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Abstract

The aggregation of time series is a common approach to reduce the temporal com-
plexity of energy system models. However, the modeling results of aggregated time series
are not always robust and vary depending on the defined energy system, the aggregation
method and the data used. So far, we have only limited knowledge about the interaction of
(different) time series and energy system models, which would allow to understand the
deviations of the modeling results or to adapt the aggregation methods. In this thesis, a
data-analytical approach for aggregating time series is presented, which can be divided
into two methods. The first method is based on clustering and nested regression (CNR)
and analyzes the interaction between time series and modeling results. For this purpose,
the information from time series is converted into various time series parameters and
relevant parameters are identified. These are transferred to the second method, the
profiling. Already aggregated time series are iteratively adjusted to the relevant time
series parameters of the original time series. The results show that profiling leads to
a better representation of the original time series and that systematic deviations in the
modeling results are significantly reduced. This approach therefore complements existing
aggregation methods. In addition to the general further development of the CNR and
profiling methods, directions of future research are discussed (e.g., the transfer of CNR
and profiling to more complex energy system models).

Zusammenfassung

Die Aggregation von Zeitreihen ist ein verbreiteter Ansatz, um die zeitliche Komplexität
von Energiesystemmodellen zu reduzieren. Die Modellierungsergebnisse von aggregierten
Zeitreihen sind allerdings nicht immer robust und variieren in Abhängigkeit des definierten
Energiesystems, der Aggregationsmethode und der verwendeten Daten. Bisher haben wir
nur ein begrenztes Wissen über die Wechselwirkung von (unterschiedlichen) Zeitreihen
und Energiesystemmodellen, welches uns ermöglichen würde, die Abweichungen der
Modellierungsergebnisse zu verstehen bzw. die Aggregationsmethoden anzupassen.
Im Rahmen dieser Doktorarbeit wird ein datenanalytischer Ansatz zur Aggregation von
Zeitreihen vorgestellt, der sich in zwei Methoden unterteilen lässt. Die erste entwickelte
Methode CNR (engl: clustering and nested based regression) analysiert die Wechsel-
wirkung zwischen Zeitreihen und Modellierungsergebnissen. Dazu werden die Informa-
tionen von Zeitreihen in diverse Zeitreihenparameter überführt und relevante Parameter
identifiziert. Diese werden in der zweiten Methode, dem Profiling, aufgegriffen. Bere-
its aggregierte Zeitreihen werden iterativ an die relevanten Zeitreihenparameter der ur-
sprünglichen Zeitreihe angeglichen. Die Ergebnisse zeigen, dass Profiling zu einer deutlich
besseren Repräsentation der ursprünglichen Zeitreihe führt und systematische Abwe-
ichung in den Modellierungsergebnissen signifikant reduziert werden. Somit stellt dieser
Ansatz eine Ergänzung zu bestehenden Aggregationsmethoden dar. Neben der allge-
meinen Weiterentwicklung der CNR und Profiling Methode, wird weiterer Forschungsbedarf
diskutiert (z.B. der Transfer von CNR und Profiling auf komplexere Energiesystemmodelle).
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Chapter 1

Introduction

In this thesis, a data-analytical approach is proposed to reduce the temporal complexity of
energy system models and therefore the complexity of models in general. The approach
can be divided into two complementary methods - CNR and profiling - that are described
and evaluated separately in two peer-reviewed publications: The identification paper and the
profiling paper. Within this thesis, these publications are merged into a coherent monograph
supplemented by theoretical foundations, in-depth analyses, and extended discussions. In
addition, the data basis is unified, and analyses are renewed in order to achieve improved
transferability and comparability. As major parts of the thesis are based on these publications,
explicit reference is made to the respective paper in the beginning of chapters and sections
concerned.

1.1 Background1

Energy system models based on optimization are a common tool for analyzing climate political
strategies and targets as well as deriving recommendations for action (e.g., system configura-
tions [74] and flexibility requirements [12]). To provide reliable results and allow comprehensive
analyses, models must represent the technical details of the energy system but at the same
time avoid high computational effort or infeasible problems. With the transformation of the
power system from conventional to green-house-gas emission free technologies the share
of intermittent renewable energies (iRES), such as photovoltaic (PV) and wind power, has
increased [55] and requires specific modeling in both temporal and spatial detail [42]. Time-
dependent systematic and stochastic patterns of iRES can be represented by time series that,
firstly, have a high time resolution to include hourly and daily fluctuations and, secondly, cover
multiple years to consider intra-annual fluctuations [47]. To take geographical dependencies
into account, for example, intra-country differences in the distribution and correlation of iRES
[22] as well as their annual generation potential [60], modeling on a regional or sub-country
level is needed. However, detailed energy system models with a high temporal and spatial
resolution are not always feasible due to limited computation resources [21] and require sim-
plifications without compromising the quality of the model and its results by losing relevant
information.

1This section is based on the profiling paper - Chapter 1 [40].
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14 1. Introduction

In the literature, the complexity and related simplification methods are split into three
categories: (1) technical dimension, (2) spatial dimension and (3) temporal dimension (see,
for example, [36, 42]). Technical relationships are already simplified in many existing models,
for example, to avoid non-linear constraints or binary variables (e.g., GENeSYS-MOD, [11],
default version of calliope [48], urbs [34]. An analysis of model capabilities indicates that
among other system components, the distribution grid, the demand and the technical flexibility
are insufficiently represented [54]. A comparison of spatial and temporal aggregation [21]
shows that for energy systems with a high share of iRES a reduction in temporal resolution is
preferable to a reduction in spatial resolution. The potential of temporal aggregation becomes
also evident in the high number of publications focusing on this topic (e.g.,[6, 36, 42, 47, 51]).
In addition, sector coupling, that is, the integration of the heating and mobility sectors (e.g.,
[5, 41]) becomes increasingly relevant in the modeling of future energy systems. Their demand
patterns can also be described by time series and suggest a comprehensive investigation of
time series and their aggregation possibilities in general.

1.2 State of research2

In the literature, four main approaches of time series aggregation (TSA) are discussed, see,
for example, [42, 47, 51]: downsampling (i.e., decreasing of temporal resolution, e.g., from
one to two hour time steps), heuristic (i.e., selecting (contiguous) days based on defined
criteria, e.g., maximum demand or wind power), clustering (i.e., selecting representative
(contiguous) days including a weighting factor), and optimization (i.e., selecting (contiguous)
days by minimizing an error indicator). Further, combinations of these four approaches (e.g.,
heuristic and clustering [47]) as well as more complex techniques are proposed such as directly
including TSA in energy system models by decomposition [6]. However, a comprehensive
analysis that compares up to 30+ TSA approaches, 25 years of time series input data, and three
model scenarios, shows that there is not a one-fits-all TSA approach [47]. The performance of
TSA depends on model scenarios (e.g., storage availability and system design, see also [36])
and the selected year of the time series. A closer look into clustering approaches indicates
that these are not always robust and that their performance does not monotonically improve
with the number of clusters but can have alternating patterns (e.g., [36, 42]).

Consequently, researchers and practitioners of complex energy system models face the
challenge of identifying TSA methods suitable for their models and data. A detailed comparison
of the TSA approaches comprising multiple years and scenarios is costly or not possible
depending on the model complexity. Hence, a pure time series based evaluation of TSA
approaches is favored. For example, Poncelet et al. [51] defined four indicators (e.g., normal-
ized root mean squared error) to measure the degree of representation of aggregated time
series. However, when comparing time series indicators and modeling results there is no strict
correlative relationship between them: A good representation of defined time series indicators
can result in poor model results and vice versa (see, e.g., [30, 36])3.

2This section is based on the identification paper - Chapter 1 [39] and the profiling paper - Chapter 1 [40].
3For a more in-depth description of the state of research in relation to TSA for energy system modeling, see

the profiling paper [40] - Chapter 2.



1.3. Motivational example 15

Figure 1.1: Resulting installed capacity of PV (scenario PV) and wind power (scenario WIND)
with the Pearson’s correlation between PV and the electricity demand and 15 % quantile of
wind as the respective selected time series parameter.

1.3 Motivational example

The following example visualizes the complex interaction of time series and models. The data
and model used are described in detail in Section 3.1. For now, we assume a one-node energy
system with an electricity demand and four power generation technologies: PV and wind power
as iRES as well as one flexible and one inflexible power plant. The energy system is described
by a linear optimization model including expansion and dispatch planning. The demand as well
as iRES are represented by annual time series (collectively referred to as time series bundle)
with an hourly time resolution for in total eleven years. We model three different scenarios
(i.e., PV, WIND, PV+WIND) to explore the impact of PV and wind power separately without
pre-installed power generation capacities.

For each scenario and each year we get the installed capacities for the four power gen-
eration technologies as respective modeling result. Exemplary, the installed capacity of PV
and wind power derived from the PV and WIND scenario is shown in Figure 1.1. In parallel,
an exploratory data analysis discovers two parameters. First, the correlation between PV
generation potential and electricity demand and second, the 15 % quantile of the wind time
series. When comparing these annual values (shown as line in Figure 1.1) to the installed
capacities of PV and wind power we find matching shapes, respectively. In other words, there
is a correlation between the detected time series parameters and modeling results.

In a next step, we transfer this knowledge to the selection of a representative year in a
very simplified way. Note, that this is equivalent to an aggregation of time series from eleven
years into a one-year time series. We assume that the two parameters are relevant to project
all capacities (including those of the flexible and inflexible power plant). For the PV and
WIND scenario the respective parameters are taken to measure the representativeness of the
annual time series bundle. For the PV+WIND scenario the parameters are summarized to one
parameter per year. Across all years the average is calculated and the normalized absolute
deviation of the annual parameter from the average is derived. The same procedure is done
for the resulting installed capacities. Thus, the closer the summarized time series parameter
or installed capacity is to zero, the more representative is the annual time series bundle or
modeling result. However, visualizing these values for each year in Figure 1.2 shows that there
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Figure 1.2: Comparing time series parameters and modeling results of three scenarios with
regard to their representativeness. The representativeness is defined as deviation from the
related mean.

is no clear link between parameters and model results. For example, in the PV and PV+WIND
scenario, the most representative time series (2006, x = 0) also have the most representative
result (y = 0). However, the second-best representative time series (2015, x = 0.29) leads to a
significant deviation (y = 0.4). Similar or less deviations of modeling results can be achieved
with lower representativeness of the time series parameters. For example, in the PV+WIND
scenario, the year 2009 is the second-worst representative year regarding the parameters (x =
0.87), however, it results in the second-best modeling results (y = 0.15). In addition, there is no
overall representative time series bundle. Rather, it depends on the scenario.

Combining the observations from the literature and the motivating example, two causes
may explain the observed missing link between parameters and model results: First, the
applied parameters do not represent (all) relevant time series characteristics, and second, the
applied parameters are of different relevance.

1.4 Contribution

So far, we do not know which information of a time series is relevant in the context of energy
system modeling that can also be used to measure the representativeness of time series.
However, the relevant information of time series must be understood before developing and
applying aggregation methods. A more systematic approach is required to better understand
the interaction between time series and energy system models to identify relevant time series
information that has to be included in aggregation and selection algorithms.

The following two research questions are derived in the thesis to close this gap:

RQ1: What are relevant time series information in the context of energy system
modeling?

The identification of relevant information is based on a comprehensive analysis of time series.
Various time series parameters are calculated to transfer the hidden information of a time series
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into several one-dimensional values. By deriving a large variety of time series (obtained, for
example, through aggregation and manipulation) a large data set of parameters and modeling
results and allows to make statements about the relevance of individual parameters. Therefore,
a mathematical model is developed based on clustering and nested regression (CNR). The
model and its evaluation are presented in detail in the identification paper: Feature Selection
for Energy System Modeling: Identification of Relevant Time Series Information [39].

RQ2: How can existing aggregation methods be extended to better represent relevant
time series information?

Based on the identified parameters aggregated time series can be adjusted to better reflect
the original information. Therefore, a profiling algorithm is developed that iteratively aligns
the information in terms of time series parameters of the aggregated time series with that
of the original time series. The performance of the profiling algorithm is independent of the
aggregated time series and can therefore be considered a reasonable extension for aggregation
approaches. The algorithm and its evaluation are presented in detail in the profiling paper:
Energy System Modeling with Aggregated Time Series: A Profiling Approach [40].

Answering these questions also contributes to a comprehensive understanding of time
series and their interaction with energy system models. Researchers and practitioners of energy
system models thus gain further evidence to interpret results from a data perspective. To this
end, the final discussion translates the findings on time series into a modeling recommendation
that includes sensitivity analyses based on time series as well as a statistical evaluation of
modeling results. Further possible applications, for example, the selection of representative
time series from a growing amount of data, and current limitations of the proposed identification
and profiling methods are discussed.

1.5 Outline

A brief overview of proposed method and resulting structure is given by Figure 1.3. The thesis
can be divide into three parts:

Part I: Introduction and theory

– Chapter 1 provides an introduction to the complexity reduction of energy system models.
– Chapter 2 introduces the theoretical fundamentals that form the basis for CNR and

profiling.

Part II: Method development

– Section 3.1 provides an overview of the underlying model and applied data.
– Section 3.2 describes the method of identifying relevant time series information (RQ1).
– Section 3.2 describes the profiling method based on identified time series information

(RQ2).
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Figure 1.3: Brief overview of the proposed method that can be divided into the theoretical
part (green), the method (blue) including the identification and profiling approach, and the
evaluation (orange).

Part III: Evaluation and transfer

– Chapter 4 provides the results of identified time series parameters as well as modeling
results of aggregated and profiled time series.

– Chapter 5 discusses, categorizes and transfers the results to further energy system
modeling challenges.

– Chapter 6 concludes the discussed findings.



Chapter 2

Theoretical background

This chapter presents the theoretical basics of data analysis (methods) needed for the holistic
understanding of both the identification of relevant time series parameters and the profiling of
time series. Therefore, a nomenclature for the methods valid within this framework is introduced.
Different terms and concepts of data analysis used in the literature are summarized in Section
2.1. Time series parameters and analyses that are relevant in this work are described in
Section 2.2. Approaches beyond this are only roughly outlined or reference is made to further
literature. In Section 2.3 and 2.4 the related fields of regression and feature selection are
described in more detail. Finally, Section 2.5 provides a brief overview of clustering analysis.

2.1 Terms and concepts of data analysis

Data analysis is a broad field that has developed over many hundreds of years ("[...] since
human life began" [73, p.4]). In its simplest form data analysis is based on collecting, docu-
menting and aggregating information to use it inter alia for decision-making processes (e.g.,
records and surveys as population census [3], fiscal and military matters [43]). In recent
years, the volume and complexity of data available has exponentially increased as well as
the technologies to store and process the data (e.g., [18, 53]). Some even say that "[...] we
are actually living in the data age" [26, p.1]. When applying classical statistical methods to
the now amounted data, "[...] analysts could bring computers to their “knees” [...]" [43, p.30].
Thus, new approaches to data analysis have been developed leading to new methods (e.g.,
clustering, classification) and terms (e.g., data mining, knowledge discovery) that are briefly
described in the following sections. A detailed description of terms and methods can be found
in [26, 43, 73].
The field of data analysis has rapidly developed in recent years. According to [43] five phases
of data analysis can be identified which are (1) the Classical Bayesian Statistics, (2) the Clas-
sical Parametric Statistics, (3) Machine Learning (4) Statistical Learning and (5) Distributed
Analytical Computing. As a result, the analysis of data has turned into an interdisciplinary field
dominated by statistic, machine learning (as a subset of artificial intelligence) and computer
science [4, 26, 53]. Moreover, depending on the discipline, new terms have been introduced in-
cluding data mining, knowledge extraction data analytics and knowledge discovery in databases
(KDD) or knowledge discovery from data. The definitions of these terms are similar but have a

19
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different focus derived from the perspective of the disciplines. However, the distinction between
the terms becomes increasingly blurred.

Data analysis, data mining and knowledge discovery

In 1996, Fayyad et al. [19] introduced definitions for both, data mining and KDD aiming, for a
unifying framework. KDD, as term often used by the machine learning community is defined
as "[...] the non-trivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data" [19, p.83]. The process is further described as interactive
and iterative procedure, which includes selection, preprocessing and transformation of data,
data mining as well as interpretation and evaluation of the mined results. Thus, data mining, as
term often used by statisticians and data analysts, "[...] is a step in the KDD process consisting
of applying data analysis and discovery algorithms that, under acceptable computational
efficiency limitations, produce a particular enumeration of patterns over the data [...]" [19, p.83].
However, these definitions of data mining and KDD are not established but are continuously
modified and extended. For example, data mining can be specified as an (semi-)automated
process [43] or KDD can include additional steps like data cleaning and data integration [26],
data exploration [43] or knowledge presentation [26]. Further data mining definitions clarify
the applied methods and the intention behind as "[t]he use of machine learning algorithms
to find faint patterns [...] in [...] data sets, which can lead to actions to increase benefit [...]"
[43, p.17]. Moreover, the term data mining has become a synonym for KDD [26]. Thus, data
mining is described as a process of discovering patterns that results in meaningful information
[26, 73]. As a result, the short term KDD is also translated with knowledge discovery and data
mining [43]. Further terms like data analytics are similar to the extended form of data mining.
In [53] the definition of data analytics emphasizes "[...] the application of computer systems to
the analysis of large data sets for the support of decisions" [53, p.2]. The process covers the
preparation, pre-processing, analysis, and post-processing of data.

In summary, different definitions can be found in the literature, that are rarely discussed in
the context of the general term data analysis. Within this thesis, the focus is on methods and
less on the process. Thus, data mining methods are considered as a part of data analysis. They
are particularly suitable for large amounts of data where patterns are to be discovered without
a specific target or hypothesis (see [4]). Thus, data mining methods have an exploratory focus
and are assigned here to the exploratory data analysis. In contrast, data analysis includes
further parts such as descriptive and confirmatory analysis (e.g., [2, 4, 67]). Tuckey [67] also
describes that for scientific and technical questions, the exploratory analysis forms a basis
for the confirmatory analysis by, among other things, deriving the questions and the design.
The data analysis approaches should therefore be combined rather than used separately. This
can be transferred to the descriptive analysis, which can be a supplement by creating a basic
understanding of the data.

Statistics and machine learning

Data analysis as an interdisciplinary field not only contains vague terms, the methods also
overlap. The disciplines involved in data analysis are defined differently in the literature and
include, for example, system theory [53], operation research [43] or data base systems [26].



2.1. Terms and concepts of data analysis 21

However, statistic and machine learning are named in almost all literature but the question
arises where statistics ends and machine learning begins.
Historically, statistics and machine learning have different origins. In simple terms, the focus
of statistics lied in hypothesis testing, whereas machine learning - having the perspective
from computer science or artificial intelligence in particular - concentrated on "[...] formulating
the process of generalization as a search through possible hypotheses" [73, p.28]. However,
different methods such as the classification and regression trees or the nearest-neighbor
methods for classification have been independently developed in both disciplines so that
statistical and machine learning methods have merged [73]. Methods such as regression
and classification include aspects of both and cannot be assigned unambiguously to just one
discipline. In other words "[...] between machine learning and statistics [...] there is a continuum
— and a multidimensional [line] — of data analysis [methods]" [73, p.28]. Considering the
continuum of statistics and machine learning the analysis methods presented in the following
sub-sections are divided by functionality and not by disciplines. To supplement this, a general
overview of statistics and machine learning is provided.
Statistics can be defined as science which applies and designs methods and models to collect,
prepare and analyze data [3]. The statistical methods can be divided into three parts:

1. The descriptive statistics includes the representation of data in tabular and graphical form
as well as the characterization of data as parameters, for example, mean and median
[3, 18].

2. The exploratory statistics supplements the descriptive statistics [3]. The purpose is
to discover new patterns or to generate new hypotheses. It is often applied when the
suitable statistical model is unknown [18].

3. The inferential or inductive statistics includes probability theory. By applying stochastic
models results derived from a data set are transferred to the population [18] under
consideration of uncertainty [3].

In [26] machine learning is described as discipline that "[...] investigates how computers can
learn (or improve their performance) based on data" [26, p.24]. Machine learning methods can
be divided into four parts:

1. The supervised learning that deals with labeled data [26]. The outcome for a training
data set is provided [73].

2. The unsupervised learning that only includes unlabeled data [26]. Thus, the outcome is
not included in the data set.

3. The semi-supervised learning that is a mix of both supervised and unsupervised learning
[26].

4. The active learning that involves the users [26].

Elements of data sets

So far, the focus has been on the analytical or methodological part of the term data analysis.
In the following part, a shared understanding of data or data sets and their terminology is
elaborated. "[A data set] is represented as a matrix of instances versus attributes [...]" [73, p.42].
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instances

8>><>>:
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x1;1 : : : x1;m
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. . . : : :

xn;1 : : : xn;m
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| {z }

attributes

In general, an instance is individual and independent from other instances in the data set
[73]. Other terms to describe the data points are, for example, observation, object, sample
or example [26, 53]. Instances are described by attributes [73] which can be nominal (also
named categorical, e.g., green, yellow), ordinal (e.g., small, medium, large) or numeric (also
named metric) [3, 26]. A data set including one attribute is named univariate. A bivariate or
multivariate data set includes two and more attributes, respectively [3, 26]. A univariate data set
is equivalent to a data vector and is labeled in this thesis with a small, bold letter, for example,
x . Correspondingly, a multivariate data set can be understood as a matrix and is labeled with a
large bold letter, for example, X. An observation i of an attribute j or other scalar values are
indicated with a small letter, for example, xi ;j . Further, data sets can be labeled or unlabeled.
Unlabeled data sets only consist of attributes, whereas labeled data sets include attributes and
the related outcome or class [26, 73]. Depending on the scope of application, synonyms for
attributes are features [26, 73], (known, independent, exogenous) variables [3, 26] or predictors
[27], whereas the outcome is also named response [27], (unknown, dependent, endogenous)
variable [3]. A spacial format of data sets are time series. The instances are depended as they
are recorded periodically or even equidistantly [62]. Within this thesis, only time series data
sets or data sets derived from time series are applied. The data is discussed in more detail in
the respective chapters.

2.2 Descriptive analysis

Various location and dispersion parameters can be calculated for univariate data, whereas
for a bivariate data set correlation parameters can be determined [14]. Selected parameters
relevant to this work are summarized from [3] and [14]. For a detailed description of descriptive
analysis [3] and [14] are recommended. Note: A time series analysis is not considered in this
thesis. Since a time series analysis seems obvious when using time series data, the relevance
of time series analysis for this thesis is classified in Appendix A and an overview with reference
to further literature is provided.

Location parameters

Location parameters represent the position of the entire data set or its distribution in com-
pressed form [3]. In the following, we assume a one-dimensional data set as vector x =

[x1; x2; :::xn]T with n observations of one attribute. The arithmetic mean (mean) value is
defined as:

x =
1

n

nX
i=1

xi (2.1)
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The arithmetic mean is sensitive to statistical outliers. By calculating the trimmed mean (tmean),
in which ¸ of the smallest and largest values are excluded, a robust mean value is obtained:

x¸ =
1

n − 2g

n−gX
i=1+g

xi (2.2)

with g = int(¸n). In addition, the geometric mean (gmean)

xg = n

vuut nY
i=1

xi (2.3)

or harmonic mean (hmean) can be determined

xh =
nPn
i=1

1
xi

(2.4)

Furthermore, quantiles such as the median, can be calculated. The general expression for an
¸ % quantile is:

x¸ = (1− f )xq + f xq+1 (2.5)

with q = int(¸(n + 1)) and f = f rac(¸(n + 1)). The median (Q50) for an even or uneven n
results in:

x50 = x̃ =
1

2
(x n

2
− x n

2
+1) or x̃ = x n

2
+1 (2.6)

Dispersion parameters

A visual overview of the scattering of parameters can be obtained using a histogram or boxplot.
The latter includes the visualization of the interquartile range (IQR) defined as difference
between the 25 % and 75 % quantile:

IQR = x75 − x25 (2.7)

The empirical or theoretical variance (var) and standard deviation (STD) can be included in
the histogram and are defined as:

varemp =
1

n

nX
i=1

(xi − x)2 or vartheor =
1

n − 1

nX
i=1

(xi − x)2 (2.8)

semp =
√
varemp or stheor =

√
vartheor (2.9)

Note, that the empirical variance as mean of squared distances is equivalent to the 2. moment.
The k-th moment is generally defined as:

mk =
1

n

nX
i=1

(xi − x)k (2.10)

The skewness (skew) (normalized 3. moment) and kurtosis (kurt) (normalized 4. moment)
describe the shape of the distribution:

skew =
1

n

Pn
i=1(xi − x)3

S3
(2.11)
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kurt =
1

n

Pn
i=1(xi − x)4

S4
(2.12)

If skew > 0, the distribution is right-skewed. With kurt−3 the kurtosis is normalized according
to the normal distribution (also called Fisher’s kurtosis or excess). If kurt > 3 (excess > 0)
the distribution is leptokurtic (higher peak). In addition to the mean of squared distances, the
mean absolute deviation (MAD) can be determined in relation to the median (or mean):

MAD =
1

n

nX
i=1

|xi − x̃ | (2.13)

Relation parameters

The description of a relation between two attributes can be divided into the type and strength
of the relation. However, linear measures are commonly used and, if necessary, non-linear
attributes are linearized by a transformation. Similar to the variance (Equation 2.8), the
covariance (cov) can be determined for bivariate data set X = [x; z] with x = [x1; x2; :::xn]T

and z = [z1; z2; :::zn]T :

sxz =
1

n

nX
i=1

(xi − x)(zi − z) (2.14)

By normalizing with the STD sx and sz we get the Pearson’s correlation (pcorr):

rxz =
sxz
sxsz

; −1 ≤ rxz ≤ 1 (2.15)

In addition, the Spearman’s correlation (scorr) and Kendall’s correlation (kcorr), which apply
to ordinal data and can therefore also be used for metric data, can be calculated. As values in
the data set can occur multiple times, ties need to be included. The scorr is defined as:

rs =

Pn
i=1[R(xi )− R(x)][R(zi )− R(z)]qPn

i=1[R(xi )− R(x)]2
Pn
i=1[R(zi )− R(z)]2

; −1 ≤ rs ≤ 1 (2.16)

with R(·) as list rank of sorted values and R(·) as arithmetic mean of rank numbers. The kcorr
is defined as:

rk =
P − Iq

(n(n−1)2 − T )(n(n−1)2 − U)
; −1 ≤ rk ≤ 1 (2.17)

with P as sum of proversion pairs (concordant pairs, R(zi ) < R(zj); i < j), I as sum of
inversion pairs (discordant, R(zi ) > R(zj); i < j) and T and U as length of ties of x and z.

2.3 Regression analysis1

Regression analysis can be considered as an extension of correlation analysis (see Equa-
tion 2.17), in which not only a correlation but also a causal direction is determined. When
multiple independent variables are used to describe a depended variable the regression is

1This section is partly based on the identification paper - Section 3.2 [39].
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specified as multivariate regression [3, 14]. In the following, we assume a matrix of independent
variables (also called feature matrix):

X =

2664
x1;1· · ·x1;m

...
. . .

...
xn;1· · ·xn;m

3775 (2.18)

and a vector as dependent variable

y = (y1; :::; yn)T (2.19)

that consist of i = 1; :::; n observations and j = 1; :::; m attributes, that are referred to as
features in the following. The associated linear regression model is:

yi = ˛0 +
mX
j=1

˛jxi j + ›i (2.20)

where ˛0 is the offset coefficient, vector ˛ = (˛1; :::˛m)T represents the coefficients and vector
› = (›1; :::›m)T is the error. Equation 2.20 can be transformed to the Ordinary Least Square
estimator (OLS estimator) to obtain the regression coefficients ˆ̨

OLS by minimizing the residual
sum of squares:

ˆ̨
OLS = arg min

(
nX
i=1

„
yi − ˛0 −

mX
j=1

˛jxi j

«2
)

(2.21)

An extended linear regression model is ridge regression as a shrinkage method introduced by
[28]. The shrinkage of coefficients is achieved by linking the coefficients with a penalty term of
L2 norm ‖˛‖2 =

P
j(˛j)

2 ≤ t . The resulted ridge estimate ˆ̨
R is:

ˆ̨
R = arg min

(
nX
i=1

„
yi − ˛0 −

mX
j=1

˛jxi j

«2
)
s:t
X
j

(˛j)
2 ≤ t

= arg min

(
nX
i=1

„
yi − ˛0 −

mX
j=1

˛jxi j

«2

+–
X
j

(˛j)
2

) (2.22)

where t ≥ 0 and – ≥ 0 are interrelated tuning parameters controlling the shrinkage.

Different criteria can be used to evaluate the regression model determined (see, e.g.,
[59]) and are usually included in the output of implemented statistical packages such python
statsmodels package [57]. The coefficient of determination (R2) indicates the proportion of
explained variance):

R2 =
s2ŷ
s2y

=

Pn
i=1(ŷi − y)2Pn
i=1(yi − y)2

(2.23)

where ŷ is the estimate of the regression model and y the average of y . The mean absolute
error (MAE) ca be defined as:

MAE =
1

n

nX
i=1

|ŷi − yi | (2.24)
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Further, the goodness of fit can be set in relation to the number of features m represented by
the Akaike’s Information Criterion (AIC):

AIC = log

„Pn
i=1 ŷi − y i

n

«
+
n + 2m

n
(2.25)

or the Bayesian Information Criterion (BIC):

BIC = log

„Pn
i=1 ŷi − y i

n

«
+
m log n

n
(2.26)

Besides model related criteria, the significance of an features is represented by the p-value (p)
using a two-tailed t-test.

2.4 Feature selection2

The OLS estimate ˆ̨
OLS (Equation 2.21) returns coefficients for all features, whereas the ridge

estimate ˆ̨
R (Equation 2.22) shrinks some coefficients but does not set them to zero. For

a large number of features whose relevance is not clear, the use of these estimates is not
useful. Instead, feature selection can be applied. "Feature selection can be defined as the
process of detecting the relevant features and discarding the irrelevant and redundant ones
with the goal of obtaining a subset of features that describes properly the given problem with a
minimum degradation of performance" [8, p.14]. Feature selection methods can be categorized
by two criteria (see [77]). Firstly, the methods are divided into three categories according
to their identification algorithm: filter models (e.g., Chi-Squared, Correlation-Based Feature
Selection [8]), wrapper models (e.g., Wrapper Subset Eval, see [8] and [25]) and embedded
models (e.g., Recursive Feature Elimination for Support Vector Machines, see [8] and [24]).
Methods involving a filter model focus on characteristics of features usually assuming that
they are independent and the evaluation of features does not include any learning algorithm
(classifier). As consequence, these methods are often fast, simple and easy to understand.
Both, wrappers and embedded methods, include a learning algorithm in the selection process
which is implemented separately or integrated. Unlike filters, wrapper and embedded methods
consider dependencies between features [8, 77]. Secondly, feature selection methods are
categorized by their outcome which is either an ordered ranking of all features (named feature
weighting algorithms [77], for example, correlation coefficient, multivariate methods, [43]) or a
subset of relevant features (named subset selection algorithm, for example, almost all wrappers
[77]). In contrast to feature weighting algorithms, subset selection approaches consider the
interaction between features and evaluate those in context of each other [23]. In the following,
three methods from the literature and applied within this thesis that are describes in more
detail: LASSO [65], LASSOLARS and ElasticNet [80]. These methods are derived from linear
regression and have been widely applied in the energy research field achieving improved
(prediction) results (e.g., [33, 35, 37, 79, 78])3.

2This section is based on the identification paper - Chapter 2 and Section 3.2 [39].
3For a more in-depth description of the state of research in relation to feature selection in the energy research

field, see the identification paper [39] - Chapter 2.
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LASSO and LASSOLARS

LASSO (least absolute shrinkage and selection operator ) is an embedded feature selection
method introduced by [65]. LASSO is based on linear regression and OLS estimate and
combines the advantage of general feature selection models (interpretability) and ridge re-
gression (stability). By replacing the L2 penalty term of Equation 2.22 by a L1 penalty term
‖˛‖1 =

P
j |˛j | ≤ t the coefficients of features with low benefit on RSS are set to zero. In

other words, features with non-zero coefficients present the selected feature subset [65]. The
resulted LASSO estimator ˆ̨

L represents a quadratic optimization problem with linear inequality
constraints and can be expressed as follows:

ˆ̨
L = arg min

(
nX
i=1

„
yi − ˛0 −

mX
j=1

˛jxi j

«2
)
s:t
X
j

|˛j | ≤ t

= arg min

(
nX
i=1

„
yi − ˛0 −

mX
j=1

˛jxi j

«2

+–
X
j

|˛j |
) (2.27)

With – = 0 (t → inf), Equation 2.27 represents the standard OLS estimator providing
coefficients for all features, whereas with –→ inf (t = 0) all coefficients are set to zero [65].
Although, LASSO is built on linear regression using the OLS estimator, the method is more
general and can be applied in other statistical models such as generalized regression models
or tree-based models as well [65]. Moreover, regarding to [68] the LASSO regression itself
can be considered as a generalization of a linear regression model. In practice, different
optimization algorithms are used to solve the LASSO estimator. In this thesis the python
scikit-klearn package [46] is used which applies – inter alia – the coordinate decent algorithm
and the Least Angle Regression (LARS) [15] (see also [27]). Both algorithms can involve cross
validation (CV) for selecting the best model by setting –. Note: The LASSO estimate in the
[46] is defined as:

ˆ̨
L∗ = arg min

(
1

2n

nX
i=1

„
yi −

mX
j=1

˛jxi j

«2

+–
X
j

|˛j |
)

(2.28)

with ȳ = ˛0 = 0. Corresponding to [27] there is no difference between using the factors 1
2n , 1

2

or 1, but it leads to different – and influences the comparability of different data set sizes.

Elastic Net

Empirical studies have shown that LASSO does not provide stable results when features are
highly correlated [27]. This behavior is improved by adding a L2 norm as second penalty term
on the regression coefficients of LASSO leading to the ElasticNet approach developed by [80].
As a result, ElasticNet combines both, LASSO and ridge regression and thus theirs strengths:
Removing features with low relevance (LASSO) and being more robust to correlated features
(ridge regression) [35, 80]. By adding the L2 norm to Equation 2.27, we get the ElasticNet
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estimate ˆ̨
E :

ˆ̨
E = arg min

(
nX
i=1

„
yi − ˛0 −

mX
j=1

˛jxi j

«2
)

s:t: ¸
X
j

|˛j |+ (1− ¸)
X
j

(˛j)
2 ≤ t

= arg min

(
nX
i=1

„
yi − ˛0 −

mX
j=1

˛jxi j

«2

+–

„
¸
X
j

|˛j |+ (1− ¸)
X
j

(˛j)
2
«)

(2.29)

where ¸ ∈ [0; 1] wights the the L1 and L2 penalty terms. With ¸ = 0 the ElasticNet estimate
becomes a LASSO estimate and ¸ = 1 leads to ridge regression. In the python scikit-klearn
package [46] the coordinate decent algorithm is used to solve the ElasticNet estimator. Like
LASSO, the algorithm can involve cross validation (CV) for selecting the best model by setting
–. Note: The ElasticNet estimate in the [46] is defined as:

ˆ̨
E∗ = arg min
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1

2n

nX
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„
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„
¸
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X
j

(˛j)
2
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Besides the factor 1
2n an additional term 1

2 is added for the L2 penalty. Corresponding to [69] this
improves the efficiency and intuitiveness of the soft-thresholding operator in the optimization.

2.5 Clustering analysis4

"Cluster analysis or simply clustering is the process of partitioning a set of data objects (or
observations) into subsets" [26, p.444]. The observations are grouped by maximizing the
similarity within a cluster and minimizing the similarity between clusters [26]. The distance
function dist(xi ; xj) is usually used to quantify similarity between to objects xi and xj [18].
Clustering analysis is applied on unlabeled data sets, thus, the intention is to discover classes
and find labels [26, 53]. Common clustering algorithms are, for example, partitioning methods
(e.g., k-means approach) and hierarchical methods (e.g., single-linkage approach) [26]. For
the following description of clustering, we can assume a (n x m) matrix:

XT = [x1; x2; :::xn] =

2664
x1;1 · · ·x1;n

...
. . .

...
xm;1· · ·xm;n

3775 (2.31)

4This section is partly based on the profiling paper - Section 3.2 [40] and is supplemented by [26] if not
specifically stated.
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k-means clustering

The k-means clustering approach uses the centroid of clusters to quantify the similarity within
a cluster and assigns observations xi to a cluster. The centroid xj of a cluster j can be defined
by the mean of the observations:

xj =
1

|Cj |
X
i∈Cj

xi (2.32)

where Cj is the set of observations of cluster j , |Cj | the number of observations and i an
observation in cluster |Cj |. The clusters are determined by minimizing the Euclidean distances
(or L2 norm, || · ||2 simplified to || · ||) between the observations xn and the centroid x across
all clusters C, thus, similarity within on cluster is maximized:

min
cX
j=1

X
i∈Cj

||xi − xj ||2 (2.33)

Equation 2.33 also represents the sum of squared error (SSE), which is used as an evaluation
criterion, for example, to identify an appropriate number of clusters.
The k-mean algorithm mainly consists of two steps: The (re)assignment of the observations to
a cluster and the (re)calculation of the centroids. In a first step c observations are randomly se-
lected. They each represent a cluster and serve as initial centroid. The remaining observations
are assigned to the most similar cluster according to Equation 2.33. When all observations are
assigned, the centroids are recalculated and the observations are reassigned. The iterative
process of reassignment and centroid recalculation continuous until the assignment is stable.
Note, in [18] an alternative algorithm is described that recalculates the centroid whenever an
object changes its cluster affiliation. Finally, the representative for each cluster can be derived
as centroid x∗j or closest to the centroid x∗∗j :

x∗j =
1

|Cj |
X
i∈Cj

xi ∨ x∗∗j = xi∗ ; i∗ = arg min
i∈Cj

˛̨̨˛̨̨
xi − x∗j

˛̨̨˛̨̨
(2.34)

In addition to k-means clustering, the k-medoid clustering should also be briefly mentioned. In
this method, the medoid xmj , i.e. an existing central object of a cluster, is used to calculate the
distance instead of the centroid. The absolute error criterion is used as the distance measure
dist(xi ; xmj ) =

˛̨̨˛̨̨
xi − xmj

˛̨̨˛̨̨
. This avoids the disadvantage of the k-means method of being

sensitive to outliers.

Hierarchical clustering

The hierarchical clustering can be either following the agglomerative (bottom-up) or divisive
(top-down) approach. With the agglomerative approach, each observation initially represents a
cluster. Step-by-step, most similar clusters are merged until all observations are in one cluster
or a termination criteria is fulfilled, for example, a pre-defined SSE. The divisive approach is
reversed, thus, in the beginning all observations are in one cluster and in each step a cluster is
split into sub-clusters. The process ends when all observations are in separate clusters or, as
before, a termination criterion is met.
To evaluate similarity different measures based on distance (linkage measures) or density and
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continuity can be applied. Common measures to define the distance between two clusters Ck
and Cl are the minimum distance (single linkage):

distmin(Ck ; Cl) = min
i∈Ck ;j∈Cl

||xi − xj || (2.35)

the average distance (average linkage):

distmin(Ck ; Cl) =
1

|Ck ||Cl |
X

i∈Ck ;j∈Cl

||xi − xj || (2.36)

or the Ward’s method [72] and described in [42, 53] that measures the increase of SSE (see
Equation 2.33) when two clusters are merged:

distmin(Ck ; Cl) =
|Ck | · |Cl |
|Ck |+ |Cl |

˛̨̨̨
˛̨
˛̨̨̨
˛̨ 1

|Ck |
X
i∈Ck

xi −
1

|Cl |
X
j∈Cl

xj

˛̨̨̨
˛̨
˛̨̨̨
˛̨
2

(2.37)

Besides the partitioning and hierarchical clustering, further approaches such as density-
based methods (for each observation or data point a minimum number of other data points
must exist within a defined radius) or grid-based method (as an extension of the other methods)
exists.



Chapter 3

Methodology

This chapter describes the methods developed and applied in this thesis. As CNR and profiling
are using the same energy system model and data basis, the model and data are presented in
the following section before the individual methods are described in more detail.

3.1 Underlying model and data1

Five requirements are derived from the literature findings and the motivating example described
in Section 1.2 and Section 1.3 for the underlying energy system model and data basis of this
thesis:

1. High modeling flexibility : Changes in time series characteristics affect modeling results,
which can be mitigate by restrictive constraints, for example, a defined minimum share of
iRES [47, 51] as well as a minimum capacity [51], maximum capacity [42] or maximum
energy generation [36] of selected power generation technologies. In the underlying
model, constraints that severely limit the solution space are omitted, allowing for extreme
model results (e.g., 0 % iRES). In addition, the utilized greenfield approach enables the
system to be reassembled by eliminating pre-installed technologies (e.g., [42]).

2. No energy storages: Energy storages are not considered in this model. Results in [47]
indicate a mitigating effect of storages on the scatter of modeling results. For example,
the installed capacity of wind offshore varies across 25 years between approx. 51 and
80 GW. By adding energy storages, the scatter is reduced to approx. 32 and 49 GW.

3. Unbundling of iRES: The focuses is on wind power and PV, as these technologies are
significantly expanded and account for a large share of iRES in the energy system
[44]. iRES are modeled separately to specifically understand the interaction between
individual time series and the energy system model. The findings from simplified models
are applied to a complex model to demonstrate their transferability. Thus, three energy
system scenarios are derived to model PV and wind power separately (scenario PV and
WIND) and in interaction (scenario PV+WIND). Consistent with (1) and (2), a single-node
model is optimized to exclude countervailing effects between regions with the respective
iRES.

1This section is based on the profiling paper - Section 3.1 [40].
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4. Modeling multiple years: Time series of eleven years (2006-2016) are used. Results
in [47] show high variability of optimized costs (LCOE) depending on the selected TSA
approach and year. For example, the costs deviations for k-means (5 days, closest)
varies between approx. –60 % (2011) and +40 % (2010).

5. Installed capacity as modeling criteria: Aggregated time series are compared using
installed capacities instead of costs. Firstly, costs can be recalculated by splitting the
optimization problem into expansion and dispatch planning (e.g., [6, 51, 63]). Secondly,
aggregated time series resulting in low cost deviations can have high differences in sys-
tem configuration. For example, in [47] the optimized costs (LCOE) of a TSA approach
combining heuristic and k-means (ten days, closest) deviates by -0.2 %, whereas the
installed capacity of wind power deviates by -10.6 %. Thus, similar system configura-
tions lead to similar costs, whereas similar costs can be derived by different system
configurations.

For modeling the energy system according to the described requirements, the linear
optimization model urbs [34] is used. The open-source model combines unit commitment
and expansion planning for multi-commodity energy systems and is written in python using
pyomo as optimization modeling language. The optimization is composed of an objective
function minimizing the total system costs and linear constraints reflecting technical, economic,
and political interrelationships and restrictions. The standard form of a linear programming
problems is:

min cTx

subject to :

Ax = b; x ≥ 0

(3.1)

where cTx describes the objective function and Ax = b represents the constraints of the
model. The vector x is the variable of the model and includes the installed capacities of the four
power generation technologies as the central result for this thesis. A schematic overview of the
considered power system is shown in Figure 3.1. Besides PV and wind power as iRES, one
peak-load power plant (flexible, FPP) and one base-load power plant (inert, IPP) are modeled.

The time series for the electricity demand [16] and power generation potential from PV and
wind power [49] are selected for Germany comprising the years 2006 to 2016. The electricity
demand is described by absolute values (unit MW), whereas the generation potential of iRES
is represented by normalized values (unit MW / MWinst ). To build the energy system model
further input parameters, for example investment costs and efficiencies are needed. The values
of these parameters, shown in Table 3.1, are derived from [52] aiming for a significant solution
space. This is characterized by an expansion of all technologies when using the original time
series as model input. Thus, changing characteristics of the aggregated time series can result
in extreme system configurations of both directions (e.g., one technology is not considered or
double represented) and thus, become analyzable.
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Figure 3.1: The energy system model including PV (orange), wind power (blue), a (flexible)
peak-load power plant (FPP, green) and an inert base-load power plant (FPP, gray) to meet
the electricity demand (dark gray).

Table 3.1: Input parameter for the optimization model urbs, which are derived from [52] for PV,
wind power, FPP, and IPP.

PV Wind power FPP IPP

Costs

Investment EUR/MW 1,000,000 1,300,000 700,000 4,500,000

Fixed EUR/MW/a 10,000 26,000 21,000 270,000

Variable EUR/MWh - - 4 5

Operation EUR/MWh - - 60 5

technical

Efficiency % - - 60 37

Must run % - - 25 80



34 3. Methodology

3.2 Identification of relevant time series parameters2

The presented method for identifying relevant time series parameters is based on the hypothesis
that, in accordance with information theory [58], time series can be interpreted as information
carriers with low information density. The information is implicit and needs to be converted
into time series parameters. It is also assumed that these parameters explain the result of the
energy system model. Thus, feature selection can be applied to identify relevant parameters
and eliminate irrelevant ones.

In the energy field, feature selection methods are usually applied to improve the perfor-
mance of prediction models (see also [71]), for example, for energy demand (e.g., [13, 17, 61,
76]), energy prices (e.g., [1, 37, 68]) or energy generation – in particular from wind sources
(e.g., [20, 45, 75]) and solar sources (e.g. [33, 50]). These applications have in common that
feature selection and the final (prediction) model base on the same data and that selected fea-
tures serve as direct input for the final model3. However, this does not apply to the application
in this thesis so that other requirements are placed on feature selection.

Note: In the following time series parameters are referred to as features and the modeling
results as response.

3.2.1 Requirements

Five challenges for the feature selection can be derived from the application of time series
aggregation or, more precisely, the profiling of aggregated time series:

1. The feature selection and the final profiling are only indirectly linked by the energy system
model and selected (or identified) features.

2. The feature selection and the profiling do not build on the same database.
3. The number of selected features must be limited as the time series aggregation and

profiling is more complex.
4. The complexity of the profiling method depends not only on the number of features but

also on the feature itself.
5. Due to the complexity in (3) and (4) the "best" selected features can be infeasible and

rejected by the profiling method and another feature subset or a reduced subset needs
to be applied.

Thus, not only identifying relevant features is essential but also a deeper understanding of
the effect of removing single features from a feature subset afterwards. So far, existing feature
selection methods do not cover all requirements. For example, filter methods provide a ranking
of features but exclude feature dependencies. Wrappers and embedded methods usually
provide a subset of features. However, the number of selected features can only be set indirectly
and therefore iteratively by model settings (e.g., LASSO, where the – parameter controls the
penalty strengths and thus the shrinkage of the features [78]). Moreover, the evaluation of a
selected feature subset including subsequent elimination of features or alternative feature sets
is expensive for the same reason.

2This section is based on the identification paper - Chapter 2, Section 3.1 and Section 3.3 [39].
3For a more in-depth description of the state of research in relation to feature selection in the energy field, see

the identification paper [39] - Chapter 2.
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3.2.2 Database

To apply feature selection, the required extensive database is derived from the eleven original
time series bundles (i.e., electricity demand, PV and wind power generation potential) and
an energy system model, both described in Section 3.1. The database includes two parts,
which are time series parameters summarized in a feature matrix X and the modeling results
represented by the response y. The relation between features X and model responses y is
given as y = f (X), whereas each time series bundle represent one observation. With n =
11 observations the database is not meaningful. Thus, the time series bundle is transformed
by manipulating the time series bundle (e.g., shifting time series against each other) and by
aggregating time series by methods such us clustering and downsampling. This results in
different time series characteristics leading to a different modeling result. Overall 9000+ time
series bundles are received.

In addition to the time series of the bundle, further time series can be constructed in the
form of the residual load. This allows to analyze the interdependence of time series not only by
parameters such as correlation but also by calculating location and dispersion parameters of
the residual load. Due to an unknown energy system in terms of installed capacity, we can only
approximate the residual load by transforming the electricity demand into normalized values
using the overall maximum.

Thus, two pre-processing steps are performed before calculating various time series
parameters: First, the time series as vector zi are normalized by their inter-maximum value of
the original time series. As the generation potential of iRES is already normalized the following
equation only applies for the electricity demand (dem):

zi =
zi

maxt∈T;y∈Y (zi ;y ;t)
with i ∈ [dem]; Y = {2006; :::; 2016}; T = {1; :::; 8760} (3.2)

Second, the residual load (res) for the PV and Wind scenario s (see Section 3.1) is calculated
by subtracting the respective generation potential of iRES from the normalized electricity
demand:

zres = zdem −
X
i

zi with i ∈ iRES(s); s ∈ {PV;W ind} (3.3)

For each extended time series bundle 170+ features are calculated using the descriptive
parameters described in Section 2.2 and parameters re-calculated with each other (e.g., IQR
relative to the mean). Furthermore, additional time series parameters are derived, for example,
when calculating extreme values of a time series the related value of other time series are
considered:

t∗ = arg max
t∈T

(z i ;t) ∨ t∗ = arg min
t∈T

(z i ;t) (3.4)

x∗i = z i ;t∗ ∀ i ∈ {dem; iRES; res} (3.5)

The overall feature matrix X has a dimension of n > 9000 and m > 170. Finally, features
are normalized by applying the min-max-scaler:

xj =
xj −min(xj)

max(xj)−min(xj)
(3.6)
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where xj = (x1;j ; :::; xn;j)
T is the vector of feature j with n observations. A visual overview of

the all features is provided in Appendix B
The response y is calculated by the energy system model urbs using the 9000+ time series

bundles as input data. For the PV and Wind scenario we receive the installed capacity for
the FPP, the IPP and the included iRES. More precisely, the received response is a matrix.
Thus, feature selection is performed three times for each scenario with the modeling result of
individual installed capacity as response.

3.2.3 CNR algorithm

The proposed method CNR is based on linear regression and involves clustering to handle
correlated data and nested modeling to link sub-models. These method components form the
name of CNR as clustering and nested based regression. The algorithm of CNR includes two
sections: (1) pre-feature selection to screen the features and speed up the algorithm, and (2)
in-depth feature selection with a detailed procedure to receive the final results. Both parts
involve clustering and nested modeling. In the following, the clustering and nested modeling
approach is described first. Afterwards, the algorithm of both, the pre-feature and in-depth
feature selection, and the respective evaluation are described.

Clustering

Starting point of the clustering are the initial features F or a subset of selected features F ∗ ⊆ F .
The feature matrix X is filtered by the selected features F ∗. The remaining features X∗ are
clustered into c groups by applying the k-means algorithm (TimeSeriesKMeans [64]) using the
Euclidean distance to measure the similarity (or disparity) of the features (see Section 2.5).
Figure 3.2 shows an excerpt from the clustered features with the observations on the x-axis
and the time series parameter value on the y-axis.

Nested regression

The nested regression approach allows the evaluation of features and feature subsets based
on the performance of their regression models. The starting point is a parent regression model
that contains a defined maximum number of features. The regression is conducted and a
performance index PI of the model is calculated (see Equation 3.7). By excluding iteratively
one feature from the model, feature subsets as children are generated and the regression as
well as the performance calculation are repeated.

Example 4.1
Figure 3.3 provides a simple example of three features F = {a; b; c} that form the
parent model. The resulting performance of the model is assumed to be PI(a;b;c) = 5.
In the first iteration, three sub-model combinations are derived, that are (b; c), (a; c) and
(a; b). The resulted performances are assumed to be PI(b;c) = 3, PI(a;c) = 4:5 and
PI(a;b) = 4, respectively. In the second and last iteration, we receive three sub-models
including only a single feature a, b and c . The performance of the models is assumed
to be PIc = 2, PIb = 2:5 and PIa = 3.
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Figure 3.2: Excerpt from clustered features including the cluster centroid (red) with the obser-
vations on the x-axis and the time series parameter value on the y-axis.

Nested feature sub-models

Parent model of three features 

Performance: 5

Performance: 3

�, �

Performance: 4.5

�, �

Performance: 4

�, �

Performance: 2 Performance: 2.5 Performance: 3

� � �

�, �, �

Figure 3.3: Example of the nested modeling approach for a starting model of three features
and three derived sub-model combinations. By comparing the performances the significance
of excluded features is determined.
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In a next step, the excluded features are evaluated based on the performance change
∆PI, respectively. The performance change can be interpreted as significance of the feature
described by a significance index (SI). As the previous example shows, individual parameters
are excluded several times so that an average value is ultimately determined (see Equation 3.8).

Example 4.2
By excluding feature a from the parent model, the model performance decreased
by ∆PI(a;b;c)\a = ∆PI(a;b;c) − ∆PI(b;c) = 2 indicating that feature a is significant.
However, removing feature b the model performance decreases by ∆PI(a;b;c)\b = 0:5

indicating a low significance. The average significance of a results in SIa = ∆PIa =
1
3((5− 3) + (4:5− 2) + (4− 2:5)) = 2.

Besides single features, feature subsets are evaluated in a similar way (see Equation 3.9).
Thereby, the performance of a model is compared with the performance of its sub-models that
together form a coherent nested model combination.

Example 4.3
Overall, six coherent nested model combination can be derived in reverse order and
evaluated by an average performance:

1. (c)→ (b; c)→ (a; b; c): 2+3+5
3 = 10

3

2. (b)→ (b; c)→ (a; b; c): 2:5+3+5
3 = 10:5

3

3. (c)→ (a; c)→ (a; b; c): 2+4:5+5
3 = 11:5

3

4. (a)→ (a; c)→ (a; b; c): 3+4:5+5
3 = 12:5

3

5. (b)→ (a; b)→ (a; b; c): 2:5+4+5
3 = 11:5

3

6. (a)→ (a; b)→ (a; b; c): 3+4+5
3 = 12

3

Thus, the 4. coherent model combination is the best result with the features and feature
subsets ordered by the relevance.

The implemented interaction of clustering and nested modeling is shown in Figure 3.4. The
considered features F ∗ are clustered into c groups. Thus, the number of clusters defines the
size of the parent model that is s = c . All feature combinations cc are calculated by selecting
one feature from each cluster. For each parent model, the regression is performed and the
performance PI is calculated. The regression model applied is a multivariate, linear regression
model using Generalized Least Squares (GLS) to estimate the model coefficients. Therefore,
the GLS algorithm of statsmodels [57] is implemented. For T top models fulfilling a defined
performance threshold the sub-models are derived. As before, the regression is performed
for each (sub-feature) combination cc . Based on the (sub-model) performance PI, the best T
models are selected, and their sub-models are derived. This process continues until the last
regression of models with size s = 1 (one feature). In the end, the nested modeling results are
summarized and evaluated.

The evaluation is derived from the law of parsimony, also known as Ockham’s razor
(see [31]). According to [7, 38, 56] the evaluation of model fit, especially when comparing
nested models, should be based on several performance indices simultaneously. Thus, the
performance index PI consists of five criteria of model fit representing significance, accuracy
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Figure 3.4: Schematic overview of nested modeling. After cc combinations of c clustered
features are calculated, suitable models are selected and their subset combinations derived.
The procedure is repeated until the combinations contain only one feature.

and information content: The coefficient of determination R2, the feature significance (p), the
AIC and BIC as well as the MAE based on the test and train data set (see Section 2.3). The
MAE is of particular importance, as this value allows a comparison with modeling results in a
later analysis of Section 4.3. The performance index PIm for a model with a specific feature
subset is a standardized value which is defined by the following equation:

PIm =
R2
m

maxR2
+

pm
max p

+
AICm

maxAIC
+

BICm
maxBIC

+

2
MAEm

maxMAE

(3.7)

where the model m is defined by its size s and feature subset combination cc . The significance
SIj of feature j calculated as follows:

SIj =
1

e

eX
i=1

OPR

„
PIm(i) − PI ˜m(i)

«
(3.8)

with

m̃ ⊂ m
j ∈ m; j =∈ m̃

where m̃ is a nested model of m and e describes how often the feature j is eliminated
from a model. Four different operators OPR are implemented which are the max operator
(select highest significance), the median operator (select median significance), the mean
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operator (calculate the mean significance), and the quantile operator (select defined quantile
significance).

The best coherent nested models are determined from size s = 2 up to s = c . Therefore,
for all (sub-) models the best coherent model combinations are selected that fulfills the following
criteria:

max
1

s∗ − 2

s∗X
i=2

PIm(s;cc(i)) (3.9)

with

∀i ∈ [2; s∗ − 1] : m̃(i ; cc(i)) ⊂ m(i + 1; cc(i + 1))

PIm ≥ PIm̃
AICm < AICm̃

BICm < BICm̃

MAEm ≤ MAEm̃
rankm ≤ i · RL

where m̃ is a nested model of m defined by model size i and associated feature combination
cc(i) and s∗ ≤ c the model size fulfilling the criteria. PI, AIC, BIC, MAE are derived model
criteria, rank is the position of a model compared to models of same size and RL the rank
limit. [56] provides a table of recommendations for selected model evaluation criteria which
are applied for AIC and transferred to BIC: As soon as the value does not improve when the
model is extended by a feature, the chain of models is no longer continued. The PI is an
aggregated criterion, thus, the evaluation is derived from AIC but relaxed (≤). Additionally, the
MAE is included as this criterion is most relevant for the subsequent profiling application. Like
PI, the evaluation is relaxed. The rank limitation RL is introduced to improve the speed of the
algorithm following the assumption that the worse the PI of a model is compared to others, the
less likely it is to be part of an appropriate nested model chain.

Pre-feature selection

The pre-feature selection aims to reduce the number of features with reasonable effort but
without affecting the significance of the nested modeling. Thus, a heuristic framework is built
around the nested modeling and a feature assessment is added. Figure 3.5 gives an overview
of the pre-feature selection algorithm. Starting point is a list of all features F . The features are
clustered into c groups. One feature out of each cluster is selected randomly and passed to
the nested modeling. The random selection of features and the nested modeling are repeated
R times. Afterwards, the nested model results are evaluated, and the significance indices
SI of the features is derived (see Equation 3.8). One or multiple features having the lowest
significance indices are removed from the feature list. The process is repeated until the number
of selected features f ∗ undercuts the abort criterion L.

In-depth feature selection

The in-depth feature selection aims to identify relevant features, feature subsets as well as
nested feature subsets used for time series profiling applications. Figure 3.6 gives an overview
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Figure 3.5: Schematic overview of the pre-feature selection process including clustering and
nested modeling. Randomly, features from different clusters are combined and evaluated
based on their nested modeling results.

of the feature selection algorithm. Starting point is a list with all features F . Based on the
pre-feature selection non-meaningful features are removed and the remaining features f ∗ are
clustered and passed to the nested modeling. Similar to the pre-feature selection, the nested
modeling results are evaluated, and the significance SI of the features is derived. Optionally,
the best coherent nested models are determined (see Equation 3.9).

3.3 Profiling of aggregated time series4

Within the profiling, findings from the CNR are translated into an iterative algorithm that is
applied to already aggregated time series aiming for a better representation of the relevant
information of original time series. Therefore, the profiling algorithm supplements existing
aggregation methods. In this section, the selected and applied aggregation methods are
described first before the developed profiling algorithm is presented.

4This section is based on the profiling paper - Section 3.2 and 3.3 [39].
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Figure 3.6: Schematic overview of the in-depth feature selection process including clustering
and nested modeling. All feature combinations are modeled, and based on the results, features
as well as the feature subsets are evaluated.

3.3.1 Time series aggregation

Two simple to implement and commonly applied TSA approaches (similar to [47]) are selected
from literature: Clustering as well as a combined method of heuristic and clustering. In addition
to profiling algorithm, aggregated time series are also used as data input for the CNR to identify
relevant time series parameter (see Section 3.2.2). Contrary to the publication [40], a third TSA
method, downsampling, is not applied in this thesis due to limited comparability in terms of
aggregation potential: To achieve a reduction as through clustering, the temporal resolution of
the original time series would have to be reduced by a factor of 18 to 60. This corresponds
to an averaging of three-quarters of a day to 2.5 days. Intraday characteristics would be lost,
which would lead to poor modeling results.

Clustering

Two clustering algorithms – k-means and hierarchical clustering using Ward’s method – are
selected with either the centroid or the closest as daily representative (see Section 2.5).
Additional, representatives are weighted individually or uniformly resulting in eight clustering
variants, whereby the unweighted time series is only used for the identification of relevant time
series parameters. For this purpose, aggregated time series are determined based on one to
50 clusters. For the actual profiling application and evaluation the number of clusters is six to
20. A lower number of clusters are excluded from the analysis as they lead to high outliers,
which would not allow a conclusive evaluation.

In a first step, the annual electricity demand time series zdem are normalized by their
maximum value across all considered years y and time steps t to allow valid clustering results
(see Equation 3.2). In a second step, the normalized time series zi 5 of one year are transformed

5To improve comprehensibility, the normalized time series is not specifically labeled below.
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to one (n x m) matrix X, with n = d as the number of days (365) and m as the total number of
time steps (24 hours for each time series i ), here exemplary with i ∈ {dem; PV }:

zi →

2664
zi ;1 · · ·zi ;(d−1)·24+1

...
. . .

...
zi ;24· · · zi ;d ·24

3775 =

2664
xi ;1;1 · · · xi ;1;d

...
. . .

...
xi ;1;24· · ·xi ;24;d

3775 = Xi (3.10)

XT = [x1; x2; :::xd ] =

2664
x1;1 · · ·x1;d

...
. . .

...
xm;1· · ·xm;d

3775 =

266666666664

zdem;1 · · · zdem;(d−1)·24+1
...

...
...

zdem;24 · · · z1;d ·24
zPV;1 · · · zPV;(d−1)·24+1

...
...

...
zPV;24 · · · zPV;d ·24

377777777775
(3.11)

In the third step, the clustering algorithm is applied on the normalized and transformed time
series X by minimizing the distances across all clusters c (see Equation 2.33 and 2.37) using
KMeans from scipy [70] and clusterhierarchy from scikit-learn [46]. In the forth step, the
representative for each cluster j is derived as centroid x∗j or closest to the centroid x∗∗j (see
Equation 2.34). Afterwards, the weighting factor of a cluster is calculated based on the number
of days in the cluster |Cj | and the total number of days d . Alternatively, clusters are equally
weighted:

wc =
d

|Cj |
∨ wc =

d

c
(3.12)

In the last step, the representatives x∗j (or x∗∗j ) are split into single time series z∗i ;j with
i ∈ {dem; iRES} to be re-scaled by their average values derived from the original time series
zi :

ezi ;j = z∗i ;j · ffi (3.13)

with:

ffi =

P
t∈T zi ;t
d

cPc
j=1

P
t∈TCj

wjzi ;j;t
(3.14)

The rescaled values ezi ;j are re-transformed into single time series ezi with c × 24h time steps
each:

ezi =

0BB@
ezi ;1

...ezi ;c
1CCA (3.15)

Combined heuristic and clustering

The general procedure of the combined method is similar to the clustering approach. Between
step (1) and step (2) the selection of extreme days from D is added, which are the days with
the daily minimum and maximum (average) electricity load and iRES, respectively:
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zmini;j = arg min
j∈D

(Xi ) (3.16)

zmaxi;j = arg max
j∈D

(Xi ) (3.17)

with:

Xi = [xi ;1; xi ;2; :::; xi ;d ] ∀ i ∈ {dem; iRES} (3.18)

The selected days represent single clusters with wc = 1 and are excluded from the
subsequent clustering.

3.3.2 Profiling algorithm

Profiling selectively adjusts aggregated time series to improve the representation of relevant
time series characteristics. The basis for its development are the identified relevant time series
parameters that are integrated by deriving specific adjustment algorithms. Single or multiple
values of the aggregated time series are modified to achieve a better representation of the
relevant characteristics of original time series. Thereby, an improvement of one time series
parameter cannot be achieved without effecting other parameters (see, e.g., [51]). For this
reason, profiling is performed iteratively and ends (at the latest) when the improvement of
all considered time series parameters converges or their deviations are below predefined
thresholds.

As shown in Figure 3.7, the profiling approach can be split into three consecutive steps,
which are the adjustment of correlation, single values and average values. In the following, the
calculations in each step are described – and when useful – exemplary for two normalized
original time series zi and two normalized profiled time series ẑi with i ∈ {dem; PV }.

Correlations

The correlation between two time series zdem and zPV is adjusted by shifting one time series.
As shown in Figure 3.7a, single data points are not affected but the relations to each other
(for example, residual load). The shifted time series constellation with the smallest correlation
deviation is selected. The correlation error CE between two normalized original time series
zdem and zPV with t ∈ T time steps and two normalized profiled time series bzdem and bzPV with
t ∈ T̂ time steps is used to derive the required shifting factor s:

s∗PV = arg min
s∈{1;:::;|T̂−1}

|CEdem;PV;s | = |rdem;PV − brdem;PV;s | (3.19)

with:

brdem;PV;s =

P
t∈bT (bzdem;t − ẑdem)(bzPV;t+s − ẑPV )qP

t∈bT (bzdem;t − ẑdem)
P
t∈bTs (bzPV;t+s − ẑPV )
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Figure 3.7: Graphical representation of profiling including the fitting of (a) correlation, (b) single
values, and (c) average values using the normalized duration curve.

Single values

To reset single values of a time series, the time step t of an extreme value j is determined for
both, the profiled time series bzi and original time series zi .

bt∗i ;j = arg min
t∈bT (bzi ;t) ∨ bt∗i ;j = arg max

t∈bT (bzi ;t) (3.20)

t∗i ;j = arg min
t∈T

(zi ;t) ∨ t∗i ;j = arg max
t∈T

(zi ;t) (3.21)

As shown in Figure 3.7b, the corresponding values for all aggregated time series are replaced
by those of the original time series:

bzi ;bt∗i ;j = zi ;t∗i ;j ∀ i ∈ {dem; PV } (3.22)

The time steps bt∗i ;j are added to a set of blocked time steps bB and cannot be changed within
the recalculation of average values. At the end of this profiling step, bB includes all (unique)
time steps of extreme values e:

bB = {bt∗dem;1; :::; bt∗dem;e ; bt∗PV;1; :::; bt∗PV;e} (3.23)
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Multiple values

The remaining time steps of the time series bzi are adjusted to correspond to parameters
of multiple values, for example, the variance (var). Further, for quantiles, it is not sufficient
to adjust only one time series value. Rather, the values around the quantile must be taken
into account. Therefore, the duration curve is roughly adjusted before relevant quantiles are
modified in more detail. Therefore, the time series are reordered and the resulting duration
curves “i and b“i (see Figure 3.7c) are re-indexed with t ′ ∈ T ′ and bt ′ ∈ bT ′ as well as the blocked
time steps bB′. As the adjustment of duration curves and average values can be derived from
that of the quantiles, the generalized formulas are presented in the following. The set of all
considered quantiles is defined as:

q ∈ Q =

(
fi

| bT ′| ; 2fi

| bT ′| ; :::
)

(3.24)

For the adjustment of duration curves, the granularity factor is set to fi = 1, thus, each time
step represents a single quantile. For specific quantiles, fi can be increased, for example, the
5 % quantiles is obtained by fi = 0:05| bT ′| or the set can be determined explicitly, for example,
Q = {0:35}. For each quantile, time sets can be derived for the aggregated and original
duration curve: bT ′′q =

n
(q − ‹)| bT ′| < bt ′ ≤ (q + ‹)| bT ′|o ⊂ bT ′ (3.25)

T ′′q =

(
1 +
|T ′|
| bT ′|

“
min

“ bT ′′q ”− 1
”
≤ t ′ ≤ |T

′|
| bT ′|

“
max

“ bT ′′q ”− 1
”)
⊂ T ′ (3.26)

The step size ‹ results from the quantiles (or the granularity factor fi ):

‹ =
qi − qi−1

2
=

fi

| bT ′| (3.27)

The values of the duration curve b“i ;t are determined similar to the recalculation of the average
value in Equation 3.13 and 3.14. The time steps of the profiled time series are equally weighting
with bwq =

|T ′′q |
|bT ′′q | : b“i ;t = b“i ;tffi ;q ∀ t ∈ bT ′′q \ bB′ (3.28)

with:

ffi ;q =

P
t∈T ′′q “i ;t − bwqPt∈bB′∩bT ′′q b“i ;tbwqPt∈bT ′′q \bB′ b“i ;t (3.29)

The equations to recalculate the duration curve and the total average can be derived and
simplified from Equation 3.24 - 3.29. The derivation is described in Appendix C. The adjustment
of the time series values according to the duration curve is simplified to:

b“i ;bt ′ =
| bT ′|
|T ′|

|T ′|
|bT ′| tX

t=1+
|T ′|
|bT ′| (t−1)

“i ;t ∀ bt ′ ∈ bT ′′q \ bB′ (3.30)
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The alignment of the total average values results with bw = |T ′|bT ′ to:

b“i ;bt ′ =

P
t∈T ′ “i ;t − bwP

t∈bB′ b“i ;tbwP
t∈bT ′\bB′ b“i ;t b“i ;bt ′ ∀ bt ′ ∈ bT ′\ bB′ (3.31)

Finally, the duration curves “i and b“i are transferred back to the time series zi and bzi using the
original time index t ∈ Tand bt ∈ bT . The adjustments – correlation, single values, and average
values – are repeated until a termination criterion is met. Individual sections of the profiling are
skipped for one or more time series, if the respective deviation is below a defined threshold.





Chapter 4

Results

The results section can be divided into four parts: In the first section, an exploratory data
analysis provides insights into the original time series used. The second section presents the
results of CNR and the identified parameters. The third section presents the modeling results
of all time series before finally comparing the aggregated and profiled time series in the fourth
section.

4.1 Exploratory data analysis

As described in Section 3.2.2, the bundle of three normalized time series (electricity demand
and generation potential of PV and wind power) from eleven years (2006-2016) is extended
by three additional time series that describe the residual load (see Equation 3.3). Thus, a
total of 66 time series are explored below using descriptive parameters to provide a basic
understanding of the data and the parameter used in CNR.

4.1.1 Time series parameters

Figure 4.1 provides a first overview of the time series including the main location and dispersion
parameters. The values of the original time series are shown in the first row of sub-figures
and the values of the residual loads in relation to both iRES (Residual iRES) and separately
for each (Residual PV and Residual Wind) are shown in the second row. For each year, the
single values as normalized power are visualized in the form of scatters. Note, that each
sub-figure has individual y-axis values, that might distort the comparison of different time
series. However, as the time series have different patterns (e.g., the demand has a minimum
relative power of around 0.4 MW/MWmax , PV and wind power have zero values, and the
residual negative values) different y-axes enable improved visual analysis. This applies for all
figures within this section. The box plot of each scatter plot shows the IQR (25 % and 75 %
quantiles), the mean and the median as well as the whiskers with a maximum length of 1.5xIQR
and outliers. Together, these values give a first indication of the distribution. For example,
the PV time series show a significant difference between the median and mean (0 < 0.125),
which indicates a right-skewed distribution. This conclusion is supported by the asymmetrical
length of the whiskers (lower < upper) and the outliers in positive direction. Despite similar
characteristics, small difference can be observed for each time series across the years. For
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Figure 4.1: Box plot including mean and median values for the original time series as well as
recalculated residual loads.

example, the demand time series have similar patterns in terms of overlapping mean and
median and missing outliers. However, the exact mean or median values differ as well as the
IQR and whiskers. In the following analysis, the individual parameters of location, dispersion
and correlation are discussed in more detail.

Location parameters

Figure 4.2 shows the mean, the trimmed mean (tmean) with 5 % cut off of both tails of the
distribution and the geometric mean (gmean1) as three different mean measures. In addition,
the median is shown to classify the mean values. The values are plotted for each time series
as line graph over the years to identify differences between the years.
For each time series, the four measures have a similar pattern over the years: The demand
time series has overlapping values of the mean, the tmean and median. The values for PV and
wind appear to maintain a constant difference, whereas the distance between the values of
the residual loads vary (e.g., residual PV 2010 and 2014, residual wind 2009 and 2012). The
similar patterns of the measure indicate a correlation or in other words, they represent similar
information of the time series. An illustrative example is the mean z and sum

Pn
i=1 zi . They

have a linear relationship z = 1
n

Pn
i=1 zi and the values differ only by the factor n. Thus, these

measures have a correlation of 1. The average correlation of all measures ranges between
0.940 (wind) and 0.995 (Residual iRES) with the exception of PV where the median differs
from the mean and tmean (0.30 and 0.35) resulting in a lower overall correlation of 0.55.
Besides correlating measures, a second observation can be made regarding the order of

1The gmean is only calculated for time series of positive reals with at least one number greater than 0.
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Figure 4.2: Location parameter: Parameters describing the mean of the original time series as
well as recalculated residual loads.

measures. The iRES time series have maximum values for the mean, followed by the tmean
and median. This order is reverse for the residual load and meets the expectations based on
Equation 3.3 in which the iRES are subtracted from the demand. As already described, the
order of the measures indicate the distribution that can also be derided from Figure 4.3 showing
exemplary quantiles between the minimum (0 %) and maximum (100 %). The quantiles of the
demand time series are symmetrical around the median (50 %). The quantiles of PV and wind
are asymmetric and show wide distances between the quantiles in direction of the maximum.
In direction of the minimum there are no quantiles below the median (PV) or smaller distance
between the quantiles (wind). As before, the pattern is reversed for the residual load. In
addition, it is less asymmetrical compared to the iRES. Overall, with the exception of demand
(0.92), the correlation between quantiles is lower at an average of 0.38 (PV) to 0.76 (residual
PV), as the correlation decreases with increasing distance between the quantiles.

Dispersion parameters

The discussed location parameters already give a first estimate of the time series distribution,
which is shown in Figure 4.4 as histogram and empiric density function. The location parameter
of the demand indicate a normal distribution. However, the distribution has a dip in the middle
leading to a negative kurtosis of -1.11. A skewness of 0.05 is consistent with the symmetric
quantiles observed. For PV and wind a right-skewed distribution can be confirmed with a
skewness of 1.32 and 1.53, respectively. The distribution of residual loads is left-skewed and
thus inverse to the distribution of PV and wind. With an average skewness between -0.62
(residual wind) and -0.71 (residual PV), the asymmetry is lower, which quantitatively confirms



52 4. Results

Figure 4.3: Location parameter: Parameters describing quantiles between the minimum and
maximum of the original time series as well as recalculated residual loads.

Figure 4.4: Distribution parameter: Histogram and empiric density function of the original time
series as well as recalculated residual loads.
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Figure 4.5: Distribution parameters: Duration curve of the original time series as well as
recalculated residual loads..

the previous results.
A closer look at the time series of different years shows time series specific deviations. For
example, the PV time series overlap and have a slight deviation, whereas the other time series
show larger differences between the years. This becomes more apparent by changing the
visualization from the empirical density function to the duration curve, that is the sorting of
the time series values in descending order, shown in Figure 4.5. The demand as well as the
residual load time series including PV or wind show a span over the hole duration curve. The
average span is 0.028 for demand and 0.028 and 0.035 for the residual loads, respectively. The
wind time series has a spread in the first half of the curve (0.034 vs. 0.008) and the residual
load of both iRES has a slightly higher spread in the second half (0.037 vs. 0.027).
Further parameters for describing the distribution are the STD andMAD in relation to the mean
or median, which are shown in Figure 4.6. As with the location parameters, the parameters
correlate within a time series. With the exception of PV and residual PV, the average correlation
is between 0.84 (wind) and 0.97 (demand). The MAD in relation to the median correlates less
with the other parameters and averages 0.27 and 0.66 for the PV and residual PV time series,
respectively. One cause for this is the deviation between median and mean value, especially
for PV time series.

Correlation parameters

In addition to the description of internal time series characteristics, interactions between time
series can be quantified using different measures. Figure 4.7 shows the pcorr, the scorr and
the kcorr for selected pairs of time series. The first row of sub-figures presents the three
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Figure 4.6: Distribution parameter: standard deviation (STD) and mean absolute deviation
(MAD) in relation to mean or median.

Figure 4.7: Correlation parameter: Pearson’s correlation (pcorr), Spearman’s correlation (scorr)
and Kendall’s correlation (kcorr) to describe interaction between selected time series.
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Figure 4.8: Clustering analysis: Development of the sum of squared distances (SSD) for one
to nine clusters when the original time series are clustered separately.

combination of the original time series, whereas the second row presents the correlation of
the original time series with the residual load of both iRES. Two main findings appear again:
First, the correlation of parameters that on average varies between 0.73 (residual iRES - wind)
and 0.99 (demand - PV). Second, the reverse patterns that are visible for the time series pairs
demand - PV, residual iRES - PV, demand - wind, and residual iRES - wind.

4.1.2 Clustering analysis

In addition to the analysis with classic statistical parameters, time series can be explored using
further methods. In the following, the time series are described by applying k-mean clustering.
On the one hand, clusters or the number of clusters can be interpreted as a measure of infor-
mation content, which is of central importance in this thesis. On the other hand, clustering is
used in CNR and the time series aggregation, thus, general insights support a later evaluation
of the results.
In the following cluster analysis, the focus is on daily patterns and the identification of similar
days. Therefore, time series of each year are converted into a (n x m) matrix with n = d days
and m = 24 hours (see Section 3.3.1). In a first step, k-mean clustering is applied for different
numbers of cluster to derive the relevant number of clusters using the sum of squared distances
(SSD) between the days and their cluster centroid. The results are shown in Figure 4.8. Two
observations can be made: First, the SSD converges from three or four clusters, and second,
the SSD values for time series with wind are higher then those of demand and PV only. For
example, with four clusters the average SSD of demand and PV is 10.68 and 6.69, respectively,
whereas the average SSD of wind is 48.86. However, it should be noted that around half of the



56 4. Results

Figure 4.9: Clustering analysis: days clustered into four groups represented by centroids.

PV values are zero and therefore the SSD value is underestimated (approx. by the factor of
two).
Figure 4.9 shows the results when days of a single year are clustered separately into four
groups. For PV and demand, there are clear clusters corresponding to the SSD ordered by
the average value of demand or PV. The daily profiles of PV follow the typical bell-shaped
curve with different heights and widths representing the different seasons of the year. The
daily demand profiles of the four clusters vary not only regarding the height, but also regarding
the shape. For example, the first two clusters have two peaks at around hour 9 and hour 17,
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whereas the second peak in clusters 3 and 4 is absent or only slightly present. A closer look
into the data indicate that weekend days are more likely to be included in the first two clusters
and week days are part of the last two clusters. However, for wind it can be seen that each
cluster has a high dispersion of the individual days around the centroid. This complicates the
interpretation of the clusters and suggests that daily or seasonal patterns are less pronounced.

All together, the exploratory data analysis illustrates the challenges of selecting repre-
sentatives or aggregating time series. Although correlating parameters can be identified and
summarized, several parameters are necessary to evaluate the selection or aggregation of
time series. In particular, wind time series with stochastic rather than systematic patterns make
it difficult to aggregate time series by clustering. High SSD values are expected for aggregated
time series resulting in an uncertainty regarding the effects on the modeling results.

4.2 Identified time series parameters2

A comprehensive data set of 9000+ observations is used to identify relevant time series
parameters (see Section 3.1). The data set covers a broad range of parameters (e.g., PV
mean: 0.07-0.16, correlation between demand and wind: -0.49-0.67) and installed capacities
(e.g., PV: 0-60 GW, wind power: 0-326 GW). The analysis is performed for the PV and WIND
scenarios using the MAE, AIC and R2 as evaluation criteria. Since the focus of this thesis is
on aggregation and profiling of time series to reduce the temporal complexity of energy system
models, the following results are reduced accordingly in comparison to the identification paper
in Chapter 4.

4.2.1 Comparison of feature selection methods

The four methods - CNR, LASSO, LASSOLARS and ElasticNet - are compared qualitatively
with regard to the selected features and quantitatively by using selectivity and the three
evaluation criteria.

Selectivity

The selectivity describes how many parameters are identified as relevant by the respective
feature selection methods. A method has a high selectivity if only a few parameters are selected.
In the PV scenario, CNR has the highest selectivity with an average of 38 out of 179 features
(79 %). LASSO (57 %) and LASSOLARS (59 %) show rates of a similar amount, whereas
ElasticNet achieves the lowest selectivity with 1 %. In the WIND scenario the selectivity of
ElasticNet is also 1 %. Smaller selectivity values are observed for the other methods compared
to the PV scenario: CNR has the highest selectivity of 75 %, followed by LASSO (31 %) and
LASSOLARS (19 %).

2This section is based on the identification paper - Chapter 4 [39] and the profiling paper - Section 4.1 [40].
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Identified parameters

In order to enable a meaningful comparison of the feature selection methods with regard to
the identified parameters, only the first 40 parameters (corresponds to the selectivity of CNR)
of the methods from the literature are used for the comparison. In the PV scenario, 13 to 16
parameters are identified as relevant by at least three feature selection methods. To describe
the installed capacity of PV, three parameters are relevant according to all methods, that are
the relative variance (to the mean) and the fourth moment of the residual load as well as
the (Spearman) correlation between PV and electricity demand. For FPP, four parameters
are relevant to all methods that are the maximum, the 60 % quantile and third moment of
the residual load as well as the relative range (median) of the electricity demand. For IPP,
only the 35 % quantile of the electricity demand and the 30 % quantile of the residual load
are identified by all feature selection methods. Similar values can be determined for WIND
scenario, in which ten to 18 parameters of at least three feature selection methods are identified.
To describe the installed capacity of wind power, mainly two parameters are relevant to all
methods: the (arithmetic, trimmed, geometric) mean and the median of wind power. For FPP,
four parameters are relevant to all methods that are the MAD, the gmean and the median
of wind power as well as the relative range of the residual load (mean). For IPP, the mean,
median and relative range (mean) of wind power are identified by all feature selection methods.
However, the majority of parameters are only identified by one (38-63 parameters) or two
methods (22-42 parameters).

Model performance

The performance of the methods indicates how well selected features explain the model
responses. To derive performance indicators for the methods from the literature, a GLS
regression is applied using two to ten of the most relevant features. Regardless of the scenario
and the technology, the performance of CNR is significantly better on average. For example,
in the PV (WIND) scenario the average MAE across all technologies and parameter models
is 1.0 GW (5.2 GW), whereas the average MAE of LASSO, LASSOLARS and Elastic Net is
3.0 GW, 3.1 GW and 3.8 GW (12.1 GW, 12.4 GW and 13.6 GW). The same applies for the AIC
that is on average 18 (40) in the CNR method and around 113-116 (129-131) in the respective
feature selection methods. The average values of R2 are similar in the PV scenario (0.98-1.00),
whereas the differences between CNR and methods from the literature are higher in the WIND
scenario (0.97 vs. 0.82-0.84).

4.2.2 Evaluation of relevant time series parameters

In the following, the identified parameters based on CNR for the PV and WIND scenarios
are presented in more detail. In the scenario PV, nine time series parameters stand out
describing the installed capacity of PV, FPP, and IPP. From a PV time series perspective,
relevant characteristics are the mean, the variance and the skewness. Relevant characteristics
of the electricity demand are the quantiles around 35 %, the relative MAD (to mean) and
the relative range (to median). For the residual load, time series parameters such as the
mean, the variance and the maximum values are the most essential. Figure 4.10 shows
two selected parameters (black and colored line) describing the installed capacity for each
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Figure 4.10: Two identified time series parameters of the PV scenario for the installed capacity
of (a) PV, (b) FPP, and (c) IPP, respectively.

Figure 4.11: Evaluation of top 50 independent models that include two to ten parameters for
each technology (a) PV, (b) FPP, and (c) IPP in the PV scenario.
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Figure 4.12: Two identified time series parameters of the WIND scenario for the installed
capacity of (a) wind power, (b) FPP, and (c) IPP, respectively.

technology. The installed capacity of PV depends on the variance of PV and the residual load.
The MAE is 8.4 GW when only considering the variance of the residual load and is decreased
by 5.9 GW when the variance of PV is added. However, the visualization in Figure 4.10a
shows a moderate fit of some modeling results as these are not covered by the recalculated
installed capacities (orange line) of the regression model using variances of PV and residual
load as model parameters. By adding up additional parameters such as the PV (trimmed)
mean or the relative MAD (to mean) and 60 % quantile of the electricity the MAE converges
to 1.50 ± 0.01 GW (see Figure 4.11a). The installed capacity of FPP can be represented by
the maximum of the residual load and the relative range (to median) of the electricity demand
resulting in a MAE of 1.0 GW. However, Figure 4.10b shows outliers of low capacity which
require further parameters such as the (trimmed) mean and the 60 % quantile of the residual
load or the relative IQR of PV. With ten parameters, the MAE converges to 0.30 ± 0.003 GW
(see Figure 4.11b). The installed capacity of IPP can be explained by the 40 % quantile of
the electricity demand and skewness of PV resulting in similar performance results as for
IPP (MAE: 8.9 and 1.5 GW). By adding further parameters like (trimmed) mean and variance
of PV or the relative MAD of the residual load the MAE is reduced to 0.36 ± 0.01 GW (see
Figure 4.11c). Figure 4.11 shows the CNR results of the top 50 independent models. One
model consists of an unique parameter subset of two to ten parameters. For all technologies
and evaluation criteria we observe converting patterns. The model improvement in terms of
MAE and AIC is on average less then 10 % when a fifth or sixth parameter is included. With
regard to the variance explained (R2), the improvement is already below 5 % on average with
the third parameter.

In the scenario WIND, seven time series parameters are particularly relevant for describing
the installed capacity of wind power, FPP, and IPP: The means of wind and residual load,
the maximum of the residual load and quantiles in the middle and upper area (around 40 %
and 75 %) of wind and residual load. As shown in Figures 4.12 and 4.13 the MAE across all
technologies is higher than in the PV scenario. The installed capacity of wind power can be
explained by the gmean of wind and the 75 % quantile of the residual load which together
achieve a MAE of 11.4 GW. By adding further parameters, such as the 40 % quantile and
relative MAD (mean) of wind or the mean and the 30 % quantile of the residual load the
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Figure 4.13: Evaluation of top 50 independent models that include two to ten parameters for
each technology (a) wind power, (b) FPP, and (c) IPP in the WIND scenario.

MAE converges to 9.92 GW ± 0.04 GW. The installed capacity of FPP depends on the 50 %
quantile of wind and the maximum of the residual load which together reach a MAE of 2.9 GW.
Additional parameters such as (arithmetic, trimmed) mean of wind or the relative range (median)
and the 50-60 % quantile of the residual load can result in a slightly smaller MAE of 2.46 GW
± 0.02 GW. The installed capacity of IPP can be approximated by the trimmed mean and the
45 % quantile of the residual load (MAE: 3.1 GW). Including further parameters such as the
50 % quantile and the (trimmed) mean of wind or the (trimmed) mean of the electricity demand
can improve the MAE up to 2.07 GW ± 0.03 GW. Figure 4.13 shows the CNR results of the
top 50 independent models. As already described for the MAE, worse performance values can
also be observed for AIC and R2 for the WIND scenario. The model improvement in terms of
MAE and AIC is on average less then 5 % when a third or fourth parameter is included. With
regard to the variance explained (R2), the improvement is already below 5 % on average with
the third parameter.

4.2.3 Extended time series complexity

Figure 4.14 highlights another dimension of complexity that is hidden in the time series - in
particular the interdependence of time series. Figure 4.14a shows a perfect fit for the duration
curve of the aggregated demand time series compared to the original time series. When
splitting the duration curve by the median of PV (approx. zero) the curves diverge. For PV
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Figure 4.14: Aggregated and original time series of the electricity demand as full duration
curve (a) and split duration curve (b) depending on the PV median (below median (b1), above
median (b2)).

values of zero (Figure 4.14b1), the aggregated time series overestimates the demand, whereas
it underestimates the demand for medium to high PV values (Figure 4.14b2). This deviation
contributes to the fact that in the optimization of the energy system the effectiveness and thus
the expansion of PV is overestimated by 3.7 GW (15 %).

4.3 Modeling results3

The modeling results of the all time series - original, aggregated and profiled - are presented
below. The modeling results represent the installed capacities of the generation technologies.
For the original time series, the results are given in absolute values (GW). The results of the
aggregated and profiled time series are shown as a deviation from the original time series.
The deviation can be averaged over several years or time series as mean deviation (or error
ME), standard deviation (STD) or mean absolute deviation (or error MAE). The latter allows a
comparison with the results from CNR in Section 4.2.2.

4.3.1 Original time series

The eleven original time series (2006-2016) and three defined scenarios (PV, WIND, PV+Wind)
result in a total of 33 modeling runs (see Section 3.1). The modeling results as installed capacity
of the respective generation technologies (PV, wind, FPP, IPP) are shown in Figure 4.15.
Table 4.1 supplements the visual representation of the results with a quantitative evaluation
by calculating the mean, median, minimum and maximum values of the technologies. It can

3This section is based on the profiling paper - Section 4.2 and 4.3 [40].



4.3. Modeling results 63

Figure 4.15: Resulting installed capacity of original time series for (a) the PV scenario, (b) the
WIND scenario, and (c) the PV +WIND scenario.

be noted that already time series from eleven different years lead to varied results in all three
scenarios. For example, the ranges of PV and wind power are 12-13 GW (46-47 % relative to
mean) and 28-30 GW (176-181 %). Although the installed capacities of the iRES vary greatly,
this only has a minor impact on the installed capacities of conventional technologies. The
ranges of FPP and IPP are 3-6 GW and 5-8 GW, respectively. In relation to the mean value,
their respective relative range with 13-23 % and 10-15 % is significantly smaller compared to
the iRES.

4.3.2 Aggregated time series

The original time series are aggregated by two TSA approaches: clustering and clustering
combined with heuristic. Clustering can be divided into k-mean and hierarchical with centroid or
closest as representative (see Section 3.3.1). In the following figures, the aggregation variants
are labeled as follows: If included, the heuristic selection (heur), the clustering method (kmean,
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Table 4.1: Installed capacity resulting from modeling with original time series from eleven years
(2006-2016) for the scenarios PV, WIND, and PV+WIND and the related power generation
technologies.

Scenario Technology Mean Median Min Max Range

PV PV GW 26.6 27.9 19.4 31.6 12.2

FPP GW 26.7 27.2 24.5 28.0 3.5

IPP GW 50.4 51.5 47.3 52.2 4.9

WIND WIND GW 17.1 16.5 5.4 34.9 29.5

FPP GW 24.5 24.8 21.2 26.8 5.6

IPP GW 49.7 49.3 46.3 54.0 7.7

PV+WIND PV GW 28.0 28.6 20.1 33.2 13.1

WIND GW 16.4 16.0 5.4 34.0 28.6

FPP GW 27.4 27.2 23.9 29.5 5.6

IPP GW 46.8 46.6 43.9 50.9 7.0

hier) and the representative (cen, clo). The resulting aggregated time series involve six (seven
in the PV+WIND scenario) to twenty days, that corresponds to 144 to 480 data points.

Time series parameters

Figure 4.16 shows selected time series parameters for each scenario and TSA approach as
deviation from the original time series. The parameters are obtained from Section 4.2.2. The
deviations are derived from normalized time series (MW / MWmax x 1000) and are given below
without a unit. In the PV scenario, the average deviations of the variance of PV and the 40 %
quantile of the electricity demand are in the same range for all aggregation methods (MAE
± STD: 0.9 ± 0.2 and 4.5 ± 0.7, respectively). However, outliers can be observed for TSA
methods including heuristic. For the maximum of the residual load, the average deviation is
low for TSA methods including heuristic (12.1) and high for TSA methods based on clustering
only (45.5). Similar observations can be made in the WIND scenario. The average deviations
of the gmean of wind power and the 40 % quantile of the electricity demand are in the same
range for all aggregation method (15.7 ± 3.1 and 6.3 ± 0.6, respectively). However, when
choosing the centroid as cluster representative, the deviations of the gmean are slightly higher
compared to the closest as representative (21.7 vs. 13.1). As in the PV scenario, the average
deviation of the maximum residual load is lower for TSA methods including heuristic (35.5) and
higher for TSA methods based on clustering only (72.4). The findings of the single scenarios
can be transferred to the combined PV+WIND scenario. The variance of PV, the gmean of
wind power and the 40 % quantile of the electricity demand is on average 1.9 ± 0.3, 17.7 ±
4.3 and 6.6 ± 0.3, respectively. The average deviation of the maximum residual load is 11.8 for
TSA methods including heuristic and 50.3 for TSA methods based on clustering only.

Figure 4.17 compares the duration curve of the original time series and the aggregated
time series. The year 2006 is shown as an example and aggregated time series with ten days
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Figure 4.16: Selected time series parameters of aggregated time series as deviation from the
original time series shown for each aggregation method and scenario: (a) PV, (b) WIND, and
(c) PV+WIND.
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Figure 4.17: Duration curve of aggregated time series compared to the original time series
shown for the year 2006, scenario PV+WIND and aggregated time series of ten clusters (days).

are selected for all TSA methods. Overall, we can observe smaller average deviations for
the electricity demand (MAE: 7.1), the PV generation potential (6.4) and residual load when
only PV is included (12.2). For the remaining time series, the deviations are higher and range
between 18.0 (residual load including wind power) and 18.6 (wind power).

Modeling results and transferability from single to combined scenario

Figure 4.18 shows the modeling results for each scenario, technology, and TSA approach
as deviation from the modeling results of the original time series. The results show that the
selected TSA variants either systematically overestimate (PV and wind power) or underestimate
(FPP and IPP) the installed capacities. In addition, there are high scattering and outliers (see
Section 4.4).

In the PV scenario, the installed capacity of PV is overestimated on average (ME: 1.2 GW,
MAE: 1.8 GW) by all TSA approaches, whereas the installed capacities of FPP and IPP are
underestimated by -2.4 GW and -0.3 GW (MAE: 2.5 GW and 0.4 GW), respectively. Two
patterns are observed for clustering approaches including heuristic: First, smaller mean
deviations for FPP, and second, high outliers for PV and IPP (see also the difference between
mean and median). A closer look at the results shows a relation between PV and IPP outliers
(96 %) which occur predominantly in time series with six days. This suggests that selecting
mainly extreme days of individual time series indirectly leads to an overestimation of the
residual load and thus higher and lower capacities for IPP and PV, respectively. The decreased
mean deviation for FPP (-0.7 GW vs. -4.1 GW) matches the findings in Section 4.2.2 as (daily)
extreme values of the PV generation potential and electricity demand are taken into account.
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Figure 4.18: Resulting installed capacities of aggregated time series as deviation from results
of original time series shown for each aggregation method and scenario: (a) PV, (b) WIND,
and (c) PV+WIND.
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A comparison of the related MAE also underscores this assumption. For PV and IPP, the
average MAE of all TSA approaches is in a similar range (∆ MAE ≤ 0.3 GW), whereas the
MAE for FPP is 2.2 GW higher (with heuristic: 0.7 GW, without heuristic: 3.8 GW).

As already discovered in Section 4.2, deviations of the installed capacities are higher in the
scenario WIND. The TSA approaches overestimate on average the installed capacity of wind
power by 7.6 GW (MAE: 8.0 GW). Thereby, combined clustering and heuristic overestimates
more (ME: 9.1 GW) than clustering alone (ME: 6.1 GW). FPP and IPP are underestimated by
-2.5 GW (MAE: 2.8 GW) and -1.7 GW (MAE: 1.9 GW), respectively. Similar to the scenario
PV, the installed capacity of FPP is more likely to be underestimated by TSA based on
clustering only (ME: -3.4 GW vs. -1.5 GW) as extreme values of time series are not sufficiently
represented. However, including heuristic can lead to outliers in negative direction (up to ME
of 13.1 GW, see also deviation between mean and median). Comparing the MAE to the ones
derived in Section 4.2, we observe improved values for wind power and IPP (up to 1.9 GW) but
worse values for FPP (0.3 GW on average, 1.0 GW for clustering only).

In the combined scenario PV+WIND, the interaction between the iRES time series has
an additional impact on modeling results. Three findings from the individual scenarios can
be transferred although deviations are higher across all technologies: First, high interrelated
outliers (79-83 %, PV scenario), second, smaller mean deviations for FPP (PV and WIND
scenario) for clustering approaches involving heuristic, and third, systematic under- or overesti-
mation. As in individual scenarios, TSA approaches overestimate the installed capacity of PV
(ME: 3.6 GW, MAE: 4.3 GW) and wind power (ME: 14.8 GW, MAE: 14.9 GW), whereas the
capacities of FPP (ME: -2.5 GW, MAE: 3.8 GW) and IPP (ME: -3.2 GW, MAE: 3.2 GW) are
underestimated.

Dependence on year and number of clusters

The previous results of TSA approaches illustrate the complexity of time series and their
impact on modeling results. A closer look into single TSA approaches of selected years
indicates three additional characteristics, which are shown in Figure 4.19. First, the perfor-
mance of TSA approaches depends on the year (see D.1 in the Appendix). For example, the
k-mean clustering combined with heuristics achieves for FPP in scenario PV (WIND) small
deviations of 0.5 GW (-1.6 GW) in 2007 (2009), whereas the deviation in 2006 (2010) is
-3.0 GW (-6.0 GW). Second, the courses are alternating with partly large amplitudes. For
example, the installed capacity of PV (wind power) ranges from six days upwards between
-1.1 and 5.2 GW (-4.9 and 23.1 GW) for the k-mean closest approach in 2007 (2009) mak-
ing it difficult to choose the right number of clusters (days). Third, the deviations do not
always convert towards 0 GW within 20 days. For example, the deviation of FPP converts
to -3 GW and -4 GW (heuristic and k-mean closest, 2006 and 2007), whereas the deviation
of wind power converts to approx. 10 GW (heuristic and k-mean closest, 2009 and 2010).

4.3.3 Profiled time series

Profiling is applied to aggregated time series as described in Section 3.3.1 and analyzed in
Section 4.3.2. For the PV and WIND scenarios, the aggregated time series bundle and the
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Figure 4.19: Resulting installed capacity as deviation from original results of k-mean closest
and combined heuristic with k-mean closest for selected years (solid or dashed line). The
results are shown depending on the number of clusters (days) for (a) the PV scenario and (b)
the WIND scenario.

respective residual load are iteratively fitted to the information of the original time series. For
the PV+WIND scenario, a total of seven time series are considered. The two additional time
series represent the residual load of demand and both iRES and the ratio between wind and
PV. To adjust the duration curve of the aggregated time series to that of the original time series
(profiling step 3), time series are split into two sub-time series (see Section 4.2.3). For all
scenarios involving PV, they are divided according to the median of PV (approx. 0), otherwise
the median of demand is used as splitting criterion. This is not applied to the two additional
time series in the PV+Wind scenario since it is assumed that the splitting of the other time
series has already sufficiently covered the median-specific relations of the time series.

Time series parameters

Figure 4.20 shows selected time series parameters for each scenario and TSA approach as
deviation from the original time series. As before, the deviation is derived from normalized
time series (MW / MWmax x 1000) and is given below without a unit. Independent from the
time series parameter and scenario, we can observe significantly lower deviations, which are
independent from the original TSA method. The average deviation (MAE) is 0.4 for the variance
of PV, 0.1 for the maximum of the residual load and 1.8 for the 40 % quantile for the electricity
demand. The average deviation of the gmean of wind power is low in the wind scenario (1.4)
and relatively high in the PV+WIND scenario (12.0). In addition, we can observe outliers for
the gmean in the PV+WIND scenario and maximum of the residual load in the WIND scenario
visible by the deviation of the median and mean.

Figure 4.21 compares the duration curve of the original time series and the profiled time
series. As before, the year 2006 is shown as an example and aggregated time series with
ten days are selected for the underlying TSA methods. Overall, we can observe a smaller
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Figure 4.20: Selected time series parameters of profiled time series as deviation from the
original time series shown for each aggregation method and scenario: (a) PV, (b) WIND, and
(c) PV+WIND.
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Figure 4.21: Duration curve of profiled time series compared to the original time series shown
for the year 2006, scenario PV+WIND and aggregated time series of ten clusters (days).

deviations for all time series that on average range from 2.3 (PV) to 5.9 (residual load including
wind power).

Modeling results and transferability from single to combined scenario

Figure 4.22 shows the modeling results for each scenario, technology and profiled time series
based on different TSA approaches as deviation from the modeling results of the original time
series. Independent of the underlying aggregated time series, the installed capacities of PV are
on average slightly underestimated (ME: -0.3 GW, MAE: 1.3 GW) and the capacities of wind
power are slightly overestimated (ME: 0.2 GW, MAE: 1.9 GW). The dispersion of these mean
deviations is low across the TSA approaches with a maximum range of 0.4 GW and 0.6 GW,
respectively. The deviations between the individual scenarios PV and WIND and the combined
scenarios PV+WIND are also of a similar scale (PV: ∆ME 0.03 GW, ∆ MAE: 0.3 GW and wind
power: ∆ME 0.2 GW, ∆ MAE: 0.2 GW). For the installed capacity of FPP and IPP, different
directions of deviation are obtained depending on the scenario, which are independent of the
profiled time series. FPP is overestimated in the PV scenario (ME: 0.2 GW, MAE: 0.2 GW)
and underestimated in the WIND scenario (ME: -0.4 GW, MAE: 0.6 GW). This is reversed for
the resulting capacity of IPP, which is underestimated in the PV scenario (ME: -0.2 GW, MAE:
0.2 GW) and overestimated in the WIND scenario (ME: 0.1 GW, MAE: 0.4 GW). As for PV
and wind power, the dispersion of these mean deviations is low across the TSA approaches
with a maximum range of 0.3 GW and 1.0 GW, respectively. The comparison of the single
and combined scenarios shows that FPP and IPP are underestimated in similar scale (ME:
-0.3 GW, MAE: 0.6 GW and ME: -0.10 GW, MAE: 0.5 GW, respectively).
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Figure 4.22: Resulting installed capacities of profiled time series as deviation from results of
original time series shown for each aggregation method and scenario: (a) PV, (b) WIND, and
(c) PV+WIND.
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Figure 4.23: Resulting installed capacity as deviation from original results of k-mean closest
and combined heuristic with k-mean closest for selected years (solid or dashed line). The
results are shown depending on the number of clusters (days) for (a) the PV scenario and (b)
the WIND scenario.

Figure 4.24: Resulting installed capacity as deviation from original results averaged across all
TSA and years. The results are shown depending on the number of clusters (days) for (a) the
PV scenario, (b) the WIND scenario, and (c) the PV+WIND scenario.

Dependence on year and number of clusters

A closer look into specific profiled time series of selected years indicates similar patterns
to the aggregated time series. The performance of profiling can depend on the year (see
also D.2 in the Appendix). For example, the profiled time series derived from k-mean clustering
with and without heuristics achieves for FPP in scenario WIND smaller average deviations
of 0.36 GW and 0.45 GW in 2009, whereas the average deviation in 2010 is -1.24 GW and
-1.33 GW, respectively. The deviations are alternating with partly large amplitudes and do not
always convert to zero. This becomes also visible in Figure 4.24 showing the average deviation
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Table 4.2: Mean deviation MAE of the modeling results of aggregated and profiled time series
from the original results compered to CNR results of a ten parameter model.

Scenario Technology CNR Aggregated Profiled

PV PV GW 1.5 1.8 1.3

FPP GW 1.0 2.5 0.2

IPP GW 0.3 0.4 0.2

WIND WIND GW 9.9 8.0 1.9

FPP GW 2.5 2.8 0.6

IPP GW 2.1 1.9 0.4

across all years and TSA approaches per cluster number. The deviations of iRES in particular
show larger ranges in all scenarios (0.8-1.7 GW and 1.0-1.2 GW, respectively), whereas the
deviations of conventional technologies remain at a constant level (0.1-0.3 GW for both).

Comparison to CNR

Comparing the MAE of modeling results obtained from profiled time series to the MAE achieved
in CNR we can observe a reduction of 2.1 GW on average. In Table 4.2 the averaged MAE for
the profiled (and aggregated) time series is compared to the average MAE of ten parameter
models derived from CNR (see 4.2). In the PV scenario, the reduction of the error is between
0.2 GW (PV) and 0.8 GW (FPP). In the WIND scenario, the error reduction is higher and ranges
from 1.7 GW (IPP) to 8.0 GW (wind power).

4.4 Comparison of modeling results4

Applying profiling to the aggregated time series shows a significant improvement for all tech-
nologies and scenarios for both, mean deviation ME (39 %-98 %) and standard deviation STD
(34 %-91 %). As a result, the ME is at or below 0.4 GW and the STD does not exceed 2.6 GW.

Figures 4.25-4.27 show the distribution of the results as a box plot and histogram to display
mean values, medians, and IQR as well as standard deviations. The first diagrams (a) present
the variance of original results compared to mean across all considered years. The second row
of diagrams (b) shows the results of aggregated time series, whereas the third row (c) presents
the results of the profiled time series. Table 4.3 quantitatively supplements the visualization
with the summarized ME and STD.

In the PV scenario, the ME and STD of the installed capacity of PV is reduced by 72 %
and 34 %, respectively. The ME for FPP and IPP are also significantly improved by 93 % (STD:
90 %) and 39 % (60 %), respectively. The resulting MAE for PV is 1.1 GW and is, thus, below
the errors of CNR (-0.7 GW) and aggregated time series (-0.4 GW). The MAE for FPP and
IPP amounts to 0.2 GW and is also below the values previously achieved (see also Table 4.2).
The reduction of deviations is accompanied by an improved representation of relevant time

4This section is based on the profiling paper - Section 4.3 [40].
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Figure 4.25: Distribution of the modeling results as deviation from the original results or average
result shown as a box plot and histogram. The modeling results of (a) original time series, (b)
aggregated time series, and (c) profiled time series are shown for the technologies PV, FPP,
and IPP of the PV scenario.

Table 4.3: Mean deviation ME of the modeling results of aggregated and profiled time series
from the original results and the related standard deviation STD. The original results are set in
relation to their mean value.

Scenario Technology Original Aggregated Profiled

PV PV GW ± 4.5 1.2 ± 2.1 -0.3 ± 1.4

FPP GW ± 1.2 -2.4 ± 2.1 0.2 ± 0.2

IPP GW ± 2.0 0.2 ± 0.5 -0.2 ± 0.2

WIND WIND GW ± 10.1 7.1 ± 6.6 0.1 ± 2.6

FPP GW ± 1.8 -2.6 ± 2.4 -0.4 ± 0.7

IPP GW ± 2.6 -1.6 ± 1.5 0.1 ± 0.5

PV+WIND PV GW ± 4.5 3.4 ± 4.8 -0.3 ± 1.7

WIND GW ± 9.3 14.1 ± 25.8 0.3 ± 2.4

FPP GW ± 2.0 - 2.5 ± 5.2 -0.3 ± 0.7

IPP GW ± 2.5 - 2.9 ± 5.1 -0.1 ± 0.6
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Figure 4.26: Distribution of the modeling results as deviation from the original results or average
result shown as a box plot and histogram. The modeling results of (a) original time series, (b)
aggregated time series, and (c) profiled time series are shown for the technologies wind power,
FPP, and IPP of the WIND scenario.

series parameters (see, e.g., Figure 4.16 and 4.20 ). On average, the deviation of these is
18 % for aggregated time series and 2 % for profiled time series. In the WIND scenario the
improvements are even higher as the ME (STD) have been on average reduced by 98 %
(61 %) for wind power, 84 % (69 %) for FPP and 96 % (63 %) for IPP. The related MAE amount
to 2.0 GW for wind power, 0.6 GW for FPP and 0.4 GW for IPP and are, therefore, at least
1.5 GW lower than previous values. As before, the small deviations are accompanied by a
better representation of relevant parameters which error decreases from 7 % to 1 %. Also for
the more complex PV+WIND scenario, significant ME (STD) improvements of 93 % (65 %) for
PV, 98 % (91 %) for wind power, 87 % (86 %) for FPP and 97 % (89 %) for IPP can be stated.
The MAE is in the same range (± 0.3 GW) as in the individual scenarios and, thus, validates
the assumption that findings from simplified energy systems can be transferred to complex
ones. Despite stronger interaction between time series or parameters in the profiling algorithm,
a significant improvement of the relevant time series from 20 % to 2 % is achieved.

Besides ME, STD, and MAE, a significant reduction of extreme values of 61 % on average
can be observed. For example, negative outliers of PV have been reduced from -15.6 GW
to -5.1 GW (PV scenario) and -25.7 GW to -5.6 GW (PV+WIND), whereas positive outliers of
wind power have been reduced from 32.1 GW to 11.9 GW (WIND) and 242.1 GW to 9.1 GW
(PV+WIND).
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Figure 4.27: Distribution of the modeling results as deviation from the original results or average
result shown as a box plot and histogram. The modeling results of (a) original time series, (b)
aggregated time series, and (c) profiled time series are shown for the technologies PV, wind
power, FPP, and IPP of the PV+WIND scenario.





Chapter 5

Discussion1

5.1 Summary

This thesis addresses a central challenge in energy system modeling, which is the limited
reliability of time series aggregation methods that are applied to compensate the increasing
complexity of energy system models. To reduce the temporal model complexity annual time
series representing the electricity demand and generation potential of iRES are aggregated to
time series of several days. However, the results are not always robust but depend on power
system configurations and years. So far, we have little knowledge about why aggregation of
time series performs better or worse. In this thesis a data-analytical approach is developed that,
firstly, improves the understanding of the interactions between time series and modeling results
and secondly, transfers the knowledge gained in the form of relevant time series parameters to
aggregated time series. The basis for this approach is a highly simplified energy system model
that consists of two conventional generation technologies (peak load power plant (flexible,
FPP), base load power plant (inert, IPP)) and one or two iRES (PV, wind power) resulting in
three scenarios (PV, WIND, PV+WIND). A bundle of three time series (PV, wind power and
electricity demand) for a total of eleven years form the data basis.

To investigate the interaction between time series and model results and to identify relevant
time series parameters the CNR method is proposed that includes clustering and nested
regression. An extensive database of 170+ features for 9000+ time series bundles is derived
from the original time series bundle. These are linked to the results of the energy system
model from PV and WIND scenario that are the installed capacity of the three power generation
technologies. CNR is compared to the feature selection methods LASSO, LASSOLARS and
ElasticNet by evaluating selected parameters and their performance using AIC, MAE and R2

as goodness-of-fit criteria. The results show a high selectivity for CNR, medium selectivity for
LASSO and LASSOLARS, whereas ElasticNet has a low selection rate. Only a few parameters,
such as relative variance and the maximum of the residual load or the mean and median of
wind power, are identified by all feature selection methods. However, the majority of parameters
are only identified as relevant by one or two methods. The transfer of the most important
parameters into a regression model enables the quantitative evaluation of the feature selection

1This chapter is based on the identification paper - Section 4 and 5 [39] and the profiling paper - Section 4 and
5 [40].
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methods. CNR shows significantly better values for MAE and AIC than the methods from
the literature. A better performance with regard to these criteria is to be expected, as they
are implemented in the CNR algorithm that is therefore optimized accordingly. Further, the
combined evaluation of different parameters and parameter subsets of CNR leads to a more
optimal feature selection at different subset sizes, especially with only a small selection of two
to ten parameters. However, the computing time of CNR is significantly longer (one iteration
takes about 40 minutes). The combination of CNR with another feature selection method
as pre-feature selection can reduce the overall time required. Therefore, CNR complements
existing feature selection methods and is suitable for applications where selectivity and the
consideration of different parameter sets as well as an in-depth understanding of data are
relevant.

Overall, CNR is applied three times to two different data sets (reduced data set without
residual load in the identification paper [39], extended data set with residual load in this thesis
and profiling paper [40]). The results can be reproduced in terms of content, meaning that the
algorithm is robust despite the random selection of parameters in the pre-selection. Comparing
the results to previous findings derived from the data set without residual load, two observations
stand out. Firstly, the relevance of the correlation between PV and demand is replaced by
parameters of the residual load. Secondly, parameters describing the electricity demand (e.g.,
range and 20 % or 40 % quantile) are partly replaced by parameters of the residual load (e.g.,
maximum and 30 % or 45 % quantile). These results indicate that the interactions between
time series are highly relevant and cannot be described by correlations alone. Rather, time
series parameters describing the residual load are of central importance. A comparison of
the results from the PV and WIND scenarios shows that modeling results of the PV scenario
can be better explained by a limited number of time series parameters as those of the WIND
scenario. This is consistent with the visualizations of the clustering of time series from the
exploratory data analysis, in which no clear patterns are apparent in the wind power time
series. Without clear patterns, it is therefore only possible to derive time series parameters to
explain the modeling results to a limited extent. The results of the parameter analysis illustrate
the complex relationship between time series and modeling results. For each technology, the
model performance criteria, for example, MAE converges and ranges from 0.3 GW (FPP) to
9.9 GW (wind power). This suggests that other characteristics of time series are missing that
cannot be described by simple statistical parameters or that a linear approach to describe
the relationship is limited. An in-depth analysis emphasizes the complexity of time series and
their interaction with energy system models. For example, the total aggregated time series
may show a good representation of average values or duration curves, whereas a split time
series (according to the median of PV) may show significant differences leading to modeling
deviations. Transferred to the aggregation and profiling of time series, it can be assumed that
a (mean) residual error remains. Therefore, time series aggregation methods and profiling
should focus on minimizing systematic deviations to achieve robust modeling results.

The identified relevant parameters and further findings are transferred to aggregated time
series by the proposed profiling method. Thereby, aggregated time series are iteratively
adjusted in three steps to align correlations, single and average time series parameters with
those of the original time series. The development and evaluation of the method is based on
an extensive analysis framework covering three energy system scenarios (with three or four
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power generation technologies) and two aggregation approaches with in total eight aggregation
variations. Overall, 3700+ time series bundles and modeling results for aggregated and profiled
time series are analyzed that allows to make statistically significant and generalized statements.

The modeling results of the original time series show large differences between the years,
especially for the installed capacity of PV and wind power. This confirms the required high
sensitivity of the defined energy system (see Section 3.1).

The results of aggregated time series validate already known findings from the literature,
such as the performance of aggregation methods depends on the underlying year and on time
series aggregation method is superior to another. In addition, the deviation of modeling results
have alternating courses along the increasing number of cluster (days) without converging to
zero deviation. This reinforces the impression that current approaches are not able to represent
(all) relevant characteristics of time series. Rather, systematic deviations are found, indicating
that some relevant time series parameters are not controlled or covered by the aggregation
methods. For example, the installed capacity of PV and wind power are overestimated on
average, whereas the capacity of conventional power plants are underestimated on average.
On the one hand, aggregation approaches including heuristic tend to have more outliers. On the
other hand, these aggregation methods perform better for peak load power plants as extreme
values of demand (and residual load), which are identified as relevant parameter, are better
represented. In contrast, a simple explanation for systematic deviations cannot be derived
from the results. For example, the underrepresented variance of the PV generation potential
and overrepresented geometric mean of the wind power generation potential contribute to an
overestimation of the installed power of PV and wind power. Both incorrect representations
can be attributed to the smoothing effect of clustering, in which the variety - especially for the
wind time series - can only be represented inadequately. However, it is also decisive how
the deviations are related or in which context they occur. For example, a duration curve (of
demand) can on average show a good fit, but from a different perspective (split based on
PV) systematic deviations may occur. In summary, results of individual scenarios allow a
better interpretation of more complex scenarios. Deviations of the modeling results can be
traced back to specific time series (parameters) and, together with the knowledge gained from
the identification of relevant time series parameters, effective extensions of the aggregation
methods can be derived.

The proposed profiling method improves the representation of relevant time series parame-
ters for aggregated time series leading to low average deviation of modeling results. Moreover,
the standard deviation and outliers are significantly decreased. The performance of profiling is
independent of the aggregated time series or its aggregation approach. Thus, it is possible
to form a representative time series independent of the selected days and profiling can be
seen as an extension to current aggregation methods to improve their reliability. However,
the performance of profiling still varies between different years, although showing smaller
deviations and outliers overall. It can be assumed that not all relevant time series parameters
are identified or covered, yet. Analyzing the modeling results according to the number of
days does not show a clear tendency that more days lead to a smaller mean deviation of
installed capacities and thus the profiling works better. Based on this, it can be concluded
that, depending on the scenario, there is a range of days, where the performance of profiling is
independent of the number of days (from six to 20).
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Besides the comparison to aggregation methods, a general assessment of the results
based on the original time series is useful to evaluate the performance of profiling in absolute
terms. The standard deviation of modeling results using original time series is on average
3 GW higher (from 1.2 GW for FPP and up to 10.1 GW for wind power) than those resulting
from profiled time series (from 0.2 GW to 2.6 GW). Together with the low mean deviation
(between -0.4 GW and 0.3 GW), the performance of profiling in terms of mean deviation and
standard deviation of the modeling results can be interpreted as acceptable.

Comparing the profiling results to the CNR results, we observe a high reduction of the
MAE, especially in the wind scenario. Thus, the difference between PV and wind power
or the respective scenarios, that are significant in the CNR analysis, are eliminated. This
suggests that profiling is able to transfer relevant characteristics of the original time series to
the aggregated time series and, in addition, to represent further information not (explicitly)
included in the ten parameter models of CNR or profiling.

The computing time of the energy system models can be significantly reduced by aggre-
gating and profiling time series. This enables practitioners of complex energy system models
- in addition to detailed energy system models - to carry out analyses with time series from
several years. By additionally calculating a large number of profiled time series, for example, by
applying different aggregation methods as done within this thesis, the sensitivity of the model
with regard to different time series can be evaluated. In other words, a sensitivity analysis can
be carried out, as it is usually done for other model parameters, such as investment costs or
emission limits. Instead of only interpreting absolute results, these could be extended by a
deviation that allows statements to be made about the sensitivity or stability of the results.

5.2 Application and classification

In addition to the aggregation methods described in the literature, there are python based
modules that implement these aggregation methods. For example, tsam includes different
aggregation methods such as k-means, k-medoids and hierarchical and provides additional
features like tuning of aggregation parameters and extended representation methods to keep
statistical attributes [29]. Two aggregation methods, k-mean and hierarchical, with default
parameterization (except from noTypicalPeriods, hoursPerPeriod, clusterMethod) and advanced
parameterization (including sortValues and evalSumPeriods) are used for a comparison with the
profiling method. As in previous analysis, time series are aggregated to six to 20 representative
days. The results are shown in Figure 5.1 including the modeling results from the original
time series. As in the previous comparison of aggregated and profiled time series, we can
observe high deviations (ME and MAE) for aggregated time series. Aggregated time series
using default settings show deviations between -3.6 GW (FFP) and 11.0 GW (wind power).
The MAE is between 2.6 GW (inert power plant) and 11.1 GW (wind power). The deviations of
aggregated time series derived from advanced settings are slightly smaller and range between
-3.3 GW (FPP) and 8.2 GW (wind power). The MAE is between -2.1 GW (IPP) and 8.7 GW
(wind power). The deviations are significantly smaller for profiled time series that are -0.1 GW
(IPP) to -0.4 GW (FPP) in terms of the ME and 0.5 GW (IPP) to 2 GW (wind power) for the
MAE. Thus, the implemented aggregation methods within this thesis correspond to the latest
state of externally implemented aggregation algorithms.
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Figure 5.1: Distribution of the modeling results as deviation from the original results or average
result shown as a box plot and histogram. The modeling results of (a) original time series, (b1)
aggregated time series calculated with default tsam, (b2) aggregated time series calculated
with advanced tsam, and (c) profiled time series are shown for the technologies PV, wind
power, FPP, and IPP of the PV+WIND scenario.

The next example shows an application of profiled time series. As already introduced,
not only the aggregation of time series is relevant to practitioners of energy system models
but also the selection of representative annual time series (or year). As shown by the CNR
analysis, there are multiple time series parameters that need to be taken into account when
selecting a representative year. Alternatively, the selection of a representative annual time
series can be included in the aggregation and profiling. Instead of annual time series, time
series covering multiple years are aggregated and profiled according to the overall time series
characteristics. The Figures 5.2 and 5.3 show the modeling results of original, aggregated and
profiled time series when two or five years of data are considered. The aggregated and profiled
time series include six to twenty days and are applied in the PV+WIND scenario. The deviation
(ME) of aggregated time series derived from original time series of two years is on average
between -2.9 GW and 12.5 GW, whereas profiling has an average deviation of -0.6 GW to
0.0 GW. The deviations of both, aggregated and profiled time series are slightly higher when
they are representing time series of five years. The aggregated time series have an average
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Figure 5.2: Distribution of the modeling results as deviation from the original results or average
result shown as a box plot and histogram. The original time series compromises two years.
The modeling results of (a) original time series, (b) aggregated time series calculated with
default tsam, and (c) profiled time series are shown for the technologies PV, wind power, FPP,
and IPP of the PV+WIND scenario.

deviation of -7.0 GW to 15.6 GW and profiling reaches an average deviation between -2.7 GW
and 0.5 GW. Thus, multiple years with up to 1825 days can be aggregated and profiled by a
maximum of 20 days (1 % of the original data) without losing relevant characteristics of the
original time series.

5.3 Outlook

Not all relevant time series characteristics have been identified yet and further research is
needed to understand and eliminate the remaining deviations. So far, profiling has only been
applied to three scenarios consisting of four power generation technologies represented in a
single-node model. A general transferability of the findings from simple systems (scenario PV
and WIND) to a more complex system (scenario PV+WIND) has been demonstrated in this
thesis. In the next step, an extension and transfer of the profiling algorithm especially to energy
systems with multiple sites should be made. The application of CNR and profiling is not limited
to energy systems and technologies selected in this thesis. Both methods can be transferred
to other energy system configurations with further iRES and storage technologies in a next
step (e.g., energy building model or extended energy system including hydro power) to further
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Figure 5.3: Distribution of the modeling results as deviation from the original results or average
result shown as a box plot and histogram. The original time series compromises five years.
The modeling results of (a) original time series, (b) aggregated time series calculated with
default tsam, and (c) profiled time series are shown for the technologies PV, wind power, FPP,
and IPP of the PV+WIND scenario.

demonstrate the transferability of CNR and profiling. Besides, the profiling algorithm can be
improved, for example, by a day- or data-point-specific weighting to better represent specific
parameters similar to extreme values. The CNR algorithm is computationally extensive and
can be made more efficient, for example, by reversing the calculation from a one-parameter
model to a multi-parameter model. In addition, further research can be carried out to determine
the extent to which time series can be aggregated and profiled across multiple years or to
use profiling for converting historic aggregated time series into future time series considering
expected climate conditions of extreme weather events or changed averages (e.g., [32, 66]).





Chapter 6

Conclusion1

In conclusion, this thesis demonstrates that an information based time series aggregation
approach improves the representation of relevant characteristics of the original time series and,
thus, leads to a higher reliability of the resulting modeling results. A comprehensive analysis
of time series parameters and modeling results as well as the evaluation of aggregation
methods contributes to a better understanding of the interaction between time series and
energy system models. In particular, the proposed profiling method complements existing time
series aggregation methods. The CNR and profiling algorithms are generic and not limited
to the defined energy system and selected time series of this thesis, but can be extended to
additional time series. A general transferability of the findings from simple to complex energy
systems has been shown. Further, CNR and profiling can make a valuable contribution to the
selection of representative time series or years. In addition, modeling with several (profiled)
time series of one or more years is recommended, so that a sensitivity analysis of the model
with regard to the time series is possible and statements regarding the stability of the model
and its results can be made. At best, this thesis motivates and inspires other researchers and
discussed improvements for further research are taken up.

1This chapter is based on the profiling paper - Section 5 [40].
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Appendix A

Extended theoretical background:
Time series analysis

According to Box et al. "[a] time series is a sequence of observations taken sequentially in
time" [9], p.1. Adjacent observations are dependent and the focus of time series analysis is
on developing and applying models describing these inter-dependencies. In this thesis, time
series or data determined from time series are used, so that the application of time series
analysis seems obvious. However, the focus is not on modeling time series but on analyzing
and understanding the interaction between time series and energy system models. Parameters
from the time series analysis that can be used to describe the time series have not been
identified to be relevant. For completeness, the time series analysis is summarized below
based on [9], [10] and [59] that are recommended for further reading.
Models of univariate analysis, for example auto-regressive (AR), moving average (MA) or
combined ARMA models require stationary time series. A time series as a stochastic process
can be characterized by the mean — (Equation 2.1), the variance ff2 (Equation 2.8), the
covariance ‚ as well as the auto-correlation . The latter two are similar to the covariance and
correlation defined in Equation 2.14 and Equation 2.15, but these parameters are related to
the time series itself and not to another time series:

‚k = cov [zt ; zt+k ] = E[(zt − —)(zt+k − —)]]→ b‚k =
1

n

n−kX
t=1

(zt − z)(zt+k − z) (A.1)

k =
cov [zt ; zt+k ]

ff2z
=
‚k
‚0
→ bk =

Pn−k
t=1 (zt − z)(zt+k − z)Pn−k

t=1 (zt − z)2
(A.2)

where time series z compromise t ∈ T observations, lag k is a shifting operator and b: is an
estimate1. A stochastic process is (strictly) stationary if its properties are time independent.
Thus, regardless of the set of observations (by selecting different lag k to shift the timestamps
of the realizations backward or forward), the properties remain unchanged. The white noise is
one particular process that is also included in many models. It is strictly stationary with a mean
of zero and uncorrelated observations (‚k = 0; k 6= 0).
The auto-correlation function (ACF) is used to visualize the auto-correlation by applying differ-
ent lag values k with 0 ≤ k ≤ l and l � n, for example, l < n=4. The partial ACF (PACF)

1Note, that the observations in time series are time stamps, thus i is replaced by t to make it more explicit
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represents an adjusted ACF by removing the linear dependencies between zt and zt+k that
are {zt+1; :::zt+k−1}:

Φkk = corr(zt+k − ẑt+k ; zt − ẑt) (A.3)

with :̂ as regression of zt and zt+k , for example, ẑt = ˛1zt+1+:::+˛k−1zt+k−1 (see Equation
2.20). ACF and PACF are applied to parameterize AR(p), MA(q) or ARMA(p,q) models by
deriving the order p and q as specific lags.
The ACF and PACF can also be applied to identify patterns of a non-stationary time series. For
example, for a demand or PV time series with daily patterns, high auto-correlation for multiples
of 24 hours (k = [24; 48; :::]) can be found. As already indicated by this example, time series
are not stationary but often include trend and seasonal components. Using decomposition,
both components can be identified and removed so that only a random noise component
remains. For example, the classical decomposition model is additive:

zt = mt + st + vt (A.4)

where mt is the trend, st is the seasonal component and vt the random noise. In a first step,
the trend is estimated using a moving average filter for a defined period d = 2q. In a second
step, the seasonal component is estimated after adjusting the time series by its trend. In a
third step, the trend is re-estimated from the adjusted time series according to its seasonal
component before the random noise component is calculated using both, the recalculated
trend and derived seasonal component.
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Figure B.1: Overview of normalized features of the PV scenario included in CNR - part I.
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Figure B.2: Overview of normalized features of the PV scenario included in CNR - part II.
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Figure B.3: Overview of normalized features of the WIND scenario included in CNR - part I.
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Figure B.4: Overview of normalized features of the WIND scenario included in CNR - part II.





Appendix C

Profiling derivation

Duration curve

For recalculating the duration curve, the Equation 3.25-3.29 can be simplified as follows: With
fi = 1 the quantiles q result in q ∈ Q = { 1

|bT ′| ; 2

|bT ′| ; :::} and the step size ‹ = 1

|bT ′| results. The

set of considered time steps for each quantile is

bT ′′1 = {1} ; bT ′′2 = {2} ; :::; bT ′′q =
n
| bT ′|o (C.1)

T ′′1 =

(
0 ≤ t ≤ |T

′|
| bT ′|

)
; T ′′2 =

(
|T ′|
| bT ′| + 1 ≤ t ≤ 2

|T ′|
| bT ′|

)
; ::::; T ′′q =

(
|T ′| − |T

′|
| bT ′| + 1 ≤ t ≤ |T ′|

)
(C.2)

For all t ∈ bT ′′q 63 bB′, the weighting factor and the multiplier results in

bwq =
|T ′′q |
| bT ′′q | =

|T ′|
| bT ′| (C.3)

ffi ;q =

P
t∈T ′′q “i ;t − bwqPt∈bB′∩bT ′′q b“i ;tbwqPt∈bT ′′q \bB′ b“i ;t =

P
t∈T ′′q “i ;tbwqPt∈bT ′′q b“i ;t =

bT ′
T ′

P
t∈T ′′q “i ;tP
t∈bT ′′q “i ;t (C.4)

Thus, the recalculation of the duration curve “i ;t can be expressed as

b“i ;bt ′ =
| bT ′|
|T ′|

X
t∈T ′′q

“i ;t =
| bT ′|
|T ′|

|T ′|
|bT ′| tX

t=1+
|T ′|
|bT ′| (t−1)

“i ;t ∀ bt ′ ∈ bT ′′q \ bB′ (C.5)

Total average

For the alignment of the total average, Equation 3.25-3.29 can be simplified as follows: With
the quantiles q ∈ Q = 0:5 and step size delta = 0:5, we get the time sets

bT ′′ =
n

1 ≤ t ≤ | bT ′|o = bT ′ (C.6)

T ′′ =
˘

1 ≤ t ≤ |T ′|
¯

= T ′ (C.7)
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The weighting factor and the multiplier results in

bw =
|T ′|
| bT ′| (C.8)

ffi ;q =

P
t∈T ′ “i ;t − bwP

t∈bB′ b“i ;tbwP
t∈bT ′′q \bB′ b“i ;t (C.9)

Thus, the recalculation of the average can be expressed as

b“i ;bt ′ =

P
t∈T ′ “i ;t − bwP

t∈bB′ b“i ;tbwP
t∈bT ′\bB′ b“i ;t b“i ;bt ′ ∀ bt ′ ∈ bT ′\ bB′ (C.10)
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Figure D.1: Resulting installed capacities of aggregated time series as deviation from results of
original time series shown for each year and scenario: (a) PV, (b) WIND, and (c) PV+WIND.
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Figure D.2: Resulting installed capacities of profiled time series as deviation from results of
original time series shown for each year and scenario: (a) PV, (b) WIND, and (c) PV+WIND.





Acronyms

cov Covariance
dem Electricity demand
gmean Geometric mean
hmean Harmonic mean
iRES Intermittend Renewable Energies Sources
kcorr Kendall’s correlation
kurt Kurtosis
p p-value
pcorr Pearsons’s correlation
res Residual load
scorr Spearman’s correlation
skew Skewness
tmean Trimmed mean
var Varicance

AIC Akaike’s Information Criterion

BIC Bayesian Information Criterion

CNR Clustering and Nested Based Regression

FPP Flexible Power Plant

GLS Generalized Least Squares

IPP Inert Power Plant
IQR Interquartile Distance

KDD Knowledge Discovery in Databases

LASSO Least Absolute Shrinkage and Selection Operator

MAD Mean Absolute Distance
MAE Mean Absolute Error
ME Mean Error

OLS Ordinary Least Squares

PI Performance Index
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PV Photovoltaic

Q50 50 % quantile

R2 Coefficient of determination

SI Siginificance Index
SSD Sum of Squared Distances
STD Standard Deviation

TSA Time Series Aggregation



Bibliography

[1] O. Abedinia, N. Amjady, and H. Zareipour. A new feature selection technique for load
and price forecast of electrical power systems. IEEE Transactions on Power Systems,
32(1):62–74, 2017. doi:10.1109/TPWRS.2016.2556620. 34

[2] K. Abt. Descriptive data analysis: A concept between confirmatory and exploratory data
analysis. Methods of Information in Medicine, 26(02):77–88, 1987. doi:10.1055/s-

0038-1635488. 20

[3] W. Assenmacher. Deskriptive Statistik. Springer-Lehrbuch. Springer, Berlin, 3rd edition,
2003. doi:10.1007/978-3-662-06562-4. 19, 21, 22, 25

[4] A. Azzalini and B. Scarpa. Data analysis and data mining: An introduction. Oxford
University Press USA, Oxford, 2012. 19, 20

[5] K. Bareiß, Schönleber Konrad, and T. Hamacher. The role of hydrogen, battery- electric
vehicles and heat as flexibility option in future energy systems. 20th European Conference
on Power Electronics and Applications, Riga, Latvia, pages 1–10, 2018. 14

[6] N. Baumgärtner, B. Bahl, M. Hennen, and A. Bardow. Rises3: Rigorous synthesis of
energy supply and storage systems via time-series relaxation and aggregation. Computers
& Chemical Engineering, 127:127–139, 2019. doi:10.1016/j.compchemeng.2019.02.
006. 14, 32

[7] K. A. Bollon and J. S. Long. Testing structural equation models, volume 154 of Sage
focus editions. Sage, Newbury Park, CA, illustrated edition, 1993. 38

[8] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos. Feature selection
for high-dimensional data. Artificial Intelligence: Foundations, Theory, and Algorithms.
Springer, Cham, 2015. doi:10.1007/978-3-319-21858-8. 26

[9] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis:
Forecasting and control. Wiley Series in Probability and Statistics. John Wiley & Sons,
Hoboken, 5th edition, 2016. 89

[10] P. J. Brockwell and R. A. Davis. Introduction to time series and forecasting. Springer,
Cham, 3rd edition, 2016. doi:10.1007/978-3-319-29854-2. 89

[11] T. Burandt, K. Löffler, and K. Hainsch. GENeSYS-MOD v2.0 – Enhancing the global
energy system model: Model improvements, framework changes, and European

105

http://dx.doi.org/10.1109/TPWRS.2016.2556620
http://dx.doi.org/10.1055/s-0038-1635488
http://dx.doi.org/10.1055/s-0038-1635488
http://dx.doi.org/10.1007/978-3-662-06562-4
http://dx.doi.org/10.1016/j.compchemeng.2019.02.006
http://dx.doi.org/10.1016/j.compchemeng.2019.02.006
http://dx.doi.org/10.1007/978-3-319-21858-8
http://dx.doi.org/10.1007/978-3-319-29854-2


106 Bibliography

data set. URL: https://www.diw.de/de/diw_01.c.594278.de/publikationen/

data_documentation/2018_0094/genesys-mod_v2.0_____enhancing_the_

global_energy_system_mode___model_improvements__framework_changes_

_and_european_data_set.html. 14

[12] C. Bussar, P. Stöcker, Z. Cai, L. Moraes Jr., D. Magnor, P. Wiernes, N. van Bracht,
A. Moser, and D. U. Sauer. Large-scale integration of renewable energies and impact
on storage demand in a European renewable power system of 2050 - sensitivity study.
Journal of Energy Storage, 6:1–10, 2016. doi:10.1016/j.est.2016.02.004. 13

[13] S. Chen, Y. Ren, D. Friedrich, Z. Yu, and J. Yu. Sensitivity analysis to reduce duplicated
features in ANN training for district heat demand prediction. Energy and AI, 2:100028,
2020. doi:10.1016/j.egyai.2020.100028. 34

[14] T. Cleff. Deskriptive Statistik und moderne Datenanalyse: Eine computergestützte Ein-
führung mit Excel, PASW (SPSS) und STATA. Gabler, Wiesbaden, 2nd edition, 2012.
doi:10.1007/978-3-8349-7071-8. 22, 25

[15] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals
of Statistics, 32(2):407–499, 2004. doi:10.1214/009053604000000067. 27

[16] ENTSO-E. Historical data. URL: https://www.entsoe.eu/data/dataportal/. 32

[17] A. T. Eseye, M. Lehtonen, T. Tukia, S. Uimonen, and R. John Millar. Machine learning
based integrated feature selection approach for improved electricity demand forecasting
in decentralized energy systems. IEEE Access, 7:91463–91475, 2019. doi:10.1109/
ACCESS.2019.2924685. 34

[18] M. Ester and J. Sander. Knowledge Discovery in Databases: Techniken und Anwendun-
gen. Springer, Berlin, 2000. doi:10.1007/978-3-642-58331-5. 19, 21, 28, 29

[19] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data mining:
Towards a unifying framework. In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, KDD’96, pages 82––88. AAAI Press, 1996.
20

[20] C. Feng, M. Cui, B.-M. Hodge, and J. Zhang. A data-driven multi-model methodology with
deep feature selection for short-term wind forecasting. Applied Energy, 190:1245–1257,
2017. doi:10.1016/j.apenergy.2017.01.043. 34

[21] B. A. Frew and M. Z. Jacobson. Temporal and spatial tradeoffs in power system modeling
with assumptions about storage: An application of the power model. Energy, 117:198–213,
2016. doi:10.1016/j.energy.2016.10.074. 13, 14

[22] O. Grothe and J. Schnieders. Spatial dependence in wind and optimal wind power alloca-
tion: A copula based analysis, 2011. URL: https://www.ewi.uni-koeln.de/cms/wp-
content/uploads/2015/12/EWI-WP-11-05-Spatial-Dependence-in-Wind-Power-

Allocation.pdf. 13

https://www.diw.de/de/diw_01.c.594278.de/publikationen/data_documentation/2018_0094/genesys-mod_v2.0_____enhancing_the_global_energy_system_mode___model_improvements__framework_changes__and_european_data_set.html
https://www.diw.de/de/diw_01.c.594278.de/publikationen/data_documentation/2018_0094/genesys-mod_v2.0_____enhancing_the_global_energy_system_mode___model_improvements__framework_changes__and_european_data_set.html
https://www.diw.de/de/diw_01.c.594278.de/publikationen/data_documentation/2018_0094/genesys-mod_v2.0_____enhancing_the_global_energy_system_mode___model_improvements__framework_changes__and_european_data_set.html
https://www.diw.de/de/diw_01.c.594278.de/publikationen/data_documentation/2018_0094/genesys-mod_v2.0_____enhancing_the_global_energy_system_mode___model_improvements__framework_changes__and_european_data_set.html
http://dx.doi.org/10.1016/j.est.2016.02.004
http://dx.doi.org/10.1016/j.egyai.2020.100028
http://dx.doi.org/10.1007/978-3-8349-7071-8
http://dx.doi.org/10.1214/009053604000000067
https://www.entsoe.eu/data/dataportal/
http://dx.doi.org/10.1109/ACCESS.2019.2924685
http://dx.doi.org/10.1109/ACCESS.2019.2924685
http://dx.doi.org/10.1007/978-3-642-58331-5
http://dx.doi.org/10.1016/j.apenergy.2017.01.043
http://dx.doi.org/10.1016/j.energy.2016.10.074
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2015/12/EWI-WP-11-05-Spatial-Dependence-in-Wind-Power-Allocation.pdf
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2015/12/EWI-WP-11-05-Spatial-Dependence-in-Wind-Power-Allocation.pdf
https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2015/12/EWI-WP-11-05-Spatial-Dependence-in-Wind-Power-Allocation.pdf


Bibliography 107

[23] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003. 26

[24] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine learning, 46:389–422, 2002. doi:10.1023/A:
1012487302797. 26

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA
data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10–18,
nov 2009. doi:10.1145/1656274.1656278. 26

[26] J. Han, M. Kamber, and J. Pei. Data mining: Concepts and techniques. The Morgan
Kaufmann series in data management systems. Elsevier/Morgan Kaufmann, Amsterdam,
3rd edition, 2012. 19, 20, 21, 22, 28

[27] T. Hastie, M. Wainwright, and R. Tibshirani. Statistical learning with Sparsity: The lasso
and generalizations. Monographs on statistics and applied probability 143. CRC Press
LLC, Boca Raton, 2015. 22, 27

[28] A. E. Hoerl and R. W. Kennard. Ridge regression. In Encyclopedia of Statistical Sciences,
8:129–136, 1988. 25

[29] M. Hoffmann, L. Kotzur, and D. Stolten. The pareto-optimal temporal aggre-
gation of energy system models. Applied Energy, 315:119029, 2022. URL:
https://www.sciencedirect.com/science/article/pii/S0306261922004342,
doi:10.1016/j.apenergy.2022.119029. 82

[30] M. Hoffmann, J. Priesmann, L. Nolting, A. Praktiknjo, L. Kotzur, and D. Stolten. Typical
periods or typical time steps? A multi-model analysis to determine the optimal temporal
aggregation for energy system models. Applied Energy, 304:117825, 2021. doi:10.

1016/j.apenergy.2021.117825. 14

[31] W. H. Jefferys and J. O. Berger. Ockham’s razor and bayesian analysis. American
Scientist, 80(1):64–72, 1992. 38

[32] S. Jerez, I. Tobin, R. Vautard, J. P. Montávez, J. M. López-Romero, F. Thais, B. Bartok,
O. B. Christensen, A. Colette, M. Déqué, G. Nikulin, S. Kotlarski, E. van Meijgaard, C. Te-
ichmann, and M. Wild. The impact of climate change on photovoltaic power generation in
europe. Nature communications, 6:1–8, 2015. doi:10.1038/ncomms10014. 85

[33] H. Jiang and Y. Dong. A novel model based on square root elastic net and artificial
neural network for forecasting global solar radiation. Complexity, 2018:1–19, 2018.
doi:10.1155/2018/8135193. 26, 34

[34] Johannes Dorfner, Konrad Schönleber, Magdalena Dorfner, sonercandas, froehlie,
smuellr, dogauzrek, WYAUDI, Leonhard-B, lodersky, yunusozsahin, adeeljsid, Thomas
Zipperle, Simon Herzog, kais siala, and Okan Akca. tum-ens/urbs: urbs v1.0.1, 2019.
doi:10.5281/zenodo.3265960. 14, 32

http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1145/1656274.1656278
https://www.sciencedirect.com/science/article/pii/S0306261922004342
http://dx.doi.org/10.1016/j.apenergy.2022.119029
http://dx.doi.org/10.1016/j.apenergy.2021.117825
http://dx.doi.org/10.1016/j.apenergy.2021.117825
http://dx.doi.org/10.1038/ncomms10014
http://dx.doi.org/10.1155/2018/8135193
http://dx.doi.org/10.5281/zenodo.3265960


108 Bibliography

[35] C. Kath and F. Ziel. The value of forecasts: Quantifying the economic gains of accurate
quarter-hourly electricity price forecasts. Energy Economics, 76:411–423, 2018. doi:

10.1016/j.eneco.2018.10.005. 26, 27

[36] L. Kotzur, P. Markewitz, M. Robinius, and D. Stolten. Impact of different time series
aggregation methods on optimal energy system design. Renewable Energy, 117:474–
487, 2018. doi:10.1016/j.renene.2017.10.017. 14, 31

[37] N. Ludwig, S. Feuerriegel, and D. Neumann. Putting big data analytics to work: Feature
selection for forecasting electricity prices using the lasso and random forests. Journal of
Decision Systems, 24(1):19–36, 2015. doi:10.1080/12460125.2015.994290. 26, 34

[38] R. O. Mueller. Basic principles of structural equation modeling. Springer, New York, 1996.
doi:10.1007/978-1-4612-3974-1. 38

[39] I. M. Müller. Feature selection for energy system modeling: Identification of relevant
time series information. Energy and AI, 4:100057, 2021. doi:10.1016/j.egyai.2021.
100057. 14, 17, 24, 26, 34, 41, 57, 79, 80

[40] I. M. Müller. Energy system modeling with aggregated time series: A profiling approach.
Applied Energy, 322:119426, 2022. doi:10.1016/j.apenergy.2022.119426. 13, 14,
17, 28, 31, 42, 57, 62, 74, 79, 80, 87

[41] I. M. Müller, M. Reich, F. Warmer, H. Zohm, T. Hamacher, and S. Günter. Analysis
of technical and economic parameters of fusion power plants in future power systems.
Fusion Engineering and Design, 146(B):1820–1823, 2019. doi:10.1016/j.fusengdes.
2019.03.043. 14

[42] P. Nahmmacher, E. Schmid, L. Hirth, and B. Knopf. Carpe diem: A novel approach to
select representative days for long-term power system modeling. Energy, 112:430–442,
2016. doi:10.1016/j.energy.2016.06.081. 13, 14, 30, 31

[43] R. Nisbet, J. F. Elder, and G. Miner. Handbook of statistical analysis and data mining
applications. Academic Press/Elsevier, Amsterdam and Boston, 2009. 19, 20, 26

[44] Observ’ER, TNO Energy Transition, RENAC, Frankfurt School of Finance
and Management, Fraunhofer ISI and Statistics Netherlands. The state
of renewable energies in europe: Edition 2019 - 19th EurObserv’ER Re-
port. URL: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/

2020/The-state-of-renewable-energies-in-Europe-2019.pdf. 31

[45] S. K. Paramasivan and D. Lopez. Forecasting of wind speed using feature selection
and neural networks. International Journal of Renewable Energy Research (IJRER),
6(3):833–837, 2016. doi:10.20508/ijrer.v6i3.3855.g6866. 34

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 27, 28, 43

http://dx.doi.org/10.1016/j.eneco.2018.10.005
http://dx.doi.org/10.1016/j.eneco.2018.10.005
http://dx.doi.org/10.1016/j.renene.2017.10.017
http://dx.doi.org/10.1080/12460125.2015.994290
http://dx.doi.org/10.1007/978-1-4612-3974-1
http://dx.doi.org/10.1016/j.egyai.2021.100057
http://dx.doi.org/10.1016/j.egyai.2021.100057
http://dx.doi.org/10.1016/j.apenergy.2022.119426
http://dx.doi.org/10.1016/j.fusengdes.2019.03.043.
http://dx.doi.org/10.1016/j.fusengdes.2019.03.043.
http://dx.doi.org/10.1016/j.energy.2016.06.081
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2020/The-state-of-renewable-energies-in-Europe-2019.pdf
https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2020/The-state-of-renewable-energies-in-Europe-2019.pdf
http://dx.doi.org/10.20508/ijrer.v6i3.3855.g6866


Bibliography 109

[47] S. Pfenninger. Dealing with multiple decades of hourly wind and pv time series in energy
models: A comparison of methods to reduce time resolution and the planning implications
of inter-annual variability. Applied Energy, 197:1–13, 2017. doi:10.1016/j.apenergy.
2017.03.051. 13, 14, 31, 32, 42

[48] S. Pfenninger and B. Pickering. Calliope: A multi-scale energy systems modelling
framework. Journal of Open Source Software, 3(29):825–826, 2018. doi:10.21105/

joss.00825. 14

[49] S. Pfenninger and I. Staffell. Long-term patterns of European PV output using 30 years
of validated hourly reanalysis and satellite data. Energy, 114:1251–1265, 2016. doi:

10.1016/j.energy.2016.08.060. 32

[50] M. Pirhooshyaran, K. Scheinberg, and L. V. Snyder. Feature engineering and forecasting
via derivative-free optimization and ensemble of sequence-to-sequence networks with
applications in renewable energy. Energy, 196:117136, 2020. doi:10.1016/j.energy.
2020.117136. 34

[51] K. Poncelet, H. Höschle, E. Delarue, A. Virag, and W. D’haeseleer. Selecting repre-
sentative days for capturing the implications of integrating intermittent renewables in
generation expansion planning problems. IEEE TRANSACTIONS ON POWER SYS-
TEMS,, 32(3):1936–1948, 2017. doi:10.1109/TPWRS.2016.2596803. 14, 31, 32, 44

[52] L. A. Roberto, J.-W. Arnulf, V. Marika, S. Bergur, M. Davide, J. Mindau-
gas, P. F. M. Del Mar, L. Stavros, G. Jacopo, W. R. Eveline, et al. ETRI
2014-energy technology reference indicator projections for 2010-2050, 2014.
URL: https://op.europa.eu/en/publication-detail/-/publication/79a2ddbd-

5ba1-4380-93af-2ce274a840f0/language-en. 11, 32, 33

[53] T. A. Runkler. Data analytics: Models and algorithms for intelligent data analysis. Springer
Vieweg, Wiesbaden, 2nd edition, 2016. doi:10.1007/978-3-658-14075-5. 19, 20, 22,
28, 30

[54] G. Savvidis, K. Siala, C. Weissbart, L. Schmidt, F. Borggrefe, S. Kumar, K. Pittel,
R. Madlener, and K. Hufendiek. The gap between energy policy challenges and model
capabilities. Energy Policy, 125:503–520, 2019. doi:10.1016/j.enpol.2018.10.033.
14

[55] N. Scarlat, J.-F. Dallemand, F. Monforti-Ferrario, M. Banja, and V. Motola. Renewable
energy policy framework and bioenergy contribution in the European Union – an overview
from national renewable energy action plans and progress reports. Renewable and
Sustainable Energy Reviews, 51:969–985, 2015. doi:10.1016/j.rser.2015.06.062.
13

[56] K. Schermelleh-Engel, H. Moosburger, and H. Müller. Evaluating the fit of structural
equation models:tests of significance and descriptive goodness-of-fit measures. Methods
of Psychological Research Online 2003, 8(2):23–74, 2003. 38, 40

http://dx.doi.org/10.1016/j.apenergy.2017.03.051
http://dx.doi.org/10.1016/j.apenergy.2017.03.051
http://dx.doi.org/10.21105/joss.00825
http://dx.doi.org/10.21105/joss.00825
http://dx.doi.org/10.1016/j.energy.2016.08.060
http://dx.doi.org/10.1016/j.energy.2016.08.060
http://dx.doi.org/10.1016/j.energy.2020.117136
http://dx.doi.org/10.1016/j.energy.2020.117136
http://dx.doi.org/10.1109/TPWRS.2016.2596803
https://op.europa.eu/en/publication-detail/-/publication/79a2ddbd-5ba1-4380-93af-2ce274a840f0/language-en
https://op.europa.eu/en/publication-detail/-/publication/79a2ddbd-5ba1-4380-93af-2ce274a840f0/language-en
http://dx.doi.org/10.1007/978-3-658-14075-5
http://dx.doi.org/10.1016/j.enpol.2018.10.033
http://dx.doi.org/10.1016/j.rser.2015.06.062


110 Bibliography

[57] S. Seabold and J. Perktold. Statsmodels: Econometric and statistical modeling with python.
Proceedings of the 9th Python in Science Conference (SciPy 2010), pages 92–96, 2010.
doi:10.25080/Majora-92bf1922-011. 25, 38

[58] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x. 34

[59] R. H. Shumway and D. S. Stoffer. Time series analysis and its applications: With R
examples. Springer Texts in Statistics. Springer, Cham, 4th edition, 2017. doi:10.1007/
978-3-319-52452-8. 25, 89

[60] K. Siala and M. Y. Mahfouz. Impact of the choice of regions on energy system models.
Energy Strategy Reviews, 25:75–85, 2019. doi:10.1016/j.esr.2019.100362. 13

[61] H. Son and C. Kim. Forecasting short-term electricity demand in residential sector
based on support vector regression and fuzzy-rough feature selection with particle swarm
optimization. Procedia Engineering, 118:1162–1168, 2015. doi:10.1016/j.proeng.

2015.08.459. 34

[62] A. Steland. Basiswissen Statistik: Kompaktkurs für Anwender aus Wirtschaft, Informatik
und Technik. Springer-Lehrbuch. Springer Spektrum, Berlin, 4th edition, 2016. doi:

10.1007/978-3-662-49948-1. 22

[63] P. Stenzel, J. Linssen, J. Fleer, and F. Busch. Impact of temporal resolution of supply
and demand profiles on the design of photovoltaic battery systems for increased self-
consumption. 2016 IEEE International Energy Conference (ENERGYCON), pages 1–6,
2016. doi:10.1109/ENERGYCON.2016.7514010. 32

[64] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne, R. Yurchak,
M. Rußwurm, K. Kolar, and E. Woods. Tslearn, a machine learning toolkit for time
series data. Journal of Machine Learning Research, 21(118):1–6, 2020. URL: http:
//jmlr.org/papers/v21/20-091.html. 36

[65] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996. doi:10.1111/j.

2517-6161.1996.tb02080.x. 26, 27

[66] I. Tobin, S. Jerez, R. Vautard, F. Thais, E. van Meijgaard, A. Prein, M. Déqué, S. Kotlarski,
C. F. Maule, G. Nikulin, T. Noël, and C. Teichmann. Climate change impacts on the power
generation potential of a European mid-century wind farms scenario. Environmental
Research Letters, 11(3):034013, 2016. doi:10.1088/1748-9326/11/3/034013. 85

[67] J. W. Tukey. We need both exploratory and confirmatory. The American Statistican,
34(1):23–25, 1980. 20

[68] B. Uniejewski, G. Marcjasz, and R. Weron. Understanding intraday electricity markets:
Variable selection and very short-term price forecasting using lasso. International Journal
of Forecasting, 35(4):1533–1547, 2019. doi:10.1016/j.ijforecast.2019.02.001.
27, 34

http://dx.doi.org/10.25080/Majora-92bf1922-011
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/978-3-319-52452-8
http://dx.doi.org/10.1007/978-3-319-52452-8
http://dx.doi.org/10.1016/j.esr.2019.100362
http://dx.doi.org/10.1016/j.proeng.2015.08.459
http://dx.doi.org/10.1016/j.proeng.2015.08.459
http://dx.doi.org/10.1007/978-3-662-49948-1
http://dx.doi.org/10.1007/978-3-662-49948-1
http://dx.doi.org/10.1109/ENERGYCON.2016.7514010
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1088/1748-9326/11/3/034013
http://dx.doi.org/10.1016/j.ijforecast.2019.02.001


Bibliography 111

[69] B. Uniejewski, J. Nowotarski, and R. Weron. Automated variable selection and shrinkage
for day-ahead electricity price forecasting. Energies, 9(8):621, 2016. doi:10.3390/

en9080621. 28

[70] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
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