) by
investigating strategies for the semantic completion of 2D-conflict maps. This work
addresses the following research questions:

• Can a deep-learning-based method be utilized for the semantic inpainting of
unseen façade objects in 2D conflict maps to obtain a completed conflict map of a
façade?

• Can synthetic semantic city models and the ubiquity of annotated photographic
image databases be leveraged to facilitate the training of deep-learning models
for the completion of 2D conflict maps?

1



1 Introduction

• Can the personalization of a Diffusion Probabilistic Model (DM) with Dreambooth
facilitate its deployment for the inpainting of unseen façade objects into 2D conflict
maps?

My methodology introduces an approach for determining 2D-conflict maps by
combining semantic LOD2 building models and corresponding MLS point clouds.
I personalize a pre-trained Diffusion model with Dreambooth and train the LaMa
GAN on a dataset consisting of synthetic conflict maps and those derived from an-
notated images. The results, findings, and insights of this work may be used within
pipelines for the reconstruction of LOD3 building models to facilitate their accuracy.
The implementation and the digital appendix are available in a designated GitHub
repository1.

1https://github.com/ThomasFroech/InpaintingofUnseenFacadeObjects
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2 Theoretical background

2.1 Semantic city models

Besides the ability to provide geometric and visual information on topographic objects,
semantic city models also provide information on structures, taxonomies, and aggre-
gations. Such semantic information distinguishes semantic city models from models
designed solely for visualization purposes [15]. Semantic city models focus on the scale
of city quarters, cities, and even complete regions. This focus on scale distinguishes
semantic city models from other semantic 3D models of the built environment, such as
Building Information Modeling (BIM) [16].

2.1.1 CityGML

CityGML is an open data model that is intended for the representation and exchange
of virtual semantic 3D city models [16]. It can be comprehended as the outcome of an
intensive process aimed at achieving uniform definitions and a unified understanding
of the various components within a 3D city model. CityGML, established by the
Open Geospatial Consortium (OGC), has held the status of an open international
OGC standard since 2008 [16, 17]. Subsequently, three versions of CityGML have been
released: 1.0, 2.0, and the most recent version, 3.0 [18]. The foundation of CityGML’s
data model is the ISO 19100 standards family framework for modeling geographic
features. The implementation is realized as an application schema for Geography
Markup Language (GML), based on the Extensible Markup Language (XML). Over
the years since its initial publication, CityGML has continued to gain popularity, and
CityGML models are now widely adopted [9].

2.1.2 Representation of buildings with CityGML

Multiscale representation

CityGML facilitates the representation of buildings at various semantic levels of Detail
(LOD). In CityGML 2.0, these levels span from depictions only encompassing building
footprints (LOD 0) to highly intricate representations that encompass both exterior and
interior details (LOD 4). There are five progressively refined LOD levels in CitygML

3



2 Theoretical background

LOD 0 Only footprint of a building
LOD 1 Cuboid without detailed roof or façade structures
LOD 2 Cuboid with a detailed roof structure.
LOD 3 Facade details augment the LOD 2 structure
LOD 4 Interior augments the LOD 3 structure

Table 2.1: Primary characteristics of the different LOD levels [16]

2.0. Table 2.1 provides a comprehensive description of each LOD level, while Figure 2.1
illustrates the five different LOD levels.

Figure 2.1: FZK-House in different LOD levels: a) LOD 0, b) LOD 1 c) LOD 2, d) LOD
3, e) LOD 4, Figures based on [19]

The latest version, CityGML 3.0, follows a new LOD concept that comprises only
four LOD levels. The interior and exterior of buildings can be modeled at all of these
four levels. The LOD level of the exterior does not need to match that of the interior.

Another possibility for the specification of multi-scale representations are the 16
geometric LODs summarized in Figure 2.2. These levels, in my work referred to as
Delft LODs, represent a finer gradation regarding the details that featured details than
the regular LOD levels.

Modeling of geometry

CityGML generally follows the Boundary Representation (B-Rep) model, where indi-
vidual objects are represented by their respective boundaries. A central concept of
representing the built environment with CityGML is the decomposition into meaningful
objects with precise semantics [16]. This also applies to the representation of individual
buildings within a semantic city model. In CityGML 2, a building comprises a set of
different objects such as, among others, WallSurface and RoofSurface. According to the
B-Rep model, these objects are represented by their boundaries. This decomposition

4



2 Theoretical background

Figure 2.2: Overview of the 16 Delft LOD levels that can be specified. Figure from [20]

finally leads to linear objects such as interior and exterior rings represented by the
coordinates of the individual points they comprise [21].

2.1.3 Applications of semantic city models

Semantic city models exhibit a broad spectrum of applications in diverse domains, such
as urban planning, traffic management, environmental engineering, and numerous oth-
ers [9]. Specifically, the need for LOD3 building models, distinguished by their detailed
façade representations, is often indispensable. Disciplines that require such detailed
façade representations include testing automated driving functions or estimating the
solar potential of façades [22]. While LOD2 models are almost ubiquitous today, LOD3
models remain scarce [8].

2.2 Mobile Laser Scanning (MLS)

2.2.1 Basic information

Mobile Laser Scanning (MLS) is a method for the fast and accurate acquisition of 3D
point cloud data [23]. A mobile laser scanner is mounted on a mobile platform such
as a vehicle or an aircraft. The entire system typically includes the following three
subsystems [23]:

5



2 Theoretical background

• Global Positioning System (GPS) / Inertial Navigation System (INS)

• Mobile laser scanner

• Optical camera system

The GPS/INS unit enables geo-referencing of the acquired point data while the
laser scanner acquires the point data itself. The camera system captures images of
the scenery around the systems simultaneously with the GPS/INS and laser scanner
measurements [23].

2.2.2 Characteristic data

The large number of points in MLS point clouds comes at the cost of large file sizes,
imposing significant requisites regarding of storage capacity, computational resources
for processing, and the concomitant complexities associated with managing such
datasets.

An important aspect regarding point density is the distance of the sensor to an
object. An increase in distance is accompanied by a decrease in point density. This
circumstance imposes challenges regarding building façades. The accuracy and point
density in the upper floors of buildings will generally be lower than in the lower floors.
Particularly with 3D reconstruction methods that rely on the points directly, this can
cause difficulties.

The environment in which MLS point clouds are captured typically encompasses
elements such as vehicles, trees, and assorted obstacles that frequently obscure the view
of building façades. Figure 2.3 shows a real example of such occlusions. Trees obstruct
the line of sight to the building façade, resulting in areas of the façade where data is
missing, corresponding to the contours of the obstructing trees.

2.3 3D reconstruction

2.3.1 Concept of 3D reconstruction

The challenges of reconstructing state-of-the-art LOD 3 models, coupled with the
consequent scarcity, ensure great research interest in this field of research [10, 22, 24–27].
Different data sources, such as optical images, MLS point clouds, and oblique Airborne
Laser Scanning (ALS) point clouds, are utilized for detailed 3D façade reconstruction
[25, 28, 29]. The use of combinations of different data sources within a reconstruction
pipeline has also been explored. An example is the study of Wysocki et al., where
MLS point clouds and optical images are combined using Bayesian networks. Their

6



2 Theoretical background

Figure 2.3: Exemplary occlusions by trees in the MF point cloud (height color-coded)[1]

reconstruction pipeline represents a powerful and sophisticated approach for refining
LOD2 semantic building models [10].

2.3.2 Complexity of façade details

The complexity of façade details represents one of the significant challenges imposed by
this subject of 3D reconstruction. Windows, for example, can have an almost unlimited
variety of shapes. Standard methods for circumventing this issue are the introduction
of rectangularity assumptions or the use of bounding boxes [30]. An example of such
an assumption of rectangularity is the study of Hoegner and Gleixner. While they
demonstrate good results with a detection rate of 86%, they strictly simplify windows as
rectangles [29]. Recently, an approach for 3D reconstruction that does not require such
assumptions has been introduced. The method incorporates semi-global information
in binary images of projected façade details into a modified Bag-of-Words approach
to adapt to individual shapes. However, further development is required before it
becomes applicable to larger scales [11].

2.3.3 3D reconstruction and standards

Incorporating reconstructed 3D façade details into existing standards for semantic
city models such as CityGML represents another challenge in 3D reconstruction. It is
crucial to ensure the seamless integration of features, identified within the framework
of a reconstruction pipeline, into existing building models without affecting their

7



2 Theoretical background

applications. According to Wysocki et al., the positions of specific components present
in the LOD 2 model (Ground Surface, Roof Surface, Wall Surface) should, in general, not
be altered during the refinement process. Such an action could impose inconsistencies
in the resulting refined dataset [10]. Confidence information for every reconstructed
feature could be incorporated into the refined model. Such additional information
could be valuable for decision-making process, for example, in navigation applications
[10].

2.4 Generative Adversarial Networks

2.4.1 General properties of GANs

Generative Adversarial Network (GAN)s are a sub-type of generative artificial neural
networks [31, 32]. They aim at implicitly modeling a target data distribution to
artificially generate new samples of this target distribution [31]. Generally, GANs
consist of two individual competing networks (adversaries): the generator and the
discriminator. Training GANs is an adversarial process [33] that can be described as a
"zero-sum game" between both networks [34]. Figure 2.4 provides a very coarse example
of a very basic GAN. The generator tries to create new samples, while the discriminator
tries to determine whether a given sample is real or artificially generated [31]. The
training objective of the discriminator is to optimize its classification accuracy to
differentiate between authentic samples and samples that are artificially generated [31].
In contrast, the generator is trained to generate data samples so that the discriminator
cannot distinguish artificial samples from real ones [31]. The underlying principle of
the training of GANs is described by the value function (equation 2.1). With D(...)
being the output of the discriminator given an arbitrary input sample and G(z) being a
sample generated by the generator according to a random input vector z [33].

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.1)

Ideally, the training continues until neither of the two networks can improve on its
goal. This theoretical condition is called the Nash equilibrium [34]. Reaching this point
is exceedingly difficult because of the often unstable behavior of GANs summarized in
the next section. This renders the Nash equilibrium infeasible [35].

2.4.2 Training GANs

Training GANs has proven to be a difficult task due to various reasons. In particular,
the discriminator network is known for its problematic behavior and instability during
training [36]. The following problems are commonly faced in this context:

8



2 Theoretical background

Figure 2.4: Schema of a basic GAN

• Necessity of large amounts of training data [37]

• Mode collapse [38, 39].

• Non-convergent training [39]

• Gradient vanishing or explosion [39]

• Uninformative gradients [40]

• Underfitting [41]

• Overfitting [41]

Great effort has been put into improving the training of GANs. As an example,
progress has been made by the introduction of Wasserstein GAN (WGAN)s by Arjovsky
et al. in 2017 as an alternative way of training GANs in a more stable way [42]. As
another example, Miyato et al. introduce spectral normalization as a regularization
technique to stabilize the training process by controlling the Lipschitz constant of a
network. The latter limits the amount of change allowed in a network’s output when
its input is altered [36, 43]. Besides these two examples, various different techniques to
stabilize the training of GANs exist [35, 39].

9
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2.5 Diffusion Probabilistic Models

Diffusion Probabilistic Models, often referred to as Diffusion Model (DM), represent
another class of generative models [2, 32]. The underlying principle is the gradual
transformation of a given probability distribution into another. This idea originates
from the domain of nonequilibrium statistical physics [2, 44, 45]. DMs are trained to
learn a probability distribution by applying this concept of probability distribution
transformations. A given input, the starting state, is gradually transformed into a
known and well-behaved probability distribution, the prior state [32]. The Gaussian
distribution is often chosen as a prior state [32]. This transformation process, referred
to as the diffusion process, forward process, or forward trajectory, can be interpreted
as the destruction of any structure within the given data by the subsequent addition
of noise. The forward process is inverted by applying an iterative denoising process,
thus converting the prior back to the starting state. This process is commonly referred
to as the reverse process, reverse trajectory, or denoising process [2, 32, 45]. Figure 2.5
illustrates the general concept of DMs, with the starting state x , the prior state z, the
reconstructed starting state x̃, the forward process q(xt|xt−1) and the reverse process
pθ(xt−1|xt).

Figure 2.5: Schema: General concept of DMs. Figure from: [32]

2.6 Image inpainting

2.6.1 Taxonomy of image inpainting strategies

Image inpainting has been a challenging discipline with diverse applications such
as image restoration, object removal, or image completion for a long time [13, 37].
Existing image inpainting approaches can be classified according to the schema pre-
sented in Figure 2.6. Traditional methods include many different approaches, such as
diffusion-based methods, example-based texture and structure synthesis, and sparse
representation methods [46]. Often, such traditional methods rely on the solving of
Partial Differential Equations (PDEs). Examples of such approaches are the inpainting
method by Telea and inpainting based on the Navier-Stokes PDEs [47, 48]. Many
studies have used different varieties of GANs for image inpainting [46].
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Figure 2.6: Hierarchy of image inpainting strategies. Figure adapted from [46]

2.6.2 Key challenges in semantic image inpainting

The key challenges in semantic image inpainting are to complete regions with semanti-
cally meaningful content [13] and to ensure consistency with the overall image structure
[14]. Incorporating information that is far away from the region that should be filled
has proven to be difficult, as existing methods often produce blurry or overly smooth
results [49, 50]. Generalizability is also a desirable property of an image inpainting
method [46]. The shape of the missing regions in an image can make image inpainting
more difficult, too [13]. Many studies focus on the filling of missing regions of regular
shape [13]. Existing approaches are often specialized for distinct purposes, such as the
completion of faces [46].
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3.1 Conflict maps

Wysocki et al. introduce a method for the reconstruction of underpasses in semantic
LOD2 city models from co-registered MLS point clouds [8, 22]. As a part of their
proposed processing pipeline, they introduce a probabilistic approach for identifying
conflicts between the semantic LOD2 city models and the MLS point clouds. Such
conflicts are characterized by a mismatch between the semantic city model and the
corresponding MLS point cloud. Their methodology is based on an occupancy grid
realized as an octree structure, where the size of the voxels corresponds to the combined
uncertainty of the MLS measurements and the semantic city model. Ray casting is
utilized for the identification of the conflicts. Figure 3.1 provides a visual impression
of their concept. The rays are defined by the sensor point (si) as the shared origin
and a direction that is defined by the direction to the measured point (pi) in the MLS
point cloud. According to the evaluation of this step, the voxels are classified as empty,
occupied, unknown, confirmed, or conflicted. Lastly, a texture map, as it is exemplarily
depicted in Figure 3.2, is established from the results of this analysis. Conflicting areas
are indicated in red, confirming areas in green. Occluded areas without information
are represented in grey [8, 22]. In this work, we refer to a texture map that indicates
conflicts between an LOD2 model and a MLS point cloud as a conflict map.

Figure 3.1: Ray casting on a 3D octree grid, Figure from: [22]

As already implicitly suggested in Figure 3.1, significant conflicts can predominantly
be attributed to the presence of openings in the facade, such as windows or underpasses.
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Figure 3.2: Exemplary conflict map of a building from the TUM-Façade dataset. Green:
confirming areas, red: conflicting areas, grey: areas without information
(occluded areas) Figure from: [22]

The permeability of glass regarding laser pulses is of particular significance in this
context [25]. This phenomenon can be leveraged for the 3D reconstruction of LOD3
semantic building models from MLS point clouds.

Information on conflicts between a semantic city model and a corresponding point
cloud can also be used directly at the level of the individual points without further
processing steps. In the study of Yahya, conflicting points are identified to selectively
extract points from a point cloud exclusively representing the facade structure [51].

3.2 Synthetic semantic city model generation

To circumvent the issue of the scarcity of LOD3 semantic city models and to facilitate
the development of new applications for such models, Biljecki et al. introduce Ran-
dom3Dcity, a method for the automatic generation of random semantic 3D city models
[6]. Their application offers the possibility of generating synthetic CityGML data in
Delft LOD levels. For generating the synthetic semantic city models at any Delft LOD,
Biljecki et al. make use of a procedual approach, which represents a standard method
for obtaining design models. Such an approach is based on the definition of rules and
guidelines regarding the properties of the output. In the context of the implementation
of Biljecki et al., it offers a high degree of flexibility as it allows the incorporation
and modification of various specifications regarding the semantic city model to be
produced. Their workflow comprises two distinct modules that operate independently,
the procedual modeler and the 3D data realization. First, an XML document that
contains the configurations of the random 3D semantic model is obtained from the
procedual modeler. Each building is characterized by parameters such as width or roof
height. These are determined in a top-down approach from coarse to fine, considering
a set of rules for the different features. Doors, for example, are only allowed to be
placed on the ground floor, and the height of a window must not exceed the height
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of the floor it is located on. In the subsequent step, the architecture that is specified
in the XML document is transferred into the final CityGML dataset [6, 20]. Figure 3.3
displays an exemplary synthetic semantic city model generated with the Random3Dcity
application. The whole dataset comprises 25 buildings at the Delft LOD 3.3 level.

Figure 3.3: Screenshot of an exemplary synthetic semantic city model consisting of
25 buildings at the Delft LOD 3.3 level that has been generated with the
Random3Dcity application

3.3 LaMa image inpainting

3.3.1 Inpainting model

Large mask inpainting (LaMA) is a state-of-the-art image inpainting method, introduced
by Suvorov et al. in 2021 [4]. In their work, they tackle one of the key issues in semantic
image inpainting, the limited receptive field of the model, by incorporating the Fast
Fourier Convolution (FFC) operator [52], a high receptive field perceptual loss, and
large training masks. The LaMa model is based on the GAN architecture. It is generally
structured similar to a feed-forward ResNet inpainting network. In this work, I utilize
a pre-trained LaMa model to compare and evaluate different inpainting strategies.

Fast Fourier Convolution (FFC) operator

One of the essential features of the LaMa model architecture is the FFC operator[4]. It
has first been introduced by Chi et al. in 2020 [52]. It is responsible for providing a
large receptive field that covers the entire image, thus allowing to incorporate global
information in early layers of the network [4].
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3.3.2 Generating random masks

Besides providing a powerful and easy-to-use (pre-trained) model for image inpainting,
the work of Suvorov et al. is also known for introducing a sophisticated routine for
generating random masks [4]. The properties of the masks used during the training
of an inpainting model greatly influence the performance of the resulting inpainting
model [4]. Their methodology has also been adapted in other studies, such as that
of Rombach et al. [2]. Figure 3.4 displays a collection of six masks created with the
mask generation routine by Suvorov et al.. The black areas represent the areas that an
inpainting model should not change, while the white areas indicate missing regions
within an image.

Figure 3.4: Collection of six masks that have been generated with the LaMa mask
generation routine. Original size of each mask: 512 x 512 pixels.

3.4 Stable Diffusion

With the introduction of latent diffusion models, such as Stable Diffusion, Rombach et
al. have made a significant step towards the democratization of large diffusion models
[2]. The required computational resources are reduced by mapping the input features
into a latent feature space with a pre-trained auto-encoder network. Their sophisticated,
diffusion-based text-to-image model offers tremendous flexibility. Conditioning mecha-
nisms, supported by cross-attention layers in the model architecture, offer the possibility
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of incorporating additional information. For example, adding five specialized input
channels and a specialized training procedure makes it possible to apply the model
to image inpainting purposes. Unlike most inpainting strategies, applying a Stable
Diffusion model to image inpainting requires providing a text prompt. Various different
pre-trained models and their various training checkpoints are publicly available.

3.5 Dreambooth

Dreambooth represents a method for personalizing large text-to-image diffusion models
[5]. It offers the possibility to perform subject-driven fine-tuning so that the network
can produce a variety of new examples of a learned instance of an object type. A unique
identifier that consists of an arbitrary combination of characters is bound to the specific
instance. This identifier is used in the text prompt to refer to the learned instance during
inference. A specialized prior-preservation loss can be applied during training to create
a larger variety of results by enhancing property modification, re-contextualization, or
novel view synthesis. This loss supervises the model with its own generated images,
thus allowing it to maintain the diversity of an object class learned during the training
of the pre-trained model [5].

A considerable advantage of Dreambooth is the relatively low number of required
training data. Only approx. four to five images are necessary to perform a successful
subject-driven fine-tuning [5]. This enables the application in domains where the num-
ber of available training samples is comparatively low. A disadvantage of Dreambooth
is the sensitivity towards hyper-parameter settings, such as the number of training
steps and the learning rate. Unfortunate choices can often lead to overfitting [53].

Dreambooth can be applied to any diffusion-based image inpainting model [5]. It
is also available for the variant of Stable Diffusion that has been modified for image
inpainting purposes [54].

3.6 Traditional inpainting strategies

3.6.1 Navier-Stokes based inpainting

A method based on the principles of fluid dynamics, specifically the Navier-Stokes
partial differential equations, represents an example of a traditional inpainting approach.
In this method, an image is conceptualized as a dynamic fluid system. The core concept
is to guide the flow of information into the missing regions, much like how fluids
naturally fill empty spaces [48]. An implementation is available, for example, in
OpenCV [55].
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3.6.2 Telea inpainting

The approach of Telea is another example of a traditional inpainting strategy. It is based
on the Fast Marching Method (FMM) [56]. Pixels around a missing area are analyzed
and used to predict the pixels in the gap. Telea’s method involves solving a PDE
for each pixel in the inpainting region. These PDEs ensure that the newly generated
pixel values are visually coherent and smooth concerning their surroundings [47]. An
implementation is available, for example, in OpenCV [55].

3.7 RealFill

Tang et al. introduced the generative inpainting model RealFill in September 2023
[57]. The development of this model took place with different objectives than most
other inpainting strategies. For example, the Stable Diffusion inpainting model has
been developed to generate new content not present in the image before the inpainting
procedure. Therefore, the content that the masked regions in the image are filled with
can be vastly different from the content of the unmasked parts. The objective of RealFill
is to complete the image in a semantically more meaningful manner. The content used
to fill in the missing parts of the image should align with expectations rather than
introducing something entirely different. This problem setup is referred to as authentic
image completion. Given a small set of reference images, the target image is completed
according to the content of these reference images [57].

The central concept of RealFill is fine-tuning a pre-trained Stable Diffusion model.
In their study, Tang et al. combine Dreambooth with Low Rank Adaptions (LoRA) to
increase memory efficiency by not fine-tuning all weights in the network [57, 58].
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4.1 Overview

Figure 4.1: Schematic diagram illustrating the overall concept that is applied in this
work

Figure 4.1 provides an overview of the general workflow applied in this work. The
central concept is the semantic completion of an incomplete conflict map using a deep
learning approach. I obtain conflict maps and corresponding binary masks that indicate
missing areas from combining LOD2 models and MLS point cloud data. For this
purpose, I apply a ray casting approach with tolerances to identify conflicts between the
LOD2 model and the MLS point cloud. To facilitate its deployment for the completion
of incomplete conflict maps, I personalize a pre-trained Stable Diffusion model[2, 3]
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with Dreambooth [5], utilizing datasets consisting of synthetic conflict maps and such
that are derived from a database of annotated images. I derive synthetic conflict maps
from semantic building models that I randomly generate with the Random3Dcity
engine[6]. As an alternative, I explore training the LaMa GAN [4] using a similar
dataset composed of 20,000 conflict maps obtained from the same data sources.

4.2 Determining conflict maps from semantic 3D building
models and MLS point clouds

In contrast to the probabilistic approach used in the studies by Wysocki et al. and
Yahya [22, 51], I obtain conflict maps by applying a deterministic approach. I chose
this method with the intention of obtaining only high-probability conflicts that serve
as a suitable basis for evaluating inpainting methods. Figure 4.2 gives an overview of
the steps conducted in this work to obtain a conflict map. I apply the NumPy Python
library in the implementation of my methodology [59].

Figure 4.2: Schematic workflow for the deterministic generation of conflict maps from
CityGML and MLS data

4.2.1 Extracting WallSurfaces

As a first step, I extract all wall surfaces from a given CityGML dataset. While this step
is not generally necessary, it simplifies further processing steps. Since CityGML is very
flexible, different possibilities of geometric representation have to be considered when
extracting individual objects without loss of information. To ensure the extraction of all
points, regardless of the individual representation, I apply functionalities implemented
by Biljecki et al. within the framework of the CityGML2OBJs application [60]. It must
be mentioned that the approach for extracting wall surfaces that I use in this work can
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only be applied to CityGML datasets with version 2.0. CityGML 3.0 still needs to be
supported by my work.

As an alternative approach for extracting the Wall Surfaces and to test my approach
for correctness, I also apply a filtering functionality offered in Feature Manipulation
Engine (FME).

4.2.2 Subdividing triangles

I subdivide the triangles that the surface consists of into smaller ones, obtaining a more
fine-grained representation of the surface. In the following steps, this is going to enable
the accumulation of triangles during the ray casting. For the triangle subdivision, I
make use of the respective Open3D functionality [61]. I iteratively subdivide triangles
in five to eight iterations.

The geometric resolution of the conflict maps I obtain from the process depicted
in Figure 4.2 largely depends on the size of the triangles in the meshes representing
the façade surfaces. With decreasing size of the triangles, the geometric resolution
increases, and vice versa. However, a smaller triangle size results in a larger number of
individual triangles and thus, a more extensive required computational effort in the
subsequent steps. Hence, I aim to reduce the size of the triangles as much as possible
while keeping the computational effort within an acceptable range.

Figure 4.3 depicts an example of the triangle subdivision. The illustration shows
that the final size of the triangles depends on the original size of the triangles. This
implies that in the final conflict maps resulting from the process illustrated in Figure 4.2,
different geometric resolutions can be present within the same façade simultaneously.
Another observation that can be obtained from Figure 4.3 is that the triangles resulting
from the subdivision process are not necessarily equilateral. Hence, the geometric
resolution can also vary according to direction.

Figure 4.3: Exemplary façade before and after triangle subdivision with six iterations
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4.2.3 Ray casting

I identify areas in the façades that have been scanned by the MLS system by performing
a ray casting. In this work, I apply the ray casting functionality implemented in Open3D
[61]. In defining the rays, I follow the approach that is similar to that of Wysocki et
al. [8, 22]. I consider each viewpoint of the MLS scanner as an origin of a set of rays,
while the directions to the points that are acquired from the respective viewpoint are
considered as the direction of the individual rays in the set. This definition is reflected
in Equation 4.1; with the ray rp from the viewpoint vp to the MLS point p.

rp = vp + (p − vp) (4.1)

From the Open3D functionality, I obtain a list of triangles that are intersected by
these rays.

It is of utmost importance that the ray casting is performed simultaneously for all
façades that are considered. Subsequent façade-wise processing could result in the
calculation of intersection points that do not exist. Such intersection points would
corrupt the generation of meaningful conflict maps since the distance to the false
intersection point would be larger than the distance to the measured point, thus
indicating a conflict that does not exist in reality.

4.2.4 Identifying conflicts

The identification of conflicts between the LOD2 model and the MLS point cloud is
related to the analysis of the geometric distance between the points in the MLS point
cloud and the surface of the LOD2 model. Points that show a large geometric distance
to a surface are more likely to conflict with the LOD2 model than points that show a
smaller distance to a surface.

While Wysocki et al. and Yahya use a probabilistic approach identifying conflicts
[8, 22, 51], I adopt a deterministic approach. I apply ray casting analysis with a set of
tolerances to classify measurements as conflicted or confirming. My motivation to use
this approach is to obtain only conflicts with a high probability.

As illustrated in Figure 4.4, I evaluate the intersection distance for each triangle hit by
at least one of the rays. In the subsequent step, I compare this distance to the distance
to the respective point in the MLS point cloud. If the difference between these two
distances exceeds a tolerance, I classify the measurement as conflicted or unknown.
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Figure 4.4: Schematic illustration of the conflict identification. a) unknown (dark-grey)
b) confirming (green) c) conflicting (red). vp corresponds to the viewpoint,
p to a measured point that is part of the point cloud. +t and −t are the
positive and negative tolerances.

4.2.5 Projecting and plotting

The façades are represented as 3D data, but the resulting conflict maps are required to
be 2D raster data. This necessitates the utilization of a projection. The implementation
for the projection that I use in this work is based on the work of Biljecki et al. [60].
I project every triangle within a façade into 2D, ensuring its frontal view. In the
subsequent step, I plot the triangles using the Matplotlib Python library [62]. Figure
4.5 displays a conflict map that has been generated according to the method used
in this work. Green indicates confirming areas, while black and red represent areas
where a conflict is present. Areas where the evaluated intersection distance is shorter
than the distance to the point in the MLS point cloud are represented in red. Those
where the evaluated intersection distance is longer than the distance to the point in the
MLS point cloud are represented in black. A tolerance of 30 cm has been used during
the generation process. It has to be mentioned that the conflict map in Figure 4.5 is
resampled due to the use of the Matplotlib Python library [62].

4.3 Synthetic conflict maps from random city models

I utilize the Random3Dcity application for the generation of random semantic city
models [6, 20] that I use to produce artificial conflict maps. The generation process of
the synthetic conflict maps is simplified since semantic information is already available
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Figure 4.5: Exemplary conflict map of the eastern façade of the main entrance at the
TUM City Campus, green: confirmed, red: conflicting (larger distance),
black: conflicting (shorter distance). The triangles have been subdivided in
eight iterations for this conflict map. The tolerance was set to 30 cm.

in the artificially generated CityGML datasets. Areas that would cause conflicts in
real scenarios are identified as holes within the façade surfaces. For simplicity, I
only consider windows and doors within this work. Extruded façade objects such as
balconies are not taken into account. I directly project and plot the façade surfaces in
the according colour. Figure 4.6 gives an overview of the applied workflow. I apply the
same projection method that I use to create conflict maps from CityGML LOD2 models
and MLS point clouds. A collection of four exemplary artificially generated conflict
maps is provided in Figure 4.7. White areas are considered to be conflicted, while black
areas are considered to be confirming areas.

Figure 4.6: Schematic workflow for the generation of artificial conflict maps from ran-
dom CityGML datasets
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Figure 4.7: Four exemplary artificially generated conflict maps

4.4 Obtaining ground truth data from LOD3 models

I obtain ground-truth conflict maps from LOD3 models by applying the workflow
illustrated in Figure 4.8. In contrast to the workflow I apply for generating synthetic
conflict maps from randomly generated semantic building models, extruded façade
objects are considered here.

Figure 4.8: Schematic workflow for the generation of ground truth conflict maps from
LOD3 semantic building models

4.4.1 Principal components and rotation parameters

I ensure that each façade is adequately aligned with the coordinate axes for its frontal
view. This alignment involves a rotation around the z-axis since all façades are vertical.
To determine the necessary rotation, I first evaluate the principal components of
the vertex point distribution of each centered LOD3 façade. I obtain the principal
components by performing a singular value decomposition of the vertex point matrix.
For this purpose, I apply the corresponding scipy.linarg functionality [63]. After
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identifying the largest principal components, I calculate the required rotation angle to
align the façade with the x-axis of the reference system. This process corresponds to
rotating the façade in so that the covariance of the vertex points becomes maximal in
the x-direction.

4.4.2 Plane identification with RANSAC

Assuming that most of the vertex points in the LOD3 façade lie in one plane, I apply the
Random Sample Consensus (RANSAC) algorithm to identify the plane that contains the
largest number of inliers. I set a threshold of 0.005m and 10 as the minimal number of
inliers and perform a maximal number of 1000 iterations. I utilize the implementation
in pyRANSAC-3D [64].

4.4.3 Determinig conflicts

I assume that the identified plane is equal to the façade, as it would be represented in a
corresponding LOD3 semantic building model. Therefore, I identify all triangles that
lie in this plane as confirming. All triangles that deviate from this plane are classified
as conflicting. I manually remove all window glass from the building model. The
remaining holes are automatically classified as conflicting. The pulses of a laser scanner
usually penetrate window glass [25]. This circumstance justifies my approach.

4.5 Mask generation

4.5.1 Determining masks from intersection distance analysis

The conflict maps I produce in this work can show incompleteness for various reasons,
such as occlusion caused by vegetation or insufficient coverage. Completing the missing
regions in the conflict maps requires the identification of occluded or unknown regions.
Such information can be provided in the form of binary masks. My approach involves
analyzing the intersection distances derived from the ray-casting process, allowing
for the simultaneous generation of such masks alongside the conflict maps. I define
a threshold t that I use to distinguish conflicts originating from façade elements and
those originating from occluding objects. In Figure 4.9, I illustrate the identification of
occluding vegetation within a conflict map. I have chosen a threshold value of t = 3 m
for this demonstration.
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Figure 4.9: Exemplary identification of occluding vegetation in a conflict map with lower
resolution. A threshold of 3 m has been used. The identified vegetation is
colour coded in yellow. It could be used as a mask for inpainting.

4.5.2 Random masks

I create a set of approx. 200 random masks that I use to test models on exemplary
datasets by applying the random mask generation routine introduced by Suvorov et al.
[4]. I consistently use the same mask dataset to test different models to enhance the
comparability of the results. Exemplary random masks are depicted in Figure 4.10.

Figure 4.10: Collection of nine random masks that have been generated using the
routine introduced by [4]
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4.5.3 Masks from laser scanning point clouds

I use a point cloud representing a tree to create a mask for evaluating the completion
of real conflict maps. I apply the workflow illustrated in the diagram in Figure 4.11.
As a first step, I normalize the point cloud concerning translation and scale invariance.
Subsequently, I project the point cloud to 2D and sample it on a grid representing the
resolution of the output mask. Lastly, I convert the grid into a binary image. I apply
the Pillow Python library [65].

Figure 4.11: Schematic diagram of the workflow that I apply for the generation of a
mask from a point cloud

4.6 Finetuning with Dreambooth

I utilize Dreambooth [5] to personalize a pre-trained Stable Diffusion inpainting model.
The pre-trained inpainting model that I apply is based on Stable Diffusion v-1-2,
which has been trained on the laion-improved-aesthetics dataset. It has undergone
additional inpainting training on the laion-aesthetics v2 5+ dataset [2, 3]. I leverage
synthetic conflict maps and conflict maps derived from the CMP dataset [66] as training
data. I vary the number of training samples in my different sets of experiments.
With a maximum of only a few hundred individual samples, this number remains
comparatively low to a sophisticated training dataset that could be used for training a
diffusion network.

4.6.1 Training datasets

I perform three fine tunings, each with a different fine-tuning dataset. The specifications
of these three datasets are summarized in Table 4.1.

For simplicity, I consider the conflict maps as binary images in my experiments.
Black pixels indicate conformance, while white pixels indicate the presence of a conflict.
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Table 4.1: Specifications of the datasets applied for the personalization of the Stable
Diffusion inpainting model with Dreambooth

Datset Specification

1 a total number of five synthetically generated conflict maps
2 a total number of 192 synthetically generated conflict maps
3 a total number of 228 conflict map that are derived from annotated images

4.6.2 Hyperparameter settings

Since Dreambooth is sensitive to the settings of the hyperparameters, I make sure to
use the same values in all experiments to ensure comparability. I choose these settings
because experiments have proven them to be suitable [5]. The specific settings that I
use are summarized in Table 4.2.

Table 4.2: Specifications of the training parameters applied for the personalization of
the Stable Diffusion inpainting model with Dreambooth

Hyperparameter Setting

Resolution 512 · 512
Training batch size 1
Number of gradient accumulation steps 1
Learning rate 5 ×10−6

Number of warmup steps 0
Maximal number of training steps 400
Unique identifier "sks"

As a text prompt, I consistently apply the string "a black background with white patches".
I choose this text prompt by manually constructing text prompts and qualitatively
analyzing the corresponding inpainting results. In these experiments, I noticed the
strong dependence of the inpainting results on the used text prompt. Table 4.3 illustrates
this dependence with three examples of synthetic data. I achieve the best results with a
text prompt that describes the content that the missing region should be filled with as
closely as possible.
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Table 4.3: Examplary inpainting results demonstrating the dependence towards the
text-prompt

Original image Mask "black background
with white surfaces"

"binary content" Empty text-prompt "fill the hole consistently"
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4.7 Training of the LaMa-GAN

I train the LaMa inpainting GAN [4] from its foundation as an alternative deep learning
approach for image inpainting and comparison to the Stable Diffusion models. The
number of annotated images is, with several hundred, too small to use them as the
only source for training data. In addition, state-of-the-art LOD3 building models,
which could be used to derive conflict maps, are scarce. I circumvent this problem by
constructing a dataset of 20.000 synthetically generated conflict maps. I augment this
dataset by adding a smaller number of conflict maps derived from annotated images of
façades and split it into three subsets, the training, testing, and validation datasets. The
structure of these partitions is summarised in Table 4.4.

Table 4.4: LaMa training, testing and validation dataset

Partition total number of number of synthetic number of conflict maps
conflict maps conflict maps derived from annotated images

Training 16,229 16,558 329
Evaluation 2,024 2,001 23
Validation 2,023 2,000 23
Testing 102 100 2

Compared to personalizing Stable Diffusion models, an advantage of using the LaMa
GAN is the smaller amount of required computational resources. When accepting a
loss in speed, the LaMa GAN can be deployed with a regular CPU instead of a graphics
card GPU. This makes the LaMA GAN available for a broader range of potential users.

4.8 Substituting the manual text prompt specification

The Stable Diffusion inpainting model requires providing a text prompt. Ideally,
such text prompts are specifically designed according to the properties of each image.
Manually modeling the text prompts is infeasible for a more significant number of
images. I introduce a method for automatically constructing of a text prompt according
to low-level properties of the input images. In contrast to using a static text prompt,
my method allows for a certain flexibility.

I construct the text prompt forwarded to the Stable Diffusion inpainting model from
pre-defined substrings by combining these according to the following low-level features:

• Histogram
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• Symmetry

• Fragmentation

4.8.1 Histogram analysis

I identify the background color of the image by analyzing the binary histogram of the
input image. The predominant color, characterized by a higher number of occurrences,
is considered the background color.

4.8.2 Symmetry evaluation

Figure 4.12: Schematic diagram of the workflow that I apply for the symmetry evalua-
tion

Axis identification

I evaluate the axis symmetry in the images to modify the text prompt accordingly. The
workflow that I apply for this purpose is displayed in Figure 4.12. In the first step, I
define a symmetry axis that intersects with the center of the image. This axis divides
the image into two halves of equal size. After resampling, I compare the two halves by
evaluating the Structural Similarity Index (SSIM). I utilize the implementation of the
SSIM available in the scikit-image Python library [67]. By iteratively rotating the axis
and repeating the previous two steps, I approximate the best-fitting symmetry axis that
intersects with the center of the image.

Evaluating symmetry

I establish a criterion for the determination of the presence of symmetry. This criterion,
summarized in equation 4.2, is derived from the rotational angle-dependent function of
the SSIM.
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Symmetry =


True, if (Imax − Ī) > σI ∧ Imax > t

True, if (Imax − Ī) > 3 · σI ∧ Imax < t

False, otherwise

(4.2)

With the maximal SSIM score Imax, the mean value of the SSIM scores Ī, the standard
deviation of the SSIM scores σI and the arbitrary threshold t.

Figure 4.13 illustrates my approach for an exemplary conflict map. The two promi-
nent peaks in the diagram align with the superimposed conflict map. These peaks, both
associated with the same symmetry axis, surpass the standard deviation that serves as
the decision criterion in this case. Consequently, this conflict map would be classified
as symmetric.

Figure 4.13: Evaluation of the symmetry properties. left side: Graph representing the
evaluated SSIM scores against the rotation angle. right side: Corresponding
conflict map with the most prominent identified symmetry axis superim-
posed

4.8.3 Analysing fragmentation

To analyze the fragmentation of a conflict map, I first identify the contours with the
corresponding OpenCV function [55] that implements the contour detection algorithm
of [68]. In the subsequent step, I calculate the average and cumulative contour area and
determine the fragmentation score according to equation 4.3.
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f =
Ā

(∑N
n=0 An)

(4.3)

With the fragmentation score f , the mean contour area Ā, the number of identified
contours N, and the surface area of the nth contour An.

4.8.4 Constructing the text prompt

I construct the text prompt from a set of pre-defined strings according to the results of
the previously discussed analyses. These initial strings have to be selected with much
care. To decide on which pre-defined strings to use, different thresholds have to be
defined. I choose the pre-defined strings, and the thresholds according to the results of
a trial and error approach on a small scale.
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5.1 Choosing test datasets

5.1.1 MLS point clouds

I utilize the proprietary "MoFa3D - Mobile Erfassung von Fassaden mittels 3D Punkt-
wolken" (MF) point cloud, captured by 3D Mapping Solutions in 2023. It covers the
area of the TUM City Campus and parts of the Pfisterstraße in Munich. An overview
of the spatial extent of the parts of the MF point cloud used in this work is provided in
the map in Figure 5.1. Wysocki et al. have used the MF point cloud for experiments on
3D façade reconstruction [10]. The point cloud is georeferenced in a local coordinate
reference system. This ensures that the absolute values of the point coordinates are
sufficiently small to not cause numerical instabilities during computation.

5.1.2 Semantic city models

LOD2 models

I obtained an official semantic LOD2 city model from the Bavarian Surveying Ad-
ministration [69]. More specifically I acquired the 2 km ∗ 2 km tile with the identifier
690_5336. This tile partially covers the area of the TUM City Campus. I manually
filtered this dataset to collect all buildings within the TUM City Campus. Although
unnecessary, this filtering step reduces the computational effort required for gener-
ating conflict maps. I apply the FME filtering transformer for this semantic filtering.
The European Terrestrial Reference System 1989 (ETRS89) in the Universal Transverse
Mercator (UTM) Zone 32 is used for position information of the dataset. The height
information is provided in the German Main Height Network 2016 (DE DHHN2016
NH). Since the MLS point clouds are referenced in a local coordinate reference system,
a transformation of the semantic city model into this local coordinate system is required.
For this purpose I applied a simple translation in FME. Figure 5.2 gives an overview
of the LOD2 building models representing the TUM Main Campus and some of its
surrounding buildings. In addition I also acquired the tile with the identifier 692_5334
that covers the Pfisterstraße in Munich.

34



5 Experiments

Figure 5.1: Map displaying the spatial extent of the parts of the MF point cloud that
are used in this work

Figure 5.2: Semantic LOD2 building models representing the TUM Main Campus and
its surrounding buildings
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LOD3 models

I obtained semantic LOD3 building models representing the buildings of the TUM
main campus from the tum2twin GitHub repository [70]. The data provided is in a beta
version due to ongoing construction activities at the site and unfinished modeling works.
I used these models as ground truth data to evaluate conflict maps and inpainting
results. Figure 5.3 exemplarily displays the model representing building No. 57.

Figure 5.3: LOD3 model of building No. 57

5.1.3 Point clouds for mask generation

I used a point cloud acquired by stop-and-go scanning with a Riegl VZ-400i terrestrial
laser scanner mounted on a passenger car. It is part of the TreeML-Data collection
comprising more than 3,775 leaf-off point clouds [71]. The point cloud I use is depicted
in Figure 5.4. Figure 5.5 shows the inverted mask I generate from this point cloud.

5.1.4 CMP datasets of annotated images

I made use of the CMP database of annotated images provided by the Center for
Machine Perception in Prague [66]. The dataset is divided into two partitions, totaling
606 images. The CMP-base dataset consists of 378 images, while the CMP-extended
dataset includes 228 additional images. The dataset provides three components for
each façade: an RGB image, a corresponding annotation, and an XML document. A
total of 12 classes is used for classifying different façade elements, with the annotations
exclusively relating to façades. In particular, vegetation and occluding objects such
as cars or pedestrians are not included in the set of classes. The background class
represents the only exception [66]. Figure 5.6 exemplarily displays the RGB image and
the corresponding annotation image for a façade from the CMP-base dataset.
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Figure 5.4: Point cloud of a tree acquired by stop-and-go scanning with a Riegl VZ-400i
terrestrial laser scanner [71]

5.2 Evaluation metrics

To evaluate the quality of the conflict maps and the inpainting performance, I compared
the results to ground truth information derived from either already existing LOD3
models or was readily available, as I artificially masked complete images during specific
experiments. The inpainting result should resemble this ground truth information as
closely as possible.

Various methods for quantitatively evaluating the similarity between two images are
available [72]. I quantitatively evaluated the results with three different metrics.

5.2.1 Structural Similarity Index (SSIM)

The SSIM is a statistical measure developed to provide a tool to quantitatively evaluate
the objective similarity of an image concerning a reference image [73]. For two images
A and B of the same size, it is calculated according to Equation 5.1 [73, 74]:

SSIM(A, B) =
(2µAµB + C1)(2σAB + C2)

(µ2
A + µ2

B + C1)(σ2
A + σ2

B + C2)
(5.1)

With µA and µB being the mean, and σ2
A and σ2

B being the variances of the intensity
values of the images A and B. σAB is the covariance between the pixel values in both
images. The constants C1 and C2 are used to increase the numerical stability in the
case of a denominator that is close to zero. The SSIM score takes values between
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Figure 5.5: Mask generated from the point cloud of a tree acquired by stop-and-go
scanning with a Riegl VZ-400i terrestrial laser scanner

zero and one, with a higher value corresponding to a larger similarity [73, 74]. In
my experiments, I applied the implementation of the SSIM that is available in the
scikit-image Python library [67]. I use the default setting of 11 pixels as a sliding
window size.

5.2.2 Jaccard index

The Jaccard index, also often referred to as Intersection over Union (IoU), is a popular
evaluation metric applied, for example, in object detection benchmarks. It is used to
quantify the similarity of two sets. As demonstrated by Equation 5.2, the IoU is defined
as the ratio of the intersection of two sets to the union of both sets [75]. This general
definition makes the metric applicable in a broader range of scenarios. An advantage of
the Jaccard index is that it can be easily extended to an arbitrary number of dimensions.
In theory, this would make applications directly in the 3D domain possible.

IoU =
|A ∩ B|
|A ∪ B| (5.2)
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Figure 5.6: A façade from the CMP-base dataset. a) rectified RGB image b) correspond-
ing annotation [66]

5.2.3 Deep-learning-based features

As a third performance evaluation method, I employed a deep learning approach. I
utilized a pre-trained ResNet50 architecture to extract features from the conflict maps.
The model I used has been trained on the ImageNet dataset [76] and is accessible
through the TensorFlow Python library [77, 78]. I evaluated the similarity of the
obtained feature vectors by employing the cosine similarity as it is defined in Equation
5.3 [67].

C(X, Y) =
X · YT

∥X∥ · ∥Y∥ (5.3)

With the feature vectors X and Y. An implementation of this similarity measure is
available in the scikit-image Python library [67].

5.3 Generation of conflict maps

5.3.1 Preprocessing

I generated conflict maps using the official LOD2 models and the MF point cloud.
To conduct the steps displayed in Figure 4.2, the surfaces in the LOD2 semantic city
model had to be converted into a mesh data type. Such a conversion has previously
been addressed in theCityGML2OBJs project at the TU Delft and in the CityGML2OBJs
2.0 project at the TUM Chair for Geoinformatics at the Technical University Munich
[60, 79].
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While CityGML2OBJs offers an open application for converting CityGML 1.0 and
2.0 datasets into the Wavefront Object Format (OBJ) data format, it comes with the
drawback of an unsolved issue at the time. For yet unidentified reasons, geometric dis-
tortions appear for specific CityGML datasets. The conversion fails for some polygons,
resulting in the lack of the respective polygon in the resulting OBJ file. Due to these
unsolved issues, I chose to use FME to convert the CityGML data into the OBJ format.

5.3.2 Parameter settings

I determined conflict maps with different tolerance settings and the number of iterations
in the triangle subdivision process. In addition, I conducted an experiment where I
included an additional second tolerance, as summarized in Equation 5.4.

colour =



red if d > t1 ∧ d < t2

black if d < −t1 ∧ d > −t2

green if |d| ≤ t1 ∧ |d| < t2

yellow if d > t2

white if d < −t2

(5.4)

5.4 Personalization with Dreambooth

I utilized the computational resources kindly provided by the TUM Chair of Computer
Vision & Artificial Intelligence. Detailed information on these resources and the
durations of the experiments are summarized in Table 5.1.

Table 5.1: Details on the computational resources and the runtime performance

Dataset Technical details Runtime information

1 NVIDIA RTX 8000 GPU Duration: 00:09:33
48 GB VRAM (only 32 GB used)
CUDA Version 7.5.

2 NVIDIA RTX 8000 GPU Duration: 00:08:25
48 GB VRAM (only 32 GB used)
CUDA Version 7.5.

3 NVIDIA A40 Duration: 00:06:37
48 GB VRAM (only 32 GB used)
CUDA Version 8.6.
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5.5 Substituting the manual text prompt specification

For substituting the manual text prompt specification, I make use of the specifications
that are summarized in Equations 5.5, 5.6 and 5.7. The parameters nblack and nwhite
represent the percentage of black and white pixels in the image. The fragmentation
score f is assessed against a threshold t f to discriminate the patch size. I combine the
three strings into the final automatically generated text prompt. I use a value of 0.98
for t f . The symmetry of the image is evaluated according to the criterion established in
Equation 4.2. I set the arbitrary threshold t to 0.5.

string 1 =

{
"black background" if nblack > 50%

"white background" if nwhite > 50%
(5.5)

string 2 =


"with large black patches" if f > t f ∧ nwhite > 50%

"with large white patches" if f > t f ∧ nblack > 50%

"with small black patches" if f < t f ∧ nwhite > 50%

"with small white patches" if f < t f ∧ nblack > 50%

(5.6)

string 3 =


"that are consistent and symmetric if symmetry = True

with the rest of the image"

"" if symmetry = False

(5.7)

5.6 Training the LaMa GAN

I trained the LaMa GAN for 25 epochs. During each epoch, the model was evaluated
on the evaluation partition by computing the mean value of the SSIM and the Frechet
Inception Distance (FID). Figure 5.7 provides a graphical representation of the results
of these evaluations. I find the best performance in Epoch 17 with a total mean value
of SSIM and FID of 0.95.

5.7 Evaluation

5.7.1 Qualitative evaluation

Evaluation of the generated conflict maps

Table 5.2 contains a selection of examples I obtained for conflict maps. The parameter t
refers to the used tolerance in meters, while n represents the number of iterations in
the triangle subdivision process.
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Table 5.2: Exemplary conflict maps created from the official LOD2 semantic building
models and the MF point cloud

Parameters Building 58, Building 22, Building 60,
northern façade eastern façade eastern façade

t = 0.3 , n = 5

t = 0.7 , n = 6

t = 0.7 , n = 8

t = 0.8 , n = 8
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Figure 5.7: Total mean value of SSIM and FID for each training epoch

I draw various insights from these conflict maps. The geometric resolution and
detail level are directly linked to the number of iterations in the triangle subdivision
process. As I increase this iteration count, I consistently witness an improvement in
the geometric resolution across all conflict maps. The threshold also influences the
details that can be observed. I observe that small thresholds of approx. 30cm can lead
to problems. In such cases, the difference between the wall in the LOD2 model and the
actual building can be larger than the threshold, resulting in the loss of some façade
details. For instance, such a case can be observed in the eastern façade of building 22,
where parts of the second floor are lost.

I obtained more information by including additional tolerance thresholds in the
distance analysis of intersecting rays, as described in Equation 5.4. In Figure 5.8, more
details are visible, particularly in the arched windows on the ground floor. I used
t1 = 0.7 , t2 = 3.0, and eight triangle subdivision iterations for this conflict map.

Inpainting of structure similar to vegetation

I inferred the models I obtained by personalizing the Stable Diffusion model with
Dreambooth on different datasets. I observe several noteworthy findings by visually
analyzing the inpainting results. In addition, I also evaluated the performance of the
LaMa GAN and two traditional inpainting approaches.

I notice that the inpainting results display a significant dependence on the properties
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Figure 5.8: Conflict map with additional tolerance thresholds to obtain more detailed
façade information. Color-coded according to Equation 5.4

of the mask. Specifically, investigation reveals that the Stable Diffusion networks tend
to inpaint trees when the masks resemble the shape of a tree. Table 5.3 and 5.4 illustrate
this behavior. When considering tree-shaped masks, the inpainting of structures similar
to trees can be observed most prominently for the pre-trained Stable Diffusion model. I
find that the personalization of this model with Dreambooth mitigates this phenomenon.
In Table 5.3, I observe less prominent inpainting of structures similar to trees for the
first and the second of these models.

In general, this represents an issue, as the main objective is to eliminate occluding
elements, such as vegetation, from the conflict maps. Nevertheless, as depicted in
Figure 5.9, it becomes qualitatively evident that applying inpainting, even in cases
where inpainted content resembles vegetation, can result in noticeable enhancements.

In contrast to the Stable Diffusion models, the pre-trained LaMa GAN displays no
such behavior. Notably, as demonstrated in Table 5.4, the phenomenon can not be
observed in the case of randomly generated masks. Therefore, I attribute the inpainting
of structures similar to vegetation to the shape of the mask rather than to the model
itself.
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Table 5.3: Exemplary inpainting results on real conflict maps with tree-shaped masks
demonstrating the influence of the mask properties

Original Binary Mask Masked binary
conflict map conflict map conflict map

Stable-Diffusion Stable Diffusion Stable Diffusion LaMa GAN
(pre-trained) (personalization 1) (personalization 2)
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Table 5.4: Exemplary inpainting results on real conflict maps with randomly generated
masks demonstrating the influence of the mask properties

Original Binary Mask Masked binary
conflict map conflict map conflict map

Stable Diffusion Stable Diffusion Stable Diffusion LaMa GAN
(pre-trained) (personalization 1) (personalization 2)
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Figure 5.9: Exemplary demonstration of the inpainting approach with the third per-
sonalised Stable Diffusion model. The original conflict map, as well as the
masked binary conflict map and the inpainting result map are incorporated
into the LOD 2 model as textures.

Inpainting large areas

I find that the inpainting of large masked areas is challenging. In particular, the
LaMa GAN meets its boundaries here, as indicated in Table 5.5. In this example,
approximately the left third of the façade is missing and has to be completed. An axis
symmetry concerning a central, vertical axis can be assumed for this particular conflict
map.

I observe that the LaMa GAN at epoch 17 predominantly fills in a black background,
lacking any detailed façade structures. This trend is consistent with the behavior
observed in the pre-trained LaMA GAN, which is not explicitly presented here. Notably,
there seems to be an absence of symmetry consideration in this example. In contrast, the
diffusion models exhibit an apparent recognition of symmetric properties within images,
demonstrating a capacity for generating diverse content with increased variability.
However, the results from the pre-trained model reveal that the generated content does
not necessarily align with the overall image context.

When evaluating relatively small masks, such as those applied to pedestrians in the
examples presented in Table 5.5, consistent and high-quality inpainting results are
observed across all models.
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Table 5.5: Exemplary inpainting results on real conflict maps demonstrating the vari-
ability of the inpainting results when considering large masks

Original Binary Mask
conflict map conflict map

Stable Diffusion Stable Diffusion Stable Diffusion LaMa GAN
(pre-trained) (personalization 1) (personalization 2) (epoch 17)
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Comparison to traditional inpainting approaches

I find that deep learning approaches perform better than the traditional inpainting
strategies. The deficiencies of these traditional methods are evident in the exemplary
results presented in Table 5.6. I tested Navier-Stokes-based inpainting and the method
by Telea on a conflict map derived from an annotated image from the CMP-extended
database. I used the same randomly generated mask displayed in Table 5.6 for all of
these experiments. I compared the results to those obtained with the LaMa GAN at
epoch 17 and the first personalized Stable Diffusion model. The results obtained with
deep learning-based approaches exhibit a higher visual resemblance to the original
conflict map compared to traditional inpainting methods. I notice significant semantic
inconsistencies in the results obtained by traditional inpainting methods. I attribute
this primarily to their limited capacity to consider global image content effectively. In
contrast, deep learning strategies excel in capturing and incorporating global context,
leading to more consistent inpainting results.

Table 5.6: Exemplary inpainting results on conflict maps derived from the CMP-
extended dataset demonstrating the weaknesses of traditional inpainting
strategies

Original Binary Mask Masked binary
conflict map conflict map conflict map

Telea Navier-Stokes Stable Diffusion LaMa GAN
Inpainting based Inpainting (personalization 1) (epoch 17)
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Mitigation of vegetation-like inpainting by replacing masks

By substituting the intricate tree-shaped mask with a simple rectangle according to the
bounding box, I attempted to mitigate the tendency of the Stable Diffusion models to
inpaint structures similar to trees. The central concept is that I discourage the Stable
Diffusion networks from inpainting such structures by eliminating the tree-shaped
mask. This way I aimed to improve the results even when ground-truth information
was lost. Table 5.7 demonstrates that substituting the mask can prevent the inpainting
of vegetation-like structures. However, the loss of ground-truth information results in
the inpainting of structures lacking semantic consistency with the original image.

Table 5.7: Exemplary inpainting results on real conflict maps demonstrating the effect
of replacing the mask

Original Binary Mask Stable Diffusion
conflict map conlict map (personalization 1)

Original Binary Mask (tree structure Stable Diffusion
conflict map conflict map replaced) (personalization 1)

Comparison to ground-truth LOD3 building models

I compared the inpainting results on real conflict maps with the conflict maps derived
from corresponding LOD3 models. Table 5.8 displays a collection of four selected
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examples. Despite less than flawless outcomes, the networks demonstrate a general
capability to inpaint semantically meaningful content into missing regions. I observe a
consideration of symmetry properties, and a continuation of existing image structures.
These findings, along with the results presented in Tables 5.3 and 5.5, demonstrate the
potential of deep-learning networks for completing incomplete conflict maps.

I notice that the content inpainted into missing regions by the Stable Diffusion models
often resembles the remaining content of the image. This phenomenon can be observed
in the inpainting results on real conflict maps in Table 5.3, 5.5, and 5.8. It includes
image structures without clear semantic meaning or those representing noise.

5.7.2 Quantitative evaluation

Evaluation of the conflict maps

I assessed the quality of conflict maps by comparing them to ground truth information
derived from corresponding LOD3 models. As shown in Table 5.8 and 5.9, there is
a noticeable visual correspondence between the conflict maps and the ground truth
information derived from the corresponding LOD3 models. However, the resulting
similarity values reveal discrepancies between the LOD3 model and the conflict maps.
For example the SSIM score 0.51 for the conflict map with the underpass. There
are two possible explanations for this. The conflict maps either contain incorrect
information, or the LOD3 building model does not correspond to the actual building
façade close enough. Determining the cause of these discrepancies would involve a
manual assessment of the LOD3 building model.

Evaluation of the inpainting approaches

For the quantitative evaluation of the inpainting models, I inferred all the models
on the conflict maps derived from the CMP-extended dataset, which consists of 228
annotated images [66]. For each of the models, I conducted two experiments. For the
first experiment, I utilized a set of randomly generated masks that I obtained with the
random mask generation routine by Suvorov et al. [4]. For the second one, I applied
a tree mask that I generated from a point cloud representing a tree. I evaluated the
similarity of the images in the original dataset to the inpainting results.

Effect of the personalisation with Dreambooth

I make several observations based on this data. It is evident that, when using randomly
generated masks, the personalization of pre-trained models with Dreambooth yields
marginal to negligible enhancements in performance. In contrast, a slight improvement
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Table 5.8: Exemplary inpainting results on real conflict maps demonstrating the poten-
tial of deep-learning models for the completion of 2D conflict maps

Original Mask derived form Stable Diffusion Ground-truth
conflict map tree point cloud (personalization 1) from LOD3

Original Randomly Stable Diffusion Ground-truth
conflict map generated mask (personalization) 3 from LOD3

Original Mask derived from Stable Diffusion Ground-truth
conflict map distance analysis (personalization 2) from LOD3

Original Randomly Stable Diffusion Ground-truth
conflict map generated mask (personalization 1) from LOD3
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Table 5.9: Evaluation of real conflict maps with ground truth information from LOD3
building models

Original conflict Binary conflict Ground truth Similarity
map map from LOD3 values

SSIM: 0.51
IoU: 0.58
DL: 0.85

SSIM: 0.78
IoU: 0.25
DL: 0.89

SSIM: 0.46
IoU: 0.27
DL: 0.86

SSIM: 0.35
IoU: 0.34
DL: 0.74
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Table 5.10: Quantitative evaluation of the inpainting results with the SSIM

Model / Method mean SSIM mean SSIM
(random masks) (tree mask)

S.D. pre-trained 0.90 0.75
S.D. Pers. 1 0.91 0.78
S.D. Pers. 2 0.90 0.81
S.D. Pers. 3 0.88 0.74
S.D. pre-trained (text-prompt subst.) 0.90 0.75
S.D. Pers. 1 (text-prompt subst.) 0.90 0.84
S.D. Pers. 2 (text-prompt subst.) 0.90 0.80
S.D. Pers. 3 (text-prompt subst.) 0.88 0.73
LaMa pre-trained 0.95 0.98
Lama epoch 17 0.96 0.96
Navier-Stokes 0.90 0.95
Telea 0.87 0.94

Table 5.11: Quantitative evaluation of the inpainting results with the Jaccard index

Model / Method mean IoU mean IoU
(random masks) (tree mask)

S.D. pre-trained 0.72 0.66
S.D. Pers. 1 0.73 0.66
S.D. Pers. 2 0.72 0.66
S.D. Pers. 3 0.70 0.65
S.D. pre-trained (text-prompt subst.) 0.72 0.66
S.D. Pers. 1 (text-prompt subst.) 0.71 0.66
S.D. Pers. 2 (text-prompt subst.) 0.72 0.66
S.D. Pers. 3 (text-prompt subst.) 0.70 0.64
LaMa pre-trained 0.95 0.98
LaMa epoch 17 0.90 0.94
Navier-Stokes 0.92 0.97
Telea 0.89 0.97
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Table 5.12: Quantitative evaluation of the inpainting results with deep-learning-based
features

Model / Method mean DL mean DL
(random masks) (tree mask)

S.D. pre-trained 0.97 0.89
S.D. Pers. 1 0.97 0.90
S.D. Pers. 2 0.97 0.92
S.D. Pers. 3 0.96 0.89
S.D. pre-trained (text-prompt subst.) 0.97 0.89
S.D. Pers. 1 (text-prompt subst.) 0.97 0.94
S.D. Pers. 2 (text-prompt subst.) 0.97 0.91
S.D. Pers. 3 (text-prompt subst.) 0.96 0.89
LaMa pre-trained 0.98 0.99
LaMa epoch 17 0.93 0.97
Navier-Stokes 0.95 0.96
Telea 0.89 0.95

in performance compared to the pre-trained model can be observed in the case of
tree-shaped masks. This is most noticeable when evaluating the SSIM score. Here, an
improvement from 0.75 (pre-trained model) to 0.81 (second personalized model) can be
observed. This corresponds to findings from the qualitative analysis, indicating that
personalizing the Stable Diffusion model with Dreambooth can address the issue of
inpainting structures resembling trees.

Effects of the tree-shaped masks on diffusion models

Notably, the performance of all examined diffusion models decreases when subjected
to tree-shaped masks instead of randomly generated masks. As an example, the Jaccard
index of the pre-trained Stable Diffusion model drops from 0.72 to 0.66 in this scenario.
I attribute this behavior to the inpainting of structures similar to trees when the mask
resembles the shape of a tree. This phenomenon is evident in qualitative analysis, as
illustrated in Table 5.3. When focusing solely on the personalized Stable Diffusion
models with tree-shaped masks, it becomes evident that the second personalization
proves to be the most successful, while the third one shows no substantial improvements.
For instance, when considering the Jaccard index, the second personalized model
achieves a score of 0.81, while the first model scores 0.78 and the third model only
attains 0.74. This trend remains consistent across all the evaluation metrics employed.
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Performance of the LaMa GAN

The LaMa GAN and the traditional inpainting approaches display different behavior.
When exposed to a tree-shaped mask, an increasing performance can be observed. In
the case of the LaMa GAN this is demonstrated by an increase in the SSIM score from
0.95 to 0.98.

I attribute this behavior to the size and distribution of the masked area. On average,
the randomly generated masks I use cover a larger area than the specific tree-shaped
mask utilized in my experiments. Unlike a simple, connected mask without holes, a
tree-shaped mask is a more intricate structure, allowing for the preservation of some
background information within the superstructure of the general tree shape. The
observed increase in performance also corresponds to the observations I made in the
qualitative analysis. While the diffusion models tended to inpaint structures similar to
trees, I observe no such behavior for the LaMa GAN.

I observe that, in general, the LaMa GAN achieves better performances than the
Stable Diffusion models. In general, the performance of the LaMa GAN at training
epoch 17 is slightly less good than that of the pre-trained model. When considering
random masks as an example, the Jaccard index of the pre-trained model is 0.95 while
it is 9.90 for the model trained on my dataset.

Synthetic training data

Tables 5.10, 5.11, and 5.12 suggest that personalization with annotated data yields better
results than with synthetic data. Across all evaluation metrics employed, the third
personalized model displays lower performance than the first and second.

The comparison of the performance of the pre-trained LaMa GAN and the trained
model at epoch 17 indicates a different behavior. The pre-trained model performs better
than the model trained on mostly synthetic data.

However, it is crucial to interpret these results with caution, considering the in-
fluence of various factors, such as the size of the training dataset or the settings of
hyperparameters. Further experiments are necessary to draw a definitive conclusion.

Effect of substituting the text prompt

Across all evaluation metrics deployed, I observe no improvement in performance by
substituting the text prompt as it has been done in this work. The comprehensive
performance remains consistent with the models without text-prompt substitution
across all types of masks. I observe the same performance patterns in performance as
before. There are several possible explanations for this behavior. The variability of the
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generated text prompts could be too small to address the variety of the images. The
measures that I use to discriminate strings in the text prompt generation process could
be insufficient for sensible discrimination.

Comparison to traditional inpainting methods

High performances can be observed for both traditional inpainting strategies across
all evaluation metrics employed. For example, the Jaccard index for the Navier-Stokes-
based inpainting approach reaches a value of 0.97 in the case of the tree-shaped mask.
Similar to the behavior of the LaMa GAN, I observe an increasing performance for
the tree-shaped mask compared to the randomly generated masks for both traditional
methods. Again, I attribute this to the size and distribution of the masked area.

This observation is conflicting with findings from the qualitative analysis. In Table
5.6, I notice significant semantic inconsistencies in the results obtained with these
approaches. I attribute the high similarity scores that the traditional methods achieve
to an inherent bias in the similarity measures, to possible counterintuitive results of
evaluation metrics, and to a possible weakness of the evaluation metrics in measuring
semantic consistency.

Quantitative evaluation of the inference on real conflict maps

I quantitatively evaluated the inpainting results on real conflict maps by masking the
conflict maps with randomly generated, and tree-shaped masks. Using the unmasked
images as ground truth information, I quantified the inpainting performance in a more
reliably as if I used conflict maps derived from corresponding LOD3 models.

In the case of randomly generated masks, I observe an increasing similarity to the
ground truth information for the inpainting results. This is particularly evident when
examining the SSIM scores and the cosine similarity of deep-learning features. I observe
an average increase of 0.31 in the SSIM values and an average increase of 0.17 in the
cosine similarity of the deep learning features. The initial average for the latter is 0.81
pre-inpainting, which significantly improves to an average of 0.98 across all models
after the inpainting. This underscores the effectiveness of inpainting with pre-trained
and personalized Stable Diffusion models on real conflict maps, leading to substantial
enhancements in similarity with ground truth information.

In the case of tree-shaped masks, the improvement in similarity by inpainting is
less prominent than for the random masks. I find only a small improvement of at
average 0.07 in the corresponding SSIM scores. Almost no change (0.004) is evident
in the average similarity of the deep-learning-based features. The initial average is
0.93 pre-inpainting, 0.94 across all models after the inpainting. This corresponds to my

57



5 Experiments

Table 5.13: Quantitative evaluation of the inpainting results on real conflict maps

Binary Similarity to Stable Stable Stable Stable
conflict map Ground truth Diffusion Diffusion Diffusion Diffusion
superimposed (unmasked pre-trained (pers. 1) (pers. 2) (pers. 3)
with mask conflict map)

SSIM: 0.28 SSIM: 0.82 SSIM: 0.83 SSIM: 0.85 SSIM: 0.81
IoU: 0.39 IoU: 0.27 IoU: 0.24 IoU: 0.26 IoU: 0.24
DL : 0.70 DL: 0.98 DL: 0.98 DL: 0.98 DL: 0.97

SSIM: 0.71 SSIM: 0.76 SSIM: 0.75 SSIM: 0.77 SSIM: 0.76
IoU: 0.62 IoU: 0.25 IoU: 0.27 IoU: 0.22 IoU: 0.26
DL : 0.90 DL: 0.89 DL: 0.93 DL: 0.94 Dl: 0.90

SSIM: 0.68 SSIM: 0.85 SSIM: 0.87 SSIM: 0.85 SSIM: 0.84
IoU: 0.83 IoU: 0.61 IoU: 0.67 IoU: 0.61 IoU: 0.63
DL : 0.87 DL: 0.98 DL: 0.98 DL: 0.98 DL: 0.98

SSIM: 0.78 SSIM: 0.79 SSIM: 0.81 SSIM: 0.8 SSIM: 0.77
IoU: 0.91 IoU: 0.58 IoU: 0.59 IoU: 0.55 IoU: 0.55
DL : 0.96 DL: 0.97 DL: 0.97 DL: 0.96 DL: 0.96

SSIM: 0.67 SSIM: 0.92 SSIM: 0.92 SSIM: 0.91 SSIM: 0.93
IoU: 0.70 IoU: 0.47 IoU: 0.51 IoU: 0.46 IoU: 0.45
DL : 0.86 DL: 0.99 DL: 0.99 DL: 0.98 DL: 0.99

SSIM: 0.76 SSIM: 0.81 SSIM: 0.83 SSIM: 0.84 SSIM: 0.82
IoU: 0.75 IoU: 0.40 IoU: 0.40 IoU: 0.46 IoU: 0.41
DL : 0.94 DL: 0.95 DL: 0.95 DL: 0.96 Dl: 0.95

SSIM: 0.56 SSIM: 0.81 SSIM: 0.85 SSIM: 0.85 SSIM: 0.84
IoU: 0.74 IoU: 0.74 IoU: 0.70 IoU: 0.71 IoU: 0.71
DL : 0.80 DL: 0.96 DL: 0.97 DL: 0.98 DL: 0.97

SSIM: 0.77 SSIM: 0.81 SSIM: 0.83 SSIM: 0.82 SSIM: 0.83
IoU: 0.83 IoU: 0.68 IoU: 0.66 IoU: 0.65 IoU: 0.66
DL : 0.93 DL: 0.90 DL: 0.93 DL: 0.92 DL: 0.91
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expectations because the Stable Diffusion models tend to inpaint structures similar to
trees, as illustrated in Table 5.3.

In contrast to the SSIM and deep-learning-based features, I observe that the IoU
shows no improvement by the inpainting. More specifically, I observe a consistent
decrease of −0.24 in similarity to the ground truth across all models and masks for
this particular evaluation metric. This result conflicts with my observations from
the qualitative evaluation of the inpainting results and the quantitative evaluation of
SSIM score and the deep-learning-based features, where I observe an improvement in
similarity to the ground truth data.
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6.1 Settings of hyperparameters

As demonstrated in Table 5.2, finding suitable hyperparameters is not a trivial task.
The suitability of specific settings depends on various factors discussed in the following
sections.

6.1.1 Thresholds

The minimal detectable deviation of the MLS data from the LOD2 model, set with the
parameter t1 in Equation 5.4, is limited by the deviation of the LOD2 model from the
building in reality. This deviation can vary within each façade. Apart from the overall
geometric accuracy of the building model, such information is commonly unavailable.
An optimal set of additional thresholds to maximize the extracted information con-
tent depends on the individual structure of each building and has to be identified
experimentally.

6.1.2 Triangle subdivision iterations

As illustrated in Table 5.2 and Figure 4.3, the geometric resolution largely depends on
the number of iterations during the triangle subdivision process. The computational
effort that is required for the generation is also strongly influenced by this number.
Since the outcome depends on the properties of the initial façade, such as the overall
size or the geometric shape, no simple general rule that could be applied in any scenario
can be established. When considering official LOD2 data provided by the Bavarian
Surveying Administration, I find that using eight iterations in the triangle subdivision
process yields a good compromise between geometric accuracy and computational
effort.

6.2 Probabilistic information for the generation of conflict maps

Incorporating probabilistic information into the generation process of the conflict maps
offers a possibility to mitigate some of the issues discussed previously. Prior knowledge
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about the uncertainty of the LOD2 building model and the MLS point cloud could be
utilized in a similar approach as that of Wysocki et al. [8, 22]. It could also be used to
predict suitable settings of hyperparameters. Further information, such as the height of
a particular triangle above the ground, could also be included similarly.

6.3 Randomly generated masks

6.3.1 Suitability of randomly generated masks

The randomly generated masks were used as a proof of concept, which might not have
an application in real scenarios. In real application scenarios, masks have the shape
of occluding objects such as vegetation, cars, or pedestrians. I assume that objects
resembling the shape of random masks are very rare. Therefore, a Deep Learning
model is trained to complete images according to masks with very rare shapes in my
work. Since the shape of the mask can largely influence the inpainting outcomes, a
resulting model might not be well specialized for completing conflict maps, even if
trained with actual façade data.

6.3.2 Incorporating object databases

Therefore, to improve the inpainting performance, it could be beneficial to replace the
random masks that are used for training and personalization with masks that represent
such real objects. Since a significant number of masks is required, an extensive database
of occluding objects would be necessary. More realistic masks could be derived from
such a database using additional augmentation methods [80].

6.4 Suitability of the evaluation metrics

When analyzing and interpreting the results of the quantitative evaluation, the suitabil-
ity of the evaluation metrics has to be considered. Several factors can compromise the
evaluation results.

6.4.1 Evaluation with unrealistic masks

Using unrealistic masks introduces a potential divergence between evaluation results
and the actual performance of the model. The evaluation outcomes may not accu-
rately reflect the real-world capabilities of the models in such instances. Conclusions
drawn from such evaluations can fail to provide meaningful insights for improving
performance in real-world scenarios.
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6.4.2 Inherent bias in the similarity measures

I assume a potential inherent bias in the similarity measures favoring higher scores
within my dataset. All conflict maps that I use in my experiments share the characteristic
of being binary images. This shared property may introduce a positive similarity
bias, resulting in consistently high measurement values, even when conflict maps
exhibit observable semantic differences discernible to the human eye. To validate this
assumption, further experiments would be required.

6.4.3 Suitability of the SSIM score

Nilsson and Akenine-Möller have pointed out that the SSIM sometimes yields counter-
intuitive results that do not necessarily align with human perception [74]. I assume
that such behavior could be part of an explanation for the traditional inpainting
strategies achieving comparative high values of the SSIM scores, even with weaknesses
in recognition of global semantic information as illustrated in Table 5.6.

6.4.4 Suitability of the Jaccard index

The results from the quantitative analysis using the Jaccard index contradict those
obtained from assessments using SSIM and deep learning features, as well as the
findings from the qualitative analysis. The level of fragmentation in the conflict maps
may serve as an explanation for this phenomenon. High levels because of noise and
complex scene structures are observable, for example, in Table 5.2. Greater overlap due
to larger continuous areas within the images may positively impact the Jaccard index.
However, further experiments would be necessary to verify this assumption.

6.4.5 Measuring semantic information

All the evaluation metrics I deploy in this work measure the similarity of two images.
The semantic correctness of the unseen façade details inpainted into the missing regions
is related to this visual similarity to the ground truth information, but not identical. I
interpret the perceived similarity of the completed conflict map to an image representing
ground truth information as a good approximation of the semantic similarity. The
evaluation metrics that I use are incapable of discriminating between semantically
meaningful image content, such as structures that belong to a window, and irrelevant
features, such as noise. Nor do they take possible symmetric properties into account.
To accurately measure the semantic similarity, high-level information on the conflict
maps has to be quantified. A solution to this challenging task might be developing and
deploying a designated deep learning approach.
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6.5 Substituting the text-prompt

6.5.1 Precision of description

As illustrated in Table 4.3, describing the image content that a missing region should be
filled with can be challenging. In the tables 5.10, 5.11 and 5.12, it becomes evident that
my method for the substitution of manual text prompt selection does not positively
affect the performance of the Stable Diffusion models. An explanation might be that
the automatically constructed text prompts do not describe the content that should be
inpainted into the missing parts of the conflict map with sufficient precision.

6.5.2 Suitability of the used metrics

I utilize certain features to automatically determine a text prompt. However, these
criteria may not sufficiently identify a favorable combination of individual strings to
create an appropriate output. The overall quality of a final inpainting result could
rely on image properties beyond those I have explored. Additional experiments are
required to ascertain the adequacy of the selected features and identify the effectiveness
of alternative features.

6.6 Post-Processing of conflict maps

6.6.1 Resampling

Since some Deep Learning Networks have fixed sizes of input and output images, a
resampling step can be required for further applications of the completed conflict maps.
This way, they could be used as a texture or be combined with additional geo-referenced
information. The original coordinates of the façade corners would be required for this
resampling.

6.6.2 Quality enhancement

I find that in many cases, the inpainted areas, as well as the conflict maps themselves,
contain disturbances. This is, for example, illustrated in Table 5.8. For example, within
a 3D-reconstruction pipeline, post-processing steps could be used to enhance the image
quality to make use of the conflict maps. Typical noise filters could be used for this
purpose.
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6.7 Substituting vegetation-shapes in masks

6.7.1 General considerations

As pointed out in Table 5.7, replacing masks with simpler shapes could yield im-
provements in some instances. A balance must be struck between the loss of ground
truth information with possible resulting semantic inconsistencies, and the benefit of
avoiding the inpainting of vegetation-like structures. Establishing such a balance is
non-trivial and requires in-depth knowledge about the specific use case scenario.

6.7.2 Identifying vegetation

In my experiments, I manually substituted the tree-shaped mask with a rectangle.
Automatically identifying vegetation-like structures in binary masks and assessing their
bounding boxes for replacement with rectangles is challenging. In real application
scenarios, trees might merge into one another. Incompleteness and unfavorable shapes
that are not typical for vegetation might contribute to this difficulty.
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7.1 Limitations in applicability

7.1.1 Transparent façades

Though my method effectively addresses issues with conventional building façades, I
anticipate challenges when deploying it on façades predominantly composed of glass.
In such a scenario, only the interior of the building would be captured by the laser
scanner. In the most unfavorable circumstances, the entire façade might be deemed
conflicting, even when pertinent structures for 3D reconstruction exist, such as extruded
façade objects made of glass.

7.1.2 Façade boundaries

Regarding extruded façade elements such as balconies that wrap around building
corners, caution is advised. In these instances, parts of such elements may not be
represented in any conflict map. This problem is illustrated in Figure 7.1. In this
example, façade a and b would be represented by two individual conflict maps. The
green lines represent the parts of the façades considered as confirming while the red
lines represent those considered conflicting. The blue lines represent areas that are not
covered by any of the two conflict maps. The lost information about the balcony could
lead to an erroneous 3D reconstruction of the LOD 3 building model.

7.2 Scalability

As discussed earlier, the maximum geometric resolution is partly dependent on the
number of triangle subdivisions. In certain scenarios, the required geometric resolu-
tion may necessitate an excessively high number of triangle subdivisions, potentially
leading to memory issues. This situation may arise when dealing with point clouds
characterized by a very high point density or generally large datasets. Consequently,
the processing of large datasets might require a reduced geometric resolution.
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Figure 7.1: Schematic illustration of the coverage problem for extruded façade objects
that wrap around corners of building.

7.3 Absence of probabilistic information

My approach does not incorporate information regarding the uncertainty of the MLS
points and the LOD 2 building models. As demonstrated in Table 5.2, the absence of
such information may result in the loss of relevant façade details. The optimization of
hyperparameters to minimize information loss remains an unresolved challenge. Under
the unfavorable circumstance that a threshold is smaller than the combined uncertainty
of the MLS points and the LOD 2 building models, the consequent information loss
could lead to an erroneous 3D reconstruction result.

7.4 Semantic Information

The information in the conflict maps relates to openings in the façade, such as windows.
Extruded façade objects are also considered. When passing the conflict maps to the
deep learning models, we only consider the conflict map as a binary image without
further semantic information. More experiments are necessary to discern to what extent
the deep learning models can understand the binary conflict maps as information about
the façades of buildings.
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This work demonstrates that deep-learning-based methods can be utilized for the
semantic inpainting of unseen façade objects into 2D conflict maps. This is underlined
by the average increase of 0.31 in the SSIM values and an average increase of 0.17
in the cosine similarity of the deep learning features that is evident in Table 5.13.
Both, Generative Adversarial Networks (GANs) and DMs prove to be effective in this
context. The LaMa GAN encounters challenges when handling relatively large masks.
Overall, the inpainting of smaller masks is qualitatively observed to be more successful
compared to larger masks.

For personalizing the pre-trained Stable Diffusion with Dreambooth and training
the LaMa GAN, I utilized conflict maps derived from synthetic semantic city models
and such that I derived from annotated images. Despite the slightly diminished
performance of the LaMa GAN trained in this manner compared to the pre-trained
version, particularly the personalization experiments with Dreambooth underscore the
applicability of such data to facilitate the use of deep learning models for inpainting
unseen façade objects into 2D conflict maps.

Notably, when using masks shaped like trees, the diffusion networks tend to inpaint
structures similar to trees in my experiments. This behavior is not evident in the case
of randomly generated masks. This is, for example, reflected in the Jaccard index of the
pre-trained Stable Diffusion model in Table 5.11. This measure drops from 0.72 to 0.66 if
exposed to the tree-shaped mask instead of randomly generated masks. The LaMa GAN
does not demonstrate such inpainting tendencies. Although in my experiments, the
personalization with Dreambooth does not lead to a significant performance increase
in diffusion models compared to their pre-trained counterparts, it helps to mitigate
their tendency to inpaint structures similar to trees. Although it does not eliminate the
issue, the improvements by this personalization can contribute to enhanced accuracy in
3D reconstruction.

Future work could focus on substituting the text prompt for the Stable Diffusion
models more sophisticatedly. My approach may find application by integrating it
into existing pipelines for 3D reconstruction. Additionally, there is the possibility to
deploy my approach to conflict maps, acquired through the probabilistic methodology
introduced by Wysocki et al. [22]. Another avenue for future exploration is refining
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synthetic training data generation to achieve higher realism. Increasing the computa-
tional efficiency of the conflict map generation and thus improving the scalability of
my approach could represent another objective of future work.
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