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Abstract

Towards Reproducible, Stable, and Robust Machine Learning Research in Clinical Environments
is a dissertation that guides researchers to analyze their work through the lens of clinical
deployment. It highlights the challenges a research project faces when considering clinical
translation and the considerations needed to overcome them. It emphasizes the importance of
healthcare data in medicine and showcases academic contributions and relevant publications.
Finally, it summarizes the results of the work and provides future directions, thus providing a
broad outlook.



Zusammenfassung

Towards Reproducible, Stable, and Robust Machine Learning Research in Clinical Environments
ist eine Dissertation begleitet Forschende dabei, ihre Arbeit am Maf3stab der klinischen
Anwendung zu priifen. Sie beleuchtet die Herausforderungen der klinischen Translation und
zeigt Strategien zu deren Bewiltigung. Kernpunkte sind die Bedeutung klinischer Daten
in der Medizin sowie akademische Beitrdge und relevante Publikationen. AbschlieBend
fasst die Arbeit die Ergebnisse zusammen und weist Zukunftsperspektiven auf, wodurch ein
umfassender Ausblick entsteht.
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Introduction and Background






Motivation

1.1 Role of Imaging in Modern Healthcare

Imaging has a crucial role in modern healthcare as it provides physicians with the ability to
observe the internal structural, pathological, and physiological properties of the body and
enables diagnostic, prognostic, therapeutic, as well as interventional assessments [122]. Some
of the common medical imaging modalities are radiology (such as ultrasonography, x-rays,
mammography, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear
medicine) and microscopy (histopathology). Each imaging modality specializes in a specific
type of structure or function of the body. For example, x-rays are useful for imaging calcified
structures such as bones, magnetic resonance images are good for soft tissues, and microscopy
images are good for understanding the morphological characteristics of diseases. However,
together, these technologies have ensured that they are a vital tool for improving the overall
quality and safety of healthcare.

In a drive to personalize medicine, and with technical milestones in healthcare leapfrogging
over each other, healthcare data has become increasingly complicated and feature-rich (for
example, generation of high-density gene maps, and usage of dictation tools to generate
medical reports) [49]. With every passing year, the radiology and microscopy scanning
resolution is getting better, thus producing higher-resolution images with more information
[31]. Individual samples from each source of healthcare information can be thought of as
individual data points. Due to its sensitive nature and potential impact, each data point
requires careful evaluation, and analyzing the increasing breadth and depth of the generated
data can be exhausting to clinical experts. To address this issue, many initiatives (both in terms
of academic research community and commercial products) have been undertaken to develop,
test, and ultimately apply computational methods to discover meaningful connections among
these data points, thus potentially easing the workload of clinical experts.

1.2 Overview of Healthcare Data Analysis

Statistical modeling, machine learning, and deep learning are three interconnected fields
that play a crucial role in data analysis and prediction (see Figure 1.2 for an illustra-
tion). Statistical modeling (which is termed as artificial intelligence (AI) in recent years
[russell2010artificial]) is a fundamental approach that involves the use of rule-based systems
to perform predictive analysis. These systems rely on predefined rules and mathematical equa-
tions to analyze data and make predictions. On the other hand, machine learning (ML) takes
a more dynamic approach. It involves training statistical models that learn from a dataset,
which can be either labeled or unlabeled, to make predictions or decisions on previously



Deep Learning

Using neural networks to
learn from vast datasets

Machine Learning

Ability to learn without
instructions

Statistical Modeling

Ability to learn and
reason

Increasing Computational Requirements
and model accuracy

Fig. 1.1. An illustration of the various computational techniques used for data analysis, in association to their
increasing computational requirements and model utility. While statistical modeling is one of the first
class of methodologies to have been developed that were given the moniker of artificial intelligence,
strides in this research area has given rise to a multitude of techniques which can be broadly classified as
machine learning. Deep learning is a unique subset of machine learning techniques because of the
way it learns from training data.

unseen data samples based on engineered or hand-crafted “features” in the dataset. This
learning process involves the use of algorithms that can learn and improve from experience.
Lastly, deep learning (DL) is a special category within ML. It utilizes artificial neural networks
to automatically tune the features used for training a model. This automatic feature tuning is
what sets DL apart, allowing it to deliver superior performance in a myriad of tasks such as
image and speech recognition. Together, these three fields form the backbone of data analysis
and predictive modeling tasks in computational healthcare.

One of the earliest mechanisms that enabled computational analysis of healthcare imaging data
was defining characteristic “features” in images via the use of radiomics [haralick1973textural].
Radiomic features describe the extraction of quantitative feature attributes that capture textu-
ral and morphological characteristics within and outside specific regions of interest, such as
healthy white matter or necrotic tumor tissue in MRI [47, 116]. They can quantify shape, size,
texture, and intensity of tissue and lesions in an image, and can reveal information that cannot
be clearly discerned by the naked eye [traverso2018repeatability]. They can help doctors
garner increased insight from images, and thus help diagnose diseases, predict patient out-
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comes, and plan treatments based on the quantitative characteristics of each patient’s imaging
characteristics. By combining these features with other types of health data, such as genetics,
histology, or clinical records, physicians can obtain a more comprehensive understanding of
the pathology and the patient [61, 62, 87].

Radiomic features have allowed algorithmic analysis of a large number of features from
multiple images at the same time, thus enabling population or cohort-based analysis [91].
This, in turn, has facilitated the ability to generate ML models that correlate with clinical out-
comes, such as diagnosis, prognosis, or treatment response [86], thereby furthering the goals
of precision medicine. These models can be based on “more traditional” (ML algorithms
[khan2020review, kansara2020comparison, chowdhury2022prediction] (such as sup-
port vector machines [vapnik2006estimation], random forests [breiman2017classification],
so on) to perform regression or classification tasks, or clustering approaches that learn from
the radiomic features and other relevant clinical data (such as clinical or genomic information)
[24]. Another paradigm to process healthcare data, and especially imaging data, at scale,
is via DL models, which have been applied in a variety of domains and demonstrated great
potential. Some of them are quantum physics [17], image registration [21, 57], predictive
modeling [5], semantic segmentation [36, 51, 55, 102], segmentation of regions of interest
(such as tumors) in medical images [12, 13, 14, 60, 65, 96, 103], medical landmark detection
[37, 121], among many others [83, 98, 99].

One of the key differences between DL and traditional ML lies in their approach to how they
use relevant features for the problem at hand. DL utilizes multiple filtering layers, with each
layer learning distinct attributes from the data. These layers progressively extract higher-level
features, allowing for increased specialization as we move deeper into the network [56]. The
filters within these layers adjust themselves during the entire training process, fine-tuning their
weights to optimize performance, eventually resulting in a cascade of increasingly specialized
feature representations. In contrast, traditional (ML) approaches rely on either hand-crafted
radiomic features [125] or features extracted from pre-trained DL models or a combination of
both to adapt a predefined algorithms to the problem or task at hand. Statistical modeling can
be used to perform feature selection to select the most appropriate features for the specific
task [sun2019comparison].

Both ML and DL have their unique merits and drawbacks. DL is computationally expensive but
excels in tasks such as image recognition, natural language processing, and complex pattern
recognition. On the other hand, traditional (ML) and statistical modeling techniques can be
tailored to focus on specific clinically relevant features, making them interpretable and easier
to understand. An illustration of the relationship of these methods can be seen in Figure 1.1
and Figure 1.2.

1.3 Criteria for Meaningful Computational Analysis

Reproducibility and stability in computational healthcare research have been a long-standing
concern. This is especially true for DL, where the training process tends to be highly stochastic
in nature [34], and the training mechanism for a model is usually not very intuitive and
explainable [41]. This is especially egregious in the healthcare domain, where the robustness,

1.3 Criteria for Meaningful Computational Analysis



Deep Learning

Using vast
networks of neural
networks for
training

Machine Learning

Support vector
machines, random
forests, and so on.

Statistical Modeling

Any rule-based system
that can perform
predictive analysis

Increasing Computational Requirements
and model accuracy

Fig. 1.2. An illustration of the inter-relationship between the various computational techniques used for data
analysis. Statistical modeling can be interpreted as the foundational technique, which describes any
method that can perform rule-based predictions. Machine learning techniques are more specialized
techniques that require prior information from the data to “learn”. Deep learning is a unique subset of
machine learning techniques because it uses vast networks of neural networks to automatically tune the
features of the data it is provided with.

stability, and reproducibility of the model is of prime importance with regards to regulatory
bodies [8, 113], and is necessary to improve standard of care [18, 63]. As illustrated in
Figure 1.3, the ideal algorithm should balance all these fundamental principles:

1. Reproducibility is the ability of an Al model to generate the same results when it is run
multiple times with the same data and parameters. For example, a reproducible (ML)
model should produce the same accuracy and predictions when it is trained and tested on
the same dataset with the same hyperparameters and random seeds. Reproducibility can
be ensured by following best practices in software development, such as documentation,
version control, unit testing, and code review [18, 63].

2. Stability or Generalizability is the property of an Al model to produce consistent and
reliable predictions while preserving the “model utility” (defined as the performance of
the model by taking the specific task into account [67]) when the input data is slightly
perturbed or disturbed. For example, a stable image classification model should not
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Robustness

Ideal

Stability Reproducibility

Fig. 1.3. The ideal (ML) model is one that is able to perform with an acceptable level of model utility (i.e., stable)

regardless of any perturbations or issues in the data (i.e., robust), and giving the same outputs every
single time (i.e., reproducible).

change its prediction drastically when a pixel is changed or added. A stable regression
model should not produce very different outputs when the input values are rounded or
truncated. Stability can be measured by using various metrics and techniques, such as
sensitivity analysis, Lipschitz continuity, and smoothness [107].

3. Robustness is the ability of an AI model to maintain its performance and accuracy
when faced with changes in the data, such as noise, outliers, or adversarial attacks. For
example, a robust face recognition model should be able to recognize faces regardless
of lighting, angle, or occlusion. For example, a robust natural language processing
model should be able to understand sentences regardless of spelling, grammar, or slang.
Robustness can be improved by using various methods and approaches in different
phases of the (ML) pipeline, such as data preprocessing, augmentation, regularization,
and adversarial training [81, 106].

In addition to a model being reproducible and robust, it needs to ensure stability by being
generalizable to new data to ensure that the promise of precision medicine gets fulfilled.
This, in turn, is inextricably linked to data diversity, both in terms of the imaging protocols
used and the demographics of the patient populations included in the training dataset. It has
been shown that models trained on diverse data are more robust and stable [72], leading to
predictions that are consistent across different scanners, protocols, modalities, and patient
demographic profiles. This characteristic is crucial for clinical translation of the model, as it
allows for the development of tools that can be confidently applied in real-world settings and
have a notable impact on improving the standard of care.

Achieving diversity in the training data is the first step towards developing a reproducible,
robust, and stable model. For precision medicine to truly flourish, we need further avenues to

1.3 Criteria for Meaningful Computational Analysis
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obtain open and accessible data. Open data refers to data that is freely available for anyone
to use, analyze, and build upon, with as few restrictions as possible [109]. This promotes
collaboration and innovation, allowing researchers from around the world to work together to
develop new and improved diagnostic and therapeutic approaches. Accessible data, on the
other hand, refers to data that is readily available to researchers, regardless of their technical
expertise or access to resources. This can involve providing data in user-friendly formats,
accompanied by clear documentation and tutorials. Accessible data empowers a wider range
of researchers to contribute to the field, leading to a more diverse and inclusive research
landscape [26]. This is essential for several reasons, such as:

* Open data ensures that researchers can avoid repeating the same experiments and
focus on building upon previous work, which leads to reduction of redundancy and
acceleration of research.

* Open data allows independent verification and validation of research findings, which
builds trust in the scientific process and encourages wider acceptance of precision
medicine approaches.

* Open data enables computational researchers to develop and test new algorithms and
tools on a larger scale, leading to more robust and generalizable solutions.

* By making data accessible, it can be ensured that a much wider array of researchers
have the opportunity to benefit from the advancements in precision medicine, regardless
of their location or resources.

However, data accessibility is often hampered by restrictive licensing agreements. Data
licensing can be complex and time-consuming, and it can impose unnecessary barriers to
research. To truly realize the potential of precision medicine, we need to move towards more
open and flexible data licensing models that encourage collaboration and knowledge sharing.
In all these endeavors, we should keep the privacy of patients in mind [8, 113].

Chapter 1 Motivation



Technical Background

2.1 Software Nomenclature and Taxonomy

Within the landscape of computational research and software development, there are a lot
of different approaches to designing and writing software tools, and each has a unique and
crucial role in advancing open science within the community. At the foundational layer lie
libraries, which provide the low-level building blocks and interact directly with the hardware
systems. They can be interpreted as the “nuts and bolts” of computational research, and
enable basic functionalities needed for further research, such as reading files or performing
calculations. Although libraries offer access to raw power, their true scientific potential is
unlocked through toolkits. These are higher-level abstractions built upon libraries, offering pre-
packaged functionalities for common tasks while making easy functional or modular interfaces
for developers. They can be interpreted as specialized instruments that save researchers’ time
and effort by providing pre-built solutions for various tasks such as data analysis, visualization,
or matrix manipulations. Researchers can customize the appropriate toolkits for their own
needs. However, when it comes to deployment (regardless of whether they are in a clinical
setting or not), specific easy-to-use user interfaces (either graphical or command-line) are
required. When toolkits are given this capability, they can be termed applications. They can be
interpreted as the microscopes or spectrometers of the digital world, allowing researchers to
directly interact with their data and perform complex analyses. Finally, there is a class of hybrid
software known as frameworks, which straddle the line between toolkits and applications,
offering both pre-built components and the flexibility to customize them. Frameworks provide
a structured environment for developers to build custom applications, often focusing on
specific research domains or methodologies. It is important to note that these are just general
categories, and there can be significant overlap between them. Some libraries might be quite
complex, while some applications might be highly customizable. An illustration of these
concepts can be seen in Figure 2.1.

2.2 Medical Image Analysis Based on Radiomics

The digitization of healthcare imaging has opened up the ability of large-scale computational
analyses techniques to be applied to these datasets, thus unlocking previously unimaginable
avenues of research. By leveraging radiomic analysis and the support of dedicated software
applications developed alongside advancements in computational imaging, the analysis of
medical images has seen a great deal of research activity. Early on, platforms like the
Medical Imaging Interaction Toolkit (MITK) [115] and 3D Slicer [52] paved the way, offering
user-friendly interfaces and robust radiomic pipelines to democratize the technology for non-
computational researchers. These were followed by tools like the Cancer Imaging Phenomics

13
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Hlustration of the various software terminologies used in open science and their inter-relationships.
Libraries provide access to low-level machine functionality. Toolkits provide abstraction to libraries and
general-purpose functionalities to improve the developer experience. Applications focus on the end-user,
with powerful user interfaces which can be either command line or graphical. Frameworks straddle the
line between toolkits and application.

Toolkit (CaPTk) [27, 76], which further streamlined the process with customizable parameter
configurations for radiomic feature extraction which could be applied in a standardized
manner across entire patient cohorts while respecting intrinsic imaging characteristics (such as
voxel resolution). While these tools leveraged easy-to-use graphical interfaces to expand the
usage of radiomics to non-computational experts, the researchers with a strong computational
background favored tools such as PyRadiomics [110], Medical Image Radiomics Processor
[111], and MATLAB-based radiomics [124] that are purely based on the command line, thus
making their application across population cohorts easier. The ability of the same radiomic
feature parameter configuration to run across entire cohorts of subjects paved the way for
rigorous quantitative analysis of various types of variability analyses [78], advancing the field’s
reliability. Meanwhile, initiatives such as the Image Biomarker Standardization Initiative
(IBSI) [125] emerged, addressing the crucial issue of standardization. IBSI employed both
generic “synthetic” images and real medical data to establish standardized radiomic parameters
and computational configurations. Additional dedicated efforts focused specifically on x-ray
computed tomography (CT) data [64], further solidifying standardization within the field.
With these studies, a standardized nomenclature for radiomic features was established, which
could then be used across the community to give precise definitions and descriptions of their
radiomic extraction pipelines, thus showcasing their applicability for potential in clinical
applications.

Chapter 2 Technical Background



Fig. 2.2.

Deep Learning Describes the automatically extracted features
Features from neural networks

COLLAGE  Describes the statistics of local gradient entropy

Describes the difference between the intensity of a
NGTDM region with the average of its neighboring regions

Describes the zones in an image with same gray
GLSZM level intensity

Describes the number of consecutive pixels with
GLRLM F
same gray level value

Describes the second-order joint probability
GLCM function of an image region

Describes the quantized properties of the raw
intensities

Histogram

Describes the size and shape of the region of
interest

Increasing Co

Intensity  Describes the distribution of voxel intensities

An illustration of the 8 different radiomic feature families along with deep learning based features that
are considered in this thesis, in association to their increasing computational requirements [84, 125]:
intensity-based statistical features (20 descriptors), morphological features (19 descriptors), histogram
features (135 descriptors), Gray-level co-occurrence matrix (GLCM) (6 descriptors), Gray-level run-length
matrix (GLRLM) (16 descriptors), Gray-level size zone matrix (GLSZM) (16 descriptors), Neighborhood
gray tone difference matrix (NGTDM) (5 descriptors), and Co-occurrence of Local Anisotropic Gradient
Orientations (COLLAGE) (52 descriptors). The number of deep learning based features vary with the
type of network and its output channels.

2.2 Medical Image Analysis Based on Radiomics
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2.3 Medical Image Analysis Based on Deep
Learning

As open-source DL libraries such as TensorFlow (2016) [1] and PyTorch (2019) [71] started
entering the sphere of computational imaging, the performance and versatility of algorithms
started increasing dramatically, which was seen in virtually every community-driven computa-
tional challenge [14, 65, 74]. However, all DL algorithms were built as “one-off” solutions
that targeted specific problems, and there was still no way to standardize their highly complex
workflows, which is a critical first step towards ensuring reproducibility in algorithms. Not
only are there significantly more parameters to be considered in comparison to traditional
ML and statistical modeling, but the training and inference pipelines themselves tend to be
more complicated since processing usually happens on image patches rather than full images
because of resource limitations [38]. An additional parameter that increases the complexity is
the fact that DL tended to be highly stochastic in general.

2.4 Considerations for Robust, Stable, and
Reproducible Computational Analysis

There are various considerations that need to be taken into account during a computational
study. Specifically for ones involving imaging, the effect of resolution needs to be understood
and accounted for in a meaningful way. This is a necessity when conducting research that
involves data from multiple scanner protocols [27, 76] to ensure that the extracted features
are properly normalized. This effect has been illustrated in Figure 2.3. There are a few
different mechanisms to take care of this, and each has its corresponding pros and cons, and
this has been showcased in Table 2.1.

For studies leveraging DL, the considerations are a bit different. DL is a highly computationally
expensive method to analyze data, and it requires large quantities of (ideally well-annotated)
data for model training. This limits their applicability in studies which do not have access to
significant quantities of well-curated annotated datasets [112]. This issue can be overcome by
using weights from models trained on public datasets like ImageNet [28], which is known
as transfer learning. This approach potentially reduces convergence time and concludes
the training at a superior state, while utilizing otherwise insufficient data [39, 119]. While
this technique had been used to process healthcare images in 2D (usually by processing
individual slices), a novel method of performing convolutions, called axial-coronal-sagittal
convolutions (ACSConv) [117], allowed transfer learning of model weights trained in 2D to
be used for 3D tasks. This has been illustrated in Figure 2.4.

Chapter 2 Technical Background



Tab. 2.1.

Various methods of mitigating the effects of resolution in a cohort.

Solution Pros Cons
All images will be defined in
Extrapolation would
the same physical space
result in introduction
Resample (i.e., images from Protocol 1 & 2
of “new” data.
all images will both have 10 pixels).
in a cohort
This can be potentially
to the Extracted features will have
mitigated by using
“highest” consistency (bin count = 10).
linear or b-spline
resolution. ] )
) interpolation
Post-resample quality control
during resampling
of the data will be possible.
All images will be defined in
the same physical space
Resample (i.e., images from Protocol 1 & 2
all images will both have 1 pixels).
in a cohort o
Loss of data fidelity.
to the Extracted features will have
“lowest” consistency (bin count = 1).
resolution.
Post-resample quality control
of the data will be possible.
Extracted features will have
Rescale
consistency (bin count will be
features Difficult to implement.
normalized by resolution).
and process
based on Not defined in any
“real” current radiomic standard.
_ Maintain data fidelity
resolution
and no interpolation.

2.5 Deployment of Computational Healthcare
Software Tools

In the last couple of decades, there have been multiple efforts by the open scientific community
towards packaging and distribution of applications that can handle end-to-end processing
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An illustration of the effect of scanner resolutions on extracted features using a synthetic example and a
simple imaging feature, i.e., the histogram count.

of healthcare data, as well as deployment of trained ML models. The applications that have
specifically focused on non-DL based deployments have seen tremendous success in bringing
the tremendous gains in the ML community to the clinical research field, such as the MITK
[115], 3D Slicer [52], ITK-SNAP [120], and CaPTk [27, 76]. The ML models deployed with
these applications have been lauded for their generalizability, but unfortunately fall short
when it comes to competitive performance for specific tasks, where DL excels. However, DL
models are notoriously difficult to deploy, since they usually require specialized hardware
that can perform DL acceleration in order to make the computation more efficient. Numerous
efforts have been put forth in the community to design DL toolkits using TensorFlow [1], such
as NiftyNet [38], DeepNeuro [19], ANTsPyNet [108], and DLTK [80], as well as those written
in PyTorch [71] pymia [48], InnerEye [70], and MONAI [23]. In addition to these, there
are specialized toolkits and libraries that cater to specific workloads, such as segmentation
[46, 73, 103], registration [35], or specialized imaging domains, such as PathML [94], and
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Comparison of various types of convolution for 3D medical data: (a) represents native 2D convolutions,
(b) represents native 3D convolutions, and (c) represents axial-sagittal-coronal convolutions [117].

Tissue Image Analytics Toolbox [82], that focus on data engineering and enabling ML in
computational pathology. All these applications and toolkits have some specific drawbacks,
such as they either i) showcase developer-focused tools targeting experienced members
of the computational healthcare research community; ii) are difficult to understand and
conceptualize by researchers without sufficient experience in the computational aspect of
DL; iii) not provide enough simplistic application programming interfaces to make it easy
for computational scientists to write their methods in a mechanism that allows them to be
used on problems spanning across domains; iv) make it difficult to design training pipelines
that are reproducible while being able to work across various problem domains; v) put the
responsibility of training robust models on the user’s knowledge and experience of dealing with
the training mechanism and the dataset in question; vi) lack an easy to leverage application
programming interface for both the training and inference portions of the pipeline that can
work across various problem domains; or vii) do not provide acceptable level of explainability
or interpretability for researchers to garner meaningful clinical insights into the training or
inference process.

In a typical workflow of a healthcare research study, the structured steps below need to be
considered (see Figure 2.6 for an illustration):

1. The research process begins with the conceptualization and design. This is a critical stage
where the researcher identifies the specific use case and problem that the study aims to
address. The researcher must have a clear understanding of the issue at hand and the
context in which it exists. This understanding is crucial in shaping the direction of the
research. In addition to identifying the problem, the researcher also needs to determine
the data that will be used in the study. This involves a careful evaluation of the data
already available and whether it is sufficient and relevant for the study. If the existing

2.5 Deployment of Computational Healthcare Software Tools
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Fig. 2.5. Ilustration of some of the previous applications, toolkits, and frameworks that paved the way for the
development of the Generally Nuanced Deep Learning Framework (GaNDLF).
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data is inadequate or irrelevant, the researcher may need to acquire new data. This could
involve designing surveys or experiments, conducting interviews, or using other methods
of data collection. Once the problem has been identified and the data requirements
have been determined, the next step is to evaluate the idea for its potential impact.
This involves assessing the potential significance of the research and its implications.
The researcher needs to consider how the findings of the study could contribute to the
existing body of knowledge, and how they could be applied in practical contexts. This
evaluation helps to ensure that the research will be valuable and worthwhile. The final
step in this phase is designing the entire experimental protocol. This involves planning
the methods and procedures that will be used in the research. The researcher needs
to decide on the research design, the sample size, the data collection methods, and
the data analysis techniques. This plan serves as a roadmap for the research, guiding
the researcher through the subsequent stages of the study. They provide a structured
approach to research, helping to ensure that the study is well-planned, rigorous, and
meaningful. This thought process is not a one-time activity but a continuous one, with
the researcher constantly reflecting on and refining the research as it progresses. This
iterative process helps to ensure the quality and integrity of the research, ultimately
leading to more reliable and valid results.

. The next phase in the research process is the technical development phase. This phase
involves a series of complex and critical tasks that are essential for the successful
execution of the research study. The first task in this phase is to design, formulate, and
code the various data input/output (I/O) protocols. These protocols define how data
will be read in into and written out from the computational system. The researcher
needs to carefully design these protocols to ensure that they are efficient, reliable, and
secure. This might involve choosing appropriate data formats, designing user interfaces
for data input, and implementing error checking procedures to ensure data integrity.
Next, the researcher needs to determine how the data curation should occur for the
study. Data curation involves organizing, integrating, and maintaining the data to ensure
its quality and usability. This might involve tasks such as data cleaning, data integration,
and data annotation. The researcher needs to plan these tasks carefully to ensure that
the curated data is accurate, consistent, and suitable for the study. Following this, the
researcher needs to establish the preprocessing and harmonization protocols to be used.
Preprocessing involves preparing the data for analysis, which might include tasks such
as data cleaning, data transformation, and data normalization. Harmonization involves
ensuring that the data is consistent and comparable across different sources or datasets.
The researcher needs to carefully plan these protocols to ensure that the preprocessed
and harmonized data is suitable for the subsequent analysis. Finally, the researcher
needs to design and implement the actual ML algorithm. This involves choosing an
appropriate ML model, training the model with the curated and preprocessed data, and
testing the model to evaluate its performance. The researcher needs to carefully consider
factors such as the complexity of the model, the computational resources required, and
the interpretability of the model’s outputs. All these tasks together form the technical
development phase of the research process. They require a high level of technical
expertise and careful planning to ensure that the research study is conducted efficiently
and effectively. This phase is crucial for the success of the research study, as it directly
impacts the quality of the research findings and the validity of the research conclusions.

2.5 Deployment of Computational Healthcare Software Tools
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3. The research process then proceeds to the algorithmic evaluation phase. This phase is
crucial as it involves the assessment of the ML model’s utility and the validation of the
results obtained. One of the key tasks in this phase is ensuring correct cross-validation
in the dataset [7]. Cross-validation is a statistical method used to estimate the skill
of ML models. It involves partitioning the original sample into a training set to train
the model, and a test set to evaluate it. In k-fold cross-validation, the original sample
is randomly partitioned into k equal sized subsamples. Of the k subsamples, a single
subsample is retained as the validation data for testing the model, and the remaining
k — 1 subsamples are used as training data. The cross-validation process is then repeated
k times, with each of the k subsamples used exactly once as the validation data. The
k results can then be averaged to produce a single estimation. The advantage of this
method over repeated random sub-sampling is that all observations are used for both
training and validation, and each observation is used for validation exactly once. Correct
cross-validation is essential to prevent data leakage, a common problem in ML where
information from outside the training dataset is used to create the model. This can lead
to overly optimistic performance estimates. Another important task in this phase is the
choice of appropriate evaluation metrics for the task at hand [90]. The choice of metric
depends on the specific objectives of the study. For example, if the task is a classification
problem, metrics such as accuracy, precision, recall, F1 score, or area under the ROC
curve might be appropriate. If the task is a regression problem, metrics such as mean
squared error, root mean squared error, mean absolute error, or R squared might be
used. The chosen metric should accurately reflect the goals of the study and should be
robust to the specific characteristics of the data, such as class imbalance or outliers.

The conceptualization and design form the “thought process” for a research study, and
the technical development and algorithmic evaluation can be thought of as the basis for
determining “reproducibility” and “potential clinical translation” of the research study.

2.6 Performance Evaluation

Regardless of the complexity or ease (or lack) of interpretability of a ML algorithm, choosing
appropriate metrics for performance evaluation is a critical final step [90]. There are well-
accepted metrics in literature, and it is imperative for a study to be able to quantify the
performance of all models both during and after training, and mechanisms to incorporate
new validated recommendations [89] as needed. Specifically, for segmentation workloads, the
Dice Similarity Coefficient (DSC) [123], and is mathematically represented in the Equation
2.1. DSC is a common metric used to evaluate the performance of segmentation workloads. It
measures the extent of spatial overlap, while taking into account the intersection between
the predicted label (PL) and the provided ground truth (GT), hence handles over- and
under-segmentation.

2|GT N PL|

DSC = ————
|GT| + |PL|

2.1
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Hlustration of the multiple steps in a research project life-cycle [77]. Starting with the conceptualization
and design of the study, researchers need to think about the technical components and development,
followed by appropriate evaluation of the algorithm. The Generally Nuanced Deep Learning Framework
(GaNDLF) was designed to help the technical development and algorithmic evaluation, thereby enabling
reproducibility and potential clinical translation.

Additionally, the Hausdorff Distance (Hausdorff) [92] is a metric for segmentation workloads,
and is mathematically represented in the Equation 2.2. This metric quantifies the distance
between the boundaries of the ground truth labels against the predicted label. It is sensitive to
local differences, as opposed to DSC, which represents a global measure of overlap. Specifically,
this thesis uses the 95™ percentile of the distance measure when referring to Hausdorff. DSC
is useful when the size and shape of the object are important, whereas Hausdorff becomes
critical when the accuracy of boundary localization is critical.

Hgs(PL,GT) = max {P%% d(p, GT), Pysy, d(g, PL)} (2.2)
peEPL geGT

where d(z,Y) = minyey ||z — y|| is the distance of x to set Y.

Sensitivity (also known as the true positive rate) is the probability of a positive test result,
given that the individual truly has the condition. It measures how well a test can identify true
positives. It's mathematically represented by Equation 2.3.

2.6 Performance Evaluation
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TP

where TP is the number of true positives, and F'N is the number of false negatives when
comparing each pixel of the PL with GT.

Specificity (also known as the true negative rate) is the probability of a negative test result,
given that the individual truly does not have the condition. It measures how well a test can
identify true negatives. It's mathematically represented by Equation 2.4.

TN

Either Sensitivity and Specificity alone cannot adequately describe the picture during
a ML task (specifically, for classification workloads) [90]. Thus, an added metric called
balanced accuracy (Acc) [22] is considered, which can be useful for both binary and multi-
class classification, and is defined the arithmetic mean of sensitivity and specificity (see
Equation 2.5). This metric is especially useful when dealing with imbalanced data, i.e., when
one of the target classes appears a lot more than the other [22].

Sensitivity + Speci ficity

A =
cc B)

(2.5)
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Aims & Obijectives

3.1 Main Aim

The primary objective of this thesis is to provide precise and easy-to-use computational
healthcare software solutions that can effectively address the pressing demand for enhanced

reproducibility, stability, and robustness in various clinical and computational research projects.

These software solutions are designed to facilitate the analysis, interpretation, and visualization
of complex biomedical data, as well as to support the development and validation of novel
computational models and methods for healthcare applications.

3.2 Obijectives

The objectives of this work are the following:

1. Implementation, systematic evaluation, and identification of computational imaging
features, towards robust and reproducible research.

2. Development of a stable codebase that can support long-term monitoring of the validity
of computational model utility.

3. Generation of baseline results using the provided data in a quick and reliable manner.

4. Reduce the amount of required data required to train robust models.

3.3 Contributions

The interdisciplinary nature of this study facilitates a dual perspective assessment of its
academic contributions, primarily through its technical novelty involving the development
and implementation of computational solutions, and secondarily through its potential clinical
relevance. The technical novelty introduced in this study directly aligns with the predefined
project objectives, enhancing the fulfillment of key research goals. These novel computational
solutions, paramount to achieving the study’s objectives, concurrently serve as foundational
elements supporting the potential clinical value of its research outcomes. The relationship
between the thesis’ objectives, the technical novelty, and clinical relevance is visually illustrated
in Figure 3.1, providing a comprehensive overview of the interplay among these critical
components.

25



26

The key technical novelties of this thesis are the following:

1. Systematic evaluation of radiomics robust to segmentation variability across read-
ers/sites.

2. Develop a “zero-/low-code” framework for computational healthcare model develop-
ment.

3. Develop a framework incorporating “good” ML practices.

4. Develop a software tool that leverages the unprecedented size of computer vision 2D
data and facilitates native 3D medical image analysis.

The potential clinical value of this thesis comprises the following:

1. Provide reproducible imaging features that can capture the relevant information from
medical images and facilitate the analysis and interpretation of complex data.

2. Produce computational models that can generalize well to unseen data and maintain
their utility and robustness across different settings.

3. Expedite the model development process by using efficient and scalable algorithms
that can handle large and complex datasets, while being able to optimize the model
parameters in a fast and reliable manner.

4. Lower the resource requirements for training (by leveraging transfer learning in a
scalable manner), and inference (by optimizing the models so that they can run without
any need for specialized hardware).

5. Enable researchers to develop DL models without coding by providing user-friendly
and intuitive software tools that can automate the various steps in the model creation,
evaluation, and deployment process.

3.4 Thesis Structure

Part I gives an introduction to the complete thesis, including both the motivation (Chapter 1)
and the necessary technical background (Chapter 2). Chapter 1 contains information essential
to introduce the reader to i) the role that imaging holds in modern healthcare (Section 1.1), ii)
a historic overview of healthcare data analysis (Section 1.2), and iii) major criteria considered
for clinically-impactful and clinically-relevant computational analysis (Section 1.3). Chapter 2
is then diving into the technical background necessary to follow the academic contributions of
this thesis. The technical background specifically touches upon nomenclature and a taxonomy
of computational healthcare software (Section 2.1) followed by the two major paradigms for
medical image analysis (Sections 2.2-2.3). Considerations for robust, stable, and reproducible
computational analysis are then described (Section 2.4) to allow for smoother deployment of
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Ilustration of the interplay among thesis objectives, technical novelty, and clinical relevance. Arrows
linking the initial two columns signify the objectives to which each novelty contributes. Likewise, arrows
connecting the second and third columns indicate the technical innovations that underpin each clinical
value.

these tools (Section 2.5), as well as appropriate metrics for their quantitative performance
evaluation (Section 2.6).

Part II consists of three peer-reviewed publications [9, 77, 78], which make up the main
academic contributions of this thesis. Each of these journal and conference papers is presented
in a self-contained section, starting with a summary of the publication.

Part III then provides a summary of the thesis and discussion in Chapter 7 and outlook in
Chapter 8.

Finally, Part IV is the Appendix, and provides the abstracts from publications [25, 27, 42,
50, 75, 76, 104] that are not directly relevant to the evaluation of this thesis, but act as a
complement to the main publications by presenting initial findings and projects related to
main themes of the thesis in Chapter A, and the complete bibliography in Chapter B.

3.4 Thesis Structure
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Purpose: The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy
Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic
markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address
two critical challenges with regard to developing robust radiomic approaches: (a) the lack
of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e.,
enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and
(b) identifying “reproducible” radiomic features that are robust to segmentation variability
across readers/sites. Acquisition and validation methods: From TCIAs Ivy GAP cohort,
we obtained a paired set (n = 31) of expert annotations approved by two board-certified
neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case
Western Reserve University (CWRU). For these studies, we performed a reproducibility study
that assessed the variability in (a) segmentation labels and (b) radiomic features, between
these paired annotations. The radiomic variability was assessed on a comprehensive panel
of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based,
and textural parameters, extracted for each of the paired sets of annotations. Our results
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demonstrated (a) a high level of inter-rater agreement (median value of DICE > 0.8 for
all sub-compartments), and (b) =~ 24% of the extracted radiomic features being highly
correlated (based on Spearman’s rank correlation coefficient) to annotation variations. These
robust features largely belonged to morphology (describing shape characteristics), intensity
(capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient
orientations) feature families. Data format and usage notes: We make publicly available
on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete
set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700
radiomic features, and (c) the associated reproducibility meta-analysis. Potential applications:
The annotations and the associated meta-data for Ivy GAP are released with the purpose of
enabling researchers toward developing image-based biomarkers for prognostic/predictive
applications in GBM.
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Purpose: The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy
Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic
markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two
critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability
of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor,
non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying “repro-
ducible” radiomic features that are robust to segmentation variability across readers/sites.

Acquisition and validation methods: From TCIA’s Ivy GAP cohort, we obtained a paired set
(n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of
the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these
studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels
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and (b) radiomic features, between these paired annotations. The radiomic variability was assessed
on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic,
histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our
results demonstrated (a) a high level of inter-rater agreement (median value of DICE >0.8 for all
sub-compartments), and (b) ~24% of the extracted radiomic features being highly correlated (based
on Spearman’s rank correlation coefficient) to annotation variations. These robust features largely
belonged to morphology (describing shape characteristics), intensity (capturing intensity profile
statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families.

Data format and usage notes: We make publicly available on TCIA’s Analysis Results Directory
(https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for
the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility
meta-analysis.

Potential applications: The annotations and the associated meta-data for Ivy GAP are released with
the purpose of enabling researchers toward developing image-based biomarkers for prognostic/pre-
dictive applications in GBM. © 2020 American Association of Physicists in Medicine [https://

6040
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1. INTRODUCTION

Glioblastoma (GBM) is the most aggressive and heteroge-
neous brain tumor. Despite multimodal treatment consisting
of maximal safe surgical resection, radiation, and chemother-
apy, median survival has only slightly improved to approxi-
mately 15 months, with less than 10% of patients surviving
for over 5 yr." This poor prognosis is largely on account of
the underlying disease heterogeneity inherent in GBM
tumors, which ultimately leads to treatment resistance, and
thus dismal patient outcomes.

Radiographic imaging (i.e., magnetic resonance imaging
(MRY)) is the modality of choice for routine clinical diagnosis
and response assessment in GBM. Recently, computational
analysis of these routine MRI scans, also known as ra-
diomics, has enabled the extraction of quantitative feature
attributes that capture textural and morphologic diversity,”™
within and outside the enhancing GBM tumor. These radio-
mic attributes describe subvisual cues reflecting the underly-
ing Dbiological processes of the tumor and its
microenvironment, which otherwise are not visually dis-
cernible. Radiomic analysis in GBM has also greatly bene-
fited from the availability of large multi-institutional publicly
available data repositories, such as The Cancer Imaging
Archive (TCIA)” with its Ivy Glioblastoma Atlas Project (Ivy
GAP) collection.®” These rich anonymized data repositories
have enabled research groups to develop imaging phenotypes
toward identifying tumor molecular characteristics,®!' pre-
dicting overall survival'>'® and progression-free survival,'®
as well as the location of recurrence'’ and response to
chemotherapy.'® These radiomic approaches have involved
capturing radiomic attributes from different tumor sub-com-
partments including non-enhancing tumor core (NET),
enhancing tumor (ET), and peritumoral edematous/infiltrated
(ED) regions obtained from multiparametric MRI (mpMRI)
scans including native (T1) and gadolinium-enhanced T1-
weighted (T1Gd), T2-weighted (T2), and T2-weighted-Fluid-
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Attenuated Inversion Recovery (FLAIR) scans, for tumor
characterization.

However, in order to leverage multi-institutional reposito-
ries, such as TCIA’s Ivy GAP, for development of robust
radiomic approaches, two key challenges need to be carefully
accounted for. First is the lack of availability of reliable seg-
mentation labels of the different GBM tumor sub-compart-
ments (NET, ET, ED).""ZO Lesion segmentation is a foremost
step for downstream radiomic analysis. However, obtaining
reliable annotations is a manual, tedious, and time-consum-
ing process. While efforts to make expert-annotated segmen-
tation labels publicly available for other TCIA collections
have previously been undertaken by our group,”' such labels
and the associated metadata are currently missing for the Ivy
GAP collection. The second challenge is to account for the
variability in radiomic features across segmentation labels
obtained from different experts/institutions. Along with
radiomic variability with respect to image acquisition proto-
cols, and reconstruction kernels, the variability in radiomic
features with respect to segmentation is well recognized in
the field.”” While a few studies have recently explored the
issue of segmentation variability in radiomic analysis for the
TCGA-GBM cohort, > to our knowledge, none of these
studies have comprehensively explored the reproducibility of
radiomic features in the context of multi-institutional paired
expert annotations.

Toward addressing these challenges, in this work, we have
three objectives. First, we investigate the variability in seg-
mentation labels signed off by two experienced board-certi-
fied neuroradiologists (M.B. and V.B.H.) performed at two
different institutions [University of Pennsylvania (UPenn),
and Case Western Reserve University (CWRU), respectively]
for the publicly available Ivy GAP collection. Second, we
seek to investigate the reproducibility of radiomic features
across the set of segmentation labels obtained from the two
institutions (CWRU, UPenn). Lastly, the segmentation labels
for the three tumor sub-compartments (NET, ET, ED), the
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corresponding subcompartment-specific radiomic features
(including intensity, volumetric, morphologic, histogram-
based, textural, and COLLAGE), as well as the associated
metadata collected as a part of this study are made publicly
available through the TCIA Analysis Results portal (https://
doi.org/10.7937/9j41-7d44).%° Our overarching purpose is to
(a) provide an online resource of multi-institutional paired
segmentation labels for evaluation of segmentation-variability
for the publicly available Ivy GAP cohort as well as (b)
enable imaging and non-imaging researchers to be able to
leverage the Ivy GAP cohort for development of robust and
reproducible computational approaches for GBM characteri-
zation.

2. ACQUISITION AND VALIDATION METHODS
2.A. Data description

The Ivy Glioblastoma Atlas Project (Ivy GAP)*’ is a
freely accessible online data resource, comprising a compre-
hensive cohort of radiological scans (i.e., MRI, CT), digitized
tissue pathology slides, and corresponding transcriptomic
data of 41 GBM patients.® This data collection is a collabora-
tive effort between the Ben and Catherine Ivy Foundation,
the Allen Institute for Brain Science, and the Ben and Cather-
ine Ivy Center for Advanced Brain Tumor Treatment. The
radiographic scans for Ivy GAP are available through TCIA
(wiki.cancerimagingarchive.net/display/Public/Ivy+GAP),
the RNA sequencing data, in situ hybridization, and digitized
histology slides, along with corresponding anatomic annota-
tions are available through the Allen Institute (glioblas-
toma.alleninstitute.org), while the genomic and clinical data
are available through the Swedish Institute (ivygap.org).

The retrospectively collected 41 subjects as a part of the
Ivy GAP collection were triaged in our work to a total of
n = 31 subjects following the inclusion criteria that com-
prised the availability of (a) the four structural mpMRI scans,
that is, T1, T1Gd, T2, and FLAIR, and (b) baseline preopera-
tive timepoint of acquisition (i.e., prior to any instrumenta-
tion). We further excluded two subjects (i.e., W32 and W42)
on account of obvious registration failures, as illustrated in
Fig. 10(b). Finally, one subject (i.e., W50) was also excluded
from the analysis of radiomic feature robustness due to an
observed disagreement across the two expert readers (M.B
and V.B.H) for the annotations corresponding to tumor core.

2.B. Preprocessing

The four structural baseline pre-operative mpMRI proto-
cols, that is, T1Gd, T1, T2, and T2-FLAIR (FLAIR) were
downloaded from TCIA in DICOM format and converted to
the NIfTT format. Different preprocessing pipelines were fol-
lowed at each institution (UPenn, CWRU), as shown in
(Fig.1) described below.

Preprocessing at UPenn. All four modalities were first
placed in a common orientation (the chosen orientation is
“LPS” in the radiological convention, which is the same as
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“RAI” in the neurological convention). Then, to ensure
cross-subject consistency, the T1Gd scan for every subject
was registered to the SRI24 anatomical atlas space (Www.
nitrc.org/projects/sri24).>” To facilitate registration, the T1Gd
scan was first bias-corrected using the N4 Bias correction
method®® from ITK, using the Cancer Imaging Phenomics
Toolkit (CaPTk),” and then registered to the SRI24 space
using the Greedy registration framework®® (https://github.-
com/pyushkevich/greedy, available in CaPTk and ITK-
SNAP?"). The generated transformation was then applied to
the original T1Gd scan (i.e., prior to bias correction) to
ensure minimal loss of signal. Bias correction was not
included in the pre-processing pipeline at UPenn since the
group previously reported that this process obliterates the
MRI signal, particularly that of the FLAIR modality, and
may have a negative impact on the downstream segmenta-
tion.”! Subsequently, the remaining scans of each subject
were registered to the transformed T1Gd scan resulting in co-
registered MRI volumes of 1mm? isotropic resolution in the
SRI space. The brain was then extracted from all co-regis-
tered scans using a pretrained DeepMedic model, available
through CaPTk,*” and the resulting brainmask was manual
revised when needed ensuring that the complete abnormal
hyper-intense FLAIR signal was always included within the
brainmask.

Pre-processing at CWRU. Registration of the TIGd MRI
scan of each Ivy GAP subject to the Montreal Neurological
Institute (MNI - http://brainmap.org/training/BrettTransform.
html) 1mm? isotropic brain atlas® was performed using
three-dimensional (3D) rigid and affine transformation via
3D Slicer 4.8.%* Furthermore, to account for the resolution
variability across studies from across protocols, the T1, T2,
and FLAIR MRI scans were co-registered with the registered
T1Gd sequence to ensure all MRI sequences are isotropic
with 1mm?® dimensions. Following registration, the Swiss
skull stripper’® module of 3D slicer was used to strip the
skull across the three MRI protocols (T1Gd, T2, and FLAIR).
Every skull stripped MRI scan was corrected for bias field
inhomogeneity using N4 bias-correction module available in
3D slicer.”®

2.C. Segmentation of tumor sub-compartments

All the tumors included in the Ivy GAP data were seg-
mented at UPenn (M.B) and CWRU (V.B.H) following a con-
sistent annotation protocol as defined by the International
Brain Tumor Segmentation (BraTS) Challenge.'**' The seg-
mentation labels were performed/approved by two expert
board-certified neuroradiologists with over 10 yr of experi-
ence. The tumor subcompartment labels comprised the ET,
NET, and ED. ET is radiographically defined by the hyperin-
tense signal in T1Gd scans not only when compared to T1,
but also when compared to “healthy”” white matter in T1Gd.
NET is typically defined radiographically by hypointense
scans in T1-Gd scans when compared to their corresponding
areas in the T1 scan. The combination of ET and NET
describes the bulk of the tumor, which is what is typically
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resected, and here onwards defined as the tumor core (7C).
Beyond the boundaries of TC, the complete extent of the dis-
ease is typically depicted radiographically as the area
enclosed by the abnormal/hyperintense signal in the T2-
FLAIR scan. This area, defined as the “whole tumor” (WT),
entails the 7C and the ED.

UPenn segmentations. The expert tumor annotations from
UPenn, for the three tumor sub-compartments (i.e., ET, NET,
and ED), were a product of a computer-aided segmentation
using an in-house software*® followed by manual revisions
including corrections for (a) obvious under- or over-seg-
mented sub-compartments, (b) voxels classified as ED within
the TC, (c) unclassified voxels within the TC, (d) voxels clas-
sified as NET outside the 7C, and (e) voxels corresponding to
vessels within the ED that were either classified as ED or ET.
Finally, contralateral, periventricular, and noncontiguous WT
areas with hyperintense signal in the FLAIR scans were con-
sidered to represent chronic microvascular changes, or age-
associated demyelination, rather than tumor infiltration,37
and hence were excluded from the WT.

CWRU segmentations. Expert tumor annotations from
CWRU for the three tumor sub-compartments (i.e., ET, NET,
and ED), were performed manually by a collaborating neuro-
radiologist (V.B.H.) with over 10 years of experience in neu-
roradiology, after carefully considering three structural MRI
scans, that is, T1Gd, T2, FLAIR.

6042

2.D. Transforming annotations to a common atlas
space

Since the annotations were performed in two different
atlas spaces at each institution (i.e., SRI for UPenn, and MNI
for CWRU), they needed to be brought to a common atlas
space. To ensure consistency with the BraTS,"”' datasets,
the SRI space was chosen as the reference atlas onto which
the MNI labels were transformed. Four different registration
solutions were explored for this transformation using Greedy
with Normalized Mutual Information called from CaPTk:

1. MNI atlas to the SRI atlas and transformations applied
to the CWRU segmentation labels.

2. Each MNI-registered T1Gd scans to the SRI atlas and
apply corresponding transformations to the CWRU
segmentation labels.

3. One MNI-registered T1Gd scan to the SRI atlas and
apply the transformation to all CWRU segmentation
labels.

4. Each MNI-registered T1Gd scan to the corresponding
T1Gd SRI-registered volume and apply the correspond-
ing transformation to CWRU segmentation labels.

After generating transformed labels following these four
approaches (each using both skull-stripped and non-skull-
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: CWRU

FiG. 2. Screenshots of Subject W8, showcasing the various registration transformations between CWRU and UPenn annotation we have used in Section 2.D,
with the corresponding overall DICE scores. Green represents the UPenn tumor annotations and red represents the CWRU transformed annotations. [Color figure

can be viewed at wileyonlinelibrary.com]

stripped images and different registration kernels), the most
optimal alignment, based on the qualitative assessment of the
end results (where we observed notable differences as shown
in Fig. 2), was obtained using the last approach on skull-
stripped images using Greedy® with normalized mutual infor-
mation called from CaPTk.?*-*

2.E. Radiomic analysis

Following standardization of the segmentation labels
across the two institutions, a comprehensive array of 975
unique radiomic features (Table I) were obtained from eight
different feature families including intensity-based statistical
features (20 descriptors), morphological features (19 descrip-
tors),” histogram features (503 descriptors), Gray-level co-
occurrence matrix (GLCM)40 (72 descriptors), Gray-level
run-length matrix (GLRLM)*'*** (90 descriptors), Gray-level
size zone matrix (GLSZM) (162 descriptors), Neighborhood
gray tone difference matrix (NGTDM) (5 descriptors), and
co-occurrence of Local Anisotropic Gradient Orientations
(COLLAGE) (104 descriptors). These feature sets were
extracted per tumor subcompartment (NET, ET, ED) for every
MRI scan (i.e., T1, TIGd, T2, and FLAIR), for every subject
using the same set of input images obtained from UPenn, that
is, 11 700 features per patient. Since the preprocessing steps
were different across the two institutions, for radiomic com-
parison we chose a single set of input images, processed
using the UPenn pipeline which was consistent with the pop-
ular BraT$ pipeline,'”! to ensure that the feature differences
are on account of segmentation variability and not due to the
varying pre-processing steps across institutions. Our radiomic
feature set was extracted using open source tools comprising
the Cancer imaging Phenomics Toolkit (CaPTk, www.cbica.
upenn.edu/captk)* and a 3D Slicer extension for the COL-
LAGE feature (https://github.com/ccipd/
CoLIAGeSlicerExtension).*> CaPTk is an open-source soft-
ware toolkit, which offers functionalities to extract a wide
array of radiomic features compliant with the image biomar-
ker standardization initiative (IBSI),”> and has been
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extensively used in radiomic analysis studies.'>'*!¢2144 §jm-

ilarly, COLLAGE is a new open-source radiomic feature set,
which has shown promise in disease prognosis and prediction
for different solid tumors including brain, breast, lung, and
prostate cancer.'>'®44” Both CaPTk and COLLAGE were
configured with a varying set of input parameters during fea-
ture extraction, including varying binning values
(# €{16,32,64}) for quantization, radii (Z € {1,2,3})
around the center voxel under consideration, and the window
sizes (w) of 3 and 5 for computation of COLLAGE features.
A complete set of extracted features can be found in the data
repository available through TCIA,*® as well as in supple-
mentary documentation.

2.F. Experimental design

We quantitatively evaluated reproducibility for the Ivy
GAP cohort with regard to two distinct endpoints: (a) the
inter-reader agreement of the volumetric annotations across
the three tumor sub-compartments (NET, ET, ED), and (b)
the reproducibility of the extracted radiomic features across
the three sub-compartments as well as across four MRI proto-
cols (i.e. T1, T1Gd, T2, and FLAIR), as described below.

Inter-rater Agreement of Volumetric Annotations. We used
the four most-commonly used metrics for semantic segmenta-
tion, including Dice Similarity Coefficient (DICE), Haus-
dorff distance, sensitivity, and specificity, to quantitatively
compare the segmentation labels obtained from the two
experts (M.B, V.B.H). For completeness, we have performed
the analysis by first considering the CWRU rater as ground
truth and comparing UPenn rater and then considering the
UPenn rater as the ground truth and comparing the CWRU
rater; both done on a per-voxel manner. Specifically, DICE
was used to evaluate the extent of spatial overlap between the
two sets of annotations and sensitivity and specificity are
used to assess the overall agreement of the raters between all
the sub-compartments. Furthermore, the 95th percentile of
the Hausdorff distance was used to measure the maximum
distance of the point set of one annotation boundary to the
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TaBLE 1. Summary of the radiomic features extracted in this study and the
associated input parameters.

Feature Total
family features Description Parameters
Morphology 19 Geometric properties of -
the ROI
Intensity 20 Intensity distribution -
within the ROI
Histogram 503 Intensity distribution B e {16,32,64,128}
within the ROI after bin
quantization

COLLAGE 104 Quantifies heterogeneity of w € {3,5}
local gradient orientations

within w

GLCM 72 Distribution of discretized
intensities of neighboring
voxels along all directions

within the ROI

B € {16,32,64,128}

Re{l,2,3}

GLRLM 90 Distribution of discretized B € {16,32,64,128}
intensities in all directions
across run lengths within

the ROI
Re{l,2,3}

GLSZM 162 Number of groups (or B e {16,32,64,128}
zones) of neighboring
discretized voxels within

the ROI
Re(1,2,3}

NGTDM 5 Number of groups of B e {16,32,64,128}
neighboring discretized

voxels within the ROI,

within a Chebyshev

distance
Re{1,2,3}

nearest point in the other. In addition, the sensitivity and
specificity metrics that describe the true positive rate and the
true negative rate across the pair of segmentations were
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evaluated. Notably, these metrics were estimated for every
tumor region, that is, E7, NET, ED, TC, and WT.

Radiomic Feature Robustness. To assess the robustness of
the extracted radiomic features across the two sets of expert
annotations, different correlation metrics were considered
including the intraclass correlation coefficient (ICC),48 which
has been extensively used in the literature for assessing seg-
mentation variability>***>° as well as Spearman rank correla-
tion'. Spearman’s rank correlation coefficient (r,) allows for
sensitivity to nonlinear relationships in assessing the statisti-
cal dependence between the rankings of each feature across
the two experts, and hence was used as the method of choice
for our analysis. Additionally, along with Spearman correla-
tion coefficient, we found intraclass correlation coefficient
(ICC@3,1)) in Ref. [48] to be applicable in the case of our
study”” and thus calculated /CC(3,1) measure for our analy-
sis.

3. RESULTS

Inter-rater Agreement of Volumetric Annotations. The
inter-reader agreement across different tumor sub-compart-
ments was obtained using 3D volumetric analysis, as illus-
trated in Fig. 3 and Fig. 10(a). The high overall values of
DICE, sensitivity, and specificity, combined with the low
95th percentile Hausdorff distances demonstrate the high rate
of agreement between the UPenn and CWRU raters across
various labels for the included Ivy GAP subjects. Specifi-
cally, the composite tumor regions of TC and WT consis-
tently demonstrated the best inter-rater agreement in terms of
their spatial overlap, when compared with the individual
tumor sub-compartments of ET, NET, and ED. Particularly
the agreement for the TC area, which represents the bulk of
the mass under consideration for resection, obtained a median
DICE > 0.85, followed by WT with a median DICE slightly
above 0.7. When observed in tandem with the DICE score of
all tumor sub-compartments, the lower agreement of WT
appeared to be driven by the tumor region of ED that had the
lowest DICE scores.

DICE Hausdorff Sensitivity Specificity Specificity: Magnified
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Fic. 3. Inter-rater agreement using three-dimensional volumetric analysis comparing CWRU rater with UPenn rater using different metrics (DICE, Sensitivity,
Specificity, Hausdorff) across labels. Note that Specificity has also been plotted on a magnified scale to better highlight differences between the various sub-com-

partments. [Color figure can be viewed at wileyonlinelibrary.com]
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Fic. 4. Subject W26, showing screenshots of the axial, sagittal and coronal views, where the points of entry for prior instrumentation are visible and highlighted
with a red square in the image. [Color figure can be viewed at wileyonlinelibrary.com]

The extreme outliers for the NET region (Fig. 3), belonged
to cases W26 and W50. W26 shows an apparent previous
instrumentation (Fig. 4). W50 is another exceptional case,
where the annotations of the two expert raters were in dis-
agreement, especially with respect to TC, which was identi-
fied in completely different locations (Fig. 5).

Radiomic Feature Robustness. Fig. 6 and Fig. 11 shows
the Spearman’s rank correlation coefficients and intraclass
correlation (specifically, I[CC(3,1)) obtained for different fea-
ture families, across different tumor sub-compartments (i.e.,
ET, NET, and ED), as well as across the four MRI protocols
(T1, T1Gd, T2, and FLAIR). Interestingly, for ET, and NET
sub-compartments, we observed consistent patterns across
different radiomic feature families, with high correlation val-
ues observed for morphology (also reported lowest variance),
intensity, and COLLAGE features across the four MRI proto-
cols and highly variable correlation values for Histogram,
GLRLM and GLSZM feature families (Fig. 6). For the ET
region, while intensity tended to have high correlation values,
lowest variance was observed in NGTDM features, across all
four MRI protocols.

In order to identify the most correlated features, we used a
threshold of >0.8 for the correlation coefficient measure
across the segmentation set, obtained for every feature. After
imposing the threshold, a small percentage (24.3%) of the
overall feature set was identified as “reproducible” across the
paired segmentation sets, as elucidated in Fig. 7; Figs. 9 and
12. The largest number of robust features was obtained for
the morphology feature family across NET and ET sub-com-
partments, across T1, T1Gd, and T2 MRI protocols. For ET
subcompartment, the COLLAGE features were found to have
the largest number of robust features for T1, and FLAIR MRI
protocols, while morphology feature family had slightly
higher percentage of features being picked up for T1Gd and
T2 protocols.

Overall, the highest correlations were consistently
observed for intensity-based, and COLLAGE features,
aside from the morphology feature family. Interestingly,
the COLLAGE entropy, sum variance, and energy fea-
tures were found to be most stable (ry>0.8) across all
MRI protocols and tumor sub-compartments. In contrast,
low correlations were observed for most of the other tex-
ture features obtained from GLCM, GLRLM, GLSZM,
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and NGTDM feature families, across all sub-compart-
ments, as well as feature families.

4, DATA FORMAT AND USAGE NOTES

In accordance with the principles of Findability, Accessi-
bility, Interoperability, and Reusability (FAIR principles),”
all the data and the associated meta-data generated as a part
of this study is made publicly available through the TCIA’s
Analysis Results Directory (https://doi.org/10.7937/9j41-7d
44)%° Specifically, the released data comprises of (a) the
available expert segmentation labels of the various tumor
sub-compartments performed at each institution (i.e. 34 sub-
jects segmented at UPenn, 34 subjects segmented at CWRU,
with a total of 37 subjects (including 31 paired segmentations
performed at both UPenn and CWRU), in the original space
they were created (i.e., SRI for UPenn and MNI for CWRU),
with (b) their corresponding co-registered and skull-stripped
structural mpMRI scans (i.e., in SRI for UPenn and in MNI
for CWRU), (c) the paired expert segmentation labels that
were available for the 31 subjects, all being co-registered in
the SRI atlas, (d) the corresponding SRI and MNI anatomical
atlas files that we employed, (e) the complete set of 11 700
extracted radiomic features per subject, for each of the 31
included subjects, (f) the metadata relating to the metrics we
utilized for the evaluation of the inter-rater agreement, as well
as (g) the parameters used for the radiomic feature extraction
and the correlation analysis results for identifying robust
radiomic features, for the 28 subjects, and finally, (h) the
specific identified robust/reproducible radiomic features. All
image related files are provided in NIfTI format, while the
metadata files are provided in tabular formats (.xlsx and
.CSV).

5. DISCUSSION

The availability of large data repositories such as TCIA’s
Ivy GAP cohort has opened up tremendous possibilities with
the use of radiomics (i.e., quantitative feature analysis) for
applications in prognosis and prediction in GBM tumors.
However, in order to develop robust noninvasive image-based
markers using the TCIA’s Ivy GAP, there are two significant
challenges that need to be accounted for: (a) the lack of
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FiG. 5. Screenshots of Subject W50, where the raters’ agreement regarding the site of NET and ET was different (locations with largest diameter of Non-enhanc-
ing part of tumor highlighted for each annotation). [Color figure can be viewed at wileyonlinelibrary.com]

availability of reliable segmentation labels for different tumor
sub-compartments (NET, ET, and ED) and (b) identification
of “reproducible” radiomic features that are robust to variabil-
ity in segmentation labels obtained from different institutions.
In this study, we sought to address these challenges via, (a)
evaluating inter-rater agreement in volumetric annotations of
tumor sub-compartments obtained from two institutions
(UPenn and CWRU), (b) identifying robust/stable radiomic
features across the two sets of segmentations obtained from
UPenn and CWRU, and (c) the public release of the multi-in-
stitutional paired expert segmentation labels, the identified
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robust radiomic features, as well as the associated analysis,26

through TCIA.

Most notable among previous related works, the work of
Tixier et al.** has explored the robustness of radiomic fea-
tures extracted from the TCGA-GBM dataset. However, there
are four key differences between the two studies, particularly
in terms of the comparative analysis. First and foremost, Tix-
ier et al. compared the radiomic features extracted from a sin-
gle tumor region, by considering non-enhancing tumor,
enhancing tumor, and peritumoral edematous/invaded tissue
as a single lesion habitat. Our work, in contrast, provides a
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Fic. 6. Inter-rater agreement analysis using Spearman’s rank correlation coefficient for the UPenn and CWRU raters across the 8 feature families, as well as
across T1, T1Gd, T2, and FLAIR protocols. [Color figure can be viewed at wileyonlinelibrary.com]

more comprehensive comparative analysis following the most
widely accepted convention (used by the International BraTS
challenge19'21) wherein we consider (a) each tumor subcom-
partment (non-enhancing tumor, enhancing tumor, peritu-
moral edematous/invaded tissue) separately, (b) the
enhancing and non-enhancing tumor as a single “tumor core”
region (i.e., the potentially resectable tumor), as well as (c)
the union of all the three tumor sub-compartments as a single
habitat (“whole tumor”). Second, another notable difference
between the two studies include consideration of only FLAIR
and T1Gd scans by Tixier et al., in contrast to the present
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study that considers all four structural MRI modalities, that
is, T1, T1Gd, T2, and FLAIR. Third, a major difference was
in terms of the radiomic features considered across the two
analyses, where Tixier et al. evaluated a total of 108 features
(extracted using the open-source CERR package™®), whereas
we extracted a total of 11 700 radiomic descriptors from vari-
ous different feature families (Table I) (extracted using open-
source packages, COLLAGE" and CaPTk**"*%). Finally, we
performed our statistical analysis based on Spearman’s corre-
lation coefficient. Spearman’s correlation coefficient is a
nonparametric measure of the degree of association between
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two variables, and unlike cc* (that was used by24), it does (3,1) (Fig. 11) metric*® and found the results to be comparable
not require the assumption that the relationship between the to using Spearman’s coefficient (Fig. 6), except for the
variables is linear.*® For completeness, we also assessed ICC NGTDM feature family, where more number of features were
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identified as stable using the ICC measure for T2 and FLAIR
as compared to using the Spearman measure.

Our volumetric analysis across the segmentation labels
obtained from the two institutions indicated a high level of
agreement between the two raters, especially for TC region as
evidenced by the relatively high values of sensitivity (median
value > 0.85) and specificity (median value > 0.95), which
is of vital clinical importance as it defines the region that is
considered for surgical resection. Similar levels of agreement
can be seen for the WT (median sensitivity > 0.85), ET (me-
dian sensitivity > 0.8), NET (median sensitivity > 0.7), and
ED (median sensitivity > 0.7) with median specificity > 0.9
for all, highlighting the correlation between the two raters.
The standard deviation and median values of the evaluation
metrics for the inter-rater agreement across the GBM sub-
compartments in our work were found to be consistent with
previously reported results on other similar TCIA and
BRATS studies."'

Our results for radiomic feature reproducibility across the
pair of segmentation labels identified 24.3% of 11 700
extracted radiomic features to be robust to segmentation
changes across the two sites. A substantial proportion of
these selected features belonged to morphology (describing
shape characteristics), intensity (capturing statistics across
intensity. profiles), and COLLAGE feature (capturing hetero-
geneity in local gradient orientations) families (Fig. 7 and
Fig. 12). The high correlations obtained for the morphology
and intensity feature families were likely on account of the
high inter-reader agreement observed across the tumor
regions, especially across NET and ET. Similarly, high corre-
lations obtained for the COLLAGE feature family could be
attributed to the fact that COLLAGE features are not directly
computed on the intensity measurements but are rather
derived from the gradient orientations within a local neigh-
borhood window. The gradient orientations seem to be less
impacted by the variability in segmentation labels across
sites. Further, it was observed that the maximum number of
total stable features from these three feature families
(ry>0.8) belonged to the T1, protocol followed by T2,
FLAIR, and T1Gd respectively.

Based on our feasibility study, most of the Morphological
features were not found to be dependent on the differences in
segmentations themselves, rather on segmentation character-
istics (such as elongation, sphericity, eccentricity, and flat-
ness), which were found to be fairly similar across the two
raters and thus robust to per-pixel segmentation variations.
Intensity statistics features capture the aggregated measures
(i.e., mean, median) of the intensity profile of the modalities
in the specified tumor compartment and hence were not
found to be dependent on local differences in intensities
across the two segmentations. Most of the intensity statistics
features demonstrated a high degree of correlation between
the two raters. Strikingly, the histogram feature family, and
by extension, GLCM, GLRLM, GLSZM, and NGTDM fea-
ture families (which are known to capture local image hetero-
geneity) demonstrated low correlation values across
segmentations for the majority of their features. This may be
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since these features are computed across multiple binning
values (16, 32, 64, and 128), thereby making the feature set
highly dependent on intensity changes, which may be
reflected in lower correlation values across the patients. Addi-
tionally, these features include contrast, coarseness, homo-
geneity, and busyness, which have been previously been
indicated to present large variations in their correlation val-
ues, therefore may need to be carefully investigated for
robustness across segmentations before being employed in
radiomic analysis for GBM tumors. Interestingly, while Har-
alick texture measurements across GLCM, GLSZM, and
NGTDM feature families were sensitive to segmentation vari-
ability, COLLAGE texture features, which are also consid-
ered measures of local image heterogeneity, demonstrated
high correlations measures, across all three sub-compart-
ments and MRI protocols. This may be on account of the fact
that COLLAGE computes measurements such as energy/en-
tropy from the local intensity gradients rather than local
intensity differences, and hence rendered more resilient to
local differences in image intensities across segmentations.
Previous studies® have similarly demonstrated that the fea-
tures which are driven by entropy and energy exhibit lesser
variations due to variability in acquisition variations and
reconstruction parameters.

It was noted that the brain extraction (also known as skull-
stripping) approaches employed across the two sites, may
have caused issues in the transformation of the respective
annotations due to parts of the head (e.g., eyeballs) that were
not removed during skull stripping. Examples of this issue
can be found in the uploaded data for subjects W32 and W42
in the MNI created annotations by CWRU. However, even in
the cases where registration did not fail, we observed that the
tumor segmentation can be affected when part of a tumor or
peritumoral area adjacent to the skull is removed during the
brain extraction process, (Fig. 8). This highlights the need for
a robust brain extraction method optimized for pathological
brains that could work consistently across modalities and
clinical sites.>

Interestingly, during our segmentation analysis, we
observed an exceptional case (subject W50), for which the
TC was annotated in two completely different locations by
the two expert raters, as shown in detail in Fig. 5. It was noted
that the CWRU rater had demarcated the center of the ED
region (within the superior parietal lobule) as the TC,
whereas the UPenn rater had highlighted the edge of the ED,
closer to the ventricles (within the more inferior parasagittal
precuneus) as the TC. One possible reason for this might be
the fact that there are minimally enhancing foci in both these
locations in the T1Gd scan, without a distinct central TC.
There is also infiltrative non-enhancing or poorly enhancing
tumor throughout the abnormal FLAIR hyper-intense signal
(in a gliomatosis cerebri pattern), which is seen best on T2
through a slightly less hyper intense envelope, than the rest of
the FLAIR hyper intense signal, reflecting highly cellular
tumor compatible with the pathologically proven GBM. This
case points to the difficulty and variability involved in the
task of tumor region delineation, even by experienced
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clinicians. Another subject of particular interest was W26,
where radiologic assessment indicated that it was a non-base-
line scan (the points of entry for a resection are visible,
Fig. 4). We still included it in our analysis for segmentation
agreement as well as radiomic feature analysis because the
tumor that was being assessed did not seem to be affected by
previous instrumentation.

Our work did have limitations. Our study was limited to
investigating inter-reader agreement and did not consider
intra-reader variability across segmentation labels. Further,
segmentations were obtained from a single reader per institu-
tion. Allocating more than 2 raters would have allowed for a
consensus analysis. While comprehensive (with over 11 000
radiomic features analyzed), the radiomic variability analysis
was limited to 8 feature families. Future work will include
interrogating intra-, as well as multiple-inter-reader segmen-
tation variability, as well as including additional feature fami-
lies (i.e., Laws, local binary patterns) for radiomic feature
variability. We will also consider interrogating reproducibility
of radiomic features across variations in slice thickness,
image reconstruction methods, magnetic field strengths, echo
times, and repetition times.

6. CONCLUSIONS

Radiomics has recently provided a surrogate mechanism
for capturing GBM tumor heterogeneity using routine non-in-
vasive MRI scans.>® However, radiomic features are known
to be susceptible to variations in annotation protocols across
sites. In this work, we presented a feasibility study to (a) eval-
uate inter-reader agreement obtained for tumor segmentation
labels, and (b) identify reproducible radiomic features across
variations in tumor segmentations, in a multi-institutional set-
ting, for the TCIA’s® Ivy GAP dataset.® First, we quantified
the inter-reader agreement using the most-commonly used
metrics (DICE, Sensitivity, Specificity, and Hausdorff).
Higher value of the DICE, Sensitivity and Specificity while,
lower value of Hausdorff indicates better inter-reader agree-
ment, between the two segmented regions. Our results
demonstrated that there was a high amount of overall correla-
tion between the two raters for all sub-compartments. Second,
our radiomic variability analysis experiment suggested that
(a) certain features and feature families such as intensity
statistics (mean, median, standard deviation, and kurtosis),
morphologic (flatness, elongation, and sphericity), and COL-
LAGE (statistics of local gradient entropy) may be more
robust to variability in segmentation labels obtained from dif-
ferent readers, and (b) GLCM and GLRLM feature families,
which are dependent on local intensity differences, showed
lower correlation across features extracted from the seg-
mented tumor regions demarcated by two different raters.
While GLCM and GLRLM features have previously shown
to be prognostic of GBM,*'** our results indicated that
most of these features represented large variations across the
two segmentations (Fig. 6 and Fig. 11), and may need to be
carefully investigated for robustness across segmentations for
prognostic modeling in GBM tumors. However, in contrast,
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majority of morphology and intensity statistics-based features
seemed to be resilient to segmentation differences across the
two readers. We further made the multi-institutional segmen-
tations as well as associated meta-data collected as a part of
this analysis available on the TCIA web-portal as a commu-
nity resource,”® with the purpose of enabling imaging and
non-imaging researchers to leverage the Ivy GAP cohort for
developing image-based biomarkers for prognosis and predic-
tion of GBM tumors.
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Data S1. Multi-institutional paired expert segmentations and
radiomic features of the Ivy GAP dataset.
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Deep Learning (DL) has the potential to optimize machine learning in both the scientific and
clinical communities. However, greater expertise is required to develop DL algorithms, and
the variability of implementations hinders their reproducibility, translation, and deployment.
Here we present the community-driven Generally Nuanced Deep Learning Framework
(GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL
development, training, and inference more stable, reproducible, interpretable, and scalable,
without requiring an extensive technical background. GaNDLF aims to provide an end-to-end
solution for all DL-related tasks in computational precision medicine. We demonstrate the
ability of GaNDLF to analyze both radiology and histology images, with built-in support for
k-fold cross-validation, data augmentation, multiple modalities and output classes. Our
quantitative performance evaluation on numerous use cases, anatomies, and computational
tasks supports GaNDLF as a robust application framework for deployment in clinical
workflows.
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(ML) algorithms built upon the concepts of neural

networks!. Over the last decade, DL has shown great
promise in various problem domains such as semantic
segmentation?~, quantum physics®, segmentation of regions of
interest (such as tumors) in medical images’~13, medical landmark
detection!®1>, image registration!®7, predictive modelling!®,
among many others!-21. The majority of this vast research was
enabled by the abundance of DL libraries made open-source and
publicly available, with some of the major ones being TensorFlow
(developed by Google) and PyTorch (by Facebook - originally
developed as Caffe by the University of California at Berkeley),
which represent the most widely used libraries facilitating DL
research. Among the currently available libraries, PyTorch has
demonstrated itself to be one of the most customizable and easily
deployable through its robust and efficient C++ backend.

There have been various efforts by the medical imaging com-
munity towards addressing the clinical end-points of academic
research, and packaging pre-coded/pre-trained models for data
scientists to leverage and address clinical requirements (Fig. 1).
However, all these efforts, resulting in numerous software
packages, can confuse the less experienced user and result in
endless hours of searching for the appropriate tool to use. To
alleviate this situation, we hereby stratify these efforts into a set of
well-defined categories to deepen the community’s understanding
(Fig. 2). Some of these efforts lie on one side of the spectrum and
can be classified as “applications”, since they focus on the end-

D eep Learning (DL) describes a subset of Machine Learning

a
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user, with powerful user interfaces (either graphical, or otherwise).
Software packages on the other end of the spectrum can be stra-
tified as “libraries”, since they are built as a mechanism to access
low-level machine functionality, while “toolkits” fall in between
these two ends, and provide a layer of abstraction to enable
research. Finally, “frameworks” fulfil various roles and attempt to
provide a multitude of functions targeting both developers and
end-users. Examples of such packages are the Medical Imaging
Interaction Toolkit (MITK)?2 and the Cancer Imaging Phenomics
Toolkit (CaPTk)?3. GaNDLF is also a framework with a notably
unique emphasis to DL. Figure 2 illustrates this stratification,
while also providing some pertinent examples.

Some of these prior efforts are non-DL based, such as MITK?2,
3D Slicer?%, ITK-SNAP??, and CaPTk23. While they have been
lauded for their generalizability, they may fall short when it
comes to competitive performance for specific tasks. Towards
obtaining superior performance, various efforts concentrating on
DL have been devised recently by the community, such as
NiftyNet?6, DeepNeuro?’, ANTsPyNet?$, and DLTK??, that are
implemented in TensorFlow, as well as pymia3’, InnerEye3!, and
MONATI32, that are implemented in PyTorch. Additionally, there
are specialized DL-based tools that cater to specific problems,
such as segmentation!133-35, registration3, or specific imaging
domains, like PathML37, TIAToolbox38, HistomicsML3?, that
focus on data engineering and enabling ML in computational
pathology. However, all these applications and toolkits either (i)
describe developer-focused tools targeting members of the
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Fig. 1 Current amalgamation of the functionality of GaNDLF. a The entire functionality palette is focused to promote “zero/low-code” principles, and at
the same time, each component in the major color groups (i.e., anonymization, harmonization, augmentation, network topologies, training, and post-
processing) can be used independently to create customized solutions. The grey arrows represent the flow of operations for a user towards a “zero/low-
code” principle for an entire computational training pipeline, starting with data /0 and ending with post-processing. b A high-level flowchart highlighting
the “zero-code principle” entry point for the entire functionality palette of GaNDLF and their interactions throughout an Al clinical workflow, using the
“zero/low-code” principle. A more comprehensive flowchart version is given in Fig. 4.
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Fig. 2 Schematic categorization of open-source software, with
representative examples. ‘Libraries’ focus on software developers offering
access to low-level machine functionality. ‘Toolkits’ target computational
experts and provide a layer of abstraction to enable research, by requiring
users to write code to enable their functionality. ‘Applications’ focus on the
non-computational end-user offering their functionality via user interfaces.
‘Frameworks’ fulfil both roles of ‘Applications’ and ‘Toolkit’, and provide a
multitude of functions targeting both computational and non-computational
end-users. Light gray represents software that a user interacts with on a
lower level, and dark gray represents interaction using a command line or
graphical interface.

advanced computational research community; (ii) can be difficult
to grasp by researchers without sufficient experience in DL; (iii)
do not make it easy for DL scientific developers to write their
architectures in a generalizable way, allowing their application on
problems spanning across domains; (iv) make it difficult to write
reproducible training pipelines for different problem domains; (v)
put the onus of training robust and generalizable models to the
user’s knowledge of the training mechanism and the dataset in
question; (vi) lack a single end-to-end application programming
interface (API) for training and inference that can span across
various problem domains; or (vii) do not have appropriate level
of interpretability or explainability functionality for researchers to
garner meaningful insights into the training.

Here, we introduce the Generally Nuanced Deep Learning
Framework (GaNDLF) as a community-driven open-source fra-
mework by MLCommons, which is an industry-academic part-
nership aiming to accelerate the adoption of machine learning
innovation to benefit the larger community, to enable both
clinical and computational researchers address various Al
workloads (such as segmentation, regression, and classification),
while producing robust AI models without requiring extensive
computational experience. This is done by focusing on ensuring
that Al algorithms and pipelines follow paradigms adhering to
best practices established by the greater ML community, and
leveraging existing collaborative efforts in the space (such as the
MLCommons’ MedPerf®0). Such practices include: (i) nested
cross-validation#!; (ii) handling class imbalance*?; and (iii) arti-
ficial augmentation of training data. Additionally, GaNDLF
incorporates capabilities to handle end-to-end processing (i.e.,
pre- and post-processing steps) in a cohesive and reproducible
manner to contribute towards democratizing Al in healthcare,
while these best ML practices are at the forefront during training
and inference. GaNDLF has been developed in PyTorch/Python
as an abstraction layer that incorporates widely used open-source
libraries and toolkits (such as MONAI?2) that can help
researchers generate robust Al models quickly and reliably,
facilitating reproducibility and being consistent with the criteria
of findability, accessibility, interoperability, and reusability
(FAIR). Furthermore, the flexibility of its codebase permits
GaNDLF to be used across modalities (e.g., 2D/3D radiology
scans, and 2D multi-level histology whole slide images (WSI)),
and has scope and functionality for integrating other clinical data
(such as genomics and electronic health records) in the future,

thus taking current clinical diagnostics to the next frontier of
quantitative integration.

Results

To highlight the generalizability of the framework, GaNDLF was
applied on both radiology and histology data for a variety of DL
workloads/tasks (i.e., segmentation, regression, and classification)
on multiple organ systems, imaging modalities, and various
applications using numerous DL architectures. For each work-
load, we performed extensive performance evaluation using
dedicated testing (or holdout*?) datasets by averaging each
model’s training run in a cross-validated schema, ensuring stable
model performance reporting without overfitting to a specific
data split. Details regarding the experimental design of each
application are shown in the Methods’ Experimental Design
section. The reported results for all the performed experiments
are on the unseen testing (or holdout*3) cohorts for each appli-
cation, and collectively shown in Table 1.

Segmentation workloads. We applied GaNDLF to solve various
segmentation problems on imaging acquired during standard
clinical practice for multiple anatomical sites, comprising of brain,
eyes, breast, lung, maxillofacial region, and colon. Numerous DL
architectures, designed for segmentation workloads, were eval-
uated for multiple applications. These architectures include UNet,
UNet with residual connections (ResUNet), Fully Convolutional
network (FCN), and UNet with inception modules (see Methods
section for details and Supplementary Figs. 1-10 for illustrations).
Respective results are reported after quantitative performance
evaluation based on Dice Similarity Coefficient (“Dice”). Note that
GaNDLF offers the ability to generate other segmentation-specific
metrics, such as the Hausdorff distance.

Several applications used brain Magnetic Resonance Imaging
(MRI) scans, focusing on brain extraction (also known as skull-
stripping)! 44, boundary detection of histologically distinct
brain tumor sub-regions’-10, as well as comprehensive brain
parcellation®. For brain extraction, we used each structural MRI
volume as a separate independent input, with the goal of training
a computational model that can segment the brain tissue region
regardless of the input modality, and remove all non-brain tissue
(e.g., neck, fat, eyeballs, and skull). In our analysis, we observed
that the ResUNet architecture gave the best results, with average
“Dice” of 0.98 + 0.01. For brain tumor sub-regions, we considered
the areas of necrosis, enhancing tumor, and peritumoral
edematous/infiltrated tissue, following the convention of the
International Brain Tumor Segmentation (BraTS) challenge’-19,
To train these models, we used all four structural MRI volumes in
tandem as input. For this application, the ResUNet architecture
was again observed to give the best results with an average “Dice”,
across all the 3 sub-regions, of 0.71 + 0.05. For brain parcellation,
we segmented 133 fine-grained brain regions from the whole
brain MRI scans#. In our analysis, we observed that ResUNet
gave the most satisfactory results for the problem, with average
“Dice” of 0.68 +0.15.

For the anatomical site of breast, we had two distinct
applications. Firstly, we segmented the background, fatty breast
tissue, and dense breast tissue from digital breast tomosynthesis
scans¥0, Our experimentation resulted in the most optimal “Dice”
scores using ResUNet, with an average of 0.94, 0.89, and 0.49, for
each of the aforementioned regions, respectively, with an overall
performance of 0.78 +£0.09. Secondly, we segmented the struc-
tural tumor volume region from T1-weighted pre-contrast, peak-
contrast and post-contrast injection scans using the ISPY-1
cohort?’, We observed the best performance using ResUNet with
an average “Dice” of 0.74 +0.01.
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Table 1 Results of various DL workloads using GaNDLF for multiple anatomies.
Task Organ Application Dims Input modalities Output Architecture Metric
(number): type classes
Type Average value
Segmentation Brain Brain extraction 3 M:T1, TIGd, T2, T2-FLAIR as 1 UNet Dice 0.97+0.01
individual inputs
ResUNet Dice 0.98+0.01
FCN Dice 0.97+0.01
Tumor sub-region (4): T1, T1Gd, T2, T2-FLAIR 3 UNet Dice 0.65%0.05
segmentation
ResUNet Dice 0.71+0.05
FCN Dice 0.62+0.05
Ulnc Dice 0.64+0.05
Brain parcellation Mm: M 133 ResUNet Dice 0.68+0.15
UNet Dice 0.57+0.26
Breast Breast segmentation 3 (1): Digital breast 3 UNet Dice 0.78+0.09
tomosynthesis
Tumor segmentation (3): T1 pre, peak, and post- 1 ResUNet Dice 0.74+0.01
contrast injection
Lung Lung field 3 (1): CT [Lung Cancer 1 ResUNet Dice 0.95+0.02
segmentation Screening]
(1): CT [COVID-19] ResUNet Dice 0.97+0.01
Eye Fundus segmentation 2 (1): RGB Fundus Images 1 UNet Dice 0.85+0.04
ResUNet Dice 0.90+0.05
FCN Dice 0.81£0.04
Ulnc Dice 0.83+0.03
Dental Quadrant 2 (1): X-Ray 4 UNet Dice 0.91+£0.01
segmentation
ResUNet Dice 0.88+0.01
FCN Dice 0.85+0.02
Colon Colorectal cancer 2 (1): Histology H&E 1 ResUNet Dice 0.78+0.03
segmentation
Regression Brain Age prediction 2 (M): T1 slices 1 Specialized VGG MSE  0.0141+0.01
Classification  Brain EGFRVIII status 3 (4): T1, TIGd, T2, T2-FLAIR 2 VGG Acc 0.74+0.08
prediction
Foot Diabetic foot 2 (1): RGB Foot Images 4 VGGT Acc  0.92%0.01
ulceration
VGG16 Acc  0.90+0.01
VGG19 Acc  0.89+0.01
DenseNet121 Acc  0.87+0.01
Pan-Cancer  TIL Prediction 2 (1): Histology H&E 2 ImageNet_ VGG16 Acc 0.89+0.01
The "“Task” showcases the workload type, “Organ” describes the organ system of the data, “Application” describes the use case for the trained model(s), “Dims" describe the dimensionality for each input
modality, “Input Modalities” describes the total number of input modalities for the model to train on, “Output Classes” shows the number of classes the model should be predicting, “Architecture”
describes the network topology, and “Metric” describes the type and average value of the selected metric on the testing/holdout dataset, and is “Dice” for segmentation tasks, Mean squared error or
"MSE" for regression, and Balanced accuracy or “Acc” for classification.

For lung, we used low-dose Computed Tomography (CT)
scans acquired for both lung cancer screening and COVID-19
assessment, with the intention to segment the lung field
incorporating apparent healthy and abnormal tissue. Application
of GaNDLF’s ResUNet architecture on scans for both these
applications (i.e., cancer screening and COVID-19 assessment),
we observed “Dice” scores of 0.95 and 0.97, respectively.

For the anatomical site of the eyes, we segmented the fundus
region in Red-Green-Blue (RGB) retinal scans?®, and observed
that the ResUNet architecture gave the best results, with the
average “Dice” coming to 0.71 £ 0.05.

For the anatomical region of maxillofacial, we have used
panoramic dental x-ray images, with the goal of distinguishing
and accurately segmenting the four quadrants considered in
dental practice?®. After training various DL architectures, we
observed that UNet yielded the best results, with the average Dice
coming to 0.91 +0.01.

Last but not least, and to evaluate GaNDLF’s performance
beyond radiology scans, we utilized histology digitized tissue

sections (e.g., whole slide images (WSI)), stained for Hematoxylin
and Eosin (H&E), of colorectal cancer by leveraging the publicly
available dataset of the DigestPath challenge®’, with the intention
of delineating the cancerous regions. Our results yield and
average “Dice” of 0.78 £0.03 using ResUNet for a pre-defined
testing data split.

Regression. For the DL workload of regression, we have used
GaNDLF to solve a specifically targeted regression problem in
brain MRI scans, focusing on predicting a surrogate index for
brain age’!. By virtue of the inherent flexibility in GaNDLF’s
design, we modified the VGG16 architecture to predict the age of
a brain from a single MRI slice, and replicated previously
reported results®l. The input for this use case was based on 2D
MRI slices of T1-weighted scans, and the output was the brain
age. With an average mean squared error ("MSE”) of 0.0141, the
prediction quality of the models trained by GaNDLF was in line
with the original publication®!, showcasing the flexibility of
GaNDLF to successfully adapt to various problem domains.
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Classification. We have further used GaNDLF to solve multiple
classification problems, spanning different domains (e.g., radi-
ology and histology), as well as various organ systems, including
feet, brains, and pan-cancer histology images.

Specifically, for the anatomical location of brain, we have
applied GaNDLF on 3D MRIs of patients diagnosed with de novo
glioblastoma, to predict the EGFRVIII mutation status. The inputs
for model training were structural MRI scans in tandem (passing
all the scans together at once) to a VGGI11 customized to perform
computations in 3D directly, resulting in a best accuracy of
0.74 +0.08.

Furthering the application towards 2D RGB data, we have
predicted different ulceration status of diabetic foot images from the
DFU challenge®? by passing each image as an input along with its
ground truth label. We observed the best performance on VGG11°3
(that was randomly initialized instead of being pretrained on
ImageNet), with a macro-F1 score of 0.561. Notably, the defined
approach® was among the top-performing ones (ranked 5th) in the
International in the DFU Challenge 2021 leaderboard (dfu-2021.
grand-challenge.org/evaluation/challenge/leaderboard).

Finally, we used a dataset of histology digitized tissue sections
stained for H&E, spanning across 12 anatomical sites. The
problem at hand was to predict patches containing tumor-
infiltrating lymphocytes (TIL)>4. We observed the best-balanced
classification accuracy of 0.89 using a VGG16 that was pre-
trained on ImageNet>> and customized for the specific problem.

Discussion
We have introduced the Generally Nuanced Deep Learning
Framework (GaNDLF), as an end-to-end solution for scalable
clinical workflows, currently focused on (bio)medical imaging.
GaNDLF provides a “zero/low-code” solution enabling both
computational and non-computational experts to train robust DL
models to tackle a variety of workloads/tasks in both 2D and 3D
radiology and histology data, without worrying about details such
as appropriate data splitting for training, validation, and testing,
tackling class imbalances, and implementing various training
strategies (e.g., loss functions, optimizers). Specifically, GaNDLF’s
contribution spans across its ability to: (i) process images of
various domains, including both radiology scans and digitized
histology WSIs; (ii) enable work on various workloads (i.e., seg-
mentation, regression, and classification); (iii) offer built-in gen-
eral-purpose functionality for augmentations and cross-
validation; (iv) be evaluated on a multitude of applications; (v)
enable parallel training by using generic high-performance
computing protocols; (vi) integrate tools to promote the inter-
pretability and explainability of DL networks, via M3D-CAM®®.
Our overarching goal is to enable clinical translation and
applicability of Al, since specialized hardware (e.g., DL accel-
erator cards) is usually not considered for purchase by clinical
entities in higher income countries, and altogether out of reach
for clinics in lower-income countries. Towards this end, we have
developed built-in model optimization support in GaNDLF to
automatically generate optimized models after the training pro-
cess is complete, allowing inference of these models on machines
without requiring any specialized hardware, or large amounts of
memory. We further envision the “model library” in GaNDLF to
potentially be a phenomenal resource for pre-trained models and
corresponding configurations to replicate training parameters for
the scientific community in general. By ensuring that the model
library contains information beyond just the trained model
weights, but also additional metadata, trained models through
GaNDLF will remain reproducible through code changes.
GaNDLF is a fully self-contained DL framework that has various
abstraction layers to enable researchers to produce and contribute

robust DL models with absolutely zero knowledge of DL or
coding experience.

The concepts of “zero-” and “low-" code principles in software
development have recently been introduced, targeting different
user groups. In essence, the “zero-code” principle revolves around
allowing users to build solutions without writing any code,
whereas the “low-code” principle allows customization of the
provided solution with minimal programming. GaNDLF follows
these zero/low-code principles and enables targeting a dual
audience type: (i) non-computational experts, by providing
building blocks for conducting DL analyses by leveraging their
domain expertise without the need for any programming skills;
(ii) DL researchers, allowing for harmonized I/O (i.e., common
data loaders enabling the main focus be kept on the algorithmic
development), as well as leveraging or extending existing cap-
abilities to create custom solutions. For a non-computational
researcher, GaNDLF ensures the easy creation of robust models
using various DL architectures, and built-in automatically trig-
gered ML principles, that can be used for scientific research and
method discovery, including the potential for aggregating results
from various models, which has been shown to provide greater
accuracy”10. For DL researchers/developers, GaNDLF provides a
mechanism for creating customized solutions, robust evaluation
of their methods across a wide array of medical datasets that span
across dimensions, channels/modalities, and prediction classes, as
well as to conduct a comparative quantitative performance eva-
luation of their algorithm against well-established built-in net-
work architectures, including, but not limited to, UNet®’,
UNetR (UNet with transformer encoding)®, ResNet>®, and
EfficientNet®, Furthermore, GaNDLF provides the means to DL
researchers/developers to distribute their methods in a repro-
ducible way to the wider community, thereby expanding their
application across various problem domains with relative ease,
and providing re-usable components (Fig. 1) that can be com-
bined to create customized solutions. Ideally, we anticipate the
best results when both these groups of the scientific and clinical
community bring their expertise together to further our under-
standing of healthcare. Towards this end, GaNDLF can provide a
common frame of reference for both these user groups. By
creating tools standardized within the same infrastructure
(GaNDLF) for the entire community to leverage, we anticipate
the cost and time of creating algorithms to be substantially
reduced and hence put efforts in meaningfully translating
methods into the clinical practice rather than trying to identify
and/or make a tool to work.

The modularity of the software stack is highlighted by large-
scale studies of specific focus on federated learning (FL) that
GaNDLF has facilitated, beyond the results shown in this
manuscript. The FL-specific functionality is provided by its
integration to work in conjunction with the Open Federated
Learning (OpenFL) library®l. Further integration with other
community-driven efforts, such as MedPerf*0 (medperf.org) of
MLCommons (mlcommons.org), would increase the applicability
of GaNDLF towards federated learning applications3>62.
GaNDLF has notably been used to orchestrate the Federated
Tumor Segmentation (FeTS) Challenge®, which represents the
first-ever computational challenge on FL, targeting (i) the
development of novel aggregation methods for federated training,
and (ii) the federated evaluation of algorithms “in-the-wild”, to
assess algorithmic robustness to distribution shifts between
medical institutions. Moreover, GaNDLF’s codebase has facili-
tated components of the largest to-date real-world FL study (i.e.,
the FeTS Initiative’> - www.fets.ai), involving data from 71
geographically-distinct collaborating sites to develop a DL model
to detect boundaries of intrinsic sub-regions for the rare disease
of glioblastoma in mpMRI scans. Finally, indicating its joint
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ability with OpenFL to address workloads in various domains, the
GaNDLF-OpenFL integration has enabled an FL histology study
on identifying TILs in WSIs from numerous anatomical sites®3.

One of GaNDLF’s core tenets is to enable work across
domains, currently spanning radiology (e.g., MRI, CT) and his-
tology (e.g, H&E-stained slides), including specialized pre-
processing functionalities for each. The notable difference
between these images is the relatively small resolution and size of
radiology scans (typically occupying a few megabytes of disk
space), compared with the histology WSI that are described by
relatively large resolution (150 K x 150 K pixels) and size, where a
single WSI can occupy 40-50 gigabytes. GaNDLF enables
researchers to use a single framework across virtually all medical
imaging modalities without performing any additional coding,
thereby enabling future studies that rely on integrative diag-
nostics. Owing to the flexibility of the data loading mechanism in
GaNDLF, it could also be possible to integrate other data types
(such as genomic or healthcare records) into a model towards
further contributing in the field of personalized medicine.

Although GaNDLF has been evaluated across imaging mod-
alities using single inputs (i.e., either a single radiology or his-
tology image) or with multi-channel support (i.e., multiple MRI
sequences considered in-tandem), so far, its application has been
limited to workloads related to segmentation, regression, and
classification, but not towards synthesis, semi/self-supervised
training, or physics-informed modeling. Expanding the applica-
tion areas would further bolster the applicability of the frame-
work. Additionally, application to datasets representing analysis
of 4D images (such as dynamic sequences or multi-spectral
imaging) has not yet been evaluated. Also, a mechanism to enable
aggregation of various models (i.e., train/infer models of different
architectures concurrently) is not present, which have generally
shown to produce better results’~1%-33, Mechanisms that enable
AutoML® and other network architecture search (NAS)
techniques® are tremendously powerful tools that create robust
models, but are currently not supported in GaNDLF. Finally,
application of GaNDLF to other data types, such as genomics or
electronic health records (EHR), which would allow GaNDLF to
further inform and aid clinical decision-making by training
multi-modal models, has not been fully explored yet but it is
considered as current work in progress.

To facilitate clinical applicability, reproducibility, and transla-
tion, in the domain of healthcare AI, published research is
essential to adhere to well-accepted reporting criteria. Some of
these criteria are: i) CLAIM (ChecKlist for Artificial Intelligence in
Medical Imaging)®®, which outlines the information that authors
of medical-imaging AI articles should provide, ii) STARD-AI,
which is the Al-specific version of the Standards for Reporting of
Diagnostic Accuracy Study (STARD) checklist®’, and aims to
address challenges related to the original STARD checKklist related
to the utilization of AI models, iii) TRIPOD-AI and PROBAST-
Al, which are the AI versions of the TRIPOD (Transparent
Reporting of a multivariable prediction model of Individual
Prognosis Or Diagnosis) statement and the PROBAST (Prediction
model Risk Of Bias ASsessment Tool)8, and aim to provide
standards both for reporting but also for Risk of Bias assessment,
raising awareness of the importance in meta-analyses dealing with
Al studies, iv) CONSORT-AI and SPIRIT-AI, which are the AI
extensions of the CONSORT (Consolidated Standards of
Reporting Trials) and SPIRIT (Standard Protocol Items: Recom-
mendations for Interventional Trials), providing guidance for
reporting randomized clinical trials®®, v) MI-CLAIM (Minimum
Information about Clinical Artificial Intelligence Modelling)”?,
which focuses on the clinical impact and the technical reprodu-
cibility of clinically relevant Al studies, vi) MINIMAR (MINimum
Information for Medical Al Reporting)”!, which sets the reporting

standards for medical AI applications by specifying the minimum
information that AI manuscripts should include, and vii) Radio-
mics Quality Score (RQS)”2, which outlines 16 criteria by which to
judge the quality of a publication on radiomics”3.

In conclusion, this manuscript describes GenerAlly Nuanced
Deep Learning Framework ("GaNDLF”), a stand-alone package
that provides end-to-end functionality facilitating transparent,
robust, reproducible, and deployable DL research. Due to its
flexible software architecture, it is possible to either leverage
certain parts of GaNDLF in other applications/toolkits, or lever-
age functions of other toolkits (e.g,, MONAI) and libraries to
incorporate them within the holistic functionality of GaNDLE.
Furthermore, GaNDLF could partner with container-based plat-
forms beyond MedPerf*0 (such as the BraT$ algorithmic repo-
sitory, or ModelHub.AI) towards a structured dissemination of
DL models to the research community. As all development is
open-sourced in github.com/mlcommons/GaNDLF, with robust
continuous integration and code vulnerability testing through
Dependabot, contributions from the community will ensure that
this framework continues building ties to other packages quickly
and reliably for end users. Finally, by creating tools standardized
within the same infrastructure (GaNDLF) for the entire com-
munity to leverage, we anticipate the cost and time of creating
algorithms to be substantially reduced and hence put efforts in
meaningfully translating methods into the clinical practice rather
than trying to make a tool to work.

Methods

Pre-processing. Providing robust pre-processing techniques that are widely
applicable to (bio)medical data, is critical for such a general-purpose framework to
succeed. GaNDLF offers most of the pre-processing techniques already reported in
the literature, leveraging the capabilities of basic standardized pre-processing
routines from ITK’47%, and advanced pre-processing functionality from the
CaPTk2376-79, The main pre-processing steps for data curation (including har-
monization and normalization) are described below.

1. Anonymization:

® Radiology Images: Since the DICOM format0 is the standard for
radiology images, GaNDLF has provisions to remove all identifiable
fields from the DICOM metadata, as well as a conversion to the
Neuroimaging Informatics Technology Initiative (NIfTT) file format8!,
which completely removes all extraneous metadata fields.

® Histology Images: Most WSIs include metadata which could contain
protected health information, and GaNDLF can remove such fields from
the file header. This works for multiple formats defined by the Open
Microscopy Environment standard®?, such as TIFF, SVS, and MRXS.

2. Data harmonization:

®  Voxel-resolution harmonization: To ensure that the physical definition
of the input data is in a common space (for example, all images can have
the voxel resolution of I,., = [1.0, 1.0, 2.0]).

®  Image-resolution harmonization: To ensure that the input data has the
same image dimensions (for example, all images can be resampled to
Liim = [240, 240, 155]).

3. Intensity normalization:

® Thresholding: To consider pixel/voxel values that belong to a specific
intensity range and ignore values below/above this range, by making
them equal to zero (Eq. (1)):
0 x;<threshold,,;,
x;>threshold,, . (1)
otherwise

x;=4¢0

Xi
® Clipping: To consider pixel/voxel values that belong to a specific
intensity range and convert values below/above this range, by making
them equal to the minimum/maximum threshold, respectively (Eq. (2)):

threshold,,,;, x; < threshold,,;,
x; = { threshold,,,, x; > threshold,,,. (2)
X; otherwise

1
®  Rescaling: To consider all pixel/voxel values after converting them to a
common profile (for example, all input images are rescaled to [0, 1]).
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®  7-score normalization: A widely used technique for data normalization
in medical imaging®>84, that preserves the complete signal of the input
image by subtracting the mean and then dividing by the standard
deviation of the complete intensity range found in this image. Notably,
the application of z-score normalization through GaNDLF can occur
either on the full image or only within a masked region of interest,
adding to the overall flexibility of this transform.

®  Histogram Standardization®® ensures harmonization of intensity profiles
of input images based on a template (or reference) image. Different
options are available to the user, such as histogram matching®?, adaptive
histogram equalization®® and global histogram equalization. Normal-
ization methods specifically designed for WSIs that calculate stain vectors
are also available, and these include methods from Vahadane®’,
Ruifork®®, and Macenko®’.

Data augmentation. DL methods are well-known for being extremely data
hungry®®! and in medical imaging, data is scarce because of various technical,
privacy, cultural/ownership concerns, as well as data protection regulatory
requirements, such as those set by the Health Insurance Portability and
Accountability Act (HIPAA) of the United States®2 and the European General Data
Protection Regulation (GDPR)?3. This necessitates the addition of robust data
augmentation techniques® into the training data, so that models can gain
knowledge from larger datasets and hence be more generalizable to unseen data®.

GaNDLF leverages existing robust data augmentation packages, such as
TorchIO% and Albumentations®?), to provide augmentation transformations in a
PyTorch-based mechanism. GaNDLF also stores image metadata (such as affine
transform, origin, resolution), which is critical for maintaining correct physical
coordinate definition of radiology scans. More details on the available types of
augmentations through GaNDLF are shown in the Supplementary Notes 1: Details
of Data Augmentation (Supplementary Table 1), and examples of their effects are
illustrated in Fig. 3, using a brain tumor T2-FLAIR MRI scan from the BraT$
challenge dataset’~10.

Training mechanism. The overall pipeline of the training procedure offered in
GaNDLF is illustrated in Fig. 4a, and focuses on stability and robustness for the
user to generate reproducible results, and clinically-deployable models. Figure 4b
showcases the overall software stack. The data flow of GaNDLF leverages 2 main
ideas that allow efficient processing of large datasets (such as histology images or
large 3D volumes): (i) patch-based training and inference, which allows the model
to operate on smaller “chunks” of the data at a single instance, and hence on the
full gamut of images - the size and overlap of these chunks can be customized by
the user, (ii) lazy loading of the datasets themselves, allowing GaNDLF to only read
the datasets into the memory during computation, and immediately deallocate the
memory once it is used.

Cross-validation. k-fold cross validation®® is a useful technique in ML that
ensures reporting unbiased quantitative performance evaluation estimates of
algorithmic generalizability on new datasets, i.e., by evaluating results on new
unseen data discretized from an entire given data cohort. GaNDLF offers a nested
k-fold cross-validation schema!%, where initially, cases of the complete cohort are
randomly divided into k non-overlapping, equally-sized subsets and during each
fold, k — 1 of these subsets are considered as the “retrospective”/"discovery” cohort
and 1 as the “prospective”/"replication” cohort, which is unseen during training for
this specific fold. Note that during each fold, the “prospective”/"replication” cohort
is a different subset. This cross-validation scheme is analyzing the given data as if it
had independent discovery and replication cohorts, but in a more statistically
robust manner by randomly permuting across all given data. The number of folds
for each level of split is specified in the configuration file, and the models for
different folds can be trained in parallel (in accordance with the user’s computation
environment). GaNDLF also offers the option of specifying single fold training, if
so desired.

Zero/low-code principle. The main entry point of GaNDLF’s training mechanism
follows a zero/low-code principle!?1:192, where a dual file input is provided by the
user, through the command line interface - a comma-separated-value (CSV) file
and a text file (YAML) with intuitive indications of where to enter the training
configuration parameters. The expected CSV file should comprise the subject
identifiers along with the corresponding full paths of all required input images and
masks (i.e., for segmentation workloads) and the values required for training and
follow-up predictions (i.e., for regression and classification workloads). The subject
identifiers are used to randomly split the entire dataset into training, validation,
and testing subsets, using nested k-fold cross-validation!93, The training can be
configured to run on multiple DL accelerator cards, such as GPU or Gaudi. Fur-
thermore, a YAML-based configuration file is used to control and parameterize all
aspects of the training, such as the subject-based split of the cross-validation, data
pre-processing, data augmentations (e.g., type, parameters, and probabilities),
model parameters (e.g., architecture, list of classes, final convolution layer, opti-
mizer type, loss function, number of epochs, scheduler, learning rate, batch size),

along with the training queue parameters (i.e., samples to extract per volume,
maximum queue length, and number of threads to use). The YAML-based con-
figuration file requires an indication of the GaNDLF version used to create the
trained model, and the actual trained model, with the intention of ensuring
coherence between these two.

Monitoring & debugging. GaNDLF also supports mixed precision training!%* to
save computational resources and reduce training time. A single epoch comprises
training the model using the training portion of the data and backpropagation of
the generated loss, followed by evaluating the model performance on the validation
portion of the data. In addition to saving the model trained after every epoch, each
model corresponding to the best global losses for the training, validation, and
testing datasets is also saved. These saved models can be used for subsequent
inference, either using a single independent model or in a aggregated fashion
utilizing label fusion®>10%. Training statistics (such as the “Dice” similarity coef-
ficient and loss) are stored for each epoch, for the training, validation and the
testing data in the form of a CSV file, with the intention of facilitating simplified
results reporting and detailed debugging.

Handling class imbalance. Class imbalance, i.e., where the presence of one class is
significantly different in proportion to another, is a common problem in healthcare
informatics!9%197, To address this issue, GaNDLF allows the user to set a penalty
for the loss function!®8, which is inversely proportional to the classes being trained
on. The penalty weights for the loss function will be defined as:

c
N 3)
where p, is the penalty for class ‘C’, and n, is the number of instances of the
presence of class ‘C’ in the total number of samples N.

For example, for a classification workload using 100 cases, if there are 10 from
class 0 and 90 from class 1, the weighted loss will get calculated to 0.9 for class 0
and 0.1 for class 1. This basically means that the misclassification penalty during
loss back-propagation for class 0 (i.e., the “rarer” class) will be higher than that of
class 1 (i.e., the more “common” class). The analogous process can be done for
segmentation workloads as well. We recognize that this approach might not work
for all problem types, and thus we have mechanisms for the user to specify a pre-
determined loss penalty for greater customization.

p.=1-

Inference mechanism. GaNDLF’s inference mechanism follows the same “zero/
low-code” principle as its training mechanism, where the user needs a CSV file
comprising of the subjects’ identifiers and the full paths of images, along with a
YAML configuration file and the location of the trained models. For each trained
model, the corresponding estimated output is stored and (depending on the user’s
parameterization) a final predicted output is generated by aggregating the outputs
of the independent models. This aggregation happens through different approa-
ches, subject to the prediction task, e.g., a label fusion approach may be used for
segmentation workloads, averaging for regression workloads, and majority voting
for classification. If the full paths of the ground truth labels are given in the input
CSV, then the overall metrics (e.g., “Dice” and loss) of the model’s performance are
also calculated and stored.

For radiology scans. As soon as the data is read into memory, GaNDLF applies the
pre-processing steps defined in the configuration file to each input dataset (see
Section u for examples of these steps). Then TorchIO’s? inference mechanism is
used to enable patch-based inference for radiology images. This entails patch
extraction, usually of the same size as the one that the corresponding model has
been trained on, from the image(s) on which the model needs to infer. The forward
pass of the model is then applied, and the result is stored in the corresponding
location (Fig. 5a). This enables models to be trained and inferred on varied patch
sizes based on the available hardware resources. Overlapping patches can be stit-
ched by either cropping or taking an average of the predictions at the overlapping
area, and the amount of overlap can be specified to ensure that dense inference can
occur®®. Although patch-based training and inference is being widely used, we note
that various potential adverse effects of this process have been reported!%%,
requiring the operator’s attention.

For histology WSIs. Histology WSIs need a different inference mechanism, than that
for training, primarily due to their increased hardware requirements, i.e., WSIs can
require more than 50GB when loaded completely on-memory. Fig. 5b illustrates this
inference mechanism, which starts with the extraction of a WSI's imaging component
at the maximum magnification/resolution (e.g., x40) and its conversion to a TIFF with
9-10 layers of tiled images with different magnification levels (i.e., Fig. 5b(ii)-(iii) -
“Data Fixing Pipeline”). The background area is then filtered out through the gen-
eration of a ‘tissue mask’ (Fig. 5b(iv)), using Red-Blue-Green (RGB) and Otsu-based
thresholding! 10111, which is necessitated by the need to correctly tackle image reading
issues occurring when trying to buffer any magnification level other than the lowest.
This ‘tissue mask’ reduces the search space for downstream analyses, and hence
reduces the overall computational footprint. This mask is further used to calculate
foreground coordinates (Fig. 5b (v)), around which patches are extracted on-the-fly by
leveraging TiffSlide’s'!> dynamic read region property (Fig. 5b(vi)). This produces a
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Fig. 3 lllustration of various data augmentation techniques available in GaNDLF showing the image and overlaid segmentation. a Original image,
b affine augmentation, ¢ elastic augmentation, d flip augmentation, e bias augmentation, f blur augmentation, g ghosting augmentation, h noise
augmentation, i spike augmentation, and j motion augmentation.
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Fig. 4 Overall structure of GaNDLF. a Flowchart depicting the overall training procedure pipeline offered in GaNDLF. b GaNDLF 's software stack,
highlighting the use of various low and high-level libraries to facilitate the creation of a flexible framework with an easy-to-use end-user interface. The
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interactions of the codebase.

‘count map’ (Fig. 5b(viii)), which accounts for the contribution of overlapping patches
for a tissue region ensuring probabilities are always between 0 and 1. The trained
model is then used for a forward pass on each of these patches, producing an inde-
pendent prediction for each. These predictions are then stitched together to form a
‘segmentation probability map’ (Figure 5b(ix)). The ‘segmentation probability map’
and the ‘count map’ are then multiplied to generate the ‘final segmentation’ output

(Fig. 5b(x)).

Post-processing. It is conceivable that post-processing of a prediction would be
required to get the most accurate result. GaNDLF provides a post-processing
module that includes common image processing tasks, such as morphological
operations (i.e., dilation, erosion, closing, opening), and the ability to map pre-
dicted labels from one value to another. The former is useful in cases where
segmentation predictions are generated with holes and need to be closed, and the
latter can be used to assign the desired final label values to a prediction.

Modularity and extendibility. A description of GaNDLF’s software stack, mod-
ularity, and extendibility is hereby provided, as well as how the lower-level libraries
are utilized to create an abstract user interface, which can be customized based on
the application at hand. Following this, the flexibility of the framework from a
technical point-of-view is chronicled, which illustrates the ease with which new
functionality can be added. Further details on customizing the entire processing
pipeline (including hyper-parameter tuning and optimization) can be found in the
software documentation at: mlcommons.github.io/GaNDLF.

Software Stack. The software stack of GaNDLF, illustrated in Figure 4b, depicts the
interconnections between the lower level libraries and more abstract functionalities
exposed to the user via the command line interface. This ensures that a researcher
can perform DL training and/or inference without having to write a single line of
code. Furthermore, the flexibility of the stack is demonstrated by the ease with
which a new component (e.g., a pre-processing step, or a new network architecture)
can be incorporated into the framework, and subsequently applied to new types of
data/applications with minimal effort. Specifically, the framework’s flexibility
affects components listed in the following subsections.

Dimensions. To ensure maximum flexibility and applicability across various types
of data, GaNDLF supports both 3D and 2D datasets. Using the same codebase,
GaNDLF has the ability to apply various architectures across diverse modalities
such as MRI, CT, retinal, and digitized histology WSI, including immunohisto-
chemical (IHC), In Situ Hybridization (ISH), and H&E stained tissue sections.

Input channels/modalities & output classes. GaNDLF supports multiple input
channels/modalities/sequences and output classes, for either segmentation, classi-
fication, or regression, to ensure maximal applicability across various problem
domains, whether it involves a binary task (e.g., brain extraction) or multi-class
outputs (e.g., brain tumor sub-region segmentation).

® Radiology images require the ability to process both 2D and 3D data.
Although imaging examples that GaNDLF has been applied and evaluated
so far describe CT, MRI, and tomosynthesis scans, it offers support for
almost every radiology image via ITK.
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Fig. 5 GaNDLF's inference mechanism for medical images. a lllustration of the patch-based inference mechanism for radiology images. This process is
repeated till the complete image gets processed. b Steps to perform specialized inference for histology images. Starting with the raw whole slide image
(WSI), multiple specialized pre-processing steps (ii-vi) are performed before a patch can be given as input to a trained model. The coordinates of each
patch need to be saved along with the overlap information in order to obtain the final result.

®  Histology images, on the contrary, require specialized handling along the
following criteria:

- Input: The use of TiffSlide!!? allows GaNDLF to read a fraction of the
entire WSI data at the resolution closest to the requested magnification
level, thereby ensuring memory-efficiency.

- Patch-extraction: Since a WSI cannot always be processed on its entirety
due to hardware constraints, a patch-based mechanism considering
multiple resolutions is essential. This mechanism is offered through our
open-source Open Patch Miner (OPM, github.com/CBICA/OPM), which
has been integrated within GaNDLF for simple and rapid batch-processing
of patches. OPM can automatically mask tissue in a WSI and convert the
highest available resolution to square patches, given a pre-defined overlap
amount and patch dimensions. Specifically, it extracts patches with the pre-
defined overlap using a pseudo-grid and parallel sampling adjustable for
tissue inclusion, in proportion to different tissue classes (for classification
workloads), and while omitting the background region.

Network architectures. GANDLF seeks to provide both well-established and state-
of-the-art network architectures showing promise in the field of healthcare. The

currently available (and ever expanding) architectures offered through GaNDLF,

and their detailed descriptions are provided in the Supplementary Methods: Net-
work Architectures as well as their illustrations in Supplementary Figs. 1-10.

Applications. As previously stated, GaNDLF can train DL models to target various
workloads, including segmentation, regression, and classification. Depending on
available resources, most models can be extended for all these workloads (such as
UNet), and there are workload-specific models, such as the brain age prediction
model®!, which modifies a VGG-16 model pre-trained on ImageNet weights and is
only defined for regression. The flexibility of GaNDLF’s framework makes it
possible for all these models to co-exist and to leverage the robustly designed data
loading and augmentation mechanisms for future study extensions. Having a
common API for all these workloads also makes it relatively easy for researchers to
start applying well-defined network architectures towards various problems and
datasets, thereby contributing in getting DL-based pipelines into clinical workflows.

Performance evaluation. We provide different options to evaluate the model per-
formance during training, and mechanisms to incorporate new validated

recommendations!!3 as needed. Below definitions of the metrics used in the results
section of this manuscript are provided. Specifically, for segmentation workloads,

the “Dice Similarity Coefficient”!14 (Eq. (4)) is mostly used as the performance
evaluation metric, and all related models were trained to maximize it. “Dice” is a
common metric used to evaluate the performance of segmentation workloads. It
measures the extent of spatial overlap, while taking into account the intersection
between the predicted masks (PM) and the provided ground truth (GT), hence
handles over- and under-segmentation.

2|GT N PM
Dice = l !

= 4
|GT| + |PM| @

Additionally, the “Hausdorff Distance”!!> is a metric for segmentation
workloads (Eq. (5)). This metric quantifies the distance between the boundaries of
the ground truth labels against the predicted label. It is sensitive to local differences,
as opposed to “Dice”, which represents a global measure of overlap.

Hys(PM, GT) = maxqPysy, d(p, GT), Posy, d(g, PM) )
pePM geGT

where d(x,Y) = miny ||x — y|| is the distance of x to set Y.

For regression workloads, we used the Mean Squared Error ("MSE”)!16 as our
evaluation metric and all models were trained to minimize it. “MSE” measures the
statistical difference between the target prediction T and the output of the model P
for the entire sample size n (illustrated by Eq. (6)). The same mechanism has been
used for accuracy, macro-averaged Fl-score, and area-under-the-curve, among
others by leveraging TorchMetrics!'!”.

MSE =35 (T, - P’ ©)

For classification workloads, we used the balanced accuracy (“Acc”)!18 as an
evaluation metric and trained models to minimize the cross entropy loss!1?. “Acc”
can be used for both binary and multi-class classification, and is defined the
arithmetic mean of sensitivity and specificity. This metric is especially useful when
dealing with imbalanced data, i.e. when one of the target classes appears a lot more
than the other!18.

() + (V) %
2

where TP & TN are the number of true and false positives, and FP & FN are the
number of false positives and negatives, respectively.

Acc=

Interpretability tools. It is an ongoing problem that deep neural networks lack the
interpretability or explainability necessary for medical practitioners to trust into the
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Fig. 6 Examples of generated M3D-CAM attention maps>¢ with the Grad-CAM backend. The top row of images show the attention from a 2D
classification network, the middle row from a 2D segmentation network and the bottom row from a 3D segmentation network.

networks decisions, hindering the practical application of such models in clinical
practice!?%121. To counter this, GaNDLF integrated the PyTorch library M3D-
CAM?>, which enables the easy generation of attention maps of CNN-based
models for both 2D and 3D data, and is applicable to both classification and
segmentation models (examples illustrated in Fig. 6). The attention maps can be
generated with multiple methods: Guided Back-propagation!??, Grad-CAM!%3,
Guided Grad-CAM!?3 and Grad-CAM++124. The maps visualize the regions in
the input data that most heavily influenced the model prediction at a certain layer.

Model optimization. Typical clinical environments do not have access to specia-
lized hardware (such as DL acceleration cards) and increased memory, which are
necessary for practical on-premise deployment of DL models. This situation is
further exacerbated in developing regions, where clinical environments are even
more limited in resources. The question of training, or even inference/execution, of
DL models has not received sufficient attention in current literature, hindering
clinical translation of state-of-the-art models. One of the reasons that this clinical
applicability is typically not considered during the life-cycle of a research project is
because of the added complexity. Thus, to further the use of models trained using
GaNDLF in clinical/low-resource settings, GaNDLF incorporates post-training
optimization of all models using OpenVINO!2° by default, and provides the
optimized model as an additional output at the conclusion of any model training
procedure. This enables inference of DL models to be deployed to low-resource
machines!2%, which magnifies their impact in precision medicine.

Software development practices. GaNDLF incorporates several well-known
robust software development measures!?” to ensure ongoing software quality in the
presence of community contributions. These measures include the following:

®  “Unit testing” refers to tests of individual functional components of the
software, to ensure that implementation changes do not break the usage
contract established by that component. These units are the smallest
relevant units of functionality, and testing these helps ensure that bugfixes,
feature additions, and performance optimizations do not cause breaking
changes to basic calculations made by the software, such as those that
would impact model training. GaNDLF includes extensive unit tests for all
custom functionality which is built atop other libraries.

®  “System testing” refers to larger-scale tests of software functionality, to test
the usage of the software in a broader way that more closely correlates to
real usage. GaNDLF’s test suite includes extensive system tests, including
tests of each major usage mode (training, inference, data preparation, and
so on), and tests for each model architecture across types of data (such as
radiology and histology images) and types of workloads (such as
classification, regression, and segmentation) as appropriate. GaNDLF’s
test suite requires all tests to pass before code can be committed to the
repository, and changes cannot be committed to the code repository if any
tests fail for any reason.

®  Automated and publicly-declared vulnerability testing of code dependen-
cies via Dependabot!28, which ensures that GaNDLF stays up-to-date on
security patches.

® “Automated test coverage reports” are a metric collected during testing,
reflecting how much of the codebase is traversed by tests. Higher code

coverage indicates that more individual components, functions, and
conditional branches of the software have been tested. GaNDLF
automatically reports code coverage changes on any incoming contribution
and flags changes that decrease code coverage for further review.

® “Continuous deployment” via containerization using the Docker, Singu-
larity, and MLCube standards.

While the above tests cover code-level reliability, it is difficult to infer reliability
regarding performance of the models produced by GaNDLF, in part due to
stochasticity of the training process. We are actively working on additions to the
automated test suite that would measure performance of each model on small
sample datasets, and flag contributions that cause drops in performance for further
review.

Experimental design. For each application, multiple models are trained in
accordance with the cross-validation schema described in Methods Section. For
performance evaluation, we use the model with the best validation score as defined
in the application-specific evaluation criteria and apply this model to the test
dataset for each fold, giving us the average performance of an architecture for the
specific problem. To maintain reproducibility and prevent overfitting, we have
trained each architecture with a 20/16/64 split, which results in the training of 25
models in total, for each architecture. Specifically, the 20/16/64 split comprises 5
non-overlapping splits (i.e., each containing 20%) of the complete dataset. Each
one of these splits is set aside as the testing cohort for each fold. From the
remaining 80% of the complete data during this fold, 5 further splits are done, each
containing 16% of the full data, and used for validation. Finally, the remaining data
for this fold, which represent 64% of the full cohort, are used for training.

Segmentation of brain in MRI. Brain extraction is an essential pre-processing step
in the realm of neuroimaging, and has an immediate impact on the quality of all
subsequent processing and analyses steps. We have used a multi-institutional
dataset of 2520 MRI scans along with their corresponding manually annotated
brain masks. We trained on 1320 scans in a modality-agnostic manner (i.e., each
structural MRI scan was treated as a separate input) as described in ref. !! and
setting a internal validation set of 180 scans, with an independent testing cohort of
360 scans to ascertain the model performance. We trained by resampling the data
from an isotropic resolution of 1 mm?3 with a shape of 240 x 240 x 160 to a ani-
sotropic resolution of 1.825 x 1.825 x 1.25 mm? with a shape of 128 x 128 x 12811,
The reason for this resampling was GPU memory limitations, i.e., 11GB VRAM.
We trained multiple architectures (UNet, ResUNet, FCN) with only z-score nor-
malization by discarding the zero-voxels, with no augmentations enabled.

Segmentation of brain tumor sub-regions in MRI. Gliomas are among the most
common and aggressive brain malignancies and accurate delineation of these
regions can provide valuable clinical insights. We have used the publicly available
MRI data from the International Brain Tumor Segmentation (BraTS) challenge of
2020710129130 t5 train multiple models to segment the various brain tumor sub-
regions. Specifically, we used the full cohort of 371 training subjects, which we
iteratively split it into 74 testing, 60 validation, and 237 training subjects following
the k-fold cross-validation schema mentioned in the Cross-Validation sub-section
in Methods, with all the 4 structural MRI sequences making up a single input
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data-point!. In total, 25 models are trained for each architecture (UNet, ResUNet,
Ulng, and FCN). For each model, we used a set of common hyperparameters that
runs in a GPU with 11GB of memory, namely, patch size of 128 x 128 x 128, 30
base filters, “Dice” loss, with stochastic gradient descent (SGD) as the optimizer.
For pre-processing, we used z-score normalization by discarding the zero-voxels
and cropping of the zero-planes. For data augmentation, we used noise, flipping,
affine, rotation and blur, each with a probability of getting picked as 0.35. In each
case, the model is trained to maximize the performance evaluation criteria, which is
constructed by following the instructions in the BraTS$ challenge”-1?, i.e., averaging
the “Dice” across the enhancing tumor, the tumor core (formed by combining
necrosis and enhancing tumor), and the whole tumor (formed by combining the
tumor core and the peritumoral edematous/infiltrated tissue).

Whole brain parcellation in MRI. Whole brain structural segmentation could
provide richer neuroanatomy information in neuroimaging studies where those
structures are relatively small and thus it becomes a more challenging task to
accurately segment them in the similar image appearances*>. We have used the
publicly available MRI data from the Multi-Atlas Labelling Challenge (MALC) of
2012 to train multiple models to segment the whole brain into 133 fine-grained
sub-regions!3! from T1 weighted scans. Specifically, this challenge dataset contains
in total of 30 scans, where a training list of 15 scans and a testing list of 15 scans are
provided from the challenge. We trained by resampling the data into an isotropic
resolution of 1 mm?3 with a shape of 256 x 256 x 256 as referred from prior work?>.
Particularly, a ResUNet model and an UNet model are implemented for training
with a set of common hyperparameters that runs in a GPU with 24 GB of memory,
30 base filters, Dice loss, with SGD as the optimizer. Differently, ResUNet used a
learning rate of 0.02 and a patch size of 64 x 64 x 64, whereas UNet used a learning
rate of 0.01 and a patch size of 96 x 96 x 96. For pre-processing, the dataset are
normalized into range of [—1, 1]*> with no augmentations enabled.

Segmentation of fatty and dense breast tissue using DBT. Breast density has been
widely demonstrated to be an independent risk factor for breast cancer!32-134,
Given the rise of digital breast tomosynthesis (DBT) in breast cancer screening
compared to traditional 2D mammography“®, there is potential to estimate volu-
metric breast density (VBD) routinely using machine learning methods. We ret-
rospectively analyzed 1080 negative DBT screening exams completed between 2011
and 2016 at the Hospital of the University of Pennsylvania that contained both 2D
raw DBT and 3D reconstructed images. Using the available cranio-caudal and
mediolateral-oblique views for each patient, a total of 7850 DBT views were
available. We created a convolutional neural network that employed the U-Net
architecture for a 3-label image segmentation problem (background, fatty breast
tissue, dense breast tissue). Training, validation, and testing sets comprised 70%,
15%, and 15% of the original dataset, respectively. Corresponding ground truth
segmentations were generated from a previously validated software that generated
VBD metrics based on both 3D reconstructed slices and raw 2D DBT data. 24
models were trained, each using a unique combination of learning rates, batch
sizes, patch sizes, and optimizers. Data augmentation during training included
affine transformations, blur transformations, and noise transformations, with
probabilities of 0.25, 0.5, and 0.5, respectively. The performance of each model was
based on weighted and unweighted Dice scores and the final model was selected
based on validation set performance.

Segmentation of structural tumor volume from breast MRI. The ACRIN 6657/1-
SPY1 TRIAL*713> enrolled 237 women from May 2002 to March 2006. From these
cases, after applying the inclusion/exclusion criteria, we were left with 163 subjects
which contained the 3 time-points of interest with regards to contrast injection.
These were pre-injection, and 2 post-injection scans. The first-post contrast image
for each case was used by the radiologist to delineate the entire 3-D primary tumor
segmentation for each patient, also known as the “structural tumor volume”, since
it contained peak excitation of the contrast agent*:13>. We trained the ResUNet
using all the 3 time-points using an initial and minimum learning rates of 0.01 and
10~4, respectively, driven using the SGD optimizer. We observed an average “Dice”
of 0.74 across 5 fold cross-validation!3.

Segmentation of lung field in CT. An accurate volumetric estimation of the lung
field would be crucial towards furthering the clinical goals of tackling respiratory
illnesses, such as influenza, pneumonia, and COVID-19 pathologies. However,
manual segmentation of the lung field is time-intensive and subjective with low
inter-individual reliability, especially for large-scale datasets. Automatic segmen-
tation algorithms can substantially accelerate the analytical procedure. We trained
3D lung field segmentation models with two internal datasets from two indepen-
dent cohorts based on the ResUNet structure. The first dataset was identified
within the lung cancer screening cohort at the University of Pennsylvania Health
System (UPHS), and consisted of 500 low-dose CT scans in which 25 were diag-
nosed with lung cancer. Their corresponding ground truth segmentations for the
lung field were generated under a semi-automatic procedure leveraging 2-cluster k-
means, followed by manual qualitative refinements. The second dataset contains
673 low-dose CT scans identified within COVID-19 patients admitted to UPHS.
Because of the difficulties posed by pathological presentations of COVID-19 in
scans, the ground truth was obtained by manually choosing scans with correct

segmentations generated by the algorithm that worked on individual slices and
accounted for the presence of severe pathologies!'3”. We trained our models on the
two datasets separately. We split both datasets into training, validation and test
sets. For the first dataset, there are 254 scans in the training set, 64 scans in the
validation set and 182 scans in the test set. For the second dataset, there are

360 scans in the training set, 98 scans in the validation set and 215 scans in the test
set. We performed windowed pre-processing and clipped the intensities between
[—900,—300] Hounsfield Units (HU). We also resampled the data down to

[128 x 128 x 128] in order to consider the entire chest region and to ensure that the
trained model remained agnostic to the original image resolution. We trained the
ResUNet architecture with clipping and z-score normalization by discarding the
zero-voxels with no augmentations enabled. The “Dice” score was employed as our
evaluation metric and the model was trained to maximize the “Dice” score.

Segmentation of retinal fundus. We used the dataset from the PALM challenge?s,
which consists of segmentation of lesions in retinal fundus images and replicated
the results for a ResUNet architecture from!38. Additionally, we trained on FCN,
UNet, and Ulnc to show results from a diversified set of architectures from the
same dataset. We used the full cohort of 400 training subjects, and iteratively
split into 80 testing, 64 validation, and 256 training subjects following the k-fold
cross-validation schema mentioned in the Cross-Validation sub-section in
Methods. In total, 25 models are trained for each architecture (UNet, ResUNet,
Ulnc, and FCN). For each model, we used a set of common hyperparameters
options that runs in a GPU with 11GB of memory, namely, patch size of
2048 x 1024, 30 base filters, “Dice” loss, with SGD as the optimizer. For pre-
processing, we used full-image normalization, and data augmentation was per-
formed using flipping, rotation, noise and blur, each with a probability of 0.5.
The performance is evaluated in comparison with the ground truth binary masks
of the fundus in the testing set.

Segmentation of quadrants in panoramic dental X-ray images. Dental enumeration
from panoramic dental X-Ray images has a crucial role in the identification of
dental diseases. Performing that task with deep learning provides an extensive
advantage for the clinician to number the dentition quickly and point out the teeth
that need care more accurately. Quadrant segmentation from those panoramic
images is the first and the most critical step of numbering the dentition accurately,
and a previous study has used an UNet model to achieve that task%. Here, we
replicated those results by training a segmentation model with GaNDLF that
extracts quadrants from the dental X-ray images. To do that, we have used 900
dental X-ray images with their corresponding five classes (one for each quadrant
plus the background). Class annotations have been generated by the experts and
the images were resized down to 128 x 128 in order to consider the entire mouth
region. We trained the UNet, the ResUNet, and the FCN architectures with 30 base
filters with z-score normalization with no augmentations enabled. We used “Dice”
as the evaluation metric and trained the model to maximize it.

Segmentation of colorectal cancer in WSI. Colonoscopy pathology examination can
find cells of early-stage colon tumor from small tissue slices, and pathologists need
to examine hundreds of tissue slices on a day-to-day basis, which is an extremely
time consuming and tedious work. The DigestPath challenge®® motivated parti-
cipants to automate this process and thereby contribute to potentially improved
diagnostics. The data provided in the DigestPath challenge includes slides con-
taining colorectal cancer in JPEG format. The dimensions of the provided images
range from 3000 x 3000 to 30000 x 30000. 180000 patches of the shape 512 x 512 at
10x resolution were extracted for training and 30000 for validation, with a set of 30
WSIs being kept separate as independent testing dataset. We trained the ResUNet
architecture, and prior to training we normalized the training values to [0—1] by
dividing each pixel by the maximum possible intensity, i.e., 255. To account for
model generalizability, we employed the flip, rotate, blur, noise, gamma, and
brightness data augmentations. We used “Dice” as our evaluation metric and
trained the model to maximize it. Inference was then done on the testing dataset
and the output of the model was evaluated against the ground truth binary masks
to calculate the “Dice” score.

Brain age prediction from MRI. The human brain ages differently because of
various environment factors. Quantifying the difference between actual age and
predicted age can provide a useful insight into the overlap of aging signatures
with various neurodegenerative pathologies. A 2020 study”! has used common
2D CNN architectures, borrowed from the computer vision community, to
predict brain age from T1-weighted MRI scans across a wide age range. Meth-
odologically, the original fully connected layers of the VGG-Net was replaced by
a global average pooling, followed by a new fully connected layer of size 1024
with 80% dropout, and then a single output node with a linear activation was
added. The network was then trained with the Adam optimizer!3?, while using
MSE. This study was evaluated on 10,000 diverse structural brain MRI scans,
pooling data from various studies, including the UK Biobank!4? and a multisite
schizophrenia consortium!4!, thereby representing various subject populations
and acquisition protocols. This inherent variability of the collective

dataset allowed to successfully learn a regression model generalizable across
sites. The study in question study®! goes on to examine using the learned age
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prediction weights as a starting point for transfer learning to other neuroimaging
workflows. It is shown that the age prediction weights serve as a superior basis
for transfer learning compared to ImageNet, particularly in neuroimaging pro-
blems, where the new training data is limited”!.

Leveraging the modular nature of GaNDLF, we replicated the age prediction
results of that study®! using the same model architecture, training schema, and
dataset as in the original study, while following GaNDLF’s procedures. Using the
VGG-16 model architecture and GaNDLF’s built-in cross-validation functionality,
we trained regression models using the intermediate 80 axial slices of each subject,
with input data being split on the subject level. The same network hyperparameters
were used, as those specified in the original study>!.

Classification of diabetic foot ulcer images. Diabetic foot ulceration (DFU) is a
serious complication of diabetes, which poses a major problem for health systems
around the world. DFU can further lead to infection and ischemia, which can result
in the amputation of limbs, with more severe cases being terminal illnesses. Dia-
betic Foot Ulcers Grand Challenge (DFUC) 2021°2 is conducted to help early
detection of DFU, which can prevent turning into more serious cases, improve care
and reduce the burden on healthcare systems.

DFUC 2021 required its participants to solve a multi-class classification
problem through DFU images. The dataset contain DFU images of 4 different
classes, labelled as 1) “infection”, 2) “ischemia”, 3) “both infection and ischemia”,
and 4) “controls” (i.e., neither infection, nor ischemia). The original resolution of
the images are 224 x 224. The dataset consist of 15,863 images, partitioned into
three distinct independent subsets. The training set includes 5955 images, where
2555 cases with only “infection”, 227 cases with only “ischemia”, 621 cases with
“both infection and ischemia”, and 2552 “control” cases.

Through the challenge, ease of conducting different experiments through
GaNDLF assisted us to train well-known generalizable models. Three different
versions of the VGG architecture!4>143 and one version of DenseNet architecture
are experimented with GaNDLF, namely VGG11, VGG16, VGG19 and
DenseNet121. We utilized k-fold cross validation functionality of GaNDLF to
prevent overfitting. We applied patching with size of 128 x 128. We set the batch
size as b =256 for VGG11 and VGG16 architectures, b =128 for VGG19, b =32
for DenseNet121 (high GPU resources were not available for this experiment) to
ensure maximal utilization of the available hardware resources. Adding bias, blur,
noise, and swapping techniques are used as data augmentation with probability
p=0.5. Z-scoring normalization is used for data pre-processing. Cross-entropy
loss is used as the loss function, which is shown work well for multi-class
classification problems. We also experimented weighted cross entropy loss!44,
which generally works better for imbalanced classes. The Adam optimizer!3® was
used with an initial learning rate of Ir =0.001.

Classification of TILs using histology scans. Electronic capture (digitisation) and
analyses of whole slide images (WSIs) of tissue specimens are becoming ubiquitous.
Digital Pathology interpretation is becoming increasingly common, where many
sites are actively scanning archived glass tissue slides with commercially available
high-speed scanners to generate high-resolution gigapixel WSIs. Alongside these
efforts, a great variety of AI algorithms have been developed to extract many salient
tissue and tumor characteristics from WSIs. Examples include segmentation of
tumor regions, histologic subtypes of tumors, microanatomic tissue compartments;
detection and classification of immune cells to identify tumor-infiltrating lympho-
cytes (TILs); and the detection and classification of cells and nuclei. TILs are
lymphoplasmacytic cells that are spatially located in tumor regions, where their role
as an important biomarker for the prediction of clinical outcomes in cancer patients
is becoming increasingly recognised!4>-147. Identification of the abundance and the
patterns of spatial distribution of TILs in WSI represent a quantitative approach to
characterizing important tumor immune interactions. We created a cohort of pre-
defined training and validation cases consisting of patches extracted from WSIs of
cancer from 12 anatomically distinct sites, comprising of breast, cervix, colon, lung,
pancreas, prostate, rectum, skin, stomach, uterus, and uvea of the eye. All cases are
publicly available in The Cancer Genome Atlas (TCGA)!48,

We have used a VGG-16 architecture!42143 that has been pretrained using the
ImageNet dataset®®. We updated the architecture’s first and final layers to be able to
process input images of any size, and only output the 2 relevant classes for this
problem, respectively>*. We then proceed with training this architecture using
different schedulers and optimizers along with varying learning rates to get an
average performance of 0.89. The best results were seen with the step scheduler on
Adam optimizer'3® using a learning rate of 0.001.

Prediction of EGFRVIII using structural MRI. Glioblastoma (GBM) is the most
common and aggressive primary malignant adult brain tumor and epidermal
growth factor receptor variant IIT (EGFRVIII) mutation has been considered a
driver mutation and therapeutic target in GBM!49-151, Usually, EGFRVIII presence
is determined by analysis of surgically resected or biopsy-obtained tissue speci-
mens. We are conducting experiments towards prediction of the EGFRVIII status
non-invasively, by analyzing the preoperative and pre-processed structural multi-
parametric (mp)MRI sequences (T1, T2, T1-Gd and T2-Flair). We identified a
cohort of 146 patients containing these four scans acquired at the Hospital of the
University of Pennsylvania.

We trained the VGGI1 classification architecture utilizing the k-fold cross
validation functionality to classify the EGFRVIII status as positive or negative
based on the four structural modalities as well as the segmentation map of tumor
core. The patch size was set to 128 x 150 x 131 the various experiments were
carried out to find the optimal set of hyperparameters utilizing the various
options available in GaNDLF. Baseline results were obtained without using any
additional data augmentation techniques. Best performance was achieved with
cross entropy loss function, SGD optimizer and step scheduler with learning rate
of 0.1.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used for each of the experiments are available as follows:

Segmentation of Brain in MRI: The data used was a combination of a publicly available
dataset®!1, augmented with scans from private collections of multiple institutions,
namely the University of Pennsylvania Health System (UPHS), Thomas Jefferson
University, and MD Anderson Cancer Center. The data that support the findings of this
study are available from the individual hospitals, but restrictions apply to the availability
of these data, which were used under license for the current study, and so are not publicly
available. Data are however available from the authors upon reasonable request and with
permission of the aforementioned clinical sites.

Segmentation of Brain Tumor Sub-regions in MRI: The data used was from the Brain
Tumor Segmentation (BraTS) challenge of 20207-10.

Whole Brain Parcellation in MRI: The data used was from the Multi-Atlas Labelling
challenge (MALC) of 2012131,

Segmentation of Breast Tissue using DBT: The data that support the findings of this
study are available from the UPHS, but restrictions apply to the availability of these data,
which were used under license for the current study, and so are not publicly available.
Data are however available from the authors upon reasonable request and with
permission of the University of Pennsylvania.

Segmentation of Structural Tumor Volume Breast MRI: The data used in this study
was obtained from the ACRIN 6657/I-SPY1 TRIAL*7135 and can be downloaded from
https://wiki.cancerimagingarchive.net/display/Public/ISPY1.

Segmentation of Lung Field in CT: The data that support the findings of this study are
available from the UPHS, but restrictions apply to the availability of these data, which
were used under license for the current study, and so are not publicly available. Data are
however available from the authors upon reasonable request and with permission of the
University of Pennsylvania.

Segmentation of Retinal Fundus: The data used was from the PALM challenge?S.

Segmentation of Quadrants in Panoramic Dental X-Ray Images: The data that support
the findings of this study are available from the Istanbul Medipol University, but
restrictions apply to the availability of these data, which were used under license for the
current study, and so are not publicly available. Data are however available from the
authors upon reasonable request and with permission of the Istanbul Medipol University.

Segmentation of Colorectal Cancer in WSI: The data used was from the DigestPath
challenge®.

Brain Age Prediction from MRI: The data used was from the UK Biobank!40 and a
multisite schizophrenia consortium!41.

Prediction of the EGFRVIII mutation in brain tumors using structural mpMRI: The
data that support the findings of this study are available from the UPHS, but restrictions
apply to the availability of these data, which were used under license for the current
study, and so are not publicly available. Data are however available from the authors
upon reasonable request and with permission of the University of Pennsylvania.

Classification of Diabetic Foot Ulcer Images: The data used was from the Diabetic Foot
Ulcer Grand Challenge (DFUC) of 202152,

Classification of Tumor Infiltrating Lymphocytes: The data used is available in The
Cancer Genome Atlas (TCGA)!48,

Code availability

To encourage reproducibility, all the code used for this work is open-sourced at github.
com/mlcommons/GaNDLF, and it can be installed as detailed in mlcommons.github.io/
GaNDLF/setup.
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Abstract

Convolutional neural networks (CNNs) have shown promising performance in various 2D
computer vision tasks due to availability of large amounts of 2D training data. Contrarily,
medical imaging deals with 3D data and usually lacks the equivalent extent and diversity
of data, for developing Al models. Transfer learning provides the means to use models
trained for one application as a starting point to another application. In this work, we
leverage 2D pre-trained models as a starting point in 3D medical applications by exploring
the concept of Axial-Coronal-Sagittal (ACS) convolutions. We have incorporated ACS as an
alternative of native 3D convolutions in the Generally Nuanced Deep Learning Framework
(GaNDLF), providing various well-established and state-of-the-art network architectures with
the availability of pre-trained encoders from 2D data. Results of our experimental evaluation
on 3D MRI data of brain tumor patients for i) tumor segmentation and ii) radiogenomic
classification, show model size reduction by ~22% and improvement in validation accuracy by
~33%. Our findings support the advantage of ACS convolutions in pre-trained 2D CNNs over
3D CNN without pre-training, for 3D segmentation and classification tasks, democratizing
existing models trained in datasets of unprecedented size and showing promise in the field of
healthcare.
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ing performance in various 2D computer vision tasks due to availability
of large amounts of 2D training data. Contrarily, medical imaging deals
with 3D data and usually lacks the equivalent extent and diversity of
data, for developing AI models. Transfer learning provides the means
to use models trained for one application as a starting point to another
application. In this work, we leverage 2D pre-trained models as a start-
ing point in 3D medical applications by exploring the concept of Axial-
Coronal-Sagittal (ACS) convolutions. We have incorporated ACS as an
alternative of native 3D convolutions in the Generally Nuanced Deep
Learning Framework (GaNDLF), providing various well-established and
state-of-the-art network architectures with the availability of pre-trained
encoders from 2D data. Results of our experimental evaluation on 3D
MRI data of brain tumor patients for i) tumor segmentation and ii) radio-
genomic classification, show model size reduction by ~22% and improve-
ment in validation accuracy by ~33%. Our findings support the advan-
tage of ACS convolutions in pre-trained 2D CNNs over 3D CNN without
pre-training, for 3D segmentation and classification tasks, democratizing
existing models trained in datasets of unprecedented size and showing
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1 Introduction

Deep learning (DL) based approaches are continuously being developed for vari-
ous medical imaging tasks, including segmentation, classification, and detection,
for a wide range of modalities (i.e., MRI, CT, X-Ray), regularly outperforming
earlier approaches [1,2]. However, DL is computationally expensive and requires
large amounts of annotated data for model training limiting their applicability in
problems where large amounts of annotated datasets are unavailable [3]. Trans-
fer learning (TL) is a popular approach to overcome this issue by initializing a
DL model with pre-trained weights, thereby reducing convergence time and con-
cluding at a superior state, while utilizing otherwise insufficient data [4,5]. The
basic idea of TL involves re-using model weights trained for a problem with a
large available dataset as the initialization point for a completely different task.
The foundation behind this idea is that convolutional layers extract general,
lower-level features (such as edges, patterns, and gradients) that are applicable
across a wide variety of images [6]. The latter layers of a convolutional neural
network (CNN) learn features more specific to the image of the particular task
by combining the previous lower-level features. Leveraging weights of trained
models has proven to be a better initialisation point for DL model training,
when compared to random initialization [4,7-10].

There are numerous pre-trained models available for applications on 2D imag-
ing data, such as ImageNet [11], YOLO [12], and MS-COCO [13], however, uni-
versally applicable pre-trained models are not available for utilization on 3D
data like medical images due to the lack of associated large and diverse data.
Current application of pre-trained CNN for 3D medical image segmentation and
classification can be divided in three categories depending on the dimensionality
of the input data:

— 2D Approaches
Here, a 3D input volume is considered as a stack of 2D slices, and a multi-slice
planar (2D) network is applied on each 2D slice independently [14,15]. Some
earlier approaches considered 3D medical images as tri-planar representation
where axial, coronal, and sagittal views are considered as 3 channels of the
input data. But such 2D representation learning is fundamentally weak in
capturing 3D contexts. Some DL based approaches for classification of brain
cancer MRI images use representative 2D slices as the input data rather than
utilizing full 3D volume [16,17].

— 3D Approaches
In this case, a 3D network is trained using native 3D convolution layers that
are useful in capturing spatial correlations present along the 3"¢ dimension, in
order to capture 3D contextual information [18-21]. Significant improvement
in classification accuracy was observed in [22] with the use of native 3D convo-
lutions compared to 2D convolutions. Although data in adjacent slices, across
each of the three axes, are correlated and can be potentially used to yield a
better model, this suffers from two weaknesses: a) reduced model stability
due to random weight initialization (since there are no available pre-trained
models) and b) unnecessarily high memory consumption.
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Fig. 1. Comparison of various types of convolution for 3D medical data (Figure adapted
from [28]).

— Hybrid Approaches

There are few studies using a hybrid of the two aforementioned approaches,
i.e. 2D & 3D. An ensemble-based learning framework built upon a group of 2D
and 3D base learners was designed in [23]. Another strategy is to train multi-
ple 2D networks on different viewpoints and then generate final segmentation
results by 3D volumetric fusion net [24]. A similar approach was proposed
in [25], which consists of a 2D DenseUNet for intra-slice feature extraction
and its 3D counterpart for aggregating volumetric contexts. Finally, Ni et al.
trained a 2D deep network for 3D medical image segmentation by introducing
the concept of elastic boundary projection [26].

Current literature shows inadequate exploration on the application of 2D pre-
trained models in native 3D applications. As medical datasets are limited when
compared with those from the computer vision domain, TL of models trained in
the latter can be beneficial in medical applications.

In this paper, we explore the concept of Axial-Coronal-Sagittal (ACS) convo-
lution to utilize pre-trained weights of models trained on 2D datasets to perform
natively 3D operations. This is achieved by splitting the 2D kernels into 3 parts
by channels and convolving separately across Axial-Coronal-Sagittal views to
enable development of native 3D CNNs for both classification and segmentation
workloads. This way, we can take advantage of the 3D spatial context, as well
as the available pre-trained 2D models to pave the way towards building better
models for medical imaging applications. Multiple options of pre-trained models
for use in 3D datasets have been made publicly available through the Generally
Nuanced Deep Learning Framework (GaNDLF) [27].

2 Methods

In this work, we leverage the concept of Axial-Coronal-Sagittal (ACS) proposed
in [28] and incorporate it into the Generally Nuanced Deep Learning Framework

! https://github.com/CBICA /GaNDLF.
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Fig. 2. Idea of integrating ACS convolutions with pre-trained 2D model weights to
enable native 3D convolutions on 3D medical data (e.g., MRI)

(GaNDLF) [27)? which supports a wide variety of model architectures, loss func-
tions, pre-processing, and training strategies.

2.1 ACS Convolutions

Convolution operations in CNNs can be classified as either 2D or 3D. The 2D
convolutional layers use 2D filter kernels (K x K) and capture 2D spatial cor-
relation, whereas 3D convolutional kernels (K x K x K) are used in native 3D
convolutional layers capturing 3D context (Fig.1). As mentioned earlier, each of
these approaches have their own advantages and disadvantages.

Yang et al. [28] introduced the concept of Axial-Coronal-Sagittal (ACS) con-
volutions to learn the spatial representation of three dimensions from the com-
bination of each of the three (A-C-S) views (Fig. 1(c)). The basic concept of the
ACS convolutions is to split the kernel into three parts (K x K x 1), (K x1x K)
and (1 x K x K) and run multiple 2D convolution filters across the three views
(axial, coronal, and sagittal). For any convolution layer, let us consider the num-
ber of input channels as C; and number of output channels as C,. The number
of output channels in ACS convolution are then set as:

C«?acial ~ COCoronal ~ Cfagittal ~ L%J (1)

Thus 2D convolutions are transformed into 3 dimensions by simultaneously per-
forming computations across axial, coronal, and sagittal axes. The final output

2 https://github.com /CBICA/GaNDLF.
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Fig. 3. The architecture that allows using different pre-trained encoders with either a
segmentation or classifier head for specific workloads.

is then obtained by the concatenation of three convolved feature maps without
any additional fusion layer.

The concept of ACS convolutions can be used as a generic plug-and-play
replacement of 3D convolution enabling development of native 3D CNNs using
2D pre-trained weights as illustrated in Fig. 2.

2.2 Architecture Design

We have incorporated the concept of ACS convolutions in GaNDLF, which is a
framework for training models for segmentation, classification, and regression in
a reproducible and deployable manner [27]. GaNDLF has several architectures
for segmentation and classification, as well as a wide range of data pre-processing
and augmentation options along with the choice of several training hyper param-
eters and loss functions. We integrated several encoders from [29], pre-trained
on ImageNet [11] into this framework, including variants of VGG [30], ResNet
[31], DenseNet [32], and EfficientNet [33]. We have created a mechanism to com-
bine the outputs of these encoders with either a segmentation or a classification
head depending on the task, as shown in Fig. 3. The segmentation head consists
of a set of upsampling layers similar to the decoder mechanism of the UNet
network topology/architecture [34], where the user has the flexibility to choose
the number of upsampling layers and the number of feature maps in each layer.
The classification head consists of a average pooling layer applied on the top of
feature maps obtained from the encoder. Dropout can be set between range 0 to
1 to reduce overfitting to the training data before the final classification layer.
While the 2D pre-trained weights could be directly loaded for applications on
2D data, we have replaced the usual convolution layer with an ACS convolution
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layer in GaNDLF, enabling their use for training on 3D medical data in a native
manner, regardless of the number of input modalities. In comparison with the
2D models, ACS convolution layers do not introduce any additional computation
cost, memory footprint, or model size.

2.2.1 Design for Segmentation Gliomas are among the most common and
aggressive brain tumors and accurate delineation of the tumor sub-regions is
important in clinical diagnosis. We trained two different architectures for seg-
mentation through GaNDLF. UNet [34] with residual connections (ResUNet) is
one of the famous architectures for 2D and 3D medical segmentation. It con-
sists of encoder and decoder modules and feature concatenation pathways. The
encoder is a stack of convolutional and downsampling layers for feature extrac-
tion from the input images, and the decoder consists of a set of upsampling
layers (applying transpose convolutions) to generate the fine-grained segmenta-
tion output.

We trained two different models using the publicly available multi-parametric
magnetic resonance imaging (mpMRI) data of 369 cases from training set of the
International Brain Tumor Segmentation [35-37] (BraTS2020) challenge. This
dataset consists of four multi-parametric magnetic resonance imaging (mpMRI)
scans per subject/case, with the exact modalities being: a) native (T1) and
b) post-contrast T1-weighted (T1-Gd), ¢) T2-weighted (T2), and d) T2 fluid
attenuated inversion recovery (T2-FLAIR). These models are evaluated on 125
unseen cases from the BraTS2020 validation dataset. We first trained a standard
ResUNet architecture of depth = 4 and base filters = 32 such that weights of
all the layers were randomly initialized. We then built another architecture by
using pre-trained ResNet50 as an encoder with depth = 4 and the standard UNet
decoder. For each of these experiments, 40 patches of 64 x 64 x 64 were extracted
from each subject. Various training parameters were also kept constant, like the
choice of optimizer (we used SGD), scheduler (modified triangular) with learning
rate of 0.001, and loss function based on the Dice similarity coefficient (DSC)
[38]. Maximum number of epochs was set to 250 with patience of 30 for early
stopping. The performance is evaluated on clinically-relevant tumor regions, i.e.,
whole tumor (considered for radiotherapy), tumor core (considered for surgical
resection) as well as enhancing tumor.

2.2.2 Design for Classification Glioblastoma (GBM) is the most aggres-
sive and common adult primary malignant brain tumor and epidermal growth
factor receptor variant III (EGFRvIII) mutation is considered a driver muta-
tion and therapeutic target in GBM [39-41]. Usually, the presence of EGFRvIII
is determined by the analysis of actual tissue specimens and is stated as pos-
itive or negative. We focus on non-invasive prediction of EGFRVIII status by
analysis of these pre-operative and pre-processed MRI data. Residual Networks
(ResNets) [31] introduced the idea of skip connections which enabled design of
much deeper CNNs. GaNDLF supports variants of ResNet, including ResNet18,
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ResNet34, ResNet50, ResNet101, and ResNet152, each having different number
of layers.

We use an internal private cohort of 146 patients containing four structural
mpMRI modalities (T1, T2, T1-Gd and T2-FLAIR) such that the positive and
negative classes were equally distributed. These 146 cases were distributed in
Training (80%) and Validation (20%) sets for experimentation. We used cross
entropy loss function, adam optimiser and cosine annealing scheduler with learn-
ing rate of 0.0001. As the dataset is smaller, we set the maximum number epochs
to 100 and patience of 30 epochs for early stopping.

3 Results

In this section we present the quantitative results of the segmentation and classi-
fication workloads described above, to showcase the feasibility and performance
of ACS convolutions on 3D medical imaging data. Specifically, we compare the
2D pre-training approach with the random initialization to evaluate the superi-
ority of the ACS convolutions over usual 3D convolution operations.

3.1 Brain Tumor Segmentation Workload

The segmentation model is trained on the publicly available training data of
BraTS2020 challenge. We then quantitatively evaluate the performance of the
final models on the unseen BraTS2020 validation data by submitting results to
the online evaluation platform (CBICA Image Processing Portal). Table1 lists
the number of parameters of each model, as well as the comparative performance,
in terms of Dice Similarity Coefficient (DSC) and the 95" percentile of the
Hausdorff distance between the predicted ground truth labels.

3.2 Binary Classification of Brain Tumor Molecular Status

For the performance evaluation of the classification workload, we have used the
structural mpMRI scans in-tandem as input (i.e., passing all the scans together
at once as separate channels) similar to the segmentation workload. The clas-
sification model performance on training and validation data is summarized in
Table 2, illustrating the effectiveness of pre-trained weights.

4 Discussion

In this work, we have assessed the functionality of transfer learning for 3D med-
ical data based on the available 2D models pre-trained on ImageNet for segmen-
tation and classification. The framework that this functionality is evaluated is
designed such that deep learning network architecture’s first and last layers are
flexible to be able to process input images of any size with varying number of
channels or modalities, and provide the final prediction based on the relevant
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Table 1. Results on Brain Tumor Segmentation (BraTS2020) validation dataset

Metric Region Standard ResNet50+UNet ResNetb0+UNet
ResUNet (Random init.) (Pre-trained)

DSC Whole Tumor 0.8771 0.8775 0.8736

Tumor Core 0.7735 0.7458 0.7719

Enhancing Tumor | 0.7138 0.69508 0.7017
Hausdorff95 Whole Tumor 13.2425 7.6747 9.5384

Tumor Core 14.7492 8.6579 15.4840

Enhancing Tumor | 34.8858 41.00332 40.2053
#Parameters |- 33.377 Million |25.821 Million 25.821 Million
#Epochs for |- 104 epochs 250 epochs 95 epochs
convergence

number of classes for the specified task. The rest of the layers are initialized with
pre-trained weights from the ImageNet models and are further fine-tuned.

The results of brain tumor segmentation using i) 3D U-Net with residual con-
nections, ii) randomly initialized ResNet50 encoder & UNet decoder, and iii) pre-
trained ResNet50 encoder & UNet decoder are shown in Table 1. In these archi-
tectures, the obvious difference was in the encoders being randomly initialised in
the former i) 3DUNet and ii) ResNet50 and pre-trained in the latter ResNet50-
UNet (iii). As the pre-trained decoders are not available from ImageNet, the
decoder was initialised with random weights in all the three architectures. We
hypothesize that this might be the reason for comparable segmentation perfor-
mance in terms of dice and hausdorff95 scores, while the difference in number of
parameters is significant. It should be observed that the ResNet50-UNet (ii and
iii) has only 25.821 Million parameters, which is around 22% less compared to
33.377 Million parameters of the standard ResUNet (i), with the same encoder-
decoder depth. The randomly initialised ResNetb0-UNet model oscillates around
the same performance and did not converge in the specified maximum number
of epochs (250). On the other hand, the same model initialised with pre-trained
weights converged within 95 epochs. Thus models initialized with pre-trained
weights have advantage of better convergence speed as well as smaller model
size. Importantly, smaller models are more preferable in the clinical setting due
to their higher feasibility for deployment in low-resource environments.

Baseline results of binary classification for the determination of the
EGFRvVIII mutational status are reported in Table2, with ResNet50 architec-
ture. We did not use any additional data augmentation techniques. As the data
in this task were limited, the effect of pre-trained weights are clearly observed
resulting in better accuracy. Figure4 shows the plots of cross entropy loss and
accuracy in training with respect to epochs. Similar performance is observed for
validation set as well. The weights of the model with lowest validation loss are
stored for reproducibility and the accuracy and loss values reported in Table 2
are for the saved model with lowest validation loss.
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Table 2. Results on EGFR Classification

ResNet50 ResNet50
(Random initialization) (Pre-trained on ImageNet)
Training Accuracy | 0.7203 0.9915
Training Loss 0.5736 0.3292
Val Accuracy 0.5357 0.7142
Val Loss 0.6912 0.5758
09 Training Loss Training Accuracy
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Fig. 4. Comparison plots of training loss and accuracy for binary classification of
EGFRvIII mutation status. These plots are for ResNet50 architecture with and without
use of 2D pre-trained weights from ImageNet

Our findings support the incorporation of 2D pre-trained models towards
improving the performance on 3D medical image segmentation and classifica-
tion workloads, with demonstrably smaller model size (Table 1). Large increase
in accuracy is specially observed in those applications where sufficient labelled
data are not available. Incorporating this functionality in GaNDLF provides a
readily available solution to researchers towards an end-to-end solution for sev-
eral computational tasks, along with support for pre-trained encoders, making
it a robust application framework for deployment and integration in clinical
workflows. Future studies can explore this mechanism by applying it to com-
pare randomly initialized and pre-trained models for convergence speed (in both
centralized and federated learning settings [8,9,42,43]), performance gains in
applications requiring 3D datasets, model optimization allowing deployment in
low-resource environments, and privacy analysis.
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Discussion

7.1 Overview

This thesis is meant to provide concepts related to reproducibility in ML research that are
both easily interpretable and easily applicable in the computational healthcare domain, with
a focus on medical imaging. While the topics are generally described across the sphere of
radiomics with traditional ML and DL related to healthcare imaging, the ideas presented are
generally relevant across problems and domains.

The inspiration for this work was to determine the path towards enabling clinical translation
of computational research. Specifically, which considerations researchers need to keep in mind
while designing their study, as well as which questions they need to ask when exploring the
translational side of their research. This publication-based dissertation is comprised of three
first-author journal and conference publications in Part II, and further supplemented by first
and co-authored work in Part IV.

Emerging “zero-code” and “low-code” principles aim to broaden the landscape of software
development by catering to diverse user groups. While “zero-code” empowers users to build
solutions without writing a single line of code, “low-code” enables customization of existing
solutions with minimal programming. It is imperative for open-source tools to embrace these
principles, and thus target two distinct audiences: i) computational researchers should follow
well-defined software standards and practices [3] to take advantage of the standardized
input/output systems, common data loader interfaces, and well-defined application layers to
focus on algorithmic development and thus push the boundaries of scientific research, and ii)
non-computational experts, who can access the pre-built blocks provided by a tool to leverage
their domain expertise to conduct analyses without requiring deep programming or technical
knowledge, thus democratizing access to novel computational research for new domains.
These concepts are critical to ensure the continued reproducibility, stability, and robustness of
open-source tools. The work demonstrated in this thesis uses this idea as a cornerstone to
ensure reproducibility.

7.2 Reproducibility Across Annotations &
Radiomics

The exploration of inter-rater variability [78] was done to develop reliable image-based
markers for glioblastoma tumors using radiomics and statistical modeling. The availability of
large open-source repositories of data such as those from The Cancer Imaging Archive (TCIA)
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[26] have enabled this research. Specifically, the availability of the entire Ivy Glioblastoma
Atlas Project (Ivy GAP) cohort [79], which includes both preprocessed images and annotations
from multiple clinical raters, as well as extracted radiomic features [27, 76], has enabled the
increased use of radiomic analyses to further the goals of precision medicine (i.e., prognosis
and predictive analysis) for glioblastoma tumors. Two main challenges were addressed with
this work: i) the scarcity of consistent segmentation labels for different parts of the tumor, and
ii) the variability of radiomic features across different segmentations. These challenges are
addressed by quantifying the differences in the annotations generated by clinical radiology
experts from two large health systems, which are then released to the community [79]. This
is in contrast to previous related work [105], which only examined the robustness of radiomic
features from the Cancer Genome Atlas Glioblastoma Multiforme Collection (TCGA-GBM)
collection [26, 97]. Specifically, there are 4 key areas of difference between the two studies: i)
the number and type of tumor regions, ii) the modalities that were considered, iii) the precise
radiomic features used along with their parameterization, and iv) the statistical methods
applied for analysis.

The analysis across the input images and segmentation labels obtained from the two institu-
tions indicated a substantially high level of agreement between the two raters, which was to
be expected since both are highly experienced clinical radiologists. This was especially true for
the “tumor core” region of the tumor (comprising of the “enhancing” part of the tumor along
with the “necrotic” tissue), as evidenced by the relatively high values of sensitivity (median
value > 0.85) and specificity (median value > 0.95). This region is highly important from
a clinical stand-point since it provides the definition of the region that is to be considered
for surgical resection. Similarly, a high level of agreement was observed for even the “whole
tumor” region (which comprises of the “tumor core” along with the edematous tissue), with
median sensitivity > 0.85. The analysis for radiomic feature reproducibility across the pair
of annotations showcased 24.3% of 11, 700 of the computed radiomic features to be robust
to annotation changes across the two sites. The majority of these features belonged to the
morphology (which describes shape characteristics), intensity (which captures statistics across
intensity profiles), and COLLAGE (which captures heterogeneity in local gradient orientations)
families. This shows that even though the computational efficiency of COLLAGE features is
high (see illustration in Figure 2.2), it is offset with a more than adequate level of stability. On
the other hand, the computational expenditure for the majority of the texture feature families
(i.e., the gray-level co-occurrence matrix (GLCM) family, gray-level run-length matrix (GLRLM)
family, Gray-level size zone matrix (GLSZM) family, and Neighborhood gray tone difference
matrix (NGTDM) family) was largely wasted, since they were not robust to variances across
annotation differences [78].

The first study detailed in this thesis [78] has shown that although radiomics can measure
tumor heterogeneity for glioblastomas (GBM) using non-invasive MRI scans [6], radiomic
features can change depending on how the tumor is annotated at different sites. This work
focused on performing a feasibility study to (a) assess how well two readers agreed on tumor
annotations, and (b) find radiomic features that were stable, robust, and reproducible across
different multi-institutional clinical experts for the same tumor region for the the cancer
imaging archive’s (TCIA) [26] Ivy Glioblastoma Atlas Project (Ivy GAP) dataset [85]. Firstly
the most-commonly used metrics (DSC, Sensitivity, Specificity, and Hausdorff) were used to
measure the inter-reader agreement. High values of the DSC, Sensitivity and Specificity and
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low value of Hausdorff translated to better inter-reader agreement between the measured
annotated regions. The results in this study showed that there was a high overall correlation
between the two raters for all the annotated regions. Secondly, the radiomic variability analysis
experiment indicated that i) some features and feature families such as intensity statistics
(mean, median, standard deviation, kurtosis), morphologic (flatness, elongation, sphericity)
and COLLAGE (statistics of local gradient entropy) might be more stable to variability in
annotation labels from different readers, and ii) the more “complex” and relatively compu-
tationally expensive radiomic feature families such as histogram-based features, Gray-level
co-occurrence matrix (GLCM), Gray-level run-length matrix (GLRLM), Gray-level size zone
matrix (GLSZM), Neighborhood gray tone difference matrix (NGTDM) which rely on local
intensity differences had lower correlation across features from the segmented tumor regions
marked by two different raters. Although GLCM and GLRLM features have been shown to be
prognostic of GBM [4, 16, 84], the results demonstrated in this work suggested that most of
these features had large variations across the two annotations, and might need to be carefully
examined for robustness across segmentations for prognostic modeling, specifically for GBM
tumors. In contrast, however, most of morphology and intensity statistics-based features were
seemingly resistant to differences in annotations between the two readers.

7.3 The Generally Nuanced Deep Learning
Framework (GaNDLF)

The development of the Generally Nuanced Deep Learning Framework (GaNDLF) [77] could
not have happened without all the public data that was used to benchmark its functional-
ity. Benchmarking the performance of GaNDLF for various applications used public data
repositories, such as: i) segmentation of brain in magnetic resonance imaging (MRI) used a
combination of publicly available data [13, 15, 103] for training along with private collections
from numerous institutions (such as Thomas Jefferson University and MD Anderson Cancer
Center) for validation, ii) segmentation of brain tumor sub-regions in MRI was done using the
data from the Brain Tumor Segmentation (BraTS) challenge of 2020 [12, 13, 14, 65], iii) whole
brain parcellation in MRI used was from the Multi-Atlas Labelling challenge (MALC) of 2012
[54], iv) segmentation of the structural tumor volume from breast MRI was done using data
obtained from the ACRIN 6657/1-SPY1 TRIAL [45, 68], and the annotations were obtained
from a data repository from the cancer imaging archive [25], v) segmentation of the retinal
fundus used the data from the Pathologic myopia (PALM) challenge [33], vi) segmentation of
colorectal cancer regions in whole slide images used data from the DigestPath challenge [58],
vii) brain age prediction from MRI used data from the United Kingdom Biobank [101] and a
multi-site schizophrenia consortium [95], viii) classification of diabetic foot ulcer images [42]
used data the Diabetic Foot Ulcer Grand Challenge (DFUC) of 2021 [118], and finally, the ix)
classification of tumor infiltrating lymphocyte density [11] was done using data from the Cancer
Genome Atlas (TCGA) [2]. GaNDLF has been proved to be a tool that demonstrates clinical
viability by showcasing its capability to design end-to-end (starting with data curation, to
preprocessing, training and post-processing) DL workflows across multiple imaging modalities,
i.e., radiology (e.g., MRI, computed tomography (CT)), and histology (e.g., hematoxylin and
eosin (H&E) stained slides). With GaNDLF, researchers can work with almost any type of
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medical imaging data using the same framework, without writing any extra code. This makes
it easier to conduct future research that depends on combining different diagnostics.

GaNDLF provides a “zero/low-code” solution enabling both computational and non-computational
experts to train robust DL models to tackle a variety of workloads/tasks related to any type
of healthcare imaging modality. It has been proved to be a tool that demonstrates clinical
viability and the ability to quickly scale by showcasing its capability to design end-to-end
(starting with data curation, to preprocessing, training and post-processing) DL workflows
across multiple imaging modalities (radiographic or microscopic), without worrying about
details such as appropriate data splitting for training to avoid leakage, validation & testing
routines, tackling class imbalances, and implementing various training customization strate-
gies for DL training (e.g., loss functions, optimizers). Specifically, GaNDLF’s abilities span
across: i) processing images of various domains; ii) enabling work on various types of Al
workloads (i.e., segmentation, regression, and classification); iii) offering built-in general-
purpose functionality for augmentations and cross-validation; iv) integrating tools to promote
the interpretability and explainability of DL topology outputs via M3D-CAM [41]; v) enabling
built-in model optimization by leveraging the functionality provided via OpenVINO [10, 40,
104]; and vi) ensuring adherence of “good ML” practices, such as default cross-validation [29],
to automatically generate optimized models after the training process is complete, allowing
inference of these models on machines without requiring any specialized hardware, or large
amounts of memory.

The second study detailed in this thesis [77] presented the GaNDLF, which was designed as
an effort to standardize the definitions and initialization of all these processes for healthcare
data science focusing in DL, while enabling reproducibility and clinical translation for research
algorithms (see illustration in Figure 2.6). This coincided with the development of other
healthcare-specific libraries, such as Project MONAI [23], however, in contrast to being a
“toolbox” which computational researchers could leverage to create custom solutions, GaNDLF
was designed to integrate the entire training and inference pipelines of a DL process in a
human-readable text-based format by using the YAML syntax [20]. This allowed users to
play around with and parameterize pipelines to their maximum extent while maintaining
the reproducibility of the experiment for the open scientific community. This also allowed
generation of baseline results using a large number of imaging modalities applied towards
numerous types of workloads (segmentation, classification, and regression) in a relatively
quick manner, as well as provided a vehicle for computational experts to package and ship
their algorithms so that they could be applicable in multiple applications [77].

7.4 2D Pre-trained DL Models for Native 3D Medical
Image Analysis

The third study detailed in this thesis [9] presented a novel DL network topology which
harnesses the abilities of transfer learning to enable the training of 3 dimensional datasets
in a native manner while using weights from models trained on large-scale 2 dimensional
computer vision data [28] and has been an important contribution of this thesis [9]. This has
been done using the concept of axial-coronal-sagittal convolutions (ACSConv) [117], where
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Fig. 7.1.
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lustration of FlexiNet, a novel DL network topology that allows the usage of different pre-trained
encoders using ImageNet [28] for either segmentation or classification workloads.

each 2D filter is sequentially applied across all the axes of a 3D image to produce the result.
The network topology’s first and last layers are flexible to be able to process input images of
any size, with varying number of input channels (or modalities). Combining this capability
with a two-pathway decoding mechanism (as illustrated in Figure 7.1), allows the topology to
work for both semantic segmentation and classification tasks, thus making this applicable for a
wide array of healthcare domains. The encoding layers are initialized with pre-trained weights
from the models trained on ImageNet [28], and can be further fine-tuned per task. The
topology represented significant performance improvements over the current state-of-the-art
for topologies running on limited resources (not more than 11GB of dedicated DL accelerator
card memory), both in terms of convergence speed, as well as in terms of utility metrics (both
dice similarity coefficient for segmentation and accuracy for classification tasks). However,
this topology has been explored only for fully-labeled datasets.

The performance comparisons were done by comparing an off-the-shelf 3D U-Net with resid-
ual connections [93] with a ResNet-50 encoder [43] with and without initialization using
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weights derived from training a classification model on ImageNet [28]. The novel topology
outperformed the standard U-Net when it was initialized with the ImageNet weights, and it
was observed to reach convergence in < 50% of the number of epochs needed to train the
topologies that were randomly initialized. The topology configured with a 4-layer ResNet-50
encoder has only 25.821 million parameters, which is around 22% less compared to 33.377
million parameters of the standard 4-layer 3D U-Net. This highlights the importance of this
topology in the context of clinical translation, where fewer parameters translates to not only
faster convergence but also to overall lower run-time requirements [104].

7.5 Good Reporting Practices for Computational
Healthcare

In the realm of computational healthcare, adhering to established reporting guidelines is
essential for accelerating clinical adoption, ensuring research reproducibility, and facilitating
successful translation of findings into real-world applications. These guidelines include: i)
Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [66], which outlines report-
ing requirements for medical-imaging Al research; ii) Al-specific version of the Standards
for Reporting of Diagnostic Accuracy Study (STARD-AI) [100], Transparent Reporting of a
multivariable prediction model of Individual Prognosis Or Diagnosis (TRIPOD-AI), and Predic-
tion model Risk Of Bias ASsessment Tool (PROBAST-AI) checklists, which address challenges
specific to Al applications in diagnostic accuracy studies; iii) Al extensions of Consolidated
Standards of Reporting Trials (CONSORT-AI) and Standard Protocol Items: Recommenda-
tions for Interventional Trials (SPIRIT-AI), which provides guidance for reporting randomized
clinical trials [59]; v) Minimum Information about Clinical Artificial Intelligence Modelling
(MI-CLAIM) [69], which focuses on the clinical impact and the technical reproducibility of
clinically relevant Al studies; vi) MINimum Information for Medical Al Reporting (MINIMAR)
[44], which sets the reporting standards for medical AI applications by specifying the minimum
information that Al manuscripts should include; and finally vi) Radiomics Quality Score (RQS)
[53], which outlines 16 unique criteria by which to judge the quality of a publication whose
analysis is based on radiomics [125].
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Outlook

While GaNDLF has demonstrated its effectiveness across imaging modalities with both single
inputs (e.g., radiology or histology images) and multi-channel support (e.g., combined MRI
sequences), its applications have primarily been focused on segmentation, regression, and
classification tasks. Exploring its potential in other computational domains, such as synthesis
of “new data”, semi-/self-supervised training, data fusion to integrate different imaging
modalities (radiology/histology) with categorical healthcare data and genomic profiles, and
physics-informed modeling could significantly expand its usefulness in terms of its clinical
relevance. Furthermore, the framework’s suitability for datasets involving images with a
time-series component (e.g., dynamic sequences) or higher dimensional datasets (e.g., multi-
spectral imaging) remains unexplored and deserves investigation. Furthermore, no mechanism
is present to automatically enable the aggregation of various models (that is, run the training
and inference of different models and then collect data from all), which have generally
been shown to produce better results [14, 65]. Mechanisms that enable AutoML [114] and
other network architecture search (NAS) techniques [30] are tremendously powerful tools
that create robust models, but are currently not supported in GaNDLF. Finally, application of
GaNDLF to other data types, such as genomics or electronic health records (EHR), which would
allow GaNDLF to further inform and aid clinical decision making by training multi-modal
models, has not been fully explored yet but it is considered as current work in progress.

While the novel DL network topology presented in [9] shows a great deal of promise, there
is further work to be done towards investigating the applicability of this idea for weakly
supervised or semi-supervised learning. There is also a need to explore this method towards
fully unsupervised learning. This would allow datasets with noisy or absent annotations to
be used to further improve model training. Since the core concept of this topology involves
distilling (or encoding) the raw information from the input image(s) onto a common latent
space, it could be explored towards the idea of data fusion, where different imaging and non-
imaging sources of data are combined through a classifier to give a more holistic model output.
Some of the application areas could be combining radiology imaging data with categorical
healthcare reports, radiology and histology imaging data could be potentially trained together,
and combining radiology and histology imaging data with categorical healthcare reports. All
of these have

Finally, in the spirit of open science, all components of this thesis have been made available
as the Comprehensive Federated Ecosystem (COFE) (see illustration in Figure 8.1). The
overall idea behind COFE is to enable researchers (both clinically-focused and computationally-
focused) to leverage existing libraries, tools, and software infrastructure to push the boundaries
of science and our understanding of diseases. This includes enabling access to cutting-edge
ML research within clinical workstations via an easy-to-use tool with a graphical interface
[73], an algorithmic core that enables fast translation of computational research into different
application domains (GaNDLF [77]), a security focused federated learning library to enable
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clinical sites around the world requires their seamless integration with a secure federated learning
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hardware, thus democratizing precision medicine for under-served populations.
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collaborative computing (OpenFL [32, 88]), a collaborative governance and orchestration
solution for benchmarking (MedPerf [50]), and finally an application that can optimize
models trained on specialized DL accelerator cards so that they can run on generic hardware
(OpenVINO [40]).
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Abstracts of Publications not
Discussed in this Thesis

A.1 The Cancer Imaging Phenomics Toolkit
(CaPTk): Technical Overview

Sarthak Pati, Ashish Singh, Saima Rathore, Aimilia Gastounioti, Mark Bergman, Phuc Ngo,
Sung Min Ha, Dimitrios Bounias, James Minock, Grayson Murphy, Hongming Li, Amit
Bhattarai, Adam Wolf, Patmaa Sridaran, Ratheesh Kalarot, Hamed Akbari, Aristeidis

Sotiras, Siddhesh P. Thakur, Ragini Verma, Russell T. Shinohara, Paul Yushkevich, Yong
Fan, Despina Kontos, Christos Davatzikos, Spyridon Bakas

The purpose of this manuscript is to provide an overview of the technical specifications and
architecture of the Cancer imaging Phenomics Toolkit (CaPTk - www. cbica.upenn.edu/captk),
a cross-platform, open-source, easy-to-use, and extensible software platform for analyzing 2D
and 3D images, currently focusing on radiographic scans of brain, breast, and lung cancer.
The primary aim of this platform is to enable swift and efficient translation of cutting-edge
academic research into clinically useful tools relating to clinical quantification, analysis, pre-
dictive modeling, decision-making, and reporting workflow. CaPTk builds upon established
open-source software toolkits, such as the Insight Toolkit (ITK) and OpenCV, to bring together
advanced computational functionality. This functionality describes specialized, as well as
general-purpose, image analysis algorithms developed during active multi-disciplinary collab-
orative research studies to address real clinical requirements. The target audience of CaPTk
consists of both computational scientists and clinical experts. For the former it provides i) an
efficient image viewer offering the ability of integrating new algorithms, and ii) a library of
readily-available clinically-relevant algorithms, allowing batch-processing of multiple subjects.
For the latter it facilitates the use of complex algorithms for clinically-relevant studies through
a user-friendly interface, eliminating the prerequisite of a substantial computational back-
ground. CaPTk’s long-term goal is to provide widely-used technology to make use of advanced
quantitative imaging analytics in cancer prediction, diagnosis and prognosis, leading toward a
better understanding of the biological mechanisms of cancer development.

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries 2019
Reprinted with permission from Springer.

DOI: https://doi.org/10.1007/978-3-030-46643-5_38
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A.2 Estimating Glioblastoma Biophysical Growth
Parameters Using Deep Learning Regression

Sarthak Pati, Vaibhav Sharma, Heena Aslam, Siddhesh P Thakur, Hamed Akbari, Andreas
Mang, Shashank Subramanian, George Biros, Christos Davatzikos, Spyridon Bakas

Glioblastoma (GBM) is arguably the most aggressive, infiltrative, and heterogeneous type of
adult brain tumor. Biophysical modeling of GBM growth has contributed to more informed
clinical decision-making. However, deploying a biophysical model to a clinical environment is
challenging since underlying computations are quite expensive and can take several hours
using existing technologies. Here we present a scheme to accelerate the computation. In
particular, we present a deep learning (DL)-based logistic regression model to estimate
the GBM’s biophysical growth in seconds. This growth is defined by three tumor-specific
parameters: 1) a diffusion coefficient in white matter (Dw), which prescribes the rate of
infiltration of tumor cells in white matter, 2) a mass-effect parameter (Mp), which defines
the average tumor expansion, and 3) the estimated time (T) in number of days that the
tumor has been growing. Preoperative structural multi-parametric MRI (mpMRI) scans from
n = 135 subjects of the TCGA-GBM imaging collection are used to quantitatively evaluate
our approach. We consider the mpMRI intensities within the region defined by the abnormal
FLAIR signal envelope for training one DL model for each of the tumor-specific growth
parameters. We train and validate the DL-based predictions against parameters derived from
biophysical inversion models. The average Pearson correlation coefficients between our DL-
based estimations and the biophysical parameters are 0.85 for Dw, 0.90 for Mp, and 0.94 for
T, respectively. This study unlocks the power of tumor-specific parameters from biophysical
tumor growth estimation. It paves the way towards their clinical translation and opens the
door for leveraging advanced radiomic descriptors in future studies by means of a significantly
faster parameter reconstruction compared to biophysical growth modeling approaches.

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries 2020
Reprinted with permission from Springer.

DOI: https://doi.org/10.1007/978-3-030-72084-1_15

Copyright ©: 2021 Springer Nature Switzerland AG
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A.3 Classification of infection and ischemia in
diabetic foot ulcers using vgg architectures

Orhun Gley, Sarthak Pati, Spyridon Bakas

Diabetic foot ulceration (DFU) is a serious complication of diabetes, and a major challenge for
healthcare systems around the world. Further infection and ischemia in DFU can significantly
prolong treatment and often result in limb amputation, with more severe cases resulting in
terminal illness. Thus, early identification and regular monitoring is necessary to improve
care, and reduce the burden on healthcare systems. With that in mind, this study attempts
to address the problem of infection and ischemia classification in diabetic food ulcers, in
four distinct classes. We have evaluated a series of VGG architectures with different layers,
following numerous training strategies, including k-fold cross validation, data pre-processing
options, augmentation techniques, and weighted loss calculations. In favor of transparency
and reproducibility, we make all the implementations available through the Generally Nu-
anced Deep Learning Framework (GaNDLF, github.com/CBICA/GaNDLF. Our best model was
evaluated during the DFU Challenge 2021, and was ranked 2%, 5% and 7% based on the
macro-averaged AUC (area under the curve), macro-averaged F1 score, and macro-averaged
recall metrics, respectively. Our findings support that current state-of-the-art architectures
provide good results for the DFU image classification task, and further experimentation is
required to study the effects of pre-processing and augmentation strategies.

Diabetic Foot Ulcers Grand Challenge 2021
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A.4 Expert tumor annotations and radiomics for
locally advanced breast cancer in DCE-MRI for
ACRIN 6657/1-SPY1

Rhea Chitalia, Sarthak Pati, Megh Bhalerao, Siddhesh Pravin Thakur, Nariman Jahani,
Vivian Belenky, Elizabeth S McDonald, Jessica Gibbs, David C Newitt, Nola M Hylton,
Despina Kontos, Spyridon Bakas

Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-
tumor heterogeneity contributes towards its poor prognosis. Multiple studies have reported
results from either private institutional data or publicly available datasets. However, current
public datasets are limited in terms of having consistency in: a) data quality, b) quality of
expert annotation of pathology, and c) availability of baseline results from computational
algorithms. To address these limitations, here we propose the enhancement of the I-SPY1 data
collection, with uniformly curated data, tumor annotations, and quantitative imaging features.
Specifically, the proposed dataset includes a) uniformly processed scans that are harmonized to
match intensity and spatial characteristics, facilitating immediate use in computational studies,
b) computationally-generated and manually-revised expert annotations of tumor regions, as
well as ¢) a comprehensive set of quantitative imaging (also known as radiomic) features
corresponding to the tumor regions. This collection describes our contribution towards
repeatable, reproducible, and comparative quantitative studies leading to new predictive,
prognostic, and diagnostic assessments.
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A.5 Federated learning enables big data for rare
cancer boundary detection

Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G. Anthony
Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako,
Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara,
Chandrakanth J. Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin
Bendszus, Wolfgang Wick, Evan Calabrese, Jeffrey Rudie, Javier Villanueva-Meyer,
Soonmee Cha, Madhura Ingalhalikar, Manali Jadhav, Umang Pandey, Jitender Saini, John
Garrett, Matthew Larson, Robert Jeraj, Stuart Currie, Russell Frood, Kavi Fatania,
Raymond Y. Huang, Ken Chang, Carmen Balafia, Jaume Capellades, Josep Puig,
Johannes Trenkler, Josef Pichler, Georg Necker, Andreas Haunschmidt, Stephan Meckel,
Gaurav Shukla, Spencer Liem, Gregory S. Alexander, Joseph Lombardo, Joshua D.
Palmer, Adam E. Flanders, Adam P. Dicker, Haris I. Sair, Craig K. Jones, Archana
Venkataraman, Meirui Jiang, Tiffany Y. So, Cheng Chen, Pheng Ann Heng, Qi Dou, Michal
Kozubek, Filip Lux, Jan Michélek, Petr Matula, Milo§ Kefkovsky, Tereza Kopfivova, Marek
Dostal, Vaclav Vybihal, Michael A. Vogelbaum, J. Ross Mitchell, Joaquim Farinhas, Joseph
A. Maldjian, Chandan Ganesh Bangalore Yogananda, Marco C. Pinho, Divya Reddy,
James Holcomb, Benjamin C. Wagner, Benjamin M. Ellingson, Timothy F. Cloughesy,
Catalina Raymond, Talia Oughourlian, Akifumi Hagiwara, Chencai Wang, Minh-Son To,
Sargam Bhardwaj, Chee Chong, Marc Agzarian, Alexandre Xavier Falcao, Samuel B.
Martins, Bernardo C. A. Teixeira, Flavia Sprenger, David Menotti, Diego R. Lucio, Pamela
LaMontagne, Daniel Marcus, Benedikt Wiestler, Florian Kofler, lvan Ezhov, Marie Metz,
Rajan Jain, Matthew Lee, Yvonne W. Lui, Richard McKinley, Johannes Slotboom, Piotr
Radojewski, Raphael Meier, Roland Wiest, Derrick Murcia, Eric Fu, Rourke Haas, John
Thompson, David Ryan Ormond, Chaitra Badve, Andrew E. Sloan, Vachan Vadmal, Kristin
Waite, Rivka R. Colen, Linmin Pei, Murat Ak, Ashok Srinivasan, J. Rajiv Bapuraj, Arvind
Rao, Nicholas Wang, Ota Yoshiaki, Toshio Moritani, Sevcan Turk, Joonsang Lee, Snehal
Prabhudesai, Fanny Morén, Jacob Mandel, Konstantinos Kamnitsas, Ben Glocker, Luke V.
M. Dixon, Matthew Williams, Peter Zampakis, Vasileios Panagiotopoulos, Panagiotis
Tsiganos, Sotiris Alexiou, llias Haliassos, Evangelia I. Zacharaki, Konstantinos Moustakas,
Christina Kalogeropoulou, Dimitrios M. Kardamakis, Yoon Seong Choi, Seung-Koo Lee,
Jong Hee Chang, Sung Soo Ahn, Bing Luo, Laila Poisson, Ning Wen, Pallavi Tiwari,
Ruchika Verma, Rohan Bareja, Ipsa Yadav, Jonathan Chen, Neeraj Kumar, Marion Smits,
Sebastian R. van der Voort, Ahmed Alafandi, Fatih Incekara, Maarten M. J. Wijnenga,
Georgios Kapsas, Renske Gahrmann, Joost W. Schouten, Hendrikus J. Dubbink, Arnaud J.
P. E. Vincent, Martin J. van den Bent, Pim J. French, Stefan Klein, Yading Yuan, Sonam
Sharma, Tzu-Chi Tseng, Saba Adabi, Simone P. Niclou, Olivier Keunen, Ann-Christin Hau,
Martin Vallieres, David Fortin, Martin Lepage, Bennett Landman, Karthik Ramadass,
Kaiwen Xu, Silky Chotai, Lola B. Chambless, Akshitkumar Mistry, Reid C. Thompson, Yuriy
Gusey, Krithika Bhuvaneshwar, Anousheh Sayah, Camelia Benchegroun, Anas Belouali,
Subha Madhavan, Thomas C. Booth, Alysha Chelliah, Marc Modat, Haris Shuaib, Carmen
Dragos, Aly Abayazeed, Kenneth Kolodziej, Michael Hill, Ahmed Abbassy, Shady Gamal,
Mahmoud Mekhaimar, Mohamed Qayati, Mauricio Reyes, Ji Eun Park, Jihye Yun, Ho Sung
Kim, Abhishek Mahajan, Mark Muzi, Sean Benson, Regina G. H. Beets-Tan, Jonas Teuwen,

A.5 Federated learning enables big data for rare cancer boundary detection

117



118

Alejandro Herrera-Trujillo, Maria Trujillo, William Escobar, Ana Abello, Jose Bernal, Jhon
Gomez, Joseph Choi, Stephen Baek, Yusung Kim, Heba Ismael, Bryan Allen, John M.
Buatti, Aikaterini Kotrotsou, Hongwei Li, Tobias Weiss, Michael Weller, Andrea Bink,
Bertrand Pouymayou, Hassan F. Shaykh, Joel Saltz, Prateek Prasanna, Sampurna
Shrestha, Kartik M. Mani, David Payne, Tahsin Kurc, Enrique Pelaez, Heydy
Franco-Maldonado, Francis Loayza, Sebastian Quevedo, Pamela Guevara, Esteban
Torche, Cristobal Mendoza, Franco Vera, Elvis Rios, Eduardo Ldpez, Sergio A. Velastin,
Godwin Ogbole, Mayowa Soneye, Dotun Oyekunle, Olubunmi Odafe-Oyibotha, Babatunde
Osobu, Mustapha Shu’aibu, Adeleye Dorcas, Farouk Dako, Amber L. Simpson,
Mohammad Hamghalam, Jacob J. Peoples, Ricky Hu, Anh Tran, Danielle Cutler, Fabio Y.
Moraes, Michael A. Boss, James Gimpel, Deepak Kattil Veettil, Kendall Schmidt, Brian
Bialecki, Sailaja Marella, Cynthia Price, Lisa Cimino, Charles Apgar, Prashant Shah, Bjoern
Menze, Jill S. Barnholtz-Sloan, Jason Martin, Spyridon Bakas

Although machine learning (ML) has shown promise across disciplines, out-of-sample gen-
eralizability is concerning. This is currently addressed by sharing multi-site data, but such
centralization is challenging/infeasible to scale due to various limitations. Federated ML
(FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing
numerical model updates. Here we present the largest FL study to-date, involving data from
71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare
disease of glioblastoma, reporting the largest such dataset in the literature (n = 6,314). We
demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23%
for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1)
enable more healthcare studies informed by large diverse data, ensuring meaningful results for
rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma
by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale
and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for
data-sharing.
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A.6 Optimization of deep learning based brain
extraction in mri for low resource environments

Siddhesh P Thakur, Sarthak Pati, Ravi Panchumarthy, Deepthi Karkada, Junwen Wu,
Dmitry Kurtaev, Chiharu Sako, Prashant Shah, Spyridon Bakas

Brain extraction is an indispensable step in neuro-imaging with a direct impact on downstream
analyses. Most such methods have been developed for non-pathologically affected brains,
and hence tend to suffer in performance when applied on brains with pathologies, e.g.,
gliomas, multiple sclerosis, traumatic brain injuries. Deep Learning (DL) methodologies
for healthcare have shown promising results, but their clinical translation has been limited,
primarily due to these methods suffering from i) high computational cost, and ii) specific
hardware requirements, e.g., DL acceleration cards. In this study, we explore the potential
of mathematical optimizations, towards making DL methods amenable to application in low
resource environments. We focus on both the qualitative and quantitative evaluation of such
optimizations on an existing DL brain extraction method, designed for pathologically-affected
brains and agnostic to the input modality. We conduct direct optimizations and quantization
of the trained model (i.e., prior to inference on new data). Our results yield substantial
gains, in terms of speedup, latency, throughput, and reduction in memory usage, while the
segmentation performance of the initial and the optimized models remains stable, i.e., as
quantified by both the Dice Similarity Coefficient and the Hausdorff Distance. These findings
support post-training optimizations as a promising approach for enabling the execution of
advanced DL methodologies on plain commercial-grade CPUs, and hence contributing to their
translation in limited- and low- resource clinical environments.

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries 2021
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A.7 Federated benchmarking of medical artificial
intelligence with MedPerf

Alexandros Karargyris, Renato Umeton, Micah J Sheller, Alejandro Aristizabal, Johnu
George, Anna Wuest, Sarthak Pati, Hasan Kassem, Maximilian Zenk, Ujjwal Baid, Prakash
Narayana Moorthy, Alexander Chowdhury, Junyi Guo, Sahil Nalawade, Jacob Rosenthal,
David Kanter, Maria Xenochristou, Daniel J Beutel, Verena Chung, Timothy Bergquist,
James Eddy, Abubakar Abid, Lewis Tunstall, Omar Sanseviero, Dimitrios Dimitriadis,
Yiming Qian, Xinxing Xu, Yong Liu, Rick Siow Mong Goh, Srini Bala, Victor Bittorf, Sreekar
Reddy Puchala, Biagio Ricciuti, Soujanya Samineni, Eshna Sengupta, Akshay Chaudhari,
Cody Coleman, Bala Desinghu, Gregory Diamos, Debo Dutta, Diane Feddema, Grigori
Fursin, Xinyuan Huang, Satyananda Kashyap, Nicholas Lane, Indranil Mallick, FeTS
Consortium, BraTS-2020 Consortium, Al4SafeChole Consortium, Pietro Mascagni,
Virendra Mehta, Cassiano Ferro Moraes, Vivek Natarajan, Nikola Nikolov, Nicolas Padoy,
Gennady Pekhimenko, Vijay Janapa Reddi, G Anthony Reina, Pablo Ribalta, Abhishek
Singh, Jayaraman J Thiagarajan, Jacob Albrecht, Thomas Wolf, Geralyn Miller, Huazhu Fu,
Prashant Shah, Daguang Xu, Poonam Yadav, David Talby, Mark M Awad, Jeremy P
Howard, Michael Rosenthal, Luigi Marchionni, Massimo Loda, Jason M Johnson, Spyridon
Bakas, Peter Mattson

Medical artificial intelligence (AI) has tremendous potential to advance healthcare by sup-
porting and contributing to the evidence-based practice of medicine, personalizing patient
treatment, reducing costs, and improving both healthcare provider and patient experience.
Unlocking this potential requires systematic, quantitative evaluation of the performance of
medical Al models on large-scale, heterogeneous data capturing diverse patient populations.
Here, to meet this need, we introduce MedPerf, an open platform for benchmarking Al models
in the medical domain. MedPerf focuses on enabling federated evaluation of Al models, by
securely distributing them to different facilities, such as healthcare organizations. This process
of bringing the model to the data empowers each facility to assess and verify the performance
of Al models in an efficient and human-supervised process, while prioritizing privacy. We
describe the current challenges healthcare and Al communities face, the need for an open
platform, the design philosophy of MedPerf, its current implementation status and real-world
deployment, our roadmap and, importantly, the use of MedPerf with multiple international
institutions within cloud-based technology and on-premises scenarios. Finally, we welcome
new contributions by researchers and organizations to further strengthen MedPerf as an open
benchmarking platform.
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