
Specification-Driven Neural Network Reduction for
Scalable Formal Verification

Tobias Ladner
Technical University of Munich
Garching b. Munich, Germany
tobias.ladner@tum.de

Matthias Althoff
Technical University of Munich
Garching b. Munich, Germany

althoff@tum.de

Abstract

Formal verification of neural networks is essential before their deployment in
safety-critical settings. However, existing methods for formally verifying neural
networks are not yet scalable enough to handle practical problems that involve a
large number of neurons. In this work, we propose a novel approach to address this
challenge: A conservative neural network reduction approach that ensures that the
verification of the reduced network implies the verification of the original network.
Our approach constructs the reduction on-the-fly, while simultaneously verifying
the original network and its specifications. The reduction merges all neurons of a
nonlinear layer with similar outputs and is applicable to neural networks with any
type of activation function such as ReLU, sigmoid, and tanh. Our evaluation shows
that our approach can reduce a network to less than 5% of the number of neurons
and thus to a similar degree the verification time is reduced.

1 Introduction

Neural networks achieve impressive results in a variety of fields such as autonomous cars [1].
However, the applicability of neural networks in safety-critical environments is still limited as small
perturbations of the input can lead to unexpected outputs of the neural network [2]. Thus, the formal
verification of neural networks gained importance in recent years [3], where approaches rigorously
prove that the output of neural networks meets given specifications. These approaches are often
based on satisfiability modulo theory solvers [4, 5], symbolic interval propagation [6, 7], or deploy
reachability analysis [8, 9, 10, 11]. However, scalability is still a major issue for all of them [3].

While several approaches [12, 13] exist which reduce the size of the network by approximating the
original network, to our best knowledge, there exist only a few reduction approaches with formal
error bounds. An early approach [14] splits the neurons based on analytic properties and merges
similar neurons afterward. This work is extended using interval neural networks [15, 16] and residual
reasoning [17]. More closely related to our work is the approach in [18], which approximates the
neural network output by merging neurons using clustering algorithms on a given dataset, however,
80− 90% of the neurons remain when formal error bounds are demanded. Most approaches only
consider ReLU neurons; however, [15] also considers tanh neurons. A network reduction algorithm
with formal error bounds for general neurons is still missing.

We propose a novel approach that reduces the neural network for given specifications. For example,
consider an image as an input to a neural network. Neurons representing neighboring pixels often
have similar values and thus can be merged during the verification process, which helps to reduce the
high dimensionality of these neural networks. Such properties cannot be inferred when analyzing
a neural network without considering a specific input. Our novel approach is orthogonal to many
verification techniques, thus, many of them can be used as an underlying verification engine. We
demonstrate our approach by deploying reachability analysis using zonotopes [9], the extension to

Preprint. Under review.

other set-based verification tools is straightforward including Taylor models [19, 10] and polynomial
zonotopes [11].

To summarize our main contributions, we present a novel, formally sound approach to reduce
large neural networks by merging similar neurons for given specifications. The reduced network
is constructed on-the-fly and the verification of the reduced network entails the verification of the
original network. Our approach works on a variety of common activation functions, including ReLU,
sigmoid, and tanh. The evaluation of high-dimensional datasets and benchmarks shows that the
networks can be reduced to less than 5% of the original number of neurons using our novel approach.
The overhead of constructing the reduced network is computationally cheap and thus the overall
time for verifying the original network primarily depends on the number of remaining neurons in the
reduced network.

The rest of this work is structured as follows. Sec. 2 introduces the notation and background for this
work, then Sec. 3 presents our novel neuron-merging approach. We first show how similar neurons
can be merged with formal error bounds, followed by the algorithm to construct the reduced network
on-the-fly while verifying the original network. Finally, we evaluate our approach in Sec. 4 and
conclude this work in Sec. 5.

2 Preliminaries

2.1 Notation

We denote vectors by lower-case letters, matrices by upper-case letters, and sets by calligraphic letters.
The i-th element of a vector b ∈ Rn is written as b(i). Consequently, b2(i) is the i-th element of a
vector b2. The element in the i-th row and j-th column of a matrix A ∈ Rn×m is written as A(i,j),
the entire i-th row and j-th column are written as A(i,·) and A(·,j), respectively. The concatenation of
two matrices A and B is denoted by [A B]. Given n ∈ N, then [n] = {1, . . . , n}. Let C ⊆ [n], then
A(C,·) denotes all rows i ∈ C. The cardinality of a discrete set C is denoted by |C|. Let S ⊂ Rn be a
set of dimension n, then S(i) is its projection on the i-th dimension. Given a function f : Rn → Rm,
then f(S) = {f(x) | x ∈ S}. An interval with bounds a, b ∈ Rn is denoted by [a, b].

2.2 Neural Networks

In this work, we describe the reduction of feed-forward neural networks [20, Sec. 5.1]). We further
note that our approach is also applicable to convolutional neural networks [20, Sec. 5.5.8], as
convolutional layers and subsampling layers, e.g. average pooling layers, can be transformed into
linear layers as defined subsequently.
Definition 1. (Layers of Neural Networks [20, Sec. 5.1]) Let vk denote the number of neurons
in a layer k and hk−1 ∈ Rvk−1 the input. Further, let W ∈ Rvk×vk−1 , b ∈ Rvk , and σk(·) be the
respective continuous activation function (e.g. sigmoid and ReLU), which is applied element-wise.
Then, the operation Lk : Rvk−1 → Rvk on layer k is given by

Lk(hk−1) =

{
Wkhk−1 + bk, if layer k is linear,
σk(hk−1), otherwise. (1)

Definition 2. (Neural Networks [20, Sec. 5.1]) Given K alternating linear and nonlinear layers, v0
input and vK output neurons, and let x ∈ Rv0 be the input and y ∈ RvK be the output of a neural
network, then, a neural network Φ with y = Φ(x) can be formulated as

h0 = x, hk = Lk(hk−1), y = hK , k = 1 . . .K. (2)

We call the last linear and the last nonlinear layer output layers, all other layers are hidden layers. If
all hidden layers output the same number of neurons, we write 6× 200 to refer to a network with 6
linear and 6 nonlinear hidden layers with 200 neurons each.

2.3 Set-based Computation

We use sets for the formal verification of neural networks. Let X be the input set of the neural
network. Then, the exact output sets of each layer are denoted by

2

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Figure 1: Main steps of enclosing a nonlinear layer. Step 1: Neuron-wise Sigmoid function. Step 2:
Input bounds. Step 3: Approximation polynomial. Step 4: Approximation error. Step 5: Evaluate
input on polynomial. Step 6: Add approximation error.

H∗
0 = X , H∗

k = Lk(H∗
k−1), Y∗ = H∗

K , k = 1 . . .K. (3)

We use zonotopes as set representation to demonstrate our novel network reduction approach.
Definition 3. (Zonotope [21, Def. 1]) Given a center vector c ∈ Rn and a generator matrix
G ∈ Rn×q , a zonotope is defined as

Z = ⟨c,G⟩Z =

c+

q∑
j=1

βjG(·,j)

∣∣∣∣∣∣ βj ∈ [−1, 1]

 . (4)

Further, we define two basic operations on zonotopes, which are essential for our approach. These
operations can also be applied to many other set representations such as Taylor models and polynomial
zonotopes.
Proposition 1. (Interval Enclosure [22, Prop. 2.2]) Given a zonotope Z = ⟨c,G⟩Z , then the interval
[l, u] = interval(Z) ⊇ Z is given by

l = c−∆g
u = c+∆g

, with ∆g =

q∑
j=1

|G(·,j)|. (5)

Proposition 2. (Interval Addition [22, (2.1)]) Given a zonotope Z = ⟨c,G⟩Z ⊂ Rn and an interval
I = [l, u] ⊂ Rn, then

Z ⊕ I = ⟨c+ cI , [G diag(u− cI)]⟩Z , (6)
where cI = l+u

2 and diag creates a diagonal matrix.

2.4 Neural Network Verification

Finally, we briefly introduce the main steps to propagate a zonotope through a neural network. The
propagation cannot be computed exactly in general, thus, the exact output of each layer needs to be
enclosed.
Proposition 3. (Image Enclosure [9, Sec. 3]) LetHk−1 ⊇ H∗

k−1 be an input set to layer k, then

Hk = enclose(Lk,Hk−1) ⊇ H∗
k (7)

computes an over-approximative output set.

Linear layers can be computed exactly using zonotopes [21], however, nonlinear layers introduce
over-approximations. We refer to [9, Sec. 3] for a detailed explanation, the main steps are as follows
and are visualized in Fig. 1: For each nonlinear layer, we iterate over all neurons i in the current layer
by projecting the input set Hk−1 onto its i-th dimension (step 1) and determine the input bounds
using Prop. 1 (step 2). We then find a linear approximation polynomial within the input bounds via
regression [20, Sec. 3] (step 3). A key challenge is bounding the approximation error (step 4): For
piece-wise linear activation functions, e.g. ReLU, we can compute the approximation error exactly
using the extreme points of the difference between the approximation polynomial and each linear
segment. For other activation functions, e.g. sigmoid, the approximation error can be determined by
sampling evenly within the input bounds and bounding the approximation error between two points
via global bounds of the derivative. Finally, we evaluateHk−1(i) on the polynomial (step 5) and add
the approximation error as an additional generator (step 6, Prop. 2).

3

0 0.2 0.4 0.6 0.8 1
0

50

100

150

Output of the activation layer

N
um

be
ro

fn
eu

ro
ns

Sigmoid activations of a 6x200 network

Layer 2
Layer 4
Layer 6
Layer 8
Layer 10
Layer 12

Figure 2: Sigmoid activations of a 6x200 neural network with an image input from the MNIST digit
dataset. In this neural network, many neurons output values close to the saturation values 0 and 1.

2.5 Problem Statement

Given an input set X ⊂ Rv0 , a neural network Φ as specified in Def. 2, and an unsafe set S ⊂ RvK

in the output space of Φ, we want to find a reduced network Φ̂ for which the verification entails the
safety of the original network for X ,S. Thus, it must hold

Φ̂(X) ∩ S = ∅ =⇒ Φ(X) ∩ S = ∅. (8)

3 Specification-Driven Neural Network Reduction

Our novel approach is based on the observation that many neurons in a layer k behave similarly for
a specific input x, e.g. many sigmoid neurons are fully saturated and thus output a value near 1 as
shown in Fig. 2. Neuron saturation [23], neural activation patterns [24], and over-parametrization [25]
have been observed in the literature, however, to the best of our knowledge, it has not been considered
during the verification of neural networks. Our main idea is to merge similar neurons such as these
saturated neurons and provide the corresponding error bounds. Our novel approach is not restricted
to the saturation values of an activation function but can merge neurons with any activation.

3.1 Neuron Merging

Subsequently, we explain how this observation can help to construct a much smaller network Φ̂,
where the verification of Φ̂ entails the verification of the original network Φ. We denote the neurons
which are merged using merge buckets:
Definition 4. (Merge Buckets) Given output bounds Ik ⊇ H∗

k of a nonlinear layer k with vk neurons,
an output y ∈ R, and a tolerance δ ∈ R, then a merge bucket is defined as

Bk,y,δ =
{
w ∈ [vk]

∣∣ Ik(w) ⊆ [y − δ, y + δ]
}
. (9)

Conceptually, we replace all neurons in Bk,y,δ by a single neuron with constant output y and adjust
the weight matrices of the linear layers k − 1, k + 1 such that the reduced network Φ̂ approximates
the behavior of the original network Φ. Finally, we add an approximation error to the output to obtain
a sound over-approximation (Fig. 3). As the new neuron is constant, we can propagate it forward to
the bias of the layer k + 1 without inducing an over-approximation.
Proposition 4. (Neuron Merging) Given a nonlinear hidden layer k of a network Φ, output bounds
Ik ⊇ H∗

k, and a merge bucket Bk,y,δ , then we can construct a reduced network Φ̂, where we remove
the merged neurons by adjusting the linear layers k − 1, k − 1 such that

Ŵk−1 = Wk−1(Bk,y,δ,·), b̂k−1 = bk−1(Bk,y,δ)
,

Ŵk+1 = Wk+1(·,Bk,y,δ)
, b̂k+1 = bk+1 +Wk+1(·,Bk,y,δ)Ik(Bk,y,δ)︸ ︷︷ ︸

approximation error

, (10)

4

Bk,y,δ

Original Network

y →

Reduced Network

Figure 3: Neural network reduction example using a single merge bucket Bk,y,δ: All neurons within
Bk,y,δ get replaced by a single neuron with output y (in blue). An approximation error is added to the
subsequent neurons.

where Bk,y,δ = [vk]\Bk,y,t and b̂k+1 includes the approximation error. We denote the layer opera-
tions of the reduced network Φ̂ with L̂k. The construction is sound.

Proof. Soundness. We show that the output Ĥk+1 of layer k + 1 of the reduced network Φ̂ is an
over-approximation of the exact setH∗

k+1 as defined in (3). We drop the indices of Bk,y,δ,Bk,y,δ for
conciseness:

H∗
k+1

(3)
= Lk+1

(
Lk

(
Lk−1(H∗

k−2)
)) (1)

= Lk+1

(
Lk

(
Wk−1(H∗

k−2) + bk−1

))
(Def. 4)
= Lk+1

(
Lk

(
(Wk−1(B,·)H∗

k−2 + bk−1(B))× (Wk−1(B,·)H
∗
k−2 + bk−1(B))

))
(1), (10)
= Lk+1

(
Lk

(
H∗

k−1(B)

)
× L̂k

(
L̂k−1(H∗

k−2)
))

(Def. 4)
⊆ Lk+1

(
Ik(B) × L̂k

(
L̂k−1(H∗

k−2)
))

(1)
= Wk+1

(
Ik(B) × L̂k

(
L̂k−1(H∗

k−2)
))

+ bk+1

(Def. 4)
=

(
Wk+1(·,B)Ik(B) ⊕Wk+1(·,B)L̂k

(
L̂k−1(H∗

k−2)
))

+ bk+1

= Wk+1(·,B)L̂k

(
L̂k−1(H∗

k−2)
)
⊕ (bk+1 +Wk+1(·,B)Ik(B))

(10)
= L̂k+1

(
L̂k

(
L̂k−1(H∗

k−2)
)) (Prop. 3)

⊆ Ĥk+1,

(11)

where × denotes the Cartesian product and ⊕ denotes the Minkowski sum.

In the extreme case of Bk,y,δ = [vk], thus all neurons of layer k output a value near y, the entire layer
is simplified and our approach degenerates to pure interval arithmetic. However, the interval has very
tight bounds per construction.

3.2 Bucket Creation

Prop. 4 can be naturally extended to multiple merge buckets, e.g.

Bk = {Bk,0,δ, Bk,1,δ} , (12)

where each neuron can only be part of one merge bucket B ∈ B. A bucket B is only used if |B| > 1.
We define two different methods to create the merge buckets.

Static buckets. The merge buckets are determined by the asymptotic values of the respective
activation function:

BSigmoid = {B·,0,δ, B·,1,δ} , BTanh = {B·,−1,δ, B·,1,δ} , BReLU = {B·,0,δ} . (13)

5

Dynamic buckets. The merge buckets are dynamically created based on the output bounds Ik =
[lk, uk] ⊂ Rvk :

Bk,δ =
{
Bk,ck(w),δ

∣∣ ck = (lk + uk)/2, w ∈ [vk]
}
. (14)

Bucket tolerance. The bucket tolerance δ is obtained by initially setting a large δ that allows for
aggressive neuron merging and then decreasing δ adaptively if the specifications S are violated.

3.3 On-the-fly Neural Network Reduction

Note that we require output bounds Ik of the next nonlinear layer k to determine which neurons
can be merged (Prop. 4). However, computing them requires the construction of high-dimensional
zonotopes via the next linear layer k − 1, propagating them through the nonlinear layer k — where
we have to evaluate all neurons, which is what should be avoided. Thus, we deploy a look-ahead
algorithm using interval arithmetic [26] to avoid these expensive computations and reduce the network
on-the-fly. The algorithm is summarized in Alg. 1.

Algorithm 1 On-the-fly Neural Network Reduction

Require: Input X , neural network layers k ∈ [K], bucket tolerance δ
1: H0 ← X
2: L̂1 ← L1

3: for k = 2, 4, . . . ,K do
4: if k < K then ▷ Look ahead
5: Ik−2 ← interval(Hk−2) ▷ Prop. 1
6: if k > 2 then Ik−2 ← Ik−2 ∩ L̂k−2(Ik−3) end if ▷ Tighten bounds
7: Ik ← Lk(L̂k−1(Ik−2))
8: Create merge buckets Bk,δ ▷ Sec. 3.2
9: L̂k−1, L̂k, L̂k+1 ← Reduce network ▷ Prop. 4

10: end if
11: ▷ Verify
12: Hk−1 ← enclose(L̂k−1,Hk−2) ▷ Prop. 3
13: Hk ← enclose(L̂k,Hk−1)
14: end for
15: Y ← HK

16: return Y

Instead of propagating the zonotope itself forward, we just propagate the interval bounds to the next
nonlinear layer k (line 5-7). The overhead is computationally cheap and the bound computation is
over-approximative. The bounds Ik−2 can be intersected with Lk−2(Ik−3) if k > 2 to get a tighter
estimate (line 6), as Ik−3 is computed anyway during the enclosure of the nonlinear layer k − 2
(line 13; Fig. 1). After Ik is obtained, the merge buckets are determined (line 8) and the network is
reduced by merging the respective neurons (line 9). Finally, we propagate the zonotopeHk−2 on the
reduced network. The addition of the interval bias of layer k + 1 in (10) is computed using Prop. 2.
Thus, we never construct a high-dimensional zonotope during the verification. Note that the number
of input and output neurons remains unchanged.

Proposition 5. (Reduced Network) Given a neural network Φ and an input set X , then Alg. 1
constructs a reduced network Φ̂, which satisfies the problem statement in Sec. 2.5.

Proof. The algorithm is sound as each step is over-approximative.

4 Evaluation

We evaluate our novel network reduction approach using several benchmarks and neural network
variants from the VNN Competition [3]. For all datasets and networks, we sample 100 correctly
classified images from the test set and average the results. All following figures show the mean
remaining input neurons per layer k ∈ [K] as well as the number of output neurons of the network

6

2 4 6 8 10 12 14
0

200

400

600

800

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s 6× 200 Sigmoid
6× 200 ReLU

Figure 4: ERAN benchmark: Similar reduction
rates for the both networks. The sigmoid net-
work has an additional linear layer appended.

0.2 0.3 0.4 0.5 0.6
0.2

0.4

0.6

Remaining neurons [%]

N
or

m
al

iz
ed

ve
ri

fic
at

io
n

tim
e

Samples

Figure 5: ERAN sigmoid network: The normal-
ized verification time of the reduced network
primarily depends on the reduction rate.

Table 1: ERAN benchmark: Change of verification rate (VR) and remaining neurons (RN) with
varying perturbation radius r and bucket tolerance δ.

6× 200 ReLU
r δ RN [%] VR [%]

0.0010 0.0001 38.59 100.00
0.0010 0.0010 37.83 100.00
0.0010 0.0050 36.70 99.00
0.0010 0.0100 37.88 96.00
0.0010 0.1000 58.25 4.00

0.0020 0.0001 46.44 100.00
0.0020 0.0010 46.63 100.00
0.0020 0.0050 46.64 100.00
0.0020 0.0100 47.40 96.00
0.0020 0.1000 55.01 12.00

0.0050 0.0001 57.77 100.00
0.0050 0.0010 55.95 100.00
0.0050 0.0050 57.35 100.00
0.0050 0.0100 56.60 99.00
0.0050 0.1000 59.65 27.00

6× 200 Sigmoid
r δ RN [%] VR [%]

0.0010 0.0001 57.04 100.00
0.0010 0.0010 44.03 99.00
0.0010 0.0050 32.34 96.00
0.0010 0.0100 30.98 85.00
0.0010 0.1000 22.27 41.00

0.0020 0.0001 62.90 99.00
0.0020 0.0010 49.16 100.00
0.0020 0.0050 37.15 89.00
0.0020 0.0100 32.85 84.00
0.0020 0.1000 24.98 35.00

0.0050 0.0001 65.20 99.00
0.0050 0.0010 51.09 99.00
0.0050 0.0050 40.44 99.00
0.0050 0.0100 36.34 93.00
0.0050 0.1000 30.08 23.00

at K + 1. The number of neurons of the original network is shown in the same color with reduced
opacity and dynamic merge bucket creation (14) is used in all figures if not otherwise stated. We
implement our approach in MATLAB and use CORA [27, 11] to verify the neural networks. All
computations were performed on an Intel® Core™ Gen. 11 i7-11800H CPU @2.30GHz with 64GB
memory.

4.1 MNIST Handwritten Digit Dataset

ERAN benchmark. We compare different network architectures using networks from the ERAN
benchmark. Further network variants are taken from the ERAN website1. We compare different
perturbation radii r and bucket tolerances δ using the sigmoid and ReLU networks from the original
ERAN benchmark in Tab. 1. While it is expected that a more aggressive neuron merging (larger δ)
results in fewer verified instances, we want to stress that using a very small δ can already result in
many merged neurons. We observe similar results for the other benchmarks as well. All following
figures use a perturbations radius r = 0.001 and a bucket tolerance δ = 0.005. Fig. 4 shows the
neuron reduction per layer for this combination. The number of remaining neurons in the reduced
networks is very similar for both activation functions. The overhead of constructing the reduced

1 ERAN website: https://github.com/eth-sri/eran

7

https://github.com/eth-sri/eran

2 4 6 8 10 12 14
0

200

400

600

800

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s 6× 100 ReLU
6× 200 ReLU
6× 500 ReLU

Figure 6: ERAN benchmark: The benefit of
reducing neurons becomes more apparent with
the size of the network.

2 4 6 8
0

1,000

2,000

3,000

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s CNN ReLU
CNN Sigmoid
CNN Tanh

Figure 7: ERAN networks with convolutional
layers: Huge reductions are possible as neigh-
boring pixels are often very similar.

2 4 6 8
0

1,000

2,000

3,000

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s CNN (original)
CNN (static)
CNN (dynamic)

Figure 8: ERAN sigmoid network with con-
volutional layers: Dynamic merge buckets are
required to merge similar pixels in images.

2 4 6 8 10 12 14
0

200

400

600

800

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s 6× 256 ReLU (static)
4× 256 ReLU (static)
2× 256 ReLU (static)

Figure 9: MNISTFC benchmark: Networks with
large reduction with static merge buckets.

network is computationally cheap as shown in Fig. 5: We normalize the time to construct and verify
the reduced network per image, where the verification of the original network takes ∼ 0.67s. The
verification time primarily depends on the remaining number of neurons. Our evaluation shows that
the reduction on the ReLU network uses up to 5 dynamic merge buckets per layer and on the sigmoid
network around 10 dynamic merge buckets per layer. Finally, Fig. 6 shows that the benefit of our
novel reduction approach increases with the size of the network, as less neurons remain in the reduced
network relative to the size of the original network.

ERAN convolutional neural networks. Convolutional layers can be transformed to linear layers
as defined in this work (Def. 1). In convolutional neural networks, the neighboring pixel relation of
images persists through convolutional layers. Thus, our approach is particularly applicable there as
shown in Fig. 7, most notably in the sigmoid network where only 30 neurons of the ∼ 3000 neurons
remain in layer 2. As neurons representing neighboring pixels are not necessarily saturated, dynamic
merge buckets are necessary as shown in Fig. 8. During the verification of convolutional neural
networks, up to 200 dynamic merge buckets are created per layer.

MNISTFC benchmark. We want to stress that the reduction highly depends on the network.
Although all networks presented here are trained with standard training, the output distribution of the
nonlinear layers differs immensely. For example, not all networks with sigmoid activations have such
extreme outputs as shown in Fig. 2. Fig. 9 shows another extreme case, where many ReLU neurons
output zeros and thus can be removed. For this benchmark, we use the static merge buckets defined
in (13) to only remove ReLU neurons with negative input. However, in general it is advisable to use
dynamic merge buckets as previously shown in Fig. 8.

8

2 4 6 8 10
0

2,000

4,000

6,000

8,000

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s CNN ReLU large
CNN ReLU medium
CNN ReLU small

Figure 10: Marabou benchmark: Network re-
duction comparison on the CIFAR-10 dataset.

2 4 6 8 10 12 14
0

1

2

3

·104

Number of input neurons of layer k

R
em

ai
ni

ng
ne

ur
on

s CNN (original)
CNN (static)
CNN (dynamic)

Figure 11: Cifar2020 benchmark: Our approach
is also applicable to very large networks.

4.2 CIFAR-10 Colored Image Dataset

Finally, we show that our approach is also applicable to the CIFAR-10 colored image dataset. The
size of networks trained on CIFAR-10 is typically much larger due to the complexity of the dataset.
We note that the CIFAR-10 images are not normalized to [0, 1].

Marabou benchmark. We show the network reduction on the Marabou benchmark in Fig. 10. The
networks consist of two convolutional layers followed by three linear layers with ReLU activation.
Our novel approach reduces these networks significantly, where more neurons are merged in larger
networks.

Cifar2020 benchmark. The network consists of four convolutional layers with up to 32, 768
neurons per layer followed by three linear layers and ReLU activation. A dynamic merge bucket
creation reduces the number of neurons to 25% while still verifying all images.

4.3 Discussion

We want to stress that our novel reduction method barely increases the over-approximation of the
output Y by construction, as the over-approximation induced by the neuron merging is determined by
the bucket tolerance δ. It is advisable to start with a large δ and automatically decrease δ until an
image is verified. For example, consider the sigmoid network in Tab. 1: About 85% of the images
can be verified with δ ≥ 0.01 in less than a third of the original verification time. While some
networks have many activation neurons output near their asymptotic values, this is not the case for
all networks. Thus, a dynamic creation of the merge buckets is important. Our approach is also
applicable to convolutional neural networks as shown in the evaluation, which are usually especially
high-dimensional. As neighboring pixels are often similar and remain similar through convolutional
layers, our approach can reduce the dimensionality drastically for these networks.

5 Conclusion

We present a novel, conservative neural network reduction approach, where the verification of the
reduced networks entails the verification of the original network. To our best knowledge, our approach
is the first approach that works on a variety of activation functions and considers the specifications.
The neural network reductions is computed on-the-fly while verifying the original network. Our
approach merges neurons of nonlinear layers based on the output bounds of these neurons. These
output bounds are computed by looking ahead to the next nonlinear layer using interval arithmetic,
such that the more expensive verification algorithm only needs to be executed on the reduced network.
Our novel approach is orthogonal to many verification tools and thus can be used in combination with
them. We show the applicability of our approach on various benchmarks and network architectures.
The overhead of computing the reduced network is not computationally expensive and the over-
approximation of the output set barely increases. We believe that our work is a significant step toward
more scalable neural network verification.

9

Acknowledgments and Disclosure of Funding

The authors gratefully acknowledge financial support from the project FAI funded by the German
Research Foundation (DFG) under project number 286525601.

References
[1] Éloi Zablocki et al. “Explainability of deep vision-based autonomous driving systems: Review and

challenges”. In: International Journal of Computer Vision 130.10 (2022), pp. 2425–2452.
[2] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adversarial

examples”. In: International Conference on Learning Representations. 2015.
[3] Stanley Bak, Changliu Liu, and Taylor T. Johnson. “The second international verification of neural

networks competition (VNN-COMP 2021): summary and results”. In: arXiv preprint arXiv:2109.00498
(2021).

[4] Guy Katz et al. “Reluplex: An efficient SMT solver for verifying deep neural networks”. In: International
Conference on Computer Aided Verification. Springer. 2017, pp. 97–117.

[5] Guy Katz et al. “The marabou framework for verification and analysis of deep neural networks”. In:
International Conference on Computer Aided Verification. Springer. 2019, pp. 443–452.

[6] Patrick Henriksen and Alessio Lomuscio. “Efficient neural network verification via adaptive refinement
and adversarial search”. In: ECAI 2020. IOS Press, 2020, pp. 2513–2520.

[7] Gagandeep Singh et al. “An abstract domain for certifying neural networks”. In: Proceedings of the ACM
on Programming Languages 3.POPL (2019), pp. 1–30.

[8] Timon Gehr et al. “Ai2: Safety and robustness certification of neural networks with abstract interpretation”.
In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018, pp. 3–18.

[9] Gagandeep Singh et al. “Fast and effective robustness certification”. In: Advances in neural information
processing systems 31 (2018).

[10] Chao Huang et al. “POLAR: A polynomial arithmetic framework for verifying neural-betwork controlled
systems”. In: Automated Technology for Verification and Analysis. Springer International Publishing,
2022, pp. 414–430.

[11] Niklas Kochdumper et al. “Open-and closed-loop neural network verification using polynomial zono-
topes”. In: arXiv preprint arXiv:2207.02715 (2022).

[12] Zhangheng Li et al. “Can pruning improve certified robustness of neural networks?” In: arXiv preprint
arXiv:2206.07311 (2022).

[13] Lei Deng et al. “Model compression and hardware acceleration for neural networks: A comprehensive
survey”. In: Proceedings of the IEEE 108.4 (2020), pp. 485–532.

[14] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. “An abstraction-based framework for neural
network verification”. In: International Conference on Computer Aided Verification. Springer. 2020,
pp. 43–65.

[15] Fateh Boudardara et al. “Interval weight-based abstraction for neural network verification”. In: (Interna-
tional Conference on Computer Safety, Reliability, and Security). Springer. 2022, pp. 330–342.

[16] Pavithra Prabhakar and Zahra Rahimi Afzal. “Abstraction based output range analysis for neural net-
works”. In: Advances in Neural Information Processing Systems 32 (2019).

[17] Yizhak Yisrael Elboher, Elazar Cohen, and Guy Katz. “Neural network verification using residual
reasoning”. In: arXiv e-prints (2022), arXiv–2208.

[18] Pranav Ashok et al. “DeepAbstract: neural network abstraction for accelerating verification”. In: Inter-
national Symposium on Automated Technology for Verification and Analysis. Springer. 2020, pp. 92–
107.

[19] Sergiy Bogomolov et al. “JuliaReach: A toolbox for set-based reachability”. In: Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control. 2019.

[20] Christopher M. Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning. Vol. 4.
Springer, 2006.

[21] Antoine Girard. “Reachability of uncertain linear systems using zonotopes”. In: International Workshop
on Hybrid Systems: Computation and Control. Springer. 2005, pp. 291–305.

[22] Matthias Althoff. “Reachability analysis and its application to the safety assessment of autonomous cars”.
PhD thesis. Technische Universität München, 2010.

[23] Anna Rakitianskaia and Andries Engelbrecht. “Measuring saturation in neural networks”. In: 2015 IEEE
symposium series on computational intelligence. IEEE. 2015, pp. 1423–1430.

[24] Alex Bäuerle, Daniel Jönsson, and Timo Ropinski. “Neural activation patterns (NAPs): Visual explain-
ability of learned concepts”. In: arXiv preprint arXiv:2206.10611 (2022).

10

[25] Behnam Neyshabur et al. “Towards understanding the role of over-parametrization in generalization of
neural networks”. In: arXiv preprint arXiv:1805.12076 (2018).

[26] Luc Jaulin et al. Interval analysis. Springer, 2001.
[27] Matthias Althoff. “An introduction to CORA 2015”. In: Proc. of the workshop on applied verification for

continuous and hybrid systems. 2015, pp. 120–151.

11

	Introduction
	Preliminaries
	Notation
	Neural Networks
	Set-based Computation
	Neural Network Verification
	Problem Statement

	Specification-Driven Neural Network Reduction
	Neuron Merging
	Bucket Creation
	On-the-fly Neural Network Reduction

	Evaluation
	MNIST Handwritten Digit Dataset
	CIFAR-10 Colored Image Dataset
	Discussion

	Conclusion

