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Abstract 

Deep Learning for Computer Vision holds great potential in warehousing logistics, for example for 
applications such as mobile robots or autonomous forklifts. However, the availability of labelled image 
datasets within this area is limited. To address this problem, we benchmarked two different datasets, LOCO 
(Logistics Objects in Context) and TOMIE (Tracking Of Multiple Industrial Entities), to find out, if these 
datasets can be used interchangeably. Therefore, we examine the usability of these datasets for Object 
Detection tasks using the YOLOv7 framework. For this we trained several networks and compared them 
with each other. A deep analysis between these two datasets shows that they are quite different and only 
suitable for specific tasks which are not interchangeable, despite having emerged from the same research 
domain. More thorough investigations are performed to find the reasons for this lack of compatibility. To 
close the gap between LOCO and TOMIE, a synthetic data generation pipeline for pallets is developed and 
18,000 synthetic pallet images are rendered. Furthermore, models are trained based on the synthetic data and 
compared with the models trained on real data. The synthetic data generation pipeline successfully closes 
the reality gap, and the performance on TOMIE is increased, but the performance on LOCO remains 
significantly weaker, in comparison. To develop a deeper understanding of this behaviour we examine the 
underlying datasets and the reasons for the performance difference are identified. 
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1. Introduction

Robotic systems, such as AGVs (autonomous guided vehicles) and autonomous forklift trucks are 
encountered more and more in warehousing environments, solving tasks, like recognising, storing and 
collecting pallets and other objects of interest [1]. To enhance the abilities of such robotic systems, they 
require the capability of a deeper understanding of the environment by using sensors such as cameras and 
algorithms to extract semantic information. For this task, there still remains a huge untapped potential for 
Deep Learning (DL) and Computer Vision (CV). For Deep Learning however, lots of data is necessary, 
which is sparsely available for warehousing environments [2]. 

Since existing datasets from the context of warehousing logistics are limited, it first leads us to LOCO 
(Logistics Objects in COntext), which was the first dataset of its kind [3]. Also, TU Dortmund University 
recently published a tracking dataset in the field of warehousing logistics called TOMIE (Tracking Of 
Multiple Industrial Entities) [4]. 
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Both datasets are designed for Object Detection in warehousing environments, providing semantic data of 
logistical entities within their images. In addition, we address the question to what extent synthetic data can 
improve the combination of both datasets in terms of Object Detection results. 

Therefore, LOCO as well as TOMIE are being investigated in terms of their usability for DL. The use of 
synthetic data is also evaluated, and an image generation pipeline is developed for this purpose. Experiments 
are conducted using the state of the art Object Detection framework YOLOv7 [5]. 

2. Related Work

Object Detectors are normally used on a special domain, therefore the need for a specialised dataset is 
present. In the field of warehousing logistics, there was no publicly available dataset until the release of 
LOCO [3] as well as the recently published paper of TOMIE [4]. Nevertheless, there is some work that dealt 
with Object Detection in logistics using real data: In [6] a survey on DL-based Object Detection in industrial 
manufacturing lines was conducted. Another paper [1] deals with the automated detection of pallets by 
unmanned forklifts. 4,620 photos from real warehouses were used for training with the Single-Shot-
Detection (SSD) architecture. The work of [7] aimed to detect pallets and their associated pallet pockets 
using Object Detection. For this purpose, Faster-RCNN, SSD and YOLOv4 were compared, with the result 
that Faster-RCNN and SSD achieve better performance, but small objects are detected significantly better 
by YOLOv4. Pallet detection with YOLOv5 was investigated in [8]. 1,350 images were captured with three 
different cameras at different times of the day. In addition to pallet Object Detection with SSD, [9] used 
depth data to extract the 3D pallet point-cloud model for accurate positioning. For this purpose, more than 
1,000 images of pallets were taken under different lighting conditions and at normal forklift reach. 

Due to the lack of datasets in the real logistics environment, there are many efforts to generate them 
synthetically. There are different ways of creating synthetic data, one of which is rendering images with 3D 
software, e. g. with Blender or Unity. This can be roughly divided into trying to render photo-realistic 
images, imitate real world parameters as close as possible, or using Domain Randomisation (DR), for which 
the realism is not that important. DR is an approach where parameters of the source domain are randomized 
with the idea that the target domain is recognised as just another variation of the source domain by the model 
[2]. [10] focused on the detection of retail-objects, using a DR approach with random 3D objects in the 
background of the objects of interest. The Hamburg University of Technology [11] dealt with the pose 
estimation of a Euro-pallet, also using Blender. However, the focus here lays more on photorealism, the 
textures consist of RGB images from a real camera. An mAP of 0.94 was reached on own test data. In [2], 
an industry-based synthetic dataset consisting of small load carriers was used to evaluate their data 
generation pipeline using Blender and DR. In addition to rendering images and compositing real data, there 
is another promising way to generate synthetic data, which is generative AI. AI has been given a whole new 
meaning by Large Language Models like ChatGPT, but are also potentially useful in the field of Object 
Detection. GANs (Generative Adversarial Networks) for instance, can be helpful in domain adaptation in 
order to bring synthetic images closer to reality [12]. However, research on generative AI for Object 
Detection in warehousing logistics is still at the beginning. 

In the context of warehousing, only one synthetic dataset is known to us [13]. This dataset, however, is suited 
for re-identification and not for Object Detection tasks. One further dataset, which is currently available only 
for collaborators and partners, is SORDI [14], created to tackle the lack of industrial synthetic datasets. 
200,000 bounding box annotated images were rendered, containing eight different assets in 32 scenarios, 
resulting in more than 1 million bounding boxes. 
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3. Methodology

The goal of this paper is the investigation of the LOCO and TOMIE dataset in terms of usage potential for 
Object Detection. We evaluated if the Object Detection performance of LOCO can be improved by using a 
modern framework, the TOMIE dataset or self-created synthetic data. The best-case scenario would be a 
model which generalises well on all data in context of logistics by using all three sources of data. 

First, data exploration and comparison for both LOCO and TOMIE is conducted. With the base models of 
both real datasets, reciprocal inference is conducted to evaluate how well each model is performing on the 
other dataset. Regarding synthetic data (from now on referred to as the SYNTH dataset), first, a pipeline was 
created using Blender, generating images of the pallet class. To bridge the reality gap, DR as well as domain 
knowledge are used. In this case, the latter means that we already know where and under which conditions 
(i. e., loaded, on shelves) pallets are often seen. After generating these images, the pipeline also must prepare 
the data for training and data exploration. Following that, training with YOLOv7 is conducted, leading to a 
base model trained on SYNTH. As with the real data, inference is conducted with TOMIE and LOCO to 
determine how well purely synthetic pallet data works in the logistics domain. With the then available base 
models, fine-tuning is done - for the SYNTH base model with LOCO and TOMIE, for the real datasets only 
with the respective other dataset. Afterwards, inference is conducted again with LOCO and TOMIE to 
evaluate how fine-tuning helps to generalise or if catastrophic forgetting occurs. To compare the performance 
of the SYNTH dataset, base models are again trained with LOCO and TOMIE also using only the pallet 
class. The overall approach can be seen in Figure 1. 

Figure 1: Training and test approach. 

4. Data Exploration

4.1.1 LOCO 

LOCO is a dataset which is split into five subsets, representing different warehousing logistics environments. 
A total of 64,993 images were captured, images 39,101 remained after removing blurred and similar images. 
From those, 5,593 were selected for bounding box annotation for five classes: pallets, small load carriers, 
stillages, forklifts and pallet trucks. In total there are 151,428 instances of those classes, which have a 
unbalanced class distribution. Pallets make up the biggest part of the annotations, followed by small load 
carriers. Forklifts occur only 598 times in the dataset. There are 496 images without any annotations, the 
majority of the images hold at least ten annotations and a significant number even more than 50 annotations. 
Also, the relative size of the objects is smaller in LOCO than in common datasets like COCO. 90% of the 
annotations have a bounding box size smaller than 2% of the image size. In COCO, that is only the case for 
70% of the objects. The majority of LOCO annotations are even smaller than 1% of the image size. 
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4.1.2 TOMIE 

TOMIE [4] was recorded in a research facility representing a warehousing environment. In this environment, 
different warehousing scenarios were recorded using six cameras in different locations, creating six different 
data subsets. The dataset consists of 112,860 frames and 640,936 entity instances of nine classes including 
pallets, stillages, small load carriers and forklifts. Compared to LOCO this means that it offers the same 
object classes, except for the pallet trucks. The number of annotations per class is more balanced in TOMIE 
than in LOCO. Nevertheless, the pallet also dominates here, with over twice as many instances as the small 
load carriers. Stillages are the rarest while there are still twice as many forklifts. TOMIE has few instances 
per image, especially compared to LOCO, the majority of the images has no more than 10 annotations. The 
size of the annotations is more irregular compared to LOCO. This is because the camera distance to the 
respective objects remains virtually the same throughout the recordings. Furthermore, there are no 
annotations with a bounding box smaller than 0.1% of the image size.  

4.1.3 SYNTH 

Due to the scope of this paper, only one of the potential classes is considered. Pallets were chosen since they 
play the most elementary role and occur the most in the existing datasets. Thus, the performance of the 
synthetic data can be measured best.  

To ensure data diversity, 13 different pallet and three different warehouse assets are used for the generation 
of SYNTH. The pallets are randomly spawned following various parameters which are randomly selected 
based on a self-defined range that can be changed before rendering. This includes the pose, texture, form 
and quantity. In addition to labelling full pallets, 2D front and side views of pallets were added to SYNTH. 
Camera position, orientation, and field of view were also randomized. Distractor objects with random 
attributes were placed in the foreground and background. The background was randomized by changing 
floor and wall textures. 3D assets from the logistics context were placed in the background. Random lighting 
was applied, including the use of a shadow thrower to simulate poorly illuminated pallets. Rendering quality 
was varied, including resolution and number of samples. After rendering, some sanity post-processing was 
applied, like excluding pallets which are barely visible in the image, either because they are placed at the 
image edges, or because they are occluded. 

Figure 2: Examples of the different subsets of SYNTH. 

About 18,000 images were rendered. with a total of 125,937 instances, divided into 6 subsets, all with slightly 
different parameters. Examples for images from the dataset can be seen in Figure 2. The annotations per 
image distribution is located between LOCO and TOMIE with the maximum of images having 1 to 5 pallets 
and no images with more than 50 pallets, with seven on average. The size of the bounding boxes is quite 
similar to LOCO. The composition of the dataset and the split into different subsets is shown in Table 1. 
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Table 1: Statistics of the SYNTH dataset. 

 Subset Number of Images Number of Pallets Notes 
α 2,992 25,279 Full randomization 
β 3,017 15,926 Pallets only on floor level 
γ 2,989 18,797 Full randomization 
δ 3,006 15,109 Pallets only on floor level 
ϵ 2,991 32,544 No texture change for floor and wall 
ζ 3,035 19,625 No texture change for floor and wall 

More pallet front side instances 

5. Experiments

5.1 Real Data 

For the experiments with real data, the LOCO subsets (1-5) were split into training and validation sets, i. e. 
2, 3 and 5 as training sets and subsets 1 and 4 as validation sets. Using TOMIE, we split the subsets (A - F) 
so that the training set contains A, B, E and the sets C and D as the validation set. We used an image 
resolution of 1120px, a batch size of 4, an IoU of 0.5 and a confidence of 0.001. For training, the standard 
YOLOv7 P5 parameters and pre-trained COCO weights were used. 

5.1.1 LOCO Base Model 

We trained the LOCO base model with Adam, a LR (Learning Rate) of 0.001 and 5 frozen layers. Inference 
was conducted with LOCO as well as TOMIE data on the weights of the best epoch. For LOCO and TOMIE 
the results are listed in Table 2. 

Table 2: Inference results one the LOCO base model with LOCO and TOMIE. 

Class 
Dataset 

All Small load 
carrier 

Forklift Pallet Stillage Pallet truck 

LOCO 0.52 0.467 0.350 0.737 0.688 0.359 
TOMIE 0.234 0.0 0.0 0.023 0.422 - 

For fine-tuning with TOMIE, subset B was selected as training set and subset D as validation set. After 
conducting runs with several optimizer and freeze parameters (T), the best mAP@.5 reached was 0.67 using 
SGD and no frozen layers (T0). To prevent catastrophic forgetting, we applied mixed fine-tuning (M) and 
frozen layers: LOCO subset 1 was added to the training set, while subset 4 was added to the validation set, 
since both were not used to train the base model. The optimizer used was SGD and the LR was increased 
from 0.001 to 0.01 due to a higher number of and more diverse training data. Results are shown in Table 3. 

Table 3: Inference results (mAP@.5) for TOMIE and LOCO with LOCO based model fine-tuned with TOMIE. 

Inference results for TOMIE subsets A, C, E and F on 
the LOCO base model fine-tuned with TOMIE 

Inference results for LOCO subset 4 on the 
LOCO base model fine-tuned with TOMIE 

Class M T50 M T5 T0 T50 M T50 M T5 T0 T50 
All 0.65 0.645 0.630 0.624 0.182 0.006 0.033 0.001 
Forklift 0.35 0.289 0.293 0.338 0.057 0.001 0.002 0.001 
Pallet 0.608 0.65 0.656 0.562 0.552 0.022 0.127 0.002 
Stillage 0.993 0.995 0.995 0.972 0.036 0 0 0 
Pallet truck - - - - 0.081 0 0.001 0 
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5.1.2 TOMIE Base Model 

SGD was chosen, with an LR of 0.01 and five frozen layers as well as a resolution of 1152px. Subsets A, B, 
E and F served as the training set, while subset C and D were used for validation. After the 10th epoch a 
training mAP@.5 of 0.846 was reached, which was not surpassed after. Inference was first conducted with 
the LOCO benchmark (subsets 1 and 4) on the weights from the best epoch, which lead to an mAP@.5 of 
0.002. On the TOMIE base model, fine-tuning with LOCO was conducted for 40 epochs while using SGD: 
once with 10, the other time with no frozen layers. The results are shown in Table 4. 

Table 4: Inference results mAP@.5 for LOCO subsets 1 and 4 on the TOMIE base model. 

Class 
Dataset 

All Small load 
carrier 

Forklift Pallet Stillage 

LOCO 0.002 0.0 0.0 0.001 0.005 
TOMIE 0.839 0.826 0.613 0.937 0.977 

The split and the other parameters are the same as before. The mAP@.5 inference results for both trained 
models are shown in Table 5, each for the weights of the best epoch. 

Table 5: Inference results mAP@.5 on the TOMIE base model fine-tuned with LOCO. 

 Class LOCO (T10) TOMIE (T10) LOCO(T0) TOMIE(T0) 
All 0.491 0.243 0.514 0.215 
Small load carrier 0.379 0 0.485 0 
Forklift 0.258 0 0.266 0 
Pallet 0.737 0.011 0.745 0.019 
Stillage 0.652 0.961 0.663 0.841 
Pallet truck 0.431 - 0.411 - 

5.2 Synthetic Data 

In this section we analysed the quality of our SYNTH dataset by training models only with the pallet class. 
For this, we trained a SYNTH base model for 40 epochs with five frozen layers and SGD with a LR of 0.01. 
Subsets α and γ were used as training set, subset ϵ as validation set, the remaining data were used for 
inference testing. This way, the subsets with the most DR are used for training and the one closest to reality 
for validation. Proceeding with our SYNTH base model, we conducted additional experiments by fine-tuning 
the model with TOMIE and LOCO. We also trained a two staged fine-tuned SYNTH base model, which was 
first fine-tuned with TOMIE and LOCO afterwards. For inference testing we used subset 1 from LOCO. All 
experiment results are shown in Table 6. 

Table 6: Inference results (mAP@.5) with LOCO subset 1 on different configurations. 

Model mAP@.5 
SYNTH 0.096 
LOCO fine-tuning on SYNTH 0.740 
TOMIE fine-tuning on SYNTH 0.005 
LOCO fine-tuning on TOMIE on SYNTH 0.724 

In addition to our fine-tuned experiments we also tested all subsets from LOCO and TOMIE to determine 
how the inference with real data is when used only with models trained using SYNTH, which is shown in 
Table 7. 
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Table 7: Inference results on the SYNTH base model. 

LOCO subset 1 2 3 4 5 all 
mAP@.5 0.113 0.044 0.029 0.054 0.054 0.051 
TOMIE subset A B C D E F all 
mAP@.5 0.718 0.263 0.416 0.003 0.752 0.015 0.343 

6. Evaluation

6.1.1 Real Data 

The LOCO base model shows an improved mAP compared to the original paper. However, while pallets 
and stillages produce reliable results, small load carriers, forklifts and pallet trucks perform poorly. For 
forklifts and pallet trucks, the low number of occurrences and variety of the objects are likely to be 
responsible for the model’s poor performance. Delving deeper into LOCO, one reason is the annotation 
quality (see Figure 3). There are missing and faulty annotations, when comparing inference with ground 
truth. Also, the objects are in part difficult to recognise, be it due to their size or blur. 

Figure 3: Comparison of the ground truth (left) and the predictions (right) in LOCO. 

For the TOMIE base model, we discovered a fast training convergence. One possible reason for this is that 
the data is quite easy to learn on. The stillage class is detected well, which is because in all images it is the 
very same stillage instance. The performance for the forklift is, in comparison, rather poor. A reason for 
this might be the inconsistent annotations (see ig r  4) with sometimes the person dragging it being 
included and sometimes not. Annotation inconsistency also occur for other categories, which could lead 
to the notably fluctuation in training performance. Also, the model is overfitting on loaded pallets, which 
are sometimes detected even if they are occluded. 

Figure 4: Examples of annotation inconsistencies of forklifts in TOMIE. 

The performance of TOMIE data on the LOCO model is poor, except for the stillage class. Vice versa, 
performance is even worse. A central criteria is probably the camera perspective. In TOMIE it is almost a 
top-down, bird’s eye view, whereas in LOCO the pictures were all taken relatively close to the ground. In 
addition, a model trained on LOCO mostly labels the visible part of loaded pallets. With TOMIE, the 
bounding box always covers the whole pallet. This leads to incorrect predictions due to low IoU, even 
though the pallet may have been recognised correctly (see ig r  5). 
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Figure 5: Pallet annotation compared to inference results with LOCO on the TOMIE dataset. 

6.1.2 Synthetic Data 

The SYNTH model performs much better on TOMIE than on LOCO, showing that the reality gap could be 
overcome with synthetic data. A deeper investigation of the LOCO dataset shows that pallets in shelves are 
rarely recognised, especially if the pallets do not face the camera or the instance is small (Figure 6, bottom 
left). The LOCO base model can recognise these objects much better. Stacked pallets are also problematic 
(Figure 6, top images). 

Figure 6: Inference samples with LOCO subset 1 (dark green = ground truth, orange = LOCO base 

model, blue = SYNTH base model). 

For pallets, in general it seems like fine-tuning with LOCO on a base model improves performance and again 
fine-tuning on SYNTH performs slightly better than fine-tuning on TOMIE. For fine-tuning with TOMIE 
on SYNTH, the inference with subset 1 performs very poorly as usual and as expected, fine-tuning on LOCO 
still brings a better performance. Finally, we analysed the combination of the SYNTH base model with 
LOCO and TOMIE data. For inference with subset 1 with LOCO fine-tuned model, a better performance 
can be achieved by fine-tuning. 

7. Conclusion

In this paper, we conducted a thorough examination of two warehousing logistics datasets, LOCO and 
TOMIE. Our investigation not only involved a comparative analysis but also sought broader insights relevant 
to computer vision and logistics object detection. While first results demonstrated the superiority of our 
models on the LOCO benchmark, we identified inherent dataset limitations, including class distribution 
imbalances and annotation inaccuracies, particularly with pallets and small load carriers. TOMIE, with its 
consistent camera perspectives, presented challenges like label inconsistencies and fluctuations during 
training. These issues underscore the importance of robust dataset curation and annotation. Secondly, our 
analysis revealed substantial disparities between LOCO and TOMIE, spanning different camera 
perspectives, environmental conditions, and labelling approaches, shown by catastrophic forgetting during 
transfer learning. To bridge these gaps, we introduced a synthetic data generation pipeline, effectively  
leading to performance enhancements. In summary, our study not only offers insights into LOCO and 
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TOMIE but also underscores the broader relevance of robust dataset creation and domain adaptation 
challenges in logistics object detection. Bridging these gaps is crucial for enhancing model robustness and 
applicability in real-world logistics scenarios. 
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