
Technische Universität München 
TUM School of Computation, Information and Technology 
 

 

 

Practical Approaches to the 
Truthful Anonymization of Microdata 

 

 
Diplom-Informatiker 

Raffael Manuel Bild  
 
 

Vollständiger Abdruck der von der TUM School of Computation, Information 
and Technology der Technischen Universität München zur Erlangung eines 

 
Doktors der Naturwissenschaften (Dr. rer. nat.) 

 
genehmigten Dissertation. 
 

 

Vorsitz:                 Prof. Dr. Daniel Rückert 

Prüfer der Dissertation: 

 

1.     Prof. Dr. Martin Boeker 

2.     Prof. Dr. Oliver Kohlbacher 

 

Die Dissertation wurde am 31.01.2024 bei der Technischen Universität 
München eingereicht und durch die TUM School of Computation, Information 
and Technology am 20.11.2024 angenommen. 





Für meine Eltern





Abstract
The amount of sensitive personal data collected and processed in modern times is

ever-increasing. On the one hand, leveraging these developments, for example, us-
ing technologies from the fields of big data analytics and artificial intelligence, bears
tremendous potential in many areas such as economics and research. On the other
hand, such endeavors pose potential risks to the privacy of individuals. Therefore,
privacy protection measures have to be applied when personal data is being processed.

A typical technical approach to privacy protection is data anonymization. It basi-
cally works by transforming personal data in a way that reduces risks to the privacy of
individuals. This inevitably leads to a loss or distortion of information. Hence, data
anonymization algorithms are required for selecting transformations that result in a
reasonable trade-off between privacy risks and data quality.

This thesis addresses open questions from this area of research with a particular
focus on anonymization methods that are truthful, which means that they preserve
the semantic consistency of data. This is desirable in many application areas, such as
the medical domain. The main contributions of this thesis are as follows:

Firstly, it is shown that thruthful data anonymization which satisfies differential
privacy, a particularly strong privacy protection measure, is feasible in practice. An
according flexible anonymization algorithm is proposed that is based on a relationship
between truthful transformation techniques and differential privacy which has previ-
ously only been studied from a theoretical perspective. Evaluations and comparisons
with prior work show that the proposed solution is scalable and provides data quality
that can compete with, and sometimes even outperform, state-of-the-art solutions, even
though they are not truthful and they are tailored to specific application scenarios.

Secondly, it is shown how data containing numeric attributes can be anonymized in
a sufficiently scalable manner. To this end, various optimizations are proposed for im-
plementing a well-known, computationally expensive approach for this purpose. They
range from the mathematical level to the implementation level. Experimental evalua-
tions show that these optimizations significantly reduce execution times in practice.

Finally, the effects of rounding errors during computations using decimal numbers on
the privacy guarantees provided by implementations of various anonymization meth-
ods are analyzed. A reliable computing framework to mitigate the resulting negative
impacts on the degree of protection is proposed. Extensive evaluations show that im-
plementing data anonymization which is safe with respect to rounding errors is feasible
and that it can be achieved with negligible impacts on scalability and data quality.

To make the proposed results available for applications in practice, they have been
integrated into the open-source data anonymization tool ARX that has been used
in multiple research projects, enabled several data publishing activities and has been
mentioned in various official guidelines and policies.





Zusammenfassung
Die Menge an sensiblen personenbezogenen Daten, die modernen Zeiten gesammelt

werden, nimmt stetig zu. Einerseits birgt die Verarbeitung dieser Daten, beispielswei-
se unter Verwendung von Technologien aus den Bereichen der Big Data Analyse und
künstlichen Intelligenz, ein enormes Potenzial in vielen Bereichen wie Wirtschaft und
Forschung. Andererseits bringen solche Bemühungen potenzielle Risiken für die Pri-
vatsphäre von Einzelpersonen mit sich. Daher sind Datenschutzmaßnahmen essenziell,
wann immer personenbezogene Daten verarbeitet werden.

Eine zentrale technische Datenschutzmaßnahme ist die Datenanonymisierung. Dabei
werden personenbezogene Daten auf eine Weise transformiert, welche Risiken für die
Privatsphäre reduziert. Dies führt zwangsläufig auch zu einem Verlust oder einer Ver-
rauschung von Informationen. Daher sind Anonymisierungsalgorithmen erforderlich,
um die Auswahl von Transformationen zu unterstützen, welche zu einem angemesse-
nen Kompromiss zwischen Datenschutzrisiken und Datenqualität führen.

Diese Arbeit behandelt offene Fragen aus diesem Forschungsbereich, wobei der
Schwerpunkt auf Anonymisierungsmethoden liegt, die wahrheitserhaltend sind, was
heißt, dass sie die semantische Konsistenz der Daten erhalten. Dies ist in vielen An-
wendungsbereichen wünschenswert, wie beispielsweise im Bereich der medizinischen
Forschung. Die wichtigsten Beiträge dieser Arbeit sind wie folgt:

Erstens wird gezeigt, dass wahrheitserhaltende Datenanonymisierung, die eine be-
sonders starke Datenschutzgarantie namens Differential Privacy gewährleistet, prakti-
kabel ist. Dazu wird ein entsprechender flexibler Anonymisierungsalgorithmus vorge-
schlagen, der auf einer Beziehung zwischen wahrheitserhaltend Transformationsmetho-
den und Differential Privacy basiert, die zuvor nur aus theoretischer Sicht untersucht
wurde. Evaluationen und Vergleiche mit früheren Arbeiten zeigen, dass der vorge-
schlagene Algorithmus skalierbar ist und einen Grad an Datenqualität ermöglicht, der
mit modernen, existierenden Lösungen mithalten oder sie manchmal sogar übertreffen
kann, auch wenn diese Lösungen nicht wahrheitserhaltend und auf spezielle Anwen-
dungsszenarien zugeschnitten sind.

Zweitens wird gezeigt, wie Daten mit numerischen Attributen in ausreichend skalier-
barer Weise anonymisiert werden können. Hierzu werden verschiedene Optimierungen
vorgeschlagen, um eine bekannte, besonders rechenintensive Methode für den Schutz
numerischer Attribute effizient umzusetzen. Diese Optimierungen reichen von der ma-
thematischen Ebene bis zur Implementierungsebene. Experimentelle Untersuchungen
zeigen, dass die vorgeschlagenen Optimierungen in der Praxis zu einer erheblichen
Reduktion von Ausführungszeiten führen.



Schließlich werden die Auswirkungen von Rundungsfehlern bei Berechnungen mit
Dezimalzahlen auf die Datenschutzgarantien, die von Implementierungen verschiede-
ner Anonymisierungsmethoden geboten werden, analysiert. Es wird ein zuverlässiges
Berechnungsframework vorgeschlagen, um negative Auswirkungen auf das Schutzni-
veau zu vermeiden. Umfangreiche Evaluierungen zeigen, dass die Implementierung von
Datenanonymisierung, die Sicherheit hinsichtlich Rundungsfehlern bietet, machbar ist
und mit vernachlässigbaren Auswirkungen auf Skalierbarkeit und Datenqualität um-
gesetzt werden kann.

Um die vorgeschlagenen Ergebnisse für praktische Anwendungen verfügbar zu ma-
chen, wurden sie in das Open Source Datenanonymisierungstool ARX integriert, das
in diversen Forschungsprojekten eingesetzt wurde, mehrere Datenveröffentlichungsak-
tivitäten ermöglicht hat und in verschiedenen offiziellen Richtlinien erwähnt wird.
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CHAPTER 1

Introduction and Outline

1.1 Introduction
In the digital age, ever-growing amounts of sensitive personal data are being collected
and processed. This data covers almost all areas of our daily lives, including our online
behavior and financial transactions as well as our locations and medical conditions
over time. On the one hand, leveraging these developments using modern technolo-
gies, for example from the fields of artificial intelligence and big data analytics, bears
tremendous potential in many areas such as economics, research and health care. Ex-
ample applications include product recommender systems and learning health systems
in which “every clinical encounter contributes to research and research is being applied
in realtime to clinical care” [DPDA+16]. On the other hand, such endeavors pose po-
tential risks to the privacy of individuals, which might result in severe consequences
such as discrimination or redlining. Therefore, regulations and laws such as the US
Health Insurance Portability and Accountability Act (HIPAA) [oHfCR02], the Euro-
pean General Data Protection Regulation (GDPR) [Cou16] or the Chinese Personal
Information Security Specification [Sta18] mandate the application of a wide range
of safeguards when processing personal data, ranging from the organizational to the
technical level.

A typical legal basis for processing personal data on the organizational level is the
consent of the data subjects. This basically means that personal data can be used for
secondary purposes, such as marketing or research, if individuals authorize or consent
to this use of their data. However, this approach has the disadvantage that it often
requires valuable resources and can be associated with significant costs to provide
individuals with sufficient information to obtain truly informed consent, to document
and manage those consents, and finally to enforce them in the context of specific data
use scenarios. Consent-based use is particularly challenging for retrospective data, as
this can involve the cost of having to subsequently contact potentially large groups
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CHAPTER 1: Introduction and Outline

of individuals, some of whom may have moved or died in the meantime. In addition,
individuals who give consent may have different characteristics than individuals who
do not give consent, which can lead to biased datasets [EEA13,EJMA13].

A prominent privacy protection measure on the technical level is the encryption of
personal data [KL20]. This technique is based on converting the original data, known
as plaintext, into a non-disclosive form, known as ciphertext. The ciphertext should
not reveal any information about the original plaintext to a potential observer, and
only authorized parties should be able to decrypt the ciphertext back to the plaintext.
This is typically performed using a key that is known only to the authorized party and
within a secure environment. While data encryption can protect the confidentiality
of data, it also has some inherent drawbacks. For example, it requires a secure man-
agement of keys for decrypting ciphertexts and restricts the group of potential data
recipients to selected authorized parties. Moreover, these parties have to be trust-
worthy, and even if this can be assured (for example through additional contractual
measures), data encryption does not protect from accidental privacy violations. Ex-
amples include IT security breaches or inadvertent disclosure by the authorized party.
This drawback also applies to other technical measures for protecting the confidential-
ity of data, such as authentication and authorization [Bis03]. Cryptographic solutions
such as encryption are often computationally expensive, especially when employed in
a manner that allows for confidential computations, for example in the context of se-
cure multiparty computation [CDN15] or homomorphic encryption [Gen09]. Moreover,
many encryption methods rely on certain assumptions about limitations of the com-
putational power of potential adversaries that can become unrealistic as technology
evolves, and it has been argued that encryption is in general unsuitable when data is
to be shared frequently and broadly [GM17].

A different technical approach to privacy protection is data anonymization [FWFP10],
which is also termed de-identification or statistical disclosure control in certain areas.
It essentially works by permanently transforming personal data in a way that reduces
the risks to the privacy of individuals. In contrast to data encryption, data anonymiza-
tion does not require key management and allows data to be shared with large groups
of potentially untrusted parties, but it does not allow access to the original data.

The first step in a data anonymization process is typically the “masking” of directly
identifying attributes, such as names and insurance numbers, in order to make them
inaccessible to potential adversaries. To this end, a variety of techniques have been
proposed. They include the suppression, i.e. removal, of whole attributes, randomiza-
tion, i.e. the replacement of directly identifying data with randomly generated values,
and pseudonymization. The latter basically means that directly identifying attributes
are separated from the remaining attributes and stored in a secure environment, typ-

2 Introduction
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ically within an independent organizational unit, while associations to the dataset
containing the non-directly identifying attributes are represented by pseudonyms (i.e.
non-speaking identifiers). This approach is characterized by the fact that the associa-
tion between individuals and their data can be restored by authorized persons under
controlled conditions if required. This can, for example, be necessary if additional
findings have been collected as part of a study in the medical domain and the patient
has requested to be contacted again in this case [EEA13].

It is, however, well known that the masking of direct identifiers alone is not suffi-
cient to protect the privacy of individuals. For example, Latanya Sweeney has shown
that some attributes that are not directly identifying by themselves can still be used
for the re-identification of an individual when combined or linked to other informa-
tion [Swe02b]. Such attributes are termed key variables [WDW96] or quasi-identifiers
[LDR06] in the literature. Typical examples include ZIP code, gender and age. Sweeney
was able to use a combination of those to identify the record belonging to William Weld,
who was the governor of Massachusetts at that time, within a presumably anonymized
dataset by linking it to a public voter list [Swe02b]. As another example, Arvind
Narayanan and Vitaly Shmatikov successfully identified records of known users in a
dataset containing movie ratings of 500,000 Netflix users that was supposed to be
anonymized by linking it with the Internet Movie Database [NS08]. As a third exam-
ple, the public release of presumably anonymized search data from more than 600,000
users by AOL has led to the re-identification of individuals when it was linked to phone-
book listings by reporters of the New York Times. As a consequence of this incident,
a class action lawsuit was filed against AOL, with millions of US dollars going to the
class members and lawyers [EEA13].

All these examples constitute successful re-identification attacks. Re-identification,
however, is not the only privacy threat: Sensitive information, such as diagnoses or
income, can also be disclosed without identifying the specific record that belongs to
a person [Lam93]. It can, for example, occur by merely learning that the record
of a person must belong to a subset of records that share common features, such
as a common diagnosis code, to deduce that this diagnosis must also apply to the
individual [MKGV07, NAC07]. This threat is known as attribute disclosure. Finally,
even the knowledge that an individual’s data is included in a dataset at all can pose
a potential privacy risk in itself, for example, in the case of datasets obtained from
criminal records or debtor lists. This threat is termed membership disclosure in the
literature [NAC07].

As these examples illustrate, anonymizing data in such a manner that privacy risks
are reduced to an acceptable level is challenging. It requires transformations of the
whole dataset that go far beyond the masking of directly identifying attributes. These
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transformations inevitably result in a loss or distortion of information. Hence, data
anonymization methods have to balance reductions of privacy risks against reductions
of data quality so that the anonymized data can still be useful. Determining transfor-
mations that result in a reasonable trade-off between these conflicting objectives is a
non-trivial optimization problem. It typically requires tool support and often involves
repeated evaluations of data that has been transformed in different ways with respect
to privacy risks and data quality [EEDI+09]. Moreover, it strongly depends on the
intended use of the data. Central problem areas in this field of research are:

• Assuring privacy protection. This is obviously the main requirement for data
anonymization methods. This area includes the specification of formal models
for assessing and quantifying the degree of privacy protection with respect to
privacy threats such as re-identification, attribute and membership disclosure
that are relevant in given application scenarios. Guaranteeing that a sufficient
degree of privacy protection is provided often also requires careful analyses of the
design and implementation of data anonymization methods to avoid accidental
violations of the expected degree of privacy protection provided.

• Offering scalability. To be feasible in practice, solutions are required to be
scalable in the sense that they can process sufficient amounts of data with suffi-
cient performance in terms of processing time and memory consumption. This is
particularly challenging in the context of data anonymization where complex op-
timization problems have to be solved and methods are often applied repeatedly.
This area includes the design of efficient algorithms as well as highly optimized
implementations.

• Facilitating flexibility. Finally, it is desirable that methods for anonymizing
data are flexible in the sense that they can be tailored to a variety of different
application scenarios. This area includes the design of generic methods that can
be parameterized with a variety of different models for assessing data quality and
privacy risks and that ideally allow for flexible combinations of these models. The
specification of according formal quality models that approximate the utility of
data with respect to different application scenarios is an active area of research
in its own right [EKP17,EBS+20].

This publication-based doctoral thesis addresses challenges from all three problem
areas. It proposes solutions that have been presented in three full papers of which the
author of this thesis is the first author and which have been published in international,
peer-reviewed journals and conference proceedings.

4 Introduction
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1.2 Outline
This thesis is structured as follows:

• Chapter 1 introduced the topic, the scope and the problem areas addressed.

• Chapter 2 describes methodological background about anonymization methods
as well as computations using decimal numbers which are investigated in the
context of data anonymization in this work.

• Chapter 3 formulates the research questions this thesis aims to answer.

• Chapter 4 provides an overview of the contributions of the work presented and
relates them to the research questions presented in Chapter 3.

• Chapter 5 discusses the results presented, relates them to prior work and points
out possible directions for further research.

• Chapter 6 concludes this dissertation.

• Appendix A contains the full texts of the papers included in this thesis.

• Appendix B provides an overview of all further publications to which the author
has contributed during the time of work on this thesis.

Outline 5





CHAPTER 2

Methodological Background

This chapter introduces relevant formalisms, definitions and methodological concepts
from the field of data anonymization. It presents transformation methods and data
anonymization algorithms for selecting a suitable concrete transformation strategy for
a given dataset in general. Then, it describes different models for measuring the quality
of data and, in particular depth, various privacy models and differential privacy, which
are of particular relevance to this thesis. Moreover, this chapter introduces background
information from the field of computations using decimal numbers, which is applied in
the context of data anonymization in subsequent chapters.

2.1 Data Anonymization
In the literature, a vast amount of methods for data anonymization have been proposed.
They can be structured according to various criteria, ranging from the supported usage
scenarios over characteristics of the transformations performed to the categories of data
that can be processed.

Regarding the supported usage scenarios, it can be distinguished between data
anonymization methods for interactive settings and methods for non-interactive set-
tings [Dwo06]. Figure 2.1 shows process models in BPMN notation [Whi04] that
illustrate both.

As can be seen in Figure 2.1(a), in the interactive setting, an interface is provided for
the data user that accepts queries, executes them on the original data and anonymizes
the results before returning them to the data user. Data anonymization methods for the
interactive setting generate safe output data, typically with a low degree of granularity,
such as aggregated data. These approaches are usually tailored to a specific set of
restricted queries and they often support only a limited amount of queries per user, as
the degree of sensitive information disclosed with each query may add up [DR13]. An
inherent drawback of the interactive setting is that the maintenance and monitoring of
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Figure 2.1: Different settings in which data anonymization methods can be applied.

the query interface as well as the management and surveillance of its users and their
queries generates costs and requires resources.

In contrast, in the non-interactive setting sketched in Figure 2.1(b), the data provider
anonymizes the original data and releases the resulting dataset. Such datasets typi-
cally contain microdata, i.e. data on the level of individual persons, of high granularity.
Since the data is made available to (possibly multitudes of) data users for processing,
data anonymization methods for the non-interactive setting can be seen as producing
safe input data for analyses. From the perspective of users, access to microdata has
several advantages which stem from its inherent flexibility: The user can execute ar-
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CHAPTER 2: Methodological Background

bitrary queries on the data, both in terms of their quantity and variety. For example,
access to microdata allows an analyst to generate an arbitrary amount of statistics in
any manner desired, including individual-level multivariate analyses [DESG11]. Com-
pared to interactive approaches, non-interactive approaches therefore allow for a more
flexible use of data and do not require the operation of a query interface. They have
hence been recommended for applications in various field, including the medical do-
main [DE12, EEA13]. However, in contrast to interactive approaches, typically the
immediate sovereignty over fine-granular data is lost. Moreover, due to its fine gran-
ularity, microdata is often much more prone to privacy attacks than aggregated data
and hence particularly challenging to anonymize.

Methods for data anonymization can also be categorized based on the kind of trans-
formations they perform as being truthful or non-truthful (also known as perturba-
tive) [DEE13]. Perturbative methods permit transformations which distort data in
ways which may change semantics, for example, by changing the age of an individual
from 42 to 48 via the addition of random noise. Such methods typically preserve the do-
main of attributes, which is desirable for certain kinds of analyses [DFT05]. In contrast,
thruthful methods guarantee that semantics are preserved and that merely the infor-
mation content of data is reduced. For example, the age 42 of an individual could be
generalized to the interval [40−60[. Truthfulness can be desirable in many areas [BA05].
Examples include governmental as well as industrial applications [PGDL+14] and the
medical domain, in which semantic inconsistencies introduced by perturbation (such
as dosages or combinations of drugs which would be harmful) have led to problems in
introducing non-truthful approaches [DEE13].

Moreover, it can be distinguished between methods for anonymizing longitudinal
data and methods for anonymizing cross-sectional data [RMGM08, PLGDS13]. The
former kind of data includes series of values associated with events that have been
documented over extended periods of time, such as locations or commercial trans-
actions of individuals. Thereby, the focus is typically on a small and specific set of
attributes of interest. The latter kind of data consists of values of different attributes
that have been documented at a specific point in time. Such data typically comprises
a wider range of attributes, such as age, gender, ZIP code and income, and hence,
it typically provides a broader view on different properties of each individual. It is
well-known that the anonymization of longitudinal data requires different techniques
than the anonymization of cross-sectional data [EEA13,Agg05,TMK08].

As illustrated in Figure 2.2, the focus of this thesis is on non-interactive, truthful
methods for the anonymization of cross-sectional microdata. As discussed, this type of
data anonymization has desirable properties in many application areas, in particular
within the medical domain.

Data Anonymization 9
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Figure 2.2: Methodological focus of this thesis within the field of data anonymization.

2.1.1 Datasets

In this work, a dataset containing cross-sectional microdata is without loss of generality
regarded as a single table in which each column corresponds to one attribute and each
row to the data contributed by one individual. Unless noted otherwise, it is assumed
that no attribute is directly identifying by itself, assuming that such attributes have
been masked (cf. Chapter 1) and therefore need not be considered further. As it is
common in literature, each row is referred to as a record and datasets are regarded
as multisets of records. For an arbitrary dataset D with m attributes, the domains of
attribute 1 to m are formally denoted by Ω1, ..., Ωm so that D is a multiset D ⊆ Ω1 ×
... × Ωm and every record r = (r1, ..., rm) ∈ D is an ordered sequence r ∈ Ω1 × ... × Ωm.
For a given sequence of m attributes, the universe of all datasets D ⊆ Ω1 × ... × Ωm is
denoted with D.

2.1.2 Transformation Methods

Methods for data anonymization commonly transform data in a manner that reduces
the uniqueness of (combinations of) values. Typically, the goal is to decrease the
distinguishability of records in a dataset.

Relevant techniques used for this purpose can be categorized along different axes.
Some methods are data-dependent, which means that not only the domains of the
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attributes are considered, but also the concrete values contained in the dataset at
hand. Otherwise, they are called data-independent [LQS11].

Some methods transform a dataset using global recoding, which means that identical
values of an attribute are always transformed into the same value. In contrast, local
recoding allows identical values to be transformed into different values [DESG11]. In
the following, three of the most common transformation methods are introduced.

Microaggregation means that the records of a dataset are grouped into clusters
and within each cluster, values are made indistinguishable by replacing them with a
representative, such as the mean or the median [DFMS02]. This method is inherently
data-dependent, perturbative, and it performs local recoding [PKK16b].

Using suppression, values are removed or replaced with a semantic-free placeholder.
It can be performed on the level of individual cells, records or attributes. This method
is truthful and in general, it performs local recoding. It can be performed in a
data-dependent way, typically by suppressing (combinations of) values which appear
infrequently in a given dataset. But it can also be performed data-independently, for
example, in the form of random sampling. In this process, each record is independently
sampled, i.e. retained, with a fixed sampling probability β or otherwise suppressed.

Generalization reduces uniqueness in a truthful manner. It can be used as a global or
as a local recoding method. A typical way to perform generalization is to replace every
value of an attribute with a more general but semantically consistent value on a fixed
level of a so-called generalization hierarchy. Figure 2.3 shows exemplary generalization
hierarchies for the attributes “Age” and “Gender”. As can be seen, the values on level
0 of a hierarchy correspond to the original values in the dataset, i.e. they form the
domain Ωi of the attribute. The set of generalized values on levels greater than 0 is
denoted by Λi. For a given value r′

i ∈ Ωi ∪Λi, each value on level 0 which is an element
of the subtree rooted at r′

i is called a leaf node of r′
i. For example, the leaf nodes of

“[40, 80[” in Figure 2.3 are “40”, ..., “79”.
With full-domain generalization, all values of an attribute are generalized to the

same level. In contrast, using subtree generalization, each value ri ∈ Ωi of an attribute
can be generalized to a fixed value r′

i ∈ Ωi ∪ Λi in such a way that different values may
be generalized to different levels [FWFP10]. For example, The values “0”, ..., “39” and
all values of at least “80” of the attribute “Age” may be left unchanged, while the leaf
nodes “40”, ..., “79” of the subtree rooted at the node “[40, 80[” shown in Figure 2.3
may be replaced with this interval. Both full-domain and subtree generalization result
in global recoding [PK15] and they are single-dimensional [LDR06], which means that
each attribute is transformed individually and independently.

Multi-dimensional generalization [LDR06] is more general because it transforms pos-
sibly several attributes in groups, considering combinations of their values. It permits
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Figure 2.3: Example generalization hierarchies for the attributes “Age” and “Gender”.

that the same value of a given attribute may be generalized differently in different
records, depending on the values of other attributes, which results in local recoding.
For example, the age “45” may be generalized to “[40,60[” in records having the gender
“Female”, while it may be generalized to “[40,80[” in records having the gender “Male”.

A generalization scheme is defined as a function

g : Ω1 × ... × Ωm → (Ω1 ∪ Λ1) × ... × (Ωm ∪ Λm)

which maps a record r to a (possibly) generalized record g(r) so that the value of
every attribute is either kept as-is or replaced with a value contained in the associated
hierarchy. Generalization schemes can be used for formalizing transformations which
perform full-domain, subtree or multi-dimensional generalization. A generalization
scheme g is data-independent if it has been defined without considering the properties
of the concrete dataset at hand, i.e. if it has been defined using a strategy which yields
the same results for all possible datasets D ⊆ Ω1 × ... × Ωm.

Figure 2.4 shows how a dataset is transformed using random sampling followed
by (full-domain) attribute generalization and record suppression. After the random
sampling step, every value of the attributes “Age” and “Gender” is generalized to level
one of the corresponding generalization hierarchy shown in Figure 2.3 while also the
values of the other attributes are generalized in a consistent manner. Finally, the only
remaining unique record is suppressed.

In this work, the suppression of a record is indicated by replacing it with the place-
holder ∗ = (∗, ..., ∗). Without loss of generality, it is assumed that a generalization
hierarchy is provided for each attribute of a given dataset D ⊆ Ω1 × ... × Ωm. Since
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Input data Random sample

Generalized random sample Output dataset

[0, 20[ * 816** ≤ 2000
[20, 40[ * 819** > 2000

* * * *
* * * *

Age Gender Zipcode Income
[0, 20[ * 816** ≤ 2000

* * * *

[0, 20[ * 816** ≤ 2000
[20, 40[ * 819** > 2000

* * * *
[20, 40[ * 825** > 2000

Age Gender Zipcode Income
[0, 20[ * 816** ≤ 2000

* * * *

19 Female 81675 2000
25 Male 81925 2500
* * * *

37 Female 82567 3000

Age Gender Zipcode Income
19 Male 81667 2000

* * * *

19 Female 81675 2000
25 Male 81925 2500
55 Female 81975 2800
37 Female 82567 3000

Age Gender Zipcode Income
19 Male 81667 2000

40 Female 81931 2800

Attribute generalization

Record 
suppression

Random
sampling

39 Female 81931 3000 39 Female 81931 3000

[20, 40[ * 819** > 2000 [20, 40[ * 819** > 2000

Figure 2.4: Example showing how a dataset is transformed using random sampling,
generalization and suppression.

generalizing a value to the highest level effectively suppresses the value, the root values
of all generalization hierarchies are also denoted with ∗.

2.1.3 Data Anonymization Algorithms

As described in Chapter 1, data anonymization is a non-trivial task which goes far be-
yond the masking of directly identifying attributes. It requires processes for the (semi)
automated selection of combinations of transformations that result in a suitable bal-
ance between privacy protection and data quality. This challenge has been addressed
by different fields of science.

Statistics and research agencies have been publishing summaries and microdata
since decades. Thereby, the data typically describes a sample from some underlying
population so that analyses performed on the sample can be used to make inferences
about the whole population. Sampling – be it performed implicitly during the acqui-
sition of data or in the form of explicit random sampling as described in Section 2.1.2
– already provides a certain degree of privacy protection [WDW96, EEA13]. Prior to
its release, the sampled data is then usually further transformed using methods of sta-
tistical disclosure control which summarize or perturb the data [Off]. To this end, a
"principles-based" approach using soft rules-of-thumb, which are subject to review and
change by experts, rather than hard rules are typically used [RE15]. This a posteriori
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approach to privacy protection focuses on data quality while attempting to protect
privacy as much as possible [DESG11].

Researchers from the field of computer science started to address the problem of data
anonymization by suggesting formal models for measuring privacy risks that typically
involve a strict threshold on the level of risk which is deemed acceptable. Within the
constraints imposed by such privacy models, data is then transformed in such a way
that data quality is preserved as far as possible. From an abstract point of view, this a
priori approach to privacy protection simplifies the problem of achieving a reasonable
balance between the conflicting goals of privacy protection and data quality to an
optimization problem with a single objective function. It favors strict formal degrees
of privacy protection over data quality.

Regardless of the approach: To be feasible in practice, data anonymization requires
support by automation. A posteriori data anonymization processes typically leave
more room for manual selections of transformations and for evaluations of data than
a priori processes. To support a priori data anonymization, typically fully automated
algorithms are employed. The development of such algorithms that are sufficiently
scalable and preferably allow for flexible parameterizations to tailor their outputs to
different application scenarios is an active area of research. From an abstract point of
view, most such algorithms implement a process as sketched in Figure 2.5. For a given
input dataset, they search the space of applicable (combinations of) data transforma-
tions or refine a given transformation and assess the resulting privacy risks and quality
of data using privacy and quality models, respectively. Upon their termination, they
return the solution that provides the highest degree of data quality among all transfor-
mations assessed that satisfy risk thresholds which have been specified for the privacy
model beforehand.

Select or refine
transformation

no

no

yes yes

Apply Search
Strategy

Apply Privacy
Model

Apply Quality
Model

Assess
privacy risks

Assess
data quality

Start
anonymization

End
anonymization

Risk thresholds
satisfied?

Data quality
sufficient?

Figure 2.5: High-level model of a typical process supported by data anonymization
algorithms.

The structure of the search spaces used by anonymization algorithms strongly de-
pends on the kind of transformations they support. Traditional truthful data anonymiza-
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tion algorithms are based on search spaces that consist of generalization schemes
(cf. Section 2.1.2). They transform data by applying the according generalization
strategies followed by the suppression of all records that do not comply with the risk
threshold specified by the privacy model [PK15,EEDI+09].

When using this approach with full-domain generalization, the resulting search space
can be modeled as a graph consisting of one node for each combination of generaliza-
tion levels of the generalization hierarchy associated with each attribute. These search
spaces have the algebraic structure of a lattice [DP02] and are hence usually referred
to as generalization lattices [LDR05]. Figure 2.6 shows the generalization lattice in-
duced by the hierarchies shown in Figure 2.3 as well as transformed versions of the
example input dataset from Figure 2.4 that demonstrate the generalization strategies
corresponding to two nodes. An arrow indicates that a node is a direct successor of
a more specialized node in the sense that it can be derived from its predecessor by
incrementing the generalization level of exactly one attribute.

[0, 40[ Female
[0, 40[ Male

[40, 80[ Female
[0, 40[ Female

Age Gender
[0, 40[ Male

[40, 80[ Female
[0, 40[ Female

2000
2500
2800
3000

Income
2000

2800
3000

19 *
25 *
55 *
37 *

Age Gender
19 *

40 *

0,0

0,11,0

1,12,0

2,13,0

3,1

Generalization level for „Age“ Generalization level for „Gender“

39 *

2000
2500
2800
3000

Income
2000

2800
3000

X,Y

Result of applying 2,0 Result of applying 0,1

Figure 2.6: Example of a generalization lattice and the transformations associated with
two different nodes.

Obviously, the higher the number of transformations an anonymization algorithm
supports, the better is the data quality that can be theoretically achieved. However,
anonymization algorithms which perform complex combinations of transformations
typically cannot yield a globally optimal solution because the resulting search spaces
are far too large. Already in the relatively simple case of generalization lattices, the
number of possible transformations grows exponentially with the number of attributes,
i.e. the dimensionality of data [PBE+16]. Consequently, a multitude of heuristic search
strategies [Swe97,BRK+13,NAC07,WYC04,LDR06], pruning methods [PKK16a] and
clustering algorithms [SCDFSM15,BKBL07,GMT08,GT09,NC07] have been proposed
for selecting possibly good transformations within a reasonable timeframe.
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Most of these algorithms are special-purpose algorithms in the sense that they are
designed for specific kinds of privacy models and quality models. This means that
they effectively focus only on specific privacy risks and data use scenarios. Examples
of more flexible data anonymization algorithms that can tailor their outputs to various
different application scenarios include Flash [KPE+12], Lightning [PBE+16] as well
as the generic top-down search algorithm and the genetic search algorithm presented
in [MBDP21]. Flash can be used to determine an optimal solution when processing
datasets of low to medium dimensionality, while the other algorithms utilize heuristic
search approaches that can also be used for anonymizing data of higher dimensionality.
In their current stage of development, all of these algorithms can be flexibly param-
eterized to use a wide range of different combinations of privacy models and quality
models as well as various transformation methods [PES+20].

2.1.4 Privacy Models
Privacy models used in the context of data anonymization algorithms as described in
the previous section typically measure privacy risks based on syntactical properties of
transformed datasets. They are hence also known as syntactic privacy models [CT13].

k-Anonymity [Swe02b] is the oldest and most well-known such model. It was pro-
posed by Latanya Sweeney to protect from re-identification attacks as described in
Chapter 1. For a given risk threshold k, it basically requires that each record is indis-
tinguishable from at least k − 1 other records. Formally, it can be defined as follows:
Definition 1 (k-Anonymity [Swe02b])

A dataset D ⊆ (Ω1 ∪ Λ1) × ... × (Ωm ∪ Λm) satisfies k-anonymity if each record
r′ ∈ D cannot be distinguished from at least k − 1 other records in D. Thereby,
two records are considered indistinguishable if they share the same value for each
quasi-identifier.

An alternative definition is based on the following concept of an equivalence class:
Definition 2 (Equivalence Class [LDR06])

For a given dataset D ⊆ (Ω1 ∪ Λ1)×...×(Ωm ∪ Λm) and record r′ ∈ D, an equivalence
class E = Er′ ⊆ D is defined as the multiset of all records in D that have the same
combination of quasi-identifier values as r′.

Equivalence classes according to this definition are also equivalence classes in the
mathematical sense. An equivalence class E is said to satisfy k-anonymity if |E| ≥ k

holds. With these notions, a dataset D satisfies k-anonymity according to Definition 1
if every equivalence class E ⊆ D satisfies k-anonymity.

In a k-anonymous dataset, the re-identification risk of all records is restricted to
not more than 1/k [NT15]. The reason is that, intuitively speaking, every individual
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hides in a group with a size of at least k. The dataset shown in Figure 2.4 satisfies
2-anonymity (for every subset of attributes considered as quasi-identifiers) after the
suppression of the record with the unique (generalized) ZIP code value. The trans-
formed example dataset shown to the left in Figure 2.6 satisfies 2-anonymity as well
with respect to the quasi-identifiers “Age” and “Gender”.

As already mentioned in Chapter 1, re-identification is not the only privacy threat,
and k-anonymity does not protect from membership or attribute disclosure. For exam-
ple, if an attacker has the background knowledge that data about a woman aged 55 is
contained in the transformed dataset shown to the left in Figure 2.6, he can still infer
the income of this person. In order to protect from such attacks, Machanavajjhala et
al. have proposed a further privacy model termed ℓ-diversity [MKGV07]. It is defined
as follows:
Definition 3 (ℓ-diversity [MKGV07])

An equivalence class E is ℓ-diverse if it contains at least ℓ “well-represented” values
for a sensitive attribute i. A dataset D ⊆ (Ω1 ∪ Λ1) × ... × (Ωm ∪ Λm) is ℓ-diverse if
all its equivalence classes are ℓ-diverse.

In the article [MKGV07], Machanavajjhala et al. present different interpretations
of the notion of “well-represented” used in Definition 3 that result in different variants
of ℓ-diversity:

1. Distinct-ℓ-diversity essentially guarantees that each equivalence class contains at
least ℓ different sensitive attribute values.

2. Recursive-ℓ-diversity basically assures that the most frequently occurring sensi-
tive attribute values in an equivalence class are not too frequent and that the
rarely occurring values are not too rare.

3. Entropy-ℓ-diversity is based on the information-theoretic notion of (Shannon)
entropy [Sha01] and defines an equivalence class E to be ℓ-diverse if it satisfies

−
n∑

i=1
pi ln(pi) ≥ ln(ℓ)

where (p1, ..., pn) is the distribution of sensitive attribute values in E.

These three variants of ℓ-diversity are presented in ascending order of the degree of
privacy protection provided. It is worth pointing out that a ℓ-diverse dataset always
satisfies ℓ-anonymity. The reason is that every equivalence class has to contain at least
ℓ distinct sensitive attribute values, which implies that every equivalence class has to
contain at least ℓ records [Koh16].
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While ℓ-diversity protects from privacy threats that go beyond re-identification, at
least two further attacks exists which may result in sensitive attribute disclosure and
against which ℓ-diversity does not protect [LLV07]. The first one is termed skewness
attack and basically exploits uneven distributions of sensitive attribute values within
an equivalence class. The second one is known as similarity attack and essentially
exploits sensitive attribute values which are syntactically different, but semantically
closely related.

To protect against sensitive attribute disclosure in a way which also mitigates such
attacks, Li et al. have proposed the privacy model t-closeness [LLV07]. Informally, it
guarantees that the distribution of sensitive attribute values within each equivalence
class is close to the corresponding distribution within the whole dataset. In order to
measure the distance between two distributions, the authors propose to use the Earth
Mover’s Distance (EMD) [RTG00] which essentially quantifies the minimal amount of
work needed to transform one distribution into another by means of moving distribution
mass. Formally, t-closeness is defined as follows:

Definition 4 (t-closeness [LLV07])
An equivalence class E is t-close if the EMD of sensitive attribute values to the
distribution of sensitive attribute values in the whole dataset is at most t. A dataset
D ⊆ (Ω1 ∪ Λ1) × ... × (Ωm ∪ Λm) is t-close if all its equivalence classes are t-close.

The article [LLV07] shows different ways to calculate the EMD for attributes with
different scales of measure. For categorical attributes, the authors propose two variants:
Firstly, a simple one, which assumes an equal distance, namely one, between any
two categorical values. Secondly, a more complex one, which uses a generalization
hierarchy to calculate the distance between two values. Finally, for a totally ordered
(and in particular a numeric) sensitive attribute, the authors propose to calculate the
EMD of sensitive values P (E) = (p1, ..., pn) within a given equivalence class E and the
corresponding distribution Q = (q1, ..., qn) within the whole dataset according to the
formula

EMD [P (E), Q] = 1
n − 1

n∑

i=1

∣∣∣∣∣∣

i∑

j=1
(pj − qj)

∣∣∣∣∣∣
. (2.1)

This variant of t-closeness is known as ordered-distance t-closeness.

The privacy models which have been described in this section are established models
for protecting from various different privacy threats which may lead to re-identification
and sensitive attribute disclosure. They are relevant in different usage scenarios and
they are the central syntactic privacy models addressed in this thesis. However, it
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is worth pointing out that a multitude of further syntactic privacy models have been
proposed in the literature:

For example, the model β-likeness [CK12] aims to protect against sensitive at-
tribute disclosure in a manner that provides a more intuitive notion of protection than
t-closeness. However, unlike t-closeness, β-likeness can only be used for protecting
categorical attributes.

Furthermore, privacy models based on concepts from the field of game theory have
been proposed which take the costs and benefits of potential attacks into account,
based on the assumption that a potential attacker only attempts re-identification if
the potential gains outweigh the costs of an attack [WVX+15, PGW+17]. They have
been successfully applied in the context of genomic data sharing [WVX+17].

The privacy model m-invariance [XT07] has been proposed to protect against pri-
vacy threats in the context of the repeated re-publication of a dataset which is being
updated over time.

δ-Presence [NAC07] is a well-known privacy model that protects against membership
disclosure. It requires that the background knowledge of an adversary is modeled as
a dataset that is a superset of the dataset to be anonymized. It then essentially
enforces bounds on the probability that records from the larger dataset are contained
in the smaller dataset. It is worth pointing out that protection against membership
disclosure according to δ-presence can also reduce the risk of re-identification and
attribute disclosure.

All privacy models introduced so far are suitable for the protection of cross-sectional
data. In contrast, km-anonymity [TMK08] has been proposed specifically for the pro-
tection of longitudinal data which is typically high-dimensional. This privacy model
is comparable to k-anonymity with the difference that it protects against adversaries
who having knowledge about at most m quasi-identifying attributes.

Many more examples besides these few selected ones can be found in the survey
[WE18] by Wagner et al. that covers more than 80 privacy models.

2.1.5 Quality Models
Measuring the quality of transformed data in the context of data anonymization is
challenging because the usefulness of data strongly depends on the use case. Hence,
various models have been proposed and discussed in the literature that can be used to
estimate data quality with respect to different scenarios.

When it is unknown in advance how the output data will be used or when the
variety of intended uses is broad, general-purpose quality models can be employed.
They typically estimate data quality by quantifying the amount of information loss,
for example based on comparisons of the input data with transformed data [FWFP10].
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Such models can be roughly classified as measuring information loss on the level of
individual attributes, cells or records. Typical examples of changes on these levels
are differences in the distributions of attribute values, reductions in the granularity of
individual values or changes in the distinguishability of records, respectively.

A commonly used attribute-level general-purpose model is

• (Non-Uniform) Entropy, which essentially measures the amount of information
that can be obtained about values of attributes in the input dataset by observing
values of the corresponding attributes in the transformed dataset [DW99].

Typical examples of cell-level general-purpose models are

• Precision, which quantifies information based on the generalization levels of trans-
formed values [Swe02a], and

• Loss, which assesses the extent to which transformed values cover the domains
of their respective attributes [Iye02].

Finally, examples of common record-level general-purpose models include

• Group Size, which measures information loss based on the average size of equiv-
alence classes [LDR06], and

• Discernibility, which essentially penalizes records based on the size of their re-
spective equivalence class [BA05].

Special-purpose (also known as workload-aware) quality models approximate the
quality of data with respect to specific applications [LLV07,LDR08]. A typical example
for such an application from the fields of machine learning and statistics is statistical
classification. The task thereby is to predict the values of a predefined set of class
attributes from combinations of values of a given set of feature attributes. This is
implemented with supervised learning in which a classifier, i.e. a prediction model, is
created using a training set that contains correctly assigned feature and class attribute
values [WE05].

Specific quality models have been developed for optimizing data for the purpose of
statistical classification. A well-known example is the classification metric proposed
by Iyengar which measures the suitability of data as a training set for statistical clas-
sifiers [Iye02]. Essentially, it works by penalizing records which contain infrequent
combinations of feature and class attribute values.
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2.1.6 Differential Privacy
Traditional syntactic privacy models are typically based on assumptions about an
attacker’s background knowledge and protect from specific privacy threats. As can be
concluded from the examples provided in Section 2.1.4, this has led to the development
of more and more such models over time which aim to provide protection in scenarios
that were previously not adequately addressed. This is an ongoing process as new
attack scenarios are continuously being discovered and it has been argued that the
degree of privacy protection provided by models focusing on syntactical properties of
data only is inherently limited [Dwo08,DFT08].

Cynthia Dwork has proposed a different approach to privacy preserving data pro-
cessing termed differential privacy [Dwo06,DMNS06] that aims to overcome these lim-
itations and to provide a rigorous definition of privacy protection. Unlike syntactical
privacy models, differential privacy is not a property of a dataset, but a property of a
data processing method. It does not make assumptions about the background knowl-
edge of attackers or about specific privacy threats. This also means that effectively,
the need to identify potential quasi-identifiers and sensitive attributes is obviated. Es-
sentially, differential privacy guarantees that the probability of any possible output of
a probabilistic algorithm (termed mechanism in the literature) does not change sig-
nificantly if the data of one person is added to or removed from the input dataset.
This allows a person to plausibly deny that his or her data was even included in a
dataset that has been processed. It effectively means that an individual can safely
contribute data because this will not significantly influence any possible consequences
the output of a differentially private mechanism may have for that individual, be they
adverse or not. However, as a consequence of the strong degree of privacy protection
provided, differentially private mechanisms often have to make compromises in terms
of flexibility or data quality. They are usually special-purpose algorithms for specific
applications or support only limited sets of queries and they are typically perturbative
(see [YJ14,VSBH13,DR13,FJ15,JLE14,JYC15] for examples).

Formally, ϵ-differential privacy can be defined with respect to datasets D1 and D2

satisfying |D1 ⊕ D2| = 1, which means that D1 can be obtained from D2 by either
inserting or removing one record, as follows:
Definition 5 (ϵ-differential privacy [BCD+07])

A mechanism M provides ϵ-differential privacy if for all datasets D1 and D2 with
|D1 ⊕ D2| = 1 and all measurable S ⊆ Range(M), the following holds:

P [M(D1) ∈ S] ≤ exp(ϵ) × P [M(D2) ∈ S].
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The parameter ϵ, which is commonly termed the privacy budget, is typically a small
positive number and determines the degree of privacy protection provided. Smaller
values of ϵ result in tighter bounds on the permitted changes of output probabilities
resulting from the insertion or removal of one record and hence in stronger degrees of
protection.

A well-known way for achieving ϵ-differential privacy is termed randomized response
[DR13]. This method can be used to perform privacy-preserving surveys. It can be
illustrated by a person flipping a coin in secret and answering “yes” if it comes up
heads while giving the true answer otherwise.

Another approach which is frequently used when output values are real numbers is
the Laplacian mechanism [DMNS06]. It basically works by perturbing correct outputs
by adding random noise drawn from an appropriately scaled Laplace distribution. This
mechanism is commonly applied by query interfaces in interactive data usage scenarios
(cf. Section 2.1) that support the execution of statistical queries.

Another common method known as the exponential mechanism [MT07] can be used
for achieving ϵ-differential privacy when the output range R is an arbitrary measure
space. It basically works by ranking all potential outputs r ∈ R for a given input
dataset D ∈ D using a so-called score function s : D × R → R which assigns a
real-valued score to each pair (D, r) ∈ D × R. It then randomly selects and returns
an output r ∈ R according to a specific probability distribution which depends on the
privacy budget ϵ and on the so-called sensitivity ∆s. The latter denotes the biggest
possible difference in the output of s which can result from the insertion or removal of
one record. More precisely, the sensitivity ∆s of a score function s : D × R → R can
be defined as

∆s = sup
r∈R

sup
D1,D2∈D: |D1⊕D2|=1

|s(D1, r) − s(D2, r)| .

With this notion, the exponential mechanism can be formally defined as follows:

Definition 6 (Exponential mechanism [MT07])
Let R be an arbitrary set on which a measure µ is defined. For every function s :
D×R → R with a finite sensitivity ∆s, the exponential mechanism E ϵ(D, s) chooses
and outputs an element r ∈ R with a probability proportional to exp

(
s(D,r)ϵ

2∆s

)
×µ(r).

As can be seen from Definition 6, the exponential mechanism assigns higher proba-
bilities to potential outputs with higher scores. At the same time, higher sensitivities
result in lower differences between the probabilities assigned to different potential out-
puts. Consequently, score functions should be designed in such a way that higher
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scores are assigned to outputs which are more desirable while the sensitivity should be
possibly small.

In order to compose more complex algorithms out of building blocks for achieving
ϵ-differential privacy such as the ones described above, a variety of composition theo-
rems can be used. One example is the following theorem which states that sequences
of ϵ-differentially private computations also provide ϵ-differential privacy:
Theorem 1 (Sequential composition [McS09])

For i = 1, ..., n, let the mechanism Mi provide ϵi-differential privacy. Then the
sequence Mr1

1 (D), ..., Mrn
n (D), where Mri

i denotes mechnism Mi supplied with the
outcomes of M1, ..., Mi−1, satisfies (∑n

i=1 ϵi)-differential privacy.

It is known that truthful microdata cannot be released in a manner which satisfies
strict ϵ-differential privacy [Dwo11]. Hence, unless noted otherwise, this thesis focuses
on a relaxation known as (ϵ, δ)-differential privacy which tolerates that the bound
exp(ϵ) in Definition 5 may be exceeded with a small probability δ. This relaxation can
be formally defined as follows:
Definition 7 ((ϵ, δ)-differential privacy [DEE13])

A mechanism M provides (ϵ, δ)-differential privacy if for all datasets D1 and D2

with |D1 ⊕ D2| = 1 and all measurable S ⊆ Range(M),

P [M(D1) ∈ S] ≤ exp(ϵ) × P [M(D2) ∈ S]

is satisfied with a probability of at least 1 − δ.

It should be noted that some articles such as [DKM+06] use a slightly different
relaxation of ϵ-differential privacy which is more relaxed, i.e. provides a lower degree
of privacy protection, than Definition 7. The interested reader can find further details
about these variants of differential privacy and their relation for example in the articles
[KS08,GMW+12].

2.2 Computations Using Real Numbers
To be usable in practice, data anonymization methods need to be integrated into
reliable and sufficiently scalable software tools. Such programs have to perform com-
putations using formulas as presented above which often involve arithmetic using real
numbers. In principle, such computations cannot be performed exactly by computers as
they have finite resources. Consequently, the set of numbers which can be represented
exactly by computers, the so-called machine numbers, is finite and there exists an in-
finite amount of unrepresentable real numbers between any pair of machine numbers.
Arithmetic using such numbers can in principle merely approximate exact mathemat-
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ical results and inevitably introduces approximation errors which strongly depend on
the way the machine numbers are defined. These errors have been extensively studied
in the field of numerical analysis. Central notions in this context are

1. the absolute error eabs = |x − x̃| and

2. the relative error erel = eabs/ |x| = |x − x̃| / |x| for x ̸= 0

where x is a real number and x̃ the machine number used to approximate it. Usually
the absolute error is less relevant in practice than the relative error as the latter one
measures approximation error in relation to the order of magnitude of the exact real
value [Opf93].

2.2.1 Floating-Point Arithmetic
By far the mostly used representation of machine numbers is in the form of floating-point
numbers. They have been designed to keep the relative approximation error as low
as possible and they are almost always implemented according to the IEEE standard
754 [IEE08]. This standard specifies various formats that define representations of
numeric values and special values that do not represent real numbers. Each numeric
value is represented using three integers: A sign s, a significand c, and an exponent q.
The mathematical value of such a number is

(−1)s × c × bq

where the base b can be either 2 or 10. Special values include +∞, −∞, and NaN ,
which stands for Not a Number and represents unrepresentable or undefined values,
for example the result of zero divided by zero. Each format determines the base and
has a fixed precision, i.e. number of digits of the significand, as well as a limited range
of possible exponents.

Moreover, the IEEE 754 standard specifies that basic arithmetic operations using
floating-point numbers have to be done as if it was possible to perform the corre-
sponding operation with infinite precision and then to round the result to the nearest
representable number. More formally, if x̃ and ỹ are floating-point numbers, ⊕ de-
notes a floating-point operation and + the associated infinite precision mathematical
operation, the standard guarantees that the following holds:

x̃ ⊕ ỹ = round(x̃ + ỹ).

The precise semantics of the rounding operations denoted here with round are defined
by rounding modes. They include “round to nearest” which means that exact results
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are rounded to the nearest floating-point value. Other rounding modes are “round
towards zero”, “round towards +∞” (also known as “ceiling”) and “round towards
−∞” (also known as “floor”).

Computations using floating-point numbers are efficient and supported by desig-
nated hardware implementations termed Floating-Point Units (FPUs). However, dur-
ing sequences of floating-point calculations, these rounding errors inevitably add up
and can lead to outputs which deviate significantly from the mathematically exact
results [MBDD+09]. One approach for solving such issues is the careful static analysis
of floating-point errors and their possible propagations. However, it is well-known that
formally arguing about floating-point arithmetic is difficult and error-prone [MBDD+09,
Mon08,Mir12].

2.2.2 Reliable Computing Techniques

To avoid the issue of floating-point error propagation, various reliable computing tech-
nologies can be used which are suitable for computations on different subsets of the
real numbers and which have different advantages and disadvantages.

One obvious approach is to use software implementations of machine numbers in
the form of arbitrary precision decimals, such as floating-point numbers consisting of
significands and exponents with arbitrary lengths. However, this can only be used for
calculations which yield results having a finite decimal expansion. Other computations,
for example one divided by three, cannot be performed with this method in such a way
that mathematically exact results are produced.

Another approach is exact arithmetic using rational numbers represented by frac-
tions in the form of pairs of arbitrarily long integer enumerators and denominators.
Rational numbers are known to have the algebraic structure of a field and hence, such
machine numbers can be used to perform arbitrary combinations of addition, subtrac-
tion, multiplication and division. However, they cannot be used to implement all cal-
culations involving elementary functions. For example, calculating roots, logarithms or
the exponential function using rational arguments can yield irrational numbers. More-
over, computations using such numbers can become very slow when large enumerators
or denominators are involved and when common denominators have to be calculated
in the context of operations such as additions or subtractions.

Finally, interval arithmetic [Daw11], which allows to dynamically compute strict
upper and lower bounds on the results of mathematical operations, can be used for
reliable calculations on the whole set of real numbers. The basic idea is not to operate
on (approximations of) real numbers, but rather on closed intervals within which the
respective exact real numbers are guaranteed to lie. Functions operating on such
intervals yield intervals which are guaranteed to include the exact result for any possible
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combination of real values contained in the input intervals. For example, addition on
intervals can be performed by calculating

[x̃1, x̃2] + [ỹ1, ỹ2] = [floor (x̃1 + ỹ1) , ceiling (x̃2 + ỹ2)].

Using interval arithmetic, complex combinations of floating-point operations can be
implemented on the whole set of real numbers while bounds on (both absolute and rela-
tive) errors of results can be computed dynamically during the execution of a program.
Computations can be performed efficiently by exploiting optimized implementations
of operations which modify the endpoints of intervals, for example using FPUs. More-
over, because of its conceptual simplicity, interval arithmetic can be implemented in
a manner that is easy to understand, and hence, to validate. However, in contrast to
approaches such as arithmetic using fractions as described above, interval arithmetic
cannot be used to obtain exact results.
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Problem Statement

This chapter introduces the research questions this thesis aims to answer. They cover
aspects from all problem areas discussed in Chapter 1, namely privacy protection,
scalability and flexibility. The research questions are labeled Q.1 to Q.3 and they are
addressed by the publications Ref.1 to Ref.3, respectively, that are presented in the
next chapter.

3.1 Differentially Private Data Anonymization
As discussed in Section 2.1.6, differential privacy provides a strong degree of pri-
vacy protection and does not rely on assumptions about an attacker’s background
knowledge. Consequently, it has received considerable attention in the field of data
anonymization. However, as a consequence of the strong protection, methods from
this field often have to make compromises in terms of flexibility or data quality. Tra-
ditional differentially private mechanisms are hence usually special purpose algorithms
that provide good data quality while they have restricted output domains which can
effectively support only specific usage scenarios. Examples include algorithms from
the field of genetic research that output significant single-nucleotide polymorphisms
for genome-wide association studies [YJ14] and methods from the field of machine
learning, for example, for constructing statistical classifiers [VSBH13].

While differential privacy was initially proposed for the interactive scenario, in re-
cent years, a growing number of differentially private mechanisms for non-interactive
microdata release have been developed. They focus on strong privacy guarantees while
striving to preserve the usefulness of their outputs for a possibly wide range of appli-
cations. However, methods from this area usually either generate synthetic datasets
which mimic characteristics of the original dataset, or they produce perturbed versions
of the original dataset by adding random noise. Current methods have been criticized
for being difficult to explain to non-experts, for example to ethics committees, and for
their perturbative nature [DEE13]. The development of truthful methods for differen-
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tially private microdata release is ongoing research that has been conducted primarily
from a theoretical perspective up to now. The first research question addresses this
problem:

Q.1 Can truthful microdata release that satisfies differential privacy be implemented in
practice in a manner that is scalable and flexible while still providing a sufficient
degree of data quality?

3.2 Efficient Protection of Numeric Attributes
Protecting data from sensitive attribute disclosure is challenging, in particular when
sensitive attributes are numeric. As described in Section 2.1.4, t-closeness [LLV07] is
a state-of-the-art privacy model that can be used for this purpose. It essentially guar-
antees that the distributions of sensitive attribute values within all equivalence classes
do not deviate too much from the corresponding distribution of sensitive information
in the entire dataset. The model has been specified in different variants that can be
applied to attributes with different scales of measure. In particular, ordered-distance
t-closeness is one of the few privacy models that have been proposed for the protection
of sensitive numeric attributes. However, implementing it in practice in a sufficiently
scalable and efficient manner is difficult. The reason is that directly evaluating the
model as defined in Section 2.1.4 is particularly computationally expensive. It requires
the computation of a double sum which is associated with a high time complexity
of O(n2) where n is the numbers of records. This is particularly problematic in the
context of data anonymization algorithms as described in Section 2.1.3 that evaluate
privacy models repeatedly on data that has been transformed in different ways in order
to determine a possibly good transformation strategy. The second research question
tackles this challenge:

Q.2 How can numeric attributes be protected from sensitive attribute disclosure in a
sufficiently scalable manner?

3.3 Reliable Data Anonymization
Implementing data anonymization in practice often requires reflecting the mathemati-
cal definitions of privacy models in software. This holds in particular for flexible data
anonymization algorithms as described in Section 2.1.3 which directly compute the
definitions of (possibly combinations of) privacy models on transformed data to assure
that privacy protection constraints are satisfied. These definitions often involve calcu-
lations using real numbers which, as discussed in Section 2.2, are frequently approxi-
mated using floating-point numbers with a limited range and precision by computers.
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It is well-known that calculations using such numbers inevitably introduce rounding
errors which can add up during sequences of computations, leading to results that can
differ significantly from the mathematically exact results [Mon08, Wil94]. Moreover,
the exact behavior of floating-point operations can vary from implementation to im-
plementation. It does not only depend on the particular design of computations in
software, for example on the order in which arithmetic operations are executed, but
it can also depend on the hardware, compiler configurations, libraries used, runtime
environments etc., even when programming frameworks such as Java which strive for
platform-independence are used [Mon08]. Floating-point errors are particularly prob-
lematic in the field of data anonymization where numerical inaccuracies can lead to
privacy violations. For example, it has been shown that straight-forward floating-point
implementations of the Laplacian mechanism (cf. Section 2.1.6) can be exploited in
such a way that the entire content of a (presumably protected) database can be ex-
tracted [Mir12]. However, while general effects of floating-point arithmetic on the
accuracy of computations have been extensively studied (see for example [Hig02]),
there is still a lack of research about their impacts on the privacy guarantees pro-
vided by methods for data anonymization, in particular in the context of flexible data
anonymization algorithms. The third research question aims to fill this gap:

Q.3 What are the effects of floating-point errors on the privacy guarantees provided
by implementations of various data anonymization methods in the context of
flexible data anonymization algorithms?

Reliable Data Anonymization 29





CHAPTER 4

Overview of Contributions

The main contributions of this cumulative thesis comprise results of three full papers of
which the author of this dissertation is the first author and which have been published
in international, peer-reviewed journals and conference proceedings. They investigate
the research questions Q.1, Q.2 and Q.3 formulated in the previous chapter and they
are accordingly referred to as contribution Ref.1, Ref.2 and Ref.3. These publications
contribute to all of the three problem areas privacy protection, scalability and flexibility
in the context of data anonymization introduced in Chapter 1. Figure 4.1 illustrates
which problem areas are mainly addressed by which contribution.

Privacy
Protection

FlexibilityScalability

Ref. 1
Differentially
Private Data 

Anonymization

Ref. 3
Reliable Data 

Anonymization

Ref. 2
Efficient

Protection of
Numeric

Attributes

Figure 4.1: Overview of the problem areas mainly addressed by the publications in-
cluded in this thesis.

All contributions contain theoretical and conceptual results as well as practical
evaluations using several real-world datasets, including: (1) US Census, an excerpt
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of records from the 1994 US Census database which is often used for evaluating
anonymization algorithms, (2) PVA Fundraising, a dataset containing information
about a fund raising appeal of the organization Paralyzed Veterans of America, (3)
Crash Statistics, a dataset covering traffic accidents, (4) Time Use Survey, a dataset
consisting of responses to a survey on individual time use in the US and (5) Health
Interviews, a dataset containing records from a survey on the health of the US popu-
lation [PES+20]. The datasets have increasing volumes, ranging from about 30, 000 to
more than a million records. All contain personal information such as gender or age
and sensitive information such as income-related data. Table 4.1 provides an overview
of these datasets and their properties.

Name Number of
Attributes

Number of
Records

Sensitive
Attribute

US Census 9 30, 162 Salary Class
PVA Fundraising 8 63, 441 Income
Crash Statistics 8 100, 937 Injury Status

Time Use Survey 9 539, 253 Labor Status
Health Interviews 8 1, 193, 504 Education

Table 4.1: Overview of the datasets used in the experimental evaluations.

In order to make the proposed results available for applications in practice, they have
been integrated into the open-source data anonymization tool ARX [PES+20,EBS+20,
PK15] which has been used in several research projects [XJC+15,KHC+16,CCZYM17],
enabled multiple data publishing activities [KHZ17, JBD+21, USMN17] and has been
mentioned in various official guidelines and policies [Age,oS,MEO16].

In the following, each of the included publications is summarized, with a focus on
the findings with respect to the research question investigated, the methods used and
the results obtained. Moreover, the individual contributions of the author of this thesis
are highlighted. Further information about each publication, including the respective
full text, can be found in Appendix A. Other publications to which the author has
contributed, but which are not included in this dissertation, are listed in Appendix B.
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4.1 Differentially Private Data Anonymization
The article Ref.1 shows that thruthful data anonymization which satisfies differential
privacy is feasible. It does so by proposing a practical data anonymization algorithm
based on a relationship between k-anonymity and differential privacy that has previ-
ously only been studied from a theoretical perspective (see [LQS11, LQS12]). These
results have been further developed into a scalable and flexible algorithm that can be
configured to optimize the quality of data for various different application scenarios
while provably satisfying (ϵ, δ)-differential privacy. To develop this algorithm, multiple
challenges had to be overcome:

Firstly, the articles [LQS11, LQS12] do not propose solutions for computing tight
values of the parameters used for transforming data that guarantee a user-specified
degree of privacy protection, which is a natural requirement for a data anonymization
method. For that, proofs had to be extended and completed, including the development
of a strategy for computing the maximum of a non-monotonic infinite sequence.

Secondly, the approach was initially limited to data-independent generalization
[LQS11] which may severely impact data quality [DEE13]. While it is known that
a differentially private algorithm for selecting a data-dependent generalization scheme
can be used [LQS12], no concrete such method was described. To this end, Ref.1
proposes a flexible search strategy and proves that it satisfies differential privacy. This
method is based on repeated applications of the exponential mechanism composed us-
ing the sequential composition theorem. It can be parameterized with arbitrary score
functions for quantifying data quality.

Thirdly, due to the above-mentioned previously open problems, no methods for
tailoring the approach to specific applications and no practical evaluations could be
performed yet. To this end, Ref.1 presents score functions for optimizing output
data with respect to different well-known quality models. They include Non-Uniform
Entropy, Precision, Loss, Group Size, Discernibility as well as a special-purpose model
tailored towards statistical classification. Analytical and experimental evaluations and
comparisons with prior work show that the proposed solution is scalable and provides
data quality which can compete with, and sometimes even outperform, state-of-the-art
solutions, even though they are perturbative and restricted to specific applications.

Individual Contributions of Thesis Author: The thesis author has signifi-
cantly contributed to the development and conceptual design of the research project.
Moreover, the author has contributed to the gathering, collection, acquisition or provi-
sion of data, software or sources. Further, the author has significantly contributed to
the analysis and evaluation or interpretation of data, sources and conclusions drawn
from them. Finally, the author has contributed to the drafting of the manuscript.
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4.2 Efficient Protection of Numeric Attributes
The publication Ref.2 investigates how numeric attributes can be protected from
sensitive attribute disclosure in a scalable manner. For this, it proposes various opti-
mizations for efficiently evaluating ordered-distance t-closeness, which is one of the few
privacy models for this purpose, and which is particularly computationally expensive.
More precisely, algorithmic representations of the model based on directly calculating
the EMD using summation (cf. Formula 2.1) for each equivalence class require an
amount of computations in the order of O(n2), where n is the numbers of records.

The first optimization addresses the calculation of the distribution of values in each
equivalence class required for calculating the EMD. The standard approach for this is to
determine the frequency of each distinct value using hash tables. Evaluations of existing
hash table implementations have shown that they perform more complex calculations
than required for the given use case, even when they are already optimized towards
high performance. For this reason, Ref.2 proposes a custom-developed, efficient hash
table using Fibonacci hashing based on the golden ration [Knu98].

The second optimization is based on the observation that values which are absent
in a given equivalence class can lead to summands within the sum for calculating
the EMD that depend only on the input dataset and can hence be pre-calculated in
an initialization step (these summands have the form | − q1... − qk| in Formula 2.1).
Whenever the EMD is evaluated for a specific equivalence class, an according partial
sum of this form can be retrieved. If this partial sum already exceeds a threshold
depending on the privacy parameter t, then the dataset cannot satisfy t-closeness and
hence the computation can already be stopped.

The third optimization can be used when the mentioned pre-calculated partial sum
does not exceed the threshold. Then, this partial sum is used as a starting point of
the summation process and the summation can be completed by adding the remaining
summands only.

Experimental evaluations show that the proposed optimizations can significantly
improve execution times, by a factor of up to two. They are particularly relevant in the
context of flexible anonymization algorithms that evaluate privacy models repeatedly
on data transformed in different ways to optimize data quality.

Individual Contributions of Thesis Author: The thesis author has signifi-
cantly contributed to the development and conceptual design of the research project.
Moreover, the author has contributed to the gathering, collection, acquisition or provi-
sion of data, software or sources. Further, the author has significantly contributed to
the analysis and evaluation or interpretation of data, sources and conclusions drawn
from them. Finally, the author has contributed to the drafting of the manuscript.
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4.3 Reliable Data Anonymization
The paper Ref.3 studies the effects of floating-point rounding errors on the privacy
guarantees provided by various truthful data anonymization methods. It addresses
straight-forward implementations of privacy models including k-anonymity, ℓ-diversity
and t-closeness and the exponential mechanism. Such direct implementations are par-
ticularly important in the context of flexible anonymization algorithms that can be
parameterized with (possibly combinations of) various different privacy models.

The analyses performed are based on conservative methods from the field of numer-
ical mathematics such as forward error analyses [Hig02] to derive upper bounds for
the additive exceedance of the privacy parameters of the methods considered. In most
cases, the negative impacts have been found to be negligible in realistic settings. For
example, the exceedance of the privacy parameter ϵ of a straight-forward floating-point
implementation of the exponential mechanism is in the order of 10−10 or less in practi-
cal settings. However, an analysis of the algorithm proposed in Ref.1 shows that the
relatively complex computations required for calculating the parameters used for the
transformation of data can lead to significant exceedances of the privacy parameter δ.
It is shown that using a straight-forward floating-point implementation, relative errors
of δ of up to 28% can occur in certain practically relevant settings. This happens when
(floating-point approximations of) irrational values of ϵ such as ln(2) or ln(3), which
are common in the literature [DEE13], are used.

To solve such issues, a flexible, reliable computing framework based on techniques
described in Section 2.2.2, including exact fractional arithmetic and interval arith-
metic, is proposed. It provides reliable implementations of basic arithmetic operators,
elementary functions such as roots, logarithms and the exponential function as well as
common comparison operators. This framework can be used to implement calculations
using decimal numbers in the context of data anonymization algorithms in such a way
that the actual degree of privacy protection is at least as strong as specified by the user.
Due to a lack of suitable existing solutions, it has been implemented from scratch.

Extensive evaluations show that implementing flexible data anonymization which
is reliable with respect to floating-point errors is feasible and that it can be achieved
with negligible impacts on scalability and data quality in realistic settings.

Individual Contributions of Thesis Author: The thesis author has signifi-
cantly contributed to the development and conceptual design of the research project.
Moreover, the author has contributed to the gathering, collection, acquisition or provi-
sion of data, software or sources. Further, the author has significantly contributed to
the analysis and evaluation or interpretation of data, sources and conclusions drawn
from them. Finally, the author has contributed to the drafting of the manuscript.
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Discussion

This chapter discusses the main results presented in this thesis, relates them to prior
work and highlights possible directions for future research.

5.1 Differentially Private Data Anonymization
The article Ref.1 shows that truthful data anonymization which satisfies differential
privacy is indeed feasible. To this end, it presents a differentially private mechanism
for the release of truthful microdata that can be flexibly parameterized to optimize the
quality of output data for different applications.

While differential privacy provides a strong degree of privacy protection, the model
has been criticized for being abstract, difficult to parameterize and to explain to
non-experts [DEE13]. However, due to the relatively simple, truthful modifications
of data employed, the mechanism presented in Ref.1 offers an intuitive interpretation
of the privacy protection provided: With a given probability which can be derived
from the privacy parameter ϵ, the data of an individual will not be contained in the
output dataset at all and even if it is included, it is generalized in such a way that it
cannot be distinguished from the data of at least k − 1 other individuals, where k can
be derived from the privacy parameters ϵ and δ.

Analytical and experimental evaluations have shown that the method is practical
in terms of scalability and data quality and that privacy budgets in the order of ϵ = 1,
which are common in the literature, are a recommendable parameterization.

In the current stage of development, the mechanism employs random sampling fol-
lowed by k-anonymization via full-domain generalization and record suppression (cf.
Section 2.1.2), just as shown in Figure 2.4. These are relatively simple transforma-
tion techniques that often remove a significant amount of information. However, the
proposed method removes information in a controlled manner that preserves frequent
combinations of attribute values and hence, it preserves a significant degree of util-
ity. In particular, experimental comparisons with prior work in Ref.1 have shown
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that statistical classifiers trained on output data can compete with, and sometimes
even outperform, perturbative state-of-the-art differentially private algorithms for sta-
tistical classification. It has to be noted, though, that the degree of protection pro-
vided is slightly lower compared to perturbative methods which usually satisfy strict
ϵ-differential privacy rather than (ϵ, δ)-differential privacy. However, as discussed in
Section 2.1.6, mechanisms which output truthful microdata cannot possibly satisfy
strict ϵ-differential privacy.

The article Ref.1 also contains an experimental comparison with the approach
presented in [FEB14,FEB12] which is the most closely related as it is also a truthful,
(ϵ, δ)-differentially private microdata release algorithm that employs random sampling
and generalization. In these experiments, almost all information has been removed
from the input datasets, which renders this competitor impractical at its current stage
of development.

The work presented in Ref.1 could be extended in several directions through fu-
ture research. One interesting line of future work is the development of further score
functions which optimize output data for further applications, for example, for learning
tasks such as regression. To this end, the development of score functions tailored to the
special-purpose quality models presented in [LDR08] appears to be promising. More-
over, it would be worthwhile to investigate how more flexible transformation techniques
than full-domain generalization, such as subtree generalization, multi-dimensional gen-
eralization or cell suppression (cf. Section 2.1.2), could be integrated into the approach
to further increase the quality of data provided. Along this line of future improvements,
it would also be interesting to research how implicit random sampling performed during
the acquisition of data could be considered in order to reduce the amount of explicit
random sampling performed by the mechanism.

Finally, it is well-known that methods based on k-anonymization are suited for
protecting data from low to medium dimensionality, but cannot retain sufficient data
quality when processing high-dimensional data [Agg05]. For this reason, it would be
interesting to investigate approaches for vertically partitioning high-dimensional data-
sets and processing the resulting subsets of attributes individually. This would also
facilitate parallel processing, which, in turn, can reduce execution times. Other pos-
sible solutions to tackle the problem of high dimensionality could be the development
of alternative differentially private search strategies. To this end, it appears promising
to develop differentially private variants of the heuristic algorithms mentioned in Sec-
tion 2.1.3. In this context, it also seems worthwhile to investigate how other privacy
models such as km-anonymity, that have been proposed specifically for the protection
of longitudinal data which is typically high-dimensional [TMK08], could be integrated
into the mechanism.
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5.2 Efficient Protection of Numeric Attributes
The paper Ref.2 investigates how numeric attributes can be protected from sensitive
attribute disclosure in an efficient and scalable manner. To this end, it presents differ-
ent optimizations which can be used for evaluating the privacy model ordered-distance
t-closeness that range from the implementation level to the mathematical level. They
include the usage of a custom hash map and the employment of pre-calculated par-
tial sums to prevent redundant computations when a transformed dataset satisfies
t-closeness while also enabling an early termination of computations when it does not.

Experimental evaluations of the optimizations presented in Ref.2 show that they
can significantly reduce execution times in practice, by a factor of up to two. Each
optimization had a positive effect in all experiments while the impact varied between
different setups. In particular, the higher the number of distinct sensitive attribute
values was, the better were the speedups that could be achieved. At the same time,
higher numbers of distinct sensitive attribute values result in higher execution times,
which implies that the proposed optimizations are the most effective when they are
needed the most.

All optimizations aim to speed up the evaluation of ordered-distance t-closeness by
directly computing Formula 2.1. This is required in order to integrate ordered-distance
t-closeness into a flexible data anonymization algorithm as described in Section 2.1.3
that can be parameterized with (combinations of) different privacy and quality models
that are directly evaluated on the transformed data. Privacy models are evaluated
repeatedly in this setting on data that is transformed in different ways and therefore,
their efficient evaluation is of particular importance.

Methods that have been proposed for enforcing t-closeness are usually special-purpose
approaches specifically designed for this privacy model or they require the computation
of the Earth Mover’s Distance without providing further information on how to do this
in a scalable way. (see [CKKT11,SCDF13,LLV07,LLV09] for prominent examples). To
the best knowledge of the author of this thesis, Ref.2 is the first work that specifically
addresses the challenge of efficiently calculating the Earth Mover’s Distance.

The article [DFSC15] studies a relationship between t-closeness and differential pri-
vacy from a theoretical perspective. It proposes a stochastic variant of t-closeness and
shows that it can imply differential privacy under reasonable assumptions. It would
be interesting to investigate if this privacy model could be implemented in a scalable
manner using optimizations such as the ones described in Ref.2. Moreover, while the
evaluation of t-closeness is particularly computationally expensive, it would be inter-
esting to investigate possible optimizations for the implementations of further privacy
models in future research.
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5.3 Reliable Data Anonymization

The article Ref.3 investigates the effects of floating-point rounding errors on the de-
gree of privacy protection provided by implementations of a variety of methods for data
anonymization, ranging from syntactical data anonymization to mechanisms which sat-
isfy differential privacy. The results of the numerical analyses presented show that in
most cases, violations of the expected degree of protection which may result from
floating-point errors are negligible in realistic settings. Analyses of the method pre-
sented in Ref.1, however, show that the required computations of the parameters for
the transformation of data can lead to significant exceedances of the expected privacy
threshold δ due to floating-point errors.

To solve such problems, a flexible framework based on reliable computing techniques
as described in Section 2.2 is proposed. It provides reliable implementation of various
basic mathematical operations and functions. This framework is used to implement the
method presented in Ref.1 in such a way that the actual degree of privacy protection
provided is at least as strong as requested by the user. Experimental evaluations of the
resulting implementation show that the impacts of the reliable computing framework
on data quality and execution times are minor when realistic parameters are used.

The results presented in Ref.3 have implications for the results published in the
articles Ref.1 and Ref.2 that are worth discussing. Firstly, the evaluations of the
differentially private mechanism presented in Ref.1 have been performed with an initial
floating-point implementation. However, the results and conclusions presented can be
transferred to the current implementation of the mechanism which uses the proposed
reliable computing framework. The reason is that, as mentioned, the effects of this
framework on data quality and on execution times have been found to be irrelevant
when realistic parameters are being used. Moreover, the experimental evaluations
and comparisons with prior work presented in Ref.1 did not use the irrational values
of ϵ which have led to the mentioned exceedances of δ in the initial floating-point
implementation.

Secondly, the numerical analysis of t-closeness presented in Ref.3 has focused on
errors occurring in unoptimized implementations that directly evaluate Formula 2.1
using floating-point arithmetic and found them to be negligible in realistic settings.
These results can be transferred to the optimized implementation of t-closeness pre-
sented in Ref.2 because the optimizations employed can at most reduce the amount of
floating-point operations performed. Consequently, the impacts of floating-point errors
on the degree of privacy protection provided by the optimized implementation can at
most improve compared to the unoptimized implementations addressed by Ref.3.
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CHAPTER 5: Discussion

There exists a vast amount of general literature about floating-point arithmetic and
the study of the effects of numerical approximation has formed an own line of research
termed numerical analysis [Gol91,MBDD+09,Mon08,Hig02,Gau97].

An example of an article which considered floating-point arithmetic specifically in
the context of data anonymization is the paper [SKH16]. It proposes an implementation
of ℓ-diversity using Grassberger’s correction to increase the quality of data. The authors
argue that the resulting formula for evaluating the model is exact to double precision.

The publication [Mir12] describes a vulnerability present in many implementations
of the Laplacian mechanism. It results from the fact that common floating-point imple-
mentations actually sample from approximations of the Laplacian distribution which
deviate from the mathematical model. These approximations have missing values and
values which appear too frequently, which breaks the requirements of differential pri-
vacy. The article shows that this vulnerability can be exploited to extract the entire
content of a database. It proposes a mitigation strategy based on rounding performed
after the addition of noise.

The effects of floating-point arithmetic on the privacy guarantees provided by other
approaches to data anonymization, however, have remained largely uncovered in the
literature. The article Ref.3 contributes towards filling this gap.

Natural directions for future work include numerical analyses of implementations of
further data anonymization methods and the development of reliable implementations
using the proposed framework when significant violations of the expected degree of
privacy protection are found.
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CHAPTER 6

Conclusion

This dissertation has presented several scientific contributions to the field of truthful
microdata anonymization, addressing challenges that range from the degree of privacy
protection provided and the scalability of solutions to the flexibility of methods. The
main contributions are (1) a flexible, truthful anonymization algorithm that satisfies
differential privacy, (2) multiple optimizations for protecting numeric attributes in an
efficient manner, and (3) an analysis of the negative impacts of floating-point round-
ing errors on the degree of protection provided by implementations of several data
anonymization methods as well as a reliable computing framework to mitigate those
adverse impacts whenever required.

A primary motivation of the work presented was to support making data anonymiza-
tion readily applicable in practice, with a particular focus on applications in the medical
domain, where the truthfulness of methods is of particular importance. However, it
is worth pointing out that the proposed results are universally applicable and not re-
stricted to a single application domain. To challenge their practicability, all solutions
presented have been extensively evaluated using several datasets of different sizes. To
make the proposed results available to end-users, they have been integrated into the
open-source data anonymization tool ARX, where they can be flexibly combined with
many other anonymization methods already implemented and hopefully many more to
come in the future.

The integration of increasing numbers of anonymization methods with different
advantages and disadvantages that can be flexibly combined in a way that is easy to
use is ongoing work. The overarching goal is to support appropriate anonymization in
a possibly broad range of application scenarios to achieve adequate privacy protection,
typically using a combination of several measures ranging from the technical to the
organizational level. This is of increasing importance in times when the amount of
personal data being collected and the demand to process it is continuously growing.
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SafePub: A Truthful Data Anonymization
Algorithm With Strong Privacy Guarantees
Abstract: Methods for privacy-preserving data publish-
ing and analysis trade off privacy risks for individu-
als against the quality of output data. In this article,
we present a data publishing algorithm that satisfies
the differential privacy model. The transformations per-
formed are truthful, which means that the algorithm
does not perturb input data or generate synthetic out-
put data. Instead, records are randomly drawn from the
input dataset and the uniqueness of their features is re-
duced. This also offers an intuitive notion of privacy pro-
tection. Moreover, the approach is generic, as it can be
parameterized with different objective functions to opti-
mize its output towards different applications. We show
this by integrating six well-known data quality mod-
els. We present an extensive analytical and experimen-
tal evaluation and a comparison with prior work. The
results show that our algorithm is the first practical im-
plementation of the described approach and that it can
be used with reasonable privacy parameters resulting
in high degrees of protection. Moreover, when parame-
terizing the generic method with an objective function
quantifying the suitability of data for building statisti-
cal classifiers, we measured prediction accuracies that
compare very well with results obtained using state-of-
the-art differentially private classification algorithms.
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1 Introduction
There is a strong tension between opportunities to lever-
age ever-growing collections of sensitive personal data
for business or research on one hand, and potential dan-
gers to the privacy of individuals on the other. Meth-
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ods for privacy-preserving data publishing and analysis
aim to find a balance between these conflicting goals by
trading privacy risks off against the quality of data [2].

Data published by statistical agencies usually de-
scribes a sample from a specific population. The sam-
pling process performed during data acquisition, as well
as additional random sampling sometimes performed
before data is released, provides an intuitive but weak
notion of privacy protection [53]. In addition, statisti-
cal data is typically sanitized using methods of disclo-
sure control which includes modifying, summarizing, or
perturbing (i.e. randomizing) the data. In this process,
“principles-based” approaches defined by experts and
rules of thumb are typically used [50].

An additional line of research, which we will call
data anonymization, has formulated syntactic require-
ments for mitigating risks in the form of privacy models.
The most well-known model is k-anonymity, which re-
quires that each record in a dataset is indistinguishable
from at least k − 1 other records regarding attributes
which could be used for re-identification attacks [52].

Select  transformation

Until  
termination  
condition  is  

met

Evaluate  quality  model

1. Search strategy

2. Anonymization operator

3. Quality assessment

Transform  data

Fig. 1. Common components of data anonymization algorithms.

Based on such formal requirements, privacy pro-
tection can be implemented with anonymization algo-
rithms which transform data to ensure that the require-
ments are met while reductions in data quality are quan-
tified and minimized [2]. As is sketched in Figure 1,
anonymization algorithms can be modelled as a process
in which a set of available data transformations is be-
ing searched, while an anonymization operator is used
to make sure that privacy requirements are satisfied and
quality is assessed to guide the search process. We em-
phasize that this is a very high-level overview and that
the design of concrete algorithms often depends on the
privacy models, quality models, and, most importantly,
the types of data transformation implemented.

Differential privacy [10] takes a different approach
to privacy protection, as it is not a property of a dataset,
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but a property of a data processing method. Informally,
it guarantees that the probability of any possible output
of a probabilistic algorithm (calledmechanism) does not
change “by much” if data of an individual is added to or
removed from input data. Implementing differential pri-
vacy does not require making strong assumptions about
the background knowledge of attackers, e.g. about which
attributes could be used for re-identification. Moreover,
differential privacy provides strong protection, while
syntactic models are much less reliable [9].

Differential privacy, however, has also been criti-
cized for various reasons. First, implementations are of-
ten non-truthful, i.e. perturbative, as they rely on noise
addition [5, 6]. Truthfulness can be a desirable prop-
erty in many fields [3]. Examples include governmen-
tal or industrial applications [21] and the medical do-
main, in which implausible data created by perturba-
tion (e.g. combinations or dosages of drugs which are
harmful for a patient) have led to challenges for intro-
ducing noise-based mechanisms [6]. Second, the seman-
tics of differential privacy are complex and it has been
argued that the approach is much more difficult to ex-
plain to decision makers, e.g. to ethics committees and
policy makers, than the idea of hiding in a crowd often
implemented by syntactic models [6]. Finally, differen-
tially private mechanisms are typically special-purpose
algorithms developed for specific applications, see e.g.
[17, 31, 32]. Many of them serve the interactive scenario,
i.e. they provide perturbed answers to (limited sets of)
queries. In contrast, microdata publishing methods aim
to release a sanitized dataset that supports a variety
of use cases. The development of such non-interactive
methods which satisfy differential privacy while retain-
ing sufficient data quality has remained challenging.

1.1 Contributions and Outline
Previous work has shown that algorithms which draw a
random sample of data followed by k-anonymization can
fulfill differential privacy [26, 39, 40]. These results are
notable, as they combine statistical disclosure control,
data anonymization and differential privacy.

In this article, we build upon this approach to imple-
ment a traditional data anonymization algorithm (see
Figure 1) with differentially private components. The re-
sult is a practical method for non-interactive microdata
publishing that fulfills differential privacy. The method
is truthful, as randomization is implemented via sam-
pling only and attribute values are transformed with
truthful methods. Moreover, it is intuitive, as privacy is
protected by sampling records and reducing the unique-
ness of their features. Finally, the approach employs a

flexible search strategy which can be parameterized with
a wide variety of data quality models to optimize its out-
put towards different applications. While developing the
approach, we had to overcome multiple challenges.

On the theoretical level, we have completed and
extended the proofs presented in [39] and [40] to de-
velop a method for obtaining the exact privacy guar-
antees obtained by the approach instead of loose up-
per bounds. This enabled us to strengthen a theorem
about the privacy guarantees provided, to study the re-
lationships between random sampling, k-anonymization
and differential privacy in more detail and to show that
the approach can be used with reasonable parameteri-
zations providing strong privacy protection. Moreover,
we have transformed six common data quality models
into a form suitable for integration into the approach.

On the practical level, we have performed an ex-
tensive experimental evaluation and a comparison with
related work. We have evaluated general-purpose data
quality and, as an application example, performed ex-
periments with statistical classification. Our evaluation
shows that the approach is practical in terms of run-
time complexity and output quality. Moreover, when
our generic method is parameterized with an according
data quality model, it can be used to create classifiers
which are en-par with, and sometimes significantly out-
perform, state-of-the-art approaches. This is notable, as
these competitors are pertubative special-purpose im-
plementations of the differential privacy model.

The remainder of this paper is structured as fol-
lows: We provide background information in Section 2.
Then, we give a high-level overview of the method in
Section 3. The anonymization operator is presented in
Section 4. Section 5 describes the objective functions.
In Section 6 we introduce the search strategy. Section 7
presents analytical evaluations of the method. In Sec-
tion 8 we present results of experimental analyses, in-
cluding comparisons with related approaches. Section 9
reviews related work. Section 10 concludes and summa-
rizes this article and Section 11 discusses future work.

2 Background and Preliminaries
2.1 Dataset
For an arbitrary dataset D with m attributes we will
denote the domains of attribute 1 to m by Ω1, ...,Ωm.
Then, we can regard D to be a multiset D ⊆ Ω1 × ...×
Ωm, and we will denote the universe of all datasets D ⊆
Ω1× ...×Ωm with Dm. Analogously to other articles we
will assume that each individual who contributed data
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to a dataset is represented by exactly one record r =
(r1, ..., rm) ∈ D and refer to such datasets as microdata.

2.2 Transformation Models
Data anonymization is typically performed by reducing
the distinguishability of records. Common methods for
doing so are clustering and aggregation of data items
[28], the introduction of noise and the generalization
and suppression of attribute values [2].

In this paper we focus on attribute generalization
through user-specified hierarchies, which describe rules
for replacing values with more general but semantically
consistent values on increasing levels of generalization.
Figure 2 shows two examples.

*

≥ 80

≥ 80

100805940191

≤ 19 [40, 60[

7960

[60, 80[

3920

[20, 40[

≤ 19 [20, 80[

Level 0

Level 1

Level 2

Level 3

, … , , … , , … , , … , , … ,FemaleMale

*

Λi

Ωi

Fig. 2. Example generalization hierarchies.

Without loss of generality we will assume that a
generalization hierarchy is provided for each attribute
i = 1, ...,m so that the values on level 0 form the domain
Ωi while we denote the set of values on levels greater
than 0 by Λi. For a given value r′i ∈ Ωi ∪ Λi we will
call each value on level 0 which is an element of the
subtree rooted at r′i a leaf node of r′i. For example, the
leaf nodes of “[20, 80[” in Figure 2 are “20”, ..., “79”. We
will indicate the removal of a record by replacing it with
the placeholder ∗ = (∗, ..., ∗). Since generalizing a value
to the highest level effectively suppresses the value we
will also denote the root values of all hierarchies with ∗.

2.3 Solution Spaces and Search Strategies
Most anonymization algorithms can be described as
search algorithms through all possible outputs defined
by the data transformation model. While they are ob-
viously not always implemented this way (e.g. cluster-
ing algorithms typically use heuristics to guide the clus-
tering process [28]) search algorithms are often imple-
mented in combination with generalization hierarchies.
The exact nature of the search space then depends on
the generalization method.

For example, full-domain generalization generalizes
all values of an attribute to the same level. With sub-
tree generalization different values of an attribute can
be generalized to different levels [2]. In this article we
will focus on full-domain generalization, which results
in search spaces that can be described with generaliza-

tion lattices. An example is shown in Figure 3. An arrow
denotes that a transformation is a direct successor of a
more specialized transformation, i.e. it can be derived
from its predecessor by incrementing the generalization
level of exactly one attribute. The number of transfor-
mations in a generalization lattice grows exponentially
with the number of attributes [15] and a wide variety
of globally-optimal and heuristic search algorithms for
generalization lattices have been proposed [15, 33–35].

3,0 2,1

2,0 1,1
[40, 60[ Female

[ Male
Male

Age Sex

[60, 80[ Female

[60, 80[ Female

[40, 60[ Male
40 *

Age Sex

65 *

65 *

55 *

1,0 0,1

0,0
„Sex“ generalized to 

first level of its hierarchy
„Age“ generalized to 

first level of its hierarchy

3,1 
Generalization level for „Sex“Generalization level for „Age“

20 *
65 *

 20, 40[

[60, 80[

Fig. 3. Example generalization lattice and output datasets.

In this article we will use the following notion. A
generalization scheme is a function g : Ω1 × ...× Ωm →
(Ω1 ∪ Λ1)× ...× (Ωm ∪ Λm) mapping records to (possi-
bly) generalized records. Obviously, every transforma-
tion which performs full-domain generalization can be
formalized as a generalization scheme. Unless otherwise
noted, we define the solution space Gm to be the set of
all full-domain generalization schemes which is deter-
mined by the generalization hierarchies of all attributes
of a given dataset.

2.4 Anonymization Operators
An anonymization operator implements a privacy
model. It determines whether or not a record or dataset
satisfies the privacy requirements and may also mod-
ify the data. For example, in clustering algorithms,
the anonymization operator may merge the records
within a cluster into an equivalence class that satisfies
k-anonymity, which we define as follows:

Definition 1 (k-Anonymity [52]). For a given dataset
D ⊆ (Ω1 ∪ Λ1) × ... × (Ωm ∪ Λm), we define an equiva-
lence class E ⊆ D to be the multiset of all records in
D which share a given combination of attribute values.
An equivalence class E satisfies k-anonymity if |E| ≥ k

holds. D satisfies k-anonymity if each record r ∈ D can-
not be distinguished from at least k − 1 other records,
i.e. if all equivalence classes E ⊆ D are k-anonymous.

As a part of algorithms implementing full-domain gen-
eralization, the anonymization operator typically sup-
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presses records which do not satisfy the privacy require-
ments [52]. This principle can not only be implemented
for k-anonymity but also for further privacy models,
including l-diversity [1], t-closeness [28] and δ-presence
[47], which have been proposed for protecting data from
threats that go beyond re-identification.

2.5 Quality Assessment
Measuring reductions in data quality due to anonymiza-
tion is non-trivial as usefulness depends on the use case.

When it is unknown in advance how the data will be
used, general-purpose quality models can be employed.
They typically estimate data quality by quantifying the
amount of information loss, e.g. by measuring similari-
ties between the input and the output dataset [2]. Mod-
els can roughly be classified as measuring information
loss on the attribute-level, cell-level or record-level. Typ-
ical examples for changes on these levels are differences
in the distributions of attribute values (attribute-level),
reductions in the granularity of data (cell-level) and dif-
ferences in the sizes of equivalence classes (record-level).

Special-purpose (or workload-aware) quality models
quantify data quality for a specific application scenario,
e.g. statistical classification. Thereby the task is to pre-
dict the value of a predefined class attribute from a given
set of values of feature attributes. This is implemented
with supervised learning where a model is created from
a training set [54]. Specific quality models have been
developed for optimizing data for this purpose [25, 37].

2.6 Differential Privacy
Differential privacy requires that any output of a mech-
anism is almost as likely, independent of whether or
not a record is present in the input dataset [10].
(ε, δ)-Differential privacy can be formally defined with
respect to two datasetsD1 andD2 satisfying |D1⊕D2| =
1, which means that D2 can be obtained from D1 by ei-
ther adding or removing one record:

Definition 2 ((ε, δ)-differential privacy [6]). A ran-
domized function K provides (ε, δ)-differential privacy
if for all datasets D1, D2 ∈ Dm with |D1 ⊕D2| = 1, and
all measurable S ⊆ Range(K),

P [K(D1) ∈ S] ≤ exp(ε) · P [K(D2) ∈ S] (1)

holds with a probability of at least 1− δ.

(ε, 0)-Differential privacy is usually just called ε-dif-
ferential privacy. For δ > 0, (ε, δ)-differential privacy
is then a relaxation of ε-differential privacy.

Sequences of differentially private computations are
also differentially private:

Theorem 1. For i = 1, ..., n, let the mechanism
Mi provide εi-differential privacy. Then the sequence
Mr1

1 (D), ...,Mrn
n (D), whereMri

i denotes mechnismMi

supplied with the outcomes of M1, ...,Mi−1, satisfies(∑n
i=1 εi

)
-differential privacy [45].

A common method to achieve differentially privacy is
the exponential mechanism [44]. It ranks all potential
outputs r ∈ R for a given input dataset D using a real-
valued score function s. It then randomly chooses one
according to a specific probability distribution which as-
signs higher probabilities to outputs with higher scores:

Definition 3 (Exponential mechanism [44]). For any
function s : (Dm × R) → R, the exponential mecha-
nism Eεs(D,R) chooses and outputs an element r ∈ R
with probability proportional to exp

(
s(D,r)ε

2∆s

)
, where

the sensitivity ∆s of the function s is defined as

∆s := max
r∈R

max
D1,D2∈Dm:|D1⊕D2|=1

|s(D1, r)− s(D2, r)|.

It can be seen that it is important to use score func-
tions which assign higher scores to outputs with higher
quality while having a low sensitivity. The privacy guar-
antees provided are as follows:

Theorem 2. For any function s : (Dm × R) → R,
Eεs(D,R) satisfies ε-differential privacy [44].

3 Overview of the Approach
Prior work has shown that randomization via sam-
pling can be used to achieve (ε, δ)-differentially pri-
vacy [26, 39, 40]. We build upon and extend these
results to implement the SafePub algorithm. It com-
prises a search strategy, an anonymization operator
and various methods for quality assessment, similar
to many anonymization algorithms. The overall pri-
vacy budget ε is split up into two parts εanon , which
is used by the anonymization operator, and εsearch ,
which is used by the search strategy. SafePub satisfies
(εanon + εsearch , δ)-differential privacy, where δ and the
number of iterations performed by the search strategy
(steps) can also be specified.

Figure 4 shows the high-level design of the ap-
proach. It also indicates the parameters which are rele-
vant for the individual steps. First, SafePub performs
pre-processing by random sampling, selecting each
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Input: Dataset D, Parameters εanon , εsearch , δ, steps
Output: Dataset S
1: Draw a random sample Ds from D . (εanon)
2: Initialize set of transformations G
3: for (Int i← 1, ..., steps) do
4: Update G
5: for (g ∈ G) do
6: Anonymize Ds using g . (εanon , δ)
7: Assess quality of resulting data
8: end for
9: Probabilistically select solution g ∈ G . (εsearch)

10: end for
11: return Dataset Ds anonymized using . (εanon , δ)

the best solution selected in Line 9

Fig. 4. High-level design of the SafePub mechanism. The search
strategy is implemented by the loop in lines 3 to 10.

record independently with probability β = 1− e−εanon .
This leads to provable privacy guarantees as we will see
in the next section. Then, a search through the space
of all full-domain generalization schemes is performed.
It comprises multiple iterations which are implemented
by the for-loop in lines 3 to 10. In each iteration the
sample is anonymized using every full-domain general-
ization scheme in the set G. The quality of the result-
ing data is assessed and a good solution is selected in
a probabilistic manner. Finally, the mechanism returns
the best transformation which has been selected during
all iterations. In the following sections we will describe
each component in greater detail.

4 Anonymization Operator
An overview of the anonymization operator is shown
in Figure 5. It builds upon prior work by Li et al. [39]
which we have extended with a parameter calculation so
that the operator satisfies (ε, δ)-differential privacy for
arbitrary user-specified parameters. The operator first
generalizes the (sampled) input dataset using the gen-
eralization scheme g, and then suppresses every record
which appears less than k times. Thereby the integer k
is derived from the privacy parameters δ and εanon . We
will simply denote εanon with ε in this section.

Every output of the operator obviously satisfies
k-anonymity. Moreover, Li et al. have shown that:

Theorem 3. Random sampling with probability β fol-
lowed by attribute generalization and the suppression of
every record which appears less than k times satisfies

Privacy parameters
 ε

Protected 
output data

Input data Generalization scheme

Reduction of 
uniqueness

Attribute
generalization

Record 
suppression

gδ

Calculate 
parameter

for data
transformation

Fig. 5. Overview of the anonymization operator.

(ε, δ)-differential privacy for every ε ≥ − ln(1− β) with

δ = d(k, β, ε) := max
n:n≥nm

n∑

j>γn

f(j;n, β) (2)

where nm :=
⌈
k
γ − 1

⌉
, γ := eε−1+β

eε and f(j;n, β) :=
(
n
j

)
βj(1− β)n−j , which is the probability mass function

of the binomial distribution [39].

It can be seen that the calculation of β described in
Section 3 follows from Theorem 3:

ε ≥ − ln(1− β)⇒ β ≤ 1− e−ε := βmax

We will explain why we set β = βmax in Section 8.2.
To derive a practical anonymization operator from

Theorem 3, it is necessary to calculate a value for k
from given values of ε, δ and β. This is not trivial since
Equation (2) requires to find the maximum of an infi-
nite non-monotonic sequence. In the following we will
show how this is implemented in SafePub. To do so, we
will first introduce some definitions for notational con-
venience and recapitulate some important prior results.

For ease of notation we define the sequence:

an :=
n∑

j>γn

f(j;n, β). (3)

It follows that d(k, β, ε) = maxn:n≥nm an. Furthermore,
we will use the following sequence:

cn := e−n(γ ln( γβ )−(γ−β)). (4)

Li et al. have shown in [40] that cn is strictly mono-
tonically decreasing with lim

n→∞
cn = 0 and that it is an

upper bound for an, i.e. it satisfies:

∀n ∈ N : an ≤ cn. (5)

From these results we can conclude:

δ = d(k, β, ε) = max
n:n≥nm

an ≤
(5)

max
n:n≥nm

cn ≤ cnm . (6)
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The sequence an consists of sums which are, except
for multiplicative factors, partial sums of a row in Pas-
cal’s triangle. For such sums no closed-form expressions
are known [23]. However, we will show that the function
d can still be evaluated by using the following simplified
representation:

Theorem 4. The function d has the representation

d(k, β, ε) = max {anm , ..., añ}

where ñ := min {N ≥ nm : cN ≤ anm}.

Proof. From lim
n→∞

cn = 0 and anm > 0 we can conclude:

∀ξ > 0 ∃N ≥ nm ∀n ≥ N : cn ≤ ξ
⇒ ∃N ≥ nm ∀n ≥ N : cn ≤ anm
⇒ ∃N ≥ nm : cN ≤ anm .

Hence ñ exists. Since the sequence cn is monotonically
decreasing with increasing n it follows that:

∀n > ñ : an ≤
(5)

cn ≤ cñ ≤ anm ≤ max {anm , ..., añ} .

We can conclude:

max {anm , ..., añ} = max
n:n≥nm

an = d(k, β, ε) .

Theorem 4 allows to derive δ from k, β and ε by calcu-
lating both an and cn for increasing values of n ≥ nm
until an index ñ satisfying cñ ≤ anm is reached. δ is
then the maximum of the finite sequence anm , ..., añ.
This strategy is schematically illustrated in Figure 6.

nm nm+1 nm+2 nm+3 nm+4 n

1

0.1

0.01

0.001

0.0001
~

anm

an

cn

m

an

Starting point

δ=max(an)

Upper bound for an

Maximum must be in this range

Fig. 6. Schematic plot of an and cn in the range nm to ñ.

For fixed values of β and ε we obtain the function
d(·, β, ε) : N → [0, 1]. In order to use this function to
compute a value of k so that (ε, δ)-differential privacy
is provably satisfied, we will first prove that d(·, β, ε)
converges:

Theorem 5. For arbitrary ε > 0 and 0 < β < 1,
lim
k→∞

d(k, β, ε) = 0 is satisfied.

Proof. Note that nm is a function of k which satisfies:

nm = nm(k) =
⌈
k

γ
− 1
⌉
→∞, k →∞ .

Using the strict monotonicity of cn we can conclude:

0 ≤ d(k, β, ε) = max
{
anm(k), ..., añ

}

≤
(5)

max
{
cnm(k), ..., cñ

}
= cnm(k) → 0, k →∞.

The claim follows according to the squeeze theorem.

From this result we can conclude:

∀δ > 0 ∃k ∈ N : d(k, β, ε) ≤ δ.

In order to find the smallest such k for a given value
of δ, we can evaluate d(k, β, ε) as described above for
increasing values of k ∈ N until d(k, β, ε) ≤ δ is satisfied.
More formally, k can be computed using the function:

d′(δ, β, ε) := min{k ∈ N : d(k, β, ε) ≤ δ}.

We denote the output of the operator with S(D) :=
suppress(g(D), k), where g(D) :=

⋃
r∈D{g(r)} and

suppress denotes a function that suppresses every record
which appears less than k times.

5 Quality Assessment
The output of the anonymization operator must be as-
sessed to determine a good solution. For this purpose
the search strategy employs the exponential mecha-
nism. In this section we will present implementations of
common quality models as score functions and discuss
their sensitivities. They comprise five general-purpose
models which are frequently used in the literature
[28, 56] and which have been recommended in cur-
rent data de-identification guidelines [11] as well as a
special-purpose model for building statistical classifiers.
For proofs we refer to Appendix B.

5.1 Granularity and Intensity
Data Granularity is a cell-level, general-purpose model.
It measures the extent to which the values in a dataset
cover the domains of the respective attributes [25]. Since
the model already has a low sensitivity, we can multi-
ply its results with −1 to obtain a score function which
measures data quality rather than information loss:

Definition 4. For i = 1, ...,m, let leavesi : Ωi ∪Λi → N
denote the function which returns the number of leaf
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nodes for each value r′i within the generalization hierar-
chy of the i-th attribute. For every k ∈ N, we define the
score function grank : (Dm × Gm)→ R as follows:

grank(D, g) := −
∑

(r′1,...,r′m)∈S(D)

m∑

i=1

leavesi(r′i)
|Ωi|

.

The sensitivity of grank is as follows (see Appendix B.1):

Theorem 6. For every k ∈ N, the following holds:

∆grank ≤
{

(k − 1)m, if k > 1
m, if k = 1 .

Generalization Intensity is another cell-level, gen-
eral-purpose model which sums up the relative gener-
alization level of values in all cells [52]. A score function
intensityk : (Dm × Gm) → R which is tailored to this
model, and which has the same sensitivity as grank, can
be constructed analogously.

5.2 Discernibility
Discernibility is a record-level, general-purpose model
which penalizes records depending on the size of the
equivalence class they belong to [3]. Let EQ(D) denote
the set of all equivalence classes of D, except of {∗ ∈ D},
which contains the suppressed records in D. We first
define the following normalized variant of the model:

φ(D) :=


 ∑

E∈EQ(D)

|E|2
|D|


+ |{∗ ∈ D}|. (7)

We note that suppressed records are considered sep-
arately from the other records in Equation (7) as this
improves the sensitivity of the function. The score func-
tion disck : (Dm × Gm)→ R is defined as follows:

Definition 5. disck(D, g) := −φ(S(D)).

The sensitivity of disck is as follows (see Appendix B.2):

Theorem 7. For every k ∈ N, the following holds:

∀k ∈ N : ∆disck ≤
{

5, if k = 1
k2

k−1 + 1, if k > 1
.

5.3 Non-Uniform Entropy
Non-Uniform Entropy is an attribute-level, general-pur-
pose model which quantifies the amount of information
that can be obtained about the input dataset by ob-
serving the output dataset [7]. According to this model

information loss increases with increasing homogeneity
of attribute values in the output dataset. Hence we will
base the score function on a measure of homogeneity.

Let pi(D) denote the projection of D to its i-th at-
tribute. We can then measure the homogeneity of at-
tribute values in D using the function φ (see Equa-
tion (7)) by calculating

∑m
i=1 φ(pi(D)) and thus define:

Definition 6. For every k ∈ N, the score function entk :
(Dm × Gm)→ R is defined as:

entk(D, g) := −
m∑

i=1
φ(pi(S(D))).

The sensitivity of entk is as follows (see Appendix B.3):

Theorem 8. For every k ∈ N, we have

∆entk ≤
{

5m, if k = 1
( k2

k−1 + 1)m, if k > 1
.

5.4 Group Size
Group Size is a record-level, general-purpose model
which measures the average size of equivalence classes
[36]. We derive a score function which is inversely cor-
related to this model as follows:

Definition 7. For every k ∈ N, the score function
groupsk : (Dm × Gm)→ R is defined as:

groupsk(D, g) := |EQS(D)|.

Since the addition of a single record can lead to at most
one additional equivalence class, it is easy to see that
∀k ∈ N : ∆groupsk ≤ 1 holds.

5.5 Statistical Classification
Iyengar has proposed a special-purpose model which
measures the suitability of data as a training set for
statistical classifiers [25]. It penalizes records which do
not contain the most frequent combination of feature
and class attribute values. Since the model already has
a low sensitivity, we can derive a practical score function
by giving weights to records which are not penalized:

Definition 8. For every k ∈ N, the score function
classk : (Dm × Gm)→ R is defined as follows:

classk(D, g) :=
∑

r′∈S(D)

w(S(D), r′) .

Let fv(r′) denote the the sub-vector of a record r′ which
consists of the feature attribute values in r′. The record
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r′ is given a weight by the function w if fv(r′) is not
suppressed and if the class attribute value cv(r′) of r′ is
equal to the most frequent class value cvmaj(S(D), r′)
among all records in S(D) which share the same com-
bination of feature values. More precisely, we define:

w(S(D), r′) :=





1, if fv(r′) is not suppressed and
cv(r′) = cvmaj(S(D), r′) holds

0, otherwise
.

The sensitivity of classk is as follows (see Appendix B.4):

Theorem 9. For every k ∈ N, ∆classk ≤ k holds.

6 Search Strategy
The search strategy implements a (randomized)
top-down search through the generalization lattice using
the scores which are calculated according to the given
quality model. Traversal is implemented by iterative ap-
plications of the exponential mechanism which exponen-
tially favors transformations with high scores, and thus
likely returns transformations resulting in good output
data quality (see Section 2.6). For ease of notation we
will denote εsearch with ε in this section.

Input: Dataset D ∈ Dm, Real ε, Integer steps,
1: ScoreFunction s : (Dm × Gm)→ R
Output: Scheme g ∈ Gm
2: Real ε̃← ε/steps
3: Scheme pivot ← >
4: Scheme optimum ← >
5: SchemeSet candidates ← {>}
6: for (Int i← 1, ..., steps) do
7: candidates ← candidates ∪ predecessors(pivot)
8: candidates ← candidates \ {pivot}
9: pivot← E ε̃s(D, candidates)

10: if (s(D, pivot) > s(D, optimum)) then
11: optimum ← pivot

12: end if
13: end for
14: return optimum

Fig. 7. Detailed presentation of the search strategy.

Figure 7 shows a more detailed presentation of the
search strategy which is also outlined in the high-level
overview in Figure 4 (the loop in lines 6 to 13 of Fig-
ure 7 corresponds to the loop in lines 3 to 10 of Fig-
ure 4). The function predecessors maps a transformation
to the set of its direct predecessors. The search starts
with the transformation > ∈ Gm which generalizes ev-

ery attribute to the highest level available. The scores
of all direct predecessors of > are calculated and the
transformations are put into the set candidates. In each
iteration a pivot element is selected from the set us-
ing the exponential mechanism with a privacy budget
of ε̃ = ε/steps, the scores of all its direct predecessors
are calculated, and the predecessors are being added to
candidates. The pivot element is then removed from the
set. After a predefined number of steps the method re-
turns the pivot element with the best score.

We note that using steps = 0 is possible but imprac-
tical, as this results in the deterministic selection of the
transformation > that suppresses all data.

Pivot

1

3 5

2

4

7

Expanded

6

Top

Fig. 8. Schematic illustration of the search strategy.

Figure 8 schematically illustrates the method. A
black circle represents a pivot element and the gray tri-
angle below it represents its direct predecessors. The
method is likely to perform a best-first search, follow-
ing a path of transformations with increasing score val-
ues (e.g. the path from transformation no. 1 to no. 4).
We note that it is not likely that the algorithm will be
trapped in a local minimum, i.e. that it continues fol-
lowing a path of elements with non-optimal score values.
The reason is that the predecessors of all previously se-
lected pivot elements are left in the set candidates. For
example, if all predecessors of pivot element no. 4 have
a lower score than transformation no. 5, then transfor-
mation no. 5 will likely be selected as the next pivot
element. Moreover, following a non-optimal path is un-
likely to negatively affect the quality of the overall out-
put, as the final solution is selected deterministically.
The privacy guarantees provided are as follows:

Theorem 10. For every parameter steps ∈ N0 and ε >
0, the search strategy satisfies ε-differential privacy.

Proof. If steps = 0 holds the search strategy returns
> in a deterministic manner and hence trivially satis-
fies ε-differential privacy. In the following we will as-
sume that steps > 0 holds. We note that the only in-
structions which modify the content of the variables
pivot and candidates are located in lines seven to nine.
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For every iteration i ∈ {1, ..., steps} of the enclosing
loop, let Mri

i (D) denote the sequence of operations
performed by these three lines during the i-th itera-
tion. Let ri = (pivoti, candidatesi) denote the content
of the variables pivot and candidates before the i-th
iteration of the loop. Then each ri is determined by
Mr1

1 (D), ...,Mri−1
i−1 (D) and supplied to Mri

i (D) which
outputs ri+1 in a manner that satisfies ε̃-differential pri-
vacy according to Theorem 2. We can conclude from
Theorem 1 that the sequence Mr1

1 (D), ..., Mrsteps
steps(D)

satisfies ε-differential privacy since
∑steps
i=1 ε̃ = ε holds.

Finally, the algorithm returns the generalization scheme
with the highest score value amongst all pivot elements
selected by the differentially private operationsMr1

1 (D),
...,Mrsteps

steps(D) in a deterministic manner. Hence the al-
gorithm satisfies ε-differential privacy.

7 Analytical Evaluation

7.1 Complexity Analysis
Let n = |D| denote the number of records, each consist-
ing of m attributes. Each basic operation, i.e. drawing a
random sample, executing the anonymization operator
and evaluating a score function, has a runtime complex-
ity of O(n ·m). In each step of the search process, the
anonymization operator and the score function are be-
ing evaluated once for at most m predecessors of the
current pivot element. Hence each step has a time com-
plexity of O(n ·m2). The number of steps performed is
a user-defined parameter and we will derive recommen-
dations experimentally in Section 8.

We note that the method for calculating the pa-
rameters of the algorithm described in Section 4 is
of non-trivial runtime complexity. Unfortunately a de-
tailed analysis is complex and out of the scope of this
work. We have, however, performed experimental eval-
uations using a wide variety of common parameteriza-
tions which showed that the approach is practical. We
will present the results in the next section.

7.2 Parameter Analysis
In this section we analyze dependencies between param-
eters of SafePub. We will focus on εanon and δ since they
determine k and β in a non-trivial manner. For ease of
of notation, we will denote εanon with ε.

Figure 9 shows the values of β and k obtained for
various values of ε and δ as described in Section 4. We
focus on common values of ε [6]. Later we will set δ to
10−m with m ∈ N such that δ < 1/n, where n is the

size of the dataset, and at least δ ≤ 10−4 holds. This
is a recommended parameterization [38, 40]. We focus
on ranges of δ relevant to our evaluation datasets (see
Section 8.1).
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5 DEPENDENCIES BETWEEN PARAMETERS

In the following, we present an analysis of dependencies
between parameters of SafePub. For that, we have investi-
gated the correlation between the sampling probability βmax
and the uniqueness threshold k which SafePub derives from
realistic privacy parameters ε and δ. Thereby, smaller values
for ε and δ guarantee higher levels of privacy protection,
while smaller values of βmax and higher values of k result in
a potential decrease of data quality.
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Fig. 6. Overview of k and βmax values derived from ε and δ.

Figure 6 shows the values of βmax and k we obtained
for various values of ε and δ. We focused on common
values of ε listed in [8]. It has been recommended to define
δ to be strictly smaller than 1/n, where n is the size of
the dataset [20]. Since SafePub satisfies the smoothness
property and hence provides stronger privacy guarantees
than (ε, δ)-differential privacy, we defined δ as 10−m with
m ∈ N such that δ is strictly smaller than 1/n. We focused on
ranges relevant to our evaluation datasets (see Section 6.1).

As can be seen, for fixed values of ε, smaller values of δ
resulted in higher values of k and thus potentially reduced
data quality. Decreasing ε, however, had two consequences
with possibly opposing impacts on data quality: On one
hand, βmax decreased, but on the other hand, for fixed values
of δ, k decreased as well, which might actually result in
improved data quality. Thereby, βmax decreased rapidly for
smaller values of ε, which means that the approach is not
feasible for small values of ε. When ε increased, the increase
of βmax flattened, while k increased substantially.
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Fig. 7. Semi-log plot showing the smoothness property for ε = 1 and
various values of δ. As can be seen, the probability of exceeding ε
decreases exponentially with increasing degrees of exceedance.

Figure 7 illustrates the smoothness property for ε = 1
and various values of δ. As can be seen, the probability of
exceeding the privacy parameter ε decreased exponentially
for linearly increasing degrees of exceedance. The smaller

δ was, the steeper were the curves, which means that the
smoothness effect was stronger. Hence, when δ is chosen
based on the dataset size as described above, the strength of
the smoothness property increases with the size of datasets.

Moreover, it can be seen that d(k, βmax, ε) was slightly
lower than each corresponding value of δ. This observation
can be explained by the fact that Algorithm 3 iteratively
increases k until the smallest value satisfying d(k, βmax, ε) ≤
δ is reached. Because of the discrete nature of the integer
k, it is to be expected that thereby actually d(k, βmax, ε) <
δ holds. This means that our approach typically provides
slightly stronger privacy guarantees than specified.

When calculating βmax and k for every relevant combi-
nation of ε and δ on a desktop PC with a quad-core 3.1 GHz
Intel Core i5 CPU, we measured execution times between
41 ms and 21 s with an average of 1.6 s. This shows that
the algorithms presented in Section 4 terminate quickly for
realistic privacy parameters.

6 ANALYSIS OF DATA QUALITY

6.1 Setup
We have performed experiments with four different real
world datasets [25]: 1) Census, an excerpt of records from the
1994 US census database which is commonly used in eval-
uations of anonymization algorithms, 2) FARS, which con-
tains records about fatal traffic accidents from the NHTSA
Fatality Analysis Reporting System, 3) ATUS, consisting of
responses to the American Time Use Survey, and 4) IHIS, a
set of records from the Integrated Health Interview Series.
The datasets have increasing volumes, ranging from about
30, 000 to more than a million records. All include poten-
tially identifying and sensitive data such as demographics
(e.g. sex, age), insurance coverage information, social pa-
rameters (e.g. education), and health data.

TABLE 1
Evaluation Datasets: Basic Properties Including the Number of

Attributes, the Number of Records and Privacy Parameters

ε = 1 ε′ = 2

Label No. Attributes No. Records δ δ′

Census 9 30, 162 10−5 1.1 · 10−9

FARS 8 100, 937 10−6 1.5 · 10−11

ATUS 9 539, 253 10−6 1.5 · 10−11

IHIS 8 1, 193, 504 10−7 4.4 · 10−14

Table 1 provides an overview of the properties of the
evaluation datasets, including the values of δ obtained
with the strategy described in Section 5, which we used
throughout our evaluations. It also shows results of the
smoothness property, in this case the probability δ′ with
which 2-differential privacy may be violated.

For each dataset, we defined three data-independent
generalization schemes with different degrees of general-
ization: Low, Medium, and High. Each scheme specifies a
relative generalization level (regarding the height of the
hierarchy) for each attribute. Table 2 shows how many
attributes have been generalized to which relative level. We
note that our generalization schemes never suppress any at-
tribute completely. Hence, attributes with small hierarchies,
i.e. binary attributes, have not been generalized at all in any
generalization scheme.
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Fig. 9. Overview of values for k and β derived from ε and δ.

As can be seen, for fixed values of ε, decreasing δ

increases k and thus potentially reduces data quality.
Decreasing ε, however, has two consequences with pos-
sibly opposing impacts: On one hand, β decreases, but
on the other hand, for fixed values of δ, k decreases as
well. The value of β decreases rapidly for smaller values
of ε which indicates that our approach is not practi-
cal with such parameterizations. When ε increases, the
increase of β flattens, while k increases further.

We also measured the time required to calculate
βmax and k for every ε discussed here and 10−4 ≤ δ ≤
10−20 on a desktop PC with a quad-core 3.1 GHz In-
tel Core i5 CPU. We measured between 0.1s and 37s
with an average of 4.5s. This shows that the method
presented in Section 4 terminates quickly for realistic
privacy parameters.

7.3 Smooth Privacy
While the (ε, δ)-differential privacy model guarantees
that the bound exp(ε) in Inequation (1) may be ex-
ceeded with a probability of at most δ, it does not re-
strict the permitted degree of exceedance.

Li et al. have suggested that the mechanism stud-
ied here has the property that the higher such an
exceedance is, the more unlikely it is to occur [40].
However, their results just provide upper bounds for
these probabilities based on Inequation (6) which are
very conservative: For example, for the values ε = 1,
β = 0.632 and k = 75, they overestimate δ by more than
four orders of magnitude (3.7 · 10−2 vs. 10−6). Based on
our results, we can calculate the exact probabilities:

Theorem 11 (Smoothness property). For arbitrary
parameters ε = εanon > 0 and δ > 0, let β and k be the
parameters derived as described in Section 4. Then the
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combination of random sampling with probability β and
the anonymization operator satisfies (ε′, d(k, β, ε′))-dif-
ferential privacy simultaneously for every ε′ ≥ ε while
d(k, β, ε′) is monotonically decreasing when ε′ increases.

The proof can be found in Appendix A.
Figure 10 illustrates the smoothness property for

ε = 1 and various values of δ. As can be seen, the proba-
bility of exceeding ε decreases exponentially for increas-
ing degrees of exceedance. The smaller δ, the steeper
are the curves, which means that the smoothness effect
is stronger. Hence, when δ is set based on the size of
the dataset as described in Section 7.2, the degree of
protection increases with increasing size of the dataset.
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Fig. 10. Semi-log plot showing the smoothness property for ε = 1
and various values of δ.

8 Experimental Evaluation
We have implemented our method using the open source
ARX Data Anonymization Tool1. In this section we
present experimental analyses of each individual com-
ponent of SafePub and develop recommendations for
parameterizations. Furthermore, we present results of
comparisons with related methods.

8.1 Datasets and Setup
We used four different datasets (see [48]) in our experi-
ments: 1) US Census (USC), an excerpt of records from
the 1994 U.S. Census database which is often used for
evaluating anonymization algorithms, 2) Crash statis-
tics (CS), a database about fatal traffic accidents, 3)
Time use survey (TUS), a dataset consisting of re-
sponses to a survey on individual time use in the U.S.

Label No. of No. of Size of ε = 1 ε′ = 2
Attributes Records Lattice δ δ′

USC 9 30, 162 19, 440 10−5 1 × 10−9

CS 8 100, 937 15, 552 10−6 2 × 10−11

TUS 9 539, 253 34, 992 10−6 2 × 10−11

HI 8 1, 193, 504 14, 580 10−7 4 × 10−14

Table 1. Overview of the evaluation datasets.

1 http://arx.deidentifier.org/

and 4) Health interviews (HI), a database of records
from a survey on the health of the U.S. population.

The datasets have increasing volumes, ranging from
about 30, 000 to more than a million records. All include
sensitive data such as demographics (e.g. sex, age) or
health-related data. Table 1 provides an overview of the
datasets and parameterizations we used in our experi-
ments. It also shows results of the smoothness property,
i.e. the probability δ′ of violating 2-differential privacy.

8.2 Analysis of the Anonymization
Operator

First we examine the amount of records preserved (i.e.
not removed by random sampling or record suppression)
by the anonymization operator, which is a generic utility
estimate. We set εsearch = 0 and used three full-domain
generalization schemes defining low, medium or high
relative generalization levels for the attributes in the
datasets. We note that the parameter ε determines the
degree of privacy provided together with δ while the rel-
ative generalization level balances the loss of informa-
tion resulting from generalization against the loss of in-
formation resulting from record suppression – the higher
the degree of generalization is, the more records are
likely to become indistinguishable, and hence the fewer
records have to be removed for violating k-anonymity.
We focus on the parameters also investigated in Sec-
tion 7.2. Figure 11 shows averages of 10 executions. All
standard deviations were less than 1%.

21 s with an average of 1.6 s. This shows that the parameter
calculation presented in Section IV terminates quickly when
realistic privacy parameters are being used.

VI. ANALYSIS OF DATA QUALITY

A. Setup

We performed experiments with four datasets [11]: 1) Cen-
sus, an excerpt of records from the 1994 US census database
which is commonly used in evaluations of anonymization
algorithms, 2) FARS, which contains records about fatal traffic
accidents from the NHTSA Fatality Analysis Reporting Sys-
tem, 3) ATUS, consisting of responses to the American Time
Use Survey, and 4) IHIS, a set of records from the Integrated
Health Interview Series. The datasets have increasing volumes,
ranging from about 30, 000 to more than a million records.
All include potentially identifying and sensitive data such as
demographics (e.g. sex, age) and health data.

Table I provides an overview of our datasets, including the
values of δ obtained with the strategy described in Section V,
which we used throughout our evaluations. It also shows
results of the smoothness property, in this case the probability
δ′ with which 2-differential privacy may be violated.

TABLE I
EVALUATION DATASETS: PROPERTIES AND PRIVACY PARAMETERS

ε = 1 ε′ = 2

Label No. Attributes No. Records δ δ′

Census 9 30, 162 10−5 1.1 · 10−9

FARS 8 100, 937 10−6 1.5 · 10−11

ATUS 9 539, 253 10−6 1.5 · 10−11

IHIS 8 1, 193, 504 10−7 4.4 · 10−14

For each dataset, we defined three data-independent gen-
eralization schemes with different degrees of generalization:
Low, Medium, and High. Each scheme specifies a relative
generalization level (regarding the height of the hierarchy) for
each attribute. Table II shows how many attributes have been
generalized to which relative level.

TABLE II
GENERALIZATION SCHEMES FOR THE EVALUATION DATASETS

Dataset Generalization degree

Census
Low: [5×50%, 1×33%, 1×25%, 2×0%]

Medium: [1×67%, 6×50%, 2×0%]
High: [1×75%, 1×67%, 5×50%, 2×0%]

FARS
Low: [4×50%, 2×33%, 1×20%, 1×0%]

Medium: [2×67%, 1×60%, 4×50%, 1×0%]
High: [1×80%, 2×67%, 4×50%, 1×0%]

ATUS
Low: [6×50%, 1×33%, 1×20%, 1×0%]

Medium: [1×67%, 1×60%, 6×50%, 1×0%]
High: [1×80%, 1×67%, 6×50%, 1×0%]

IHIS
Low: [5×50%, 1×25%, 1×20%, 1×0%]

Medium: [1×60%, 6×50%, 1×0%]
High: [1×80%, 1×75%, 5×50%, 1×0%]

B. Preservation of Individual-Level Data

In this section, we examine the amount of individual-level
data which is being preserved for various realistic privacy
parameters. We measured the number of preserved records
for each dataset, generalization scheme, and value of ε in-
vestigated in Section V using the values of δ from Table I.
Figure 6 shows the arithmetic means of 10 runs of SafePub
using the highest possible sampling probability βmax for each
configuration. All standard deviations were smaller than 1%.
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Fig. 6. Average number of records preserved by SafePub for each general-
ization scheme using various values of ε.

As can be seen, lower values of ε tendentially led to fewer
records being preserved. Only for small datasets, low degrees
of generalization, and high values of ε, the decrease of k
did outweigh the decrease of βmax so that more records were
preserved (see ”US Census” and ”Crash statistics” datasets
when ε decreases from 2 to 1.5). In all other cases, the lower
sampling probability dominated, especially for ε ≤ 1.5. For
this reason, we decided to always use the highest possible
sampling probability βmax in order to retain as much records
as possible for realistic privacy parameters. In the following
sections, we will use ε = 1, which is a common parameteri-
zation [12], [13], and which provides a good balance between
data privacy and data quality for our approach.

As can also be seen in Figure 6, higher degrees of gen-
eralization allowed for the preservation of a larger number
of records, in particular for smaller datasets. This means that
the loss of information resulting from generalization can be
balanced against the loss of information resulting from sup-
pression. As a rule of thumb, higher degrees of generalization
should be used for smaller datasets.

C. Preservation of Information Content

In this section, we evaluate the loss of information content
induced by SafePub using several information loss models
which cover distinct aspects of information loss: Loss [14],
which is a cell-oriented model, Non-Uniform Entropy [15],
which is a column-oriented model, and Kullback-Leibler Di-
vergence, which is a row-oriented model [16]. We have also
performed the experiments with Discernibility [17], Precision
[2], and Ambiguity [18] and we obtained comparable results.

To create a baseline, we also computed results for data
which has been k-anonymized using the parameter k = 11
which has been recommended by the European Medicines
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Fig. 11. Average number of records preserved by SafePub for
each generalization scheme using various values of ε.

As can be seen, lower values of ε, and the resulting
reduction of β and k (see Section 7.2), tendentially led to
fewer records being preserved. Only for small datasets,
low degrees of generalization and high values of ε the
decrease of k did outweigh the decrease of β so that
more records were preserved (see the “US Census” and
“Crash statistics” datasets for ε = 2 and ε = 1.5). In all
other cases the lower sampling probability dominated,
especially for realistic values of ε ≤ 1.5.
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Figure 1: (a) Distribution of data quality for different score functions. (b) Probability mass functions
obtained with varying values of ε̃. (c) Distributions of the results of 100 executions of the exponential
mechanism using various values of ε̃.
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Fig. 12. (a) Distribution of data quality for different score functions. (b) Probability mass functions obtained with varying values of ε̃.
(c) Distributions of the quality of results of 100 executions of the exponential mechanism using various values of ε̃.

We note that SafePub uses the highest possible
value of β (see Section 3) for a given privacy budget
(see Theorem 3). The results presented here justify this
choice. They also indicate that values of εanon in the
order of one are a good choice. Unless noted otherwise,
we will use an overall budget of ε = 1 in the following
sections, which is a common setup [10, 46] and, as we
will show, a good parameterization for our method as
well.

8.3 Analysis of the Optimization Functions
We now investigate the effectiveness of the score func-
tions and the quality of transformations selected by the
exponential mechanism. We focus on Non-Uniform En-
tropy and Group Size, because the results obtained for
the other score functions lied in between. We further fo-
cus on “US Census” and point out differences obtained
using the larger datasets where applicable.

Figure 12a shows the distribution of (normalized)
scores within the solution space. We note that the y-axis
represents the probability of selecting a transformation
with a score value in a given range when drawing from
the uniform distribution. For the other datasets, the
fraction of transformations with higher scores increased
with growing volume, because the more records are con-
tained, the less records are likely to be suppressed be-
cause they appear less than k times.

Figure 12b shows the probability mass functions
used by the exponential mechanism when drawing a so-
lution from the whole solution space using εanon = 1 and
various values of ε̃ between 10−1 and 10−4. We focus on
relatively small values since the search strategy executes
the exponential mechanism several times so that higher
budgets for each execution would add up to an unusably
high overall budget. For ε̃ = 0.1 the resulting probability
distributions were significantly better than the distribu-
tions obtained when drawing from the uniform distribu-
tion (see Figure 12a). The improvements decreased with

decreasing ε̃ and increased significantly with increasing
data volumes. The main reason is that larger datasets
often lead to broader ranges of score values in the so-
lution space so that the application of the exponential
function according to Definition 3 yields higher differ-
ences between probabilities for good and bad solutions.

Figure 12c shows the results of 100 executions of
the exponential mechanism. For each transformation se-
lected, we calculated the difference to the optimal solu-
tion in terms of data quality using the model for which
the score function has been designed. On average, we
measured very good results of less than 4% for the
Group Size model, even though solutions with a score
in the range [30%, 50%[ were selected with the highest
probability. This is because the according score func-
tion is not directly proportional to the quality model,
but rather inversely proportional. Hence data quality in-
creases significantly with increasing scores. The results
for Non-Uniform Entropy were not as good with aver-
ages ranging from 31% (ε̃ = 10−1) to 49% (ε̃ = 10−4).
The reason is that the according score function does not
resemble the corresponding quality model as closely as
the other score functions do. The results imply that a
budget which is very small compared to the one required
by the anonymization operator can suffice to achieve
good results using the exponential mechanism.

8.4 Analysis of the Search Strategy
Next we analyze the influence of the number of steps
performed by the search strategy on the quality of
output data. We executed SafePub 10 times for each
dataset and score function using varying numbers of
steps. Since the previous results imply that a budget in
the order of one is a good choice for the anonymization
operator while a significantly smaller budget is suffi-
cient for the exponential mechanism, we used an overall
budget of ε = 1 which we have split into various combi-
nations of εsearch and εanon . Figure 14 shows the results
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Figure 1: Average information loss induced by SafePub for ε = 1 and corresponding values obtained using
various baseline methods.
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Fig. 13. Average information loss induced by SafePub for ε = 1 compared with the (average) results of various baseline methods.

obtained for the “Health interviews” dataset, which are
representative for the other datasets. The results for
the Discernibility model were comparable to the results
for the Granularity model. We normalized all values so
that 0% corresponds to the input dataset and 100% to
a dataset from which all information has been removed.
All standard deviations were less than 12%.
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Fig. 14. Average information loss induced by SafePub for various
step values and various values of εsearch with εanon = 1− εsearch .
The εsearch axis and the information loss values for the Group
Size model are scaled logarithmically.

We note that increasing the number of steps per-
formed by SafePub has two consequences: The number
of executions of the exponential mechanism increases,
while the budget ε̃, which is used for each execution, de-
creases. It can be observed that the former effect tends
to outweight the latter so that increasing the number
of steps improves data quality. In all experiments the
effect flattened at around 300 steps. Decreasing εsearch
from 1 to 10−1 generally improved the results. Further
reductions decreased data quality in some experiments
and had no significant effects in the others. Hence, in
the following sections, we will use a default parameter-
ization of 300 steps, εsearch = 0.1 and εsearch = 0.9 un-
less noted otherwise. These values result in a budget of
ε̃ ≈ 10−4 which did not perform as well as higher values
when drawing from the whole solution space Gm (see
Section 8.3). However, since the search strategy draws

repeatedly out of subsets of Gm, it can still select very
good solutions as we will see in the next section.

8.5 Analysis of the Quality of Output
Here we analyze output data quality for the default
parameterization and compare it with the quality ob-
tained using various baseline methods: The optimal
quality obtained with k-anonymization, by only using
random sampling and by random sampling combined
with k-anonymization. We also measured the quality of
the theoretical optimum which can be obtained with
SafePub by deterministically selecting the optimal gen-
eralization scheme rather than using the search strategy.
Each of these methods constitutes a baseline in terms
of output quality for (combinations of) transformations
performed by SafePub, and hence illustrates their im-
pact on output data quality. We note that none of them
satisfies differential privacy but that all approaches have
been implemented such that the optimal transformation
according to a given quality model is selected. To estab-
lish a strict baseline we set k = 5, which is common in
the literature [12, 13] but less conservative than other
values, e.g. k = 11 which has been recommended by the
European Medicines Agency (EMA) [14].

The results are shown in Figure 13. Numbers for the
Group Size model are not included as we measured val-
ues of less than 2% for all approaches. It can be seen that
SafePub removed a significant amount of information
from the datasets, i.e. between 83% and 71% according
to the Non-Uniform Entropy model and between 41%
and 43% according to the Discernibility model. It can
further be observed that random sampling contributed
the most to these reductions (41%). The average dif-
ference between results of SafePub and the theoretical
optimum was very small (less than 3%). We note that,
even though SafePub produced near-optimal results, the
fraction of the solution space which has been traversed
by the search strategy was relatively small. When using
the “Crash statistics” dataset, this fraction was about
5%. In the other cases, it was about 10%. This confirms
that the search strategy performs very well using the
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default parameters. In particular, it also achieves very
good results for the Non-Uniform Entropy model, for
which the exponential mechanism alone did not perform
as well as for the other models (see Section 8.3).

8.6 Analysis of the Utility of Output
As there is not necessarily a strong correlation between
loss of information and the actual usefulness of data,
we now evaluate the performance of statistical clas-
sifiers built with the output of SafePub. This is the
most common benchmarking workload for methods of
privacy-preserving data publishing. We have used the
class attributes listed in Table 2, which resulted in both
binomial and multinomial classification problems.

Dataset Class attributes Number of instances
USC (1) Marital status 8

(2) Salary class 2
CS (1) Hispanic origin 10

(2) Race 20
TUS (1) Marital status 7

(2) Sex 3
HI (1) Marital status 10

(2) Education 26

Table 2. Overview of the class attributes used in our evaluations.

For each dataset and class attribute, we executed
100 runs of SafePub with varying numbers of steps,
varying values of εanon and εsearch = 0.1. We focused
on εanon , since the previous results showed that small
values of εsearch are sufficient and that εanon thus pri-
marily determines the overall trade-off between privacy
and utility provided by SafePub. We configured SafePub
to use the score function which optimizes output data
for training statistical classifiers (see Section 5.5). All
attributes besides the class attribute were used as fea-
tures, and we used generalization schemes which do not
generalize the class attribute.

As a classification method we used decision trees
generated with the well-known C4.5 algorithm [49] be-
cause this is the most frequently used method in our
context. We point out that it is obviously possible to
use other classification methods with our approach and
that we have obtained comparable results using logistic
regression classifiers [54]. We created the classifiers from
output data and evaluated their prediction accuracy
with input data using the approach presented in [16]
and 10-fold cross-validation. We report relative predic-
tion accuracies, which means that all values have been
normalized so that 0% represents the accuracy of the
trivial ZeroR method, which always returns the most
frequent value of the class attribute, while 100% corre-
sponds to the accuracy of C4.5 decision trees trained on
input data.

Figure 15 shows the results of varying εanon using
300 steps. As can be seen, the impact of εanon was rel-
atively small considering the strong effect on the num-
ber of preserved records (see Section 8.2). As expected,
small values of εanon often resulted in sub-optimal ac-
curacies. Values of about εanon = 0.9 generally resulted
in good performance. Further increasing the parameter
decreased the accuracies obtained. The reason is that,
although increasing εanon increases the number of pre-
served records, k also increases, which eventually causes
a high degree of generalization.

5-anonymization. In each experiment with 5-anonymization,
we have selected the optimal scheme in the solution space.

Table 2 lists the arithmetic means and standard devia-
tions we have measured on output data of the exhaustive
method with the information loss model to which each score
function has been tailored. We report the relative informa-
tion loss, which means that all values have been normalized
so that 0% is the lowest and 100% is the highest loss of infor-
mation induced by any full-domain generalization scheme.
As expected, the relative information loss and the standard
deviations tend to improve with growing dataset size. In the
case of Precision and Loss, the relative information loss is
monotonically decreasing from rather good values of 31.4%
and 25.2% for Census to very good values of 0.0% and 0.3%
for IHIS. The results obtained for AECS stick out since al-
ready for Census, a very good information loss of less than
1% has been achieved. This might seem surprising consid-
ering that according to Figure 5, generalization schemes in
the comparatively low score range of [40%, 50%[ are being
selected with the highest probability. We explain this by the
fact that in the case of AECS, the information loss model
is not directly proportional to the score function (which is
the case e.g. for Loss), but rather inversely proportional.
Hence, already for solutions with comparatively low scores,
very good information loss values are being achieved. In
the case of Non-Uniform Entropy, the results for ATUS and
IHIS are good, but not as good as the results obtained for the
other models. However, considering that the Non-Uniform
Entropy score function does not resemble the corresponding
information loss model as closely as the other score functions
do, this is not too surprising.

In the following, we will compare the results we have ob-
tained using the exhaustive and the greedy method. Increas-
ing the number of steps performed by the greedy method
has two consequences: On one hand, the number of applica-
tions of the exponential mechanism increases. On the other
hand, the parameter ε′ which is used for each execution of
the exponential mechanism decreases. We observed that the
former effect tends to outweight the latter, so that increasing
the number of steps tends to improve data quality. These
improvements were particularly strong for smaller step val-
ues while step values greater than 300 did not lead to sig-
nificant improvements anymore. Figure 7 exemplary shows
the arithmetic means and standard deviations we have ob-
tained for the AECS and the Non-Uniform Entropy model
using step values ranging from 0 to 300. As can be seen,
the greedy method can lead to results which are even bet-
ter than those of the exhaustive method for small datasets
(e.g. Census). The average difference between the values
obtained using the greedy method with 300 steps and the
exhaustive method was less than 1.4% (resp. 6.9% when
considering only the cases in which the exhaustive method
performed better). We conclude that the greedy method
can perform comparable to the exhaustive method when us-
ing 300 steps. The average standard deviation obtained in
all experiments using the greedy method was merely about
4.3% which shows that the degree of information loss in-
duced is rather stable.

Figure 6 shows the absolute information loss we obtained
using the exhaustive method, the greedy method with 300
steps, and our baseline methods. We have normalized all val-
ues so that 0% corresponds to the original input dataset and
that 100% corresponds to a dataset from which all informa-
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Figure 7: Relative information loss achieved using
the exhaustive method and the greedy method.

tion has been removed. The values for the AECS model are
not included. They were very good, with values of less than
2% achieved by DPLA using the US Census dataset, and
almost 0% in all other experiments. As the figure shows,
a large amount of information has often been removed by
DPLA (e.g. 85% when using the US Census dataset, the
exhaustive method, and the Non-Uniform Entropy model),
with a significant amount of information being removed by
the random sampling step (e.g. about 41% in case of the
US Census dataset and the Non-Uniform Entropy model).
As expected, the results we have achieved using our base-
line methods are better. However, the privacy guarantees
provided are significantly weaker, and also sampling with
5-anonymization significantly influences the distribution of
attribute values. The differences between the results ob-
tained using this method and the results for the exhaustive
method ranged from 19% in the case of US Census and the
Loss model to almost 0% when using Health interviews and
the Discernibility model.

7.4 Data Utility for Statistical Classification
As we have seen, a significant amount of information is

removed when using DPLA with realistic privacy parame-
ters. However, this loss of information happens in a con-
trolled manner, and the usefulness of data for the intended
applications does not necessarily correlate with the abso-
lute amount of information content; it rather depends on
whether the data reflects characteristics of the input dataset
which are relevant for the intended analyses or not. In the
following, we investigate the utility of data resulting from
DPLA for stastistical classification. In every experiment,
we employed the Classification score function which is tai-
lored to this use case. In Section 7.4.1, we analyze results
obtained using both the greedy and exhaustive method. In
Section 7.4.2, we compare DPLA with state-of-the-art mech-
anisms for differentially private statistical classification.

7.4.1 Data Utility achieved using DPLA
For our experiments, we used the class attributes listed

in Table 3 for each dataset, which resulted in both binomial
and multinomial classification problems.

For each dataset and class attribute, we executed 100 runs
of DPLA using the exhaustive method and using the greedy
method with step values ranging from 0 to 300. All at-
tributes besides the class attribute were used as features.
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Fig. 15. Relative classification accuracies obtained using various
values of εanon , εsearch = 0.1 and 300 steps.

Figure 16 shows results obtained for varying num-
bers of steps and εanon = 0.9. As can be seen, the per-
formance of the classifiers improved with an increasing
number of steps. The average accuracies obtained using
300 steps ranged from 82% when predicting the second
class attribute of “US Census” to about 99% when pre-
dicting the class attributes of “Crash statistics”. Results
were rather stable (standard deviations of about 5%).

5-anonymization. In each experiment with 5-anonymization,
we have selected the optimal scheme in the solution space.

Table 2 lists the arithmetic means and standard devia-
tions we have measured on output data of the exhaustive
method with the information loss model to which each score
function has been tailored. We report the relative informa-
tion loss, which means that all values have been normalized
so that 0% is the lowest and 100% is the highest loss of infor-
mation induced by any full-domain generalization scheme.
As expected, the relative information loss and the standard
deviations tend to improve with growing dataset size. In the
case of Precision and Loss, the relative information loss is
monotonically decreasing from rather good values of 31.4%
and 25.2% for Census to very good values of 0.0% and 0.3%
for IHIS. The results obtained for AECS stick out since al-
ready for Census, a very good information loss of less than
1% has been achieved. This might seem surprising consid-
ering that according to Figure 5, generalization schemes in
the comparatively low score range of [40%, 50%[ are being
selected with the highest probability. We explain this by the
fact that in the case of AECS, the information loss model
is not directly proportional to the score function (which is
the case e.g. for Loss), but rather inversely proportional.
Hence, already for solutions with comparatively low scores,
very good information loss values are being achieved. In
the case of Non-Uniform Entropy, the results for ATUS and
IHIS are good, but not as good as the results obtained for the
other models. However, considering that the Non-Uniform
Entropy score function does not resemble the corresponding
information loss model as closely as the other score functions
do, this is not too surprising.

In the following, we will compare the results we have ob-
tained using the exhaustive and the greedy method. Increas-
ing the number of steps performed by the greedy method
has two consequences: On one hand, the number of applica-
tions of the exponential mechanism increases. On the other
hand, the parameter ε′ which is used for each execution of
the exponential mechanism decreases. We observed that the
former effect tends to outweight the latter, so that increasing
the number of steps tends to improve data quality. These
improvements were particularly strong for smaller step val-
ues while step values greater than 300 did not lead to sig-
nificant improvements anymore. Figure 7 exemplary shows
the arithmetic means and standard deviations we have ob-
tained for the AECS and the Non-Uniform Entropy model
using step values ranging from 0 to 300. As can be seen,
the greedy method can lead to results which are even bet-
ter than those of the exhaustive method for small datasets
(e.g. Census). The average difference between the values
obtained using the greedy method with 300 steps and the
exhaustive method was less than 1.4% (resp. 6.9% when
considering only the cases in which the exhaustive method
performed better). We conclude that the greedy method
can perform comparable to the exhaustive method when us-
ing 300 steps. The average standard deviation obtained in
all experiments using the greedy method was merely about
4.3% which shows that the degree of information loss in-
duced is rather stable.

Figure 6 shows the absolute information loss we obtained
using the exhaustive method, the greedy method with 300
steps, and our baseline methods. We have normalized all val-
ues so that 0% corresponds to the original input dataset and
that 100% corresponds to a dataset from which all informa-
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Figure 7: Relative information loss achieved using
the exhaustive method and the greedy method.

tion has been removed. The values for the AECS model are
not included. They were very good, with values of less than
2% achieved by DPLA using the US Census dataset, and
almost 0% in all other experiments. As the figure shows,
a large amount of information has often been removed by
DPLA (e.g. 85% when using the US Census dataset, the
exhaustive method, and the Non-Uniform Entropy model),
with a significant amount of information being removed by
the random sampling step (e.g. about 41% in case of the
US Census dataset and the Non-Uniform Entropy model).
As expected, the results we have achieved using our base-
line methods are better. However, the privacy guarantees
provided are significantly weaker, and also sampling with
5-anonymization significantly influences the distribution of
attribute values. The differences between the results ob-
tained using this method and the results for the exhaustive
method ranged from 19% in the case of US Census and the
Loss model to almost 0% when using Health interviews and
the Discernibility model.

7.4 Data Utility for Statistical Classification
As we have seen, a significant amount of information is

removed when using DPLA with realistic privacy parame-
ters. However, this loss of information happens in a con-
trolled manner, and the usefulness of data for the intended
applications does not necessarily correlate with the abso-
lute amount of information content; it rather depends on
whether the data reflects characteristics of the input dataset
which are relevant for the intended analyses or not. In the
following, we investigate the utility of data resulting from
DPLA for stastistical classification. In every experiment,
we employed the Classification score function which is tai-
lored to this use case. In Section 7.4.1, we analyze results
obtained using both the greedy and exhaustive method. In
Section 7.4.2, we compare DPLA with state-of-the-art mech-
anisms for differentially private statistical classification.

7.4.1 Data Utility achieved using DPLA
For our experiments, we used the class attributes listed

in Table 3 for each dataset, which resulted in both binomial
and multinomial classification problems.

For each dataset and class attribute, we executed 100 runs
of DPLA using the exhaustive method and using the greedy
method with step values ranging from 0 to 300. All at-
tributes besides the class attribute were used as features.
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Fig. 16. Relative classification accuracies obtained using various
numbers of steps, εanon = 0.9 and εsearch = 0.1.

Using the same setup, we also evaluated classifica-
tion accuracies obtained using the output of the base-
line methods discussed in Section 8.5 (sampling only,
k-anonymization only), also optimized for building clas-
sifiers. All accuracies achieved were at least 97%.

In summary, these experiments justify our default
parameterization, and we conclude that the differences
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between the performance of classifiers trained with un-
modified input or the output of baseline methods and
classifiers trained with the output of SafePub are small.
This indicates that although SafePub removes a signif-
icant amount of information, it does so in a controlled
manner which preserves frequent patterns hidden in the
data.

8.7 Comparison With Prior Work
In this section we will put our method into perspective
by experimentally comparing it to related approaches.
We have performed all experiments using the default
configuration (300 steps, ε = 1) and we have calculated
δ as described in Section 7. Where applicable, we used
the same hierarchies as in the previous experiments.

8.7.1 Comparison With Other Approaches for
Differentially Private Statistical Classification

We compared SafePub to the following state-of-the-art
algorithms: DiffGen [46], DiffP-C4.5 [19], LDA [55],
SDQ [57] and DPNB [29]. We have exactly replicated
the setups reported in the respective publications and
refer to them for exact specifications. All evaluations
used (variants of) the “US Census” dataset (see Sec-
tion 8.1) and the “Nursery” dataset [42]. We point
out that the other methods implement ε-differential
privacy while SafePub satisfies the slight relaxation
(ε, δ)-differential privacy, which potentially allows for
higher data quality. However, unlike the other methods
which output classifiers or synthetic microdata, SafePub
outputs truthful microdata using a less flexible but
truthful transformation technique.

Algorithm DiffP-C4.5 LDA DPNB DPNB SDQ
Dataset US Census Nursery

Competitor 82.1% 80.8% 82% 90% 79.9%
SafePub 80.9% 81.5% 81.2% 83.7% 83.8%

Table 3. Comparison of absolute prediction accuracies for ε = 1.

The results for all mechanisms except DiffGen,
which we will address below, are listed in Table 3. As
can be seen, the accuracies obtained using C4.5 and
SafePub were comparable to the results of DiffP-C4.5,
LDA and DPNB for the “US Census” dataset. For the
“Nursery” dataset, SafePub outperformed SDQ, while
DPNB outperformed SafePub by 6.3%. In all experi-
ments, we measured standard deviations of < 2%.

DiffGen is particularly closely related to SafePub
because it also produces microdata using concepts from
data anonymization (i.e. attribute transformation based
on generalization hierarchies). Hence we have performed

a more detailed analytical and experimental compar-
ison. DiffGen employs a more flexible transformation
model, subtree generalization, where values of an at-
tribute can be transformed to different generalization
levels (see Section 2.3). Analogously to SafePub, it also
selects a transformation based on a user-specified num-
ber of iterative applications of the exponential mecha-
nism (steps). However, in contrast to our approach, it
does not achieve differential privacy by random sam-
pling and k-anonymization, but rather by probabilisti-
cally generating synthetic records.

Using the implementation provided by the authors
and our evaluation datasets we compared SafePub and
DiffGen using C4.5 decision trees which were evaluated
using 2/3 of the records as training data and the re-
maining 1/3 as test data (as proposed by the authors
of DiffGen [46]). We used a privacy budget of ε = 1
for both methods and increasing numbers of steps. The
number of steps DiffGen can perform has a limit which
depends on the heights of the generalization hierarchies
and which was around 20 in our setup. For SafePub, we
used between 0 and 300 steps since higher values did
not improve the quality of results (see Section 8.4). We
performed every experiment 20 times. Table 4 lists av-
erage execution times and standard deviations for the
maximal number of steps measured on the hardware
described in Section 7.2. Moreover, we included the op-
timal accuracies obtained using any number of steps.

Label Class Execution times Max. Accuracies
Attribute SafePub DiffGen SafePub DiffGen

USC 1 4.8 ± 1.0s 16.2 ± 0.7s 92.0% 85.0%
2 5.1 ± 1.3s 21.9 ± 0.6s 87.3% 79.2%

CS 1 8.8 ± 0.7s 18.5 ± 1.6s 99.7% 97.9%
2 8.9 ± 0.6s 6.5 ± 2.5s 99.9% 98.3%

TUS 1 54.2 ± 4.5s 28.7 ± 0.7s 93.6% 91.0%
2 55.3 ± 2.0s 30.9 ± 0.6s 99.9% 99.7%

HI 1 98.0 ± 5.8s 61.1 ± 2.2s 87.7% 94%
2 103.5 ± 9.2s 65.0 ± 2.1s 99.1% 64.0%

Table 4. Comparison of absolute execution times and maximal
relative accuracies achieved for ε = 1.

SafePub outperformed DiffGen regarding maximal
accuracies in seven out of eight experiments. The accu-
racies obtained by SafePub when predicting the second
class attribute of “Health interviews” were 35% higher
than the results obtained by DiffGen. The minimal and
maximal execution times of SafePub varied from be-
tween 4s and 7s (“US Census”) to between 90s and 128s
(“Health interviews”). The corresponding times of Diff-
Gen varied from between 15s and 18s to between 62s and
70s. In summary, SafePub was faster than DiffGen for
smaller datasets while DiffGen was faster than SafePub
for larger datasets.
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A more detailed analysis is provided in Figure 17,
which shows execution times and relative accuracies ob-
tained using different numbers of steps.
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Fig. 17. Relative classification accuracies obtained for ε = 1.

It can be seen that the accuracies achieved by
SafePub improved monotonically over time (apart from
minor fluctuations which are a result of randomization)
while no such relationship can be observed for DiffGen.
We explain this by the fact that SafePub is not likely
to be trapped in a local minimum (see Section 6) while
DiffGen can only keep on specializing a transformation
once it has been selected. This implies that SafePub
is easier to parameterize and enables trading execution
times off against data quality.

8.7.2 Comparison With the Approach by Fouad et al.

We conclude our experimental evaluation by presenting
a comparison with the approach which is most closely
related to ours. Fouad et al. have also proposed a truth-
ful (ε, δ)-differentially private microdata release mecha-
nism using random sampling and generalization [18, 43].

Their algorithm replaces each record independently
with a generalized record which is t-frequent, i.e. a gen-
eralization of at least t records from the input dataset.
The authors show that the mechanism satisfies (ε, δ)-
dif-ferential privacy, however, with unknown δ. They
further show that an upper bound for δ can be calcu-
lated when t is chosen greater than a threshold bT c [43,
Theorem 4]. Knowing δ is, however, crucial for guaran-
teeing a known degree of privacy.

We analyzed bT c and the resulting values of δ for
various common input parameters. We emphasize that
we chose all parameters in such a way that bT c is as
small as possible. Figure 18 shows the results for ε = 1.
As can be seen, δ decreases very quickly for an increasing
number of attributes, while bT c increases exponentially.
For datasets with three attributes, bT c equals 76, while
for datasets with seven attributes, bT c equals 1, 217 al-

ready. Hence, a very high degree of generalization is
required to obtain known privacy guarantees.
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Fig. 18. Analysis of the approach by Fouad et al. The figure
shows bT c and corresponding values of δ for ε = 1 and h = 2.

We experimentally evaluated the method choosing
ε = 1 and t = bT c + 1 so that the approach satis-
fies (ε, δ)-differential privacy. We performed the exper-
iments ten times and report average results (standard
deviations < 1%). All information was removed from all
datasets but “Health interviews” for which some infor-
mation was preserved. However, 68% of records were re-
moved and seven out of eight attributes were completely
suppressed. With the models considered in this article,
we measured reductions in data quality of between 97%
and 99%, which renders the approach impractical.

9 Related Work
Other works have also investigated relationships be-
tween syntactic privacy models and differential privacy.
Domingo-Ferrer and Soria-Comas have shown that there
is a theoretical relationship between ε-differential pri-
vacy and a stochastic extension of t-closeness and that
satisfying t-closeness can imply ε-differential privacy un-
der certain assumptions [8]. Moreover, Soria-Comas et
al. and Jafer et al. have also combined k-anonymity and
differential privacy [27, 30]. While our approach uses
k-anonymity in order to create a differentially private
mechanism, these works employ k-anonymization to re-
duce the amount of noise that must be added.

Moreover, further differential privacy mechanisms
have been proposed that use random sampling. Fan
and Jin [17] as well as Jorgensen et al. [32] have used
non-uniform random sampling to produce aggregate
data. Hong et al. have used random sampling for pro-
tecting search logs [24]. These are all special-purpose
mechanisms while SafePub is a generic microdata re-
lease algorithm.

For further differentially private microdata release
methods see the surveys [6, 38]. Unlike SafePub, most
of them are not truthful or use methods that are very
different from those typically used in data anonymiza-
tion. We have compared our approach to the notable
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exception, i.e. the approach by Fouad et al. [18, 43], in
Section 8.7.2 and found that it is not practical.

Differentially private machine learning is also an on-
going field of research (see the surveys [31, 51]). We have
compared our approach to five different state-of-the-art
methods in Section 8.7.1. We have performed a detailed
experimental comparison with DiffGen [46] because of
its conceptual similarities to our approach. Our results
showed that our method, which is the only generic and
truthful approach in the field, achieves accuracies that
compare well to those of special-purpose mechanisms.

Gehrke et al. have also studied the approach by Li
et al. [26], albeit from a purely theoretical perspective.
They showed that it satisfies a privacy model called
crowd-blending privacy. Informally, this model guaran-
tees that every record r from the input dataset either
blends into a “crowd” of at least k records or that r is
essentially being ignored by the mechanism. Their work
also indicates that the mechanism satisfies a relaxation
of another model called zero-knowledge privacy [22].

10 Summary and Discussion
In this paper we have presented a flexible differentially
private data release mechanism that produces truthful
output data, which is important in some data publishing
scenarios [3] and domains such as medicine [6]. While it
has been argued that differential privacy is difficult to
explain to non-experts the approach offers an intuitive
notion of privacy protection: with a probability deter-
mined by ε the data of an individual will not be included
at all and even if it is included it will only be released in
a generalized form such that it cannot be distinguished
from the similarly generalized data of at least k−1 other
individuals, where k is determined by ε and δ.

Our evaluation showed that the method is prac-
tical and that values in the order of ε = 1 are a
good parameterization. The current implementation
uses full-domain generalization and the k-anonymity
privacy model, methods which have frequently been
criticized for being too inflexible and too strict to pro-
duce output data of high quality [2]. However, our ex-
periments have shown that statistical classifiers trained
with the output of the generic method parameterized
with an appropriate objective function perform as well
as non-truthful differential privacy mechanism designed
specifically for this use case. The reason is that while the
approach indeed removes a significant amount of infor-
mation it does so in a controlled manner which extracts
frequent patterns. Compared to prior work, however,
our approach provides slightly lower privacy guarantees.

While developing the score functions introduced in
Section 5, we learned that optimization functions which
have the form of sums to which every record or cell con-
tributes a non-negative summand tend to have a low
sensitivity. According score functions can often be ob-
tained easily (see score functions for Data Granularity,
Intensity and Classification). If the sensitivity is high, it
can be possible to reduce it by division through the size
of the dataset or by forming reciprocals (see score func-
tions for Discernibility and Group Size). If this is not
the case, it can be worthwhile to try to find functions
with lower sensitivities which have related properties
(see score function for Non-Uniform Entropy).

11 Future Work
An interesting line of future research is to develop score
functions tailored to further quality models which ad-
dress learning tasks such as regression or time-to-event
analysis [54]. Based on our experiences presented in the
previous section we are confident that, for example, the
workload-aware quality models presented by LeFevre et
al. in [37] can be integrated into the method.

Another potential direction for further work is to try
to consider the effects of random sampling which may
have been performed during data acquisition to reduce
the amount of explicit random sampling that needs to
be used by the mechanism.

In its current form SafePub is suited for protect-
ing dense data of low to medium dimensionality as
high-dimensional data is often sparse and hence cannot
be k-anonymized while retaining sufficient data qual-
ity. We plan to investigate methods for vertically parti-
tioning high-dimensional data, such that disassociated
subsets of correlated attributes can be processed inde-
pendently. Moreover, future work could investigate the
crowd-blending and the zero-knowledge privacy models
which provide other means of formalizing the notion of
“hiding in a group” than our implementation. We point
out that these models can also make it possible to prefer
certain records, e.g. for publishing control or test data
using random sampling which is slightly biased [26].

Finally, a variety of unified frameworks have been
proposed for comparing the trade-off between privacy
and utility provided by algorithms which implement pri-
vacy models, including syntactic ones and ε-differential
privacy [4, 20, 41]. As the mechanism presented here
is the first practical implementation of differential pri-
vacy for the release of truthful microdata, it would be
interesting to compare it to other methods using such
frameworks.

76



SafePub: A Truthful Data Anonymization Algorithm With Strong Privacy Guarantees 83

References
[1] A. Machanavajjhala et al. l-diversity: Privacy beyond k-

anonymity. Transactions on Knowledge Discovery from
Data, 1(1):3, 2007.

[2] B. C. M. Fung et al. Introduction to Privacy-Preserving
Data Publishing: Concepts and Techniques. CRC Press,
2010.

[3] R. J. Bayardo and R. Agrawal. Data privacy through opti-
mal k-anonymization. In International Conference on Data
Engineering, pages 217–228, 2005.

[4] J. Brickell and V. Shmatikov. The cost of privacy: Destruc-
tion of data-mining utility in anonymized data publishing.
In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 70–78, 2008.

[5] C. Clifton and T. Tassa. On syntactic anonymity and differ-
ential privacy. In International Conference on Data Engineer-
ing Workshops, pages 88–93, 2013.

[6] F. K. Dankar and K. El Emam. Practicing differential pri-
vacy in health care: A review. Transactions on Data Privacy,
6(1):35–67, 2013.

[7] T. de Waal and L. Willenborg. Information loss through
global recoding and local suppression. Netherlands Official
Statistics, 14:17–20, 1999.

[8] J. Domingo-Ferrer and J. Soria-Comas. From t-closeness
to differential privacy and vice versa in data anonymization.
Knowledge-Based Systems, 74:151–158, 2015.

[9] C. Dwork. An ad omnia approach to defining and achieving
private data analysis. In International Conference on Privacy,
Security, and Trust in KDD, pages 1–13, 2008.

[10] C. Dwork. Differential privacy: A survey of results. In Inter-
national Conference on Theory and Applications of Models
of Computation, pages 1–19, 2008.

[11] K. El Emam and L. Arbuckle. Anonymizing Health Data.
O’Reilly Media, 2013.

[12] K. El Emam and F. K. Dankar. Protecting privacy using
k-anonymity. Jama-J Am. Med. Assoc., 15(5):627–637,
2008.

[13] K. El Emam and B. Malin. Appendix b: Concepts and meth-
ods for de-identifying clinical trial data. In Sharing Clinical
Trial Data: Maximizing Benefits, Minimizing Risk, pages
1–290. National Academies Press (US), 2015.

[14] European Medicines Agency. External guidance on the
implementation of the european medicines agency policy on
the publication of clinical data for medicinal products for
human use. EMA/90915/2016, 2016.

[15] F. Prasser et al. Lightning: Utility-driven anonymization
of high-dimensional data. Transactions on Data Privacy,
9(2):161–185, 2016.

[16] F. Prasser et al. A tool for optimizing de-identified health
data for use in statistical classification. In IEEE International
Symposium on Computer-Based Medical Systems, 2017.

[17] L. Fan and H. Jin. A practical framework for privacy-
preserving data analytics. In International Conference on
World Wide Web, pages 311–321, 2015.

[18] M. R. Fouad, K. Elbassioni, and E. Bertino. A
supermodularity-based differential privacy preserving algo-
rithm for data anonymization. IEEE Transactions on Knowl-
edge and Data Engineering, 26(7):1591–1601, 2014.

[19] A. Friedman and A. Schuster. Data mining with differential
privacy. In International Conference on Knowledge Discovery
and Data Mining, pages 493–502, 2010.

[20] G. Cormode et al. Empirical privacy and empirical utility of
anonymized data. In IEEE International Conference on Data
Engineering Workshops, pages 77–82, 2013.

[21] G. Poulis et al. Secreta: a system for evaluating and com-
paring relational and transaction anonymization algorithms.
In International Conference on Extending Database Technol-
ogy, pages 620–623, 2014.

[22] J. Gehrke, E. Lui, and R. Pass. Towards privacy for social
networks: A zero-knowledge based definition of privacy. In
Theory of Cryptography Conference, pages 432–449, 2011.

[23] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete
Mathematics: A Foundation for Computer Science. Addison-
Wesley publishing company, 2nd edition, 1994.

[24] Y. Hong, J. Vaidya, H. Lu, and M. Wu. Differentially private
search log sanitization with optimal output utility. In In-
ternational Conference on Extending Database Technology,
pages 50–61, 2012.

[25] V. S. Iyengar. Transforming data to satisfy privacy con-
straints. In International Conference on Knowledge Discov-
ery and Data Mining, pages 279–288, 2002.

[26] J. Gehrke et al. Crowd-blending privacy. In Advances in
Cryptology, pages 479–496. Springer, 2012.

[27] J. Soria-Comas et al. Enhancing data utility in differential
privacy via microaggregation-based k-anonymity. VLDB J.,
23(5):771–794, 2014.

[28] J. Soria-Comas et al. t-closeness through microaggre-
gation: Strict privacy with enhanced utility preservation.
IEEE Transactions on Knowledge and Data Engineering,
27(11):3098–3110, 2015.

[29] J. Vaidya et al. Differentially private naive bayes classifica-
tion. In IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technologies, pages
571–576, 2013.

[30] Y. Jafer, S. Matwin, and M. Sokolova. Using feature se-
lection to improve the utility of differentially private data
publishing. Procedia Computer Science, 37:511–516, 2014.

[31] Z. Ji, Z. C. Lipton, and C. Elkan. Differential privacy
and machine learning: a survey and review. CoRR,
abs/1412.7584, 2014.

[32] Z. Jorgensen, T. Yu, and G. Cormode. Conservative or lib-
eral? personalized differential privacy. In IEEE International
Conference on Data Engineering, pages 1023–1034, April
2015.

[33] K. El Emam et al. A globally optimal k-anonymity method
for the de-identification of health data. J. Am. Med. Inform.
Assn., 16(5):670–682, 2009.

[34] F. Kohlmayer, F. Prasser, C. Eckert, A. Kemper, and K. A.
Kuhn. Flash: efficient, stable and optimal k-anonymity. In
2012 International Conference on Privacy, Security, Risk
and Trust (PASSAT) and 2012 International Conference on
Social Computing (SocialCom), pages 708–717, 2012.

[35] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito:
Efficient full-domain k-anonymity. In International Confer-
ence on Management of Data, pages 49–60, 2005.

[36] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian
multidimensional k-anonymity. In International Conference
on Data Engineering, pages 25–25, 2006.

77



SafePub: A Truthful Data Anonymization Algorithm With Strong Privacy Guarantees 84

[37] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-
aware anonymization techniques for large-scale datasets.
ACM Transactions on Database Systems, 33(3):1–47, 2008.

[38] D. Leoni. Non-interactive differential privacy: A survey. In
International Workshop on Open Data, pages 40–52, 2012.

[39] N. Li, W. Qardaji, and D. Su. On sampling, anonymization,
and differential privacy: Or, k-anonymization meets differen-
tial privacy. In ACM Symposium on Information, Computer
and Communications Security, pages 32–33, 2012.

[40] N. Li, W. H. Qardaji, and D. Su. Provably private data
anonymization: Or, k-anonymity meets differential privacy.
CoRR, abs/1101.2604, 2011.

[41] T. Li and N. Li. On the tradeoff between privacy and utility
in data publishing. In International Conference on Knowl-
edge Discovery and Data Mining, pages 517–526, 2009.

[42] M. Lichman. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

[43] M. R. Fouad, K. Elbassioni, and E. Bertino. Towards a
differentially private data anonymization. CERIAS Tech
Report 2012-1, Purdue Univ., 2012.

[44] F. McSherry and K. Talwar. Mechanism design via dif-
ferential privacy. In IEEE Symposium on Foundations of
Computer Science, pages 94–103, 2007.

[45] F. D. McSherry. Privacy integrated queries: An extensible
platform for privacy-preserving data analysis. In International
Conference on Management of Data, pages 19–30, 2009.

[46] N. Mohammed et al. Differentially private data release for
data mining. In International Conference on Knowledge
Discovery and Data Mining, pages 493–501, 2011.

[47] M. E. Nergiz, M. Atzori, and C. Clifton. Hiding the pres-
ence of individuals from shared databases. In International
Conference on Management of Data, pages 665–676, 2007.

[48] F. Prasser, F. Kohlmayer, and K. A. Kuhn. The importance
of context: Risk-based de-identification of biomedical data.
Methods of information in medicine, 55(4):347–355, 2016.

[49] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers Inc., 1993.

[50] F. Ritchie and M. Elliott. Principles- versus rules- based
output statistical disclosure control in remote access envi-
ronments. IASSIST Quarterly, 39(2):5–13, 2015.

[51] A. D. Sarwate and K. Chaudhuri. Signal processing and
machine learning with differential privacy: Algorithms and
challenges for continuous data. IEEE Signal Processing
Magazine, 30(5):86–94, 2013.

[52] L. Sweeney. Achieving k-anonymity privacy protection us-
ing generalization and suppression. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(5):571–588, Oct. 2002.

[53] L. Willenborg and T. De Waal. Statistical disclosure control
in practice. Springer Science & Business Media, 1996.

[54] I. H. Witten and F. Eibe. Data mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

[55] X. Jiang et al. Differential-private data publishing through
component analysis. Transactions on Data Privacy, 6(1):19–
34, Apr. 2013.

[56] Z. Wan et al. A game theoretic framework for analyzing
re-identification risk. PloS one, 10(3):e0120592, 2015.

[57] N. Zhang, M. Li, and W. Lou. Distributed data mining with
differential privacy. In IEEE International Conference on
Communications, pages 1–5, 2011.

A Proof of Theorem 11
Proof. For the purpose of this proof we will use the fol-
lowing representation of the function d which is obtained
as an intermediate result in the proof of [40, Theorem 1]:

d(k, β, ε′) = max
n∈N

∑

{j∈N | j≥k∧j>γn∧j≤n}
f(j;n, β).

Let us fix an arbitrary ε′ ≥ ε and recall that γ =
γ(ε′) is actually a function of ε′. It is easy to see that
ε′ ≥ ε implies:

γ(ε′) = eε′ − 1 + β

eε′ ≥ eε − 1 + β

eε = γ(ε).

Hence we have:

∀n ∈ N : {j ∈ N | j ≥ k ∧ j > γ(ε′)n ∧ j ≤ n} ⊆
{j ∈ N | j ≥ k ∧ j > γ(ε)n ∧ j ≤ n}.

This implies

d(k, β, ε′) = max
n∈N

∑

{j∈N | j≥k∧j>γ(ε′)n∧j≤n}
f(j;n, β)

≤ max
n∈N

∑

{j∈N | j≥k∧j>γ(ε)n∧j≤n}
f(j;n, β)

= d(k, β, ε)

which proofs the monotonicity. Furthermore, we have
ε′ ≥ ε = − ln (1− β) so that (ε′, d(k, β, ε′))-differential
privacy is indeed satisfied according to Theorem 3.

B Proofs of Sensitivities
B.1 Granularity (Theorem 6)
Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1⊕D2| = 1. Without
loss of generality we assume D1 = D2 ∪ {r}. We will
use the notation g(r) = (r̃1, ..., r̃m) and point out that
∀i = 1, ...,m : 0 ≤ leavesi(r̃i)

|Ωi| ≤ leavesi(∗)
|Ωi| = 1 holds.

– If g(r) = ∗ holds or g(r) 6= ∗ appears less than k times
in g(D1), then g(r) is suppressed in both S(D1) and
S(D2) with S(D1) = S(D2) ∪ {∗}. We can conclude:

|grank(D1, g)− grank(D2, g)| =
∣∣∣∣∣∣∣∣


 ∑

(r′1,...,r′m)∈S(D2)

m∑

i=1

leavesi(r′i)
|Ωi|


+



m∑

i=1

leavesi(∗)
|Ωi|︸ ︷︷ ︸
=1




−


 ∑

(r′1,...,r′m)∈S(D2)

m∑

i=1

leavesi(r′i)
|Ωi|



∣∣∣∣∣∣

= m .
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– If g(r) 6= ∗ appears k times in g(D1), then it is not
suppressed in S(D1) but in S(D2) with

S(D1) = (S(D2) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {g(r), ..., g(r)}︸ ︷︷ ︸
k−times

.

We can conclude:

|grank(D1, g)− grank(D2, g)|

=

∣∣∣∣∣∣∣∣




k∑

j=1

m∑

i=1

leavesi(r̃i)
|Ωi|


−



k−1∑

j=1

m∑

i=1

leavesi(∗)
|Ωi|︸ ︷︷ ︸
=1




∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣




k∑

j=1

m∑

i=1

leavesi(r̃i)
|Ωi|




︸ ︷︷ ︸
=:σ∈[0,km]

−(k − 1)m

∣∣∣∣∣∣∣∣∣∣∣

≤
{

(k − 1)m, if σ ∈ [0, (k − 1)m)
m, if σ ∈ [(k − 1)m, km] .

– If g(r) 6= ∗ appears more than k times in g(D1), then
g(r) is not suppressed in both S(D1) and S(D2) with
S(D1) = S(D2) ∪ {g(r)}. We can conclude:

|grank(D1, g)− grank(D2, g)| =
m∑

i=1

leavesi(r̃i)
|Ωi|︸ ︷︷ ︸
≤1

≤ m .

In summary we have:

|grank(D1, g)− grank(D2, g)| ≤
{

(k − 1)m, if k > 1
m, if k = 1

B.2 Discernibility (Theorem 7)
In the following we will frequently employ the triangle
inequality and indicate its application with (T). In or-
der to prove the sensitivity of the Discernibility score
function we will first propose two lemmas:

Lemma 12. For all D1, D2 ⊆ (Ω1 ∪ Λ1) × ... ×
(Ωm ∪ Λm) with D1 = D2 ∪ {r′} the following holds:
|φ(D1)− φ(D2)| ≤ 5.

Proof. If D2 = ∅ holds we have D1 = {r′} and can
conclude:

|φ(D1)− φ(D2)| = |1− 0| = 1.

In the following we will assume D2 6= ∅ and define c :=
|D1|, n := |{r′ ∈ D1}|, y := |{∗ ∈ D1}| and

x :=
∑

E∈EQ(D1):r′ /∈E
|E|2 =

∑

E∈EQ(D2):r′ /∈E
|E|2.

– If r′ 6= ∗ holds we have |{r′ ∈ D2}| = n− 1 and |{∗ ∈
D2}| = y. Moreover, x + n2 =

∑
E∈EQ(D1) |E|2 =∑

r∈D1:r 6=∗ |{r ∈ D1}| ≤
∑
r∈D1

|D1| = c2 holds. We
can conclude:

|φ(D1)− φ(D2)|

=
∣∣∣∣
x+ n2 + yc

c
− x+ (n− 1)2 + y(c− 1)

c− 1

∣∣∣∣

=
∣∣∣∣
−x− n2 + 2nc− c

c(c− 1)

∣∣∣∣ ≤(T )

x+ n2

c(c− 1) + 2n− 1
c− 1

≤ c2

c(c− 1) + 2c− 1
c− 1 = 3c− 1

c− 1︸ ︷︷ ︸
↘,c↗ ∧ c≥2

≤ 5.

– If r′ = ∗ holds we have |{∗ ∈ D2}| = y − 1
and we can conclude using x =

∑
E∈EQ(D1) |E|2 =∑

r∈D1:r 6=∗ |{r ∈ D1}| ≤
∑
r∈D1\{∗} |D1| ≤ c(c− 1):

|φ(D1)− φ(D2)| =
∣∣∣∣
x+ yc

c
− x+ (y − 1)(c− 1)

c− 1

∣∣∣∣

=
∣∣∣∣
−x+ c2 − c
c(c− 1)

∣∣∣∣ ≤(T )

x

c(c− 1) + 1 ≤ 2.

In summary we have |φ(D1)− φ(D2)| ≤ 5.

Lemma 13. For every integer k ≥ 2 and all D1, D2 ⊆
(Ω1 ∪ Λ1)× ...× (Ωm ∪ Λm) satisfying

D1 = (D2 \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {r′, ..., r′}︸ ︷︷ ︸
k−times

with r′ 6= ∗ the following holds:

|φ(D1)− φ(D2)| ≤ k2

k − 1 + 1.

Proof. With the definitions

c := |D1|,
n := |{r′ ∈ D1}| = |{r′ ∈ D2}|+ k,

y := |{∗ ∈ D1}| = |{∗ ∈ D2}| − k + 1,

x :=
∑

E∈EQ(D1):r′ /∈E
|E|2 =

∑

E∈EQ(D2):r′ /∈E
|E|2

and using x+ n2 ≤∑r∈D1
|D1| = c2 we have:

|φ(D1)− φ(D2)|

=
∣∣∣∣
x+ n2 + yc

c
− x+ (n− k)2 + (y + k − 1)(c− 1)

c− 1

∣∣∣∣

=
∣∣∣∣
−x− n2 + 2knc− k2c− kc2 + kc+ c2 − c

c(c− 1)

∣∣∣∣

≤
(T )

∣∣∣∣
−x− n2

c(c− 1)

∣∣∣∣+ k

∣∣∣∣
2n− k − c+ 1

c− 1

∣∣∣∣+ 1

≤ c

c− 1 + k

∣∣∣∣
2n+ 1− (k + c)

c− 1

∣∣∣∣+ 1. (8)
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– If 2n+ 1 ≥ k + c holds we can conclude:
∣∣∣∣
2n+ 1− (k + c)

c− 1

∣∣∣∣ = 2n+ 1− (k + c)
c− 1

≤
n≤c

2c+ 1− (k + c)
c− 1 = c+ 1− k

c− 1 ≤
k≥2

1.

– Otherwise we have:
∣∣∣∣
2n+ 1− (k + c)

c− 1

∣∣∣∣ = k + c− (2n+ 1)
c− 1

≤
n≥k

k + c− (2k + 1)
c− 1 = c− 1− k

c− 1 ≤ 1.

We can conclude from Inequation (8):

|φ(D1)− φ(D2)| ≤ c

c− 1︸ ︷︷ ︸
↘,c↗ ∧ c≥k

+k + 1 = k2

k − 1 + 1.

We can now prove Theorem 7 as follows:

Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1⊕D2| = 1. Without
loss of generality we assume D1 = D2 ∪ {r}.

– If S(D1) = S(D2) ∪ {∗} or S(D1) = S(D2) ∪ {g(r)}
holds (which is always satisfied in the case of g(r) = ∗
or k = 1) we can conclude using Lemma 12:

|disck(D1, g)− disck(D2, g)| ≤ 5.

– If k ≥ 2 and g(r) 6= ∗ hold and g(r) is suppressed in
S(D2) but not in S(D1) we have

S(D1) = (S(D2) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {g(r), ..., g(r)}︸ ︷︷ ︸
k−times

and can conclude using Lemma 13:

|disck(D1, g)− disck(D2, g)| ≤ k2

k − 1 + 1.

In summary we can conclude:

|disck(D1, g)− disck(D2, g)| ≤
{

5, if k = 1
k2

k−1 + 1, if k > 1

B.3 Non-Uniform Entropy (Theorem 8)
We can prove Theorem 8 using the two lemmas proposed
in Appendix B.2 as follows:

Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1⊕D2| = 1. Without

loss of generality we assume D1 = D2 ∪ {r}. Then we
have:

|entk(D1, g)− entk(D2, g)|

=

∣∣∣∣∣
m∑

i=1
φ(pi(S(D1)))− φ(pi(S(D2)))

∣∣∣∣∣

≤
(T )

m∑

i=1
|φ(pi(S(D1)))− φ(pi(S(D2)))| . (9)

Let us fix an arbitrary i = 1, ...m, define g(r) =:
(r′1, ..., r′m) and regard pi(S(D1)) and pi(S(D2)) as
datasets with one attribute.

– If pi(S(D1)) = pi(S(D2)) ∪ {∗} or pi(S(D1)) =
pi(S(D2)) ∪ {r′i} holds (which is always satisfied in
the case of r′i = ∗ or k = 1) we can conclude using
Lemma 12:

|φ(pi(S(D1)))− φ(pi(S(D2)))| ≤ 5.

– If k ≥ 2 and r′i 6= ∗ hold and g(r) is suppressed in
S(D2) but not in S(D1) we have

pi(S(D1)) = (pi(S(D2)) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪ {r′i, ..., r′i}︸ ︷︷ ︸
k−times

and can conclude using Lemma 13:

|φ(pi(S(D1)))− φ(pi(S(D2)))| ≤ k2

k − 1 + 1.

In summary we have

|φ(pi(S(D1)))− φ(pi(S(D2)))| ≤
{

5, if k = 1
k2

k−1 + 1, if k > 1

and can conclude from Inequation (9):

|entk(D1, g)− entk(D2, g)| ≤
{

5m, if k = 1
( k2

k−1 + 1)m, if k > 1

B.4 Statistical Classification (Theorem 9)
Proof. Let k ∈ N be an arbitrary integer, let g ∈ Gm be
an arbitrary generalization scheme and let D1, D2 ∈ Dm
be arbitrary datasets satisfying |D1 ⊕ D2| = 1. With-
out loss of generality we assume D1 = D2 ∪ {r}. For
ease of notation we define w1(·) := w(S(D1), ·) and
w2(·) := w(S(D2), ·). Moreover, we define FV to be
the subset of all records in S(D2) which have the same
combination of feature attribute values as g(r), i.e.
FV := {r′ ∈ S(D2) | fv(r′) = fv(g(r))}.

If fv(g(r)) is suppressed as a consequence of gener-
alization then S(D1) and S(D2) differ only in records
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with a weight of zero in either set, i.e. we have C :=
{r′ ∈ S(D1) : w1(r′) = 1} = {r′ ∈ S(D2) : w2(r′) = 1}
which implies:

classk(D1, g) =
∑

r′∈S(D1)

w1(r′) =
∑

r′∈C
w1(r′)

=
∑

r′∈C
w2(r′) =

∑

r′∈S(D2)

w2(r′) = classk(D2, g).

In the following we will regard the case that fv(g(r))
is not suppressed, which implies g(r) 6= ∗.

– If g(r) appears less than k times in g(D1) then it is
suppressed in S(D1) with S(D1) = S(D2) ∪ {∗}. We
can argue as above: classk(D1, g) = classk(D2, g).

– If g(r) appears k times in g(D1) then it is not sup-
pressed in S(D1) while we have g(r) /∈ S(D2), in par-
ticular g(r) /∈ FV , and

S(D1) = (S(D2) \ {∗, ..., ∗}︸ ︷︷ ︸
k−1−times

) ∪̇ {g(r), ..., g(r)}︸ ︷︷ ︸
k−times

.

Moreover, all records in S(D2) which have the same
feature values as g(r) are also contained in S(D1),
i.e. FV ⊆ S(D1) ∩ S(D2) holds, and these are the
only records contained in both S(D1) and S(D2)
which may have different weights in these sets, i.e.
∀r′ ∈ (S(D1) ∩ S(D2)) \ FV : w1(r′) = w2(r′) holds.
We can conclude:

|classk(D1, g)− classk(D2, g)| =
∣∣∣∣∣∣


k · w1(g(r)) +

∑

r′∈S(D1)∩S(D2)

w1(r′)


−


(k − 1) · w2(∗)︸ ︷︷ ︸

=0

+
∑

r′∈S(D1)∩S(D2)

w2(r′)



∣∣∣∣∣∣

=

∣∣∣∣∣k · w1(g(r)) +
∑

r′∈FV

(
w1(r′)− w2(r′)

)
∣∣∣∣∣ . (10)

Let r′maj denote the record with the most frequent
class attribute value among all records in S(D1) which
have the same feature values as g(r).
If r′maj 6= g(r) holds we have w1(g(r)) = 0 and r′maj is
also the record with the most frequent class attribute
value in FV with

∀r′ ∈ FV : w1(r′) = w2(r′) =
{

1, if r′ = r′maj
0, otherwise

.

Using Equation (10) we can conclude:

|classk(D1, g)− classk(D2, g)| = 0.

If r′maj = g(r) holds we have w1(g(r)) = 1 and ∀r′ ∈
FV : w1(r′) = 0. Moreover, the record r̃maj with the
most frequent class value in FV can appear at most k
times in FV (because otherwise, r̃maj ∈ FV ⊆ S(D1)
would have a class value more frequent than the one of
g(r) in S(D1), which contradicts r′maj = g(r)). Hence,
we have:

0 ≤
∑

r′∈FV
w2(r′)︸ ︷︷ ︸

=1 iff r′=r̃maj

≤ k.

We can conclude using Equation (10):

|classk(D1, g)− classk(D2, g)| = k −
∑

r′∈FV
w2(r′) ≤ k.

– If g(r) appears l > k times in g(D1), then it ap-
pears l − 1 ≥ k times in g(D2). It follows that g(r)
is not suppressed in both S(D1) and S(D2) with
S(D1) = S(D2) ∪ {g(r)}. Moreover, g(r) ∈ FV ⊆
S(D2) ⊆ S(D1) holds, and the records in FV are the
only ones which may have a different weight in S(D1)
and S(D2), i.e. ∀r′ ∈ S(D2) \ FV : w1(r′) = w2(r′)
holds. We can conclude:

|classk(D1, g)− classk(D2, g)| =
∣∣∣∣∣∣
w1(g(r)) +

∑

r′∈S(D2)

w1(r′)−
∑

r′∈S(D2)

w2(r′)

∣∣∣∣∣∣
=

∣∣∣∣∣w1(g(r)) +
∑

r′∈FV

(
w1(r′)− w2(r′)

)
∣∣∣∣∣ . (11)

If r′maj 6= g(r) holds we can argue similar as above:

|classk(D1, g)− classk(D2, g)| = 0.

If r′maj = g(r) holds we have

∀r′ ∈ FV : w1(r′) =
{

1, if r′ = g(r)
0, otherwise ,

|{g(r) ∈ FV }| = l − 1 (so that the record with the
most frequent class value appears at least l− 1 times
in FV ) and ∀r′ ∈ FV , r′ 6= g(r) : |{r′ ∈ S(D2)}| ≤ l

(because otherwise, there would exist a record r̃maj ∈
FV ⊆ S(D1), r̃maj 6= g(r) with a class value which is
more frequent than the one of g(r) in S(D1), which
contradicts r′maj = g(r)). Hence we have:

l − 1 ≤
∑

r′∈FV
w2(r′) ≤ l.

We can conclude using Equation (11):

|classk(D1, g)− classk(D2, g)| = l −
∑

r′∈FV
w2(r′) ≤ 1.

In summary we can conclude:

|classk(D1, g)− classk(D2, g)| ≤ k

81





A.2 Efficient Protection of Numeric Attributes

Full Title
Efficient Protection of Health Data from Sensitive Attribute Disclosure

Authors
Raffael Bild, Johanna Eicher and Fabian Prasser

Published In
Digital Personalized Health and Medicine: Proceedings of Medical Informatics Europe,
270:193-197, 2020

Copyright
CC BY-NC 4.0 (see Appendix D for legal code. Source: https://creativecommons.
org/licenses/by-nc/4.0/ Accessed: 11.07.2024)

83

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/




Efficient Protection of Health Data from
Sensitive Attribute Disclosure

Raffael BILD a,1, Johanna EICHER a and Fabian PRASSER b,c

a University hospital rechts der Isar, Technical University of Munich, Germany
b Charité - Universitätsmedizin Berlin, Berlin, Germany

c Berlin Institute of Health (BIH), Berlin, Germany

Abstract. Biomedical research has become data-driven. To create the required big
datasets, health data needs to be shared or reused out of the context of its initial pur-
pose. This leads to significant privacy challenges. Data anonymization is an impor-
tant protection method where data is transformed such that privacy guarantees can
be provided according to formal models. For applications in practice, anonymiza-
tion methods need to be integrated into scalable and robust tools. In this work, we
focus on the problem of scalability.

Protecting biomedical data from inference attacks is challenging, in particular for
numeric data. An important privacy model in this context is t-closeness, which has
also been defined for attribute values which are totally ordered. However, directly
implementing a scalable algorithmic representation of the mathematical definition
of the model proves difficult. In this paper we therefore present a series of opti-
mizations that can be used to achieve efficiency in production use. An experimen-
tal evaluation shows that our approach reduces execution times of anonymization
processes involving t-closeness by up to a factor of two.

Keywords. data protection, anonymization, inference attacks, scalability

1. Introduction

Biomedical research, e.g. in the field of precision medicine which tailors healthcare to
characteristics of individuals, is increasingly data-driven and leveraging methods from
data science such as machine learning [1]. However, when creating the required big
datasets, stringent privacy protection is mandated by laws and regulations. Hence, a wide
range of safeguards has to be applied, including organizational and technical measures.

Data anonymization is an important building block for implementing technical pri-
vacy protection. The basic idea is to transform data in such a manner that formal guar-
antees, e.g. regarding the risk of singling out, linkage or inference, can be provided [2].
These formal guarantees are captured by so called privacy models. t-Closeness is a state-
of-the-art model for protecting data from inference attacks. The model requires that the
distribution of sensitive attribute values in a set of indistinguishable data records is not
too different from the distribution of sensitive information in the overall dataset [3].

1Corresponding Author: Raffael Bild, Institute of Medical Informatics, Statistics and Epidemiology,
University Hospital rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich,
Germany; E-mail: raffael.bild@tum.de.
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2. Objective

The ARX Data Anonymization Tool is among the few software solutions for quantita-
tive data anonymization, that have found wide-spread adoption. ARX focuses on data
transformation methods which have been specifically recommended for applications to
health data and it implements models for protecting data from singling out, linkage and
inference [4]. t-Closeness is amongst the models supported.

t-Closeness has been specified in different variants that apply to variables with dif-
ferent scales of measure. One of these variants focuses on variables which are totally
ordered. This model is particularly relevant in practice, as it is one of the few privacy
models which have been proposed for protecting sensitive numeric variables.

When using ARX to protect complex datasets using the t-closeness model, however,
we realized that the initial implementation is not scalable. Upon further inspection, we
realized that directly implementing a scalable algorithmic representation of the mathe-
matical definition of the model t-closeness proves difficult in general. In this paper we
therefore present a series of optimizations that we have developed to achieve efficiency
in productive use. All of them have been integrated into ARX.

3. Methods

3.1. Problem Definition

t-Closeness is a condition that applies to equivalence classes, i.e. groups of records which
are indistinguishable regarding attributes that could be used for linking records. Let
P(e) = (p1, p2, ..., pm) be the relative frequency distribution of sensitive values in a given
equivalence class e and let Q = (q1,q2, ...,qm) be the relative frequency distribution of
sensitive values in the whole dataset. D[P(e),Q] is the distance between the distributions
P(e) and Q [3]. It is defined as follows [3]:

D[P(e),Q] =
1

m−1

m

∑
i=1

∣∣∣∣∣
i

∑
j=1

(p j−q j)

∣∣∣∣∣ .

A dataset fulfills t-closeness with numerical ground distance if for all equivalence
classes e, D[P(e),Q]≤ t holds.

Age Sex LoS AdmQrtr Charge 

[25, 50[ Male [1, 5[ 3 50.000 

[25, 50[ Male [1, 5[ 3 60.000 

[50, 75[ Female [5, 10[ 1 60.000 

[50, 75[ Female [5, 10[ 1 60.000 

[50, 75[ Female [5, 10[ 1 70.000 
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Figure 1. Example discharge dataset. ”LoS” = Length of stay, ”AdmQrtr” = Admission quarter.

Figure 1 shows an example dataset with a sensitive attribute ”Charge” and two equiv-
alence classes e1 and e2 defined by the values of the other attributes. The distribution
of sensitive values is Q = ( 1

5 ,
3
5 ,

1
5 ) since the values 50.000, 60.000 and 70.000 appear

1, 3 and 1 times in the whole dataset, respectively. For the equivalence classes, we get
P(e1) = ( 1

2 ,
1
2 ,0) and P(e2) = (0, 2

3 ,
1
3 ). Consequently, we have
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D[P(e1),Q] =
1
2
(|1
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− 1
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|+ |1
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− 3

5
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D[P(e2),Q] =
1
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(|− 1

5
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5
+

2
3
− 3

5
|+ |− 1

5
+

2
3
− 3

5
+

1
3
− 1

5
|) = 1

6
.

Hence, we can conclude that the dataset satisfies t-closeness with t = max{ 1
4 ,

1
6}= 0.25.

A straight-forward implementation of t-closeness for fully ordered attributes would
implement this by checking if the following inequality holds:

|r1|+ |r1 + r2|+ |r1 + r2 + r3|+ ...|r1 + ...+ rm−1| ≤ t(m−1)

Each ri has the form ri = pi− qi, where pi is the frequency of the attribute value
number i in the currently considered equivalence class e of the transformed data set, and
qi the frequency of the attribute value number i in the entire input dataset.

As we will show in Section 4 this process is highly inefficient. The main reason is
that it needs to iterate over all sensitive attribute values contained in the overall dataset.
Given that this process needs to be executed for all equivalence classes, the worst-case
complexity is O(n2) where n is the number of records in the dataset.

3.2. Optimization Approaches

In this section, we present three optimizations that we used to improve our initial,
straight-forward implementation of the model.

Optimization 1 – Fibonacci hashing: The first optimization adresses the imple-
mentation level. One of the most time-consuming aspects of implementing a check for t-
closeness is to dynamically group the sensitive attribute values in each class to determine
their frequency. The standard data structure used for this purpose are hash tables. ARX
already used an efficient implementation provided by the High Performance Primitive
Collections for Java library [5]. However, these collections are still much more complex
than required, as they for example support updating the data stored in a map. We there-
fore implemented a simplified hash table using Fibonacci hashing based on the golden
ratio to reduce the number of CPU cycles required for adding and querying elements.

Optimization 2 – Check pruning: The second optimization addresses the mathe-
matical definition of the model. Let us assume that the attribute values number 1...k in
the equivalence class currently under consideration do not occur at all, then p1 = p2 =
...= pk = 0 holds and the first k summands in the above condition have the form:

|−q1|+ |−q1−q2|+ ...+ |−q1− ...−qk|.

This partial sum depends only on the input dataset and can therefore be pre-
calculated for every possible value of k before the individual equivalence classes of the
transformed dataset are checked.

These precalculations can be performed in an initialization step, for ascending values
of k until the corresponding subtotal is greater than the threshold, i.e. the following holds:

|−q1|+ |−q1−q2|+ ...+ |−q1− ...−qk|> t(m−1).

Let us denote the smallest value of k for which this inequality is fulfilled with x.
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When checking whether t-closeness holds for a specific equivalence class, as a first
step, we calculate the smallest index of any attribute value occurring in the class. We call
this index y. When y > x it can be inferred that the following summands are included in
the relevant sum:

|−q1|+ |−q1−q2|+ ...+ |−q1− ...−qx|.

It follows that the threshold t(m− 1) will definitely be exceeded and computations
can already be stopped at this point (concluding that privacy guarantees are not fulfilled).

Optimization 3 – Summand pruning: The third optimization adds an additional
pruning mechanism using pre-computations.

It can be used in cases where the pruning strategy described above is not applicable,
i.e. if y≤ x holds. It works by starting the summation at position y, using an appropriate
sum which has been pre-calcuated ahead of time for all k ≤ x as a starting point:

|−q1|+ |−q1−q2|+ ...+ |−q1− ...−qk|.

3.3. Experimental Design

To evaluate our approach, we used the following data from registries and health surveys
from the U.S.: 100,937 records about traffic accidents from the NHTSA Fatality Anal-
ysis Reporting System (FARS), 539,253 records from the American Time Use Survey
(ATUS) and 1,193,504 records from the Integrated Health Interview Series (IHIS). More-
over, we analyzed a subset of a synthetic discharge dataset which is particularly hard to
protect from sensitive attribute disclosure (SPD) [6]. We also included two de-facto stan-
dard datasets for benchmarking anonymization methods: 30,162 records from the 1994
U.S. Census (ADULT) and 63,441 records from the 1998 KDD competition (CUP). For
a detailed specification of the datasets we refer to [7].

We anonymized the datasets with attribute generalization and record suppression to
produce output datasets which fulfill t-closeness for fully ordered attributes. We varied
the risk threshold t (0.5 ≥ t ≥ 0.1) to study the effect of our optimizations on different
parameterizations. As a baseline, we used our original, unoptimized implementation. In
the software, both pruning strategies are combined into a common implementation and
we therefore present one measurement capturing both of them.

4. Results
Figure 2 shows the results of our experiments. As can be seen, our optimizations im-
proved execution times by up two a factor of more than two. Each optimization had a
positive effect in all setups while the degree of effectiveness of each optimization varied
between setups. Pruning was possible in between 69% and 99% of the checks performed,
but the effect on execution times varied.

The differences in the impact of optimizations on execution times can be explained
by considering the distribution of sensitive attributes values in the different datasets. The
impact was lower for datasets with a small number of distinct values, i.e. ADULT (7),
ATUS (7) and IHIS (10), higher for datasets with more distinct sensitive values, i.e. CUP
(81) and FARS (20). We measured the strongest effect for the SPD dataset, which has
101 different sensitive attribute values. When the number of sensitive attribute values is
high, execution times are also higher, implying the our optimizations are more effective
exactly in the cases where they are needed the most.
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Figure 2. Execution times relative to the original implementation for various datasets and risk thresholds.

5. Conclusion

Due to its usability, flexibility and scalability, ARX is actively used in many areas, in-
cluding commercial big data analytics platforms, medical research projects, clinical trial
data sharing and for training purposes. An important reason for ARX’s scalability are
the many optimizations that have been integrated into the software. In prior work we
have, for example, presented methods to improve the scalability of optimization algo-
rithms for trading off risks vs. utility [8] and a versatile optimized runtime environment
for anonymization algorithms [9].

In this paper, we have presented an optimization affecting a specific and impor-
tant privacy model only. Our approach addresses the implementation level as well
as the mathematical definition of the model implemented. Our solution utilizes high-
performance data structures as well as pre-computation techniques. The model is partic-
ularly relevant in practice, as it is one of the few approaches which can be used to protect
sensitive numeric data.
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Abstract. Modern biomedical research is increasingly data-driven. To create the
required big datasets, health data needs to be shared or reused, which often leads to
privacy challenges. Data anonymization is an important protection method where
data is transformed such that privacy guarantees can be provided according to for-
mal models. For applications in practice, anonymization methods need to be in-
tegrated into scalable and reliable tools. In this work, we tackle the problem of
achieving reliability. Privacy models often involve mathematical definitions us-
ing real numbers which are typically approximated using floating-point numbers
when implemented as software. We study the effect on the privacy guarantees pro-
vided and present a reliable computing framework based on fractional and interval
arithmetic for improving the reliability of implementations. Extensive evaluations
demonstrate that reliable data anonymization is practical and that it can be achieved
with minor impacts on executions times and data utility.

Keywords. data protection, anonymization, reliable computing

1. Introduction
Modern data-driven biomedical research, e.g. in the field of precision medicine which
tailors healthcare to the characteristics of individuals, increasingly leverages data sci-
ence methods such as machine learning [1]. However, when creating the required big
datasets, laws and regulations mandate stringent privacy protection. Hence, a wide range
of safeguards has to be applied, ranging from organizational to technical measures.

Data anonymization is an important technical building block for implementing pri-
vacy protection. In this process, data is transformed in such a manner that formal guar-
antees, e.g. regarding the risk of singling out, linkage or inference, can be provided. Tra-
ditional models of privacy protection such as k-anonymity, `-diversity and t-closeness
specify syntactic constraints on output datasets, while more recent models like differen-
tial privacy formulate requirements for data processing methods [2].

2. Objective

All methods for implementing privacy models require performing changes to data which
inevitably leads to a decrease of its utility. To balance a decrease in privacy risks with a

1Corresponding Author: Raffael Bild, Institute of Medical Informatics, Statistics and Epidemiology, School
of Medicine, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; E-mail:
raffael.bild@tum.de.
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decrease of utility, models for quantifying both aspects have been developed. When im-
plementing privacy models in practice, an important challenge lies in the need to reflect
their mathematical definitions in software. Privacy models are often formulated over real
numbers, which in software are approximated by floating-point numbers with limited
precision (typically 64 bits). Computations can therefore yield results that differ signifi-
cantly from the exact mathematical results [3]. This can make output data of anonymiza-
tion tools vulnerable to privacy breaches. For example, it has been shown that straight-
foward implementations of a common method for achieving differential privacy can be
exploited to extract the entire content of a (presumably protected) dataset [4]. However,
studies of the effects of floating-point errors on the privacy guarantees provided by other
methods for data anonymization are still lacking in the literature.

In this article, we aim to fill this gap, with a focus on investigating further meth-
ods which are truthful (i.e. non-perturbative) and hence particularly well-suited for the
biomedical domain [5]. For this, we discuss the numerical stability of implementations
of various privacy models, including k-anonymity, `-diversity, t-closeness and further
methods for achieving differential privacy [2]. Moreover, we present a reliable comput-
ing framework, which we have integrated into the open source data anonymization tool
ARX [6] to mitigate vulnerabilities resulting from the use of floating-point operations.

3. Methods

3.1. Data Anonymization and Floating-Point Arithmetic

Figure 1 shows an example transformation of an input dataset using a combination of
generalization (i.e. the replacement of values with more general, but semantically con-
sistent values), suppression (i.e. the removal of values) and aggregation (i.e. the replace-
ment of values with an aggregate, such as their mean). The example output dataset satis-
fies 2-anonymity, which means that each combination of attribute values appears at least
twice (see [2] for further details). Whether or not k-anonymity is satisfied is easy to de-
termine by simply counting the size of groups of indistinguishable records. Implement-
ing other privacy models, such as `-diversity, t-closeness or differential privacy, requires
evaluating mathematical expressions over real numbers, though (cf. Section 3.2).

Age Gender Height

[20-40[ Male 179

[20-40[ Male 179

[40-60[ --- 169

[40-60[ --- 169

Age Gender Height

23 Male 176

35 Male 182

55 Male 176

42 Female 162

Aggregation SuppressionGeneralization AggregationAggregation

Figure 1. Example of input data and transformed output data.

In computers, real numbers are typically approximated using floating-point num-
bers. The number of floating-point values which can be represented with a fixed number
of bits (typically 64) is finite. Hence, there exists an infinite number of unrepresentable
real numbers. Most implementations of floating-point arithmetic adopt the IEEE stan-
dard 754 [7]. It specifies that all floating-point operations have to be performed as if it
was possible to perform the corresponding operation with infinite precision, and then to
round the result to a representable number. This inevitably introduces rounding errors
which add up during sequences of calculations [3].
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3.2. Numerical Stability of Common Privacy Models

Implementing some privacy models supported by ARX, e.g. k-anonymity [2], doesn’t
require decimal numbers at all. Implementing others requires significant amounts of dec-
imal arithmetic, though. Examples are (1) t-closeness which basically requires that the
distribution of sensitive attribute values in a set of indistinguishable data records is not
too different from the corresponding distribution in the overall dataset or (2) (entropy) `-
diversity which requires the distribution (p1, ..., pm) of sensitive attribute values in each
group of indistinguishable records to satisfy −∑m

i=1 pi ln(pi) ≥ ln(`) [2]. However, by
studying possible effects of floating-point error propagation using forward analyses (see
e.g. [3] for details), we were able to derive upper bounds for the resulting additive ex-
ceedances of the privacy parameters of these models. While a detailed presentation of
these analyses is beyond the scope of this article, they showed that the resulting privacy
violations are negligible in practice for all syntactic privacy models supported by ARX.

Differential privacy is not a property of a dataset, but a property of a data pro-
cessing method. It basically guarantees that the probability of any possible output of a
probabilistic algorithm does not change “by much” if data of one individual is added
to or removed from the input dataset. The Laplacian mechanism and the exponential
mechanism are important building blocks for implementating differentially private al-
gorithms [8]. In [9], we have presented a process for implementing k-anonymity while
fulfilling (ε,δ )-differential privacy. This approach uses random sampling to introduce
non-determinism and the exponential mechanism to optimize the utility of output data.
Consequently, unlike the majority of differentially private algorithms, it is truthful and
therefore well-suited for processing health data [5].

We were able to calculate an upper bound on the rounding error induced by
straight-forward floating-point implementations of the exponential mechanism. For this,
we applied conservative methodologies described e.g. in [3] followed by an extension
of the original proof of the privacy guarantees provided [8] which takes rounding errors
into account. While a detailed presentation of this analysis is, again, out of the scope
of this article, it showed that the additive exceedance of the expected privacy loss ε is
negligible, with values of about 10−10 or less in practical settings.

However, the implementation of differential privacy in ARX requires complex cal-
culations to determine the sampling fraction β and the parameter k for k-anonymity to
guarantee the requested degree of privacy protection. Investigating our floating-point im-
plementation, we found that the deviations of ε were in the order of 10−16 using common
values of ε (e.g. 0.01, 0.1, 0.5, ln(2), 0.75, 1, ln(3), 1.25, 1.5 and 2). The actual values
calculated for the parameter δ , however, deviated drastically, as is shown in Table 1.

Table 1. Relative error of δ for ε = ln(2) using a floating-point implementation.
Requested value of δ 10−2 10−3 10−4 10−5 10−8 10−9

Error of δ [%] 13.3 11.1 17.2 28.4 10.0 27.9

3.3. Design of ARX’s Reliable Computing Framework

To solve this problem, we implemented a framework comprising different computing
technologies that are reliable, i.e. offer strict guarantees for the accuracy of the calculated
results: (1) Arithmetic using exact arbitrary-precision floating-point numbers. This can
be used for calculations involving numbers with a finite amount of digits only. (2) Using
representations as fractions with arbitrarily long integer enumerators and denominators.
This approach can be used to perform exact calculations over rational numbers but it can
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become very slow. (3) Interval arithmetic [3], which dynamically computes strict bounds
on the errors of mathematical operations. The basic idea is not to operate on (approxi-
mations of) real numbers, but rather on intervals which enclose the respective exact real
numbers. Functions operating on such intervals yield intervals which are guaranteed to
include the exact result. For example, addition can be performed by calculating

[x1,x2]+ [y1,y2] = [x1 + y1,x2 + y2].

ARX is implemented in Java and arbitrary prevision arithmetic and fraction arith-
metic is well supported by common programming libraries. The number of Java libraries
for performing interval arithmetic is, however, known to be limited [10]. Hence, we im-
plemented a basic interval arithmetic framework from scratch while focusing on a mini-
mal amount of easily understandable and verifiable code. We implemented various oper-
ators, including the basic arithmetic operators. For more complex functions such as exp,
pow, log and sqrt we invoke the respective implementations for floating-point values pro-
vided by the Java standard library which have clearly defined accuracies. We also imple-
mented various comparison operators such as ≤ which allow for reliable comparisons by
returning the result of comparing the upper and lower endpoint of their operands. These
operators are guarded by checks which raise an error if the relation of their operands is
not decidable, i.e. if the intervals are overlapping.

We used the methods and operators provided by this framework to implement the
parameter calculation process for differential privacy reliably so that the actual degree of
privacy protection provided can be at most more conservative than specified by the user.

4. Results
To evaluate the impact of the reliable parameter calculation on the strictness of the de-
rived parameters we have compared it with a straight-forward floating-point implemen-
tation using common values of ε ranging from 0.01 to 2 and δ = 10−i for i = 1, ...,9.

The differences between the values of β obtained using both implementations were
very small with values of about 10−16 in all cases. All values obtained for k were identi-
cal except for ten configurations using irrational parameters. This is because these num-
bers have more significant figures than the other values considered, which resulted in
higher rounding errors and hence larger intervals during calculations. In these cases, the
values of k obtained reliably were (slightly) higher. Using ε = ln(3), the values of k com-
puted differed for δ = 10−5 and δ = 10−6 (k = 63 vs. k = 66 and k = 78 vs. k = 82,
respectively). The results obtained when using ε = ln(2) are listed in Table 2. As can be
seen, the absolute differences were at most two. Consequently, for decreasing values of
δ , which correspond to increasing degrees of privacy protection, the relative differences
between the values of k obtained by both implementations tended to become smaller.

Table 2. Values of k derived from various values of δ and ε = ln(2).
δ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Floating-Point 7 18 30 42 54 67 81 93 105
Reliable 8 20 32 44 56 68 81 95 107

In contrast to results obtained using the floating-point implementation (cf. Table 1),
the actual values of ε and δ resulting from reliably calculated parameters k and β were at
most more conservative than the privacy parameters specified by the user. In particular,
increasing k was necessary to mitigate the violations of δ reported in Table 1. At the same
time, the impacts on the intensity of data transformations applied and hence the potential
reductions of data utility are negligible when using recommended parameterizations [9].
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We also evaluated the execution times of both implementations on a PC with a quad-
core 3.1 GHz CPU, Ubuntu Linux and an Oracle JVM. The results are shown in Figure 2.
When decreasing both ε and δ (which corresponds to stronger degrees of protection), the
relative execution times tended to increase. Using typical values of ε ≈ 1 and δ ≈ 10−6,
the execution time of the reliable implementation was about four times higher than the
time used by the floating-point implementation. In all experiments with ε ≥ 0.1, the
calculation of parameters terminated in less than one second using both implementations.
This contains the range of parameters which is practical for the approach (cf. [9]).
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Figure 2. Execution times for deriving β and k from various values of δ and ε reliably relative to the float-
ing-point implementation.

5. Conclusion
In this article, we studied how privacy violations resulting from floating-point implemen-
tations of anonymization algorithms can be mitigated. We discussed reliability issues re-
sulting from arithmetic operations for a variety of privacy models including k-anonymity,
`-diversity and t-closeness as well as an implementation of differential privacy specif-
ically suited for applications to health data [9]. Moreover, we presented a framework
comprising reliable computing techniques, including interval and fractional arithmetic.
All results have been integrated into the open source tool ARX. Finally, we examined the
impacts of the reliable implementation on output data utility as well as execution times
and found both to be negligible in practice when realistic parameters are being used.
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Legal Code - Attribution-NonCommercial-NoDerivs
3.0 Unported - Creative Commons

Creative Commons public licenses provide a standard set of terms and conditions that creators
and other rights holders may use to share original works of authorship and other material
subject to copyright and certain other rights specified in the public license below. The following
considerations are for informational purposes only, are not exhaustive, and do not form part of
our licenses.

Our public licenses are intended for use by those authorized to give the public permission to use
material in ways otherwise restricted by copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms and conditions of the license they
choose before applying it. Licensors should also secure all rights necessary before applying our
licenses so that the public can reuse the material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-licensed material, or material used
under an exception or limitation to copyright. More considerations for licensors.

By using one of our public licenses, a licensor grants the public permission to use the licensed
material under specified terms and conditions. If the licensor’s permission is not necessary for
any reason–for example, because of any applicable exception or limitation to copyright–then
that use is not regulated by the license. Our licenses grant only permissions under copyright and
certain other rights that a licensor has authority to grant. Use of the licensed material may still
be restricted for other reasons, including because others have copyright or other rights in the
material. A licensor may make special requests, such as asking that all changes be marked or
described. Although not required by our licenses, you are encouraged to respect those requests
where reasonable. More considerations for the public.

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-
CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN
"AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE
INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING
FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE
MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. Adaptation means a work based upon the Work, or upon the Work and other pre-existing
works, such as a translation, adaptation, derivative work, arrangement of music or other
alterations of a literary or artistic work, or phonogram or performance and includes
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cinematographic adaptations or any other form in which the Work may be recast,
transformed, or adapted including in any form recognizably derived from the original,
except that a work that constitutes a Collection will not be considered an Adaptation for
the purpose of this License. For the avoidance of doubt, where the Work is a musical work,
performance or phonogram, the synchronization of the Work in timed-relation with a
moving image ("synching") will be considered an Adaptation for the purpose of this
License.

b. Collection means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject matter
other than works listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in which the Work is
included in its entirety in unmodified form along with one or more other contributions,
each constituting separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this License.

c. Distribute means to make available to the public the original and copies of the Work or
Adaptation, as appropriate, through sale or other transfer of ownership.

d. Licensor means the individual, individuals, entity or entities that offer(s) the Work under
the terms of this License.

e. Original Author means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in
the case of a phonogram the producer being the person or legal entity who first fixes the
sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. Work means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a
dramatic or dramatico-musical work; a choreographic work or entertainment in dumb
show; a musical composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography; a work of drawing,
painting, architecture, sculpture, engraving or lithography; a photographic work to which
are assimilated works expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise considered a
literary or artistic work.

g. You means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has received
express permission from the Licensor to exercise rights under this License despite a
previous violation.

h. Publicly Perform means to perform public recitations of the Work and to communicate
to the public those public recitations, by any means or process, including by wire or
wireless means or public digital performances; to make available to the public Works in
such a way that members of the public may access these Works from a place and at a place
individually chosen by them; to perform the Work to the public by any means or process
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and the communication to the public of the performances of the Work, including by public
digital performance; to broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. Reproduce means to make copies of the Work by any means including without limitation
by sound or visual recordings and the right of fixation and reproducing fixations of the
Work, including storage of a protected performance or phonogram in digital form or other
electronic medium.

2. Fair Dealing Rights.

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or
rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant.

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections;

b. to Distribute and Publicly Perform the Work including as incorporated in Collections

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically
necessary to exercise the rights in other media and formats. Subject to Section 8(e) , all rights
not expressly granted by Licensor are hereby reserved, including but not limited to the rights set
forth in Section 4(d) .

4. Restrictions.

The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You
must include a copy of, or the Uniform Resource Identifier (URI) for, this License with
every copy of the Work You Distribute or Publicly Perform. You may not offer or impose
any terms on the Work that restrict the terms of this License or the ability of the recipient
of the Work to exercise the rights granted to that recipient under the terms of the License.
You may not sublicense the Work. You must keep intact all notices that refer to this
License and to the disclaimer of warranties with every copy of the Work You Distribute or
Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose
any effective technological measures on the Work that restrict the ability of a recipient of
the Work from You to exercise the rights granted to that recipient under the terms of the
License. This Section 4(a) applies to the Work as incorporated in a Collection, but this does
not require the Collection apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You must, to the extent
practicable, remove from the Collection any credit as required by Section 4(c) , as
requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private
monetary compensation. The exchange of the Work for other copyrighted works by means
of digital file-sharing or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided there is no
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payment of any monetary compensation in con-nection with the exchange of copyrighted
works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request
has been made pursuant to Section 4(a) , keep intact all copyright notices for the Work and
provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or
Licensor designate another party or parties (e.g., a sponsor institute, publishing entity,
journal) for attribution ("Attribution Parties") in Licensor's copyright notice, terms of
service or by other reasonable means, the name of such party or parties; (ii) the title of the
Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work. The credit required by this Section 4(c) may
be implemented in any reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all contributing authors of
the Collection appears, then as part of these credits and in a manner at least as prominent
as the credits for the other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution in the manner set out
above and, by exercising Your rights under this License, You may not implicitly or
explicitly assert or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the
Work, without the separate, express prior written permission of the Original Author,
Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes . In those jurisdictions in which
the right to collect royalties through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes . In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme can be
waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License if Your exercise of such rights
is for a purpose or use which is otherwise than noncommercial as permitted under
Section 4(c) , and otherwise waives the right to collect royalties through any statutory
or compulsory licensing scheme; and,

iii. Voluntary License Schemes . The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License that is for a purpose or use
which is otherwise than noncommercial as permitted under Section 4(c) , .

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself
or as part of any Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial to the Original
Author's honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING AND TO
THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR OFFERS THE
WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
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INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THIS EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS
LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw
this License (or any other license that has been, or is required to be, granted under the
terms of this License), and this License will continue in full force and effect unless
terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers
to the recipient a license to the Work on the same terms and conditions as the license
granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not
affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be modified without
the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted
utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic
Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO
Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the
Universal Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are sought to be
enforced according to the corresponding provisions of the implementation of those treaty
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provisions in the applicable national law. If the standard suite of rights granted under
applicable copyright law includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this License is not intended to
restrict the license of any rights under applicable law.

Creative Commons is the nonprofit behind the open licenses and other legal tools that allow
creators to share their work. Our legal tools are free to use.
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Legal Code - Attribution-NonCommercial 4.0
International - Creative Commons

Version 4.0 • See the errata page for any corrections and the date of change

About the license and Creative Commons

Creative Commons Corporation ("Creative Commons") is not a law firm and does not provide
legal services or legal advice. Distribution of Creative Commons public licenses does not create a
lawyer-client or other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no warranties regarding its
licenses, any material licensed under their terms and conditions, or any related information.
Creative Commons disclaims all liability for damages resulting from their use to the fullest
extent possible.

Creative Commons public licenses provide a standard set of terms and conditions that creators
and other rights holders may use to share original works of authorship and other material
subject to copyright and certain other rights specified in the public license below. The following
considerations are for informational purposes only, are not exhaustive, and do not form part of
our licenses.

Our public licenses are intended for use by those authorized to give the public permission to use
material in ways otherwise restricted by copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms and conditions of the license they
choose before applying it. Licensors should also secure all rights necessary before applying our
licenses so that the public can reuse the material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-licensed material, or material used
under an exception or limitation to copyright. More considerations for licensors.

By using one of our public licenses, a licensor grants the public permission to use the licensed
material under specified terms and conditions. If the licensor’s permission is not necessary for
any reason–for example, because of any applicable exception or limitation to copyright–then
that use is not regulated by the license. Our licenses grant only permissions under copyright and
certain other rights that a licensor has authority to grant. Use of the licensed material may still
be restricted for other reasons, including because others have copyright or other rights in the
material. A licensor may make special requests, such as asking that all changes be marked or
described. Although not required by our licenses, you are encouraged to respect those requests
where reasonable. More considerations for the public.

Attribution-NonCommercial 4.0 International

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the
terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International
Public License ("Public License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms
and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor
receives from making the Licensed Material available under these terms and conditions.

Section 1 – Definitions.
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a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated,
altered, arranged, transformed, or otherwise modified in a manner requiring permission
under the Copyright and Similar Rights held by the Licensor. For purposes of this Public
License, where the Licensed Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is synched in timed
relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of
this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui
Generis Database Rights, without regard to how the rights are labeled or categorized. For
purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright
and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the
WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international
agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
limitation to Copyright and Similar Rights that applies to Your use of the Licensed
Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this
Public License, which are limited to all Copyright and Similar Rights that apply to Your use
of the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.
i. NonCommercial means not primarily intended for or directed towards commercial

advantage or monetary compensation. For purposes of this Public License, the exchange of
the Licensed Material for other material subject to Copyright and Similar Rights by digital
file-sharing or similar means is NonCommercial provided there is no payment of monetary
compensation in connection with the exchange.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public
License. Your has a corresponding meaning.

Section 2 – Scope.

a. License grant .
1. Subject to the terms and conditions of this Public License, the Licensor hereby grants

You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license
to exercise the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part, for
NonCommercial purposes only; and

B. produce, reproduce, and Share Adapted Material for NonCommercial purposes
only.

2. Exceptions and Limitations . For the avoidance of doubt, where Exceptions and
Limitations apply to Your use, this Public License does not apply, and You do not
need to comply with its terms and conditions.

3. Term . The term of this Public License is specified in Section 6(a) .
4. Media and formats; technical modifications allowed . The Licensor

authorizes You to exercise the Licensed Rights in all media and formats whether now
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known or hereafter created, and to make technical modifications necessary to do so.
The Licensor waives and/or agrees not to assert any right or authority to forbid You
from making technical modifications necessary to exercise the Licensed Rights,
including technical modifications necessary to circumvent Effective Technological
Measures. For purposes of this Public License, simply making modifications
authorized by this Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients .
A. Offer from the Licensor – Licensed Material . Every recipient of the Licensed

Material automatically receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this Public License.

B. No downstream restrictions . You may not offer or impose any additional or
different terms or conditions on, or apply any Effective Technological Measures
to, the Licensed Material if doing so restricts exercise of the Licensed Rights by
any recipient of the Licensed Material.

6. No endorsement . Nothing in this Public License constitutes or may be construed as
permission to assert or imply that You are, or that Your use of the Licensed Material
is, connected with, or sponsored, endorsed, or granted official status by, the Licensor
or others designated to receive attribution as provided in Section 3(a)(1)(A)(i) .

b. Other rights .
1. Moral rights, such as the right of integrity, are not licensed under this Public License,

nor are publicity, privacy, and/or other similar personality rights; however, to the
extent possible, the Licensor waives and/or agrees not to assert any such rights held
by the Licensor to the limited extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from You for

the exercise of the Licensed Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory licensing scheme. In all
other cases the Licensor expressly reserves any right to collect such royalties,
including when the Licensed Material is used other than for NonCommercial
purposes.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution .

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others

designated to receive attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably

practicable;
B. indicate if You modified the Licensed Material and retain an indication of any

previous modifications; and
C. indicate the Licensed Material is licensed under this Public License, and

include the text of, or the URI or hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on

the medium, means, and context in which You Share the Licensed Material. For
example, it may be reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required information.
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3. If requested by the Licensor, You must remove any of the information required by
Section 3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter's License You apply must
not prevent recipients of the Adapted Material from complying with this Public
License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse,
reproduce, and Share all or a substantial portion of the contents of the database for
NonCommercial purposes only;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis
Database Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial
portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent
possible, the Licensor offers the Licensed Material as-is and as-available, and
makes no representations or warranties of any kind concerning the Licensed
Material, whether express, implied, statutory, or other. This includes, without
limitation, warranties of title, merchantability, fitness for a particular
purpose, non-infringement, absence of latent or other defects, accuracy, or
the presence or absence of errors, whether or not known or discoverable.
Where disclaimers of warranties are not allowed in full or in part, this
disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any
legal theory (including, without limitation, negligence) or otherwise for any
direct, special, indirect, incidental, consequential, punitive, exemplary, or
other losses, costs, expenses, or damages arising out of this Public License or
use of the Licensed Material, even if the Licensor has been advised of the
possibility of such losses, costs, expenses, or damages. Where a limitation of
liability is not allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted
in a manner that, to the extent possible, most closely approximates an absolute disclaimer
and waiver of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public
License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it
reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days
of Your discovery of the violation; or
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2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may
have to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under
separate terms or conditions or stop distributing the Licensed Material at any time;
however, doing so will not terminate this Public License.

d. Sections 1 , 5 , 6 , 7 , and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not
stated herein are separate from and independent of the terms and conditions of this Public
License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could
lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it
shall be automatically reformed to the minimum extent necessary to make it enforceable. If
the provision cannot be reformed, it shall be severed from this Public License without
affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply
consented to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from
the legal processes of any jurisdiction or authority.

About Creative Commons

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may
elect to apply one of its public licenses to material it publishes and in those instances will be
considered the "Licensor." The text of the Creative Commons public licenses is dedicated to the
public domain under the CC0 Public Domain Dedication . Except for the limited purpose of
indicating that material is shared under a Creative Commons public license or as otherwise
permitted by the Creative Commons policies published at creativecommons.org/policies ,
Creative Commons does not authorize the use of the trademark "Creative Commons" or any
other trademark or logo of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications to any of its public
licenses or any other arrangements, understandings, or agreements concerning use of licensed
material. For the avoidance of doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org .

Creative Commons is the nonprofit behind the open licenses and other legal tools that allow
creators to share their work. Our legal tools are free to use.

• Learn more about our work
• Learn more about CC Licensing
• Support our work
• Use the license for your own material.
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• Licenses List
• Public Domain List
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