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ABSTRACT
Neural networks are vulnerable to adversarial attacks, i.e., small
input perturbations can result in substantially different outputs
of a neural network. Safety-critical environments require neural
networks that are robust against input perturbations. However,
training and formally verifying robust neural networks is challeng-
ing. We address this challenge by employing, for the first time, a
end-to-end set-based training procedure that trains robust neural
networks for formal verification. Our training procedure drasti-
cally simplifies the subsequent formal robustness verification of the
trained neural network.While previous research has predominantly
focused on augmenting neural network training with adversarial
attacks, our approach leverages set-based computing to train neu-
ral networks with entire sets of perturbed inputs. Moreover, we
demonstrate that our set-based training procedure effectively trains
robust neural networks, which are easier to verify. In many cases,
set-based trained neural networks outperform neural networks
trained with state-of-the-art adversarial attacks.

KEYWORDS
Neural network verification, formal verification, set-based comput-
ing, zonotopes.

1 INTRODUCTION
Neural networks achieve impressive results for many complex tasks,
such as speech recognition [17] or object detection [39]. However,
many neural networks are sensitive to input perturbations [37]:
Small, carefully chosen input changes can lead to vastly different
outputs. This behavior is problematic for the safe adoption of neu-
ral networks in safety-critical scenarios, e.g., autonomous vehicle
control [43], airborne collision avoidance [18], or operation of nu-
clear reactors [6]. Thus, the formal verification of the robustness of
neural networks gained interest in recent years [5, 11]. A neural net-
work is considered robust against a perturbance set if it returns the
correct output for every value within the perturbance set, typically
an 𝑙∞-ball. Subsequently, we provide a brief overview of related
work.

1.1 Related Work
Adversarial Attacks. An adversarial attack is a modified input

within a perturbance set that leads to an incorrect output of a neural
network. The most prominent approaches to generating adversarial
attacks are the fast gradient sign method (FGSM) and projected
gradient descent (PGD). FGSM is a single-step gradient-based adver-
sarial attack that efficiently generates adversarial attacks [15]. PGD
uses multiple iterations of FGSM to compute stronger adversarial
attacks [22].

Training Robust Neural Networks. The training objective of a
robust neural network is typically formulated as a min-max op-
timization problem [27]: Minimize the worst-case input within a
perturbance set. A worst-case input maximizes the error of the
corresponding output with respect to a target output. Computing a
worst-case input within a perturbance set is computationally diffi-
cult [40]. Nonetheless, neural networks are effectively trained by
approximating worst-case inputs with adversarial attacks, e.g., com-
puted with PGD [27]. Other approaches for training robust neural
networks are via input gradient regularization [33] or neural net-
work destillation [32]. However, none of these training approaches
incorporate formal verification methods.

Formal Robustness Verification of Neural Networks. The formal
robustness verification of neural networks is crucial to safely deploy
neural networks in safety-critical scenarios. Most formal verifica-
tion approaches either formulate the verification problem as an
optimization problem or use reachability analysis [5]. Optimization-
based approaches encode the verification problem as an optimiza-
tion problem, which is solved using (mixed-integer) linear program-
ming [29, 45, 36] or satisfiability modulo theories (SMT) [19] solvers.
Alternatively, reachability analysis uses efficient set representations,
e.g., zonotopes [13], combined with set-based computations to en-
close the output set of a neural network for a given input set [21,
23, 12, 35]. The output set of a neural network is used to verify its
safety.

Combined Training and Robustness Verification of Neural Net-
works. Many approaches combine the training and formal verifi-
cation of robust neural networks by enhancing the training using
adversarial attacks. In these works, the approximation of a worst-
case input is replaced by an upper bound, which can verify that
no perturbation will lead to an incorrect output. Different meth-
ods for upper-bounding a worst-case input have been proposed:
Interval bound propagation (IBP) [16, 26], linear relaxation [44],
(mixed-integer) linear programming [41], or abstract interpreta-
tion [28]. Some approaches use set-basedmethods to compute upper
bounds [28]; however, only the upper bound is used for training,
discarding much set-based information. Conversely, our approach
is end-to-end set-based, meaning we use the entire sets for train-
ing. Moreover, training neural networks with adversarial attacks
or upper bounds reduces their accuracy for non-adversarial inputs.
Hence, there is a trade-off between robustness and accuracy for
neural networks [38]. This issue can be addressed by combining a
regular training objective with a robustness training objective [28,
16, 44].
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1.2 Contributions
Our main contribution is a novel set-based training procedure that
trains robust neural networks and drastically simplifies their sub-
sequent formal robustness verification. Given a set of inputs with
associated perturbance sets, we compute output sets and use the en-
tire output sets for training. To our best knowledge, we present the
first end-to-end set-based training approach for neural networks.
Secondly, set-based training is made possible by an image enclo-
sure using linear approximations. With our image enclosure, the
output sets for an entire batch of inputs are efficiently computed
using matrix operations on a GPU. Moreover, we show that the
approximation errors by our image enclosure are always smaller or
equal compared to an existing image enclosure. Thirdly, we eval-
uate our set-based training with neural networks of various sizes
trained on three different datasets. We demonstrate the efficacy
of set-based training and that set-based trained neural networks
often outperform neural networks trained with state-of-the-art
adversarial attacks.

1.3 Organisation
Sec. 2 introduces the required preliminaries. We provide an effi-
cient image enclosure in Sec. 3, that we use for set-based training.
In Sec. 4, we define our set-based training procedure, which we
experimentally evaluate in Sec. 5. Finally, we conclude our findings
in Sec. 6.

2 PRELIMINARIES
2.1 Notation
Lowercase letters denote vectors and uppercase letters denote ma-
trices. The 𝑖-th entry of a vector 𝑥 is denoted by 𝑥 (𝑖 ) . For a matrix𝐴,
𝐴(𝑖, 𝑗 ) denotes the entry in the 𝑖-th row and the 𝑗-th column, 𝐴(𝑖,· )
denotes the 𝑖-th row, and𝐴( ·, 𝑗 ) the 𝑗-th column. The identity matrix
is written as 𝐼𝑛 ∈ R𝑛×𝑛 . We use 0 and 1 to represent the vector
or matrix (with appropriate size) that contains only zeros or ones.
The (horizontal) concatenation between two matrices 𝐴 ∈ R𝑚×𝑛1

and 𝐵 ∈ R𝑚×𝑛2 is denoted by [𝐴 𝐵 ]. A square matrix with the
entries of a given vector on its diagonal is returned by the operation
diag : R𝑛 → R𝑛×𝑛 . Given a matrix, the operation sign : R𝑛×𝑚 →
{−1, 0, 1}𝑛×𝑚 returns the sign of each entry of the matrix. We de-
note sets with uppercase calligraphic letters. For a set S ⊂ R𝑛 , we
denote its projection to the 𝑖-th dimension with S(𝑖 ) . Given two
sets S1 ⊂ R𝑛 and S2 ⊂ R𝑚 , we denote the Cartesian product with
S1 × S2 = { [ 𝑠⊤1 𝑠⊤2

]⊤ | 𝑠1 ∈ S1, 𝑠2 ∈ S2}, and if 𝑛 = 𝑚, we write
the Minkowski sum as S1 ⊕ S2 = {𝑠1 + 𝑠2 | 𝑠1 ∈ S1, 𝑠2 ∈ S2}. For
𝑛 ∈ N, [𝑛] = {1, 2, . . . , 𝑛} denotes the set of all natural numbers up
to 𝑛. We denote the natural logarithm with ln. An 𝑛-dimensional
interval I ⊂ R𝑛 with bounds 𝑙, 𝑢 ∈ R𝑛 is denoted by I = [𝑙, 𝑢].
The continuous uniform distribution between 𝑎 ∈ R and 𝑏 ∈ R
with 𝑎 ≤ 𝑏 is written as 𝑈 (𝑎, 𝑏). We denote a random variable 𝑋
drawn from𝑈 (𝑎, 𝑏) by 𝑋 ∼ 𝑈 (𝑎, 𝑏).

2.2 Feed-Forward Neural Networks
A feed-forward neural network consists of a sequence of ^ ∈ N
layers. A layer can either be a linear layer, which applies an affine

map, or an activation layer, which applies a nonlinear activation
function elementwise.

Definition 2.1 (Neural Network Layer, [4, Sec. 5.1]). The 𝑘-th layer
of a neural network is defined as an operation 𝐿𝑘 : R𝑛𝑘−1 → R𝑛𝑘 ,

ℎ𝑘 = 𝐿𝑘 (ℎ𝑘−1) =
{
𝑊𝑘 ℎ𝑘−1 + 𝑏𝑘 if 𝑘-th layer is linear,
`𝑘 (ℎ𝑘−1) otherwise,

where 𝑛𝑘−1 denotes the number of input neurons, 𝑛𝑘 denotes the
number of output neurons, 𝑊𝑘 ∈ R𝑛𝑘×𝑛𝑘−1 is a weight matrix,
𝑏𝑘 ∈ R𝑛𝑘 is a bias vector, and `𝑘 : R→ R is a nonlinear activation
function.

The parameters \ of a neural network include all weight matri-
ces and bias vectors from its linear layers. Forward propagation
computes the output 𝑦 ∈ R𝑛^ of a neural network by propagating
an input 𝑥 ∈ R𝑛0 sequentially through all neural network layers.

Definition 2.2 (Forward Propagation, [4, Sec. 5.1]). The output
𝑦 ∈ R𝑛^ of a neural network for an input 𝑥 ∈ R𝑛0 is computed by

ℎ0 = 𝑥 ,
ℎ𝑘 = 𝐿𝑘 (ℎ𝑘−1) for 𝑘 = 1, . . . , ^,
𝑦 = ℎ^ .

The function 𝑁\ (𝑥) = 𝑦 denotes the forward propagation through
a neural network with parameters \ .

Training of Neural Networks. We only consider supervised train-
ing, where a neural network is trained with a training dataset
D = {(𝑥1, 𝑡1), . . . , (𝑥𝑛, 𝑡𝑛)}, that contains inputs 𝑥𝑖 ∈ R𝑛0 with as-
sociated target outputs 𝑡𝑖 ∈ R𝑛^ . A loss function 𝐸 : R𝑛^ ×R𝑛^ → R
measures how well a neural network predicts the target outputs.
Typical loss functions are the half-squared error for regression tasks
or the cross-entropy error for classification tasks.

Definition 2.3 (Half-Squared Error, [4, Sec. 5.2]). The half-squared
error 𝐸𝑀𝑆𝐸 : R𝑛^ × R𝑛^ → R is defined as

𝐸𝑀𝑆𝐸 (𝑡, 𝑦) B
1
2

𝑛∑̂︁
𝑖=1
(𝑡 (𝑖 ) − 𝑦 (𝑖 ) )2.

Definition 2.4 (Cross-Entropy Error, [4, Sec. 5.2]). The cross-entropy
error 𝐸𝐶𝐸 : R𝑛^ × R𝑛^ → R is defined as

𝐸𝐶𝐸 (𝑡, 𝑦) B −
𝑛∑̂︁
𝑖=1

𝑡 (𝑖 ) ln(𝑦 (𝑖 ) ) + (1 − 𝑡 (𝑖 ) ) ln(1 − 𝑦 (𝑖 ) ).

The training goal of a neural network is to find network param-
eters \ that minimize the total loss of the training dataset D [4,
Sec. 5.2]:

min
\

∑︁
(𝑥𝑖 ,𝑡𝑖 ) ∈D

𝐸 (𝑡𝑖 , 𝑁\ (𝑥𝑖 )). (1)

A popular algorithm to train a neural network is gradient descent [4,
Sec. 5.2.4]: A random initial set of parameters \ (0) is iteratively
optimized using the gradient of the loss function [4, Eq. 5.41]. For the
𝑗-th iteration, let us introduce the gradient 𝑔 ( 𝑗 )

𝑘
of the loss function

𝐸 w.r.t. the output of the 𝑘-th layer ℎ𝑘 for the input 𝑥 ∈ R𝑛0 :

𝑔
( 𝑗 )
𝑘
B

𝜕𝐸 (𝑡, 𝑁\ ( 𝑗 ) (𝑥))
𝜕ℎ𝑘

. (2)
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In the 𝑗-th iteration, the weight matrix𝑊𝑘 and bias vector 𝑏𝑘 of
the 𝑘-th layer are updated as [4, Sec. 5.3]

𝑊
( 𝑗+1)
𝑘

←𝑊
( 𝑗 )
𝑘
− [ 𝜕𝐸 (𝑡, 𝑁\ ( 𝑗 ) (𝑥))

𝜕𝑊
( 𝑗 )
𝑘

=𝑊
( 𝑗 )
𝑘
− [ 𝑔 ( 𝑗 )

𝑘
ℎ⊤𝑘−1,

𝑏
( 𝑗+1)
𝑘

← 𝑏
( 𝑗 )
𝑘
− [ 𝜕𝐸 (𝑡, 𝑁\ ( 𝑗 ) (𝑥))

𝜕𝑏
( 𝑗 )
𝑘

= 𝑏
( 𝑗 )
𝑘
− [ 𝑔 ( 𝑗 )

𝑘
,

(3)

where[ ∈ R>0 is the learning rate. For conciseness, we omit the iter-
ation superscript from now on. The gradients 𝑔𝑘 are efficiently com-
puted with backpropagation [4, Sec. 5.3]: Utilizing the chain rule,
the gradient 𝑔^ of the last layer is propagated backward through
all neural network layers.

Proposition 2.5 (Backpropagation, [4, Sec. 5.3]). Let 𝑦 ∈ R𝑛^
be an output of a neural network with target 𝑡 ∈ R𝑛^ . If the loss
function 𝐸 is the half-squared error or the cross-entropy error, then
the gradients 𝑔𝑘 are computed in reverse order as

𝑔^ = 𝑦 − 𝑡 ,

𝑔𝑘−1 =

{
𝑊 ⊤

𝑘
𝑔𝑘 if 𝑘-th layer is linear,

diag
(
d`𝑘 (ℎ𝑘−1 )

dℎ𝑘−1

)
𝑔𝑘 otherwise,

for all 𝑘 ∈ {^, . . . , 1}.
From now on, we refer to the (standard) neural network training

as point-based training.

2.3 Set-Based Computation
We represent propagated sets by zonotopes. A zonotope is a convex
set representation describing the Minkowski sum of a finite number
of line segments.

Definition 2.6 (Zonotope, [13, Def. 1]). Given a center 𝑐 ∈ R𝑛 and
a generator matrix 𝐺 ∈ R𝑛×𝑞 , a zonotopeZ ⊂ R𝑛 is defined as

Z =



𝑐 +

𝑞∑︁
𝑗=1

𝛽 ( 𝑗 ) 𝐺 ( ·, 𝑗 )

������ 𝛽 ∈ [−1, 1]𝑞


C ⟨𝑐,𝐺⟩𝑍 .

Subsequently, we define several operations for zonotopes used
in our training approach. We first present the tight enclosure of a
zonotope by a multi-dimensional interval:

Proposition 2.7 (Interval Enclosure, [3, Prop. 2.2]). A zono-
tope Z = ⟨𝑐,𝐺⟩𝑍 with 𝑐 ∈ R𝑛 and 𝐺 ∈ R𝑛×𝑞 is enclosed by the
interval [𝑙, 𝑢] ⊇ Z, where

𝑙 = 𝑐 −
𝑞∑︁
𝑗=1

��𝐺 ( ·, 𝑗 ) ��, 𝑢 = 𝑐 +
𝑞∑︁
𝑗=1

��𝐺 ( ·, 𝑗 ) ��,
where |·| computes the elementwise absolute value. The time complex-
ity of computing an interval enclosure is O(𝑛 𝑞).

Proposition 2.8 (Minkowski Sum, [3, Prop. 2.1 and Sec. 2.4]).
The Minkowski sum of a zonotope Z = ⟨𝑐,𝐺⟩𝑍 and an interval
I = [𝑙, 𝑢] ⊂ R𝑛 with 𝑐, 𝑙,𝑢 ∈ R𝑛 and 𝐺 ∈ R𝑛×𝑞 is computed as

Z ⊕ I =

〈
𝑐 + 1

2 (𝑙 + 𝑢),
[
𝐺 diag

(
1
2 (𝑢 − 𝑙)

)]〉
𝑍
,

and has time complexity O(𝑛2).

Zonotopes are closed under linear maps.

Proposition 2.9 (LinearMap, [3, Sec. 2.4]). The result of a linear
map 𝑓 : R𝑛 → R𝑚, 𝑥 ↦→ 𝑊 𝑥 + 𝑏 with𝑊 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚
applied to a zonotopeZ = ⟨𝑐,𝐺⟩𝑍 with 𝑐 ∈ R𝑛 and 𝐺 ∈ R𝑛×𝑞 is

𝑓 (Z) B {𝑓 (𝑧) | 𝑧 ∈ Z} =𝑊 Z + 𝑏 = ⟨𝑊 𝑐 + 𝑏,𝑊 𝐺⟩𝑍 ,
and has time complexity O(𝑚𝑛𝑞).

Determining the volume of a zonotope is computationally de-
manding [10]. However, a norm of a zonotope can effectively ap-
proximate the size of a zonotope [34, 7]. The interval norm computes
the sum of the lengths of all edges of the interval enclosure of a
zonotope.

Proposition 2.10 (Interval Norm, [2, Sec. 3.1]). For a zonotope
Z = ⟨𝑐,𝐺⟩𝑍 , the interval norm is

∥Z∥ �̃� B
1
𝑛
1⊤

�� [𝑐 𝐺
] �� 1.

Since the volume of a zonotope is invariant over translations, we
exclude the center from the computation of the norm. The combined
operation of translating the zonotope to the origin and computing
the norm is denoted by

∥Z∥𝐼 B ∥⟨0,𝐺⟩𝑍 ∥ �̃� =
1
𝑛
1⊤ |𝐺 | 1. (4)

2.4 Formal Verification of Neural Networks
In this work, we consider the robustness of neural networks for clas-
sification tasks: Each dimension of an output 𝑦 ∈ R𝑛^ corresponds
to a classification label, and the dimension with the maximum value
determines the predicted classification label for an input 𝑥 ∈ R𝑛0 .
An input 𝑥 is correctly classified by a neural network if the pre-
dicted classification label matches the classification label of the
target output 𝑡 ∈ R𝑛^ :

argmax
𝑘∈[^ ]

𝑦 (𝑘 ) = argmax
𝑘∈[^ ]

𝑡 (𝑘 ) . (5)

We call a neural network (locally) robust for a given perturbance
set if the neural network correctly classifies every input within the
perturbance set. As a perturbance set we use the 𝑙∞-ball of radius
𝜖 ∈ R>0 around an input 𝑥 ∈ R𝑛0 :

Definition 2.11 (𝜖-Perturbance Set). For a perturbation radius
𝜖 ∈ R>0 and an input 𝑥 ∈ R𝑛0 , the 𝜖-perturbance set is defined as

𝜋𝜖 (𝑥) B
〈
𝑥, 𝜖 𝐼𝑛0

〉
𝑍 =

{
𝑥 ∈ R𝑛0

�� ∥𝑥 − 𝑥 ∥∞ ≤ 𝜖
}
.

We formally verify the robustness of a neural network by using
set-based computations to compute its output set for an input set
X = 𝜋𝜖 (𝑥). However, computing an exact output set of a feed-
forward neural network is computationally hard; with only rectified
linear unit (ReLU) activation functions, it has been shown to be
NP-hard [19]. Thus, we compute an outer approximation Ŷ ⊂ R𝑛^
of the true output set Y∗ B {𝑁\ (𝑥) | 𝑥 ∈ X} ⊆ Ŷ of a neural
network 𝑁\ for an input set X ⊂ R𝑛0 . If Ŷ does not intersect with
a region of unsafe outputsU, we have formally verified that the
neural network only computes safe outputs for every input 𝑥 ∈ X.
For a classification task with target 𝑡 ∈ R𝑛^ , the unsafe set contains
every incorrect classification [23, Prop. B.2]:

U B {
𝑦 ∈ R𝑛^

�� (𝐼𝑛^ − 1 𝑒𝑙 ) 𝑦 ≰ 0
}
, (6)
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Figure 1: Verifying the local robustness of a neural network.

where 𝑙 B argmax𝑘∈[^ ] 𝑡 (𝑘 ) and 𝑒𝑙 is the 𝑙-th standard basis vector.
Fig. 1 illustrates the robustness verification of a neural network. To
compute an outer approximation Ŷ, we evaluate the operations
𝐿𝑘 (Def. 2.1) by sets. We compute the output set of a linear layer
for an input set with a linear map [23, Sec. 2.4]. Zonotopes are not
closed under nonlinear maps; hence, we enclose the output set of
an activation layer by an image enclosure summarized in Alg. 1 [23,
Prop. 2.14]. We first compute an upper bound and a lower bound
for each dimension of the input set (Line 3). The activation function
is approximated within the computed bounds using a polynomial
regression (Line 4). To ensure the soundness of the approximations,
a bound on the approximation errors is computed and added to
the result (Lines 5–7). Using Alg. 1, we define a set-based forward
propagation.

Algorithm 1: Image enclosure of an activation layer [23].
1 function enclose(𝐿𝑘 ,H𝑘−1)
2 for 𝑖 ← 1 to 𝑛𝑘 do
3 Find bounds I𝑘−1(𝑖 ) ofH𝑘−1(𝑖 ) // Prop. 2.7

4 Find polynomial approximation 𝑝𝑘,𝑖 of `𝑘 // [31]
5 𝑑𝑘 (𝑖 ) ← max𝑥∈I𝑘−1(𝑖 )

��`𝑘 (𝑥) − 𝑝𝑘,𝑖 (𝑥)�� + 𝛿 // [23, Eq. 18]

6 H̃𝑘 (𝑖 ) ← evaluate 𝑝𝑘,𝑖 withH𝑘−1(𝑖 ) // [23, Sec. 3]

7 H𝑘 (𝑖 ) ← H̃𝑘 (𝑖 ) ⊕ [−𝑑𝑘 (𝑖 ) , 𝑑𝑘 (𝑖 ) ] // Prop. 2.8

8 H𝑘 ←H𝑘 (1) × · · · × H𝑘 (𝑛𝑘 )
9 returnH𝑘

Proposition 2.12 (Set-Based Forward Prop., [23, Sec. 2.4]).
For an input set X ⊂ R𝑛0 , an outer approximation of the output set
Ŷ ⊂ R𝑛^ of a neural network can be computed as

H0 = X,
H𝑘 = 𝐿𝑘 (H𝑘−1),

Ŷ = H^ ⊇ Y∗ B {𝑁\ (𝑥) | 𝑥 ∈ X},

where for 𝑘 = 1, . . . , ^ ,

𝐿𝑘 (H𝑘−1) =
{
𝑊𝑘 H𝑘−1 + 𝑏𝑘 if 𝑘-th layer is linear,
enclose(𝐿𝑘 ,H𝑘−1) otherwise,

and the operation enclose is specified in Alg. 1.

2.5 Problem Statement
The training goal for a robust neural network is to minimize the
worst-case loss within the 𝜖-perturbance set of each input in the
training dataset [27, Sec. 2]:

min
\

∑︁
(𝑥𝑖 ,𝑡𝑖 ) ∈D

max
�̃�𝑖 ∈𝜋𝜖 (𝑥𝑖 )

𝐸 (𝑡𝑖 , 𝑁\ (𝑥𝑖 )). (7)

In this work, we derive a end-to-end set-based training procedure
that uses set-based computations (i) to train robust neural networks
and (ii) to simplify the subsequent robustness verification of the
trained neural networks.

3 FAST IMAGE ENCLOSURE OF ACTIVATION
FUNCTIONS

The training of neural networks requires many forward propaga-
tions, which are costly for set-based forward propagations due to
the image enclosures of activation layers. This makes sampling-
based methods [23, 21] for the image enclosure impractical. In
contrast, [35] derives fast analytical solutions for the approxima-
tion errors of a specific linear approximation of s-shaped activa-
tion functions. However, these linear approximations create large
approximation errors. To address this issue, we derive analytical
solutions for the approximation errors of an arbitrary monotoni-
cally increasing linear approximation for three typical activation
functions: ReLU (Sec. 3.1), hyperbolic tangent (Sec. 3.2), and logistic
sigmoid (Sec. 3.2). Secondly, we provide a linear approximation with
approximation errors that are smaller or equal to [35, Thm. 3.2]
while being equally fast to compute. For the remainder of this sec-
tion, let ` : R→ R be a monotonically increasing function which
is approximated within an interval I = [𝑙, 𝑢] ⊂ R.

Definition 3.1 (Linear Approximation). Within the interval I, we
approximate ` by a linear function 𝑝 (𝑥) B 𝑚𝑥 + 𝑎, where

𝑚 B
` (𝑢) − ` (𝑙)

𝑢 − 𝑙 , 𝑎 B `

(
𝑢 + 𝑙
2

)
−𝑚 𝑢 + 𝑙

2 .

The approximation errors of 𝑝 are given by the largest lower
distance and upper distance between ` and 𝑝 (see Fig. 2).

Definition 3.2 (Approximation Errors). The approximation errors
of 𝑝 (Def. 3.1) for ` within the interval I are defined as

𝑑 B min
𝑥∈I

` (𝑥) − 𝑝 (𝑥), 𝑑 B max
𝑥∈I

` (𝑥) − 𝑝 (𝑥).

3.1 Approximation Errors for ReLU
The ReLU is defined as ReLU(𝑥) B max(0, 𝑥). Since ReLU is piece-
wise linear, it suffices to evaluate ReLU(𝑥) − 𝑝 (𝑥) at 𝑥 = 0 and the
bounds 𝑥 ∈ {𝑙, 𝑢}.

Proposition 3.3 (Approximation Errors for ReLU). The ap-
proximation errors of 𝑝 for ReLU are computed as

𝑑 = min
𝑥∈P

ReLU(𝑥) − 𝑝 (𝑥), 𝑑 = max
𝑥∈P

ReLU(𝑥) − 𝑝 (𝑥),

where P = {𝑙, 0, 𝑢} ∩ I.

Proof. ReLU is monotonic for [𝑙, 0] and [0, 𝑢]. Thus, the ap-
proximation errors are found at 𝑥 = 0 or the bounds 𝑥 ∈ {𝑙, 𝑢}. □
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tanh 𝑝 Our approach [35, Thm. 3.2]

Figure 2: Image enclosure of hyperbolic tangent: (left) Our
linear approximation and approximation errors; (right) Com-
parison of our image enclosure and the image enclosure
by [35, Thm. 3.2].

3.2 Approximation Errors for Hyperbolic
Tangent and Logistic Sigmoid

We can efficiently compute the approximation errors for differen-
tiable activation functions by returning theminimum andmaximum
values of the finite set of extreme points of ` (𝑥) − 𝑝 (𝑥). If the ex-
treme points are not contained within the interval, we include the
boundaries of the interval. For the hyperbolic tangent and logistic
sigmoid, we provide the set P of all extreme points of ` (𝑥) − 𝑝 (𝑥).

Proposition 3.4 (Approximation Errors for Hyperbolic Tan-
gent). The approximation errors of 𝑝 for tanh are

𝑑 = min
𝑥∈P

tanh(𝑥) − 𝑝 (𝑥), 𝑑 = max
𝑥∈P

tanh(𝑥) − 𝑝 (𝑥),

where P =

{
± tanh-1

(√
1 −𝑚

)
, 𝑙, 𝑢

}
∩ I.

Proof. The derivative of the hyperbolic tangent is 1− tanh(𝑥)2.
We demand that the derivative of tanh(𝑥) − 𝑝 (𝑥) is 0 and simplify
the terms:

0 = d
d𝑥 (tanh(𝑥) − 𝑝 (𝑥))

⇔ 0 = 1 − tanh(𝑥)2 −𝑚
⇔ tanh(𝑥) = ±

√
1 −𝑚

⇔ 𝑥 = ± tanh-1
(√

1 −𝑚
)
. □

The logistic sigmoid is defined as 𝜎 (𝑥) B 1
1+𝑒−𝑥 [14, Sec. 6.3.2].

Proposition 3.5 (Approximation Errors for Logistic Sig-
moid). The approximation errors of 𝑝 for 𝜎 are

𝑑 = min
𝑥∈P

𝜎 (𝑥) − 𝑝 (𝑥), 𝑑 = max
𝑥∈P

𝜎 (𝑥) − 𝑝 (𝑥),

where P =

{
±2 tanh-1

(√
1 − 4𝑚

)
, 𝑙, 𝑢

}
∩ I.

Proof. It holds that 𝜎 (𝑥) = 0.5 (tanh(0.5𝑥) + 1) [14, Sec. 6.3.2].
We demand that derivative of 𝜎 (𝑥) − 𝑝 (𝑥) is 0 and simplify the

−10 −5 0

−10

−5

0

𝑦 (8)

𝑦
(9
)

Output Samples Unsafe Outputs
Our approach [35, Thm. 3.2]

Figure 3: Comparison of the output set of a neural network
(nn-small trained point-based on F-MNIST with the input
set 𝜋𝜖 (𝑥) where 𝜖 = 0.005) computed with different image
enclosures: The output set computed with our image enclo-
sure is significantly smaller and does not intersect the unsafe
region, while the output set computed with the image enclo-
sure by [35, Thm. 3.2] does intersect the unsafe region.

terms:

0 = d
d𝑥 (𝜎 (𝑥) − 𝑝 (𝑥))

⇔ 0 = d
d𝑥 (0.5 (tanh(0.5𝑥) + 1)) −𝑚

⇔ tanh(0.5𝑥) = ±
√
1 − 4𝑚

⇔ 𝑥 = ±2 tanh-1
(√

1 − 4𝑚
)
. □

While the approach in [35, Thm. 3.2] only works for a specific
linear approximation, our approach works for any (monotonically
increasing) linear approximation. In addition, we prove that the
approximation errors of our linear approximation (Def. 3.1) are
always smaller or equal to the approximation errors by [35] w.r.t. the
area in the input-output plane (see Fig. 2) measuring the integrated
approximation error over I:

𝐴( [𝑑, 𝑑],I) B (𝑙 − 𝑢) (𝑑 − 𝑑). (8)

Theorem 3.6. Let ` be an s-shaped function, and let I = [𝑙, 𝑢] be
an interval. Moreover, let 𝑑 and 𝑑 be the approximation errors of 𝑝
as defined in Def. 3.1 and 3.2, and let 𝑑𝑆 be the approximation error
by [35, Thm. 3.2]. It holds that

𝐴( [𝑑, 𝑑],I) ≤ 𝐴( [−𝑑𝑆 , 𝑑𝑆 ],I).
Proof. See appendix. □

Fig. 3 shows an instance where the smaller approximation errors
by our image enclosure enable the verification of a neural network
that is not possible with the image enclosure by [35, Thm. 3.2].

3.3 Implementation
Alg. 2 implements our image enclosure. First, we compute the in-
terval bounds of the input set (Line 2). For each neuron, the linear
approximation (Line 4) and the approximation errors (Line 5) are
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computed. The linear approximations are applied to the input set
(Line 6), and finally the approximation errors (Line 7) are added.
The time complexity of Alg. 2 is polynomial. We use the time com-
plexity of Alg. 2 to later derive the time complexity of our training
approach.

Proposition 3.7 (Time Complexity of Alg. 2). For an input
set H𝑘−1 = ⟨𝑐,𝐺⟩𝑍 with 𝑐 ∈ R𝑛 and 𝐺 ∈ R𝑛×𝑞 , Alg. 2 has time
complexity O(𝑛2 𝑞) w.r.t. the number of input dimensions 𝑛 and the
number of generators 𝑞.

Proof. Finding the interval bounds ofH𝑘−1 (Line 2) takes time
O(𝑛 𝑞) (Prop. 2.7). Computing the linear approximation (Line 4) and
the approximation errors (Line 5) for each neuron takes constant
time; hence, the loop takes time O(𝑛). The linear map of H𝑘−1
(Line 6) takes time O(𝑛2 𝑞) (Prop. 2.9). Adding the approximation
errors (Line 7) takes time O(𝑛2). Thus, in total we have O(𝑛 𝑞) +
O(𝑛) + O(𝑛2 𝑞) + O(𝑛2) = O(𝑛2 𝑞). □

Algorithm 2: Fast image enclosure of an activation layer.
1 function fastEnclose(𝐿𝑘 ,H𝑘−1)
2 Find bounds I𝑘−1 ofH𝑘−1 // Prop. 2.7
3 for 𝑖 ← 1 to 𝑛𝑘 do
4 Compute linear approx.𝑚𝑘 (𝑖 ) 𝑥 + 𝑎𝑘 (𝑖 ) // Def. 3.1

5 Compute approx. errors 𝑑𝑘 (𝑖 ) , 𝑑𝑘 (𝑖 ) // Prop. 3.3 to 3.5

6 H̃𝑘 ← diag(𝑚𝑘 ) H𝑘−1 + 𝑎𝑘 // Prop. 2.9

7 H𝑘 ← H̃𝑘 ⊕ [𝑑𝑘 , 𝑑𝑘 ] // Prop. 2.8
8 returnH𝑘 , 𝑚𝑘

The image enclosure of an s-shaped function like hyperbolic
tangent or logistic sigmoid by [21, Sec. 3.2] fits a polynomial to
the activation function using polynomial regression and uses many
evenly distributed samples along the activation function to bound
the approximation errors (see Alg. 1). Alg. 2 no longer uses a polyno-
mial regression or requires sampling to compute the approximation
errors. Moreover, each loop iteration of Alg. 2 is independent, and
the entire loop can be efficiently computed in a batch-wise fash-
ion using matrix operations on a GPU. The results of this section
obviously also benefit the set-based verification of neural networks.

4 SET-BASED TRAINING OF NEURAL
NETWORKS

We present a novel set-based training procedure for neural net-
works. Intuitively, we replace each point-based training step with a
set-based training step and make adjustments where necessary. In
each training iteration, we (i) compute a set of losses containing a
loss for every input of an 𝜖-perturbance set (Def. 2.11), (ii) derive
a set-based backpropagation that computes sets of gradients, and
(iii) aggregate the sets of gradients to update the values for the
parameters of the neural network.

4.1 Set-Based Loss
First, we define a set-based loss function returning a set of losses
for an entire set of outputs. In our work, we define a set-based loss

function 𝐸 : R𝑛^×2R𝑛^ → 2R𝑛^ so that it combines (a) the set-based
evaluation of a point-based loss with (b) the interval norm of the
output set (4). The set-based loss function uses a hyperparameter
𝜏 ∈ [0, 1] to weigh the set-based evaluation of the point-based loss
and the interval norm. The included interval norm minimizes the
size of the output sets, thereby increasing the robustness of the
trained neural network.

Definition 4.1 (Set-Based Loss). Given a (point-based) loss func-
tion 𝐸 : R𝑛^ × R𝑛^ → R, we define a set-based loss function as

𝐸 (𝑡, Ŷ) B (1 − 𝜏) 𝐸 (𝑡, Ŷ) + 𝜏
𝜖

Ŷ
𝐼
,

where 𝐸 (𝑡, Ŷ) =
{
𝐸 (𝑡, 𝑦)

��� 𝑦 ∈ Ŷ }
is the set-based evaluation of 𝐸,

𝜖 ∈ R>0 is the input perturbation radius, and
Ŷ

𝐼
is the interval

norm of Ŷ according to (4).

To make tuning the hyperparameter 𝜏 easier, the interval norm
in Def. 4.1 is normalized with the input perturbation radius 𝜖 ∈ R>0.
The normalization is derived from the ratio of the interval norms
of the output set and the input set, which is an 𝜖-perturbance set:Ŷ

𝐼

∥𝜋𝜖 (𝑥)∥𝐼
Def. 2.11

=

Ŷ
𝐼

𝜖
. (9)

Similar to point-based training, we use the gradient of the set-
based loss function to update the parameters of a neural network.
The gradient of a set-based loss is a set that contains a gradient for
every input of the input set. Computing the set-based evaluation
of the point-based loss might be hard or impossible, e.g., comput-
ing a set-based cross-entropy error is hard due to the logarithm
(see Def. 2.4). However, we only need the gradient of the set-based
loss for training. If the point-based loss is the half-squared error or
the cross-entropy error (Def. 2.3 and 2.4), the gradient is just the
difference between the output and the target (Prop. 2.5):

𝜕𝐸 (𝑡, Ŷ)
𝜕Ŷ

=

{
𝜕𝐸 (𝑡, 𝑦)

𝜕𝑦

���� 𝑦 ∈ Ŷ
}
=

{
𝑦 − 𝑡

��� 𝑦 ∈ Ŷ }

=

〈
𝑐 Ŷ − 𝑡,𝐺Ŷ

〉
𝑍
,

(10)

where Ŷ =

〈
𝑐 Ŷ ,𝐺Ŷ

〉
𝑍
.

The second term of the set-based loss function is the interval
norm of the output set. The gradient of the interval norm is a
zonotope, where the center is the derivative w.r.t. the center and
the generator matrix is the derivative w.r.t. the generator matrix.

Proposition 4.2 (Gradient of Interval Norm). The gradient
of the interval norm is

𝜕∥Z∥𝐼
𝜕Z B

〈
𝜕∥Z∥𝐼
𝜕𝑐

,
𝜕∥Z∥𝐼
𝜕𝐺

〉
𝑍
=

1
𝑛
⟨0, sign(𝐺)⟩𝑍 ,

whereZ = ⟨𝑐,𝐺⟩𝑍 ⊂ R𝑛 .

Proof. The gradient of the absolute value |·| is the sign function.
Thus,

𝜕∥Z∥𝐼
𝜕Z =

〈
𝜕∥Z∥𝐼
𝜕𝑐

,
𝜕∥Z∥𝐼
𝜕𝐺

〉
𝑍
=

1
𝑛
⟨0, sign(𝐺)⟩𝑍 . □
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By combining (10) and Prop. 4.2, we can compute the gradient
of a set-based loss function:

Proposition 4.3 (Gradient of Set-Based Loss). If the point-
based loss 𝐸 is the half-squared error or the cross-entropy error (Def. 2.3
and 2.4), then the gradient of the set-based loss function 𝐸 is

𝜕𝐸 (𝑡, Ŷ)
𝜕Ŷ

=

〈
(1 − 𝜏) (𝑐 Ŷ − 𝑡), (1 − 𝜏)𝐺Ŷ +

𝜏

𝜖 𝑛^
sign(𝐺Ŷ )

〉
𝑍
,

where Ŷ =

〈
𝑐 Ŷ ,𝐺Ŷ

〉
𝑍
.

Proof. This directly follows from (10) and Prop. 4.2. □

To have a end-to-end set-based training process, we extend the
backpropagation (Prop. 2.5) through neural networks to sets.

4.2 Set-Based Backpropagation
In this section, we lift the point-based backpropagation to a set-
based evaluation. For every layer of the neural network, the set-
based backpropagation computes the gradient of the set-based loss
function 𝐸 w.r.t. the output setH𝑘 :

G𝑘 B
𝜕𝐸 (𝑡, Ŷ)
𝜕H𝑘

=

{
𝜕𝐸 (𝑡, Ŷ)
𝜕ℎ𝑘

����� ℎ𝑘 ∈ H𝑘

}
. (11)

The set-based backpropagation of linear layers is straightforward
as it just applies a linear map (Prop. 2.5). However, the backprop-
agation of activation layers requires the gradient of its nonlinear
activation function (Prop. 2.5). Since zonotopes are not closed un-
der nonlinear maps, we approximate the gradient of the activation
function `𝑘 with the slope𝑚𝑘 (𝑖 ) of its linear approximation 𝑝𝑘,𝑖
(see Alg. 2) obtained during the set-based forward propagation. For
the 𝑖-th neuron, we have

𝑚𝑘 (𝑖 ) =
𝜕𝑝𝑘,𝑖 (H𝑘−1(𝑖 ) )

𝜕H𝑘−1(𝑖 )
≈ 𝜕`𝑘 (H𝑘−1(𝑖 ) )

𝜕H𝑘−1(𝑖 )
. (12)

Using this approximation, we can formulate the set-based back-
propagation:

Proposition 4.4 (Set-Based Backpropagation). Let Ŷ ⊂ R𝑛^
be an output set of a neural network with target 𝑡 ∈ R𝑛^ . The gradients
G𝑘 are computed in reverse order as

G^ =
𝜕𝐸 (𝑡, Ŷ)

𝜕Ŷ
,

G𝑘−1 =
{
𝑊 ⊤

𝑘
G𝑘 if 𝑘-th layer is linear,

diag(𝑚𝑘 ) G𝑘 otherwise,

for all 𝑘 ∈ {^, . . . , 1}. If the 𝑘-th layer is an activation layer, then the
vector𝑚𝑘 ∈ R𝑛𝑘 denotes the slopes of the linear approximations of
that layer (Alg. 2).

Proof. See appendix. □

Fig. 4 illustrates the computations during a set-based forward
propagation and set-based backpropagation.

X
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·H0

𝑊1

Layer 𝐿1
linear

+

𝑏1

fastEnclose

H1

Layer 𝐿2
activation

·H2
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+
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Ŷ
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𝜕𝐸 (𝑡,Ŷ)
𝜕Ŷ

·
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G3·

diag(𝑚2 )

G2G1

Figure 4: Illustration of a set-based forward propagation
(black) and set-based backpropagation (blue).

4.3 Set-Based Update of Weights and Biases
We describe now how we use the set of gradients G𝑘 and the set of
inputs H𝑘−1 to update the weights and biases of a linear layer.
Our main idea is to compute the outer product in (3) in a set-
based fashion using G𝑘 H⊤𝑘−1 ⊂ R𝑛𝑘×𝑛𝑘−1 . However, there are
dependencies between the zonotopes, as the set of gradients G𝑘
are ultimately computed from the set of inputsH𝑘−1. We explicitly
keep track of these dependencies using symbolic zonotopes [8],
which assign each generator a label. Let G𝑘 =

〈
𝑐G,𝐺G

〉
𝑍 and

H𝑘−1 =
〈
𝑐H,𝐺H

〉
𝑍 with 𝑐G ∈ R𝑛𝑘 , 𝐺G ∈ R𝑛𝑘×𝑞 , 𝑐H ∈ R𝑛𝑘−1 ,

and 𝐺H ∈ R𝑛𝑘−1×𝑟 . We assign each column of the generator matri-
ces 𝐺G and 𝐺H a label, which we denote by 𝐺 |𝑙GG and 𝐺 |𝑙HH , where
𝑙G ∈ N𝑞 and 𝑙H ∈ N𝑟 are labels. We use the labels to compute a
Cartesian product that respects the dependencies between the sets
G𝑘 andH𝑘−1 [25, Sec. II.C]:

G𝑘 ×H𝑘−1 =

〈[
𝑐G
𝑐H

]
,

[
0 𝐺

|𝑙G∩𝑙H
G 𝐺

|𝑙G\𝑙H
G

𝐺
|𝑙H\𝑙G
H 𝐺

|𝑙G∩𝑙H
H 0

]〉
𝑍

. (13)

The generators with common labels are concatenated vertically,
whereas those with unique labels are padded with zeros. Using the
Cartesian product, we define a set-based outer product that respects
the dependencies between G𝑘 andH𝑘−1:

G𝑘 H⊤𝑘−1 B
{
𝑔𝑘 ℎ

⊤
𝑘−1

��� [𝑔⊤𝑘 ℎ⊤
𝑘−1

]⊤ ∈ G𝑘 ×H𝑘−1
}
. (14)

To update the weight matrix and the bias vector, we could simply
sample the set-based outer product. However, by sampling, we lose
much information contained in the gradient set and the input set.
While we could increase the effectiveness by taking more samples,
we want to use all gradients and inputs to update the weights and
biases. Hence, we aggregate the entire set-based outer product by
computing its expected value, where we see the factors of the gen-
erators 𝛽 as random variables. First, we simplify the computation of
the set-based outer product by exploiting the dependencies between
the gradients G𝑘 and the inputsH𝑘−1:

Proposition 4.5. The set-based outer product between G𝑘 and
H𝑘−1 is computed as

G𝑘 H⊤𝑘−1 =
{
w𝑘 (𝛽)

�� 𝛽 ∈ [−1, 1]𝑞 },
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where

b𝑘 (𝛽) B
{
𝑐G +𝐺 |𝑙GG 𝛽 if 𝛽 ∈ [−1, 1]𝑞 ,
0 otherwise,

w𝑘 (𝛽) B


b𝑘 (𝛽)

(
𝑐H +

[
𝐺
|𝑙H
H 0

]
𝛽
)⊤

if 𝛽 ∈ [−1, 1]𝑞 ,
0 otherwise.

Proof. We make two observations: (a) The image enclosure of
an activation layer adds new generators for the approximation er-
rors (Alg. 2); (b) the ordering of the generators is not changed during
a set-based forward propagation or a set-based backpropagation.
Hence, 𝑙H \ 𝑙G is empty and 𝑙G ∩ 𝑙H = 𝑙H :[

0 𝐺
|𝑙G∩𝑙H
G 𝐺

|𝑙G\𝑙H
G

𝐺
|𝑙H\𝑙G
H 𝐺

|𝑙G∩𝑙H
H 0

]
=

[
𝐺
|𝑙H
G 𝐺

|𝑙G\𝑙H
G

𝐺
|𝑙H
H 0

]
=

[
𝐺
|𝑙G
G

𝐺
|𝑙H
H 0

]
.

Thus, for
[
𝑔⊤𝑘 ℎ⊤𝑘−1

]⊤ ∈ G𝑘 ×H𝑘−1, with some 𝛽 ∈ [−1, 1]𝑞 :

𝑔𝑘 ℎ
⊤
𝑘−1

(13)
=

(
𝑐G +𝐺 |𝑙GG 𝛽

) (
𝑐H +

[
𝐺
|𝑙H
H 0

]
𝛽
)⊤
= w𝑘 (𝛽). □

For a specific 𝛽 ∈ [−1, 1]𝑞 , w𝑘 (𝛽) and b𝑘 (𝛽) are samples:

w𝑘 (𝛽) ∈ G𝑘 H⊤𝑘−1, b𝑘 (𝛽) ∈ G𝑘 . (15)

We aggregate all elements of the set-based outer product by comput-
ing the expected value ofw𝑘 for an assumed probability distribution
of the factors 𝛽 ; to update the bias vectors, we compute the expected
value of b𝑘 :

𝑊𝑘 ←𝑊𝑘 − [ E[w𝑘 (𝛽)], 𝑏𝑘 ← 𝑏𝑘 − [ E[b𝑘 (𝛽)]. (16)

Prop. 4.6 computes the expected values of w𝑘 and b𝑘 based on a
probability distribution of the factors 𝛽 . To simplify matters, we
assume that the expected value of a factor is 0, which is reasonable
as zonotopes are point-symmetric.

Proposition 4.6. Let 𝛽 be a random variable with

E[𝛽] = 0, (17)

the expected values of w𝑘 and b𝑘 are

E[w𝑘 (𝛽)] = 𝑐G 𝑐⊤H +𝐺
|𝑙G
G E

[
𝛽 𝛽⊤

] [
𝐺
|𝑙H
H 0

]⊤
,

E[b𝑘 (𝛽)] = 𝑐G .

Proof. Using (17) we have

E
[
b𝑘 (𝛽) ( 𝑗 )

]
= 𝑐G( 𝑗 ) +𝐺 |𝑙GG( 𝑗,· ) E[𝛽] = 𝑐G( 𝑗 ) .

Moreover, we show,

E
[
w𝑘 (𝛽) (𝑖, 𝑗 )

] Prop. 4.5
= E

[
b𝑘 (𝛽) (𝑖 )

(
𝑐H( 𝑗 ) +

[
𝐺
|𝑙H
H( 𝑗,· ) 0

]
𝛽
)]

= 𝑐G(𝑖 ) 𝑐H( 𝑗 ) +
(
𝑐G(𝑖 )

[
𝐺
|𝑙H
H( 𝑗,· ) 0

]
+ 𝑐H( 𝑗 ) 𝐺 |𝑙GG(𝑖,· )

)
E[𝛽]

+𝐺 |𝑙GG(𝑖,· ) E
[
𝛽 𝛽⊤

] [
𝐺
|𝑙H
H( 𝑗,· ) 0

]⊤
(17)
= 𝑐G(𝑖 ) 𝑐H( 𝑗 ) +𝐺 |𝑙GG(𝑖,· ) E

[
𝛽 𝛽⊤

] [
𝐺
|𝑙H
H( 𝑗,· ) 0

]⊤
. □

For now, we assume an independent and uniform distribution of
the factors 𝛽 ∼ 𝑈 (−1, 1)𝑞 .

Corollary 4.7. Assuming 𝛽 ∼ 𝑈 (−1, 1)𝑞 , the expected values of
w𝑘 and b𝑘 are

E[w𝑘 (𝛽)] = 𝑐G 𝑐⊤H +
1
3 𝐺
|𝑙G
G

[
𝐺
|𝑙H
H 0

]⊤
, E[b𝑘 (𝛽)] = 𝑐G .

Proof. We use Prop. 4.6: The expected value of the uniform
distribution𝑈 (−1, 1) is 0, hence E[𝛽] = 0 [9, Sec. 5.2]. If 𝑖 ≠ 𝑗 , then
𝛽𝑖 and 𝛽 𝑗 are independent and hence E

[
𝛽𝑖 𝛽 𝑗

]
= E[𝛽𝑖 ] E

[
𝛽 𝑗
]
= 0.

Moreover, if 𝑖 = 𝑗 , then E
[
𝛽𝑖 𝛽 𝑗

]
= E

[
𝛽2𝑖
]
= 1

3 [9, Sec. 7.3]. Thus,
ultimately, we have E

[
𝛽 𝛽⊤

]
= 1

3 𝐼𝑞 . □

The uniform distribution of the factors results in every generator
being weighted with 1

3 . We leave research on the effect of different
distributions to future research, e.g., we can give more weight to
adversarial attacks by assuming a higher probability of points near
the boundaries.

4.4 Implementation
Alg. 3 implements an iteration of set-based training. First, a set-
based forward propagation computes the output set Ŷ for an 𝜖-
perturbance set (Lines 1–6). With Ŷ, the gradient of the set-based
loss function G^ is computed (Line 8). A set-based backpropagation
computes the gradients G𝑘 (Lines 9–13). Finally, the weights and
biases of every linear layer are updated (Lines 14–17).

Algorithm 3: Set-based training iteration. Hyperparame-
ters: 𝜖 ∈ R>0, 𝜏 ∈ [0, 1], and [ ∈ R>0.
Data: Input 𝑥 ∈ R𝑛0 , Target 𝑡 ∈ R𝑛^
Result: Neural network with updated weights and biases

1 H0 ←
〈
𝑥, 𝜖 𝐼𝑛0

〉
𝑍 // Def. 2.11

2 for 𝑘 ← 1 to ^ do // set-based forward prop. (Prop. 2.12)
3 if 𝑘-th layer is linear then
4 H𝑘 ←𝑊𝑘 H𝑘−1 + 𝑏𝑘
5 else
6 H𝑘 , 𝑚𝑘 ← fastEnclose(𝐿𝑘 ,H𝑘−1)

7 Ŷ ← H^

8 G^ ← 𝜕𝐸 (𝑡,Ŷ)
𝜕Ŷ // Prop. 4.3

9 for 𝑘 ← ^ to 1 do // set-based backprop. (Prop. 4.4)
10 if 𝑘-th layer is linear then
11 G𝑘−1 ←𝑊 ⊤

𝑘
G𝑘

12 else
13 G𝑘−1 ← diag(𝑚𝑘 ) G𝑘
14 for 𝑘 ← 1 to ^ do // update weights and biases ((16))
15 if 𝑘-th layer is linear then
16 𝑊𝑘 ←𝑊𝑘 − [ E[w𝑘 (𝛽)]
17 𝑏𝑘 ← 𝑏𝑘 − [ E[b𝑘 (𝛽)]

Proposition 4.8 (Time Complexity of Alg. 3). Let 𝑛max B
max𝑘∈[^ ] 𝑛𝑘 be the maximum number of neurons in a hidden layer
of the neural network. The zonotopes used in Alg. 3 have at most
𝑞 ∈ O(𝑛0 + 𝑛max ^) number of generators. Moreover, Alg. 3 has time
complexity O(𝑛2max 𝑞 ^) w.r.t. 𝑛max, 𝑞 and the number of layers ^.
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Table 1: Networks and their number of parameters.

Dataset Model Hidden Neurons Parameters

MNIST / F-MNIST
nn-small 2x100 89,610
nn-med 5x100 119,910
nn-large 7x250 575,260

SVHN nn-med 5x100 348,710
nn-large 7x250 1,147,260

Proof. The initial 𝜖-perturbance set has 𝑛0 generators (Line 1)
and every activation layer adds 𝑛𝑘 ∈ O(𝑛max) new generators
for the approximation errors (Alg. 2). Moreover, there are at most
^ activation layers. Thus, in total, there are at most ^ O(𝑛max) +
O(𝑛0) = O(𝑛0 + 𝑛max ^) generators.

Time Complexity: The 𝑘-th step of the set-based forward prop-
agation takes time O(𝑛2max 𝑞): The linear map (Line 4) takes time
O(𝑛𝑘−1 𝑛𝑘 𝑞) = O(𝑛2max 𝑞) (Prop. 2.9); the image enclosure (Line 6)
takes time O(𝑛2max 𝑞) (Prop. 3.7). Hence, the forward propagation
(Lines 2–6) takes time ^ O(𝑛2max 𝑞) = O(𝑛2max 𝑞 ^). Computing the
gradient of the set-based loss function takes time O(𝑛^ + 𝑛^ 𝑞) =
O(𝑛max 𝑞). The 𝑘-th step of the set-based backpropagation com-
putes a linear map (Line 11 or 13) that takes time O(𝑛𝑘 𝑛𝑘+1 𝑞) =
O(𝑛2max 𝑞) (Prop. 2.9). Hence, the set-based backpropagation (Lines
9–13) takes time ^ O(𝑛2max 𝑞) = O(𝑛2max 𝑞 ^). Updating a weight
matrix takes time O(𝑛𝑘+1 𝑛𝑘 + 𝑛𝑘+1 𝑛𝑘 𝑞) = O(𝑛2max 𝑞) (Line 16)
and updating a bias vector takes time O(𝑛𝑘 ) = O(𝑛max) (Line 17).
There are at most ^ linear layers; hence, updating the weights and
biases of all linear layers takes time ^ (O(𝑛2max 𝑞) + O(𝑛max)) =
O(^ 𝑛2max 𝑞). Thus, in total, an iteration of set-based training takes
time 3O(𝑛2max 𝑞 ^) = O(𝑛2max 𝑞 ^). □

The time complexity of set-based training is polynomial, and
compared to point-based training, only has an additional factor
𝑞 ∈ O(𝑛0 + 𝑛max ^). The increased time complexity is expected
because set-based training propagates entire generator matrices
through the neural network. Moreover, for some linear relaxation
methods, similar time complexities are reported [45].

It is worth noting that set-based training only uses the operations:
matrix-multiplication and matrix-addition, as well as min and max.
Hence, a set-based training iteration can be efficiently evaluated
for an entire batch of inputs using matrix operations on a GPU.

5 EVALUATION
We use the MATLAB toolbox CORA [1] to implement set-based
training. The efficacy of set-based training is evaluated by training
neural networks of three different sizes (see Tab. 1) on three dif-
ferent datasets: MNIST [24], Fashion-MNIST (F-MNIST) [42], and
Street View House Numbers (SVHN) [30]. The training parameters
can be found in the appendix. We compare set-based training
(denoted by set) against point-based training (denoted by point) and
training with adversarial inputs computed with PGD [27] (denoted
by PGD (training)). We also evaluate set-based training ignoring the
approximation errors (denoted by set, no approx.), which reduces
the memory load. Moreover, we distinguish between the perturba-
tion radius 𝜖train used during training and the perturbation radius
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Figure 5: MNIST with nn-med and 𝜖train = 0.01.

Table 2: SVHN (verified accuracy / PGD accuracy) [%].

𝜖test

𝜖train Method 0.0 0.001 0.01

nn-med
0.0 point 79.92 73.29 / 75.89 0.0 / 31.72

0.001 PGD 80.64 75.95 / 77.78 0.0 / 43.25
set, no approx. 80.98 78.78 / 79.16 0.12 / 61.36

0.01 PGD 79.66 78.1 / 78.44 0.1 / 62.71
set, no approx. 80.06 78.22 / 78.66 0.08 / 61.20

nn-large
0.0 point 79.56 61.54 / 76.21 0.0 / 38.36

0.001 PGD 80.12 66.43 / 77.01 0.0 / 43.73
set, no approx. 84.67 82.24 / 83.19 0.0 / 63.23

0.01 PGD 76.01 72.99 / 74.39 0.0 / 57.68
set, no approx. 84.39 82.08 / 83.01 0.0 / 63.99

Table 3: MNIST (verified accuracy / PGD accuracy) [%].

𝜖test

𝜖train Method 0.0 0.01 0.1

nn-small
0.0 point 97.0 42.84 / 77.0 0.0 / 0.0

0.01
PGD 97.84 94.76 / 96.1 0.0 / 12.9
set 95.78 93.76 / 94.04 0.7 / 53.12

set, no approx. 97.12 95.7 / 96.06 0.04 / 61.78
set, 𝜏 = 0 95.4 93.26 / 93.62 0.14 / 35.36

0.1
PGD 97.08 96.2 / 96.4 0.08 / 84.3
set 72.24 67.98 / 69.09 19.14 / 37.54

set, no approx. 90.54 87.62 / 88.16 2.36 / 50.86

nn-med
0.0 point 97.02 6.34 / 77.0 0.0 / 0.0

0.01
PGD 97.6 89.68 / 95.72 0.0 / 12.76
set 95.62 93.54 / 93.84 0.0 / 45.24

set, no approx. 97.46 96.14 / 96.58 0.0 / 60.52

0.1
PGD 97.48 96.6 / 96.84 0.0 / 86.22
set 41.78 38.78 / 39.76 9.42 / 21.18

set, no approx. 90.52 86.95 / 87.7 0.68 / 46.6

nn-large
0.0 point 97.94 0.0 / 89.28 0.0 / 0.02

0.01 PGD 98.16 4.36 / 96.82 0.0 / 29.40
set 96.56 95.18 / 95.54 0.0 / 54.04

0.1
PGD 98.46 91.58 / 97.94 0.0 / 87.32
set 33.66 31.6 / 32.64 6.18 / 19.94

set, no approx. 89.52 86.54 / 87.06 0.02 / 48.54
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Table 4: F-MNIST (verified accuracy / PGD accuracy) [%].

𝜖test

𝜖train Method 0.0 0.005 0.05

nn-small
0.0 point 88.88 64.96 / 74.04 0.0 / 0.86

0.005 PGD 89.02 83.4 / 85.56 0.0 / 33.2
set 88.04 84.12 / 84.98 0.0 / 50.12

0.05 PGD 83.32 82.32 / 82.6 8.8 / 74.54
set 61.66 60.24 / 60.84 42.36 / 55.48

nn-med
0.0 point 88.08 19.2 / 70.66 0.0 / 1.32

0.005 PGD 88.12 72.68 / 84.78 0.0 / 28.1
set 88.38 82.94 / 85.2 0.0 / 43.46

0.05 PGD 84.08 83.1 / 83.34 0.0 / 75.28
set 54.92 53.8 / 54.56 40.04 / 53.86

𝜖test used during testing1. Ideally, we would like to report a neural
network’s adversarial accuracy for a perturbation radius. The ad-
versarial accuracy is the minimum accuracy that can be achieved
by perturbing the inputs of the test dataset. However, there is no
efficient way to compute the adversarial accuracy [28]. Therefore,
we report (i) the verified accuracy as a lower bound and (ii) the
PGD accuracy as an upper bound for the adversarial accuracy. The
verified accuracy is the percentage of test inputs for which we can
formally verify the robustness of the neural network using set-
based computations [23, Prop. B.2]. Moreover, the PGD accuracy is
the accuracy of a neural network for adversarial inputs computed
with PGD [22]. We list the findings of our experiments:

• For small training perturbation radii, the set-based trained
neural networks achieve higher accuracies than the PGD-
trained and point-based trained networks, e.g. for nn-med
on F-MNIST with 𝜖train = 0.005 (see Tab. 4) or for nn-large
on SVHN with 𝜖train = 0.01 (see Tab. 2).

• Set-based trained neural networks are significantly easier to
verify, e.g., for nn-large on MNIST with 𝜖train = 𝜖test = 0.01,
the verified accuracy of the set-based trained networks is
95.18% while the PGD trained networks and point-based
trained networks achieve verified accuracies of 4.36% and
0.0% (see Tab. 3).

• Furthermore, set-based training with approximation errors
trains neural networks with slightly lower clean accuracy
(𝜖test = 0) and PGD accuracies than set-based training with-
out approximation errors. However, set-based training with
approximation errors achieves higher verified accuracies,
which indicates that set-based training with approximation
errors makes the trained neural networks easier to verify.
Fig. 5 visualizes the accuracies.

• We observe that set-based training with the interval norm
trains more accurate neural networks than set-based train-
ing without the interval norm (denoted by set, 𝜏 = 0), e.g.,
see nn-small on MNIST with 𝜖train = 0.01 (Tab. 3). This
observation justifies the interval norm as a part of the set-
based loss.

1All reported perturbation radii are w.r.t. normalized inputs between 0 and 1.

Table 5: Training time [s / epoch].

Dataset Model point PGD set set, no approx.

MNIST
nn-small 3.87 13.5 8.91 7.81
nn-med 6.17 22.07 17.39 13.35
nn-large 8.69 31.51 65.43 29.48

F-MNIST nn-small 4.54 13.11 9.42 8.01
nn-med 7.52 20.50 17.77 13.47

SVHN nn-med 10.18 26.33 - 74.14
nn-large 12.78 34.23 - 141.17

• For larger training perturbation radii, the set-based trained
networks achieve lower accuracies, e.g., clean accuracy
(𝜖test = 0) of 72.24% for nn-small with 𝜖train = 0.1 onMNIST
(see Tab. 3). The reason for the lower accuracies is large
approximation errors that build up during the set-based for-
ward propagations. The large approximation errors distort
the gradients and thereby prevent accurate training.

Set-based training on MNIST and F-MNIST with nn-small and nn-
med is slower than point-based but slightly faster than PGD training
(see Table 5). For nn-large on MNIST or SVHN, set-based training
takes more time than point-based and PGD training.

Currently, the memory load and the large approximation errors
limit the scalability of set-based training. The large approximation
errors increase the outer approximation of the output sets, thereby
increasing the number of false-positive outputs, i.e., outputs that
are not true outputs. The false-positive outputs distort the gradi-
ents and prevent accurate training. Future research should explore
methods to overcome both of these limitations. Furthermore, we
only evaluate set-based training for classification tasks. However,
without any modifications, set-based training can be applied to
train neural networks for regression tasks: The gradient of the
half-squared and cross-entropy errors are the same (Prop. 2.5).

6 CONCLUSION
We introduce the first end-to-end set-based training procedure for
neural networks. While other robust training approaches train neu-
ral networks using single gradients and inputs, we use entire sets
of gradients and inputs to train neural networks. We use set-based
computations with zonotopes to efficiently compute sets of gradi-
ents for entire input sets. Finally, we update the parameters of neural
networks by aggregating all gradients. Our experimental results
demonstrate that our set-based approach effectively trains robust
neural networks while significantly simplifying the subsequent
robustness verification of the trained neural networks. In many
instances, our set-based training approach outperforms training
with state-of-the-art adversarial attacks. Hence, set-based training
represents a promising new direction for the field of robust neural
network training.
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Figure 6: Illustration for Theorem 3.6.

A EVALUATION DETAILS
Our experiments were run on a server with 2×AMD EPYC 7763
(64 cores/128 threads), 2 TB RAM, and a NVIDIA A100 40GB GPU.
We use the Adam optimizer [20] with the recommended hyper-
parameters. Furthermore, we use a batch size of 128 and train all
networks for 100 epochs. Before training, we normalize all inputs
between 0 and 1. All reported perturbation radii are with respect
to the normalized inputs. Unless mentioned otherwise, we use the
value 𝜏 = 0.0001 for the set-based loss, which worked well in all
our experiments.

Both MNIST and F-MNIST contain 60,000 grayscale images of
size 28× 28. Each image of MNIST depicts a handwritten digit from
0 to 9. An image of F-MNIST depicts a piece of clothing; there are
ten categories, e.g., trousers, sneakers, or dress. SVHN is a real-
world dataset that contains 73,257 colored images of digits of house
numbers that are cropped to size 32×32. Each linear layer is followed
by a nonlinear layer except for the last one. For MNIST, we use the
ReLU activation function, while for F-MNIST and SVHN, we use
the hyperbolic tangent. Each trained neural network is evaluated
with a test dataset containing 500 unseen inputs. For point-based
training, we use the MATLAB DeepLearning Toolbox2. The PGD
attacks during training use 𝑄 = 5 iterations with step size 𝜖train/𝑄 .
For PGD attacks during testing, we do 𝑄 = 40 iterations with step
size 𝜖test/𝑄 . Moreover, all of our reported accuracies are averaged
over 10 runs.

Limitations of our Evaluation. The comparability of our evalu-
ation results with other works is limited. Most other works use
convolutional neural networks (CNN), whereas we only evaluate
set-based training for feed-forward neural networks. Moreover,
some other works use special input data normalization, e.g., [28],
which changes the perturbation radius, preventing a meaningful
comparison of accuracies.

B PROOFS
B.1 Section 3

Theorem 3.6. Let ` : R → R be an s-shaped function, and let
I = [𝑙, 𝑢] ∈ R be an interval. Moreover, let 𝑑 and 𝑑 be the approx-
imation errors of 𝑝 as defined in Def. 3.1 and 3.2, and let 𝑑𝑆 be the
approximation error by [35, Thm. 3.2]. It holds that

𝐴( [𝑑, 𝑑],I) ≤ 𝐴( [−𝑑𝑆 , 𝑑𝑆 ],I).

Proof. We first observe that the approximation errors 𝑑 and 𝑑
of 𝑝 can be computed at points 𝑥𝑢 , 𝑥𝑙 ∈ I such that 𝑥𝑙 ≤ 𝑥𝑢 (see
Fig. 6):

𝑑 = ` (𝑥𝑙 ) − 𝑝 (𝑥𝑙 ) 𝑑 = ` (𝑥𝑢 ) − 𝑝 (𝑥𝑢 ). (18)

Moreover, the image of ` can be enclosed as follows [35, Thm. 3.2]:

𝑚𝑆 = min
(
d` (𝑙)
d𝑙 ,

d` (𝑢)
d𝑢

)

𝑡𝑆 =
1
2 (` (𝑢) + ` (𝑙) −𝑚𝑆 (𝑢 + 𝑙))

𝑑𝑆 =
1
2 (` (𝑢) − ` (𝑙) −𝑚𝑆 (𝑢 − 𝑙))

𝑓𝑆 (𝑥) =𝑚𝑆 𝑥 + 𝑡𝑆

(19)

With Def. 3.1, we have the following inequality:

𝑚𝑆 ≤
` (𝑢) − ` (𝑙)

𝑢 − 𝑙 =𝑚. (20)

Hence, we have

𝑚 (𝑥𝑢 − 𝑥𝑙 ) ≥ 𝑚𝑆 (𝑥𝑢 − 𝑥𝑙 ). (21)

Moreover, from (19) we have for all 𝑥 ∈ I:
` (𝑥) − ` (𝑙) ≥ 𝑚𝑆 (𝑥 − 𝑙) =⇒ ` (𝑥𝑙 ) ≥ ` (𝑙) +𝑚𝑆 (𝑥𝑙 − 𝑙),
` (𝑢) − ` (𝑥) ≥ 𝑚𝑆 (𝑢 − 𝑥) =⇒ ` (𝑥𝑢 ) ≤ ` (𝑢) −𝑚𝑆 (𝑢 − 𝑥𝑢 ).

(22)

Ultimately, we have

𝑑 − 𝑑 (18)
= ` (𝑥𝑢 ) − 𝑝 (𝑥𝑢 ) − (` (𝑥𝑙 ) − 𝑝 (𝑥𝑙 ))

Def. 3.1
= ` (𝑥𝑢 ) − (𝑚𝑥𝑢 + 𝑡) − (` (𝑥𝑙 ) − (𝑚𝑥𝑙 + 𝑡))
= ` (𝑥𝑢 ) − ` (𝑥𝑙 ) −𝑚 (𝑥𝑢 − 𝑥𝑙 )
(21)
≤ ` (𝑥𝑢 ) − ` (𝑥𝑙 ) −𝑚𝑆 (𝑥𝑢 − 𝑥𝑙 )
(22)
≤ ` (𝑢) −𝑚𝑆 (𝑢 − 𝑥𝑢 ) − (` (𝑙)+

𝑚𝑆 (𝑥𝑙 − 𝑙)) −𝑚𝑆 (𝑥𝑢 − 𝑥𝑙 )
= ` (𝑢) − ` (𝑙) −𝑚𝑆 (𝑢 − 𝑙)
(19)
= 2𝑑𝑆 .

(23)

Hence, we obtain the bound

𝑑 − 𝑑 ≤ 2𝑑𝑆 . (24)

2https://de.mathworks.com/products/deep-learning.html
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Thus,

𝐴( [𝑑, 𝑑],I) (8)= (𝑢 − 𝑙) (𝑑 − 𝑑)
(24)
≤ (𝑢 − 𝑙) 2𝑑𝑆
(8)
= 𝐴( [−𝑑𝑆 , 𝑑𝑆 ],I).

(25)

□

B.2 Section 4
Proposition 4.4 (Set-Based Backpropagation). Let Ŷ ⊂ R𝑛^

be an output set of a neural network with target 𝑡 ∈ R𝑛^ . The gradients
G𝑘 are computed in reverse order as

G^ =
𝜕𝐸 (𝑡, Ŷ)

𝜕Ŷ
,

G𝑘−1 =
{
𝑊 ⊤

𝑘
G𝑘 if 𝑘-th layer is linear,

diag(𝑚𝑘 ) G𝑘 otherwise,

for all 𝑘 ∈ {^, . . . , 1}. If the 𝑘-th layer is an activation layer, then
the vector𝑚𝑘 ∈ R𝑛𝑘 denotes the slopes of the linear approximations
(Alg. 2).

Proof. If 𝑘 = ^, we compute the gradient of the set-based loss
according to Prop. 4.3. We assume 𝑘 < ^. With an application of
the chain rule to (11), we obtain the following:

G𝑘−1(𝑖 ) =
𝜕𝐸 (𝑡, Ŷ)
𝜕H𝑘−1(𝑖 )

=

𝑛𝑘∑︁
𝑗=1

𝜕𝐸 (𝑡, Ŷ)
𝜕H𝑘 ( 𝑗 )

𝜕H𝑘 ( 𝑗 )
𝜕H𝑘−1(𝑖 )

=

𝑛𝑘∑︁
𝑗=1
G𝑘 ( 𝑗 )

𝜕H𝑘 ( 𝑗 )
𝜕H𝑘−1(𝑖 )

.
(26)

We split cases on the 𝑘-th layer type and simplify the terms.
Case (i). The 𝑘-th layer is a linear layer.

G𝑘−1(𝑖 ) =
𝑛𝑘∑︁
𝑗=1
G𝑘 ( 𝑗 )

𝜕H𝑘 ( 𝑗 )
𝜕H𝑘−1(𝑖 )

=

𝑛𝑘∑︁
𝑗=1
G𝑘 ( 𝑗 )

𝜕(𝑊𝑘 ( 𝑗,· ) H𝑘 + 𝑏𝑘−1( 𝑗 ) )
𝜕H𝑘−1(𝑖 )

=

𝑛𝑘∑︁
𝑗=1
G𝑘 ( 𝑗 )𝑊𝑘 ( 𝑗,𝑖 )

(27)

Thus, G𝑘−1 =𝑊 ⊤
𝑘
G𝑘 .

Case (ii). The 𝑘-th layer is an activation layer.

G𝑘−1(𝑖 ) =
𝑛𝑘∑︁
𝑗=1
G𝑘 ( 𝑗 )

𝜕H𝑘 ( 𝑗 )
𝜕H𝑘−1(𝑖 )

=

𝑛𝑘∑︁
𝑗=1
G𝑘 ( 𝑗 )

𝜕`𝑘 (H𝑘−1( 𝑗 ) )
𝜕H𝑘−1(𝑖 )

(12)≈ G𝑘 (𝑖 )𝑚𝑘 (𝑖 )

(28)

Thus, G𝑘−1 = diag(𝑚𝑘 ) G𝑘 .
□
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