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Abstract

Quantum computing has the potential to revolutionize scientific computing by leveraging

phenomena such as superposition and entanglement. Theoretically, quantum algorithms

could offer significant speed-ups in tackling some NP-complete problems. However, due

to the inherent noise in current quantum computers, the classical simulation of quantum

systems remains crucial for their development, as it holds an important role in developing

and testing new algorithms, as well as in obtaining a better understanding of such

systems.

Nevertheless, the classical simulation of quantum systems is strongly limited by the

memory requirements, which increase exponentially with the number of qubits due to

the tensor product structure of quantum systems. An approach to mitigate this problem

involves the use of the so-called Neural Network Quantum States (NNQS), i.e., neural

networks used as a variational Ansatz for the wavefunction. This thesis explores NNQS

for simulating the time evolution of many-body quantum systems. Specifically, we intro-

duce an optimization method for NNQS based on gradient descent applied to a numerical

integration cost function. This approach offers a less sensitive alternative compared to

Stochastic Reconfiguration.

Classical simulation is also valuable as a means to study the noise present in quantum

computers. Quantum process tomography (QPT), a fundamental tool in quantum infor-

mation theory, is able to characterize the underlying experimental processes. However,

QPT faces challenges in resource requirements, particularly for systems with a large

number of qubits. In this thesis, we explore an alternative approach to QPT, utilizing

optimization methods to reduce the number of measurements required. The Takens em-

bedding theorem provides the overarching mathematical framework for this technique.

This approach requires only a few known initial states in combination with time-delayed

measurements to reconstruct the unitary map and corresponding Hamiltonian of the

time evolution.
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1 Introduction

In modern physics, the field of quantum mechanics has stood out as one of the most

profound and revolutionary discoveries of the 20th century. Quantum mechanics has

not only redefined our understanding of the fundamental building blocks of nature, but

has also paved the way for the development of new technologies fundamentally different

from their classical counterparts. One of these technologies is that of quantum com-

puting, which promises to solve some hard problems exponentially faster than classical

computers, revolutionizing fields such as cryptography and optimization. At the heart of

this quantum revolution lies a profound and complex challenge: the study of many-body

quantum systems.

Quantum mechanics has proven to be extraordinarily successful in describing the be-

haviour of individual particles and small assemblies. However, as we venture into the

realm of systems containing a large number of particles, the complexity and richness of

the phenomena that emerge is staggering. The difficulties associated with understanding

many-body quantum systems come from the complex interactions among the constituent

particles, resulting in high correlations (i.e., entanglement). As the number of particles

grows, the computational resources required to precisely describe the quantum states

of these systems increase exponentially, presenting an infeasible challenge for methods

reliant on exact matrix diagonalization. Consequently, understanding and predicting

the properties of many-body quantum systems has become an active area of research,

combining theory with state-of-the-art computational methods.

This thesis deals with two important facets of the study of these types of systems:

their simulation and their characterization. In the field of quantum simulation, the goal

is to model an arbitrary quantum system without experimentally constructing it exactly.

Instead its behaviours are emulated through a different format, such as numerical com-

putations or the use of a different physical system which is easier to realize and control

experimentally.

Quantum computing introduces a revolutionary paradigm for addressing the simula-

tion of many-body quantum systems. In fact, it was originally proposed by Feynman in

the early 1980s, as a response to the growing realization that simulating quantum sys-
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1 Introduction

tems using classical computers was exceedingly challenging [1]. Feynman’s key insight

was that if nature inherently operates according to the laws of quantum mechanics, then

a computer that also follows those same principles would be ideally suited for simulat-

ing them. In other words: to simulate quantum systems efficiently, one should use a

quantum computer itself.

Since then, there have been many successes in the road to build a universal quantum

computer. Although there is not a definite leader in the hardware race, many research

groups around the globe have been able to implement intermediate-scale computers using

superconducting qubits [2], ion traps [3], and neutral atoms [4] among others. These

prototypes have already been utilized to prove their advantage in solving certain toy

mathematical problems [5]. And, on top of that, their number of qubits increases year

after year, with the current largest (self-reported) quantum computer containing over a

thousand qubits [6].

Nevertheless, while it is undeniable that quantum computing holds great potential

for solving many-body quantum problems, it is essential to acknowledge the challenges

associated with building and operating them. Current quantum hardware is still in

the nascent stages of development, with limited gate operations and high error rates.

Quantum simulation could hold the key to a better understanding of the associated

technologies, allowing us to refine them. Thus, it becomes necessary to utilize classical

technologies as a bridge during these intermediate phases of development.

As an example of this, consider tensor networks: a technique for the simulations of

quantum systems, which uses variational tensors as a basis to model the underlying quan-

tum states [7]. By using them, it has been possible to obtain numerical approximations

of even the largest computations performed on state-of-the-art quantum computers [8].

This allows us to benchmark the performance of the developed technologies, both in

terms of correctness and computational cost.

The field of classical Computer Science, in fact, has also been experiencing a revolution

during the past few years. The development and perfecting of the graphical processing

unit (GPU), with its specialized processing power on linear algebra computations [9],

has paved the way for a boom in Artificial Intelligence applications. Our day to day

has been filled with mentions of recommender systems, image recognition and even

natural language generation, all of which are based on the idea of machine learning –i.e.

optimization based computational models designed to “learn” how to perform specific

tasks [10].

This wide spread of the use of machine learning models has also had consequences

in physics research. Their methods have been introduced as an efficient way of solving

2



partial differential equations, which are central to most areas of physics [11]. Not only

that, but they have been used to handle the growing amount of data generated by

astrophysics and particle physics experiments [12,13].

In this paradigm, an obvious question arises: how can we best utilize machine learn-

ing to solve the quantum many-body problem? Here, we will talk about a simulation

framework related to –but less mature than– tensor networks. It is a method based on

the use of Neural Networks [14] as variational Ansatz to represent quantum systems.

We will first discuss in more general terms the challenges associated with the classical

simulation of quantum systems, to understand how the correlations between parts of

the system can lead to significant computational bottlenecks. We will then focus on

the numerical challenges of neural networks themselves, and will propose an optimiza-

tion algorithm meant to approximate the numerical integration of the Schrödinger time

dependent equation:
∂

∂t
|ψ(t)⟩ = −i

ℏ
H|ψ(t)⟩. (1.1)

In fact, throughout the thesis we pay particularly close attention to the study of quantum

dynamics, as opposed to focusing on finding steady states or groundstates. The time-

evolution of quantum systems is pivotal in the realization of quantum computers, as

quantum gates are, fundamentally, dynamical processes.

The second facet of the quantum many-body problem with which we are concerned in

this thesis is that of system characterization. The goal of characterization is to develop a

comprehensive and accurate representation of a physical system by means of measuring

some of its properties. Beyond quantum technologies, this is relevant in some engineering

applications as a means to automatically adjust their control parameters according to

the observed behaviour [15]. In the context of quantum mechanics, however, it comes

with additional challenges.

This is primarily because of two factors: the so-called “wavefunction collapse” and the

aforementioned exponential growth in dimension of quantum systems. The wavefunction

collapse is a concept that refers to the sudden –and seemingly instantaneous– reduction

of a particle’s wave function to a specific state when a measurement is made. The nature

of this collapse is subject to interpretation, and different philosophical schools of thought

offer different perspectives on how to understand it. However, it is a postulated axiom

of quantum mechanics, and undeniably observed in experiments. This is the case of the

quantum Zeno effect where a system is kept static in a specific state by applying frequent

measurements to it [16].

Such a collapse introduces a significant challenge in the characterization of quantum

systems. Every time a property of the state is measured, the system collapses and, in
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1 Introduction

doing so, all other relevant information is destroyed. In this thesis we will provide a full

description of a protocol called Quantum Tomography, used to overcome this problem.

But, although through Quantum Tomography it is possible to fully characterize arbitrary

systems and their dynamics, it is an extremely involved method in its experimental

realization. This is because of the high-dimensionality of the systems. As the system

grows, more measurements bases are necessary to accurately reconstruct the system.

Thus, in this work we will propose an alternative approach based on similar optimiza-

tion techniques to those used machine learning. It is worth noting that in the classical

physics realm, machine learning has already been successfully applied to the problem

of system identification [17], so extending this to the field of quantum mechanics seems

only natural.
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2 Quantum Many-body Systems

The first two main chapters in this thesis serves as the gateway to some of the core

concepts upon which the subsequent discussions will be built. The motivation behind

dedicating two entire chapters to the theoretical background stems from the recognition

that the subject matter of this thesis is interdisciplinary, drawing from both quantum

physics and machine learning. However, those with expertise in those two areas are

encouraged to jump directly to Chapter 4, where the nucleus of the thesis begins.

We have divided the theoretical background into two sections: the first one covering

the most relevant quantum physics concepts –note that the reader is expected to at least

have a basic understanding of quantum states and unitary operations, cf. [18, 19]–, and

the second one covering the basics of gradient descent and neural networks.

Let us, thus, begin with a description of the quantum mechanical concepts that will

be relevant throughout the thesis. For an extended discussion of the topics covered here,

we recommend Refs. [20–22], all of which have been consulted during the writing of this

thesis.

First, we will delve into the concept of entanglement, placing special emphasis on how

entanglement entropy scales in quantum many-body systems (Sec. 2.1). This scaling is

of the utmost importance in the context of quantum simulation, as it is the primary

limiting factor of the various variational Ansatze used to represent quantum systems.

Next, we will cover the so-called Ising model which has been used as application

system for the methods proposed in this work. The quantum Ising model has become

a standard test case in the literature of many-body quantum systems. This is due

to its simplicity and interesting properties, which can be generalized to more realistic

physical systems. We will therefore present the model itself together with some of its

most relevant characteristics in Sec. 2.2.

Last, but not least, we will review the concept of quantum tomography for the charac-

terization of systems in Sec. 2.3. We will describe in detail the standard algorithms for

state and process tomography. We will also briefly touch on the mathematical descrip-

tion of quantum processes, as some readers may be unfamiliar with it and it is necessary

for the process tomography protocol.
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2 Quantum Many-body Systems

2.1 Entanglement

Entanglement is arguably the most important and perplexing phenomenon of quantum

physics. It refers to the impossibility of describing two (or more) components of a larger

system as separate smaller systems. It was first predicted in a paper by Einstein, Podolski

and Rosen [23] in an attempt to prove the incompleteness of quantum theory. Many years

later, however, the violation of Bell’s inequality [24] was verified experimentally [25–28],

leading physicists to two fundamental conclusions: quantum theory is complete (at least

in regards to missing hidden variables), and entanglement is a true intrinsic property of

quantum systems.

But what do we mean when we say that the system components cannot be described

separately? To visualize it, let us consider a bipartite system conformed by subsystems

A and B. An arbitrary state, |ψ⟩, of this system can be written as

|ψ⟩ =
∑
j,k

Cj,k |j⟩A |k⟩B , (2.1)

where Cj,k ∈ C, and {|j⟩A} and {|k⟩B} are the orthonormal basis states for the Hilbert

spaces of A and B respectively. Recall that quantum systems preserve a tensor product

structure, as the Hilbert space of the larger system can be written as the tensor product

of its subsystems’ Hilbert spaces (that is, H = HA ⊗HB). Separating the state |ψ⟩ into
two descriptions for A and B would therefore require finding a representation such that

|ψ⟩ = |ϕ⟩A ⊗ |χ⟩B . (2.2)

Going back to Eq. (2.1), we can apply a Singular Value Decomposition to C in order

to arrive to the so-called Schmidt decomposition:

|ψ⟩ =
∑
j

λj |j⟩A |j⟩B , (2.3)

where λj ≥ 0 are called the Schmidt coefficients and satisfy the relationship
∑

j λ
2 = 1.

On top of that, {|j⟩A} is a set of orthonormal states for subsystem A, and similarly for

{|j⟩B}. Although the full proof has been omitted here, it can be read on Ref. [18]. The

important point is that the state |ψ⟩ will only be separable into the subsystems if there

is only one non-zero λj . Otherwise, we say that the subsystems A and B are entangled.

Entanglement is also often understood in terms of measurement correlations between

the subsystems. This can be intuitively understood from a simple inspection of Eq. (2.3).
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2.1 Entanglement

If subsystem A is measured to be in state |j⟩A, this inevitably leads to the conclusion

that |ψ⟩ has collapsed to |ψ⟩ = |j⟩A |j⟩B. A subsequent (or, in fact, simultaneous)

measure of subsystem B can only lead to |j⟩B.

For a more formal analysis, let us consider a local measurement operator Mi, where

the subscript denotes the subsystem to which it is being applied. The correlation of

observable M between the subsystems is given by

corr(MA,MB) = ⟨ψ|MA ⊗MB|ψ⟩ − ⟨ψ|MA|ψ⟩ ⟨ψ|MB|ψ⟩ . (2.4)

This can only be non-zero when |ψ⟩ ≠ |ϕ⟩A⊗|χ⟩B. Ergo, the correlations of such a local

observable must be a consequence of entanglement, or ‘non-separableness’.

2.1.1 Entanglement entropy

At this point an obvious question arises: how do we quantify entanglement? When

thinking of entanglement in the context of correlations it becomes apparent that certain

sets of subsystems may exhibit greater entanglement than others. However, relying solely

on correlations for quantifying this phenomenon poses the challenge of being dependent

on the model in use. In order to compare the entanglement within different physical

systems we would be required to find observables which are common to all. Although

this is certainly possible, here we will focus on an alternative approach: the von Neumann

entropy.

This concept is very closely related to that of Shannon entropy in information theory.

Often denoted as H, the Shannon entropy is defined as

H(X) = −
∑
i

p(Xi) log(p(Xi)), (2.5)

where p(Xi) corresponds to the probability of outcome i for the random variable X.

This quantity provides a measure of the average “surprise” associated with observing a

particular outcome of the random variable. It reaches its maximum when all outcomes

are equally likely, indicating the highest uncertainty, and has a minimum at 0 for the

case when a single outcome has probability 1, a.k.a when there is no surprise in the

outcome of the variable X.

The von Neumann entropy generalizes this concept for quantum systems. For a quan-

tum system composed of N subsystems, denoted as i = 0, . . . , N , the von Neumann
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2 Quantum Many-body Systems

entropy of subsystem i, characterized by its reduced density matrix ρi, is expressed as

S(ρi) = − tr(ρi log(ρi)). (2.6)

Similar to the Shannon entropy, it reaches its maximum when the quantum state ρi

is a maximally mixed state (where all possible outcomes are equally probable), and it

decreases as the state becomes more pure. A completely unentangled subsystem i will be

a pure state (i.e. it has complete separable description) and therefore its von Neumann

entropy will be zero.

2.1.2 Area and Volume Laws

The exponential growth of a quantum system’s Hilbert space is very often cited as the

main challenge for quantum simulation. However, we need to be precise with our phras-

ing. If quantum systems showed no entanglement between its subcomponents, nothing

would stop us from leveraging the tensor product structure of the Hilbert space, allowing

us to simulate each of the subsystems separately. Hence, the primary limiting factor is

not the exponential growth of the Hilbert space per se, but the “non-separableness” of

its components: its entanglement.

Note that the specific value of the entanglement entropy depends on how we decide to

split the quantum system. Following this insight, it becomes imperative to study in more

detail how the entanglement entropy scales with the size of the considered subsystems,

as, ultimately, the efficacy of various Ansatze for quantum simulation hinges on their

ability to accurately reproduce such scaling behaviours.

A state is said to follow a volume law scaling if, for a bipartition into subsystems A

and B, we have

S(ρA) ∼ |A|, (2.7)

where |A| is the size of subsystem A. Typically, arbitrary quantum states are presumed

to conform to this scaling pattern. This assumption is based on the established proof

that quantum states randomly selected from the Hilbert space tend to be volume states

with a very high probability (see Refs. [29, 30]). Hence, an optimal Ansatz for quan-

tum simulation should, at a minimum, be able to capture an entropy scaling of this

magnitude.

There is, however, an interesting class of systems for which the entanglement entropy

scales slower. Consider, for example, the lattice system depicted in Fig. 2.1, and let us

denote the boundary length of subsystem A as |∂A|. Then, the system is said to follow
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2.1 Entanglement

an area law scaling if it holds that

S(ρA) ∼ |∂A|. (2.8)

Admittedly, the states conforming to this law occupy a very small portion of the

Hilbert space. Nevertheless, they are states of great physical relevance in a variety of

fields, from black hole physics [31] to quantum many-body systems. Within the scope of

this thesis is the case of the ground states of local, gapped Hamiltonians, which follow

an area law scaling [32–34].

A

Figure 2.1: Bipartition of a lattice quantum system

In the context of entanglement scaling, we refer to the lattice site size of A as its “volume”,
whereas the lattice length of its boundary is called its “area”.

2.1.3 Time-evolution

Since we are interested in the simulation of a system’s dynamics –and not just partic-

ular steady states– it also becomes necessary to study how the von Neumann entropy

behaves as a function of time. Even if we found an Ansatz capable of capturing the

entanglement of an initial state, it would not be guaranteed to capture the potential

increase in entanglement throughout the time trajectory.

9



2 Quantum Many-body Systems

In this direction, Ref. [35] presents an analysis of the time evolution of the entan-

glement entropy for a partition of L spins within a 1D chain. The time trajectory

considered is the result of the “quench” of a Hamiltonian H(λ). The state is initialized

at the groundstate of H(λ1), after which the physical parameter is tuned to a differ-

ent value, λ2, and the initial state is allowed to evolve under the modified Hamiltonian

H(λ2). The time evolution itself is computed with two different approaches: one based

on conformal field theory, and a second analytic computation for a particular solvable

system. In both calculations, the same behaviour is observed. The entanglement en-

tropy, S, grows linearly up to a time t = L/2 (note that the units here are such that the

maximum speed of spin waves is 1). After this point, S(t) asymptotically converges to

a volume law behaviour. Concisely, this means that

S(t) ∼

t for t ≤ L/2

L for t > L/2.
(2.9)

Moreover, when considering the quench of a local, gapped Hamiltonian, we may use the

fact that the groundstate is an area law state to bound the entanglement entropy of

subsystem A:

SA(t)− SA(0) ≤ c|∂A|t, (2.10)

where c > 0 is a constant depending on the strength of the interaction between the

system components [36,37]. Note that these behaviours have been verified for a variety

of lattice models, using both analytical and numerical approaches [38–40].

This growth in entanglement presents a significant challenge for the classical simulation

of quantum many-body dynamics. In Chapter 4 we will discuss an approach for the

simulation of quantum time-evolution using neural networks as an Ansatz. Due to their

high flexibility in architecture, neural networks have the potential to exhibit a volume law

scaling behaviour, which makes them excellent candidates for achieving the simulation

of systems beyond t = L/2.

2.2 Ising Model

As it may have become evident from the preceding discussions on entanglement, the

field of quantum many-body systems frequently revolves around lattice structures. The

Ising model in particular is a very popular choice of model to study, for reasons that will

hopefully become apparent throughout this section. Named after physicist Ernst Ising,

who introduced it in his 1925 doctoral thesis [41], the Ising model serves as a mathemat-
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2.2 Ising Model

ical framework for investigating the behaviour of magnetic spins within a system. Its

quantum version, called the Transverse-field Ising (TFI) model to distinguish it from its

classical counterpart, admits several formulations.

Let us first consider a more general system: one where spins may present any orien-

tation, and therefore their interactions are not restricted to any particular axis. This is

called the Heisenberg model, and its Hamiltonian is given by

H = −
∑
⟨i,j⟩

(
Jx
i,jσ

x
i σ

x
j + Jy

i,jσ
y
i σ

y
j + Jz

i,jσ
z
i σ

z
j

)
−
∑
i

hiσ
x
i . (2.11)

Here, the constants Jµ
i,j , with µ = x, y, z, determine the interaction strength between

the spins i and j. Note that the sum is over neighbouring lattice sites, denoted by ⟨i, j⟩.
On the other hand, hi corresponds to the strength of an external magnetic field being

applied at site i. The operators σµi are the X, Y and Z Pauli matrices acting on site i.

Without loss of generality, in the above formula we have chosen to orient the external

magnetic field along the x-axis.

The TFI is a specific case of this model, where we restrict the spin interactions to an

axis perpendicular to the external magnetic field. Again, without loss of generality to

our analysis in this section, we may choose the interactions to occur on the z-axis, in

which case the TFI Hamiltonian becomes

H = −
∑
⟨i,j⟩

Ji,jσ
z
i σ

z
j −

∑
i

hiσ
x
i . (2.12)

Note that this still describes a disordered system, where the magnetic field and the

interactions can present differences between the lattice sites. Sometimes, however, we

may want to further simplify the picture and consider only uniform fields, in which case

the Hamiltonian is given by

H = −J
∑
⟨i,j⟩

σzi σ
z
j − h

∑
i

σxi . (2.13)

2.2.1 Phases and critical points

One particularly interesting property of the TFI model is the fact that, despite its sim-

plicity, it displays two distinct phases –and therefore a critical transition point between

them. The phases arise as a consequence of the interplay between the external field and

the spin interactions.
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|00 |01 |10 |11

h = 0

|00 |01 |10 |11

h = 1

|00 |01 |10 |11

h

0.00
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Figure 2.2: Groundstate probabilities of the uniform Ising model with two particles

Probability of measuring each of the basis states in the groundstates at extreme points of the
phases: h = 0, 1 and ∞. Note that, given the degeneracy of these groundstates, we have opted

for the maximally entangled state for the sake of simplicity.

In the absence of an external field (a.k.a h = 0), the spins exhibit a tendency to align

themselves in the same direction. Consequently, the ground states manifest as |↑↑ . . . ↑⟩,
|↓↓ . . . ↓⟩ or any superposition of the two. This is typically called the ferromagnetic

phase.

On the other hand, as the strength of the external magnetic field overpowers the

interactions between lattice sites, a.k.a |h/J | ≫ 1, the spins will align themselves in the

field axis (in the particular case of Eq. (2.13), the x-axis). The groundstate is therefore

|→,→ · · · →⟩. This is called the paramagnetic phase. Fig. 2.2 visually illustrates these

phases for a system comprising only two sites, with the coupling constant assumed to

be J = 1.

A convenient method for visualizing the phase transition, and consequently identifying

the critical point, involves plotting the magnetization along a specific axis for different

values of h/J . Let us consider the average magnetization along the x-axis, for which we

can define the observable

M =
1

L

∑
i

σxi , (2.14)

where L is the number of sites in the system.

Fig. 2.4b shows how the expectation value of M in the groundstate changes as the ex-

ternal field becomes stronger relative to the inter-site couplings. The underlying models

in this plot are 1D chains with periodic boundary conditions, as shown in Fig. 2.4a.

Note that the behaviour here seems very similar to that of a phase transition, from

a regime where the average magnetization tends to 0, to a regime where it tends to 1.

Notably, the critical point appears to be approximately at |h/J | = 1, in agreement with

the analytical computations performed on the subject [42]. This point is independent of

system size, at least for the periodic boundary conditions considered here.

12



2.2 Ising Model

. . .

(a) 1D lattice chain with periodic
boundary conditions
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(b) Average magnetization of an Ising chain for dif-
ferent field strengths

Figure 2.3: Phase transition for a uniform 1D Ising model

→

(a) 2D square grid with periodic boundary conditions

10 2 10 1 100 101 102
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M
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(b) Average magnetization of a square grid for dif-
ferent field strengths

Figure 2.4: Phase transition for a uniform 2D squared Ising model
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For higher dimensions, however, finding the critical point becomes a harder problem,

as the interactions between spins become very dependent on the shape of the underlying

lattice. If we repeat our previous analysis for a 2D squared lattice, we will notice that

the critical point appears to have moved slightly to higher values of |h/J | (see Fig. 2.4).

Studies done with Cluster Monte Carlo analysis, show the phase transition point to be

at h ∼ 3.04438(2) for such a lattice, if we fix J = 1 [43].

2.2.2 Entanglement in the TFI model

As covered in Sec. 2.1, our capabilities to classically simulate a quantum many-body

system are primarily limited by the amount of entanglement in the system. Let us thus

investigate the behaviour of the entanglement entropy for the groundstate at both phases

and at the critical point, as well as its time evolution.

E0

E

L = 2 L = 4 L = 8 L = 10

E0

E

E0

E

Ferromagnetic
Critical
Paramagnetic

Figure 2.5: Eigenvalue spectrum for a variety of TFI Hamiltonians

This figure is meant as a visual representation of the spectral gap’s asymptotic behaviour. Both
in the ferromagnetic and paramagnetic regimes, there is a noticeable gap between the

groundstate energy and the energy of the first excited state. At the critical point, however, the
gap quickly vanishes as we increase the system’s size.
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Recall that the groundstates of local, gapped Hamiltonians exhibit an area law scaling.

The Ising model is inherently local; so the only uncertainty lies in whether, in the

thermodynamic limit L → ∞, there exists a finite gap between the groundstate energy

and the energy of the first excited state. It turns out that the asymptotic behaviour

of this gap depends on the value of h. For 1D chains, it can be shown that the gap at

the critical points vanishes as the system size increases, while the Hamiltonians in the

ferromagnetic and paramagnetic phases are always gapped [21]. Specifically, the size of

the gap outside of the critical point is |2J |. Although we will not prove this here, Fig. 2.5

should help as a an intuitive visualization of this behaviour.

The same is true for higher dimensions: as we approach the critical point –different

for each grid structure– the gap in the Hamiltonian decreases. For more details on this,

we refer the reader to Ref. [44] and references therein. This tells us that, outside of

the critical point, the groundstate of the TFI model displays an area law scaling of the

entanglement entropy.
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(a) Quench within the ferromagnetic regime
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(b) Quench within the paramagnetic regime
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(c) Quench across the critical point

Figure 2.6: Entanglement entropy for 1D Ising chain as a function of time
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Having established this, we can use Eq. (2.9) to understand how entanglement will

behave as a function of time. For a Hamiltonian quench, the initial state will be an

area law state. The upper bound for the entanglement entropy then increases linearly

with time, until it reaches a volume law scaling. As a concrete example, consider the 1D

uniform Ising chain with L = 10 lattice sites. When we time evolve the system across

different domains and consider the entanglement entropy of subsystems of different size

LA, we observe the expected behaviour. For t ≪ L, LA has little impact on the entan-

glement. But, as time progresses, there is a noticeable difference in the entanglement

increase for different subsystem sizes, which is consistent with a volume law scaling (see

Fig. 2.6).

2.2.3 Applications

By this point it may already be evident why the TFI model elicits a considerable degree

of theoretical interest. However, it is worth noting that the Ising model is more than

a mere thought experiment. Beyond its theoretical appeal, the Ising model is a very

accurate description of a variety of real world systems.

The TFI model has a straightforward application to condensed matter systems with

magnetic interactions. Such is the case of ferroelectric materials [45, 46], for which

the model was first introduced. Furthermore, it can be applied to a variety of magnetic

molecules [47], as well as materials containing Rydberg states [48,49]. But, perhaps more

relevant to this thesis are its multiple applications in the field of quantum computing.

As a first example, consider quantum annealing, a quantum computing approach

utilized for solving optimization problems. In this method, the problem to be solved

is mapped to a qubit grid, which then undergoes a carefully constructed time evolution

in order to reach its groundstate, i.e. the solution to the optimization. The mathematical

framework used to model the qubit lattice is, in fact, the TFI model [50,51].

Some of the competing hardware proposals for a universal digital computer are also

very closely connected to the Ising model. This is clearly true for ion trap computers,

as their qubits are, at its core, spins interacting among them and subject to external

forces [52,53]. A similar parallelism can be done for neutral and Rydberg atoms [4,54,55].

On top of this, quantum dots display behaviours that can be explained through an Ising

model of their electrons [56,57].

The striking similarities between the Ising model and many experimental set-ups have

fostered a strong symbiotic relationship between theory and experiment. While theory

serves as a benchmark to control and correct noise or calibration issues, experiments

allow us to test our theoretical understanding of the model and push our simulation
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capabilities [55, 58–62]. This, combined with its simple formulation and non-trivial be-

haviour, has established the Ising model as the primary model for evaluating simulation

and characterization methods.

2.3 Quantum Tomography

While the preceding two sections have primarily focused on the simulation of quantum

many-body systems, characterizing them is equally important and poses significant chal-

lenges. It is well-established that a single copy of a quantum state cannot be entirely

observed. The application of a measurement operator induces the wavefunction col-

lapse, leading to the loss of information associated with all non-commuting operators.

Therefore, the question arises: how can we be sure that our quantum devices are indeed

managing the desired states and executing the intended operations? Although there

exist various methods to estimate errors in experiments, Quantum Tomography stands

out as the only approach providing a comprehensive account of states, their dynamics,

and the types of errors occurring in the system.

In the next sections, we will describe the standard textbook approach for performing

Quantum Tomography, paying particular attention to its cost in terms of resources.

What will become apparent is that its demands in number of measurement bases grow

exponentially with the system size, making it impractical for experiments involving a

large number of qubits.

2.3.1 Quantum State Tomography

Let us thus begin by considering how to determine an unknown quantum state via

Quantum State Tomography (QST). Because of the wavefunction collapse, we know

that a single copy of the state, which we will denote ρ, is not sufficient. Instead, we need

to be able to measure multiple times, so we assume that we have multiple copies of ρ

available to us.

In QST, we aim to reconstruct the density matrix for the system by a positive operator-

valued measure (POVM). This measure is a generalization of projection-valued measure-

ments, such that its measurement values correspond to operators instead of vectors. To

be more concrete, a POVM is a set of positive semi-definite Hermitian matrices {Fi}
such that ∑

i

Fi = I. (2.15)
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The probability of obtaining measurement outcome i is given by

p(i) = tr(ρFi), (2.16)

after which the state will have collapsed to Fi. This tells us that it is always possible to

describe an arbitrary quantum state ρ by using a set of projection-operators {|ψi⟩ ⟨ψi|}:

ρ =
∑
i

tr
(
ρ |ψi⟩ ⟨ψi|

)
|ψi⟩ ⟨ψi| . (2.17)

Thus, utilizing an appropriately chosen set of observables we should be able to recon-

struct the full state by estimating their expectation values and applying Eq. (2.17). There

is a caveat, however. The density matrix ρ contains d2 − 1 free parameters. Hence, in

order for all entries of ρ to be uniquely determined we need at least d2 projections in the

set. This is called an informationally complete POVM (IC-POVM). In the special case

where the set has exactly d2 projection operators, it is called a minimal IC-POVM.

Although finding such a minimal IC-POVM is not a trivial task, it is worth mention-

ing two important examples which have been shown to be relatively resource efficient.

The first one is the symmetric IC-POVM (SIC-POVM): a minimal set composed of d2

projections which have a constant inner product between them. That is,

|⟨ψi|ψj⟩|2 =

1/(1 + d) if i ̸= j

1 if i = j.
(2.18)

Although examples of SIC-POVMs have been found for Hilbert spaces of a low number

of dimensions, it is still an open problem whether they exist for an arbitrary dimension

d [63].

The second example of an efficient IC-POVM are the so-called Mutually Unbiased

Bases (MUB). They are closely connected to SIC-POVMs, but their formulation is

slightly more general. Consider again a Hilbert space of arbitrary dimension d. Two

bases in this space are said to be “mutually unbiased” if each of the vectors of one have

a constant projection on the basis vectors of the other, and vice versa. If such a set of

MUB exists, the number of bases in the set is at most d+ 1.

Similarly to the previous example, the existence of such a set of bases has not been

proven for arbitrary dimensions. However, its more relaxed requirements compared

to SIC-POVMs have proven helpful in finding concrete sets for specific dimensions.

Moreover, their existence has been proven when the number of dimensions is a power

of a primer number (particularly relevant for qubit systems, for which d = 2N ) and
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they have been shown to be the optimal ensemble of projections to minimize statistical

error [64]. Note that this is not as efficient in terms of required measurements, as it

involves up to d2 + d projection operators.

When dealing with a qubit system it is straightforward to find such a set. For a

single qubit, the set of normalized Pauli matrices ({σi} = {I/
√
2, X/

√
2, Y/

√
2, Z/

√
2}

for i = 0, 1, 2, 3) forms an orthonormal matrix basis in its Hilbert space. Therefore,

their respective eigenvectors form a set of MUB. In particular, by renormalizing them

we obtain the following IC-POVM:{
|0⟩ ⟨0|

3
,
|1⟩ ⟨1|

3
,
|+⟩ ⟨+|

3
,
|−⟩ ⟨−|

3
,
|1 + i⟩ ⟨1 + i|

6
,
|1− i⟩ ⟨1− i|

6

}
(2.19)

For systems of sizeN , we can extend the above by taking advantage of the tensor product

structure of the Hilbert space to form their orthonormal bases:

σv⃗ =
⊗
j

σvj , (2.20)

where the vector v⃗ = (v1, . . . , v2N ) has all entries taken from the set 0, 1, 2, 3. As

in the single-qubit scenario, the POVM would be constructed from the renormalized

eigenprojections of these operators.

2.3.2 Quantum Process Tomography

Now that we know how to reconstruct an unknown static quantum state, we can aim to

generalize the protocol to the characterization of the system’s dynamics. This is called

Quantum Process Tomography (QPT). But before that, let us recall that the dynamics

of any quantum system are described by a set of Kraus operators Ek such that

ρ′ = E(ρ) =
∑
k

EkρE
†
k (2.21)

where ρ denotes the initial state and ρ′ is the output of the process. If the process has a

probability 1 of occurring, then
∑

k E
†
kEk = I. The Kraus operators can be decomposed

into a different set of known operators, {Bm}, which form a basis such that

Ek =
∑
m

ek,mBm (2.22)

19



2 Quantum Many-body Systems

with ek,m ∈ C. The process may then be rewritten into this basis:

E(ρ) =
∑
m,n

BmρB
†
n

(∑
k

ek,me
∗
n,k

)
. (2.23)

Hence, reconstructing the matrix χm,n =
∑

k ek,me
∗
n,k would allow us to fully characterize

the process.

But how do we determine χ experimentally? Consider a set of matrices {ρi} which

form a basis in the space of density matrices, and let us assume that we can initialize

our system to be in any of the states in this set. By letting the state evolve under the

process and performing QST on the output state, we could determine the coefficients

λi,j such that

E(ρj) =
∑
i

λi,jρi. (2.24)

Equating this with the expression in Eq. (2.23) yields∑
m,n

χm,nBmρjB
†
n =

∑
i

λi,jρi. (2.25)

where the only unknown is χ. Moreover, note that BmρjB
†
n can also be decomposed in

the basis {ρi},
BmρjB

†
n =

∑
i

βn,mi,j ρi, (2.26)

which simplifies Eq. (2.25) into ∑
m,n

χm,nβ
n,m
i,j = λi,j . (2.27)

This expression can be vectorized into a linear system, which can be solved with a variety

of numerical approaches. We will not discuss these algorithms here. In turn, let us stop

and consider the dimensionality of the system.

A general linear map of acting on d×d matrices will have d4 free parameters. However,

in our case χ is restricted to only those matrices which satisfy the trace preserving

requirement
∑

k E
†
kEk = I. Thus, it has d4 − d2 free parameters. In order for Eq. (2.27)

to be a determined system we need to perform QST on at least d4 − d2 time-evolved

basis states.

How does this translate in terms of resource cost for a qubit system? For a system

of size N , the dimension of its Hilbert space is 2N . Hence, to fully determine a process
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in this system we would need to compute the expectation value of 2N + 1 observables

(using MUB) for 16N −4N basis states. In practice that means collecting statistical data

of (4N + 2N )(16N − 4N ) projection measurements.

It should not be surprising that such requirements make QPT completely impracti-

cable for experiments with more that one or two qubits. In Chapter 5, an alternative

approach based on time-delayed measurements will be discussed, for which only a few

initial states and measurement bases are required.
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3 Machine Learning methods

Having covered the most fundamental quantum physics concepts relevant to the thesis’

core, in the subsequent discussion we will move on to the description of some of the

computational methods used. In particular, we will focus on those methods which are

more closely related to the field of machine learning. It is important to note that machine

learning is a very loosely defined concept, and the reader may feel –and rightly so–

that some of the methods described here fall under the broader scope of optimization

techniques. This is particularly true for Sec. 3.1, covering gradient descent. However,

for the sake of conciseness and due to its relevance in the field, we have chosen to include

it here.

In fact Sec. 3.1 will be relevant for the two main chapters of this thesis: Chapts. 4

and 5. After introducing gradient descent, we will provide an introduction to neural

networks in Sec. 3.2, which is meant to be concise yet as comprehensive as possible,

starting from the most fundamental concepts and ending with Deep Learning. And

finally, we will see how gradient descent can be applied efficiently in the context of

neural networks, in Sec. 3.3.

For a more detailed and extended description of the numerical methods associated with

the construction and optimization of neural networks we refer the reader to Ref. [65],

which has been used as a reference for this chapter.

3.1 Gradient Descent

Gradient descent is the cornerstone of computational optimization, as it forms the basis

for a widely used family of algorithms designed to identify the minimum of an unknown

function. Described in general terms, the process consists of iterative updates to an

initial random guess, with the ultimate goal of progressively approaching the global or

local minimum of the target function. To better understand how this works in practice,

let us consider a function f(x⃗) with a single, global minimum, x⃗0.

When the full analytical form of f(x⃗) is known, finding and identifying its extrema is

possible through the use of its first and second derivatives with respect to each variable
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in x⃗. However, there are times when finding these derivatives may not be possible. For

example, f(x⃗), may be the output of a black box computation, or even a computation

so complex that it effectively acts as a black box. It could also be that x⃗ lives in a very

high dimensional space, and since finding the extrema requires solving a linear system

of the first derivatives with respect to each dimension, it could become impracticable at

a certain point. In the field of machine learning, both are usually true.

The power of gradient descent stems from the realization that, when an approximation

of the minimum is enough, the full analytical description of f is not necessary. Instead,

one can start at any random point and use the local gradient to travel through the

functional landscape in the direction that minimizes f . Take for example the function

shown in Fig. 3.1. If we are able to estimate the slope of the tangent at our initial guess g,

a.k.a f ′(g), we know in which direction we should update it. Furthermore, the steepness

of the tangent is a good indicator of how much we should move in that direction, as the

gradient naturally approaches zero as we move closer to an extremum.

g

x1

(a) Initial guess

x1

(b) Gradient computation

−αf ′(g)

x1

(c) Good update

−αf ′(g)

x1

(d) Overshoot

Figure 3.1: One dimensional cut of a gradient descent update

In practice, for a function with n parameters, this means computing the gradient

vector

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T

(3.1)
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and updating the current point, x⃗s, by a predefined step-size α (most commonly called

“learning rate”), such that

x⃗s+1 = x⃗s − α∇f(x⃗s). (3.2)

Note that if we have access to a black box producing the output f(x⃗) it is always possible

to approximate the gradients by the use of finite differences. However, in Sec. 3.3 we

will discuss a more efficient method to do this in the context of neural networks, or more

generally for complicated Ansatze.

The importance of the choice of α in the convergence behaviour of gradient descent

cannot be overstated. On the one hand, if the learning rate is too small, the convergence

will be slow, increasing unnecessarily the computational cost of the algorithm. On the

other hand, a learning rate too large will cause the update to “overshoot” the minimum.

In some cases this may even cause the next iteration step to be a worse approximation,

as seen in Fig. 3.1d. To avoid this, state-of-the-art versions of gradient descent include

updates to the learning rate itself, making it smaller as the algorithm progresses.

But there is an even bigger problem. In the previous example we have started with

the assumption that f has a single minimum, and the function depicted in Fig. 3.1 is

a strictly convex function, with no plateaus. In practice, these two assumptions are

unlikely to be true. If during the optimization the iterations encounter a region of the

function with gradient close to or exactly zero, the update will also be (close to) zero

and the optimization will get stuck, see Eq. (3.2). Hence, the most powerful algorithms

within the gradient descent family keep track, in one way or another, of the previous

updates, and use them as additional information for the current iteration. The simplest

way to do this is by incorporating the concept of momentum:

∆x⃗s = −α∇f(x⃗s) + γ∆x⃗s−1 (3.3)

Here, γ is another predetermined hyperparameter, which enforces the importance of

previous updates on the current step. By this simple adjustment, the change in x⃗ no

longer becomes zero immediately after entering a region of small gradients, and the

algorithm has a chance to escape plateaus or shallow local minima.

To demonstrate this, Fig. 3.2a shows 10 iterations of a gradient descent update with

and without momentum for a piecewise function with a constant plateau. In both cases

we initialize the algorithm at the same point. Despite entering the plateau region, when

momentum is included the algorithm manages to escape and continue its convergence

towards the minimum.
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Note however that this simple approach has its limits. If γ is too small, the optimizer

may loose all its momentum within the region with gradient zero, in which case it also

gets stuck, as seen in Fig. 3.2b. If, on the contrary, it is too large, it will exacerbate

the overshoot behaviours previously discussed. In the past decade, multiple approaches

have been proposed to overcome these problems. These approaches very often use second

derivatives or keep track of weighted averages of the previous N iteration steps, making

them more computationally expensive. This is why these types of algorithms are still

an active area of research.

x

f(x
)

No momentum
Momentum

(a) Short plateau

x

f(x
)

No momentum
Momentum

(b) Long plateau

Figure 3.2: Effect of momentum on gradient descent

Ten iterations of gradient descent performed with and without momentum and starting from
the same initial guess. With the right choice of hyperparameters, the algorithm with

momentum is able to continue updating even in regions of gradient zero.

For the methods proposed in Chapters 4 and 5, we have used two algorithms in the

gradient descent family: the Adam algorithm [66] and RMSprop [67]. Both of these

methods include some kind of momentum in their updates, and have been utilized with

great success in a variety of applications.

3.2 Neural Networks

Let us next consider the concept of neural networks. Loosely based on their biological

counterpart, Artificial Neural Networks (ANN) are a type of variational computational

model with applications mostly in the field of machine learning. The first mathematical

description of a neural network dates back to 1943 [68], but the perceptron, which is

closest to the basic unit of ANNs as we understand them today, was not proposed
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until 1958 [69]. Since then, and thanks to the technological revolution of past decades,

the architectures of these networks has grown both in size and complexity, allowing

researchers to use them to model extremely complicated functions and find solutions to

a wide class of challenging optimization problems, ranging from game theory to language

generation [70,71].

3.2.1 The neuron

Neurons on their own perform a very simple computation, but its the combination of

many of them which leads to the emergence of more complex phenomena. To understand

better how this works, we should start with a detailed description of artificial neurons

themselves.

Mathematically, the action of a neuron on an input vector x⃗ is the concatenation of

two steps. First, a linear combination of the elements of x⃗ is computed according to

some coefficients {wj}. Then, a non-linear map σ is applied to the resulting scalar:

y = σ

∑
j

wjxj

 . (3.4)

Imagine, as a concrete example, that we were interested in computing the market price of

a property according to some characteristics, such as number of squared meters, number

of bedrooms and construction year. Those three values could be given as an input to the

neuron, which would multiply them by the contribution of each characteristic to the final

price. The non-linear map would then act as final adjustment for any non-linear effects

perceived on the market –government regulations on maximum prices, for instance. This

simple, yet effective, function approximation works for a broad spectrum of problems;

including situations with non-numeric input data, as long as the data can be mapped to

a specified set of token values.

Very often, we will be interested in neurons with outputs in a specified range. This

is particularly true for neurons which are part of a larger network. Even if the final

output is not restricted, we usually want the contribution of neurons in the middle of

the network to be a value interpretable as the strength of that particular path to the

final outcome. This allows us to interpret different neuronal connections in the network

as logical computations which may or may not contribute to the output depending on

the input. The non-linear map is therefore commonly called “activation function”, its
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most important examples being the sigmoid function or logistic function,

σ(x) =
1

1 + e−x
, (3.5)

the Rectified Linear Unit,

ReLU(x) =

0 if x < 0

x if x ≥ 0
(3.6)

and the hyperbolic tangent,

tanh(x) =
ex–e−x

ex + e−x
. (3.7)

All of these are shown in Fig. 3.3, together with the standard diagram used to represent

an artificial neuron.

σ

w1

w2

w3

(a) Artificial neuron diagram
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(d) Tanh activation

Figure 3.3: The neuron: basic unit of Artificial Neural Networks
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Note that all of these display at least partial saturation. The output of the sigmoid

function, for example, can never be larger that 1 or smaller than 0, which limits the

contributions of individual neurons to the network output. The same is true for the

hyperbolic tangent, albeit with the values [−1, 1]. The Rectified Linear Unit, on the

other hand, ensures that neurons can only provide positive contributions, otherwise the

paths containing the neuron are effectively non-existent.

3.2.2 Shallow networks

But how are networks constructed? And how can they be used to solve optimization

problems? To understand this, let us start by considering a so-called shallow network,

as the one depicted in Fig. 3.4.

Figure 3.4: Shallow Neural Network

In feed-forward ANNs, neurons are organized into layers, each of which generates a

vector of outputs which is fed into the next one as its input. Typically, networks are

called “shallow” when their number of layers is less than 4, and “deep” otherwise. While

the number of neurons in the intermediate layers is very flexible and mostly dependent

on the computational resources of the hardware and your accuracy goals, the last layer

must contain as many neurons as the desired output dimension. Let us denote the output

of neuron j in layer ℓ as hℓj . Then, for an input x⃗, the outputs yj of a two layer network

are given by

yj = σ

∑
j

w
(2)
j h1j

 (3.8)
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where

h1j = σ

(∑
k

w
(1)
k xk

)
. (3.9)

Using vector notation, these two equations can be concisely written as

y⃗ = σ
(
W (2)σ

(
W (1)x⃗

))
, (3.10)

where the activation function is acting elementwise. Thus, feed-forward networks can be

simply implemented as a succession of matrix-vector multiplications with non-linearities

between them.

Now that we have an expression for the function represented by the network, we

can describe the common approach for solving an optimization problem. The matrices

W (ℓ) containing the neurons’ weights are the variational parameters which we aim to

optimize in order to find a solution for our problem. The output of the network is

fed into a function which quantifies how well the model is performing, called the cost

function, C(y⃗). The lower its value (or loss) the better the solution. Then, an iterative

algorithm is applied to minimize the loss: the gradient with respect to each of the

network parameters is computed, and the matrices W (ℓ) are updated according to the

preferred method.

Note that in the field of machine learning we want the networks to be able to generalize

to unseen data. However, if our only focus is minimizing the cost function C, we run the

risk of “memorizing” the training data and producing nonsensical results for new input

data. This is because any noise in the training data will be interpreted as a feature of the

data itself, and the network will be fitted to it. As an example of this, see Fig. 3.5. This

phenomenon is called overfitting, and it is something worth considering when dealing

with any kind of stochastic data, as we will in this thesis. There are many approaches

one could take in order to avoid this problem, but here we will only discuss the two more

relevant ones: early-stopping and regularization by the inclusion of a penalization term.

In the early-stopping approach, the input data is split into two batches, one which

will be used for training, and one used for validation. During the optimization, the value

of the cost function is computed for both batches, but only the training data is used in

the parameters update. When the validation loss starts to increase, the optimization is

interrupted, as it is clear sign that the network has started to fit to the noise present

in the training batch. The second approach, on the other hand, consists on including

a new term in the cost function which is not directly related to its performance, but

instead serves as a way to penalize extreme values of the parameters. This helps to
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ground truth
training data
model prediction

Figure 3.5: Example of an optimization overfitting to noisy data

avoid extreme predictions (as the one seen in Fig. 3.5) which are likely to be stochastic

artefacts.

3.2.3 A deep network example: The Convolutional Neural Network

It turns out that wide shallow networks –that is, networks with few layers but many

neurons– are already universal function approximators [72]. Nevertheless, due to limited

computational resources, it is not realistic to infinitely increase the width of the network

layers. This is where the architectural flexibility of neural networks comes into play.

By building networks with more intricate connections between the neurons, researchers

are able to represent more complex function that we would with a shallow network with

an equivalent number of neurons [73]. This improvement may come from an extension

as simple as increasing the number or layers, although very often it also involves the uti-

lization of specialized layers or neurons, designed with a particular application problem

in mind. There are many examples of this, some of which can be seen on Fig. 3.6, but in

this discussion we will focus on the so-called Convolutional Neural Network (CNN), as it

is used in Chapter 4 and it has particular properties that may make it a good candidate

in the representation of many-body quantum states.
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(a) Deep Feed-forward (b) Convolutional Network

(c) Deep Residual Network (d) Recurrent Neural Network

Figure 3.6: Prominent examples of Deep Neural Networks

CNNs are a type of feed-forward network originally designed for the classification of

images. They are based on the idea of looking for patterns that may repeat across or

within inputs. In the past, people used to select the patterns manually, but thanks to

advancements in the optimization techniques and hardware used to train neural net-

works, nowadays the patterns are fully optimized from a random initial guess. This is

done via the use of convolutional filters.

Recall that in our previous description of ANN, we assigned different weights to each

neuron-to-neuron connection. In Eq. (3.10), for instance, the parameter matricesW ℓ are

of size n×m where n and m are the number of neurons in layers ℓ−1 and ℓ respectively.

However, if we are looking for patterns in the inputs, it may be a good idea to reuse some

of the weights across several connections. That is exactly what convolutional filters do.

The filters are grids, usually squared, of variational parameters. These parameters are

applied by sliding the grid across the input and multiplying them entry by entry. To be

more concrete, consider an input X of size N × N to which we want to apply a n × n
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filter composed of weights wi,j . Then, the outputs of the operation would be

yk,l = σ

 n∑
i=1

n∑
j=1

wi,jXk+i,l+j

 . (3.11)

Fig. 3.7 visually depicts this same operation for a small filter and system size. Note

that, even though in this equation we assume that the filter moves one step at a time,

in practice one may choose different step sizes depending on the desired output size.

x1,1

x2,1

x3,1
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x1,4

x2,4

x3,4

x4,4

Σ σ
w1,1 w1,2

w2,1 w2,2

y1,2

Figure 3.7: Breakdown of a convolutional filter

On top of that, in the above description we have been intentionally vague about

what happens at the boundaries of the input. There are many approaches to tackle

the boundaries, such as padding the input with zeros or other constant values, using

periodic boundary conditions, or simply stopping the filter from sliding further as it

covers a boundary entry. In the context of quantum many-body systems simulation, this

flexibility allows us to adapt the filter operation depending on the boundary conditions

of the system itself.

Not only that, but the translational equivariance of the convolution operation seems

ideally suited for many quantum lattice systems, which are also translational invariant.

In fact, this is precisely the reason why CNNs have become so successful and popular

for tasks related to image recognition and generation [74].

Since it is very unlikely that a single feature would be enough to accurately model

any system, CNNs are usually composed by layers of stacked filters of the same size.

And, although not always necessary, it also sometimes useful to include some plain feed-

forward layers are the end of the network, to aid in the post-processing of the extracted
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features. Such a structure of filters acting on the output from the previous ones naturally

leads to a hierarchical distribution of the optimized features: the more high-level ones

being closer to the input and the more low-level ones closer to the output.

To further motivate the use of CNNs in the context of many-body quantum systems,

let us explore two particularly relevant works on the classification of experimental data

from condensed matter systems. In Ref. [75] a CNN was used to classify snapshot images

from two different ultracold atoms systems. The two systems undergo a phase transition

across a critical point. However, there is no physical model to determine the phase solely

from a simple image, and humans are also no capable of distinguishing between them,

especially for images taken in close proximity to the phase transition. By training the

CNN with images at extreme points of the two phases, the researchers were then able

to classify images closer to the phase transition. This allowed them to identify narrow

ranges in which the critical points exist, narrower, in fact, than the ranges obtained by

other commonly employed statistical models.

In Ref. [76], on the other hand, researchers used the classification power of CNN to

compare two competing theoretical models for the phases in the Fermi-Hubbard model,

which for simplicity we will denote as theories A and B here. The network is trained with

simulated data generated with each of the theories, and is then used to classify images

into three classes: experimental data, simulated data from theory A and simulated data

from theory B. The network is not able to accurately distinguish between experimental

and simulated data, which implies that it should be able to classify the images of the

experiment as corresponding to one of the two theories. Despite not achieving perfect

accuracy, the primary source of confusion was observed between the classes ”experi-

mental” and ”theory A”, which suggests that theory A it better at capturing the real

behaviour of the system.

These studies are proof that, in principle, machine learning models are able to de-

tect patterns and nuances in quantum systems that are critical for understanding their

behaviour. In Chapter 4 we will try to apply these capabilities to the simulation of

quantum systems, which, due to the reasons explained in Sec. 2.1 proves to be a more

challenging task.

3.3 Backpropagation

But before that, it is critical to revisit how ANNs are trained via gradient descent.

Up until this point we have glossed over the central step in gradient descent methods

–the computation of the gradients themselves–, and we have assumed that there exists
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a computationally efficient way of computing them for any network, regardless of its

complexity.

As previously mentioned, finite differences methods are indeed a valid approach to

compute the gradient for any black box f . At its core, this approach consists of perturb-

ing the parameter for which we want to compute the gradient, w, by a small amount h

and approximating the slope of the tangent by expressions such as

∂f

∂w

∣∣∣∣
w0

≈ f(w0 − h)− f(w0 + h)

2h
. (3.12)

These methods require at least two applications of f for each parameter in the net-

work. Taking into account that networks usually contain thousands, or even millions, of

variational weights, it becomes necessary to find an alternative approach to avoid this

substantial computational cost.

In 1986, a highly efficient method named “backpropagation” was proposed [77]. This

technique, which we will describe in detail in this section, leverages the chain rule two

reduce the computational cost of gradient calculations up to the cost of a single pass of

the network. As a reminder, for a function f(y(x)) the chain rule allows us to decompose

the derivative of f with respect to x as

df

dx
=
df

dy
· dy
dx
. (3.13)

Given that neural networks are nothing more than outputs of functions being fed as

inputs into other functions, the chain rule becomes immediately applicable. For instance,

consider the output of single neuron,

y = σ(z) = σ

∑
j

wjxj

 , (3.14)

which is being fed to the cost function C. Then, the gradient of the cost with respect

to each of the neurons weights wj is

∂C

∂wj
=
∂C

∂y
· ∂y
∂z

· ∂z
∂wj

=
∂C

∂y
· ∂y
∂z

· xj . (3.15)

Note that the analytical expression for all these partial derivatives is known as soon

as the network is constructed and the cost function defined. The strategy is therefore

to implement “forward” and “backward” passes of each operation of the network. The

forward pass is used to compute the output of the network, while the backward passes
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correspond to the derivatives of that particular step with respect to the previous one.

Fig. 3.8 illustrates this for a fully connected shallow network. Keep in mind that, to

compute the gradient of the cost with respect to a specific weight, it is necessary to add

the gradients computed across all paths containing that weight. In Fig. 3.8 specifically,

we show all the paths containing the weights of the second neuron in the first hidden

layer.
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Figure 3.8: Backpropagation method applied to a fully connected network
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These operations can also be written as a combination of matrix-vector multiplications.

For example, for a feed-forward fully connected network, the gradient of the cost function

with respect to the weights in the last layer, wℓ
j,k, is

∂C

∂wℓ
j,k

=
∑
j

∂C

∂yj
· ∂yj
∂wj,k

. (3.16)

But we know that the output of each neuron is given by

yk = σ(zk) = σ

(∑
l

wl,knℓ−1
l

)
, (3.17)

where nℓl is the output of the l-th neuron in the previous layer. Thus, we can write

∂yk

∂wℓ
l,k

=
∂yk
∂zk

· nℓ−1
l . (3.18)

And denoting the vectors of derivatives as ∂f
∂x =

(
∂f
∂x1

, ∂f
∂x2

, . . .
)
, this gives us an expres-

sion for row l of the weight matrix

∂C

∂wℓ
l,i

=
∂C

∂yi
· ∂yi
∂zi

· nℓ−1 (3.19)

and for the full matrix

∂C

∂W ℓ
=
∂C

∂y
·
(
∂y1
∂z1

,
∂y2
∂z2

, . . .

)
× nℓ−1. (3.20)

To avoid computing nℓ every time we need the gradients, the output of each layer is stored

in a cache so that it can be quickly retrieved at each backward pass of the network. This

means that the time cost of computing the gradients with respect to all parameters is

of the same order as the forward pass, at the simple expense of a very minor overhead

in terms of required memory.

To finalize this section, let us mention briefly that current machine learning packages

have an automatic differentiation protocol already implemented, which allows the user

to only implement the forward pass of the network. These automatic differentiation

techniques are based on the fact that all computations can be reduced to combinations

of products and sums, for which the derivative can straightforwardly computed. Their

reliability for functions involving complex numbers, however, depends on whether they

are holomorphic. This is something that will be addressed in the next chapter.

37





4 Neural Network Quantum States

The following chapter is dedicated to the classical simulation of many-body quantum

systems. It is worth restating that the exponential growth in computational resources re-

quired for the simulation of such systems may present an insurmountable bottleneck, and

that the possible viable alternative would be the use of quantum computers. Nonethe-

less, quantum computers are still in the early stages of development and have limitations

in terms of error rates and qubit count and connectivity. Pushing the limits of classical

simulations can therefore bridge the gap between current quantum capabilities and the

potential future power of fully functional quantum computers. The results presented

here were published in Ref. [78].

4.1 State of the Art

Neural Network Quantum States (NNQS) were first proposed in 2017 by Carleo and

Troyer [79]. The idea behind them is to exploit the high flexibility in neural network

architectures in order to accurately represent a many-body quantum state. Even if the

Hilbert space of a quantum system grows exponentially with system size, it may still be

possible to construct an appropriate parametrized Ansatz which captures the physically

relevant subspace without such an exponential growth.

One particular example which has been studied in depth is the Restricted Boltzmann

Machine (RBM) architecture. Numerical experiments using such an Ansatz have been

shown to achieve great precisions, comparable or even improving on the results achieved

with tensor networks [79]. It has been shown that the RBM architecture is equivalent

to an approximation of the perturbation series [80]. This explains the high accuracy

of the RBM Ansatz when simulating the ground-state of a variety of systems, and

suggests the existence of a larger family of Ansatze with similar properties. Furthermore,

fully-connected RBM states have the potential to display volume-law entanglement [81],

implying that RBMs can effectively represent highly-correlated quantum states.

Expanding on the success of RBMs as an efficient parametrization, many works have

combined them with tensor network architectures, such as Pair-Product States [82],
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Generalized Transfer Matrix States [83], and Correlator Product States [84]. RBMs

themselves have also been shown to be equivalent to a non-local version of Matrix Prod-

uct States (MPS) (the so-called String-Bond States) [85]. In addition to that, the use

of deep RBMs [86] and limiting the node edges in a carefully constructed way [87] can

improve the accuracy of the Ansatz for specific systems. All of these results bring to

light the potential of neural network architectures in the simulation of quantum systems.

But the RBM may not be the only promising architecture. Deep learning architectures

have also been shown to efficiently represent highly-entangled quantum states [88–91].

Specifically, CNN and Recurrent Neural Network (RNN) architectures support a volume-

law scaling polynomially more efficient than RBMs [92]. In this direction, RNN have been

employed to successfully calculate ground-state energies, correlation functions, and en-

tanglement entropies in several spin models in 1D and 2D [93,94]. And, when compared

to more popular tensor network Ansatze, they seem to be able to represent wavefunctions

with a ‘bond dimension’ orders of magnitude lower than that of MPS [95].

Unsurprisingly, there are still many challenges in the field of NNQS. These types

of Ansatze seem to perform best with physics-informed architectures, and struggle to

achieve state-of-the-art accuracies around critical points [96]. That is the case of the

maximally frustrated regime for the spin-1/2 J1−J2 Heisenberg model, where the NNQS

present difficulties in learning the underlying sign structure [97–100].

More relevant to this thesis is the challenge of real-time evolution. Finding a good

parametrization of the states in the time trajectory poses a significant challenge. Luckily

for us, however, it has been shown that the manifold of the states time-evolved under an

arbitrary Hamiltonian occupies an exponentially small volume in the Hilbert Space [101]

(see also [102] for an analysis of the dimensionality of the quantum state manifold). This

suggests that an efficient parametrization is still possible, and the question then becomes

how to best represent that manifold.

Established tensor network methods have already attempted to tackle the simulation

of time-evolution under arbitrary Hamiltonians [103–107]. However, the increase in

entanglement with time leads to an exponential increase in bond dimension, effectively

limiting their applicability to short time intervals [35,108].

Given that neural networks are universal function approximators [72, 109–111], they

represent an excellent candidate to parametrize the time evolution manifold. Up to

this point, research has predominantly focused on applying them within the context of

quenches of the spin-1/2 Ising and Heisenberg models in one and two dimensions, with

varying levels of success [96,112–114].
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One of the key problems seems to be an exponential growth in the number of pa-

rameters necessary to accurately represent the quantum state as a function of time.

Interestingly, this growth rate was found to be relatively unaffected by variations in net-

work architecture across a wide spectrum of design choices: shallow and deep networks,

different filter sizes, dilated and normal convolutions, and the presence or absence of

short-cut connections [115]. But it is worth noting that, due to the infinite possibilities

of neural network architectures, this is still an active area of research.

A second important challenge within the context of real time evolution is that of nu-

merical stability. Typically, NNQS are time propagated using time-dependent variational

Monte Carlo (t-VMC) methods. The stochastic nature of these methods becomes an un-

avoidable source of error, which is not only accumulated through time, but also amplified

due to the ill-conditioned equations of motion used for the optimization [89,116].

In the next sections we will explain how to apply NNQS to simulate the time-evolution

under a Hamiltonian. In particular, we will focus on the Ising Hamiltonian, and we will

explore the source of numerical instabilities in the time trajectories before suggesting an

alternative method of optimization to avoid this problem.

4.2 Groundstate optimization

Before diving into time-evolution, it is useful to first consider the problem of groundstate

optimization. Variational methods typically rely on the existence of a parametrized

function to be minimized. In the case of groundstate simulation, one can simply aim to

minimize the energy of the Ansatz. Given an Ansatz

|ψ(θ)⟩ = |ψθ⟩ , (4.1)

where θ is the vector of variational parameters, one can find the energy of the state by

computing

E =
⟨ψθ|H|ψθ⟩
⟨ψθ|ψθ⟩

. (4.2)

If the Ansatz |ψθ⟩ has been chosen appropriately, minimizing Eq. (4.2) will yield a good

approximation of the groundstate of the Hamiltonian H.

It is important to note that for large systems sizes it may not be feasible to store

in memory a full representation of H. However, for local Hamiltonians, the analytic

computation of H |ψθ⟩ is still possible for basis states, allowing for the estimation of

Eq. (4.2) through sampling methods, such as the Metropolis-Hastings algorithm [117].
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But how is Eq. (4.2) minimized in practice? A commonly employed strategy is that

of imaginary time evolution. This strategy is based on the fact that, as long as |ψ(0)⟩
has some overlap with the groundstate of H,

|ψ(τ)⟩ ∝ e−τH |ψ(0)⟩ (4.3)

will converge to that state as τ → ∞. Note that this equation is equivalent to the

solution of the time-dependent Schödinger equation under an imaginary time i · t, hence
the name.

Such an operation is not guaranteed to preserve the state in the space of the varia-

tional Ansatz, making it necessary to project the state back to the variational manifold

after each step in the imaginary time evolution. This, in turn, will interfere with the

convergence to the groundstate. However, provided a good selection of the Ansatz, the

resulting steady state will be a good approximation of the groundstate.

4.2.1 Stochastic Reconfiguration

In the field of NNQS,a very commonly employed way of doing this is via the so-called

Stochastic Reconfiguration (SR) method [79, 87], a type of Dirac-Frenkel variational

method [118,119].

Assuming that the Ansazt depends on τ through the variational parameters, θ(τ),

each step in the imaginary time evolution is given by

|ψθ(τ+dτ)⟩ = e−dτH |ψθ(τ)⟩ . (4.4)

Expanding both sides of the equation up to first order in dτ , reads

|ψθ(τ+dτ)⟩ ≃ |ψθ(τ)⟩+ dτ
∑
k

θ̇k(τ)
[
|∂θkψθ(τ)⟩ − |ψθ(τ)⟩ ⟨ψθ(τ) | ∂θkψθ(τ)⟩

]
(4.5)

and

e−dτH |ψθ(τ)⟩ ≃ |ψθ(τ)⟩ − dτH |ψθ(τ)⟩ . (4.6)

As already mentioned, we will need to project each step back to the variational manifold.

The tangent space of the manifold at point θ is spanned by the basis vectors

|∂θjψθ⟩ − |ψθ⟩ ⟨ψθ | ∂θjψθ⟩ . (4.7)
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4.2 Groundstate optimization

Therefore, taking the product of both sides through the left and equating them yields∑
k

θ̇k(τ)
[
⟨∂θjψθ | ∂θkψθ⟩ − ⟨∂θjψθ | ψθ⟩ ⟨ψθ | ∂θkψθ⟩

]
=

−⟨∂θjψθ|H |ψθ⟩+ ⟨ψθ|H |ψθ⟩ ⟨ψθ | ∂θjψθ⟩ . (4.8)

Note that

Sj,k = ⟨∂θjψθ | ∂θkψθ⟩ − ⟨∂θjψθ | ψθ⟩ ⟨ψθ | ∂θkψθ⟩ (4.9)

is the covariance matrix of the current point in the monifold, whereas

Fj = ⟨∂θjψθ|H |ψθ⟩ − ⟨ψθ|H |ψθ⟩ ⟨ψθ | ∂θjψθ⟩ (4.10)

effectively behaves as a force vector. We can thus rewrite Eq. (4.8) in vector notation as

Sθ̇ = −F. (4.11)

τ
0

τ
1

τ2
τ3 τ4

Figure 4.1: Trajectory of a possible imaginary time evolution

The black dot at the center represents the groundstate. The blue trajectory corresponds to the
exact trajectory, whereas the red arrows represent each step with added stochastic error.
Despite the imperfect individual steps, the convergence behaviour to a steady state is

preserved.

At this point, an attentive reader may have noticed a problem with the above equation.

As previously mentioned, a complete representation ofH is not possible for large systems.

Instead, we make use of the local nature of most (physically relevant) Hamiltonians to

compute a stochastic approximation of Eq. (4.11). This, in turn, results in the covariance

matrix, S, being non-invertible. And, although finding a solution is still possible through
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4 Neural Network Quantum States

the use of a pseudo-inverse or Krylov subspace methods, it is important to keep in mind

that these solutions will be approximations.

Fortunately, within the context of groundstate optimization, as the trajectory steadily

converges to an equilibrium state, the stochastic errors arising during each step in the

imaginary time evolution tend to self-correct when combined with those from previous

steps. This self-correction is a consequence of the fundamental nature of the problem,

which is a true minimization. Given that the evolution ultimately converges to a specific

location within the Hilbert space, minor errors incurred throughout the process become

irrelevant. Fig. 4.1 serves as an illustrative visual representation of this phenomenon.

4.3 Real time evolution

The previous derivation for the imaginary time evolution can be easily adapted to real

time, as the only difference is the imaginary number in the exponential of Eq. (4.4).

That is, each time step is given by

|ψθ(τ+dτ)⟩ = e−idτH |ψθ(τ)⟩ . (4.12)

which leads to the linear system to be solved

Sθ̇ = −iF. (4.13)

In contrast to what was explained for the groundstate optimization, real-time evolution

deals with the dynamic behaviour of a quantum system over time. This requires tracking

the system’s behaviour at each moment in time, and any errors introduced accumulate

and affect the accuracy of the simulation. Similarly to how chaotic classical systems are

extremely sensitive to initial conditions, even minor inaccuracies at each time step can

be amplified throughout the system’s evolution and lead to significant deviations from

the true behaviour.

We must therefore play closer attention to the stochastic error arising from the sam-

pling to calculate S. One thing to be noted is that the singular values of S span several

orders of magnitude –many of them being close to zero–, with no clear jumps between

their magnitudes. When calculating the pseudo-inverse one must choose the threshold

below which singular values will be set to zero. Without any clear structure from S to

inform this choice, one often relies on educated guesses based on the numerical results.

In the course of our experiments, we observed a high degree of sensitivity in the time

trajectory concerning our selection of the threshold. This poses a significant challenge,
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4.3 Real time evolution

Figure 4.2: Billiards in a Bunimovich stadium

Example of a classical system where a small deviation at a particular point leads to a
completely different time trajectory. 1

as it implies that it is not possible to find a (close-to-)optimal solution for the ill-defined

system in Eq. (4.13) without comparing each step to the ground truth. A ground truth

which, evidently, remains inaccessible to us for large systems.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time

10 6

10 5

10 4

10 3

10 2

10 1

1
|

|
ex

ac
t

|

1e-5
1e-6
1e-7
1e-8
1e-9
1e-10

Figure 4.3: Time evolution error for different pseudo-inverse thresholds.

Fig. 4.3 is a comparison of the accuracies obtained using SR with different thresholds

for the pseudo-inverse for a particular system. There are two interesting behaviours to

note from this graph:

1Image from Wikipedia Commons. Created by Jakob Scholbach under a Creative Commons
Attribution-Share Alike 3.0 Unported licence.
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4 Neural Network Quantum States

1. The optimal trajectory (which improves the accuracy from the worst by more than

two orders of magnitude at points) is not the same at each time-step.

2. There are particular points in time where the error increases dramatically over

few time-steps –see for example the 1e-10 trajectory at the ∼ 1.25 timestamp.

Although it is hard to trace back where this error comes from, it appears like it

could be a negative interaction between the unavoidable stochastic error from the

sampling and the inaccuracies introduced by trying to solve the ill-defined linear

system.

But using the pseudo-inverse is not the only way to solve such a linear equation.

A popular class of methods to solve these type of systems is that of Krylov subspace

methods: a class of iterative numerical techniques used to solve large linear systems of

equations. In fact, they are often used precisely when the matrix is not invertible or

when it is computationally expensive or impractical to compute its inverse [120].

The convergence of Krylov subspace methods is based on the properties of the matrix

and the choice of method. For non-invertible matrices, the methods aim to find a

solution in the space that is compatible with the system, even if the matrix does not

have a unique solution. The methods work by minimizing the error within the Krylov

subspace. Convergence to the optimal solution is therefore not guaranteed, and they

often require some preconditioners chosen to make the coefficient matrix more well-

conditioned.

In Fig. 4.4, we present our numerical findings for the evaluation of the accuracy of

various Krylov subspace methods in comparison to the pseudo-inverse. The outcomes

indicate that the Krylov subspace methods, as depicted, fail to attain the optimal solu-

tion.

4.3.1 Gradient descent method

In this thesis, we propose a different approach, which fits more directly to the paradigm

of neural network training: for each time step ∆t, we optimize the network parameters

to minimize the error ∥∥ψ[θn+1]− Φ∆t (ψ[θn])
∥∥ (4.14)

with respect to θn+1, where Φ
∆t is the discrete flow of a numerical ODE method applied

to the Schrödinger equation. Note that, this way, each time step becomes a minimization

problem. Although the stochastic error will continue to accumulate over time, our

objective is to minimize its impact by implicitly incorporating a convergence point at
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Figure 4.4: Performance comparison between Krylov subspace methods and the pseudo-inverse.

each step. The aim is that, in the absence of the instabilities caused by the pseudo-

inverse, the error will not experience disproportionate amplification during later stages

of the time evolution.

We will use the implicit midpoint method here. For an ODE y′(t) = f(t, y(t)) and a

time-step ∆t, this method is defined by

yn+1 = yn +∆tf

(
tn +

∆t

2
,
1

2
(yn + yn+1)

)
. (4.15)

In the specific case of the Schrödinger equation, this leads to (cf. the Cayley transform)

ψ[θn+1] ≈ ψ[θn]− i∆tH

(
ψ[θn+1] + ψ[θn]

2

)
. (4.16)

The implicit midpoint method has two important favourable properties: firstly, it pre-

serves the symplectic form of Hamiltonian dynamics [121], and secondly, it does not

contain intermediate quantities that would complicate the network optimization. Addi-

tionally, in Sec. A.2 we include a more detailed analysis of the error contribution from this

integration method, demonstrating that the residuals will not substantially exacerbate

the error as a consequence of time-evolution approach.
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In the case of larger systems, where sampling becomes necessary, we minimize the

following cost function for a single midpoint rule time step:

C(θn+1) =

N∑
j=1

∣∣∣( (I + i∆t
2 H

)
ψ[θn+1]−

(
I − i∆t

2 H
)
ψ[θn]

)(
σ(j)

)∣∣∣2, (4.17)

with the σ(j), j = 1, . . . , N a batch of input configurations, and the network parame-

ters at the current time point, θn, regarded as fixed. To be specific, we focus on spin

variables as our input, and we represent the system’s size as L, signifying the dimension

of the quantum Hilbert space (corresponding to the number of potential spin configura-

tions, which is 2L). The cost function can be expressed in the form of a least squares

representation as follows:

C(θ) = ∥Aψ[θ]− b∥2 , (4.18)

with A = CN×2L the (sparse) submatrix of I + i∆t
2 H containing the rows corresponding

to the spin configurations σ(j), and the vector b ∈ CN with entries

bj =
((
I − i∆t

2 H
)
ψ[θn]

) (
σ(j)

)
. (4.19)

Usually, cost functions only contain real values, but here we need complex values due

to the nature of the problem. Hence, computing the gradients of the loss with respect to

the parameters requires a more careful approach than the commonly employed automatic

differentiation tools. Assuming that ψ[θ] is a holomorphic function of the parameters θ

and following the derivation in appendix A.1 leads to

∂C(θ)

∂θℓ
=

〈
Aψ[θ]− b

∣∣∣A∂ψ[θ]
∂θℓ

〉
. (4.20)

Note that since C(θ) is not holomorphic, the partial derivative on the left side of this

expression is a Wirtinger derivative. It’s worth mentioning that, while we have chosen

to address both the real and imaginary components of the problem simultaneously, it re-

mains a valid approach to compute the gradient independently for these two components.

In such cases, the Wirtinger formalism is not a requisite tool.

4.3.2 Application to an Ising spin model

In this section, we apply the NNQS Ansatze to the transverse-field Ising model, which is

explained in more detail in Sec. 2.2. As a reminder, its Hamiltonian for general lattice
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4.3 Real time evolution

dimension is given by

HTFI = −J
∑
⟨i,j⟩

σzi σ
z
j − h

∑
i

σxi , (4.21)

where h is the external magnetic field and J is the coupling constant. Such a system

undergoes a phase transition from the ferromagnetic to the paramagnetic regime at

h = J in one dimension [42] and at h/J = 3.04438(2) in two dimensions [43]. In the

following, we set the coupling constant J to 1.

4.3.2.1 1D chain with a Restricted Boltzmann machine

σ1 σ2 σL

h1 h2 h3 hM

Figure 4.5: Restricted Boltzmann Machine architecture

We will start by using the RBM, given its proven success and popularity in the field.

As visualized in Fig. 4.5, a RBM consists of two layers of neurons, referred to as the

‘visible’ and ‘hidden’ layers, which are connected with one another but have no intra-

layer connections. The input of the visible layer is a specific spin configuration σ.

From this architecture one obtains a variational ansatz for the wavefunction of the

system

ψ(σ) =
∑
{hi}

e
∑

j ajσj+
∑

i bihi+
∑

i,j wijhiσj , (4.22)

where aj , bi and wij are the network parameters, and hi are the auxiliary spin variables

which only take the values ±1. Due to the sumation over hi in Eq. (4.22), it is possible

to trace out the hidden spin variables to obtain:

ψ(σ) = e
∑

j ajσj
∏
i

2cosh
(
bi +

∑
j

wijσj

)
. (4.23)
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We will apply it to a one dimensional chain of length L = 20, which allows us to

calculate the exact time evolution as a reference. For the training we use the Adam op-

timizer, a popular gradient-based optimization algorithm used in machine learning and

deep learning for training neural networks. The name ”Adam” is derived from ”adap-

tive moment estimation”. It combines ideas from two other optimization techniques,

RMSprop and Momentum, and is known for its effectiveness in a wide range of deep

learning tasks making it often the default choice for many neural network models. We

choose the recommended hyperparameters from Ref. [66].

Fig. 4.6 shows a comparison between the error obtained with stochastic reconfiguration

and the error of our method. The time evolution labeled SR was computed with a

pseudo-inverse threshold of 10−10, while for SR(2) a threshold of 10−9 was used. The

importance and sensitivity of this threshold is reflected in the difference of one order of

magnitude in the final error between those two time evolution.

We also plot the contribution to the error by the gradient-based midpoint method.

Even without a finely tuned optimization, our method yields comparable results to

SR with an optimal pseudo-inverse cut-off. The increased error in comparison to exact

midpoint integration suggests a limitation in expressibility arising from the RBM ansatz,

notwithstanding the inherent difficulty in tracing back the origin of these errors.
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Figure 4.6: Stochastic Reconfiguration vs a gradient based method

Since we are interested in physically realistic states, the initial state was found by

performing a Hamiltonian quench with respect to the field strength h. We first optimize
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4.3 Real time evolution

the network parameters to represent the ground state for h = 1.5 and then change h

to 0.75 for the real time evolution. As a measure of the accuracy of the ground state,

the deviation from the exact energy is |(E[θ] − E0)/E0| ≈ 0.051, where E0 is the exact

energy found by diagonalising the Hamiltonian and E[θ] is the energy of the quantum

neural network state.

Note that such a quench represents a phase transition accross the critical point. As

mentioned in the introduction of this chapter, these kind of transition points still repre-

sent a challenge for NNQS [96], which could also help explain the difference in accuracy

that both methods show compared to the exact numerical integration.

Our implementation comprises custom C code for the neural network architectures

and optimization components, while we use a Python interface for scheduling and the

evaluation of runs. The training was conducted on a single CPU with 64 GB of memory,

leveraging multi-threading across 28 cores. Within this configuration, we observe that a

single optimization step for the RBM network, for 20 lattice sites and 50,000 samples,

takes approximately 3.6 seconds.

Fig. 4.6 directly compares SR with the midpoint optimization using the same number

of time steps. However, the implicit midpoint integration method is a second-order

method, which suggests the possibility of achieving a similar final error using a larger

time step size for the real time evolution. To obtain a full picture of how the two methods

compare, it is therefore important to consider the effects of varying the time step size.

To that effect, we apply the midpoint optimization to simulate a quench from h = 1.5

to h = 0.75 for a one-dimensional system with 15 lattice sites. As shown in Fig. 4.7 the

overlap error resulting from the optimization shows very little variation as one decreases

∆t, while there are big differences for the exact midpoint integrations. These results

further point towards the idea that most of the error originates from the expressiveness

of the architecture, and not the integration method (note that this is again a quench

accross the critical point).

The small variations that are seen between time step sizes can be explained by the fact

that the same learning rate and number of optimization parameters are being used in

each simulation. To elaborate on this: for a larger ∆t one can expect a larger update in

the network parameters, and a longer optimization may be necessary (i.e. larger learning

rate or more optimization steps). In practice, the small improvement may not be worth

the computational expense of decreasing ∆t nor increasing the number of optimization

steps.
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Figure 4.7: Time step size effect on the overlap error

Overlap error achieved with different time steps for the same system under the same
optimization hyperparameters (RBM with 60 hidden units, same learning rate and same

number of optimization steps).

Next we compare these results with those obtained using an Euler step for the opti-

mization. In a similar fashion to Eq. (4.17) we choose as cost function

C(θn+1) =
N∑
j=1

∣∣∣(ψ[θn+1]− i∆tH ψ[θn])
(
σ(j)

)∣∣∣2 . (4.24)

Interestingly, we find that the results obtained are worse than those obtained with the

implicit midpoint rule (see Fig. 4.8a), despite the similar errors of the exact Euler and

midpoint integrations for the chosen ∆t sizes. Taking a closer look at the optimiza-

tion landscape shows that the loss exhibits a smoother convergence with the midpoint

optimization, as shown in Fig. 4.8b. Implementing an early stop mechanism may be

beneficial for the Euler optimization, although we recommend sticking to the midpoint

method for its aforementioned benefits.
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Figure 4.8: Comparison of different integration methods and time steps

We compare SR and the Euler method with ∆t = 0.01 and the midpoint method with
∆t = 0.05. In (b) the loss is normalized with respect to the number of samples and time steps.
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4.3.2.2 2D grid with a Convolutional Neural Network

To demonstrate the flexibility of our method we change the neural network architecture

and consider the time evolution governed by the two-dimensional Ising model on a L×L
lattice with periodic boundary conditions, setting L = 3 in the following. As an ansatz,

we directly use the output of a convolutional neural network,

ψ(σ) = CNN(σ) (4.25)

as shown in Fig. 4.9. Specifically, the network architecture consists of a convolutional

layer with five complex-valued 2 × 2 filters and periodic boundary conditions, an in-

termediate dense layer with 10 neurons, and a single output. This correspond to 496

complex parameters in total.

For the activation functions, we found the polynomial functions described in Ref. [89]

to achieve errors several orders of magnitude smaller compared to other more commonly

used activation functions, such as ReLUs or sigmoid functions. Specifically, we use

σ(z) =
1

2
z2 − 1

12
z4 +

1

45
z6 (4.26)

for the convolutional layer, and

σ(z) = z − 1

3
z3 +

2

15
z5 (4.27)

for subsequent layers.

We perform three different Hamiltonian quenches, from “infinite” h to h = 2hc,

hc and hc/10, where hc is the critical point at which the system undergoes a phase

transition. Here “infinite” h is equivalent to retaining only the second term in the

Hamiltonian (4.21), such that the corresponding ground state is the paramagnetic state

ψ0 =
∏L

j=1 |+⟩j with |+⟩ = 1√
2
(|0⟩ + |1⟩). We are able to precisely represent ψ0 using

our network ansatz, such that the relative energy error is on the order of 10−11.

The top row in Fig. 4.10 shows the overlap error with respect to the exact wavefunction

as a function of time, as well as the error resulting from a plain midpoint integration.

Each time step was optimized using the same learning rate and number of iterations, but

a more careful optimization could further lower the error. The bottom row of Fig. 4.10

shows the evolution of the transverse magnetization, based on our CNN ansatz and the

numerically exact curve as reference. In agreement with Ref. [96], we find quenches to

the critical point to be the hardest to optimize.
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Figure 4.9: Schematic diagram of the Convolutional Neural Network used
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Figure 4.10: Performance of midpoint method for a 2D Ising model

Overlap error (top row) and transverse magnetization (bottom row) of the real time evolution
governed by the Ising Hamiltonian (4.21) on a 3× 3 lattice after a quench of h. Each column
corresponds to a different value of h after the quench, starting from “infinite” h. We used 500

uniformly drawn samples for each individual optimization step of our method (CNN).
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5 Quantum Process Tomography via

time-delayed measurements

Next, we will focus on the characterization of many-body quantum systems via QPT.

QPT aims to reconstruct the mathematical representation, often a matrix or an operator,

that describes how a quantum system transforms its initial state into a final state. This

is particularly relevant in the field of quantum information and quantum computing,

as it plays a crucial role in the development and verification of quantum algorithms

and quantum devices [122–128]. By characterizing the quantum processes involved,

researchers can identify and address issues such as decoherence, noise, and other errors

in quantum computations.

However, the implementation of the textbook algorithm for QPT in laboratory settings

poses a great challenge due to the exponential increases in the needed resources. Such

an algorithm requires the preparation of a ‘complete set’ of N2 initial states –where N

denotes the Hilbert space dimension– and to measure the process outputs with respect

to a similarly ‘complete’ set of observables (see Sec. 2.3). Both of those sets increase

exponentially as we add qubits to the system. On top of that, the intrinsically noisy

nature of real-life experiments complicates the picture, as the state preparation and

measurement steps may not be completely reliable.

In this chapter, we will propose an optimization based method based on time-delayed

measurement, which aims to reduce the number of resources needed to perform QPT.

These results were published in Ref. [129]

5.1 State of the art

A common technique used to bypass the limitations of standard QPT is that of ran-

domized benchmarking [130–133]. In this protocol, random quantum gate sequences are

generated such that, if the sequences were implemented without errors, they would be

equivalent to an identity operator. Calculating the fidelity of multiple runs of sequences

of different length, allows for the estimation of the expected value of the sequence fidelity.

This, in turn, provides a calibration reference for experimental data.
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The simplicity of the approach has rendered randomized benchmarking as one of the

most popular choices of experimentalists to benchmark their devices [134–139]. Let us

emphasize, however, that this protocol is not a method to perform QPT. While it offers

an estimate of gate fidelity, randomized benchmarking cannot reconstruct a completely

unknown gate, nor can it shed any light on the types of errors occurring in the circuit.

A similar thing occurs with Gate Set Tomography [140–142]. This protocol is a

calibration-free approach to process tomography. By ‘calibration-free’ we mean that it

does not rely on the common QPT assumption that the initial states and the measure-

ment operations are well known, and, as a consequence, it provides an estimation of the

process which includes the errors (and their relationships) of the preparation and mea-

surement stages. In experimental settings, this is many times all that is needed, so Gate

Set Tomography has been extensively and successfully utilized for the calibration and

benchmarking of quantum devices [143–148]. But, as with randomized benchmarking,

this approach has limitations when the focus is on the comprehensive characterization

of the dynamics alone.

However, if we are restricting our analysis to situations with only quantum almost-

unitary gates, the resource-expensiveness of the standard QPT algorithm can be de-

creased. Specifically, the reduced number of free parameters for reconstruction enables

a corresponding reduction in the number of observables needed, decreasing from O(N4)

to O(N2) [149,150]. It is important to recall that, here, N represents the Hilbert space

dimension, so this still corresponds to an exponential increase with system size.

More drastically, it has been shown that the minimal set of initial states required for

the characterization of a unitary consists of only two states, regardless of the size of

the system [151]. This has two important caveats. First of all, it only allows for the

reconstruction of the unitary part of a process, so the error sources cannot be completely

identified. And secondly, one of the states of the minimal set is a totally mixed thermal

state, of impractical use during experiments.

Building on the idea of utilizing information of the underlying process to reduce the

experimental requirements, the method of compressed sensing was proposed [152–154].

The underpinning theory of this protocol comes from the field of classical signal process-

ing [155], and relies on the assumption that the dynamical process we want to identify

is (nearly) sparse. This, for example, holds for unitary operators, which are maximally

sparse in their eigenbasis. Compressed sensing allows for an exponential reduction of

the required measurements –although at the cost of an exponentially expensive classical

post-processing step. For this reason, it has become a very popular approach to conduct

QPT [156–160].
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5.2 Takens’ theorem

An important remark is that the main step of compressed sensing involves a least

squares minimization. In a time where machine learning and optimization techniques

are constantly refined and even surpassed by more complex methods, it is not surprising

that, more recently, a variety of numerical optimization-based techniques have been

proposed. An example of this can be found in Ref. [161], where the authors employ

an efficient representation of a Choi matrix using a tensor network. They combine this

representation with an unsupervised machine learning algorithm to learn the optimal

parameters for the tensor network. The high model flexibility of gradient descent has

allowed for similar works to be done with a variety of Ansatze, from neural networks to

simple parametrizations of the Kraus operators [162–164].

All of the methods mentioned up to this point do not make explicit use of the time

trajectories themselves. The strategies that leverage the dynamics as a resource to reduce

the number of measurement basis needed are few and far between (but see [165–169]).

And the theoretical foundation for such approaches –as well as the specific bounds of

required resources– has not been laid.

5.2 Takens’ theorem

Here we introduce a strategy for conducting QPT, one that relies on the concept of

time-delay embedding. The underpinning theory for this embedding technique draws its

roots from the theorems of Takens and Ruelle [170, 171], which are, in turn, based on

the embedding theorems of Whitney [172]. Before delving into the details of our specific

approach it is therefore useful to stop and consider in detail what we can learn from the

theorems of Takens [171] in combination with the results from Packard et al. [173] and

Aeyels [174].

Let k ≥ d ∈ N, and M ⊂ Rk be a d-dimensional, compact, smooth, connected,

oriented manifold with Riemannian metric g induced by the embedding in k-dimensional

Euclidean space. We can define a dynamical system through its state space (here, the

manifold M) and a diffeomorphism ϕ : M → M. Note that ϕ can simply be interpreted

as the time-evolution mapping of the state space. The last ingredient necessary for the

theorem is the concept of observability. That is, for each state of the manifold we assume

that we are able to measure a property y. Then, one version of Takens theorems states:

Theorem 1. Generic delay embeddings For pairs (ϕ, y), ϕ : M → M a smooth

diffeomorphism and y : M → R a smooth function, it is a generic property that the map
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5 Quantum Process Tomography via time-delayed measurements

Φ(ϕ,y) : M → R2d+1, defined by

Φ(ϕ,y)(x) =
(
y(x), y(ϕ(x)), . . . , y(ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸

2d times

(x))
)

(5.1)

is an embedding of M; here, “smooth” means at least C2.

Genericity in the above is understood as “an open and dense set of pairs (ϕ, y)” in the

C2 function space. Open and dense sets can have measure zero, so Sauer et al. [175] later

refined this result significantly by introducing the concept of prevalence (a “probability

one” analogue in infinite dimensional spaces). A similar result can be obtained even

when considering stochastic systems [176].

It is important to note that the use of Takens theorem for system dynamics recon-

struction is not new. In fact, it has been fundamental to several system identification

methods for general dynamical systems [177]. Recently, it has also been used in combi-

nation with machine learning techniques [178–181], with a focus on partial differential

equations [182, 183] or classical Hamiltonian dynamics [184, 185]. The reconstruction of

unitary dynamics had also been considered [186, 187], and these works have even been

extended for dissipative systems [188–190]

Our goal here is to apply this theorem in the context of quantum processes, and to

consider the challenges associated with quantum Hilbert spaces. Once again, let N

denote the quantum Hilbert space dimension. Then, in our particular case, M is the

special unitary group SU(N) ⊂ CN×N when identifying C ≃ R2. In particular, M (with

underlying field R) has dimension d = N2−1. In physical terms, the elements of SU(N)

are the unitary time evolution matrices.

Note that such manifold satisfies the compact requirement due to the property

det(U) = 1. (5.2)

Furthermore, by definition, any Lie group is smooth and can be shown to be orientable

[191]. The connected requirement, on the other hand, is more restrictive than allowed

by the results presented later in this chapter. However, this setting is sufficient for our

presentation.

At the core of our approach lies the fundamental concept of ”embedding” the manifold

of unitary matrices, which characterizes the dynamics of a quantum system, into the

space of measurement trajectories. We work with the assumption that the Hamiltonian

H is traceless, as adding to H a term which is a multiple of the identity only leads

to a global phase factor in the time evolution, which is unobservable in subsequent
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5.2 Takens’ theorem

measurements as envisioned here. We also fix a time step ∆t, which we absorb into H

without loss of generality, and therefore set U to

U = e−iH . (5.3)

From the perspective of the manifold of unitary time-evolution operators, the diffeo-

morphism ϕ consists of a scaling by a power γ ∈ R (γ > 0, γ ̸= 1), as this is equivalent

to scaling the Hamiltonian by a coefficient, which can be interpreted as scaling of the

absorbed time step:

ϕ(U) = Uγ = e−iγH . (5.4)

Regarding the observability characteristic y, for quantum states this is naturally de-

fined by the concept of observable hermitian matrices M . By fixing a randomly chosen

initial quantum state ψ ∈ CN , we can define y to be the corresponding expectation value

of M :

y : M → R, y(U) = ⟨ψ|U †MU |ψ⟩ . (5.5)

Putting all these ingredients together we can now apply Takens theorem, which tells

us that the embedding of our dynamical process Φ(ϕ,y) in Eq. (5.1) is given by

Φ(ϕ,y)(U) =
(
⟨ψ| eiH M e−iH |ψ⟩ , ⟨ψ| eiγH M e−iγH |ψ⟩ ,

. . . , ⟨ψ| eiγ2dH M e−iγ2dH |ψ⟩
)
, (5.6)

physically corresponding to measurements at time points tq = γq for q = 0, . . . , 2d.

The main point here is that, since such an embedding exists, there is a possibility of

identifying the time step matrix U , and consequently the Hamiltonian, based on a single

measurement time trajectory, under the assumption that the initial quantum state is

known. A possible way of thinking about this is as finding the inverse of a function for

which we know the result. As caveat, the relation U = e−iH∆t determines the eigenvalues

ofH only up to multiples of 2π/∆t. But more worryingly, due to the “collapsible” nature

of quantum measurements, the map Φ(ϕ,y) might not be one-to-one, in the sense that

two different unitary matrices give rise to the same measurement trajectory.

In the next section we will discuss this problem in more detail for single-qubit systems,

which allows us to shed some light on how these issues can be avoided in practice: either

by additional assumptions on the structure of H or by extra measurements to resolve

the ambiguity.
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5 Quantum Process Tomography via time-delayed measurements

5.3 Algorithm for single-qubit system

For our measurement definition in Eq. (5.5) we have assumed that it is feasible to re-

liably prepare a single (or when indicated several) known initial state(s) ψ ∈ CN in an

experiment. Although there is no such thing as a faultless quantum experiment, the

high-fidelity preparation of states has been demonstrated amongst a variety of hard-

ware platforms (see for example [192–194]). We will therefore uphold this assumption

throughout the remainder of the chapter.

Besides that, our methods do not impose any requirements on the initial state. Thus,

unless otherwise specified, ψ is chosen at random in the following algorithms and numer-

ical simulations. More concretely, the entries of ψ before normalization are independent

and identically distributed (i.i.d.) random numbers sampled from the standard complex

normal distribution.

In this section, we will consider the reconstruction of a single-qubit Hamiltonian, as

the simplest toy-model case that we can tackle. Although such a system may not be

the most interesting from an experimenters perspective, it allows us to derive a concrete

algorithm for the reconstruction of the Hamiltonian, which in turn provides some insight

on the problems that may arise for higher dimensions.

The Bloch sphere picture [18] provides a geometric framework to work with single-

qubit quantum states and operations. The Bloch vector r⃗ ∈ R3 associated with ψ ∈ C2

is defined via the relation

|ψ⟩ ⟨ψ| = 1

2
(I + r⃗ · σ⃗). (5.7)

Since we are dealing with a single isolated qubit –a.k.a a pure state–, r⃗ is a unit vector.

We can parametrize any traceless single-qubit Hamiltonian as

H = h⃗ · σ⃗ (5.8)

with h⃗ ∈ R3. Recall that we are ignoring the global phase factors of quantum states

due to their lack of relevance for our measurement framework. It follows that the corre-

sponding time evolution operator is the rotation

U(t) = e−iHt = cos(ωt/2)I − i sin(ωt/2)(v⃗ · σ⃗) ∈ SU(2), (5.9)

when representing h⃗ = ωv⃗/2 by a unit vector v⃗ ∈ R3 and ω ∈ R. The geometrical

interpretation of this operator on the Bloch sphere is that of a classical rotation about
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5.3 Algorithm for single-qubit system

v⃗, as illustrated in Fig. 5.1 and described by Rodrigues’ rotation formula (θ = ωt):

Uθ,v⃗ r⃗ = cos(θ)r⃗ + sin(θ)(v⃗ × r⃗) + (1− cos(θ))(v⃗ · r⃗) v⃗. (5.10)

Uθ,v⃗ ∈ SO(3) is a rotation matrix (parametrized by θ and v⃗) applied to r⃗. Although

having previously applied Takens’ theorem to U = U(∆t), we can similarly work with

U = Uω∆t,v⃗ and its matrix powers.

The time trajectory effected by the rotation applied to r⃗ results in a circle on the

surface of the Bloch sphere (see Fig. 5.1). Full knowledge of such circular trajectory

and its dynamics would allow us to determine v⃗, and the angular frequency ω. By

construction we know one the initial point of the circle, r⃗, but we only have access

to the expectation value of an observable M for t > 0. Such expectation values can be

interpreted geometrically as the projection of the trajectory onto a specified measurement

vector. In the following, we denote the “measurement direction” by m⃗ ∈ R3, i.e., M is

parametrized as M = m⃗ · σ⃗.

x

y

z

h⃗

−h⃗′

r⃗

Figure 5.1: Single qubit time evolution on a Bloch sphere

The black arrows represent the time trajectory of a qubit starting at r⃗ under a Hamiltonian
defined by the vector h⃗. The red dots represent the measurement time points and their

respective projections on the z-axis (i.e. the expectation value of the observable Z). Note how
a symmetric trajectory shares the same projections.
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Algorithm 1 enables the recovery of ω and v⃗ using the projections of the time trajectory

on m⃗. In broad terms, this algorithm involves initially reconstructing ω based on the

time dependence, and use the found frequency to determine the unit vector v⃗.

Algorithm 1 Reconstruction of a single-qubit Hamiltonian (measurement direction
m⃗ ∈ R3 with m⃗ ∦ r⃗)

Input: Measurement averages yq = m⃗ · (Uωtq ,v⃗ r⃗) with tq = ∆t γq for q = 0, . . . , 2d
Output: Hamiltonian parameters ω and v⃗.

1: Find ω based on the dependency on ωt in Eq. (5.10):

ω = argmin
ω>0

min
a,b,c

2d∑
q=0

|yq − a cos(ωtq − b)− c|2

2: Set ỹq = yq − cos(ωtq)(m⃗ · r⃗) for q = 0, . . . , 2d (subtract term which is independent
of v⃗)

3: Find α1 = m⃗ · (v⃗ × r⃗) and κ = (v⃗ · r⃗)(m⃗ · v⃗) via a least squares fit:

α1, κ = argmin
α1,κ

2d∑
q=0

|ỹq − sin(ωtq)α1 − (1− cos(ωtq))κ|2

4: Represent v⃗ with respect to the orthonormal basis{
u⃗1 =

r⃗ × m⃗

∥r⃗ × m⃗∥
, u⃗2 =

r⃗ + m⃗

∥r⃗ + m⃗∥
, u⃗3 =

r⃗ − m⃗

∥r⃗ − m⃗∥

}
:

v⃗ = α1u⃗1 + α2u⃗2 + α3u⃗3,

with to-be determined coefficients α2, α3 ∈ R. Using that u⃗1, u⃗2 and u⃗3 are eigen-
vectors of K = 1

2(m⃗ ⊗ r⃗ + r⃗ ⊗ m⃗) with respective eigenvalues 0, λ+ = 1
2(1 + m⃗ · r⃗)

and λ− = −1
2(1− m⃗ · r⃗), it follows that

κ = v⃗ ·Kv⃗ = λ+α
2
2 + λ−α

2
3.

Together with the normalization condition

α2
1 + α2

2 + α2
3 = 1,

this leads to α2
2 = κ − (1 − α2

1)λ− and α2
3 = 1 − α2

1 − α2
2. Decide between the four

possible signs of α2, α3 using a-priori information ofH or one additional measurement
in a different basis.

It is important to note that the non-linear optimization in the first step of the al-

gorithm might get trapped in a local minimum, which could be resolved by restarting

the optimization. Fortunately, when neglecting uncertainties associated with the mea-
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5.3 Algorithm for single-qubit system

surements, a correct solution is indicated by a zero residual both in steps 1 and 3. We

assume that a range of realistic frequencies ω is known beforehand, such that the Nyquist

condition (given the non-uniform sampling points tq) holds [195].

5.3.1 An aside on ambiguities

As mentioned in the previous section, the solution to this problem is not unique. A

closer inspection of the algorithm showcases clearly where the problem lies: there are

four possible combinations for the signs of the coefficients α2 and α3. Fig. 5.1 visualizes

how two rotations can generate the same projection onto the z-axis, with h⃗′ resulting

from (α2, α3) → −(α2, α3). The two equations for α2 and α3 are shown in Fig. 5.2. (In

the example, α1 = −0.2051, and hence the radius of the norm constraint circle is close

to 1.)

κ=λ+α22+λ-α32

norm constraint

-1.5 -1. -0.5 0.5 1. 1.5
α2

-1.5

-1.

-0.5

0.5

1.

1.5

α3

Figure 5.2: System of equations to obtain the vector representation of the Hamiltonian

The points where the lines meet are the possible solutions for α2 and α3.

In order to decide between these distinct solutions, one may use several approaches.

The simplest way to resolve the ambiguity is to include one further measurement in a

different basis. In most cases, a projection to a different vector will be distinct for the

different trajectories, which allows to determine which of the four solutions corresponds

to the additional measurement. However, there are some edge cases where this is not

true. As an example, consider the two time trajectories depicted in Fig. 5.1. Any

measurement vector lying on the plane defined by r⃗ and the z-axis will result in the
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5 Quantum Process Tomography via time-delayed measurements

same expectation values for both Hamiltonians. Although identifying and avoiding these

problematic measurement vectors is feasible for a single-qubit system, it becomes harder

as the number of dimensions increases, so an alternative method may be more suitable.

A second approach to distinguish between the solutions could be to consider the time

trajectories for two different initial states. Under the same Hamiltonian, two states with

Bloch vectors r⃗ and r⃗′ will display different dynamical evolutions. Using Alg. 1 one

finds four possible rotation vectors for each. The common solution will correspond to

the desired Hamiltonian. It is not guaranteed, however, that the two will have a single

common solution. Going back to the example shown in Fig. 5.1, if r⃗′ also lies in the

plane defined by r⃗ and the z-axis, they will have at least two common solutions for h⃗.

Ref. [151] might shed some light on the optimal selection of the initial states to avoid

this problem.

Note, however, that the exceptions to the above two approaches are edge cases, unlikely

to occur when both the initial state(s) and measurement basis (or bases) are chosen

randomly. And the probability further decreases when the two approaches are combined.

However, one may be tempted to get rid of the randomness and select all the involved

vectors from a simplified set of unit vectors, such as vectors on a specified plane. Such

a setting will inevitably lead to unresolvable ambiguities.

At this point it may be valuable to reiterate that the above picture becomes much

more obscure when dealing with systems with more than one qubit, as the reflections

to obtain symmetrical solutions are harder to visualize. If an experimenter only has

access to a simplified set of measurement bases and initial states, the final ambiguity in

solutions may only be resolved by incorporating previous knowledge of the Hamiltonian

into the model.

5.3.2 Single qubit numerical experiments

With Algorithm 1 we are able to reconstruct a single-qubit Hamiltonian up to numerical

precision. Fig. 5.3 shows the results obtained for the ω and least squares optimizations.

Following the Takens framework, we use 2d+1 time points, where d = 3 is the number of

Hamiltonian parameters to be reconstructed. Specifically, we have used the time points

tq = 0.3× (1.3)q for q = 0, . . . , 6 here. With this, we are able to find ω, α1 and κ up to

an error of ∼ 10−15. Thus 7 measurements, plus a further measurement in a different

basis to distinguish between the possible solutions due to symmetry, are sufficient for

the reconstruction.

This tells us that, in the ideal setting with no noise at the stage of state preparation

nor the stage of observation, using time-measurements as described in Sec. 5.2 allows
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5.3 Algorithm for single-qubit system

us to exactly characterize the dynamical process. But such a setting is not realistic.

Even when maintaining the assumption of a high fidelity initial state, the measurement

process itself may be a source of error.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 Fitted cosine
yq

(a) Step 1 from Alg. 1
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(b) Step 3 from Alg. 1

Figure 5.3: Single-qubit Hamiltonian reconstruction in a noiseless experiment

We apply Algorithm 1 using Z-basis measurements, for the time evolution shown in Fig. 5.1. (a)
shows the cosine fit to find ω, while (b) shows the fit for the function containing α1 and κ. In
this specific case, yq = ȳq.
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Figure 5.4: Sample sensitivity in single-qubit Hamiltonian reconstruction

The solid line shows the median, while the lighter shade shows the 10% quantiles.
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On the one hand, the expectation value is by definition only an estimation obtained

from a number of samples. In the real life case with finite samples, stochastic fluctuations

are unavoidable. One can model such source of noise by replacing the expectation values

from Eq.(5.5) by

y′(U) = y(U) +N (0, σ2) (5.11)

where the standard deviation, σ quantifies the uncertainty stemming from the limited

number of samples (the higher the sample number, the lower the σ). Figure 5.4 shows

that the reconstruction error is related linearly to σ. This is to be expected, as the

arguments of the cost functions minimized in Alg. 1 are related linearly to the obtained

measurements.

On the other hand, and perhaps more importantly, measurements are also subject to

environmental noise and technical limitations [196, 197]. Consider for example the case

of superconducting qubits, where the qubit readout involves the frequency measurement

of an electromagnetic wave [198,199]. Multiple issues could affect the readout here, from

environmental photons entering the measurement device, to the inherent uncertainty in

pulse width and energy [200,201].

The analysis done to produce Fig. 5.4 fails to take into account two important types of

errors: systematic errors which shift all measurements in the same direction (stemming,

for example, from a problem in calibration), and non-linear errors. Systematic errors

can be taken into account by introducing a shift in the mean of the measurement,

y′(U) = y(U) + µ. (5.12)

Fig. 5.5a shows how the error in h⃗ behaves as a function of the shift µ. Unsurprisingly,

we also observe a linear relationship here.

Non-linear errors, on the other hand, are more dependent on the hardware set-up

itself. In an attempt to keep our results as general as possible, we opt for applying a

simple non-linear modification to the measurement results themselves

y′(U) = sgn (y(U)) |y(U)|1+N (λ,1) , (5.13)

where we have taken the measurement sign out of the exponential to ensure y′(U) ∈ R.

On Fig. 5.5b we can see that the Hamiltonian error also presents a linear dependency

on such a λ. This leads us to conclude that our QPT approach is resistant to at least

some non-linear sources of error. Notice, however, that these previous two models only

consider a consistent source of systematic or non-linear error. When each sample in
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the experiment may be subject to different noise sources, the estimated accuracy of

the Hamiltonian reconstruction should be regarded with skepticism. Thus, that a more

complex simulation might be necessary to ensure that the method is not sensitive to

hardware-specific sources of errors [200,202,203].
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(a) Systematic shift errors
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(b) Non-linear errors

Figure 5.5: Sensitivity to different types of errors in single-qubit Hamiltonian reconstruction

The solid line shows the median, while the lighter shade shows the 10% quantiles.

69



5 Quantum Process Tomography via time-delayed measurements

5.4 Relaxation as a numerical strategy for multiple qubit

optimization

The next natural step after considering in detail the single-qubit reconstruction algo-

rithm would be to extend it to multiple qubit systems. Unfortunately for us, however,

Algorithm 1 does not extend trivially to larger dimensions, and we are forced to look for

an alternative optimization strategy.

As a straightforward approach for determining a unitary time step matrix U which

matches the measurement averages, one could start from the natural parametrization

U = e−iH (with the time step already absorbed into H), and then optimize the Her-

mitian matrix H directly. However, this method encounters the difficulty of a compli-

cated optimization landscape with many local minima, in particular when using gradient

descent-based approaches.

To visualize this, let us consider again a Hamiltonian as in Eq.(5.8), where the co-

efficients to the Pauli matrices have been drawn from a standard normal distribution.

Let us also fix the time-step length to ∆t = 0.1. We can then model our time evolution

operator as

U = e−i∆t⃗h·σ⃗, (5.14)

where the entries of h⃗ are our variational parameters. The manifold for the Takens

embedding has dimension d = 3, and hence, 2d + 1 = 7 time points should be used.

However, as discussed in Sec. 5.3.1, a single measurement basis will lead to to multiple

symmetric solutions. For this reason, we combine measurements in the Pauli-X and

Pauli-Z bases and reduce the number of time points to 4 to compensate for the additional

source of data.

The parameters can be optimized directly by minimising

L =
4∑

q=1

∥∥∥y(Z)
q − ⟨ψ|(U q)†ZU q|ψ⟩

∥∥∥2 + 4∑
q=1

∥∥∥y(X)
q − ⟨ψ|(U q)†XU q|ψ⟩

∥∥∥2 , (5.15)

where y
(M)
q denotes the measurement at time point q using the measurement basis of

operator M . We utilize the Adam optimizer as described in Ref. [66], training for up to

12000 epochs (note that considering we are dealing with only 8 data points this is not

as computationally intensive as it would appear on first sight).
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Figure 5.6: Direct optimization of H via gradient descent methods

Solid lines show the median, and lighter shades are the 25% quantiles.

We repeat the optimization multiple times for several random Hamiltonians in order to

obtain statistics of how the loss and relative error behave in a general scenario. Fig. 5.6

shows the median and confidence interval throughout the optimization. Despite the fact

that both the loss and Hamiltonian error decrease on average, we can deduce from the

wide confidence bound that there is a non-negligible number of cases where the optimizer

gets stuck in local minima.

To mitigate the considerable variation observed across different runs, we suggest an

alternative numerical approach designed for generic (dense) few-qubit Hamiltonians. As

discussed in Sect. 5.3, for single qubits a transformation |ψ′⟩ = U |ψ⟩ by a unitary matrix

U ∈ SU(2) can be geometrically interpreted as a spatial rotation in three dimensions on

the Bloch sphere: r⃗′ = Ur, with U ∈ SO(3) given by Rodrigues’ formula (5.10). It is

possible to obtain U from U via

Uα,β =
1

2
tr
[
σαUσβU †] (5.16)

for α, β = 1, 2, 3, where we have used Eq. (5.7) together with the orthogonality relation

of the Pauli matrices:
1

2
tr[σασβ] = δαβ. (5.17)
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The main advantage of using the Bloch picture in this setting is that measurements

as described in Eq. (5.5) depend linearly on the Bloch vector r⃗, and hence on U, as

⟨ψ′|M |ψ′⟩ = m⃗ · r⃗′ = m⃗ · (Ur⃗). (5.18)

Note that m⃗ can always be normalized.

This enables us to divide the problem into two stages: initially optimizing the search

for a U that aligns with measurement data, which is hopefully a simpler task than directly

optimizing for U ; followed by computing U using the optimized U and Eq. (5.16).

Such a model, in contrast to Alg.1, can be generalized to larger systems via tensor

products of Pauli strings. For instance, Eq. (5.16) can be extended for the n-qubit case

to U ∈ SO(4n − 1) with entries

Uα,β =
1

2n
tr
[
(σα1 ⊗ · · · ⊗ σαn)U(σβ1 ⊗ · · · ⊗ σβn)U †], (5.19)

where U ∈ SU(2n), and α and β are index tuples from the set {0, 1, 2, 3}⊗n\{(0, . . . , 0)},
using the convention that σ0 is the 2×2 identity matrix. Note that we are able to exclude

the tuple (0, . . . , 0) from the set of indices, as the identity matrix is always mapped to

itself by unitary conjugation.

After switching to the described Bloch representation, we “relax” the condition that an

involved (real) matrix U is orthogonal, by allowing for any real matrix, but a penalisation

term of the form

Lorth =
∥∥UUT − I

∥∥2
F

(5.20)

to the overall cost function, where ∥·∥F denotes the Frobenius norm. By doing so, we

avoid parametrising U in a way that enforces strict orthogonality. Despite the fact that

this, in principle, extends the optimization landscape to the larger space of all real

matrices, we observe that the a better behaviour throughout the optimization, as the

optimizer seems to encounter less local minima than in the previous one.

By choosing γ = 2 in Eq. (5.4), the time steps tq = γq are integers, and we can

generate corresponding powers of U by defining U0 = U, Uq = U2
q−1 for q = 1, . . . , 2d,

such that

e−iγqH = Uγq
= Uq for q = 0, . . . , 2d. (5.21)
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5.4 Relaxation as a numerical strategy for multiple qubit optimization

As a further “relaxation”, we treat the Uq’s as separate matrices. The relation between

them is only set via an additional penalization term:

Lsteps =
∑
q

∥∥Uq − U2
q−1

∥∥2
F
. (5.22)

To test this approach we repeat the experiments described previously for Fig. 5.6, this

time with the overall cost function

L =
∑
q,M

∥∥∥y(M)
q − m⃗ · (Ur⃗)

∥∥∥2 + Lorth + Lsteps. (5.23)

Fig. 5.7 shows the median and confidence interval with this relaxation strategy. When

compared to the previous results, it is clear that in this new optimization landscape the

optimizer provides more consistent results.

0 10000 20000 30000 40000 50000
epoch
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H rel. error
loss

Figure 5.7: Single-qubit Hamiltonian reconstruction with the relaxation method

Solid lines show the median, and lighter shades correspond to the 25% quantiles.

5.4.1 Two qubit case

Relaxing the unitary condition, however, comes with a drawback. Specifying an element

of SO(4n − 1) involves more free parameters than for a unitary matrix from SU(2n) in

the case where n ≥ 2. This means that the optimization might find an orthogonal U
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5 Quantum Process Tomography via time-delayed measurements

which reproduces the measurement data, but cannot be mapped to a U ∈ SU(2n) via

(5.19).

To illustrate how this problem can be avoided, let us focus on the case of two qubits.

Every U ∈ SU(4) can be decomposed as [204,205]

U =
(
ua ⊗ ub

)
R
(
uc ⊗ ud

)
(5.24)

where R is the so-called “entanglement” gate

R = e−
i
2
(θ1 σ1⊗σ1+θ2 σ2⊗σ2+θ3 σ3⊗σ3), θ1, θ2, θ3 ∈ R (5.25)

and ua, ub, uc, ud ∈ SU(2) are single qubit unitaries. These single qubit gates can be

handled, as described before, by orthogonal rotation matrices ua, ub, uc, ud ∈ SO(3). In

order to find the Bloch representation of R, we make use of Eq. (5.19) (for more details

see Ref. [206,207]). With this approach the parameters θ1, θ2, θ3 will only appear in the

matrix as inputs to the trigonometric terms cos(θj) and sin(θj) for j = 1, 2, 3. All of these

ingredients put together give us a Bloch picture representation of the decomposition in

Eq. (5.24) in terms of to-be found orthogonal matrices.

To all of these orthogonal matrices we will apply the same relaxation conditions, in

terms of unitarity and relation between the time steps, as described on the previous

section. On top of that, we introduce one further relaxation to the trigonometric terms

in R: instead of the entries (cos(θj), sin(θj)) we use (cj , sj), where cj , sj ∈ R. We impose

the condition c2j+s
2
j = 1 by introducing another penalty term in the overall cost function:

Lθ =
3∑

j=1

|c2j + s2j − 1|2. (5.26)

This is done for the exact same reason as the previous two relaxations: the optimization

landscape appeared to be better behaved than when imposing stricter constraints.

Fig. 5.8 shows the results we obtain when trying to reconstruct an arbitrary two-

qubit Hamiltonian using this method. We again note that the Hamiltonian relative

error and the loss tend to decrease throughout the optimization. However, in this case

the relaxation method does not provide such a dramatic improvement in terms of the

confidence interval that the optimal solution can be found for any random Hamiltonian.

Specifically, it is noteworthy that, despite the consistent reduction of loss to values

below 10−5, the error in U does not consistently exhibit a corresponding decrease. An

explanation could be that U, and consequently H, are not uniquely determined.
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Figure 5.8: Two-qubit Hamiltonian reconstruction with the relaxation method

Solid lines show the median, and lighter shades correspond to the 25% quantiles.

Figure 5.9: Histogram of optimization performance

The x-axis is the relative error in H at the end of the optimization. Despite the majority of the
optimization trials converging to the optimal solution, there seem to be more than one minima

in the optimization landscape.
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5 Quantum Process Tomography via time-delayed measurements

In Fig.5.9, a histogram depicts the final error in the reconstructed Hamiltonian. While

the majority of trials converge to the correct solution, there are several instances where

the optimization becomes stuck at other extrema. We expect this issue to worsen as the

Hilbert space of the underlying system increases, and for this reason we do not believe

this method to be suitable for unstructured many-body systems.

5.5 Partial (subsystem) measurements

On a more positive note, the time-delayed measurements framework provides an com-

pelling possibility: the characterization of a Hamiltonian based only on measurements

restricted to a subsystem. This can be noted from the fact that our application of the

Takens theorem imposes no restrictions on the observable characteristic. It is there-

fore possible for the measurement operator in Eq. (5.5) to be decomposable as a tensor

product of an identity and smaller measurement operator.

As a simple toy-model to verify the applicability of the method, consider the follow-

ing: we have a dynamical two-qubit system behaving under an unknown time evolution

operator which we aim to characterize. One of the qubits is available for measurement,

while the other is inaccessible to us. Since we will suffer from the ambiguities described

in Sec. 5.3.1, and we have zero knowledge of the underlying Hamiltonian, we need to

resolve the ambiguity by using at least two initial states and measurement bases. We

assume that we are able to prepare the desired states with a high-fidelity, and that we

can switch between measurement bases via the gate C. Fig. 5.10 illustrates this setting.

|ψ⟩ e−iHt

C

Figure 5.10: Toy-model for the time-delayed partial measurement scenario

For the unambiguous reconstruction of H, we assume that one can prepare with high-fidelity
two different initial states and can select a measurement basis via the gate C.

For the numerical experiment shown in Figs. 5.11 and 5.12 below, we construct a ran-

dom Hamiltonian by drawing standard normal-distributed coefficients of Pauli strings,

which in sum form the Hamiltonian, H. This general Ansatz for the (traceless) H has

15 real parameters. So according to Takens theorem 31 time-points would be enough for
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5.5 Partial (subsystem) measurements

the reconstruction. However, we heuristically found that 12 time-delayed measurements

for each measurement basis are necessary for the optimization to reliably converge.

The measurements are performed at the 12 first time points generated by selecting

∆t = 1
5 and γ = 1.15. The specific observables are the X, Y and Z gates applied solely

on one of the two qubits. Fig. 5.11 shows exemplary measurement time trajectories.

The loss function is then mean squared error between the model prediction for the

measurement averages and the ground-truth values. Note that the goal of this exper-

iment is simply to demonstrate the feasibility of this method for a scenario with an

inaccessible subsystem. For this reason, we keep the model and optimizer simple, and,

to avoid getting trapped in the local minima observed in the previous section, we use

the best out of 10 attempts (in terms of the loss function) with different random starting

points.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time t

0.5
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0.3

0.2

0.1

0.0

0.1

0.2

(t)|(X  I)| (t)
(t)|(Y  I)| (t)
(t)|(Z  I)| (t)

Figure 5.11: Exemplary measurement time trajectories

The measurements correspond to the expectation values of the operators σx ⊗ I, σy ⊗ I and
σz ⊗ I. Two random initial states and their respective trajectories are used as input to the

reconstruction algorithm.

Fig. 5.12 shows the reconstruction error and loss function (median and 25% quantiles

based on 20 random realizations of the overall set-up). One observes that a reliable

and precise reconstruction of the Hamiltonian (even up to numerical rounding errors) is

possible in principle, when neglecting inaccuracies of the measurement process.
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0 2000 4000 6000 8000 10000
epoch

10 28

10 24

10 20

10 16

10 12

10 8

10 4

100 H rel. error
loss

Figure 5.12: Reconstruction error for a partially inaccessible system

The evolution of the relative error and loss throughout the optimization plotted here based on
20 random realizations. The solid lines are the median, whereas the shaded areas correspond to

the 25% quantiles.

5.6 Lattice systems

Until now, our focus has consistently been on random, arbitrary Hamiltonians. Nev-

ertheless, many experimental set-ups exhibit some form of underlying structure. For

instance, in the field of quantum computing, qubits are frequently organized in regular

grids [208–212] or 1D chains [213]. Hence, we shall now turn our attention to the task

of characterizing a structured Hamiltonian.

The application of Takens theorem here appears to be particularly fitting for two

main reasons. First of all, systems with a fixed underlying structure present less free

parameters compared to arbitrary systems of the same size. The embedding described

in Theorem 1 is dependent on the free parameters of H rather than the dimension of

the Hilbert space. In certain situations, as illustrated in the scenarios presented next,

this dependency could result in an exponential improvement in terms of the required

resources compared to conventional QPT. The second advantage is related to the am-

biguity problem presented in Sec. 5.3.1. Although we are not guaranteed to completely

resolve the issue, imposing assumptions on the physical nature of the Hamiltonian will

certainly help in the optimizer convergence to the ground-truth.
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5.6 Lattice systems

In order to put the method to the test, we first consider the case of an Ising Hamilto-

nian (see Sec. 2.2) with uniform parameters (not depending on the lattice site), i.e.,

H = −
∑
⟨j,ℓ⟩

J σzjσ
z
ℓ −

∑
j

h⃗ · σ⃗j (5.27)

with J ∈ R and h⃗ ∈ R3. Thus the task consists of reconstructing 4 real numbers,

irrespective of system size.

For the following numerical experiment we consider a 3 × 4 lattice with periodic

boundary conditions, and the initial state is a single wavefunction with complex ran-

dom entries (independently normally distributed). The parameters are set to J = 1 and

h⃗ = (0.5,−0.8, 1.1). We compute the time-evolved quantum state ψ(t) via the KrylovKit

Julia package [214], and use the squared entries of ψ(t) as reference Born measurement

averages.

Figure 5.13: Variational circuit used as a model for a lattice system

Single time step of the time evolution approximated via a Strang splitting into interaction and
local field terms. For simplicity, it is illustrated here for a one-dimensional lattice with n = 5

sites.

As a variational model for our optimization, we make use of the regular structure of

quantum circuits and construct a circuit Ansatz which benefits from the second order

accuracy of Strang splitting [215,216]. A single time step is therefore approximated via

the circuit shown in Fig. 5.13. Note that all single- and two-qubit gates are identical,

as they share their parameters J̃ and
⃗̃
h. In particular, the single-qubit gates are the

rotations

exp
(
−i∆t⃗h · σ⃗j/2

)
, (5.28)
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5 Quantum Process Tomography via time-delayed measurements

where σj is the operator σ being applied to qubit j, and the two qubit gates correspond

to the interaction

exp
(
−i∆tJσzjσzj+1

)
. (5.29)

For simplicity, we use three uniform time points ∆t, 2∆t, 3∆t with ∆t = 0.2 (instead

of time points tq = γq∆t), such that the quantum circuit for realizing a single time step

can be reused. This, naturally, implies that we are not strictly adhering to Theorem 1.

Nevertheless, in this particular scenario, we found that the requirements of Takens’

theorem are more stringent than what is necessary in practice.

As a cost function for the optimization, we quantify the ‘distance’ between the exact

Born measurement probabilities, p(t) = |ψ(t)|2, and the probabilities p̃(t) resulting from

the trotterized circuit Ansatz, via the Kullback-Leibler divergence:

DKL (p(t) ∥ p̃(t)) =
∑
j

pj(t) log
pj(t)

p̃j(t)
. (5.30)

Fig. 5.14 shows the relative errors of the Hamiltonian parameters throughout the

optimization, as well as the evolution of the loss function from Eq. (5.30). We have

used the RMSProp optimizer [67] with a learning rate of 0.005. As, usual the solid lines

correspond to the medians over 100 trials for random initial states, whereas the lighter

shaded areas correspond to the 25% quantiles.

The dashed horizontal line represents the loss function evaluated at the ground truth

values of J and h⃗, showing a non-zero value due to the Strang splitting approximation

of a time step. Notably, the optimization achieves an even smaller loss value starting

around training epoch 70. However, we interpret this as an artifact of the Strang splitting

approximation –observe that around this epoch, the relative error of h⃗ slightly increases

again. From this plot we can conclude that the reachable relative error is around 0.02,

and higher accuracy would likely require a smaller time step to reduce the Strang splitting

error.

Next, we consider an extension to the Hamiltonian in Eq. (5.27) by introducing dis-

order, i.e. both the external field and the interaction terms depend on the lattice site of

application:

H = −
∑
⟨j,ℓ⟩

Jj,ℓ σ
z
jσ

z
ℓ −

∑
j

hj · σxj (5.31)

with i.i.d. random coefficients Jj,ℓ and hj . For the numerical experiments, Jj,ℓ is uni-

formly distributed in the interval [0.8, 1.2], and hj is obtained from a normal distribution,

0.5N (0, 1). As the variational Ansatz we continue to use the circuit structure shown
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5.6 Lattice systems
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Figure 5.14: Reconstruction error for a uniform lattice system

The solid lines correspond to the median and the shaded areas to the 25% quantiles. The
reference loss was obtained by inputting the ground truth parameters into the cost function,

thereby capturing the error arising from the time-step approximation of the Ansatz.

in Fig. 5.13, but note that this time each gate is different and therefore the number of

parameters grows linearly with system size.

As for the uniform lattice experiment, we use the three uniform time points ∆t, 2∆t,

3∆t with ∆t = 0.2, and Eq. (5.30) as our cost function. We evaluate 100 realizations of

the experiment, with a set of coefficients and random initial state drawn independently

for each trial. The median and 25% quantiles of the errors are shown in Fig. 5.15.

Note that we are plotting the maximum over the relative errors of Jj,ℓ for all j, ℓ that we

observed throughout the random trials, and likewise for hj . Once again, the reference loss

function (the dashed line) is the KL divergence evaluated at the ground truth coefficients.

This time the ground truth loss fluctuates due to the different random coefficients at

each trial.

Similarly to the previous case, it is observed that the loss attains, and in fact exceeds,

the reference ground truth value. This implies that the errors observed for the optimized

parameters are optimal for the chosen time-step size. Achieving higher accuracies would

require improvements in the time-step approximation used for the Ansatz.
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Figure 5.15: Reconstruction error for a disordered lattice system

The solid lines correspond to the median and the shaded areas to the 25% quantiles. The
ground truth parameters where sampled randomly for each trial. This is also the reason why

the baseline loss presents fluctuations.
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6 Conclusion & Outlook

It is undeniable that the classical simulation and characterization of quantum systems

is a very challenging task. It is also true that breakthroughs in quantum technologies

could end up making the classical simulation of quantum systems redundant. However,

in the current paradigm of noisy intermediate-scale quantum computers, we must aim

to push the limits of the classical methods as a way to complement and benchmark the

current technologies.

Throughout this thesis, we have explored different topics spanning quantum physics

and machine learning. We have established the relevant theoretical background for both

fields, describing the key concepts used in the proposed methods. On the side of quantum

mechanics we have defined entanglement and entanglement entropy, and have considered

the challenges posed by the exponential growth of quantum systems. In contrast, on the

machine learning front we have explored the role of gradient descent in computational

optimization, and we have described how neural networks are constructed and optimized.

We have then discussed how all of this can be applied for the numerical approximation

of quantum systems.

In Chapter 4 we have seen how NNQS can be used as variational Ansatze for quantum

systems. Due to the extreme flexibility of their architectures, they hold great potential

to be able to capture the entanglement scaling of arbitrary quantum states. We have

demonstrated that it is possible, in principle, to use them for the simulation of quantum

real-time evolution. Our proposed optimization method based on gradient descent avoids

the numerical instabilities associated to SR, which helps mitigate the sudden decreases

in accuracy observed previously.

Although NNQS are not, as of right now, at the level of tensor networks in terms

of efficiency, it is important to keep in mind that they are still in the early stages of

theoretical study. A better understanding of the relevant physical region of the Hilbert

space, as well as of the geometrical manifolds represented by the networks, could guide

the designs towards for efficient choices. On top of that, there is a lot to be learned from

previous breakthroughs in the fields of tensor networks and machine learning.
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For instance, consider the renormalization techniques utilized in tensor networks, cur-

rently missing in the optimization of NNQS. These techniques are based on truncating

the weights matrices and are one of the most important factor in obtaining efficient

and accurate representations of the underlying states. These techniques are not directly

applicable to neural networks due to the introduction of non-linear maps, but it is still

worth considering if something can be learned from them. Could connections between

neurons be truncated in a systematic way to achieve similar results? Could the optimiza-

tion benefit from a similar approximation based on SVD applied to the weights’ update

matrix? These questions remain open and warrant further exploration. Moreover, while

in this work we have optimized the network parameters without any constraints, in-

troducing symmetries or a specific structure –particularly to the CNN filters– has the

potential to improve the observed accuracies.

On the machine learning front, on the other hand, two techniques have been funda-

mental in the processing of high dimensional and time series data: respectively, transfer

learning and transformers [217]. Transfer learning refers to the reutilization of previ-

ously trained weights for related or extended application problems. In the context of

lattice quantum systems, this technique could prove very useful as a means to reduce the

computational overhead. Specifically, CNN filters could be reused to represent models

whose only difference is the system size. In contrast, transformers are a different type of

network model. They have become the go-to model for machine learning task involving

time series, replacing and surpassing the performance of previously used CNN and RNN

models. However, they were only introduced as quantum Ansatze very recently [218]

and their full potential is still to be realized.

With respect to the characterization of quantum processes, in this thesis we began by

describing in detail the standard QPT protocol and, in Chapter 5 we proposed an opti-

mization based method with the aim of reducing the number of required measurement

operators. Our work demonstrates the feasibility of using measurements at different

time points to reconstruct the time evolution operator. The approach we presented has

two main benefits: Firstly, it requires only a few initial state and reduces the number

of different measurement bases needed. Although this does not translate to an expo-

nential decrease in the number of measurements, it does reduce the overall experimental

cost, particularly when maintaining the time evolution of the system is easier than im-

plementing a wide variety of projection measurements. Secondly, the method presents

great flexibility in terms of the chosen measurement operators, which leads to interesting

scenarios, such as being able to reconstruct the full Hamiltonian of system by measuring

only part of it.
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A natural extension to the proposed QPT method is to the characterization of non-

unitary processes, a.k.a dissipation and noise processes governed by a Lindblad equation.

This would introduce the additional challenge of a limited time window for extracting

information and a larger number of free parameters. However, the results from Sec. 5.5

point towards an attractive alternative: mapping the noisy processed to a unitary evo-

lution with an unobserved environment.

However, it is important to keep in mind the limitations of the method. For systems

of more than one qubit, the problem of multiple Hamiltonians describing the same

measurement trajectories has not been resolved. Although the relaxation method in

Sec. 5.4 works as a tool to smoothen the optimization landscape, it is still not possible to

guarantee the convergence of the optimization to the ground truth solution. Thus, a more

careful analysis of the symmetries in the Hilbert space with respect to the measurement

operators is needed. In this direction, the combination of the proposed method with the

idea of MUB and SIC-POVMs could be helpful.

On top of that, a more careful analysis of the protocol’s sensitivity with respect to

inaccuracies and noise in the measurement data is needed. A modified version of Takens

theorem still applies in this situation, but it is not clear how well the numerical opti-

mization would behave. Perturbation or gradient analysis of the algorithm could help

clarify this for a general scenario.
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[130] J. Emerson, R. Alicki, and K. Życzkowski. Scalable noise estimation with ran-

dom unitary operators. Journal of Optics B: Quantum and Semiclassical Optics,

7(10):S347–S352, September 2005. doi:10.1088/1464-4266/7/10/021.

[131] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer,

R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum

gates. Physical Review A, 77(1):012307, January 2008. doi:10.1103/physreva.

77.012307.

[132] E. Magesan, J. M. Gambetta, and J. Emerson. Scalable and robust randomized

benchmarking of quantum processes. Physical Review Letters, 106(18):180504,

May 2011. doi:10.1103/physrevlett.106.180504.

[133] J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost,

J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland. Randomized benchmarking

of multiqubit gates. Physical Review Letters, 108(26):260503, June 2012. doi:

10.1103/physrevlett.108.260503.

[134] J. M. Chow et al. Randomized benchmarking and process tomography for gate

errors in a solid-state qubit. Physical Review Letters, 102(9):090502, March 2009.

doi:10.1103/physrevlett.102.090502.

[135] S. Olmschenk, R. Chicireanu, K. D. Nelson, and J. V. Porto. Randomized

benchmarking of atomic qubits in an optical lattice. New Journal of Physics,

12(11):113007, November 2010. doi:10.1088/1367-2630/12/11/113007.

99

http://dx.doi.org/10.1063/1.1904595
http://dx.doi.org/10.1063/1.1904595
http://dx.doi.org/10.1038/nature13821
http://dx.doi.org/10.1038/nature13821
http://dx.doi.org/10.1038/s41467-019-11369-5
http://dx.doi.org/10.1007/s11128-023-04008-y
http://dx.doi.org/10.1088/1464-4266/7/10/021
http://dx.doi.org/10.1103/physreva.77.012307
http://dx.doi.org/10.1103/physreva.77.012307
http://dx.doi.org/10.1103/physrevlett.106.180504
http://dx.doi.org/10.1103/physrevlett.108.260503
http://dx.doi.org/10.1103/physrevlett.108.260503
http://dx.doi.org/10.1103/physrevlett.102.090502
http://dx.doi.org/10.1088/1367-2630/12/11/113007


BIBLIOGRAPHY

[136] A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofŕıo, I. H. Deutsch, and P. S.
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Quantum-dot spin-state preparation with near-unity fidelity. Science,

312(5773):551–553, April 2006. doi:10.1126/science.1126074.

[195] F. Marvasti, editor. Nonuniform Sampling: Theory and Practice. Information

Technology: Transmission, Processing and Storage (PSTE). Springer, 2001.

[196] H. F. Hofmann. Information and noise in quantum measurement. Physical Review

A, 62(2):022103, July 2000. doi:10.1103/physreva.62.022103.

105

http://dx.doi.org/10.1073/pnas.17.5.315
http://dx.doi.org/10.1073/pnas.17.5.315
http://dx.doi.org/10.1073/pnas.18.3.255
http://dx.doi.org/10.1073/pnas.18.3.255
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1007/s00332-019-09598-5
http://dx.doi.org/10.1137/19m1277059
http://dx.doi.org/10.48550/ARXIV.MATH-PH/0005032
http://dx.doi.org/10.1038/s41567-022-01590-3
http://dx.doi.org/10.1038/s41567-022-01590-3
http://dx.doi.org/10.1103/physrevlett.127.130505
http://dx.doi.org/10.1103/physrevlett.127.130505
http://dx.doi.org/10.1126/science.1126074
http://dx.doi.org/10.1103/physreva.62.022103


BIBLIOGRAPHY

[197] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf. In-

troduction to quantum noise, measurement, and amplification. Reviews of Modern

Physics, 82(2):1155–1208, April 2010. doi:10.1103/revmodphys.82.1155.

[198] R. D. Delaney, M. D. Urmey, S. Mittal, B. M. Brubaker, J. M. Kindem, P. S.

Burns, C. A. Regal, and K. W. Lehnert. Superconducting-qubit readout via low-

backaction electro-optic transduction. Nature, 606(7914):489–493, June 2022. doi:

10.1038/s41586-022-04720-2.

[199] D. I. Schuster et al. Resolving photon number states in a superconducting circuit.

Nature, 445(7127):515–518, February 2007. doi:10.1038/nature05461.

[200] H. Y. Wong, P. Dhillon, K. M. Beck, and Y. J. Rosen. A simulation methodology

for superconducting qubit readout fidelity. Solid-State Electronics, 201:108582,

March 2023. doi:10.1016/j.sse.2022.108582.

[201] J. Janesick and J. Tower. Particle and photon detection: Counting and energy

measurement. Sensors, 16(5):688, May 2016. doi:10.3390/s16050688.

[202] S. J. van Enk and R. Blume-Kohout. When quantum tomography goes wrong:

drift of quantum sources and other errors. New Journal of Physics, 15(2):025024,

February 2013. doi:10.1088/1367-2630/15/2/025024.

[203] N. K. Langford. Errors in quantum tomography: diagnosing systematic versus

statistical errors. New Journal of Physics, 15(3):035003, March 2013. doi:10.

1088/1367-2630/15/3/035003.

[204] B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate.

Physical Review A, 63(6):062309, May 2001. doi:10.1103/physreva.63.062309.

[205] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley. Geometric theory of nonlocal two-

qubit operations. Physical Review A, 67(4):042313, April 2003. doi:10.1103/

physreva.67.042313.

[206] O. Gamel. Entangled bloch spheres: Bloch matrix and two-qubit state space.

Physical Review A, 93(6):062320, June 2016. doi:10.1103/physreva.93.062320.

[207] Q. Huang and C. B. Mendl. Classical simulation of quantum circuits using a

multiqubit bloch vector representation of density matrices. Physical Review A,

105(2):022409, February 2022. doi:10.1103/physreva.105.022409.

106

http://dx.doi.org/10.1103/revmodphys.82.1155
http://dx.doi.org/10.1038/s41586-022-04720-2
http://dx.doi.org/10.1038/s41586-022-04720-2
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1016/j.sse.2022.108582
http://dx.doi.org/10.3390/s16050688
http://dx.doi.org/10.1088/1367-2630/15/2/025024
http://dx.doi.org/10.1088/1367-2630/15/3/035003
http://dx.doi.org/10.1088/1367-2630/15/3/035003
http://dx.doi.org/10.1103/physreva.63.062309
http://dx.doi.org/10.1103/physreva.67.042313
http://dx.doi.org/10.1103/physreva.67.042313
http://dx.doi.org/10.1103/physreva.93.062320
http://dx.doi.org/10.1103/physreva.105.022409


BIBLIOGRAPHY
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A Appendix

A.1 Wirtinger formalism

As mentioned in the main text, the evaluation of the cost function we define in Eq. (4.18)

requires operations with complex numbers. Our objective is to minimize this function,

or, to be precise, the expected prediction error for data not used during training [219].

In order to use a gradient descent method for its optimization, we thus need to apply

complex analysis (cf. [220,221]).

We utilize the Wirtinger formalism to calculate the gradients of the cost function with

respect to the complex-valued parameters. While not extensively adopted in the realm

of artificial neural networks, this formalism has found application in certain contexts,

as seen in, for example, [222, 223] and related literature. The Wirtinger or Dolbeault

operators are formally defined as follows:

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z∗
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
(A.1)

where z is a complex variable, and x and y are its real and imaginary parts respectively.

Here, the partial derivative operators act on (real-) differentiable (identifying C ≃ R2)

functions f : U → C (with U ⊂ C some open subset of C), which are not required to be

holomorphic.

Nevertheless, consider the case where

f(z) = f(x+ iy) = u(x, y) + iv(x, y) (A.2)

is indeed holomorphic. For a complex function to be differentiable at point (x0, y0) it

must satisfy the Cauchy-Riemann equations

∂u

∂x

∣∣∣
x0,y0

=
∂v

∂y

∣∣∣
x0,y0

,
∂u

∂y

∣∣∣
x0,y0

= −∂v
∂x

∣∣∣
x0,y0

. (A.3)
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This implies that, in this case, the Wirtinger derivative ∂/∂z is equal to the complex

derivative of f , whereas the conjugated Wirtinger derivative vanishes:

∂f(z)

∂z
= f ′(z),

∂f(z)

∂z∗
= 0 ∀z ∈ U, f holomorphic (A.4)

Also, complex conjugating the second identity leads to ∂f∗(z)/∂z = 0. Thus, if one

chooses a holomorphic Ansatz ψ, computing the derivative of ψ with respect to its

parameters can be done via commonly used methods in machine learning. Note that

popular machine learning packages, such as Tensorflow [224] and Pythorch [225], cur-

rently support (at least some) complex valued operations, including differentiation of

holomorphic functions.

Unfortunately for us, the cost function considered in Eq. (4.18) is not holomorphic,

which can be directly seen from the fact that its output is a real number. For functions

of this kind, f : U → R, the partial derivatives with respect to x and y can be obtained

from the Wirtinger derivative via

∂f

∂x
= 2Re

(
∂f

∂z

)
,

∂f

∂y
= −2 Im

(
∂f

∂z

)
. (A.5)

Furthermore, with a straightforward calculation one can confirm that the chain rule

becomes:
∂

∂z
(g ◦ f) =

(
∂g

∂w
◦ f
)
· ∂f
∂z

+

(
∂g

∂w∗ ◦ f
)
· ∂f

∗

∂z
. (A.6)

This, in turn, can be naturally generalized to functions of several variables. For a vector

z ∈ Cn, we use the notation

∇W
z =

(
∂

∂z1
, . . . ,

∂

∂zn

)T

(A.7)

for the Wirtinger nabla operator.

Consider the map fθ : U ⊂ Cn → Cm, where θ ∈ Cp represents the complex-valued

parameters of an artificial neural network, and the network has an input dimension of n

and an output dimension of m. Then our goal is to minimize:

min
θ
C(θ), C(θ) =

N∑
j=1

c
(
fθ
(
x(j)
)
, y(j)

)
(A.8)

with c : Cm × Ck → R depending on the network output and training labels y(j) ∈ Ck.

Here (x(j), y(j))j=1,...,N a given sequence of training samples. We assume that fθ is
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holomorphic as function of the parameters θ (as we can always choose our Ansatz ψ to

be). Applying the chain rule (A.6) and using the previous result that ∇W
θ f

∗
θ = 0 leads

us to

∇W
θ C(θ) =

N∑
j=1

m∑
k=1

∂c
(
fθ
(
x(j)
)
, y(j)

)
∂fθ,k

(
x(j)
) ∇W

θ fθ,k
(
x(j)
)

(A.9)

with the subscript k denoting the k-th output component of fθ. In this equation, the

gradient with respect to the real and imaginary parts of θ is obtained via Eq. (A.5).

As basic example, and relevant to the cost function used in the main text, the

Wirtinger derivative of the quadratic cost (for a, y ∈ Cm)

c(a, y) = ∥a− y∥2 =
m∑
j=1

|aj − yj |2 (A.10)

reads
∂c(a, y)

∂aj
= (aj − yj)

∗. (A.11)

Combined with the chain rule, we can conclude that the gradients of Eq. (4.18) with

respect to the optimization parameters are

∂C

∂θℓ
=

∂C

∂(Aψ)

∂(Aψ)

∂ψ

∂ψ

∂θℓ
=

〈
Aψ − b

∣∣∣A∂ψ
∂θℓ

〉
. (A.12)

A.2 Error analysis

In order to proof the feasibility of this method to avoid the numerical amplification of

stochastic errors, we need to carefully consider how the errors at one time-step propagate

through the numerical integration. To this goal, we differentiate between three different

wave functions: the exact one, ψ(t); the one obtained by the exact midpoint time-

evolution, ψ∆(t); and the one represented by the network, ψN (t).

The error of the network Ansatz at time t will be given by

ε(t) = ψ(t)− ψN (t). (A.13)

This, in turn, can be split into the error due to the the midpoint method and the error

due to the network optimization. That is, the total error is

ε(t) = ε∆(t) + εN (t) (A.14)
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where the numerical integration error is given by

ε∆(t) = ψ(t)− ψ∆(t) (A.15)

and the error strictly coming from the network optimization is

εN (t) = ψ∆(t)− ψN (t). (A.16)

Using the triangle inequality we can set an upper bound to the absolute error:

|ε(t)| ≤ |ε∆(t)|+ |εN (t)| (A.17)

As indicated by Eq. (4.16), to determine the state at the subsequent time step using the

midpoint rule, one needs to solve the following linear matrix equation:

Aψ∆(tn+1)−Bψ∆(tn) = 0 (A.18)

where

A = I +
i∆t

2
H (A.19)

and

B = I − i∆t

2
H. (A.20)

As a second-order Runge-Kutta method, its global error is of the order of O(∆t2).

However, this linear system is not solved exactly, but instead the parameters in ψN (tn+1)

are optimized to minimize Eq. (A.18). This means that in reality, we are solving the

equation

AψN (tn+1)−BψN (tn) = r(n+1), (A.21)

where r(n+1) is the residual obtained at the end of the optimization in time-step n+ 1.

To see how this residual and the network error interact, we introduce εN (tn) into

Eq. (A.21) by using its previous definition, and we obtain

A(ψ∆(tn+1)− εN (tn+1))−B(ψ∆(tn)− εN (tn)) = r(n+1). (A.22)

Since the exact midpoint rule must be 0 (see Eq. (A.18)) this simplifies to

εN (tn+1) = A−1
(
BεN (tn)− r(n+1)

)
. (A.23)
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A.3 Geometrical perspective

Similar to our approach for the midpoint error, we have now established a recursive

relation for the network error at the next time step. Subsequently, through a proof by

induction, one can demonstrate that

εN (tn) = −B−1
n∑

m=1

A−mBmr(n+1−m), (A.24)

for all n > 0. Observe that the application of A−1B corresponds to a single time

step in the midpoint time evolution. Consequently, the residual from each time step is

incorporated into the error and undergoes unitary time evolution –thus preserving it’s

norm. We can then conclude that the residual does not significantly amplify the error

as an artefact of the integration technique.

A.3 Geometrical perspective

Recall from the description of SR in the main text that, from a geometrical perspec-

tive, the architecture of the neural network defines the manifold M to which the time-

evolution is restrained. In SR the parameters are updated by projecting the true deriva-

tive at the current time onto M (see Fig. A.1)

On the other hand, the gradient-based minimization proposed in this thesis is already

restricted to M. What happens in this case is that the parameters converge to the

point of minimum distance to the time-step obtained from the integration flow Φ. Note

that this point must necessarily be the projection of Φ(t) onto the manifold. Both

optimization approaches are therefore equivalent from a geometrical perspective, and

their differences reside simply in their numerical stability and computational complexity

–SR being the more computationally efficient one and the gradient-based optimization

being the more stable approach.

A.4 Filter weights visualization

For completeness, in Fig. A.2 we present the five complex-valued convolution layer filter

weights for the time evolution of the 2D system at three time points, for the quench to

h = 2hc. It appears that the amplitudes vary rather slowly as compared to the complex

arguments (phases), although it is not clear why this is or how this effect could be

leveraged.

113



A Appendix

M

−iH|ψ⟩

ψ(0)

True trajectory Projection to manifold
Φ∆t(ψ(0)) SR update

Figure A.1: Geometric interpretation of the optimization updates

Comparison from a geometrical point of view of the update achieved by SR and a gradient
descent based method from a numerical integration flow Φ∆t
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A.4 Filter weights visualization
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Figure A.2: CNN filters

(a) Amplitudes and (b) arguments of the complex weights for each filter of the CNN in Fig. 4.9,
for the h = 2hc simulation shown in Fig. 4.10. The rows corresponds to different time points.
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