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Abstract

5G networks have emerged as the only viable solution to render a satisfying level of per-
formance to various types of services relying on mobile communications, where each of
them has very challenging tra�c requirements. One of those services are ultra reliable
low-latency communications (URLLC), which are characterized by the stringent demand
to deliver packets within a very short time with a high reliability. A use case where these
services are especially sensitive are vehicular networks. Besides being successfully transmit-
ted/received, the data need to be processed as well. To satisfy these strict requirements,
both the required data rate and the processing rate need to be determined, given the
channel conditions and tra�c characteristics of the service. With constraints on both the
radio access network (RAN) and edge computing resources as well as with the competition
between an ever increasing number of users in cellular networks, a very important question
which arises is that of admission control. This guarantees users will not su↵er from dete-
riorating performance. Furthermore, after ensuring the availability of enough resources to
satisfy the tra�c requirements of the vehicular users, adequate resource allocation schemes
need to be devised in order to maximize the number of users that can be served by the
network. However, the time-varying nature of the channel conditions in wireless networks
renders this process challenging. In this thesis, first, using analytical modeling, admission
control policies for both homogenous and heterogenous sets of users are derived for a sce-
nario consisting of uplink communication and edge processing. The theoretical outcomes
are validated using simulations based on a 5G dataset. Results show that the number of
admitted users depends on the worst-case channel conditions, the deadline by which the
data must be processed, and the available resources. Next, the problem of jointly allo-
cating RAN and computing resources such that all the tra�c requirements of individual
users are met and the utility is maximized for di↵erent types of fairness is considered for
the same scenario. To this end, an optimization problem for the general case of ↵-fairness
is formulated and its characteristics are explored. The special cases no fairness (↵ = 0),
proportional fairness (↵ = 1), delay minimization (↵ = 2), and max-min fairness (↵ ! 1)
are then considered in more detail. For each of these problems, polynomial-time allocation
heuristics are proposed. Using data from real traces, it is shown that the performance
achieved with these approaches is not more than 7.11 % away from the optimum. Sub-
sequently, the performed analysis and the proposed algorithms are extended to a second
scenario, in which a downlink communication link is included as well. Evaluation results
show that the performance of the heuristics for this scenario is not more than 11.75 % away
from the optimum, while the average performance is significantly better (0.58 % across all
scenarios). Finally, the results achieved with this mobile edge computing (MEC) setup
are compared to an already existing cloud computing setup from an automotive original
equipment manufacturer (OEM).
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Kurzfassung

5G-Netze haben sich als die einzige praktikable Lösung erwiesen, um ein zufriedenstellen-
des Performanceniveau für verschiedene Arten von Diensten zu erreichen, die auf mobi-
ler Datenkommunikation basieren und jeweils sehr anspruchsvolle Anforderungen an den
Datenverkehr haben. Eine Art dieser Dienste sind Ultra reliable low-latency communi-
cations (URLLC, dt.: extrem zuverlässige Kommunikation mit geringer Latenzzeit), die
durch die strikte Anforderung charakterisiert sind, Datenpakete innerhalb einer sehr kur-
zen Zeit mit hoher Zuverlässigkeit zu übertragen. Ein Anwendungsfall, bei dem diese
Dienste besonders empfindlich sind, sind Fahrzeugnetze. Die Daten müssen nicht nur
erfolgreich übertragen/empfangen, sondern auch verarbeitet werden. Um diese strengen
Anforderungen zu erfüllen, müssen sowohl die erforderliche Datenrate als auch die Ver-
arbeitungsrate unter Berücksichtigung der Kanalbedingungen und der Datenverkehrsei-
genschaften des Dienstes bestimmt werden. Da sowohl die Radio access network (RAN,
dt: Funkzugangsnetz)- als auch die Edge-Computing-Ressourcen begrenzt sind und immer
mehr Nutzer in Mobilfunknetzen miteinander konkurrieren, stellt sich die wichtige Frage
nach einer geeigneten Zulassungskontrolle. Dadurch wird gewährleistet, dass die Nutzer
nicht unter einer Verschlechterung der Performance des Netzwerks leiden. Nachdem sicher-
gestellt ist, dass genügend Ressourcen zur Verfügung stehen um den Datenverkehrsanforde-
rungen der mobilen Nutzer gerecht zu werden, müssen geeignete Ressourcenallokationssche-
mata entwickelt werden, um die Anzahl der Nutzer, die vom Netz bedient werden können,
zu maximieren. Die zeitlich variierenden Kanalbedingungen in drahtlosen Netzwerken ma-
chen diesen Prozess jedoch zu einer Herausforderung. In dieser Arbeit werden zunächst
mithilfe analytischer Modellierung Zulassungskontrollstrategien für homogene und hetero-
gene Gruppen von Nutzern für ein Szenario entwickelt, das aus Uplink-Kommunikation und
Edge Processing besteht. Die theoretischen Ergebnisse werden anhand von Simulationen
auf der Grundlage eines 5G-Datensatzes validiert. Die Resultate zeigen, dass die Anzahl
der zugelassenen Nutzer von den schlechtesten Kanalbedingungen, der Latenzfrist, bis zu
der die Daten verarbeitet werden müssen, und den verfügbaren Ressourcen abhängt. Im
nächsten Schritt wird für dasselbe Szenario das Problem der gemeinsamen Zuweisung von
RAN- und Computing-Ressourcen betrachtet, so dass alle Datenverkehrsanforderungen der
einzelnen Nutzer erfüllt werden und der Nutzwert für verschiedene Arten von Fairness ma-
ximiert wird. Zu diesem Zweck wird ein Optimierungsproblem für den allgemeinen Fall
der ↵-Fairness formuliert und dessen Eigenschaften untersucht. Anschließend werden die
Spezialfälle keine Fairness (↵ = 0), proportionale Fairness (↵ = 1), Latenzminimierung
(↵ = 2) und Max-Min-Fairness (↵ ! 1) näher betrachtet. Für jedes dieser Probleme
werden Zuweisungsheuristiken vorgeschlagen, deren Zeitkomplexität polynomial ist. An-
hand von Daten aus realen Messungen wird gezeigt, dass die mit diesen Ansätzen erzielte
Performance nicht mehr als 7, 11 % vom Optimum entfernt ist. Anschließend werden die
durchgeführte Analyse und die vorgeschlagenen Algorithmen auf ein zweites Szenario aus-
gedehnt, bei dem auch eine Downlink-Kommunikationsverbindung einbezogen wird. Die
Evaluationsergebnisse zeigen, dass die Performance der Heuristiken für dieses Szenario
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nicht mehr als 11, 75 % vom Optimum entfernt ist, wobei die durchschnittliche Leistung
viel besser ist (0.58 % über alle Szenarien). Abschließend werden die mit diesem Mobile Ed-
ge Computing (MEC) Setup erzielten Ergebnisse mit einem bereits bestehenden zentralen
Cloud Computing Setup eines Automobilherstellers (OEM) verglichen.
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1 Introduction

In the 1980s, the first generation of mobile communication was developed and deployed.
Several incompatible analog technologies existed in parallel, which all provided voice calls
with poor reliability and almost no security. About 10 years later, specifications comprising
the second generation of mobile communication were designed. While there were multiple
technologies at the beginning, Global System for Mobile Communication (GSM) evolved as
the main used technology over the years. Since 2G systems relied on digital tra�c channels,
the transmission of digital data was enabled in addition to o↵ering voice calls. In the early
2000s, one of the biggest steps in the evolution of mobile communication happened. 3G
was the first technology for which a standard from the International Telecommunication
Union (ITU) was developed. With the deployment of 3G, much higher data rates could
be achieved, such that services like emailing, picture exchange, or web browsing could be
o↵ered. Additionally, the provided reliability and security of 3G technologies was better
than compared to the previous generation. In late 2009, the commercial operation of the
next generation of mobile communication, i.e., 4G, started. 4G is constituted by the Long
Term Evolution (LTE) technology, whose development started in late 2004. It was the
first technology that purely relied on IP packets. Compared to earlier generations, the
data rates and latencies provided by 4G systems improved again, which enabled applica-
tions like mobile video conferencing, gaming, and IP telephony. Finally, since the second
half of the 2010s, the fifth generation of mobile communication is available, but it is still
under development. Three main service types are provided by 5G networks: enhanced
mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra
reliable low-latency communications (URLLC). The services that are of mMTC type re-
quire support to serve a large number of devices and low energy consumption. Very high
data rates with a high spectral e�ciency are needed for eMBB. Lastly, URLLC services
require extremely low latencies and also support for high mobility. The outlined evolution
of mobile communication generations is summarized in Figure 1.1. [DPS20, Sta21]

1.1 Motivation

URLLC corresponds to applications like autonomous driving, remote surgery, and remote
monitoring and control [BDP18]. Their main requirements are to deliver packets with a
very high reliability within a short time (on the order of ms), which is quite challenging.
Furthermore, besides being transmitted, those data need to be processed as well. This

1
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Figure 1.1: Evolution of the mobile communication generations, cf. [Sta21].

emphasizes the di�culty of handling the data even further, as two types of limited resources
in the cell must be allocated, and the number of users competing for them is constantly
increasing. The two types of resources are the radio access network (RAN) resources
that enable the transmission/reception of information and edge computing resources for
processing the received data. Since the aforementioned URLLC services are not only
sensitive to abiding by those stringent requirements, but, given their nature, any failure
to comply may bring a serious risk to human lives, enabling their flawless operation is of
paramount importance.

Facilitating this impeccable functionality is particularly strenuous in cellular networks,
where the channel characteristics of users exhibit dynamic behavior over time due to mo-
bility and processes like shadowing [Gol05]. Therefore, to provide a given data rate and
processing rate that will satisfy the delay requirements of all users, first, a proper admis-
sion policy is needed to ensure the availability of enough resources for all users admitted
to the network. Secondly, suitable resource allocation schemes on two levels need to be
developed: on the RAN side for transmission, and on the analyst side (e.g., edge cloud)
for computing. In order to enable the service for as many users as possible, the resources
need to be allocated in an e�cient way. Furthermore, since the two types of resources
are interacting with each other, i.e., they both influence the experienced delay, they need
to be considered jointly during the allocation process. Using realistic assumptions, this
thesis displays an approach on designing admission policies suited for di↵erent types of ve-
hicular users as well as an approach on allocating RAN and computing resources in a fair
and e�cient way. The results that are presented are particularly interesting for network
operators, as they show how to increase the overall utility of their network. Moreover, the
results demonstrate new ways of enabling digital services for car manufacturers.
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1.2 Thesis Overview

1.2 Thesis Overview

In order to introduce admission control policies as well as resource allocation schemes for
vehicular users requesting URLLC services, this thesis is divided into 8 chapters. The
following part of chapter 1 shows the concrete structural layout and provides a summary
of the content.

Chapter 2: The second chapter presents the results of a literature research on admission
control policies and resource allocation schemes in 5G NR for URLLC. While there exists
previous work on both topics, no work pursuing the approaches presented in this thesis
or considering resources on both the communication and processing side under the given
assumptions was found.

Chapter 3: The third chapter is dedicated to a detailed introduction of the discussed
system model and the working principles of 5G NR. Additionally, assumptions made are
presented and related to known technical standards.

Chapter 4: In order to guarantee the availability of a su�cient amount of resources
to fulfill all tra�c requirements of users requesting URLLC services, admission control
policies for both homogenous and heterogenous sets of users are designed. By relaxing
some assumptions introduced previously, the analytic tractability of the derivations for the
admission policies is ensured. Before completing this chapter with a short summary of
the main aspects of the policies, the theoretical results are validated using simulations and
interesting insights in the performance of the admission control mechanisms are provided.

Chapter 5: In this chapter, a scenario in which vehicular users are sending service requests
to a base station (BS), where these requests are processed, is considered. To enable these
service inquiries, a joint allocation scheme providing ↵-fairness is developed. By relaxing
an integer-constraint on decision variables, the continuous allocation optimization problem
is shown to be convex and solvable in polynomial time. Next, using analyses regarding
the assignment of resources in the continuous case, approximation algorithms solving the
original integer problem are introduced, which are evaluated in the penultimate section of
this chapter. Concluding, the main steps of the allocation scheme development as well as
the key performance indicators are summarized.

Chapter 6: Following the same approach as in Chapter 5, the problem of jointly allocating
RAN and edge computing resources in a two-way communication scenario is tackled in this
chapter. After inserting the downlink communication parts into the optimization problem
introduced beforehand, the convexity and polynomial-time solvability of the continuous
optimization problem is again proven. Next, the adapted approximation algorithms are
outlined and a performance evaluation using simulations is once more conducted. Lastly,
the key aspects and results of this chapter are recapitulated in the last section.

Chapter 7: In the penultimate chapter of this work, real datasets from a centralized
cloud computing (CCC) server realized by an automotive original equipment manufac-

3



1 Introduction

turer (OEM) are analyzed. These datasets include information regarding the transmission
latency of packets from a vehicular user to the server as well as regarding the processing
rates of the cloud server. Using averaged results from the analysis, a comparison between
the developed mobile edge computing (MEC) system and the automotive OEM’s CCC
system is conducted.

Chapter 8: Finally, the main results of this thesis are summarized and prospects on
possible future works are illustrated.

4



2 Related Work

In order to be able to classify this thesis thematically, related work on the two main prob-
lems addressed in this thesis is discussed in the following. Thereby, first, the background
regarding the admission control problem is presented. In the second section, other scientific
work related to the problem of optimal RAN and edge computing resource allocation with
a fairness guarantee is outlined.

2.1 Admission Control

During the literature research on admission control policies, it became clear that most
work regarding this topic relates to admission control on the granularity level of network
slices, as can be observed from, e.g., [OF20] and [ON19]. Specifically, an admission and
congestion control policy for network slices in 5G, without specifying the type of service,
is for example considered in [HDD+18]. In [HNLF19] and [GMRLa20], the joint admission
of users with eMBB and URLLC tra�c is considered. However, the setup in both of them
is di↵erent to the setup in this work, since their goal is to maximize the number of eMBB
users that can be admitted, while achieving a maximum blocking probability for all URLLC
users or serving all URLLC users, respectively. The main di↵erence to the present work
stems from the already mentioned fact that in this thesis admission control is performed on
a granularity level of physical resource blocks (PRBs), while [HNLF19] and [GMRLa20]
consider network slices. Furthermore, as opposed to [HNLF19] and [GMRLa20], in this
thesis it is not assumed to have enough resources to serve all URLLC users. Finally, the
processing of the transmitted data is not considered [HNLF19] and [GMRLa20], while it is
taken into account in the existing work, which makes the present scenario more involved
as admission needs to be determined depending on two di↵erent network parts.

Admission control for users requiring a consistent data rate is considered in [ML19]. Two
scenarios, in which users are experiencing the same or di↵erent channel conditions are
considered. While the proposed policies show a good performance, the slot duration is
100 ms and hence not realistic. Interesting insights regarding the dependence of the number
of admitted users on the experienced channel variability of the users are provided, however,
neither a delay constraint nor the processing of data is taken into account, as a downlink
communication scenario, probably for eMBB, is considered. When it comes to mMTC
tra�c, which is characterized by the least stringent requirements, corresponding admission
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2 Related Work

policies were proposed in [ML21a] for the same scenarios as in [ML19]. Although a latency
requirement is taken into consideration in [ML21a], the processing of the transmitted data
is again not treated.

The work most similar in spirit to the present thesis is [ML21b], in which the admis-
sion control is performed for URLLC tra�c. Similar to the work presented in this thesis,
in [ML21b] the maximum number of users that can be admitted is determined for a ho-
mogenous set of users, whereas for a heterogenous set of users the policy for admitting a
newly arriving user is provided given its channel and tra�c characteristics. However, only
the transmission component of the latency is considered in [ML21b], and the processing of
the data is completely omitted, which constitutes the novelty of the present work.

2.2 Joint Network and Edge Cloud Resource Allocation

In [CLLW19], the authors consider a two-level network architecture comprising a lower-
level RAN with edge computing resources as well as an upper-level transport network with
central cloud computing resources. They investigate a network slicing process for the three
types of services in 5G and especially examine the partitioning ratios between the lower-
and upper-level resources for the service types. While they constrain their optimization
problem with a maximum delay requirement for the services, their objective is to minimize
an over-provisioning ratio defined as the ratio of the required delay divided by the actually
achieved delay. Moreover, since they consider slices as the unit of allocation, the granularity
of the units is much larger than in the present work. A paper that is concerned with uplink
communication of URLLC tra�c is [CVS20]. However, the authors do not formulate an
optimization problem and also do not consider the processing of the data; instead, two
protocols for connection-less transmission of URLLC tra�c are assessed.

Further, the work in [SIL+16] considers the optimal allocation of transmission attempts
and communication channels for URLLC tra�c in a cellular system. Two optimization
problems for the resource allocation are formulated: in the first scenario, the number
of transmission attempt assignments is fixed before starting the transmission, whereas it
is adaptive in the second scenario. While [SIL+16] is also concerned with reducing the
required resources, the setup and the objective are di↵erent from the present work, and
providing fairness is not one of the aims. To meet the latency and reliability requirements of
URLLC tra�c, the authors in [HEGS+18] propose a periodic resource allocation scheme.
While minimizing the needed network resources, i.e., choosing the best modulation and
coding scheme (MCS) when considering retransmissions and the latency and reliability
constraints, the scope of [HEGS+18] is limited due to the assumption of a factory environ-
ment, which implies that channel conditions are not changing over time. Furthermore, the
objective does again not include providing any sort of fairness.
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2.2 Joint Network and Edge Cloud Resource Allocation

In [ML22], three objectives similar to the present thesis are considered: maximize the total
throughput in the network, provide proportional fairness, and achieve max-min fairness.
However, there are some important di↵erences between this work and [ML22]. The primary
goal in [ML22] is to provide a given constant data rate to everyone and then reallocate the
unused resources to the users according to the respective fairness policies. Besides, while
the setup in this thesis is related to URLLC tra�c, the target of [ML22] are users with
eMBB tra�c. Satisfying the requirements of users with URLLC tra�c is more challenging.
Lastly, the authors of [ML22] only consider a one-dimensional allocation problem, as they
assume that the channel conditions are equal across all PRBs.

The authors of [YZR20] aim to provide long-term proportional fairness to eMBB users in
the downlink, while simultaneously fulfilling the delay and reliability demands of URLLC
users. Although they jointly consider eMBB and URLLC users, their resource allocation
scheme is in fact a two-step process. First, downlink RAN resources are allocated with
the objective of providing proportional fairness to the eMBB users. Next, the demands of
the URLLC users are considered and RAN resources are reallocated to fulfill the latency
demands of URLLC users. While the presented approach uses very strict assumptions
regarding the latency, it lacks realistic assumptions regarding the channel conditions, i.e.,
varying channel quality indicator (CQI) values across PRBs. Furthermore, only one type
of fairness, i.e., proportional fairness, is considered, and the processing of the data is not
included in the system model.

Finally, the authors of [DP19] analyze di↵erent questions on URLLC RAN resource alloca-
tion. While they define an optimization problem where the sum over users satisfying their
service level agreement (SLA) is maximized, they do not provide a solution to the problem
but just an analysis of its NP-hardness. Additionally, they cover the problem of deciding
whether a given set of users can be scheduled such that their SLAs are fulfilled. They
provide a feasible resource allocation in polynomial time. However, the given solution is
not optimal and per-PRB rates are either zero or a fixed number, which is a simplified
approach compared to the assumptions in this work.
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3 System Model

This chapter is dedicated to a general introduction of the system model that is contem-
plated in this work. Thereby, the di↵erent considered scenarios and types of resources are
explained in detail. Furthermore, necessary assumptions that are made when working on
the optimization problems are presented and related to well-known technical standards.

The possibility of network slicing in 5G NR, which introduced a paradigm shift in the oper-
ation of cellular networks, enables allocating dedicated network resources to users with the
same type of service, e.g., users requesting URLLC services that have the same reliability
and latency demands. Network slicing can be considered as creating logically independent
networks that serve distinct users or various use cases which are grouped by their charac-
teristics, e.g., the level of security that is needed to protect their tra�c [EJAGS19]. These
logical networks are, however, operated on the same physical networks [DPS20]. Over the
course of this work, it is assumed that all considered users are requesting similar services.
This implies that all users require the same service quality, meaning that they are assigned
to the same dedicated network slice.

Resource allocation in a network slice is performed in two dimensions, time and frequency.
In general, since release 17, 5G NR supports 7 di↵erent numerologies in 2 frequency
ranges [ETS22a, ETS22b]. A numerology defines the subcarrier spacing (SCS) and the
cyclic prefix length that is used for the transmission [DPS20]. In this thesis, it is assumed
that all users are situated in the coverage area of a 5G macro base station (gNodeB) and are
operating in the frequency range 1 (FR1), i.e., in the frequency range from 0.45�7.125 GHz.
In FR1, only the numerologies 0 to 2, i.e. SCSs of 15, 30, and 60 kHz, are applicable. As
the unit of allocation in the frequency domain, 5G NR uses PRBs. Independent of the
SCS, a PRB spans over 12 subcarriers. In the time domain, resource allocations are carried
out on a per-slot basis, where slots are grouped into frames with a length of 10 ms. The
slot duration, in turn, depends on the SCS and can be calculated as 1 ms/2µ, where µ is
the used numerology.

Two similar scenarios are covered in this thesis. In the first scenario, there are N vehicular
users simultaneously requesting a service by sending a packet to the BS via the uplink,
where each inquiry is processed. The set of all users is denoted by U . To enable the
communication, there are Ku PRBs available in the uplink RAN. The set of uplink PRBs
is denoted by Ku. Additionally, L edge computing resources, which can be virtual machines
for instance, are available for the receiving entity to process the information, where the
processing rates p of all edge computing resources are the same. For the second scenario,
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3 System Model

Channel Quality

(a) Uplink only scenario.

Channel Quality

(b) Uplink/downlink scenario.

Figure 3.1: Illustration of the system models.

there are again N users requesting a service, however, this time, the edge server that is
co-located with the BS is generating a response packet that is returned to each user via the
downlink. To this end, there are Kd PRBs available in the downlink RAN. Correspondingly,
the set of downlink PRBs is denoted by Kd. The two scenarios are depicted in Figure 3.1a
or Figure 3.1b, respectively. Especially note the bidirectional arrays in Figure 3.1b.

5G NR o↵ers three di↵erent duplex schemes to enable uplink and downlink communication
for the users. These are time-division duplex (TDD), frequency-division duplex (FDD),
and half-duplex frequency-division duplex (half-duplex FDD). TDD is characterized as the
transmission where uplink and downlink communication happen on the same frequency but
are separated in time. As opposed to that, the transmission in the FDD mode occurs at the
same time but is segregated in the frequency domain, meaning that di↵erent carriers are
used for the two links. Finally, half-duplex FDD is a mixture of the former two transmission
modes, i.e., the communication is separated in both time and frequency [DPS20].

It is assumed that the channel conditions in the uplink and downlink change over time, i.e.,
they vary from one frame to another. The reason for this assumption is the time-varying
nature of the channels that happens due to, e.g., interference, frequency-selective fading, or
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path loss, and the mobility of the vehicular users. However, it is assumed that the channels
are flat at a given time (frame), i.e., the channel conditions do not change during the frame.
Moreover, users experience di↵erent channel conditions, i.e., di↵erent CQI values, across
various PRBs even within the same frame. The CQI values are integers in the range from
1 to 15 [ETS22c] and depend on the signal-to-interference-plus-noise-ratio (SINR) that a
user experiences. The SINR is defined as

SINR =
Signal Power

Interference + Noise Power
(3.1)

and measured using special synchronization and reference signals. Depending on the CQI,
the type of modulation (QPSK, 16QAM, 64QAM, or 256QAM) and the code rate are
specified [ETS22c]. Given this information, the per-PRB data rate for a user can be
calculated. With the data rate given per PRB and per frame for every user, the scheduling
can now be performed across the two dimensions time and frequency.

Having in mind the previous assumptions on the varying channel conditions, it follows
that in every frame user i’s per-block rate can be modeled as a discrete random variable,
Ri 2 {r1, r2, ..., r15}, such that r1 < r2 < ... < r15. The corresponding probability mass
function (PMF) is denoted by ⇢Ri(rk), and is a function of user i’s SINR over time.

Since the focus of this work is set on URLLC tra�c, the procedure of sending and processing
the information must be executed within a maximum time Tmax and moreover must be
extremely reliable.1 If ti denotes the total delay user i is experiencing, the reliability is
described by

P (ti  Tmax) � 1 � ✏, 8i 2 U (3.2)

where ✏ denotes the outage probability that has a very small value. E.g., if the requirement
is a reliability of 99 %, the value of ✏ is 0.01. Note that there is also the propagation delay
contributing to the latency. Nevertheless, there are two reasons it is not considered here.
The first is that it cannot be a↵ected, and the second is that the propagation delays are
much lower than transmission and computing delays. Therefore, it is assumed that the
transmission and computation times comprise the latency. In order to fulfill this strict
requirement on reliability and latency, at least one PRB (both in the uplink and downlink)
and one edge computing resource must be assigned to every user, as otherwise the delay
constraint cannot be fulfilled. Naturally, a PRB and also a computing resource can only
be allocated to one user and the resource can either be fully allocated or unassigned.

Finally, it is assumed that the users’ packets are generated periodically on a per frame
basis. The corresponding uplink and downlink data sizes �{u,d},i can vary from one user
to another, such that users have the ability to request di↵erent services but with the same
service quality. As URLLC tra�c packets are small [NORDS+20], and not too many of
them are transmitted simultaneously, it is assumed that the data generated at once is
transmitted with the same rate.
1
In practice, this latency is in the order of milliseconds, with the reliability requirement usually being

above 99 %.
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4 Admission Control for Uplink
Communication with Edge Processing

Before addressing the problem of optimal resource allocation, it first needs to be determined
whether all users requesting a service can actually be handled by the network, i.e., it needs
to be decided whether enough resources are available to provide the desired quality of
service (QoS) to each user. In this chapter, two admission policies are developed for the
scenario of uplink communication with edge processing of the received data. To this end, in
the primal section of this chapter, assumptions that are only valid for the scope of admission
control are introduced to allow for an analytic tractability of the subsequent derivations.
In the following two sections, the first policy, which is applicable to a homogenous set of
users, i.e., users experiencing the same channel conditions, as well as the second policy,
which is designed for a heterogenous set of users, i.e., users with various channel conditions,
is presented. The chapter is finalized with a performance evaluation and a short summary
of the admission control policies.

The analyses and results of this chapter were submitted to NOMS 2023 - 36th IEEE/IFIP
Network Operations and Management Symposium [MHK22].

4.1 Tractability Assumptions

For analytical tractability, simplifying assumptions are made in this chapter compared
to the system model introduced in Chapter 3. Namely, it is assumed that the BS splits
the transmission power equally among all PRBs it transmits on, and that the channel
characteristics for a user remain static across all PRBs (identical CQI values over all PRBs
for a given user). The CQI values are still assumed to change randomly (according to
some distribution) from one frame to another and are mutually independent among users.
These assumptions reduce the RAN allocation to the number of allocated PRBs such that
it is irrelevant which PRBs are assigned to a user. Furthermore, it is assumed that the
packet sizes are identical, i.e., �u,i = �u. Hence, if a user receives bu,i uplink PRBs and
mi processing resources, the delay it experiences is calculated as

ti =
�u

bu,iRi
+

�u

mip
. (4.1)
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4 Admission Control for Uplink Communication with Edge Processing

4.2 Admission Policy for Homogenous Sets of Users

In this section, first, an analytical admission control approach for homogenous users is
presented. The general idea is to derive the maximum number of users by equally sharing
all resources among them. This approach will, however, lead to a policy that is physically
impossible. By altering the approach, a valid admission policy is derived, which is not
analytically tractable though. Hence, finally, another approach which is based on an al-
gorithm employing binary search and the optimal trade-o↵ between RAN and processing
resources is developed. Recall that the homogeneity implies that all users are experiencing
the same channel conditions, i.e., their per-block rates follow the same distribution, which
is denoted by the random variable Ri as introduced in Chapter 3. This means that the
random variable Ri is not dependent on user i in the scenario considered here.

4.2.1 Equal-Share Approach

When pursuing the equal-share approach, the number of PRBs an admitted user receives is
Ku
N . Similarly, every user will receive L

N edge computing resources. The maximum number
of users that can be admitted in the cell in this way is determined as follows:

Substituting the aforementioned facts into (4.1) and (3.2) and rearranging this equation
leads to

P
✓

1

Ri


KuTmax

N�u
�

Ku

Lp

◆
� 1 � ✏. (4.2)

The left-hand side of (4.2) is the cumulative distribution function (CDF) of the inverse of
the per-PRB rate at point KuTmax

N�u
�

Ku
Lp . Hence,

F 1
Ri

✓
KuTmax

N�u
�

Ku

Lp

◆
� 1 � ✏ (4.3)

must hold. As the CDF is a monotonously increasing function, (4.3) yields

KuTmax

N�u
�

Ku

Lp
� F�1

1
Ri

(1 � ✏), (4.4)

where F�1
1
Ri

(1 � ✏) is the inverse of the CDF at point 1 � ✏. Lastly, using simple algebraic

operations, the upper bound

N 
KuTmax

�u
·

1

F�1
1
Ri

(1 � ✏) + Ku
Lp

, (4.5)

or equivalently,

Nmax =
KuTmax

�u
·

1

F�1
1
Ri

(1 � ✏) + Ku
Lp

(4.6)

is obtained.
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Figure 4.1: Maximum number of users that can be admitted in the cell depending on the
data size �u for di↵erent types of sets of homogenous users.

Next, by evaluating the above admission policy in an example scenario, it is described why
the above result is physically impossible, i.e., it is not correct. For a subcarrier spacing of
30 kHz, the maximum number of available PRBs is Ku = 273 [ETS22a]. The number of
processing units on the edge cloud is assumed to be L = 500, with each processing unit
providing a processing rate of p = 1 Mbps. The maximum allowed latency is Tmax = 5 ms.
Di↵erent packet sizes �u are considered simultaneously. Figure 4.1 illustrates the maximum
number of users that can be admitted for this type of URLLC tra�c vs. the data size for
three di↵erent types of users. The users are characterized by their experienced channel
characteristics given in Table 4.1, which describes the probabilities of experiencing a specific
data rate for six di↵erent users.

What can be observed from Figure 4.1 is the fact that when all the users of type 4 transmit
regularly (periodically) data of size �u = 1 kbit, a total of 430 users can be admitted in
the cell. However, this stands in contradiction to the maximum number of available PRBs,
which is (only) 273. As the granularity level in resource allocation in 5G NR is the PRB
per slot, the maximum number of simultaneously transmitting users in this scenario could
only be 273, not 430 as implied by (4.6). The reason for this contradiction stems from
the fact that with the above approach a user can receive a non-integer number of PRBs
or processing units, i.e., Ku

N and L
N , respectively. This would lead to a user receiving an

amount of PRBs lower than 1, e.g., 0.7, especially in case there are users with good channel
conditions and a low amount of submitted data. This, for apparent reasons, is infeasible.

The correct way of writing the amount of uplink PRBs a user receives, if there are in total
N users, would be

⌅
Ku
N

⇧
, whereas the number of processing units in the edge cloud would
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Table 4.1: CQI values, per-PRB rates and the corresponding probabilities for six users from
the Republic of Ireland trace [RLSQ20, ML22]
CQI 1 2 3 4 5 6 7 8

R (kbps) 48 73.6 121.8 192.2 282 378 474.2 712
⇢R1(rk) 0 0.1 0.72 0.04 0.05 0.09 0 0
⇢R2(rk) 0 0 0.2 0.7 0.1 0 0 0
⇢R3(rk) 0 0 0 0 0.01 0.12 0.51 0.32
⇢R4(rk) 0 0 0 0 0 0.01 0.98 0.01
⇢R5(rk) 0.24 0.04 0.07 0.04 0.04 0.06 0.16 0.15
⇢R6(rk) 0.18 0.11 0.1 0.06 0.05 0.1 0.17 0.11

CQI 9 10 11 12 13 14 15
R (kbps) 772.2 874.8 1063.8 1249.6 1448.4 1640.6 1778.4
⇢R1(rk) 0 0 0 0 0 0 0
⇢R2(rk) 0 0 0 0 0 0 0
⇢R3(rk) 0.01 0.01 0.02 0 0 0 0
⇢R4(rk) 0 0 0 0 0 0 0
⇢R5(rk) 0.01 0.01 0.06 0.06 0 0.03 0.03
⇢R6(rk) 0.02 0.04 0 0.03 0 0.02 0.01

be
⌅
L
N

⇧
. Combining (3.2) and (4.1) would then result in

P
 

�u⌅
Ku
N

⇧
Ri

+
�u⌅
L
N

⇧
p
 Tmax

!
� 1 � ✏. (4.7)

Note that
⌅
Ku
N

⇧
6= Ku

⌅
1
N

⇧
. Hence, solving inequality (4.7) is not analytically tractable.

Given the previous reasoning, in the subsequent subsection, a di↵erent approach in deter-
mining the maximum number of URLLC users that can be admitted in the cell, while taking
into account the two types of resources (uplink RAN and processing units), is followed.

4.2.2 Trade-o↵ between Network and Processing Resources

In this section, the optimal trade-o↵ between the number of PRBs and processing units
that need to be allocated to a user, such that the number of admitted homogenous users is
maximized, is determined. In order to derive the admission policy for a reliability of 1� ✏,
first, a result for the strictest possible reliability, i.e. 100 %, is deduced.

The number of PRBs user i will receive is denoted as bu,i and mi stands for the number
of allocated computing resources. Since the set of users is assumed to be homogenous in
this section, bu,i and mi will be the same for every user i. It holds that

P
i bu,i  Ku andP

i mi  L. In order to derive a continuous trade-o↵ feasibility border and to admit as
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many users as possible, let bu,i and mi be continuous variables and set the delay every user
is experiencing to Tmax. As the reliability requirement is 100 %, the following equation can
be stated:

�u

bu,iRi
+

�u

mip
= Tmax. (4.8)

Further, since (4.8) must always be satisfied, it needs to be considered for the worst-case
scenario in terms of the channel conditions, i.e., when the user experiences the lowest per-
PRB rate, because in that case the user needs the largest amount of resources to meet the
latency requirement.

Let rmin,i = mink {rk|⇢Ri(rk) > 0, k 2 {1, . . . , 15}} denote the lowest possible per-PRB rate
for user i, where rk corresponds to the data rates given in Table 4.1 for the specific CQI
values k. Again, rmin,i is the same for every user i. Using the introduced worst-case
scenario data rate of a user, (4.8) transforms into

�u

bu,irmin,i
+

�u

mip
= Tmax. (4.9)

From (4.9), the amount of needed computation resources as a function of the number of
assigned PRBs can be expressed as

mi =
1

p
⇤

1
Tmax
�u

�
1

bu,irmin,i

(4.10)

by dividing by �u, subtracting the transmission delay, multiplying by p, and then inverting
both sides of the equation. Since mi > 0, from (4.10), it must hold that Tmax

�u
> 1

bu,irmin,i
,

resulting in

bu,i >
�u

rmin,iTmax
. (4.11)

Following the same reasoning for mi, from (4.9), it must hold that Tmax
�u

> 1
mip

, leading to

mi >
�u

pTmax
. (4.12)

Until now, the infima of the amount of RAN
⇣

�u
rmin,iTmax

⌘
and edge computing

⇣
�u

pTmax

⌘

resources that are needed were determined. Apparently, to satisfy the latency constraint,
there are multiple combinations of (bu,i,mi) possible. Providing more RAN resources (re-
ducing the transmission delay) will compensate for the allocation of fewer computing re-
sources (higher processing delay). Thus, the question that arises is, what is the optimal
combination of (bu,i,mi) that will enable admitting the highest number of URLLC users?
To answer this question, first, the dependency of mi on bu,i must be understood. To that
end, the first derivative of mi(bu,i) from (4.10) is calculated as

mi
0(bu,i) =

�1

prmin,ib2u,i
⇤

1
⇣

Tmax
�u

�
1

bu,irmin,i

⌘2 < 0, (4.13)

17



4 Admission Control for Uplink Communication with Edge Processing

bu,i

mi

L

Ku�u
rmin,iTmax

�u
pTmax

Pareto Frontier

Feasible Region

Figure 4.2: The general shape of the Pareto frontier and the feasible region for the amount
of needed PRBs and processing units in the edge cloud so that the latency
requirement is met with a reliability of 100 %. Note the dependence of the
Pareto frontier on the worst-case channel conditions (rmin,i).

implying that mi is a monotonous decreasing function in bu,i. For the second derivative,

mi
00(bu,i) =

1
⇣

Tmax
�u

�
1

bu,irmin,i

⌘2 ⇤
2

prmin,ib3u,i
+

�1

prmin,ib2u,i
⇤

�2
⇣

Tmax
�u

�
1

bu,irmin,i

⌘3

rmin,ib2u,i

=
2

prmin,i

⇣
Tmaxbu,i

�u
�

1
rmin,i

⌘3

✓
Tmax

�u
�

1

bu,irmin,i
+

1

bu,irmin,i

◆

=
2Tmax

p�urmin,i
⇤

1
⇣

Tmaxbu,i
�u

�
1

rmin,i

⌘3

(4.14)

is obtained, which is always greater than zero due to (4.11). Thus, (4.14) implies the fact
that mi is a convex function in bu,i.

Taking into account (4.10)-(4.12), the general shape of the dependency between mi and bu,i
for a given rmin,i is derived. The feasible region of the values for the ordered pair (bu,i,mi)
is shown in Figure 4.2. Having this in mind, the optimal combination can be found along
the curve shown in Figure 4.2. This is the well-known Pareto frontier [BV04].

Note: In Figure 4.2, the general “continuous” Pareto frontier is shown to illustrate the
dependency of mi on bu,i. In practice, the curve would be a discrete function where the
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values of mi would have to be rounded up such that the delay constraint is fulfilled.
However, the shape of the frontier would not change.

The convexity of mi(bu,i) provides an interesting insight. Namely, reducing the value
of bu,i implies a higher incline in mi, and vice versa (the increasing return property of
convex functions, the opposite of the diminishing return property encountered in concave
functions). Because of this observation, the need arises to choose the point on the Pareto
frontier as the solution to the allocation problem, where both the RAN and edge computing
resources are su�cient to satisfy the tra�c demands of the largest possible number of users.

The final question that needs to be answered now is: What is the optimal choice on the
Pareto frontier? Denote by (bu,0,m0) any ordered set of points on the Pareto frontier. For
any such point, the maximum number of users that can be admitted if considering only

the amount of needed RAN resources bu,0 would be
j

Ku
bu,0

k
. In case the number of users

is determined based solely on the number of processing resources, its maximum number

would be
j

L
m0

k
. Therefore, for a given point (bu,0,m0) on the Pareto frontier, if both

resources are considered, the maximum number of users that can be admitted is

Nmax(bu,0,m0) =

�
min

✓
Ku

bu,0
,
L

m0

◆⌫
. (4.15)

When looking over the entire possible set of ordered pairs (bu,0,m0), the following result
for the maximum number of admitted users in the cell can be stated:

Result 1. Given a BS with Ku uplink PRBs and L edge computing resources (with a
processing rate of p per computing resource), users with URLLC tra�c that should never
experience a latency higher than Tmax, i.e., with a joint delivery and processing reliability
of 100 %, whose worst-case per-PRB rate is rmin,i, and who transmit packets with a total
data size �u, the maximum number of users that can be admitted in the cell is given as

Nmax = max
bu,0,m0

⇢�
min

✓
Ku

bu,0
,
L

m0

◆⌫�
, (4.16)

where the ordered set (bu,0,m0) satisfies the inequality

�u

bu,0rmin,i
+

�u

m0p
 Tmax. (4.17)

The interesting thing to observe from Result 1 is that with this approach for all the users
with the same lowest possible CQI, the amount of resources needed is the same, i.e.,
this approach is valid not only for users with identical per-PRB rate distributions, but
for all users with the same lowest CQI. Said di↵erently, the approach is oblivious to the
entire channel condition statistics. Apparently, the higher the rmin,i that all users are
experiencing, the higher the number of admitted users.
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4 Admission Control for Uplink Communication with Edge Processing

4.2.3 Admission Control with General Reliability

For a reliability lower than 100 % and homogenous users, the constraint (3.2) that needs
to be fulfilled for every user i reads as

P
✓

�u

bu,irmin,i
+

�u

mip
 Tmax

◆
� 1 � ✏, 8i 2 U , (4.18)

where bu,i and mi are integers. Note that bu,i, rmin,i, and mi are still the same for all
users i. Obviously, relaxing the reliability requirement should lead to an increased number
of admitted users. However, determining that number is not feasible via a closed-form
expression. Instead, a rather di↵erent approach based on an algorithm employing binary
search is used.

W.l.o.g., it is assumed that all per-PRB rates are possible, i.e., ⇢Ri(rk) > 0, 8k 2 {1, ..., 15}.
Then, in a given setup, for the data rate rk from Table 4.1 that is the worst possible per-
PRB rate, i.e., rmin,i = rk, the maximum number of admitted users is found using (4.16)
when ✏ = 0. This number is denoted as N(rmin,i). Note that this number is a lower bound,
as relaxing the reliability to ✏ > 0 enables more users to be admitted in the cell.

Next, the “minimum” possible per-PRB rate is increased to the next possible value and
denoted as r+

min,i, e.g., if rmin,i = r6, then r+
min,i = r7. For the latter value, using (4.16),

the corresponding maximum number of users that can be admitted for ✏ = 0 is obtained.
This number is the new reference value, corresponding to the integer allocations b+u,i and
m+

i . As this new reference value was planned for better channel conditions, but with strict
reliability of 100 %, it is checked whether this new number of users, which is denoted as
N(r+

min,i), can be admitted in the cell such that their latency is satisfied with a reliability
of 1 � ✏. It must hold that

P
 

1

b+u,irmin,i
+

1

m+
i p


Tmax

�u

!
� 1 � ✏. (4.19)

If the previous condition is satisfied, then r+
min,i is increased to the next higher per-PRB

rate, and using (4.16) the new b+u,i and m+
i , as well as the new N(r+

min,i), are found.
Afterwards, it is once more checked if the updated condition (4.19) is satisfied. If it holds,
the procedure continues until the corresponding (4.19) is not fulfilled for the first time.

When the latter is the case, then it is known that this number of users cannot be admitted.
Nevertheless, it is also known that it is possible to admit the number of users corresponding
to the previous r+

min,i for ✏. Hence, an upper and a lower bound on the maximum number of
users that can be admitted were determined. Therefore, the binary search algorithm [GG07]
can be employed to find the largest possible number Nmax(rmin,i, ✏) between N(rmin,i) and
N(r+

min,i). For every iteration of the binary search, using (4.19), it is checked whether the
“new” number of users can be admitted to the network. If yes, the upper interval is taken
as the new range, while the lower interval is correspondingly taken over as the new range
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4.2 Admission Policy for Homogenous Sets of Users

Algorithm 1 Admission Policy Providing General Reliability for Homogenous Users
Input: rmin,i, Ku, L, p, Tmax, �u, ✏
Output: Nmax(rmin,i, ✏), bu,i 2 N, mi 2 N
1: function GenRelAdmission(rmin,i, Ku, L, p, Tmax, �u, ✏)

2: Calculate N(rmin,i) = max
bu,i,mi

nj
min

⇣
Ku
bu,i

, L
mi

⌘ko
s.t. 1

bu,irmin,i
+ 1

mip


Tmax
�u

.

3: Note bu,i and mi.
4: Set r+

min,i to rk where k = j + 1 if rmin,i = rj.

5: Calculate N(r+
min,i) = max

b+u,i,m
+
i

nj
min

⇣
Ku

b+u,i
, L
m+

i

⌘ko
s.t. 1

b+u,ir
+
min,i

+ 1
m+

i p


Tmax
�u

.

6: Note b+u,i and m+
i .

7: while P
⇣

1
b+u,irmin,i

+ 1
m+

i p


Tmax
�u

⌘
� 1 � ✏ and r+

min,i < r15 do

8: Set N(rmin,i) = N(r+
min,i), bu,i = b+u,i, and mi = m+

i .
9: Increase r+

min,i to the next higher rk, i.e., set k = k + 1.

10: Calculate N(r+
min,i) = max

b+u,i,m
+
i

nj
min

⇣
Ku

b+u,i
, L
m+

i

⌘ko
s.t. 1

b+u,ir
+
min,i

+ 1
m+

i p


Tmax
�u

.

11: Note b+u,i and m+
i .

12: end while

13: while N(r+
min,i) �N(rmin,i) > 1 do

14: Set btu,i =

66664 Ku

N(rmin,i)+

$
N(r+min,i)�N(rmin,i)

2

%

77775, mt
i =

66664 L

N(rmin,i)+

$
N(r+min,i)�N(rmin,i)

2

%

77775.

15: if P
⇣

1
btu,irmin,i

+ 1
mt

ip


Tmax
�u

⌘
� 1 � ✏ then

16: Set N(rmin,i) = N(rmin,i) +
j
N(r+min,i)�N(rmin,i)

2

k
, bu,i = btu,i, and mi = mt

i.

17: else

18: Set N(r+
min,i) = N(rmin,i) +

j
N(r+min,i)�N(rmin,i)

2

k
.

19: end if

20: end while

21: return Nmax(rmin,i, ✏) = N(rmin,i), bu,i, mi

22: end function

if the condition was not fulfilled. This procedure is repeated until the largest number of
users which satisfies (4.19) is found.

The described method is summarized in Algorithm 1. Note that since the binary search is
used when performing the search, at most 15+

⌅
log2(N(r+

min,i) �N(rmin,i) + 1)
⇧

evaluations
are performed when applying the algorithm.
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4 Admission Control for Uplink Communication with Edge Processing

4.3 Admission Policy for Heterogenous Sets of Users

When it comes to a set of users with heterogenous conditions, a simple admission policy for
a newly arriving user that is valid for any ✏ is provided. The first step is to check whether
the newly arriving user and the current N � 1 users receiving service satisfy the inequality
(heterogenous users have di↵erent rmin,i)

NX

i=1

1

rmin,i
 Ku

✓
Tmax

�u
�

1

bL/Nc p

◆
. (4.20)

If that is the case, then the new user can be admitted. Condition (4.20) is obtained by
combining the latency equation (4.1) and

PN
i=1 bu,i  Ku while assuming an equal share

of computing resources. Solving the latency equation for bu,i results in

bu,i =
1

Ri

⇣
ti

�u
�

1
mip

⌘ . (4.21)

Plugging in Tmax for ti, the equal share of computing resources, i.e., mi = bL/Nc, and
assuming every user is experiencing its worst possible data rate gives

bu,i =
1

rmin,i

⇣
Tmax
�u

�
1

bL/Ncp

⌘ . (4.22)

Lastly, plugging in (4.22) into
PN

i=1 bu,i  Ku and multiplying the inequality by the term
in brackets in (4.22) leads to (4.20).

Condition (4.20) pertains to the case of ✏ = 0. Essentially, if there are enough resources
for the newly arriving user to be admitted for the most restrictive case, i.e., ✏ = 0, the user
can be admitted for any other lower reliability, i.e., higher ✏. If user N has a high rmin,N ,
it would lead to a lower left-hand side of (4.20), and thus to a higher chance for the user
to be admitted.

If (4.20) does not hold, it needs to be checked with what probability the worst-case scenario
occurs, i.e., what is the probability that all the users will have their lowest corresponding
per-PRB rates rmin,i simultaneously. That probability is calculated as

QN
i=1 ⇢Ri(rmin,i), and

if it is lower than the outage, i.e., if
QN

i=1 ⇢Ri(rmin,i)  ✏, it means that the planning can
be done not for the worst-case per-PRB rate, but for higher rates, which in turn implies
that fewer resources are needed for a user. This means that there are enough resources for
user N to be admitted.

Summarizing, the following admission policy for heterogenous users can be stated:
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4.4 Performance Evaluation

Result 2. Given a set of N � 1 users with URLLC tra�c in the cell, whose worst-case
per-PRB rates are rmin,i, i = 1, ..., N � 1, and a reliability requirement of 1� ✏, a su�cient
condition for a new user with worst-case per-PRB rate rmin,N to be admitted is if one of
the following holds:

NX

i=1

1

rmin,i
 Ku

✓
Tmax

�u
�

1

bL/Nc p

◆
, or (4.23)

NY

i=1

⇢Ri(rmin,i)  ✏. (4.24)

4.4 Performance Evaluation

After introducing the simulation setup for the subsequent evaluations, first the theoreti-
cal results for 100 % reliability regarding homogenous sets of users are validated. Then,
examinations on scenarios with ✏ > 0 and homogenous sets of users as well as on heteroge-
nous sets of users are conducted. Finally, the performance of the admission control for
homogenous sets of users is compared to other policies.

4.4.1 Simulation Setup

A 5G trace with data measured in the Republic of Ireland was used as input to the
simulations. These traces are described in detail in [RLSQ20], and a statistical analysis
is given in [ML21c]. The parameter of interest from the trace is the CQI with 15 levels,
which serves to determine the experienced rate of a user in a frame. The measurements
were conducted for one user, but at di↵erent days, for di↵erent applications, and when
the user was static or moving around. To mimic the dynamic nature of the users from
the simulation, only measurements where the user was moving were picked. Six di↵erent
measurements were selected to mimic six di↵erent users for the subsequent simulations.
Based on the frequency of occurrence of a per-PRB rate for every user, the corresponding
per-PRB rate probabilities were obtained. They are given in Table 4.1.

Since the subcarrier spacing is assumed to be 30 kHz, the slot duration is 0.5 ms. Given
that a block consists of 12 subcarriers, the PRB width is then 360 kHz. The total number of
PRBs is Ku = 273 [ETS22a], whereas the total number of computing resources is L = 500,
where the processing rate per resource is p = 1 Mbps. The simulations were conducted in
MATLAB R2021b.
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4 Admission Control for Uplink Communication with Edge Processing

4.4.2 Validation of the Theoretical Result for Homogenous User Sets

First, the theoretical result for the maximum number of users from a homogenous set that
can be admitted in the cell is validated (4.16). The reliability requirement is 100 %. Three
types of users from Table 4.1 are considered: type 1, 3, and 5. The latency requirement is
set to Tmax = 5 ms. To obtain simulation results, the number of users is increased one by
one until there is a packet that is not sent and processed within the deadline. In case this
happens, the last number of users for which all packets were handled within the maximum
latency is taken as the maximum number that can be served by the network. Figure 4.3a
shows the results vs. the size of the data that is transmitted at once. The first thing which
can be noticed is the perfect match between the simulation and the theoretical results,
which corroborates the validity of the analytical approach. The second observation is the
decline in the admissions as the data size increases. This is to be expected as it would take
more resources to deliver and process more data during the same time. The third outcome
of the simulations is the higher number of type 3 users that can be admitted. The reason
lies in the best worst-case channel conditions of user type 3. Namely, for user type 3, the
worst per-PRB rate is r5, as opposed to r2 and r1 for user types 1 and 5, respectively.

Next, the presented theoretical result is validated as a function of the maximum allowed
latency (Tmax). The reliability is again 100 %, i.e., ✏ = 0. The simulation is executed in the
same way as in the previous scenario. To introduce diversity, now, results for user types 2,
4, and 6 from Table 4.1 are shown. The data size is fixed to be 5 kbit. Figure 4.3b depicts
the results. Again, there is a perfect match between theory and the simulations. At least
100 % more type 4 users can be admitted because the worst-case channel conditions for
user type 4 (their lowest CQI is 6) are better than for the other two user types, which
experience the worst CQI values of 3 and 1. While it is expected that relaxing the latency
would always allow for a higher number of admitted users, this is not always the case.
This happens for cases in which the latency requirement is already quite loose. The reason
for this behavior is the unavailability of enough resources to fulfill the delay constraint for
all users. Although the latency requirement is relaxed, the delay constraint could only be
fulfilled if fractions of resources could be assigned to the users. Since this is not possible
in reality, the loosened latency requirement sometimes has no influence on the number of
users that can be admitted.

4.4.3 Studies on Outage Probabilities and Heterogenous User Sets

The results constituted so far pertain to the case of 100 % reliability. Next, the impact
of reduced reliability on the number of admitted users is investigated for the case of a
homogenous set of users. To that end, the user types 1, 3, and 5 are considered. The size
of the data is �u = 5 kbit, whereas the allowed latency is Tmax = 5 ms. Figure 4.4 depicts
the results for di↵erent outages ✏. What can be observed first is the higher number of
type 3 users that can be admitted for the same reasons as in the scenario corresponding to
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4.4 Performance Evaluation

(a) Tmax = 5 ms. (b) �u = 5 kbit.

Figure 4.3: The maximum number of users that can be admitted for 100 % reliability and
varying data size/delay constraint.

Figure 4.3a. The second observation, which is rather surprising, is that the number of users
that can be admitted does not increase drastically with the outage ✏. This is completely
di↵erent from the case when only the RAN limitations are considered when deciding on
how many users can be admitted [ML21b]. The rationale behind this stems from the large
number of users receiving service. Namely, for large N , bKu/Nc = bKu/(N + 1)c, and
only where a shift down by 1 occurs, there is a jump in Nmax.

Having considered the case of a homogenous set of users until now, subsequently, the
performance of the admission policy for a heterogenous user set is evaluated. As there is
not a high dependency on the number of admitted users on ✏, the case of 100 % reliability
is considered. The setup for deciding whether or not a URLLC user is admitted after some
other users are already present in the cell is described as follows: Users of types 1-5 are
already present in the cell, and it is decided whether a user of type 6 can be admitted. In
all the following scenarios there are three type 1, three type 2 and three type 3 users, as
well as two users of type 4 and type 5 already present. In total, there are 13 users present
before the arrival of the user of type 6. Five di↵erent scenarios are considered in terms of
�u and Tmax:

• Scenario A: �u = 1 kbit, Tmax = 5 ms

• Scenario B: �u = 2 kbit, Tmax = 4 ms

• Scenario C: �u = 3 kbit, Tmax = 3 ms

• Scenario D: �u = 4 kbit, Tmax = 3 ms

• Scenario E: �u = 4 kbit, Tmax = 2 ms

Figure 4.5 shows the results. On the y-axis, the ratio of the LHS and RHS of (4.20) is
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4 Admission Control for Uplink Communication with Edge Processing

Figure 4.4: The maximum number of users
that can be admitted for di↵er-
ent reliabilities for �u = 5 kbit
and Tmax = 5 ms.

Figure 4.5: The decision whether to admit a
newly arriving user of type 6 for
di↵erent combinations of Tmax

and �u, when ✏ = 0 (heteroge-
nous user set).

depicted. As long as this ratio is smaller than 1, the user of type 6 can be admitted in the
cell. Note that for ✏ = 0 condition (4.24) is never satisfied, so for a user to be admitted
(4.23) must hold. As can be observed from Figure 4.5, in Sc. A-D the user of type 6 is
always admitted. The reason is that in these cases the maximum latency is not lower than
3 ms, or the packet size is not large enough, or both requirements are not too restrictive.
However, in Sc. E, both the data size is large and the latency is low. Hence, the resources
are not su�cient to admit the user of type 6.

4.4.4 Performance Comparisons

In the last subsection, the developed approach of jointly allocating RAN and computing
resources is compared to the approach in which the number of admitted users is decided
separately for RAN and edge cloud resources. The user of interest is of type 1, and Tmax =
5 ms. Three “separate” approaches are considered. In the first, up to 50 % of the latency
can be experienced during the transmission, while the other 50 % can be encountered
during the processing. In the second approach, up to 30 % of the time can be dedicated to
transmission and the remaining time to the processing. Vice versa, for the third type, up
to 70 % of the time can be spent on transmission and 30 % on processing. For the separate
allocation approach, the maximum number of users that can be admitted with regard to the
RAN or computing resources, respectively, are determined. Then, the minimum of those
two numbers is taken as the number of users that can be served. For all scenarios, the
reliability is 100 %. Figure 4.6a shows the results as a function of the data size transmitted
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4.5 Summary

(a) Users are of type 1, Tmax = 5 ms. (b) Users are of of type 2, �u = 3 kbit.

Figure 4.6: The number of users that can be admitted with the new joint approach and
when splitting Tmax strictly between transmission and processing for varying
data size/delay constraint.

at once. As can be observed, the number of admitted users is the highest with the new
joint approach, outperforming the others by at least 30 %. The reason is that one resource
can compensate for the other, which is not possible with the separate approaches. The
second thing to observe is that from the separate approaches 70 � 30 performs the best.
The rationale behind this is that there are more computing than RAN resources (L = 500
vs. Ku = 273). Therefore, the less restricted requirement on the transmission time (higher
respective Tmax) enables admitting more users.

Finally, the three aforementioned “separate” approaches are compared with the newly
introduced joint approach for di↵erent values of Tmax, when the amount of data transmitted
at once by each user is �u = 3 kbit. For this comparison, users of type 2 are considered.
Figure 4.6b illustrates the results. Similar to the previous scenario, the joint approach
outperforms the approaches where resources are assigned separately by at least 30 %. Once
more, among the separate approaches, the splitting 70 � 30 performs the best, which can
be explained with the same reasons as previously.

4.5 Summary

In this chapter, admission policies for URLLC users with computation demands were de-
veloped. Given the setup of the problem, there was the need to jointly consider the uplink
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4 Admission Control for Uplink Communication with Edge Processing

RAN and the edge computing resources, which both influence the overall delay. Admis-
sion policies for both homogenous and heterogenous user sets were designed, taking into
account tra�c parameters and channel conditions. For a homogenous set of users, the
maximum number of users that can be admitted in the cell was determined, whereas for
a heterogenous set of users the explicit inequality the newly arriving user needs to satisfy
was provided, given the set of users (with di↵erent channel conditions) that are already
being served. Lastly, simulations were run to validate the analytical approaches and to
provide interesting insights in the performance of the policies.
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5 Scenario 1: Uplink Communication
with Edge Processing

In the fifth chapter, allocating RAN and edge computing resources in the first scenario,
i.e., a moving user is sending data via a RAN to a BS where this data is processed, is con-
sidered. Based on the system model established in Chapter 3, the optimization problem is
formulated. Thereby, mathematical expressions and symbols that are needed in the sub-
sequent derivations are introduced. Analyzing the properties of the optimization problem
leads to interesting insights regarding its solvability. Finally, a performance evaluation on
proposed allocation heuristics shows the availability of good approximation algorithms for
the original optimization problem.

The majority of the analyses and results of this chapter will be presented at the 2023 IEEE
20th Consumer Communications & Networking Conference (CCNC) [HMCK22b].

5.1 Optimization Problem Formulation

The overall goal of the RAN and edge computing resource allocation is to maximize the
utility over all users after satisfying their tra�c requirements, taking into account the
finiteness of the available resources. The focus is set on the general case of guaranteeing
↵-fairness, in the same spirit as the network utility maximization (NUM) approach [Sri04].
Thus, the following optimization formulation can be stated:

max
Iu,m

f↵(Iu,m) =
NX

i=1

f↵
i (Iu,i, mi) (5.1a)

s.t.
�u,i

KuP
j=1

Iu,ij�u,ij

+
�u,i

mip
 Tmax, 8i 2 U , (5.1b)

NX

i=1

mi  L, (5.1c)

NX

i=1

Iu,ij  1, 8j 2 Ku, (5.1d)
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KuX

j=1

Iu,ij � 1, 8i 2 U , (5.1e)

Iu,ij 2 {0, 1}, 8i 2 U , j 2 Ku, (5.1f)

mi 2 N \ {0}, 8i 2 U , (5.1g)

where

f↵
i (Iu,i, mi) =

8
>>>>><

>>>>>:

1
1�↵

0

@
 

KuP
j=1

Iu,ij�u,ij

!1�↵

+ (mip)
1�↵

1

A , ↵ 6= 1

log

 
KuP
j=1

Iu,ij�u,ij

!
+ log (mip) , ↵ = 1

. (5.2)

In the problem formulation, the decision variable Iu = {Iu,ij} denotes the N ⇥Ku uplink
PRB allocation matrix in a given frame. Namely, if Iu,ij = 1, then PRB j is assigned to
user i in that frame. The N ⇥ Ku matrix �u = {�u,ij} contains the data rates user i
would experience when being allocated PRB j. It is derived from the CQI values that are
reported for the users. The decision variable m = {mi} is an N⇥1 vector consisting of the
number of allocated edge computing resources per user i. The amount of information sent
by each user at a time is the data size �u,i. Lastly, the parameter p denotes the processing
rate that one edge computing resource can provide.

The objective (5.1a) maximizes the utility for general ↵ 2 [0,1). Note that ↵ = 0
corresponds to the case of no fairness (throughput maximization), ↵ = 1 denotes the
proportional fairness case, ↵ = 2 implies delay minimization, and ↵ ! 1 describes the
max-min fairness. Apparently, as there are two types of resources to be allocated, they
both a↵ect the value of utility gained. In (5.2), the first term (both for ↵ 6= 1 and ↵ = 1)
corresponds to the utility from assigning RAN resources to user i, while the second term
denotes the utility after allocating a number of computing resources.

Constraint (5.1b) describes the maximum tolerable latency for every user. The finite
amount of computing resources is captured by (5.1c). Constraint (5.1d) merely states that
every block can be assigned to at most one user, whereas (5.1e) stipulates that every user
has to receive at least one PRB. Finally, (5.1f) and (5.1g) describe the integer nature of
the decision variables, where (5.1g) also implies that at least one computing resource must
be assigned to every user.

5.2 Analysis

The structure of the optimization problem described previously belongs to the class of
Integer Nonlinear Programs, which are generally known to be NP-hard [LL11]. Therefore,
some heuristics are needed to obtain a solution to the aforementioned optimization problem.
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5.2 Analysis

The approach that is followed in this work consists of two steps. First, the requirement
on the decision variables to be integer is relaxed, i.e., they are now continuous variables.
Then, it is shown that under those circumstances the transformed optimization problem
is convex and solvable in polynomial time. Finally, in Section 5.3, the second step of
the method is described, where special approximation algorithms are developed to obtain
integer solutions.

The first step is to show the convex nature of the problem (5.1), when Iu,ij 2 [0, 1] and
mi 2 [1,1). As the constraints (5.1c)-(5.1g) are linear, they are obviously convex. To
show that the objective function is concave, it must be shown that the function f↵

i (Iu,i, mi)
is concave, as the sum of concave functions is a concave function itself.

Lemma 3. The function f↵
i (Iu,i, mi) is concave.

Proof. The gradient of f↵
i (Iu,i, mi) for ↵ 6= 1 is

rf↵
i (Iu,i, mi) =

⇥
�u,i1�

�↵
u,i . . . �u,iKu�

�↵
u,i p(mip)�↵

⇤T
, (5.3)

where �u,i =
PKu

j=1 Iu,ij�u,ij. The gradient of f↵
i (Iu,i, mi) for ↵ = 1 is
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i (Iu,i, mi) =

⇥
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�1
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i
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. (5.4)

Then, the Hessian matrix of f↵
i (Iu,i, mi) for ↵ 6= 1 is
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u,i1 . . . �u,i1�u,iKu 0
...

. . .
...

...
�u,iKu�u,i1 . . . �2

u,iKu
0

0 . . . 0 p2(mip)�↵�1

��↵�1
u,i

3

77775
, (5.5)

and the Hessian of f↵
i (Iu,i, mi) for ↵ = 1 is
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The characteristic polynomial of r2f↵
i (Iu,i, mi) for ↵ 6= 1 is

det(r2f↵
i (Iu,i, mi) � �I) = (�1)Ku�1�Ku�1

�
↵p2(mip)

�↵�1 + �
�
⇤

�
↵��↵�1

u,i �2
u,i1 + · · · + ↵��↵�1

u,i �2
u,iKu

+ �
�
, (5.7)
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while for ↵ = 1 it is

det(r2f↵
i (Iu,i, mi) � �I) = (�1)Ku�1

⇤ �Ku�1
�
m�2

i + �
�
⇤

�
��2
u,i�

2
u,i1 + · · · + ��2

u,i�
2
u,iKu

+ �
�
, (5.8)

where I denotes the identity matrix in the corresponding dimension and � are the eigen-
values of the Hessian r

2f↵
i (Iu,i, mi). For ↵ 6= 1, they can easily be found to be

�1, ...,�Ku�1 = 0, (5.9a)

�Ku = �↵��↵�1
u,i

�
�2

u,i1 + · · · + �2
u,iKu

�
, (5.9b)

�Ku+1 = �↵p2(mip)
�↵�1. (5.9c)

The eigenvalues of the Hessian r
2f↵

i (Iu,i, mi) for ↵ = 1 are

�1, ...,�Ku�1 = 0, (5.10a)

�Ku = ���2
u,i(�

2
u,i1 + · · · + �2

u,iKu
), (5.10b)

�Ku+1 = �m�2
i . (5.10c)

Since all eigenvalues of the Hessian r
2f↵

i (Iu,i, mi) (for any ↵) are smaller than or equal to 0,
the Hessian is negative semidefinite, and thus the function f↵

i (Iu,i, mi) is concave 8↵.

Next, the nature of (5.1b) is explored. It can be stated:

Lemma 4. Constraint (5.1b) is convex.

Proof. Denote the left-hand side of (5.1b) as

ti(Iu,i, mi) =
�u,i

KuP
j=1

Iu,ij�u,ij

+
�u,i

mip
=

�u,i

�u,i
+

�u,i

mip
. (5.11)

The gradient of ti(Iu,i, mi) is

rti(Iu,i, mi) =
h
��u,i�u,i1

�2
u,i

. . . ��u,i�u,iKu

�2
u,i

��u,i

m2
i p

iT
. (5.12)

Then, the Hessian of ti(Iu,i, mi) is given as

r
2ti(Iu,i, mi) =

2�u,i

�3
u,i

⇤

2

66664

�2
u,i1 . . . �u,i1�u,iKu 0
...

. . .
...

...
�u,iKu�u,i1 . . . �2

u,iKu
0

0 . . . 0
�3
u,i

m3
i p

,

3

77775
. (5.13)
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Computing the determinant of r2ti(Iu,i, mi) � �I,

det(r2ti(Iu,i, mi) � �I) = (�1)Ku�1�Ku�1
�
2�u,im

�3
i p�1

� �
�
⇤

�
2�u,i�

�3
u,i�

2
u,i1 + · · · + 2�u,i�

�3
u,i�

2
u,iKu

� �
�

(5.14)

is obtained. The eigenvalues of the Hessian r
2ti(Iu,i, mi) are hence

�1, ...,�Ku�1 = 0, (5.15a)

�Ku = 2�u,i�
�3
u,i

�
�2

u,i1 + · · · + �2
u,iKu

�
, (5.15b)

�Ku+1 = 2�u,im
�3
i p�1. (5.15c)

Since all the eigenvalues of the Hessian r
2ti(Iu,i, mi) are greater than or equal to zero, the

Hessian is positive semidefinite and thus the function ti(Iu,i, mi) is convex.

With the proof of the concavity of the objective function and the convexity of the delay
function, the following theorem can be stated:

Theorem 5. The relaxed-variable version of the optimization problem (5.1) is convex.

Proof. Given Lemmas 3 and 4, and the fact that (5.1c)-(5.1g) are linear proves that (5.1)
is a convex problem.

For the purpose of proving the polynomial-time solvability of the relaxed optimization, the
problem is reformulated into a convex optimization problem with generalized inequality
constraints in the following. For the subsequent derivations, define the n-dimensional
quadratic cone as

Q
n =

⇢
x 2 Rn

| x1 �

q
x2

2 + · · · + x2
n

�
, (5.16)

the n-dimensional power cone parameterized by a real number ⇣ 2 [0, 1] as

P
n
⇣ =

⇢
x 2 Rn

| x⇣
1x

1�⇣
2 �

q
x2

3 + · · · + x2
n, x1, x2 � 0

�
, (5.17)

and the exponential cone as

E =
�
x 2 R3

| x1 � x2e
x3/x2 , x1, x2 > 0

 
. (5.18)
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First, the relaxed optimization problem is written in epigraph form and the slack variables
ski, k 2 {1, 2} = Lu, i 2 U are introduced, so that the problem transforms into

min
g,Iu,m,s

g (5.19a)

s.t. �

NX

i=1

h↵
i (s1i, s2i, g)  0, (5.19b)

�u,i

s1i
+

�u,i

s2i
� Tmax  0, 8i 2 U , (5.19c)

(5.1c), (5.1d), (5.1e), (5.19d)

0  Iu,ij  1, 8i 2 U , j 2 Ku, (5.19e)

1 �mi  0, 8i 2 U , (5.19f)

s1i =
KuX

j=1

Iu,ij�u,ij, 8i 2 U , (5.19g)

s2i = mip, 8i 2 U , (5.19h)

where

h↵
i (s1i, s2i, g) =

(
1

1�↵

�
s1�↵
1i + s1�↵

2i

�
+ g, ↵ 6= 1

log (s1i) + log (s2i) + g, ↵ = 1
. (5.20)

Next, conic reformulations for the constraints (5.19b) and (5.19c) are introduced.

Lemma 6. The constraint (5.19c) can be written as

✓
s1i + s2i �

�u,i

Tmax
; s1i, s2i,

�u,i

Tmax

◆
2 Q

4. (5.21)

Proof. By definition, (5.21) transforms into

s

s2
1i + s2

2i +
�2

u,i

Tmax
2
 s1i + s2i �

�u,i

Tmax
. (5.22)

Squaring both sides and subtracting the expression under the square root on both sides
leads to

0  2s1is2i � 2
�u,i

Tmax
(s1i + s2i), (5.23)

which is easily transformed into

�u,i

s1i
+

�u,i

s2i
� Tmax  0 (5.24)

by dividing by �2s1is2i and multiplying by Tmax.

34



5.2 Analysis

For the cases ↵ 2 (0, 1) and ↵ 2 (1,1), the constraint (5.19b) is converted to the con-
straints (5.26) by setting � = 1 � ↵ and introducing the slack variable uki: Bringing the
sum over s�ki to the right side of the inequality results in

�g 
1

�

2X

k=1

NX

i=1

s�ki, (5.25)

which is transformed into

(5.25) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

�g� 

2X

k=1

NX

i=1

uki,

uki  s�ki, 8k 2 Lu, i 2 U ; ↵ 2 (0, 1)

g |�| �
2X

k=1

NX

i=1

uki,

uki � s�ki, 8k 2 Lu, i 2 U ; ↵ 2 (1,1)

.

(5.26a)

(5.26b)

(5.26c)

(5.26d)

Now, the case ↵ 2 (0, 1), which implies that � 2 (0, 1), is considered.

Lemma 7. The constraint (5.26b) can be written as

(ski, 1; uki) 2 P
3
�. (5.27)

Proof. By definition, (5.27) is equivalent to

s�ki1
1��

�

q
u2
ki, ski � 0, (5.28)

which simplifies to

s�ki � uki, ski � 0. (5.29)

The constraint ski � 0 that is introduced with this reformulation is fulfilled due to con-
straints (5.19e) and (5.19f).

Next, consider ↵ 2 (1,1), which implies that � 2 (�1, 0).

Lemma 8. The constraint (5.26d) can be written as

(uki, ski; 1) 2 P
3
1/(1��). (5.30)
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Proof. By definition, (5.30) transforms into

u1/(1��)
ki s��/(1��)

ki �

p

12, uki � 0, ski � 0, (5.31)

which simplifies to
uki � s�ki, uki � 0, ski � 0, (5.32)

when taking everything to the power of (1 � �) and multiplying both sides by s�ki. The
additional constraints uki � 0 and ski � 0 that are introduced with this reformulation are
met due to the positiveness of ski implied by (5.19e) and (5.19f).

Lastly, consider the case of ↵ = 1. Then, the constraint (5.19b) must be rewritten to

�g 

2X

k=1

NX

i=1

log ski (5.33)

by bringing the sum over the logarithms to the right side of the inequality. Using again
the slack variable uki, (5.33) can be formulated as

�g 

2X

k=1

NX

i=1

uki, (5.34a)

uki  log ski, 8k 2 Lu, i 2 U . (5.34b)

Lemma 9. Constraint (5.34b) can be rewritten as

(ski, 1, uki) 2 E. (5.35)

Proof. By definition, (5.35) is equivalent to

ski � 1 ⇤ euki/1, ski > 0, (5.36)

which can be written as
log ski � uki, ski > 0, (5.37)

when taking the logarithm of both sides. The additional constraint ski > 0 that is intro-
duced with this reformulation is fulfilled due to the constraints (5.1e) and (5.19f).

Theorem 10. The relaxed-variable version of the optimization problem (5.1) can be written
as a convex optimization problem with generalized inequality constraints.

Proof. Given Lemmas 6, 7, 8, and 9 and the fact that (5.19b) is linear for ↵ = 0 concludes
the proof.
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5.2 Analysis

The optimization problem (5.1) reads in a relaxed form, written as a convex optimization
problem with generalized inequality constraints, for any ↵ 2 [0,1):

min
g,Iu,m,s,u

g (5.38a)

s.t. �

NX

i=1

e↵i (s1i, s2i, u1i, u2i, g)  0, (5.38b)

(5.1c), (5.1d), (5.1e), (5.19e), (5.19f), (5.19g), (5.19h), (5.21), (5.38c)

where

(5.38b) =

8
>>><

>>>:

(5.19b), ↵ = 0

(5.26a), (5.27), 8k 2 Lu, i 2 U , 0 < ↵ < 1

(5.34a), (5.35), 8k 2 Lu, i 2 U , ↵ = 1

(5.26c), (5.30), 8k 2 Lu, i 2 U , ↵ > 1

. (5.39)

For the final verification of the polynomial-time solvability of the optimization problem
stated in (5.38), define the following generalized logarithms and note their degrees. More
details on the generalized logarithm can be found in Section 11.6 in [BV04]. The generalized
logarithm for the n-dimensional quadratic cone Q

n can be designed as [BV04]

�Q(x) = log

 
x2

1 �

nX

i=2

x2
i

!
. (5.40)

The degree of a generalized logarithm is calculated as ✓� = r�(x)Tx, cf. [BV04]. The
degree of the function �Q(x) is therefore

✓Q = r�Q(x)Tx =


2x1✓

x2
1�

nP
i=2

x2
i

◆ . . . �2xn✓
x2
1�

nP
i=2

x2
i

◆
�
x = 2. (5.41)

Additionally, define the generalized logarithm for the n-dimensional power cone P
n
⇣ as

�P(x) = log

 
x2⇣

1 x(2�2⇣)
2 �

nX

i=3

x2
i

!
+ (1 � ⇣) log(x1) + ⇣ log(x2), (5.42)

as introduced in [Cha09]. The degree of the function �P(x) is calculated as

✓P = r�P(x)Tx =
h

2⇣x
(2⇣�1)
1 x

(2�2⇣)
2

a + 1�⇣
x1

(2�2⇣)x2⇣
1 x

(1�2⇣)
2

a + ⇣
x2

�2x3
a ... �2xn

a

i
x =

=

2(⇣ + 1 � ⇣)x2⇣
1 x(2�2⇣)

2 � 2
nP

i=3
x2
i

a
+ 1 � ⇣ + ⇣ = 3, (5.43)
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where a = x2⇣
1 x(2�2⇣)

2 �
Pn

i=3 x
2
i . Finally, define the generalized logarithm for the exponential

cone E as [Cha09]

�E(x) = log

✓
x2 log

✓
x1

x2

◆
� x3

◆
+ log x1 + log x2. (5.44)

The degree of the generalized logarithm �E(x) is also determined as

✓E = r�E(x)Tx =
h

x2/x1

x2 log(x1/x2)�x3
+ 1

x1

log(x1/x2)�1
x2 log(x1/x2)�x3

+ 1
x2

�1
x2 log(x1/x2)�x3

i
x =

=
x2 + x2 log (x1/x2) � x2 � x3

x2 log (x1/x2) � x3
+ 2 = 3. (5.45)

Lastly, a slack variable that is attached to the system of equality constraints can be inserted
for every linear inequality constraint of the optimization. The corresponding generalized
logarithm for these slack variables has degree 1, as the slack variable needs to be in R+.
Using these definitions of the generalized logarithms, a logarithmic barrier function ⇤u(wu)
can be defined as

⇤u(wu) = �

ZX

c=1

�c(wu), dom⇤ = {wu | fc(wu) �Kc 0, c = 1, ..., Z}, (5.46)

where Z = (3 + 2Ku)N + 2 + Ku for ↵ = 0 and Z = (5 + 2Ku)N + 2 + Ku for ↵ 6= 0.
wu is composed of the vectorized matrix Iu as well as the vectors m, s = {ski}, and u =
{uki}. �c(wu) are the generalized logarithms defined above for each generalized inequality
constraint fc(wu) in the convex optimization problem with generalized inequalities defined
in (5.38). This implies that the barrier method can be applied in order to solve this
optimization problem.

The subsequent complexity analysis is based on the property of self-concordance. For a
definition of self-concordance, see Section 9.6 in [BV04].

Lemma 11. The logarithmic barrier function ⇤u(wu) is self-concordant.

Proof. The logarithmic barrier for the positive orthant defined by all linear inequalities
and their slack variables is a self-concordant function because � log x is self-concordant
and the sum of self-concordant functions is again self-concordant [BV04]. The logarithmic
barriers established using the generalized logarithms defined in (5.40), (5.42), and (5.44) are
self-concordant as well, see Section 11.6 in [BV04] and Sections 2.4 and 3.1 in [Cha09].

Lemma 12. The number of total Newton steps excluding the initial centering step for
solving (5.38) using the Barrier method can be bounded by [BV04]

TBarrier =

⇠
log(✓̄/(t(0)⇠))

log µ

⇡
⇤

✓
✓̄(µ� 1 � log µ)

�
+ log2 log2(1/⇠)

◆
. (5.47)
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Proof. Given Lemma 11 and the fact that (5.38a) is linear, the function tg + ⇤u(wu),
which is the objective of the Barrier method, is self-concordant. Additionally, given that
this function is closed and the sublevel sets of the optimization problem (5.38) are bounded
leads to (5.47), cf. [BV04].

The parameter µ > 1 is an algorithm parameter of the barrier method, t(0) > 0 is the
initial value of the algorithm parameter t of the barrier method, and ⇠ > 0 is the specified
tolerance of the barrier method, see Algorithm 11.1 in [BV04]. The parameter � is a
constant that depends on the backtracking parameters  and ⌧ , Alg. 9.2 in [BV04], which
is used for line search in Newton’s method. It is given as

1

�
=

20 � 8

⌧(1 � 2)2
. (5.48)

The last parameter ✓̄ is the sum of the degrees of the generalized logarithms �c, which for
the considered problem is computed as

✓̄ =

(
(4 + 2Ku)N + 2 + Ku, ↵ = 0

(10 + 2Ku)N + 2 + Ku, ↵ 6= 0
. (5.49)

Finally, the following theorem can be stated:

Theorem 13. The complexity of solving the optimization problem (5.38) in terms of New-
ton steps is

TBarrier = O (log (KuN/⇠) (KuN + log2 log2 (1/⇠))) . (5.50)

Proof. Plugging (5.49) into (5.47) and simplifying this expression yields (5.50).

5.3 Conversion Algorithms

In the previous section, it was shown that an optimal solution to the relaxed optimization
problem can be found in polynomial time. However, this is a continuous solution, which
violates the natural restriction that only integer fractions of RAN and edge computing
resources can be allocated. Therefore, for the particular values of ↵ = 0, ↵ = 1, ↵ = 2,
and ↵ ! 1, specific algorithms for the conversion of the continuous solution to an integer
resource allocation are developed. First, the conversion algorithm for the edge computing
resource allocation is introduced, which is used for all fairness cases. Afterwards, the
algorithms for the specific cases of ↵ are explained. Thereby, Ju denotes the N ⇥ Ku

RAN allocation matrix with entries Ju,ij 2 {0, 1} and n is the N ⇥ 1 edge computing
resource allocation vector with entries ni 2 N \ {0}. The variables Iu and m are their
continuous equivalents. For the conversion algorithms, it is assumed that the admission
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control for a heterogenous set of users presented in Section 4.3 was performed before
accepting users to the network. In case there are users sending packets with a di↵erent
overall data size, i.e., �u,i 6= �u,k, the unified data size �u in the admission policy can
be set to �u = maxi �u,i to ensure the availability of enough resources. Although the
admission control for a heterogenous set of users only decides whether a new user can be
accepted to the network, this is not an applicability restriction, since every network starts
with zero users at some point.

5.3.1 Edge Computing Resources

The conversion of the continuous edge computing resource allocation to an integer alloca-
tion is done by simple mathematical rounding. As this procedure can lead to the assignment
of more than L edge computing resources, a limit check is conducted after the rounding. If
more than L edge computing resources are allocated, then the user with a continuous al-
location value closest above ?.5, where ? denotes an arbitrary integer, is assigned one edge
computing resource less than it would have received by strict mathematical rounding. This
is done until L edge computing resources are allocated. Similarly, if less than L resources
are allocated, the users closest below ?.5 will receive one more resource until L resources
are assigned. The described procedure is summarized in Algorithm 2. Its complexity is
O(N), i.e., it is linear.

5.3.2 No Fairness (Throughput Maximization)

If all constraints were neglected, the case ↵ = 0 would lead to an allocation where each
PRB j is allocated to the user who is experiencing the best channel conditions, i.e., the user
with the highest CQI value for that PRB. The allocation of the edge computing resources
could be done randomly, as each edge computing resource o↵ers the same processing rate
and thus contributes in the same way to the objective no matter to which user the resource
is assigned. However, each user’s data must be sent and processed within a given time.
Therefore, the edge computing resources are allocated such that users with worse channel
conditions and larger packets get more edge computing resources in order to minimize the
number of required PRB allocations for that user, as allocations of PRBs to users with lower
CQI values have a negative impact on the maximization of the objective. Once all users
are assigned enough edge computing and RAN resources to fulfill their delay constraints,
the remaining PRBs are allocated to the users experiencing the best channel conditions.

The approximation algorithm that was designed using these intuitions can be explained
as follows: First, all users are allocated enough edge computing and RAN resources such
that they can fulfill their delay constraints. This is done using the continuous allocations
Iu and m. Afterwards, the remaining PRBs are assigned to the users experiencing the
best channel conditions. Note that for solving the continuous optimization problem only
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Algorithm 2 Edge Computing Resource Allocation
Input: N , L, m
Output: n

1: function ECRAlloc(N , L, m)
2: for all mi do

3: ni = bmi + 0.5c
4: end for

5: Create empty lists w and z.

6: while

NP
i=1

ni > L do

7: l = 1, k = 0
8: for i = 1 to N do

9: if i /2 w then

10: ri = mi mod bmic � 0.5
11: if 0 < ri < l then
12: l = ri, k = i
13: end if

14: end if

15: end for

16: nk = bmkc, attach k to list w.
17: end while

18: while

NP
i=1

ni < N do

19: a = �1, b = 0
20: for i = 1 to N do

21: if i /2 z then

22: ri = mi mod bmic � 0.5
23: if a < ri < 0 then

24: a = ri, b = i
25: end if

26: end if

27: end for

28: nb = dmbe, attach b to list z.
29: end while

30: return n
31: end function

L�N edge computing resources are used. The reason for this procedure is that the integer
resource allocation per user is then at least as high as the continuous allocation, ensuring
the feasibility of the integer solution attained from the heuristic. Algorithm 3 summarizes
the previous explanations. Its complexity is O(N + Ku).
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Algorithm 3 Resource Allocation for ↵ = 0 in the Uplink-Only Scenario
Input: N , Ku, L, m, Iu, �u

Output: n, Ju

1: function AllocA0(N , Ku, L, m, Iu, �u)
2: n = ECRAlloc(N,L�N,m) + 1 , Ju = 0.
3: for i = 1 to N do

4: Calculate wi =
PKu

j=1 Iu,ij�u,ij.
5: end for

6: Create list z with users i ordered s.t. �u,i/wi is decreasing.
7: while list z is non-empty do

8: for user i in list z do

9: Find arg max
j

Iu,ij�u,ij.

10: if 9 more than one j maximizing Iu,ij�u,ij then

11: Choose randomly between those j.
12: end if

13: Allocate PRB j to user i, update Ju,j and set Iu,j = 0.
14: Calculate delay �i using ni and Ju,i.
15: if �i  Tmax then

16: Remove user i from list z.
17: end if

18: end for

19: end while

20: for all non-allocated PRBs k do

21: Find arg max
i

�u,ik, then allocate PRB k to user i and update Ju,k.

22: end for

23: return n, Ju

24: end function

5.3.3 Proportional Fairness

In the proportional fairness case, every user gets the same amount of resources, independent
of the channel conditions it is experiencing. Mathematically, this can be explained as
follows: for ↵ = 1, the pure objective is to maximize the sum of the natural logarithms
of the RAN data and edge processing rates. The natural logarithm is characterized by
the fact that its output value always increases by the same amount when the argument
of the logarithm doubles, independent of the absolute value of the input argument. This
implies that the objective value increases by the same amount irrespective of whether a user
with bad channel conditions can double its allocated resources or a user who experiences
good channel conditions can double its resources. It also means that every user should
be assigned the same amount of resources, as the objective value would decrease if a user
with good channel conditions has four times as many assigned PRBs than a user with bad
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Algorithm 4 Resource Allocation for ↵ = 1 in the Uplink-Only Scenario
Input: N , Ku, L, m, Iu, �u

Output: n, Ju

1: function AllocA1(N , Ku, L, m, Iu, �u)
2: Follow lines 2 to 19 from Algorithm 3.
3: for i = 1 to N do

4: Calculate wi =
PKu

j=1 Ju,ij.
5: end for

6: Create list z with users i ordered s.t. wi is increasing.
7: for all non-allocated PRBs k do

8: Take z(1), find arg min
k

⇣
max

i
(�u,ik) � �u,z(1)k

⌘
.

9: Allocate PRB k to user z(1) and update Ju,k.
10: Set wz(1) =

PKu

j=1 Ju,z(1)j.
11: Reorder list z with users i s.t. wi is increasing.
12: end for

13: return n, Ju

14: end function

channel conditions, as the growth of the natural logarithm is larger the smaller the input
arguments are.

These insights lead to the design of Algorithm 4. Thereby, again first the required resources
for fulfilling the delay constraint are allocated, and then the proportional fairness aim, i.e.,
giving every user the same number of resources, is followed when assigning the remaining
PRBs. The complexity of Algorithm 4 can be given as O(N + Ku).

5.3.4 Delay Minimization

For the scenario ↵ = 2, the prefactor in the objective (5.2) turns into �1, transforming the
maximization problem into a minimization problem. Moreover, the exponent of the RAN
data rate and the edge processing rate of each user turns into �1 as well, leading to the
minimization of the reciprocals of these rates. Comparing this objective function with the
left-hand side of the delay constraint (5.1b), it is observable that the two functions are the
same, with the only di↵erence being the missing data size �u,i in the objective function.
If the data sizes are equal for all users, e.g., they all request the same type of service, then
the contemplated optimization problem is perfectly equal to delay minimization, as the
data sizes are just a constant not influencing the optimization. In contrast, diverse data
sizes across users lead to a suboptimal delay minimization, as the delay is influenced by
the various data sizes. However, since the data sizes are all of the same order, the impact
on the optimization is marginal.
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Algorithm 5 Resource Allocation for ↵ = 2 in the Uplink-Only Scenario
Input: N , Ku, L, m, Iu, �u

Output: n, Ju

1: function AllocA2(N , Ku, L, m, Iu, �u)
2: Follow lines 2 to 19 from Algorithm 3.
3: for i = 1 to N do

4: Calculate wi =
PKu

j=1 Ju,ij�u,ij.
5: end for

6: Create list z with users i ordered s.t. wi is increasing.
7: for all non-allocated PRBs k do

8: Take z(1), find arg min
k

⇣
max

i
(�u,ik) � �u,z(1)k

⌘
.

9: Allocate PRB k to user z(1) and update Ju,k.
10: Set wz(1) =

PKu

j=1 Ju,z(1)j�u,z(1)j.
11: Reorder list z with users i s.t. wi is increasing.
12: end for

13: return n, Ju

14: end function

In order to minimize the overall system delay, the knowledge of all RAN assignment combi-
nations is needed. Since this knowledge is not existent when performing the approximation,
the focus of the developed heuristic is to minimize the maximum experienced delay of any
user. The pursued scheme equals the strategy from Algorithms 3 and 4. First, the resources
for meeting the latency requirements are allocated using the continuous allocation values.
Then, the remaining resources are distributed according to the fairness metric. The final
algorithm is detailed specified in Algorithm 5 with its complexity being O(N + Ku).

5.3.5 Max-Min Fairness

When ↵ ! 1, the pure objective is characterized as the minimization of the sum of the
reciprocals of the data and processing rates raised to a large positive number. This min-
imization is achieved once the users’ data and processing rates are equal to each other.
Hence, the computing resources are split equally among the users and the PRBs are allo-
cated such that the di↵erence between the users’ data rates is minimized while maximizing
the minimum data rate any user experiences. This allocation scheme is also pursued if
a delay constraint is introduced. However, the computing resources and PRBs are then
allocated such that the delay constraint is fulfilled for all users, which implies that the dif-
ferences between the users’ data rates might increase and the minimum data rate achieved
by any user might decrease. The same type of redistribution is also done for the edge re-
source assignment, if needed. In general, this implies that the attained objective value is in
most cases smaller than the objective value attained when neglecting the delay constraint.
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Algorithm 6 Resource Allocation for ↵ ! 1 in the Uplink-Only Scenario
Input: N , Ku, L, m, Iu, �u

Output: n, Ju

1: function AllocAInf(N , Ku, L, m, Iu, �u)
2: Follow lines 2 to 19 from Algorithm 3.
3: for i = 1 to N do

4: Calculate wi =
⇣PKu

j=1 Ju,ij�u,ij

⌘|1�↵|
.

5: end for

6: Create list z with users i ordered s.t. wi is increasing.
7: for all non-allocated PRBs k do

8: Take z(1), find arg min
k

⇣
max

i
(�u,ik) � �u,z(1)k

⌘
.

9: Allocate PRB k to user z(1) and update Ju,k.

10: Set wz(1) =
⇣PKu

j=1 Ju,z(1)j�u,z(1)j

⌘|1�↵|
.

11: Reorder list z with users i s.t. wi is increasing.
12: end for

13: return n, Ju

14: end function

The last heuristic adjusted for the case ↵ ! 1 again follows the same concept as the
approximation algorithms for the other special fairness cases. It is summarized in Algo-
rithm 6. Its computational complexity is determined as O(N + Ku).

5.4 Performance Evaluation

In the penultimate section of this chapter, the performances of the proposed allocation
heuristics are evaluated. To this end, first, the simulation setup is described. Next, a
benchmark algorithm is introduced. Finally, the remaining sections address the perfor-
mance of the approximation algorithms for the cases ↵ = 0, ↵ = 1, ↵ = 2, and ↵ ! 1.

5.4.1 Simulation Setup

As input parameters, once more the 5G trace with data measured in the Republic of
Ireland [RLSQ20] was used. The parameter of interest from the traces is again the CQI,
from which one per-block rate of a user in a frame can be determined. The corresponding
data rates per CQI are given in Table 4.1. Since there is only one CQI value given per time
step in each measurement, the per-PRB CQI values were derived from the measured CQI
value by generating a population of CQI values in {CQI�1,CQI,CQI+1}, with its mean
being the measured CQI and the frequency of each value being 1/3. In case the CQI value
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5 Scenario 1: Uplink Communication with Edge Processing

was 1 or 15, no population was generated since CQI values of 0 and 16 are impossible and
hence the population’s mean would not have been equal to the measured CQI. Di↵erent
measurements were again taken to mimic di↵erent users.

The subcarrier spacing is 30 kHz, making the PRB width 360 kHz and a frame consisting
of 20 slots [ETS22b]. The total number of PRBs is Ku = 120. At least 1 slot and at most
6, 10, or 20 slots are allocated to each user, which follows from the latency requirement
and the duration of one slot (0.5 ms). The number of edge computing resources is L = 120
and the processing rate per resource is 500 kbps. The data size of the packets is 5 kbit
for every user. For all types of fairness, simulation data were gathered for N = {5, 8, 10}
and for Tmax = {3, 5, 10} ms. The simulations were conducted in MATLAB R2021b. To
solve the optimization problems CVX [GB14, GB08] together with the Mosek optimizer
was used [MOS22].

5.4.2 Benchmark (Round-Robin)

The benchmark allocation against which the special approximation algorithms are com-
pared is the Round-Robin principle. This means that all users are allocated one computing
resource and one PRB in each iteration. Once a user fulfills its delay constraint, it will not
be assigned any more resources until every user complies with its latency target. Thereafter,
the remaining computing and RAN resources are allocated one by one to all users, until
no resources are available anymore. The described method is summarized in Algorithm 7.

5.4.3 Results for No Fairness (Throughput Maximization)

Various measurement points for di↵erent CQI inputs are depicted in Figure 5.1. The value
RG that is given in the title of the subfigures of Figure 5.1 and also in all subsequent
evaluation plots denotes the relative gap that was set when solving the original integer
problem using Mosek. The relative gap is mathematically calculated as [MOS22]

RG =
|z̄ � z|

max (10�10, |z̄|)
, (5.51)

where z denotes the solution to the relaxed optimization problem and z̄ denotes the best
feasible integer solution. The relative gap guarantees that the best feasible integer solution
is at most RG ⇤ 102 % away from the true optimum. The first three rows in Figure 5.1
show all setup combinations including the objective values from the benchmark. For a
better comparability, the last three rows show the same results but without the values
obtained from the Round-Robin principle. It is observable that the approximation algo-
rithm outperforms the benchmark by far and is very close to the integer and continuous
optimum. Of course, the continuous optimum is always better than or equal to the integer
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Algorithm 7 Round-Robin Allocation in the Uplink-Only Scenario
Input: N , Ku, L
Output: n, Ju

1: function RRAlloc(N , Ku, L)
2: Create list z with users i.
3: while list z is non-empty do

4: for user i in list z do

5: Allocate one edge computing resource and one PRB to user i.
6: Update ni and Ju,i.
7: Calculate delay �i using ni and Ju,i.
8: if �i  Tmax then

9: Remove user i from list z.
10: end if

11: end for

12: end while

13: while 9 non-allocated edge computing or RAN resource(s) do

14: for i = 1 to N do

15: if 9 non-allocated edge computing resource then

16: Allocate one edge computing resource to user i.
17: end if

18: if 9 non-allocated RAN resource then

19: Allocate one PRB to user i.
20: end if

21: Update ni and Ju,i.
22: end for

23: end while

24: return n, Ju

25: end function

optimum, as in this case fractions of resources are assigned, which is not possible in reality.
In Figure 5.2 the deviation of the heuristic from the integer and continuous optimum is
shown in percent. Due to the NP-hardness of the integer problem, it was sometimes not
possible to obtain results attaining an adequate accuracy, which is the reason why some
data points from the approximation algorithm “outperform” the integer optimum, i.e., the
percentual deviation is negative. When comparing the solution obtained from the heuristic
to the continuous optimum among 100 data points, the maximum deviation that can be
observed is 1 %, whereas the average deviation is 0.24 %. This indicates the very good
performance of the approximation algorithm. The evaluation is supported by Figure 5.3,
where the average objective value from the heuristic is very close or equal to the average
continuous optimum of 100 measurement points. Another observation from Figure 5.3 is
that the average objective value slightly increases when loosening the delay constraint.
The reason for this behavior is that more PRBs can be allocated to users experiencing the
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5 Scenario 1: Uplink Communication with Edge Processing

best channel conditions, as in general a user does not need that many resources to fulfill
its delay constraint when the maximum allowed latency Tmax is increased. Finally, it can
again be seen that the benchmark is surpassed.

5.4.4 Results for Proportional Fairness

The same plots as for the throughput maximization are shown for the case ↵ = 1, i.e., pro-
portional fairness, in Figures 5.4 to 5.6. The benchmark algorithm is again outperformed
by the special approximation algorithm, but this time the benchmark objective values are
much closer to the integer optimum than for the case ↵ = 0. This is especially observable
when comparing the average values in Figure 5.6. The reason for this behavior is that in
the proportional fairness case all users are allocated the same amount of resources. This is
very similar to the Round-Robin principle, in which all the users are assigned one resource
after each other until no resources are available anymore. Because users get assigned the
resources where the di↵erence between the data rate they experience and the maximum ex-
perienced data rate of any user for a PRB is the smallest, the approximation algorithm for
proportional fairness still outperforms the benchmark heuristic. Furthermore, in Figure 5.6
it can be seen that the objective value does not depend on the delay constraint, i.e., Tmax,
but it increases with the number of users in the network. The reason for this behavior
is the large gradient of the natural logarithm for small input arguments, such that every
added user has a large impact on the overall objective. In Figure 5.5 it is observable that
the deviation of the results from the approximation algorithm from the integer optimum
is again very small. The maximum deviation that can be detected among 100 data points
is 0.14 %, while the average deviation is 0.03 %. These examinations prove the excellent
performance of the presented approximation algorithm.

5.4.5 Results for Delay Minimization

The results for the scenario ↵ = 2 are depicted in Figures 5.7 to 5.9. It is discernible that
the special approximation algorithm surpasses the benchmark heuristic, as it happened for
↵ = 0 and ↵ = 1. In most of the cases, the objective value obtained with the approximation
algorithm is very close to the integer optimum, with the average deviation among 100 points
being 0.91 %. However, for the measurements 15 and 16, two outliers are detectable. The
reason for these outliers is the presence of a user who is experiencing bad channel conditions
compared to the other users. Due to the slightly changed objective of the approximation
algorithm, there are certainly resource allocations possible where the objective value can
be maximized compared to the minimization of the maximum encountered delay, in case
there are users whose data rates are a lot worse than all other users’ data rates. The
cost for this objective maximization is an increased delay experienced by the user with
bad channel conditions. Despite the aforementioned drawback, it can be concluded that
the performance of the approximation algorithm for delay minimization is still very good,
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as the maximum observed deviation from the integer optimum is 7.11 %. Besides, in
Figure 5.9, an inverse dependence of the objective value on the number of users can be
detected compared to ↵ = 1. The less users are present in the system, the higher is the
objective value. This is an apparent behavior as the overall delay is of course smaller the
less users there are.

5.4.6 Results for Max-Min Fairness

For the max-min fairness, a high ↵-value, i.e., ↵ = 13, was used to mimic the behavior of
↵ ! 1. Due to numerical reasons during the optimization, a higher ↵-value could not be
used. A similar output as for the other fairness cases can be contemplated for the max-min
fairness in Figures 5.10 to 5.12. The benchmark heuristic is again outperformed by the
approximation algorithm, especially in the presence of a user with bad channel conditions
(measurements 15 and 16). In Figure 5.12 it can be observed that the objective value gets
worse the higher the number of users is, because then the resources have to be split among
more users and the reciprocals of the RAN data and the edge processing rates get larger.
The benchmark averages are largely influenced by some outliers, where few users are expe-
riencing very bad channel conditions, which is the reason for the random appearance of the
average bars in Figure 5.12. Due to the NP-hardness of the integer optimization problem,
the quality of the integer optimal values is not good enough for a comparison. However, the
objective values obtained with the heuristic are almost attaining the continuous optimum
(not more than 0.0617 % away), which indicates that the continuous optimum is almost
an integer optimum. The average deviation from the continuos optimum among 100 data
points is only 0.0006 %, which certifies the exceptional performance of the heuristic.

5.5 Summary

In this chapter, the problem of jointly allocating RAN and processing resources to ve-
hicular users so that their latency requirement is met, while simultaneously providing
certain types of fairness, was considered. The contemplated scenario was an uplink-only
scenario, meaning that the users sent data to the base station, where the data was pro-
cessed, but no response was generated. It was shown that the integer-relaxed allocation
optimization problem is solvable in polynomial time, and approximation algorithms with
polynomial-time complexity were provided for the cases no fairness, proportional fairness,
delay minimization, and max-min fairness. For each fairness scenario, the performance of
the approximation algorithm is very close to the optimum. The key results regarding the
deviation of the objective values from the optimal values are summarized in Table 5.1.
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5 Scenario 1: Uplink Communication with Edge Processing

Table 5.1: Maximum and average deviation of the approximation algorithm objective val-
ues from the continuous/integer optimum among 100 data points in the uplink-
only scenario

↵ 0 1 2 13
max. dev. from int. opt. in % — 0.14 7.11 —
avg. dev. from int. opt. in % — 0.03 0.91 —

max. dev. from cont. opt. in % 1.00 0.14 7.11 0.0617
avg. dev. from cont. opt. in % 0.24 0.03 0.93 0.0006
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Figure 5.1: Obj. values for various CQI inputs for ↵ = 0 in the uplink-only scenario.
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Figure 5.2: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 0 in the uplink-only scenario.

Figure 5.3: Average objective values for ↵ = 0 in the uplink-only scenario.
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Figure 5.4: Obj. values for various CQI inputs for ↵ = 1 in the uplink-only scenario.
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Figure 5.5: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 1 in the uplink-only scenario.

Figure 5.6: Average objective values for ↵ = 1 in the uplink-only scenario.
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Figure 5.7: Obj. values for various CQI inputs for ↵ = 2 in the uplink-only scenario.
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Figure 5.8: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 2 in the uplink-only scenario.

Figure 5.9: Average objective values for ↵ = 2 in the uplink-only scenario.
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Figure 5.10: Obj. values for various CQI inputs for ↵ = 13 in the uplink-only scenario.
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Figure 5.11: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 13 in the uplink-only scenario.

Figure 5.12: Average objective values for ↵ = 13 in the uplink-only scenario.
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6 Scenario 2: Uplink and Downlink
Communication with Edge Processing

Following the same structure as in Chapter 5, in this chapter, allocating RAN and edge
computing resources in the second scenario, i.e., a moving user is sending data via a RAN
to a BS where this data is processed and a response is generated, is examined. First,
the mathematical optimization problem introduced in Section 5.1 is adapted to the new
system model. Subsequently, the optimization formulation is investigated regarding its
solvability and the approximation algorithms from Section 5.3 are adjusted to a two-way
communication as well. Concluding, simulation data verify the good performance of the
heuristics for the extended scenario.

The analyses and results of this chapter were submitted to the IEEE Journal on Se-
lected Areas in Communications (JSAC), Issue: 3GPP Technologies: 5G-Advanced and
Beyond [HMCK22a].

6.1 Optimization Problem Formulation

The objective of the optimization problem is again to maximize the overall utility, which
is expanded with the third term representing the downlink RAN part. While most of the
constraints remain unchanged, the downlink communication naturally influences the delay
of the packets. Once more, with the focus set on providing general ↵-fairness, the adapted
optimization problem is formulated as

max
Iu,Id,m

NX

i=1

f↵
i (Iu,i, Id,i, mi) (6.1a)

s.t.
�u,i

KuP
j=1

Iu,ij�u,ij

+
�u,i

mip
+

�d,i

KdP
j=1

Id,ij�d,ij

 Tmax, 8i 2 U , (6.1b)

NX

i=1

mi  L, (6.1c)
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NX

i=1

I{u,d},ij  1, 8j 2 K{u,d}, (6.1d)

K{u,d}X

j=1

I{u,d},ij � 1, 8i 2 U , (6.1e)

I{u,d},ij 2 {0, 1}, 8i 2 U , j 2 K{u,d}, (6.1f)

mi 2 N \ {0}, 8i 2 U , (6.1g)

where

f↵
i (Iu,i, Id,i, mi) =

=

8
>>>>><

>>>>>:

1
1�↵

0

@
 

KuP
j=1

Iu,ij�u,ij

!1�↵

+ (mip)
1�↵ +

 
KdP
j=1

Id,ij�d,ij

!1�↵
1

A , ↵ 6= 1

log

 
KuP
j=1

Iu,ij�u,ij

!
+ log (mip) + log

 
KdP
j=1

Id,ij�d,ij

!
, ↵ = 1

. (6.2)

Relating to the previously introduced expressions, the decision variable Id = {Id,ij} denotes
the N ⇥ Kd downlink PRB allocation matrix in a given frame. In the same manner as
before, this means that if Id,ij = 1, then PRB j is allocated to user i in that frame. The
downlink data rates which are deduced from the CQI values that are given for each user
are contained in the N⇥Kd matrix �d,ij, denoted in the same sense as the uplink data rate
matrix �u,ij. Clearly, the variable �d,i denotes the size of the data of user i’s downlink
packets. For an explanation of the remaining mathematical expressions, the reader is
referred to Section 5.1.

The objective (6.1a) maximizes the overall utility for general ↵ 2 [0,1). The first and
third term in (6.2) (both for ↵ 6= 1 and ↵ = 1) correspond to the utility from assigning
uplink or downlink RAN resources to user i, whereas the second term denotes the utility
after allocating a fraction of the edge computing resources.

The maximum tolerable latency which is extended by the downlink delay for every user is
described by constraint (6.1b). Constraint (6.1c) stays unchanged and captures the finite
amount of computing resources that are available. On the one hand, every uplink and
downlink block can be assigned to at most one user, which is indicated by constraint (6.1d).
On the other hand, constraint (6.1e) dictates that every user has to receive at least one
PRB both in the uplink and downlink. Lastly, the integer nature of the decision variables
is described by (6.1f) and (6.1g), where the latter constraint includes the minimum number
of one edge computing resource that needs to be assigned to every user.
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6.2 Analysis

Since the adjusted optimization problem still is an Integer Nonlinear Program, the problem
is still NP-hard [LL11]. Hence, approximation algorithms are once more needed to obtain
a near-optimal solution to (6.1).

The pursued procedure consists again of the two main steps of proving the polynomial-time
solvability of the integer-relaxed version of the optimization problem (6.1) and the devel-
opment of special approximation algorithms. Thereby, the already introduced heuristics
from Section 5.3 are adjusted to the scenario considered in this chapter.

Continuing with the first step, the convexity of (6.1), when I{u,d},ij 2 [0, 1] and mi 2

[1,1), is shown. Since the constraints (6.1c)-(6.1g) are still linear inequalities, they are
apparently convex. In order to prove the concavity of the objective function, the concavity
of f↵

i (Iu,i, Id,i, mi) needs to be shown. It can be stated:

Lemma 14. The function f↵
i (Iu,i, Id,i, mi) is concave.

Proof. The gradient of f↵
i (Iu,i, Id,i, mi) for ↵ 6= 1 is

rf↵
i (Iu,i, Id,i, mi) =

⇥
�u,i1�

�↵
u,i . . . �u,iKu�

�↵
u,i

p(mip)�↵ �d,i1�
�↵
d,i . . . �d,iKd

��↵
d,i

⇤T
, (6.3)

whereas the gradient of f↵
i (Iu,i, Id,i, mi) for ↵ = 1 is

rf↵
i (Iu,i, Id,i, mi) =

⇥
�u,i1�

�1
u,i . . . �u,iKu�

�1
u,i

m�1
i �d,i1�

�1
d,i . . . �d,iKd

��1
d,i

⇤T
, (6.4)

where �d,i =
PKd

j=1 Id,ij�d,ij in the same manner as �u,i. Next, the Hessian matrix of
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f↵
i (Iu,i, Id,i, mi) for ↵ 6= 1 is calculated as

r
2f↵

i (Iu,i, Id,i, mi) =

= �↵

2

6666666664

�2
u,i1/�↵+1
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d,i

3

7777777775

, (6.5)

and the Hessian of f↵
i (Iu,i, Id,i, mi) for ↵ = 1 is

r
2f↵

i (Iu,i, Id,i, mi) =

=

2

6666666664

�2
u,i1/�2

u,i . . . �u,i1�u,iKu/�2
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Then, the characteristic polynomial of r2f↵
i (Iu,i, Id,i, mi) for ↵ 6= 1 is computed as

det(r2f↵
i (Iu,i, Id,i, mi) � �I) = (�1)Ku+Kd�1�Ku+Kd�2

�
↵p2(mip)
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��
, (6.7)

while the characteristic polynomial of r2f↵
i (Iu,i, Id,i, mi) for ↵ = 1 is given as

det(r2f↵
i (Iu,i, Id,i, mi) � �I) = (�1)Ku+Kd�1�Ku+Kd�2
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, (6.8)
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where I denotes the identity matrix in the corresponding dimension and � are the eigen-
values of the Hessian r

2f↵
i (Iu,i, Id,i, mi). Finally, for ↵ 6= 1, the eigenvalues can be

determined as

�1, ...,�Ku+Kd�2 = 0, (6.9a)

�Ku+Kd�1 = �↵��↵�1
u,i

�
�2

u,i1 + · · · + �2
u,iKu

�
, (6.9b)

�Ku+Kd
= �↵��↵�1

d,i

�
�2

d,i1 + · · · + �2
d,iKd

�
, (6.9c)

�Ku+Kd+1 = �↵p2(mip)
�↵�1, (6.9d)

and the eigenvalues of the Hessian r
2f↵

i (Iu,i, Id,i, mi) for ↵ = 1 are

�1, ...,�Ku+Kd�2 = 0, (6.10a)

�Ku+Kd�1 = ���2
u,i

�
�2

u,i1 + · · · + �2
u,iKu

�
, (6.10b)

�Ku+Kd
= ���2

d,i

�
�2

d,i1 + · · · + �2
d,iKd

�
, (6.10c)

�Ku+Kd+1 = �m�2
i . (6.10d)

Hence, the Hessian r
2f↵

i (Iu,i, Id,i, mi) is negative semidefinite 8↵, as all eigenvalues of the
Hessian are less than or equal to 0 and thus the function f↵

i (Iu,i, Id,i, mi) is concave 8↵.

Next, the characteristics of (6.1b) are explored.

Lemma 15. Constraint (6.1b) is convex.

Proof. Denote the left-hand side of (6.1b) as

ti(Iu,i, Id,i, mi) =
�u,i

KuP
j=1

Iu,ij�u,ij

+
�u,i

mip
+

�d,i

KdP
j=1

Id,ij�d,ij

=
�u,i

�u,i
+

�u,i

mip
+

�d,i

�d,i
.

(6.11)

Calculating the gradient of ti(Iu,i, Id,i, mi) leads to

rti(Iu,i, Id,i, mi) =
h
��u,i�u,i1

�2
u,i

. . . ��u,i�u,iKu

�2
u,i

��u,i

m2
i p

��d,i�d,i1

�2
d,i

. . .
��d,i�d,iKd

�2
d,i

iT
. (6.12)
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The Hessian of ti(Iu,i, Id,i, mi) is given as

r
2ti(Iu,i, Id,i, mi) =

=

2

6666666664

2�u,i�2
u,i1/�3

u,i . . . 2�u,i�u,i1�u,iKu/�3
u,i

...
. . .

...
2�u,i�u,iKu�u,i1/�3

u,i . . . 2�u,i�2
u,iKu/�3

u,i

0 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

2�u,i/m3
i p 0 . . . 0

0 2�d,i�2
d,i1/�3

d,i . . . 2�d,i�d,i1�d,iKd/�3
d,i

...
...

. . .
...

0 2�d,i�d,iKd
�d,i1/�3

d,i . . . 2�d,i�2
d,iKd/�3

d,i

3

7777777775

. (6.13)

Then, the characteristic polynomial of r2ti(Iu,i, Id,i, mi) is determined as

det(r2ti(Iu,i, Id,i, mi) � �I) = (�1)Ku+Kd�1�Ku+Kd�2
�
2�u,im

�3
i p�1 + �

�
⇤

�
�2 + 4�u,i�d,i�

�2
u,i�

�2
d,i⇤

�
�2

u,i1�
2
d,i1 + · · · + �2

u,iKu
�2

d,iKd

�
+

2�
�
�u,i�

�2
u,i

�
�2

u,i1 + · · · + �2
u,iKu

�
+ �d,i�

�2
d,i

�
�2

d,i1 + · · · + �2
d,iKd

���
. (6.14)

Lastly, the eigenvalues of the Hessian r
2ti(Iu,i, Id,i, mi) can be found to be

�1, ...,�Ku+Kd�2 = 0, (6.15a)

�Ku+Kd�1 = 2�u,i�
�3
u,i

�
�2

u,i1 + · · · + �2
u,iKu

�
, (6.15b)

�Ku+Kd
= 2�d,i�

�3
d,i

�
�2

d,i1 + · · · + �2
d,iKd

�
, (6.15c)

�Ku+Kd+1 = 2�u,im
�3
i p�1. (6.15d)

Thus, the Hessian r
2ti(Iu,i, Id,i, mi) is positive semidefinite and the function

ti(Iu,i, Id,i, mi) is convex, because all the eigenvalues of the Hessian are greater than or
equal to zero.

Theorem 16. The integer-relaxed optimization (6.1) is a convex optimization problem.

Proof. Given the linearity of (6.1c)-(6.1g) as well as Lemmas 14 and 15 proves that (6.1)
is a convex optimization problem.
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For the next main step of proving the polynomial-time solvability of the integer-relaxed
optimization problem, (6.1) is rewritten into a convex optimization problem with general-
ized inequality constraints. For the following derivations, define the n-dimensional rotated
quadratic cone as

Q
n
r =

�
x 2 Rn

| 2x1x2 � x2
3 + · · · + x2

n, x1, x2 � 0
 
, (6.16)

and recall the definitions of the n-dimensional power cone P
n
⇣ (5.17) as well as the expo-

nential cone E (5.18).

To start with, introduce the slack variables ski, k 2 {1, 2, 3} = Lud, i 2 U and write the
relaxed optimization problem in epigraph form, such that it reads as

min
g, Iu, Id,m, s

g (6.17a)

s.t. �

NX

i=1

h↵
i (s1i, s2i, s3i, g)  0, (6.17b)

�u,i

s1i
+

�u,i

s2i
+

�d,i

s3i
� Tmax  0, 8i 2 U , (6.17c)

(6.1c), (6.1d), (6.1e), (6.17d)

0  I{u,d},ij  1, 8i 2 U , j 2 K{u,d}, (6.17e)

1 �mi  0, 8i 2 U , (6.17f)

s1i =
KuX

j=1

Iu,ij�u,ij, 8i 2 U , (6.17g)

s2i = mip, 8i 2 U (6.17h)

s3i =
KdX

j=1

Id,ij�d,ij, 8i 2 U , (6.17i)

where

h↵
i (s1i, s2i, s3i, g) =

(
1

1�↵

�
s1�↵
1i + s1�↵

2i + s1�↵
3i

�
+ g, ↵ 6= 1

log (s1i) + log (s2i) + log (s3i) + g, ↵ = 1
. (6.18)

Proceeding, conic reformulations for the constraints (6.17b) and (6.17c) are introduced.

Lemma 17. The constraint (6.17c) can be written as

3X

k=1

uki  Tmax, (6.19a)

(uki, ski; �k,i) 2 Q
3
r 8k 2 Lud, (6.19b)

where �k,i = �u,i for k = {1, 2} and �k,i = �d,i for k = 3.
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Proof. (6.19b) is by definition transformed to

ukiski �
q

�2
k,i, uki, ski � 0. (6.20)

Dividing this expression by ski and extracting the root leads to

uki �
�k,i

ski
, uki, ski � 0, (6.21)

from where it can be observed that

3X

k=1

�k,i

ski
 Tmax. (6.22)

Due to the positiveness of �k,i and ski, which follows from the constraints (6.17g) to
(6.17i), the additional constraints uki, ski � 0 that are introduced with this reformulation
are always met.

By setting � = 1�↵ and using the slack variable uki, the constraint (6.17b) is transformed
to the constraints (6.24) for the cases ↵ 2 (0, 1) and ↵ 2 (1,1). Bringing the sum over
s�ki to the right side of the inequality results in

�g 
1

�

3X

k=1

NX

i=1

s�ki, (6.23)

which can be converted into

(6.23) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

�g� 

3X

k=1

NX

i=1

uki,

uki  s�ki, 8k 2 Lud, i 2 U ; ↵ 2 (0, 1)

g |�| �
3X

k=1

NX

i=1

uki,

uki � s�ki, 8k 2 Lud, i 2 U ; ↵ 2 (1,1)

.

(6.24a)

(6.24b)

(6.24c)

(6.24d)

Since (6.24b) and (6.24d) are identical to (5.26b) and (5.26d), the former two inequalities
can be reformulated using power cones as declared in Lemmas 7 and 8.

For the case ↵ = 1, (6.17b) must be reformulated to

�g 

3X

k=1

NX

i=1

log ski, (6.25)
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by bringing the sum over the logarithms to the right side of the inequality. (6.25) can be
written as

�g 

3X

k=1

NX

i=1

uki, (6.26a)

uki  log ski, 8k 2 Lud, i 2 U , (6.26b)

by introducing again the slack variable uki.

The inequality (6.26b) is equal to (5.34b) and thus this constraint can be reformulated
using an exponential cone as proven in Lemma 9.

Finally, the following theorem can be stated:

Theorem 18. The integer-relaxed version of the optimization problem (6.1) can be written
as a convex optimization problem with generalized inequality constraints.

Proof. Given lemmas 7, 8, 9, and 17 and the fact that (6.17b) is linear for ↵ = 0 concludes
the proof.

With the preceding derivations, the optimization problem (6.1) reads for any ↵ 2 [0,1),
written in its integer-relaxed version as a convex optimization problem with generalized
inequality constraints, as:

min
g, Iu, Id,m, s,u

g (6.27a)

s.t. �

NX

i=1

e↵i (s1i, s2i, s3i, u1i, u2i, u3i, g)  0, (6.27b)

(6.1c), (6.1d), (6.1e), (6.17e), (6.17f),

(6.17g), (6.17h), (6.17i), (6.19),
(6.27c)

where

(6.27b) =

8
>>><

>>>:

(6.17b), ↵ = 0

(6.24a), (5.27), 8k 2 Lud, i 2 U , 0 < ↵ < 1

(6.26a), (5.35), 8k 2 Lud, i 2 U , ↵ = 1

(6.24c), (5.30), 8k 2 Lud, i 2 U , ↵ > 1

. (6.28)

For the final verification of the polynomial-time solvability of the optimization problem
stated in (6.27), recall the definitions of the generalized logarithms for the quadratic, power,
and exponential cone introduced in (5.40), (5.42), and (5.44) and their corresponding
degrees. Since the rotated n-dimensional quadratic cone can be written as an ordinary
quadratic cone by a rotation of coordinates, the generalized logarithm �Q(x) is also valid for
the rotated n-dimensional quadratic cone Q

n
r . As explained in Section 5.2, the generalized
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logarithm for an ordinary inequality can be given as the ordinary logarithm that is applied
to a slack variable representing the inequality.

With the preceding definitions of the generalized logarithms for all constraints in (6.27), a
logarithmic barrier function ⇤ud(wud) can be given as

⇤ud(wud) = �

ZX

c=1

�c(wud), dom⇤ = {wud | fc(wud) �Kc 0, c = 1, ..., Z}, (6.29)

where Z = (7+2Ku+2Kd)N+2+Ku+Kd for ↵ = 0 and Z = (10+2Ku+2Kd)N+2+Ku+
Kd for ↵ 6= 0. The vector wud is composed of the vectorized matrices Iu and Id as well as
the vectors m, s, and u. The function �c(wud) denotes the generalized logarithms defined
for each generalized inequality constraint fc(wud) in the convex optimization problem with
generalized inequalities given in (6.27). As a logarithmic barrier function can be defined
for the optimization problem, the barrier method can be applied to solve the problem.

Following the same steps as in Section 5.2, a complexity analysis based on the property of
self-concordance is now presented.

Lemma 19. The logarithmic barrier function ⇤ud(wud) is self-concordant.

Proof. First, note that the sum of self-concordant functions is again self-concordant [BV04].
Hence, the logarithmic barrier for the positive orthant defined by all slack variables cor-
responding to linear inequalities is a self-concordant function, because � log x is self-
concordant. The logarithmic barriers established using the generalized logarithms defined
in (5.40), (5.42), and (5.44) are self-concordant as well, see Section 11.6 in [BV04] and
Sections 2.4 and 3.1 in [Cha09], which concludes the proof.

Lemma 20. The number of total Newton steps excluding the initial centering step for
solving (6.27) using the Barrier method can be bounded by [BV04]

TBarrier =

⇠
log(✓̄/(t(0)⇠))

log µ

⇡
⇤

✓
✓̄(µ� 1 � log µ)

�
+ log2 log2(1/⇠)

◆
. (6.30)

Proof. Given the fact that (6.27a) is linear and using Lemma 19, the objective of the
Barrier method, i.e., the function tg + ⇤ud(wud), is self-concordant. Given the additional
properties that this function is closed and the sublevel sets of the optimization problem
(6.27) are bounded leads to (6.30).

For a definition of the parameters in (6.30) the reader is referred to Lemma 12. The
variable ✓̄ stands for the sum of the degrees of the generalized logarithms �c, which for the
contemplated problem is calculated as

✓̄ =

(
(10 + 2Ku + 2Kd)N + 2 + Ku + Kd, ↵ = 0

(19 + 2Ku + 2Kd)N + 2 + Ku + Kd, ↵ 6= 0
. (6.31)
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This leads to the final theorem:

Theorem 21. The complexity of solving the optimization problem (6.27) in terms of New-
ton steps is

TBarrier = O (log ((Ku + Kd)N/⇠) ⇤ ((Ku + Kd)N + log2 log2 (1/⇠))) . (6.32)

Proof. Plugging (6.31) into (6.30) and simplifying this term leads to the bound (6.32).

6.3 Conversion Algorithms

In the previous section, it was shown that the integer-relaxed optimization problem (6.27)
can be solved optimally in polynomial time. In the same manner as for the uplink-only sce-
nario, the obtained allocation allows the assignment of fractions of resources, which breaks
the natural limitation that only integer parts of RAN and edge computing resources can
be allocated. Hence, also for the two-way communication scenario, specific approximation
algorithms for obtaining an integer solution to the optimization problem were developed
for the particular values of ↵ = 0, ↵ = 1, ↵ = 2, and ↵ ! 1. These algorithms are related
to the algorithms presented in Section 5.3 and again rely on the conversion of the continu-
ous solution to an integer resource allocation. Subsequently, the algorithms for the specific
fairness cases are introduced. Throughout the following subsections, J{u,d} indicates the
N ⇥ K{u,d} uplink/downlink RAN allocation matrix with entries J{u,d},ij 2 {0, 1} and n
denotes the N ⇥ 1 edge computing resource allocation vector with entries ni 2 N \ {0}.
I{u,d} and m are the corresponding continuous variables. Once more, it is assumed that an
admission control was performed when applying the subsequently defined approximation
algorithms. The development of such an admission policy was, however, outside the scope
of this thesis and is left as a future work.

The approximation algorithms for the two-way communication system model follow the
same procedure as the heuristics from Section 5.3. First, the continuous edge computing
allocation is converted to an integer assignment by mathematical rounding according to
Algorithm 2. Again, only L � N resources are assigned during the optimization of the
integer-relaxed problem. Next enough uplink and downlink RAN resources are allocated
such that every user fulfills its latency requirement. Finally, the remaining RAN resources
are allocated with the aim of meeting the specific fairness criterion.

6.3.1 No Fairness (Throughput Maximization)

As described in Subsection 5.3.2, the objective in the no fairness case is to maximize the
overall throughput in the network, which is achieved when every PRB is assigned to the user
who is experiencing the best channel conditions. Based on the general allocation scheme
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Algorithm 8 Resource Allocation for ↵ = 0 in the Uplink/Downlink Scenario
Input: N , Ku, Kd, L, m, Iu, Id, �u, �d

Output: n, Ju, Jd

1: function AllocA0(N , Ku, Kd, L, m, Iu, Id, �u, �d)
2: n = ECRAlloc(N,L�N,m) + 1

3: Ju = 0, Jd = 0
4: for i = 1 to N do

5: Calculate w{u,d},i =
PK{u,d}

j=1 I{u,d},ij�{u,d},ij.
6: end for

7: Create list z with users i ordered s.t. �u,i/wu,i + �d,i/wd,i is decreasing.
8: while list z is non-empty do

9: for user i in list z do

10: for uplink u and downlink d do

11: Find arg max
j

I{u,d},ij�{u,d},ij.

12: if 9 more than one j then

13: Choose randomly between those j.
14: end if

15: Allocate PRB j to user i, update J{u,d},j and set I{u,d},j = 0.
16: end for

17: Calculate delay �i using ni and Ju,i, Jd,i.
18: if �i  Tmax then

19: Remove user i from list z.
20: end if

21: end for

22: end while

23: for all non-allocated uplink/downlink PRBs k do

24: Find arg max
i

�{u,d},ik.

25: Allocate PRB k to user i and update J{u,d},k.
26: end for

27: return n, Ju, Jd

28: end function

introduced previously, this objective is pursued in Algorithm 8 while still all resource and
delay constraints are met. The complexity of Algorithm 8 is O(N + Ku + Kd).

6.3.2 Proportional Fairness

In the proportional fairness case the uplink and downlink RAN resources are handled sep-
arately in the approximation algorithm once every user complies with its delay constraint.
The reason for this approach is that the data rate a user is assigned in the downlink is
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Algorithm 9 Resource Allocation for ↵ = 1 in the Uplink/Downlink Scenario
Input: N , Ku, Kd, L, m, Iu, Id, �u, �d

Output: n, Ju, Jd

1: function AllocA1(N , Ku, Kd, L, m, Iu, Id, �u, �d)
2: Follow lines 2 to 22 from Alg. 8.
3: for i = 1 to N do

4: Calculate w{u,d},i =
PK{u,d}

j=1 J{u,d},ij.
5: end for

6: Create lists z{u,d} with users i ordered s.t. w{u,d},i is increasing.
7: for all non-allocated uplink/downlink PRBs k do

8: Take z{u,d}(1), find arg min
k

⇣
max

i

�
�{u,d},ik

�
� �{u,d},z{u,d}(1)k

⌘
.

9: Allocate PRB k to user z{u,d}(1) and update J{u,d},k.

10: Set w{u,d},z{u,d}(1) =
PK{u,d}

j=1 J{u,d},z{u,d}(1)j.
11: Reorder list z with users i s.t. w{u,d},i is increasing.
12: end for

13: return n, Ju, Jd

14: end function

independent of the data rate a user is assigned in the uplink once the latency requirement
is fulfilled. Since the objective is a sum of the logarithms of these two data rates, the aim
of the designed heuristic is to give an equal amount of uplink or downlink resources to
every user and consider the two links as two separated networks. The followed strategy is
detailed specified in Algorithm 9 with its complexity being O(N + Ku + Kd).

6.3.3 Delay Minimization

In the same manner as in Subsection 5.3.4, due to the lack of the knowledge of all allocation
combinations, the objective of the proposed approximation algorithm is to minimize the
maximum delay any user is experiencing after fulfilling all delay constraints. However,
this strategy is followed independently for the uplink RAN and the downlink RAN, as
the original goal of delay minimization is to minimize the overall delay present in the
system. Because the reciprocals of the uplink and downlink data rates are again added in
the objective function, the assignments in one network part do not influence the objective
value from the other network part, which is the reason why the two links can be considered
separately. The resulting approximation algorithm is summarized in Algorithm 10. Its
complexity is once more O(N + Ku + Kd).
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Algorithm 10 Resource Allocation for ↵ = 2 in the Uplink/Downlink Scenario
Input: N , Ku, Kd, L, m, Iu, Id, �u, �d

Output: n, Ju, Jd

1: function AllocA2(N , Ku, Kd, L, m, Iu, Id, �u, �d)
2: Follow lines 2 to 22 from Alg. 8.
3: for i = 1 to N do

4: Calculate w{u,d},i =
PK{u,d}

j=1 J{u,d},ij�{u,d},ij.
5: end for

6: Create lists z{u,d} with users i ordered s.t. w{u,d},i is increasing.
7: for all non-allocated uplink/downlink PRBs k do

8: Take z{u,d}(1), find arg min
k

⇣
max

i

�
�{u,d},ik

�
� �{u,d},z{u,d}(1)k

⌘
.

9: Allocate PRB k to user z{u,d}(1) and update J{u,d},k.

10: Set w{u,d},z{u,d}(1) =
PK{u,d}

j=1 J{u,d},z{u,d}(1)j�{u,d},z{u,d}(1)j.
11: Reorder list z{u,d} with users i s.t. w{u,d},i is increasing.
12: end for

13: return n, Ju, Jd

14: end function

6.3.4 Max-Min Fairness

Lastly, also in the max-min fairness scenario, i.e., ↵ ! 1, the remaining PRBs in the uplink
and downlink RAN are distributed separately from each other. The motivation for this
approach is again the mathematical character of the objective function, meaning that the
uplink and downlink parts contribute independently to the overall utility because they are
connected via a sum. Redistributions of blocks only a↵ect the downlink/uplink data rates
of other users, so both the downlink and the uplink can be considered as a self-contained
system once the latency requirements are fulfilled. The corresponding heuristic following
this scheme is presented in Algorithm 11 with its complexity given as O(N + Ku + Kd).

6.4 Performance Evaluation

Applying the adjusted approximation algorithms from Section 6.3 in simulations, their
performance is evaluated in the following. First, the simulation setup is shortly recapit-
ulated and adapted to the two-way communication scenario. The benchmark allocation
procedure follows the same principle as in Chapter 5 with the only di↵erence being that
a downlink PRB is assigned in each iteration as well. Hence, an extended description
including an algorithm is omitted here. Subsections 6.4.2 to 6.4.5 of this chapter address
the performance of the heuristics for the specific fairness cases.
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Algorithm 11 Resource Allocation for ↵ ! 1 in the Uplink/Downlink Scenario
Input: N , Ku, Kd, L, m, Iu, Id, �u, �d

Output: n, Ju, Jd

1: function AllocAInf(N , Ku, Kd, L, m, Iu, Id, �u, �d)
2: Follow lines 2 to 22 from Alg. 8.
3: for i = 1 to N do

4: Calculate w{u,d},i =
⇣PK{u,d}

j=1 J{u,d},ij�{u,d},ij

⌘|1�↵|
.

5: end for

6: Create lists z{u,d} with users i ordered s.t. w{u,d},i is increasing.
7: for all non-allocated uplink/downlink PRBs k do

8: Take z{u,d}(1), find arg min
k

⇣
max

i

�
�{u,d},ik

�
� �{u,d},z{u,d}(1)k

⌘
.

9: Allocate PRB k to user z{u,d}(1) and update J{u,d},k.

10: Set w{u,d},z{u,d}(1) =
⇣PK{u,d}

j=1 J{u,d},z{u,d}(1)j�{u,d},z{u,d}(1),j

⌘|1�↵|
.

11: Reorder list z{u,d} with users i s.t. w{u,d},i is increasing.
12: end for

13: return n, Ju, Jd

14: end function

6.4.1 Simulation Setup

The 5G trace with data measured in the Republic of Ireland [RLSQ20] was again used
for the input CQI values with the corresponding data rates given in Table 4.1. The same
method as described in Subsection 5.4.1 was used to obtain the per-block rates of every
user from the measurements. It is assumed that a user is experiencing the same channel
conditions in the uplink and downlink, as the di↵erence in the user’s position and the
time-dependence of the channel is negligible due to the strict latency requirement. The
subcarrier spacing is again 30 kHz, such that the PRB width is 360 kHz and a frame consists
of 20 slots [ETS22b]. The total number of uplink PRBs is Ku = 80 and the number of
downlink PRBs is Kd = 100. Once more, at least 1 slot and at most 6, 10, or 20 slots
are allocated to each user in the uplink and downlink, respectively, which follows from the
latency requirement and the duration of one slot (0.5 ms). The number of edge computing
resources is L = 120 and the processing rate per resource is 500 kbps. The size of the
data sent from the user to the BS is 6 kbit, while the size of the packets sent from the
BS to the users is 4 kbit. For all types of fairness, simulation data were again gathered
for N = {5, 8, 10} and for Tmax = {3, 5, 10} ms using MATLAB R2021b together with
CVX [GB14, GB08] and the Mosek optimizer [MOS22].
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6.4.2 Results for No Fairness (Throughput Maximization)

The same evaluation plots as presented in Section 5.4 are presented in this section. Fig-
ures 6.1 to 6.3 show the results for the no fairness, i.e., throughput maximization, case.
Thereby (and also in the subsequent plots), RG denotes again the relative gap that was
set when solving the integer optimization problem. In Figures 6.1 and 6.3 it is discernable
that the approximation algorithm outperforms the benchmark by far and is very close to
the integer and continuous (average) optimum, indicating the very good performance of
the algorithm. The averages in Figure 6.3 and all following average plots are again taken
over 100 measurement points. When looking at the average objective values for a specific
number of users, it is observable that the average value decreases when tightening the de-
lay constraint. This can be explained with the allocation of more PRBs to users that are
experiencing worse channel conditions, which is needed to fulfill their latency requirements.
In Figure 6.2 the deviation of the objective value acquired from the heuristic to the integer
and continuous optimum is shown in percent. Some deviations to the integer optimum are
negative, indicating that the heuristic obtained a better result than the integer optimum.
Of course, this is not possible and the reason for this observation is the NP-hardness of
the integer optimization problem, which sometimes makes it impossible to solve the op-
timization with a high enough accuracy. When comparing the objective values from the
approximation algorithm and the continuous optima, the maximum deviation that can be
observed among 100 data points is 1.79 %, while the average deviation is 0.47 %. This
proves the very good performance of the approximation algorithm.

6.4.3 Results for Proportional Fairness

The results for the proportional fairness case are shown in Figures 6.4 to 6.6. Looking at
the average objective value from 100 measurement points and at the single measurements
for di↵erent CQI inputs in Figure 6.6 and Figure 6.4, respectively, it is observable that the
benchmark algorithm is outperformed by the approximation algorithm. Due to the sim-
ilarity of the objectives of the Round-Robin principle and the proportional fairness, i.e.,
providing every user with the same amount of resources, the results from the benchmark
are much closer to the heuristic objective values and the optima than for ↵ = 0. However,
since the Round-Robin algorithm neglects the per-PRB rates of each user, it shows a poorer
performance than the specific algorithm. Another observation from Figure 6.6 is that the
objective values do not depend on the delay constraint but rather on the number of users
that are present in the network. This was already perceived for the uplink-only scenario
and can be explained with the gradient characteristics of the natural logarithm, cf. Sub-
section 5.4.4. Finally, from Figure 6.5, it is recognizable that the approximation algorithm
exhibits an excellent performance. The maximum deviation to the integer optimum among
100 data points is 0.39 %, whereas the average deviation is only 0.27 %.
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6.4.4 Results for Delay Minimization

When looking at the results for the delay minimization that are shown in Figures 6.7 to 6.9,
it is observable that the plots are very similar to the uplink-only scenario. Specifically, the
heuristic once more outperforms the benchmark Round-Robin algorithm and the results
are very close to the integer optimum. The inverse dependence of the objective value on
the number of users already mentioned in Subsection 5.4.5 can also be identified for the
present scenario in Figure 6.9. For the measurements with IDs 15 and 16 the performance
is again poorer than compared to the average results, with the maximum deviation of the
heuristic objective value from the integer optimum being 11.69 % among 100 data points,
while the average is only 1.46 %. The reason is the presence of a user experiencing very bad
channel conditions compared to all other users, which has a considerable impact due to the
mismatch between the original goal of overall delay minimization and the objective of the
approximation algorithm introduced in Subsection 6.3.3. It is noticeable that the impact
gets smaller the higher the number of users in the network is. Although these outliers can
be detected, the overall performance of the approximation is still very good.

6.4.5 Results for Max-Min Fairness

Finally, also for the max-min fairness, satisfying evaluation results are given in Figures 6.10
to 6.12. For the two-way communication scenario, the highest possible ↵ that allowed for
acceptable simulation outcomes was ↵ = 12. The benchmark allocation scheme performs
very poor in the presence of a user with bad channel conditions, which can be seen in
Figure 6.10 for the measurements 15 and 16. Additionally, in Figure 6.11, it is observable
that also the approximation shows a much larger deviation for these measurements than
for other inputs. Moreover, the deviation is much larger than for the uplink-only scenario,
cf. Figure 5.11. This observation is caused by two di↵erent factors: The first reason is that
the minimum number of RAN resources for scenario 1 is 120, whereas it is 80 for scenario 2.
Thus, the minimum data rate that any user is experiencing is bigger for the first scenario,
such that the negative influence on the objective is smaller. The second reason is that
↵ = 12 is only an approximation of ↵ ! 1. Therefore, the presented results are only an
approximation of the max-min fairness. When comparing the minimum data rate that any
user is undergoing in the optimal continuous solution and in the solution from the heuristic,
it is perceivable that this data rate is larger in the solution from the heuristic. Thus, the
heuristic actually provides a better solution in the sense of max-min fairness. However,
since ↵ = 12 is not equal to max-min fairness, there are allocation scenarios where the
minimum data rate a user is experiencing is worse than observed in the heuristic solution
but the overall objective value is still better. Concluding, this implies that the degraded
performance of the approximation algorithm is only detectable due to the approximation
of ↵ ! 1 and will diminish the greater ↵ gets. Besides these studies, the results shown in
Figure 6.12 are similar to the uplink-only scenario. Due to the inverse dependence of the
objective to the data rate of each user, the overall objective value gets smaller the higher
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Table 6.1: Maximum and average deviation of the approximation algorithm objective val-
ues from the continuous/integer optimum among 100 data points in the up-
link/downlink scenario

↵ 0 1 2 12
max. dev. from int. opt. in % — 0.39 11.69 —
avg. dev. from int. opt. in % — 0.27 1.46 —

max. dev. from cont. opt. in % 1.79 0.39 11.75 7.85
avg. dev. from cont. opt. in % 0.47 0.28 1.58 0.10

the number of users is. Even though the maximum deviation from the heuristic to the
continuous optimum among 100 data points is 7.85 %, the average deviation is only 0.1 %,
which once more certifies the excellent performance of the approximation algorithm.

6.5 Summary

Jointly allocating RAN and processing resources to vehicular users so that their delay con-
straints are met, while simultaneously providing certain types of fairness, was considered in
this chapter. The contemplated scenario was a two-way communication scenario, implying
that the users sent data to the BS, where the data was processed, and a response packet
was sent back to each user. Thus, a full round-trip was considered. The integer-relaxed
allocation optimization problem for this scenario is still solvable in polynomial time, and
the approximation algorithms with polynomial-time complexity introduced in Section 5.3
could be adjusted for all types of fairness. The performance of the heuristics is very close
to the optimum for all cases. Conclusively, the key results regarding the deviation of the
objective values from the integer and continuous optimal values are given in Table 6.1.
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6.5 Summary

Figure 6.1: Obj. values for various CQI inputs for ↵ = 0 in the up-/downlink scenario.
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Figure 6.2: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 0 in the up-/downlink scenario.

Figure 6.3: Average objective values for ↵ = 0 in the up-/downlink scenario.
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Figure 6.4: Obj. values for various CQI inputs for ↵ = 1 in the up-/downlink scenario.
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Figure 6.5: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 1 in the up-/downlink scenario.

Figure 6.6: Average objective values for ↵ = 1 in the up-/downlink scenario.
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6.5 Summary

Figure 6.7: Obj. values for various CQI inputs for ↵ = 2 in the up-/downlink scenario.

81



6 Scenario 2: Uplink and Downlink Communication with Edge Processing

Figure 6.8: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 2 in the up-/downlink scenario.

Figure 6.9: Average objective values for ↵ = 2 in the up-/downlink scenario.
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6.5 Summary

Figure 6.10: Obj. values for various CQI inputs for ↵ = 12 in the up-/downlink scenario.
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Figure 6.11: Deviation of the heuristic solution from the continuous/integer optimum for
↵ = 12 in the up-/downlink scenario.

Figure 6.12: Average objective values for ↵ = 12 in the up-/downlink scenario.
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7 Comparison: Mobile Edge versus
Centralized Cloud Computing

Lastly, after introducing a MEC system and developing resource allocation schemes that
provide fairness among the users, this MEC system is compared to a CCC system employed
by an automotive OEM. To this end, real data from vehicles was gathered that are explained
in more detail in the following. Eventually, the overall delays achieved with the CCC
system are compared to the latencies experienced using the devised MEC system. The
CCC system for vehicular users requesting a service is depicted in Figure 7.1.

7.1 Detailed Data Analysis

Two di↵erent types of data were gathered to model the CCC system, as data for the entire
process of transmitting a service request, processing this request, and receiving a response
were not available. On the one hand, the average round trip ping duration from a vehicle
located anywhere in Europe, the Middle East, or Africa (EMEA) to the CCC servers was
evaluated to get insights into the transmission delays. On the other hand, the processing
times of two di↵erent services provided to the vehicular users were assessed to exemplarily
assess the processing times of URLLC services. The following two subsections present a
detailed analysis of these data.

7.1.1 Ping Durations

For the ping durations, 99 average ping duration values of various vehicular users were
collected for 20 consecutive days. These average values are automatically and periodically
reported and saved in one of the OEM’s databases. One average value is thereby taken
over 5 single measurements, where the 5 measurements stem from a single vehicle. The
roundtrip ping duration is determined by a simple ping test conducted automatically and
periodically by the vehicle, where the answering entity is a proxy server that is upstream
of the actual processing server. A violin plot of the 99 average values is depicted for every
day in Figure 7.2, where it is marked whether the values were collected on a weekday
(Monday to Friday) or on the weekend (Saturday or Sunday). First, it can be noticed that
there is no di↵erence between the days, i.e., the violin plots have the same shape for every
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Backhaul

Central Cloud Servers

Figure 7.1: Illustration of the centralized cloud computing scenario.

Table 7.1: Mean, median and standard deviation (in ms) of the average ping duration
measurement values per day

Day 1 2 3 4 5 6 7 8 9 10
Mean 80.41 79.22 86.17 77.64 92.79 79.12 90.59 98.20 88.09 87.38

Median 67.0 71.0 72.0 68.0 72.0 65.0 72.0 74.0 71.0 67.0
Std. Dev. 57.48 41.33 54.03 54.29 82.23 62.23 68.10 105.92 63.10 70.21

Day 11 12 13 14 15 16 17 18 19 20
Mean 92.83 93.57 85.29 83.01 85.54 82.92 83.17 75.40 85.88 70.65

Median 75.0 69.0 70.0 72.0 72.0 69.0 66.0 65.0 68.0 66.0
Std. Dev. 78.77 80.67 63.31 53.99 64.53 53.36 57.04 53.35 75.91 33.12

day. Additionally, it is observable that there are always some outliers, which usually reach
values in the range around 400 ms. Only in three cases the outliers significantly exceed this
value. The large number of outliers can be explained by the wide geographic area in which
the vehicular users are located. This wide geographic area is also reflected when looking at
the standard deviations of the 99 average measurement points per day given in Table 7.1.
The mean and median values (see Table 7.1), are however quite stable, as they stay in the
range between 70 and 99 ms or 65 and 75 ms, respectively. These comparably low values
indicate a bias in the distribution of the vehicular users within the EMEA region, meaning
that there are probably more users closer to the CCC server located in central Europe.
Due to privacy reasons, the locations of the vehicular users corresponding to an average
ping duration value were not available and could thus not be analyzed. The maximum
average value of 5 measurements that can be observed is 889 ms, while the minimum value
is only 20 ms, which again reflects the extent of the EMEA region. The average value
of all measurement data is 84.9 ms, the median of the data is 70 ms, and the standard
deviation is 65.5 ms, indicating once more the bias in the distribution of the users in the
contemplated geographic area.
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7.1 Detailed Data Analysis

7.1.2 Processing Rates

The cloud server structure consists of an upstream proxy server and processing servers.
The proxy server is distributing the service requests to the actual processing servers where
the requests are handled. Therefore, values for two di↵erent time spans were gathered:
Firstly, the pure processing times of the processing servers that actually process the service
requests, and secondly, the time span accounting for the entire time period between the
reception and the response of the service request at the proxy server. Additionally, the
data sizes of the requests associated with these processing times were collected. For 20
consecutive days, data were gathered for a time span of one hour each. As the smallest
resolution in time was 30 s, it could happen that the average of multiple requests constitutes
one data point, as multiple requests can occur during these 30 s. Hence, for every day, 120
data points (processing rates) were calculated by dividing the data sizes by the processing
times in the optimal case. However, since it can happen that a service is not requested
during a 30 s interval, it could be that less than 120 data points were calculated per day.
The processing rates must be interpreted such that they describe the rate of handling a
service request of one single user, i.e., every data point is the processing rate experienced
by one single user.

Two di↵erent services were contemplated during the data acquisition. The first one is
called hybrid voice dialog (HVD) and enables an intelligent personal assistant service like
Amazon’s Alexa or Apple’s Siri. The second service is called secure time (ST) and provides
a monitored time base in a secure manner, which is essential for the operation of the vehicle.
Figures 7.3 to 7.6 depict violin plots with the processing rates per day for both services as
well as for both time spans, i.e., the pure processing time as well as the entire time span
accounting for the forwarding and processing. Thereby, in the title of each violin plot, WE
denotes that this day was on the weekend, and WD denotes that this day was a workday.
The number in brackets denotes the number of 30 s intervals in which at least one service
request was received.

Multiple observations can be made from these plots: First, it can be seen that the pure
processing rates are much larger than the processing rates that include the forwarding of
the requests. This is an apparent observation, as the time spans including the forwarding
are of course larger than the time span accounting for the pure processing of the data.
Secondly, both for the HVD and for the ST service, the pure processing rates on day 7
are much lower than for all other days. Additionally, large parts of the processing rates
on day 20 are very close to 0. When checking the validity of these data, it became clear
that the reason for these values is a database failure. Thus, these values (days) will not be
considered any further or when calculating statistical parameter values of the entire data.

When comparing the HVD service with the ST service, it is noticeable that the number of
30 s intervals where at least one request was received is much larger for the ST service than
for the HVD service. The reason for these incidences is the character of the services. The
HVD service is a human triggered service, whereas the ST service is an automated service
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that is requested periodically by the vehicle. Additionally, due to the dependency of the
HVD service on humans, the number of 30 s intervals with at least one request is lower
for weekend days than for workdays for the HVD service, as more people use their car
during the week. Analyzing the pure processing rates of the HVD and the ST service, it is
observable that the average processing rates of the HVD service request are much bigger
than the processing rates of the ST service, cf. Tables 7.2 and 7.4. Note the di↵erent
units of the two tables. The reason for this deviation is a configuration of the servers,
as the HVD service is more latency critical than the ST service. However, when looking
at the processing rates calculated including the forwarding (see Tables 7.3 and 7.5), it is
discernable that the processing rates are of the same order for both services. This reveals
the large influence of the forwarding overhead of a service request.

Looking at the shapes of the violins (related to the units) and the values for the standard
deviations for both the pure processing rates as well as the processing rates including
forwarding, it is perceptible that the processing rates for the ST service are much more
stable than for the HVD service. The standard deviations of all HVD data are 9.14 Mbps
or 62.89 kbps for the pure processing time and the processing time including forwarding,
respectively, while they are 0.25 · 105 bps or 0.67 kbps for the ST service. A reason for this
di↵erence could be that the ST service characteristics are always the same and predictable.
In contrast, the HVD service depends highly on the actual spoken request by the human,
which explains the large variations in the processing time of this service.

Lastly, when looking at the outliers, for the HVD service, a couple of outliers can be
observed in the positive direction, meaning that much higher processing rates were ex-
perienced by the user. Opposed to that, for the ST service, few outliers are discernable
mainly in the negative direction, i.e., the user experienced a slightly lower processing rate.
The median and mean values of the processing rates highlight this observation. While
the overall mean value (8.21 Mbps) is larger than the median value (4.87 Mbps) for the
HVD service for the pure processing rates, for the ST service the median (2.48 · 105 bps) is
almost equal to the mean value (2.46 · 105 bps). Similar proportions can be recognized for
the processing rates including forwarding, i.e., for the HVD service, the average of all data
(36.27 kbps) is again larger than median (32.98 kbps), while for the ST service the median
(24.16 kbps) is slightly larger than the average value of the dataset (24.05 kbps).

7.2 Latency Comparisons

For a comparison of the minimum achievable latencies for a URLLC service request us-
ing either the MEC or the CCC system, the entire procedure of transmitting a request,
forwarding the request at the proxy server, processing the request, and transmitting a re-
sponse packet is modelled for the CCC server in the following. For the transmission parts,
the average ping duration value is used to model the latency, i.e., the duration of sending
a packet to the proxy server and receiving a packet from the proxy server is assumed to be
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Table 7.2: Mean, median and standard deviation (in Mbps) of the pure processing rates of
the hybrid voice dialog service per day

Day 1 2 3 4 5 6 7 8 9 10
Mean 5.51 3.6 10.77 6.6 6.28 6.08 0.02 5.26 8.13 6.98

Median 3.2 1.83 3.94 2.95 4.22 3.78 0.02 3.6 4.55 5.02
Std. Dev. 7.51 4.99 12.61 8.18 6.41 6.05 0.03 6.3 8.0 7.43

Day 11 12 13 14 15 16 17 18 19 20
Mean 9.08 9.58 7.79 9.27 8.64 14.42 9.94 11.56 8.89 3.41

Median 4.82 7.55 6.07 6.59 4.54 12.01 6.05 8.5 7.02 0.27
Std. Dev. 9.89 8.93 6.84 9.13 10.31 12.46 12.96 10.04 6.57 7.94

Table 7.3: Mean, median and standard deviation (in kbps) of the processing rates of the
hybrid voice dialog service per day when considering the entire processing time
between the reception and the response of the service request at the proxy server

Day 1 2 3 4 5 6 7 8 9 10
Mean 22.43 15.29 45.92 30.81 21.96 42.66 45.41 28.75 38.65 24.51

Median 24.09 7.98 41.18 37.4 13.98 37.7 34.33 28.64 40.52 20.87
Std. Dev. 15.69 16.69 36.94 26.44 20.7 50.3 130.81 16.16 20.58 18.42

Day 11 12 13 14 15 16 17 18 19 20
Mean 35.71 34.27 64.07 33.78 40.22 45.09 34.61 51.01 37.65 30.14

Median 40.98 32.62 32.62 33.68 41.98 48.17 33.65 42.08 36.55 30.26
Std. Dev. 24.44 24.81 214.92 26.22 23.76 23.34 25.67 76.39 23.26 22.73

Table 7.4: Mean, median and standard deviation (in 105 bps) of the pure processing rates
of the secure time service per day
Day 1 2 3 4 5 6 7 8 9 10
Mean 2.7 2.27 2.4 2.56 2.55 2.34 0.01 2.26 2.36 2.42

Median 2.69 2.26 2.41 2.54 2.53 2.35 0.01 2.26 2.36 2.43
Std. Dev. 0.17 0.11 0.13 0.14 0.14 0.14 0.0 0.14 0.13 0.23

Day 11 12 13 14 15 16 17 18 19 20
Mean 2.61 2.37 2.34 2.6 2.39 2.46 2.52 2.67 2.09 0.83

Median 2.63 2.54 2.47 2.59 2.4 2.47 2.61 2.7 2.13 0.08
Std. Dev. 0.23 0.61 0.54 0.15 0.14 0.12 0.46 0.29 0.32 1.08

tCCC,t = 84.9 ms. Although the ping measurements are conducted using quite small ping
packets, this value gives a lower bound on the achievable minimum latency, as normal data
packets with larger size would of course experience larger delays. For the latency caused
by the CCC server due to forwarding and processing of the service request, the average
processing rate including forwarding of the HVD service is used to model the processing
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Table 7.5: Mean, median and standard deviation (in kbps) of the processing rates of the
secure time service per day when considering the entire processing time between
the reception and the response of the service request at the proxy server

Day 1 2 3 4 5 6 7 8 9 10
Mean 24.36 24.43 24.43 24.1 24.29 24.09 24.27 24.11 24.17 23.95

Median 24.4 24.47 24.5 24.15 24.27 24.17 24.26 24.26 24.23 24.12
Std. Dev. 0.89 0.6 0.51 0.39 0.33 0.44 0.37 1.13 0.46 0.53

Day 11 12 13 14 15 16 17 18 19 20
Mean 23.75 23.61 24.11 23.95 24.21 24.31 23.95 23.77 23.56 23.21

Median 23.92 23.82 24.15 24.06 24.26 24.32 24.04 24.0 23.78 23.63
Std. Dev. 0.68 0.86 0.34 0.48 0.54 0.42 0.44 0.63 0.81 1.35

rate for a URLLC service, as the latency requirements for the HVD service are stricter than
for the ST service. The processing rate is hence assumed to be 36.27 kbps. This processing
rate is roughly one order of magnitude smaller than the processing rate that was assumed
for the MEC system. Opposed to that, the average of the pure processing rate of the HVD
service (8.21 Mbps) is roughly one order of magnitude larger than the processing rates of
the MEC system. Naturally, due to the high amount of available computing resources,
the experienced processing rate when using the CCC server is larger than for the MEC
system. However, due to the forwarding overhead and the high amount of incoming service
requests, the overall experienced processing rate from the CCC server is smaller than the
processing rate experienced when using the MEC system. With the packet sizes assumed
to be 6 kbit and 4 kbit in the uplink and downlink respectively, the latency caused by the
CCC server is on average equal to

tCCC,p =
6 kbit + 4 kbit

36.27 kbps
= 275.71 ms. (7.1)

Adding up the transmission and processing delays, the average overall delay that a service
request experiences when it is served by the CCC server is equal to

tCCC,tot = tCCS,p + tCCS,t = 275.71 ms + 84.9 ms = 360.61 ms. (7.2)

Finally, this leads to the conclusion that the latencies achievable with the CCC system are
two orders of magnitude larger than the latencies achievable with the MEC system. This
large overhead has two main reasons. First, the transmission latencies are much larger, as
the CCC server is a lot farther away from the vehicular user than the MEC server that
is co-located with the nearest BS. The second reason is the forwarding overhead caused
by the proxy server that is caused by the large amount of service requests that need to
be handled. Even if the assumption that a MEC server is associated with every BS is
idealized, the experienced latencies could definitely be reduced when a more distributed
computing setup is employed.
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Figure 7.2: Violin plots for the average ping durations per day.
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Figure 7.3: Violin plots for the processing rates per day for the hybrid voice dialog when
considering the pure processing time.
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Figure 7.4: Violin plots for the processing rates per day for the hybrid voice dialog when
considering the entire processing time between the reception and the response
of the service request at the proxy server.
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Figure 7.5: Violin plots for the processing rates per day for the secure time when consid-
ering the pure processing time.

94



7.2 Latency Comparisons

20

25

1 (WE, 120)

20

22

24

26

2 (WE, 120)

22

24

26

3 (WD, 120)

22

24

4 (WD, 120)

23

24

25

5 (WD, 120)

22

23

24

25

6 (WD, 120)

23

24

25

7 (WD, 120)

15

20

25

8 (WE, 120)

22

24

9 (WE, 120)

22

24

10 (WD, 120)

22

24

11 (WD, 120)

20

22

24

12 (WD, 120)

23

24

25

13 (WD, 120)

22

24

14 (WD, 120)

22

24

26

15 (WE, 120)

24

26

16 (WE, 120)

23

24

25

17 (WD, 120)

22

24

18 (WD, 120)

20

22

24

19 (WD, 120)

15

20

25

20 (WD, 120)

P
ro

ce
ss

in
g

R
at

e
[k

b
p
s]

Median

Mean

Outliers

Figure 7.6: Violin plots for the processing rates per day for the secure time when consid-
ering the entire processing time between the reception and the response of the
service request at the proxy server.
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8 Conclusions

In the previous chapters, approaches on near-optimal RAN and edge computing resource
allocation were presented. After outlining related work on this topic, the system model
that was considered in this thesis was introduced. Next, admission control policies for
homogenous and heterogenous sets of users were derived for a scenario consisting of uplink
communication and edge processing. Given the availability of su�cient resources guaran-
teed by applying the admission policy, near-optimal resource allocation schemes for the
uplink-only scenario were developed for the cases no fairness, proportional fairness, de-
lay minimization, and max-min fairness. Subsequently, the analyses and approximation
algorithms were extended to a scenario including downlink communication. Finally, the
achieved MEC delays were compared to a CCC system from an automotive OEM.

8.1 Summary

After proving the analytical intractability of the equal-share approach, the maximum num-
ber of users from a homogenous set that can be served by the network with a reliability
of 100 % was found along the Pareto Frontier as a trade-o↵ between RAN and computing
resources. Based on this result, an algorithm was designed to find the maximum number
of users from a homogenous set that can be handled with general reliability 1 � ✏. For a
heterogenous set of users, specific conditions that a newly arriving user must fulfill in order
to be admitted to the network were determined. The theoretical results showed perfect
concordance with conducted simulations and comparisons to an approach based on sepa-
rate consideration of network and computing resources indicated the superior performance
of the devised policies.

By reformulating the continuous relaxation of the original integer nonlinear optimization
problem for the joint resource allocation of RAN and edge computing resources into a
convex optimization problem with generalized inequality constraints, it can be proven that
an optimal solution to this problem can be found in polynomial time for both the uplink-
only and the two-way communication scenario. Employing insights from the continuous
resource assignment results, approximation algorithms relying on the conversion of the op-
timal continuous allocation results to integer assignments can be designed for near-optimal
integer resource allocation. These approximation algorithms operate in two steps: First,
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all processing resources and the amount of RAN resources needed to fulfill a user’s la-
tency requirement are assigned. Then, the remaining PRBs are allocated according to the
specified fairness metric. For both the uplink-only and the two-way communication sce-
nario, the conducted simulations prove a superb performance of the devised approximation
algorithms, where the largest deviation from the continuous optimum among all fairness
metrics and scenarios is 11.75 %, while the largest average deviation is 1.58 %.

Two types of data were analyzed from an existing CCC system employed by an automotive
OEM. On the one hand, the average transmission latency from vehicular users located in
the EMEA region was determined, and on the other hand, the average processing rate of a
server setup including a proxy server was investigated by looking at two di↵erent services.
Using these discovered values, it was shown that the devised MEC system allows for a
reduction in the experienced delay by two orders of magnitude.

8.2 Prospects

In order to fulfill the reliability and latency demands of users requesting services based on
URLLC, MEC solutions will play a major role in the development of the network archi-
tectures of the future. On the one hand, network operators need to employ appropriate
admission policies suited for these systems to maximize the number of users that can be
served in order to maximize their revenue. On the other hand, these admission policies need
to ensure the availability of su�cient resources, such that the operators can adhere to the
SLAs. In combination with these admission policies, suitable resource allocation schemes
need to be devised, that are based on already existing specifications of the working prin-
ciples of 5G NR. The interplay of fronthaul and backhaul networks, computing resources,
and storage resources will thereby be an important aspect and pose a significant challenge.

It is the responsibility of both the economic and the academic community to develop
such admission control policies and resource allocation schemes. As already stated in
Chapter 6, the design of an admission policy for the two-way communication scenario
constitutes a future work that should be followed. Additionally, investigating guidelines
that also take varying channel conditions in the frequency domain into account represent
an interesting research approach. Regarding the presented resource allocation schemes,
the implementation of the approximation algorithms in a testbed could prove the actual
applicability in a real setup and also provide interesting insights in the performance in
reality. Finally, as outlined previously, even more enhanced scenarios than the present one,
including, e.g., network allocated storage resources, pose research problems that should be
addressed in the future.
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