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Aspects and probes of strongly correlated quantum phases in
two dimensions

Abstract

In this thesis, we study new probes, platforms and phases of two-dimensional quantum
many-body systems. We demonstrate how the spatial structure of electronic wavefunctions
can be probed by optically induced quantum impurities. We use this method to observe
correlatedMott-Wigner states and the two dimensional Wigner crystallization transition.
We then demonstrate how interactions between quasi-particles can be tuned via solid-state
Feshbach resonances, which establishes connections between two dimensional materials
and the physics of ultra-cold atomic gases. Last, we study spin-liquid phases in the Fermi-
Hubbard model on a triangular lattice, which emerge robustly in the presence of large ex-
ternal fluxes. Possible critical theories describing the phase transitions of the spin liquid and
experimental platforms are also proposed.
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Aspects and probes of strongly correlated quantum phases in
two dimensions

Kurzfassung

In dieser Arbeit untersuchen wir neue Sonden, Plattformen und Phasen zweidimension-
aler quantenmechanischer Vielteilchensysteme. Wir zeigen, wie die räumliche Struktur von
elektronischenWellenfunktionen durch optisch induzierte Quantenstörstellen untersucht
werden kann. Wir verwenden diese Methode, um korrelierte Mott-Wigner-Zustände und
den Übergang zu einem zweidimensionalenWigner-Kristall zu beobachten. Anschließend
zeigen wir, wie Wechselwirkungen zwischen Quasiteilchen über Festkörper-Feshbach-
Resonanzen gesteuert werden können, was Verbindungen zwischen zweidimensionalen
Materialien und der Physik ultrakalter atomarer Gase etabliert. Abschließend untersuchen
wir, wie robuste Spin-Flüssigkeiten im Fermi-Hubbard-Modell auf einem dreiecks Gitter in
Anwesenheit großer externer magnetischer Flüsse entstehen. Mögliche kritische Theorien
zur Beschreibung der Phasenübergänge der Spin-Flüssigkeit sowie experimentelle Plattfor-
men werden ebenfalls vorgeschlagen.
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1
Introduction

Collective effects emerge in nature when large groups of objects starts to interact with each
other. Everyday examples range from swarm formation in birds to traffic jams. Why does
such behaviour emerge, and what are the rules which govern it? This is the main question
that drives condensed matter physics.

Indeed, almost all many-body systems form some type of collective order at low enough
temperatures: atoms tend to form crystalline structures, certain materials spontaneously
give rise to magnetic fields and some metals turn superconducting. Phases of matter which
develop such ”classical order” are analyzed in terms of Landau theory [1]. At its core one
analyzes the interplay between the spontaneous breakdown of symmetries, long-wavelength
fluctuations; and thermodynamics. This theory has been immensely successful in classifying
phases of matter and their dynamics [2] and has taught us many universal properties of their
phase transitions [3]. However, this exploration is not of purely academic interest. Much of
modern day technology, such as gas liquefaction via the Linde cycle, magnetic memory and
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liquid crystal displays, rests on our understanding of broken symmetries and phase transi-
tions.

Ever since the discovery of the fractional quantumHall effect in 1982 [4], we know that
many-body systems can exhibit order beyond the Landau paradigm. Interactions may stabi-
lize an exotic intrinsic topological order, which is not directly tied to any obvious global sym-
metry. Instead, topologically ordered phases are best thought of as deconfined gauge theo-
ries, which reveals deep connections to high energy physics [5]. At least when their funda-
mental constituents are bosonic, these phases are referred to as spin liquids. Assuming that
all excitations cost a finite amount of energy, spin liquids differ from conventional phases in
several ways. They host fractional excitations, and feature a ground state degeneracy, which
depends on the genus of the surface they are defined on [6]. This can be connected to the
fact that topologically ordered states are hard to deform into trivial product states, i.e. their
ground state wavefunctions posess long-range quantum entanglement [7, 8, 9]. If one could
realize and manipulate spin-liquid phases in the lab, the presence of anyons in two dimen-
sions would enable topological quantum computation [10]. While spin liquids can be con-
structed on paper in solvable fixed-point models, this last part turns out to be a formidable
experimental challenge [11, 12]. Classical ordering at low temperatures is hard to suppress,
while parameters are hard to control. This adds to the fragility of these phases. Further-
more, fractionalization of excitations generically lead to broad spectral features, which are
hard to uniquely tie to the existence of a spin liquid. Therefore, the unequivocal observa-
tion of a spin liquid phase and its transitions in a solid remains a critical open problem.

Similar issues appear when studying classical order in low dimensions. The presence of
strong (quantum) fluctuations and interactions makes it hard to theoretically model cor-
related regimes. As a result, the phase diagram of high-Tc superconductors and the two
dimensional electron gas are still debated [13, 14, 15]. Experimental progress is hindered
as solids often lack sufficient tunability as well as access to direct probing schemes, which
obscures the identification of order [13].

History has taught us, that much of our theoretical understanding advances hand in hand
with experimental discoveries and capabilities. Indeed, we live in exciting times as novel plat-
forms such as neutral atoms in optical lattices and tweezers [16, 17], quantum computing
platforms [18, 19], and designer materials [20] have made remarkable advances over the last
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couple of years. On the one hand, controllable platforms to study strongly correlated in-
sulators were discovered in solids [21, 22], while first signatures of a spin-liquid phase were
probed in Rydberg atom arrays [23] and superconducting qubits [24]. This illustrates the
possibility to utilize these new platforms, along with the opportunities and probes they pro-
vide, to revisit long-standing problems in condensed-matter physics. Besides closing gaps
in our understanding, these platforms will enable the realization of entirely new phases of
matter.

The goal of this thesis is to address some of the open problems outlined above. We focus
on engineering, understanding and probing exotic phases of matter with both symmetry-
breaking and topological order. The structure of the following chapters is summarized be-
low:

• In Chapter 2, we review the strongly correlated electron models relevant to this the-
sis. We also provide a brief introduction to the physics of two-dimensional materials,
which have recently emerged as rich, tunable experimental platforms to study the
phases of such models as well as their transitions.

• In Chapter 3, we introduce a new class of optical probes which are directly sensitive
to spatial correlations of electrons. We provide a simple theoretical model, which
demonstrates that crystallization transitions, as well as their precursors can be reliably
detected in two dimensional semiconductors. We conclude this chapter by applying
our theory to recent experimental data, which provides a first observation of Wigner
crystallization in a two dimensional material and the detection of a magneto-roton
mode in an integer quantumHall state.

• In Chapter 4 we propose how interactions between electronic and excitonic quasi-
particles can be tuned via an analogue of an atomic Feshbach resonance, simply by
changing external electric fields. This establishes connections between two seemingly
unrelated areas of physics and provides the opportunity to study the rich phase dia-
gram of Bose Fermi mixtures in solid state systems. We then present a recent experi-
mental observation of such a resonance. Using the Feshbach mechanism, the strong
coupling regime between a dilute concentration of optical excitations and a Fermi sea
could be reached.
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• Chapter 5 starts with a brief introduction to spin liquids. We then show that apply-
ing large magnetic fields can stabilize a remarkably robust chiral (pseudo-) spin liquid
in the triangular lattice Hubbard model. We propose moiré systems as natural exper-
imental platforms to realize these systems and discuss suitable signatures. To finalize
this chapter we comment on potential critical theories which set the phase bound-
aries of the chiral spin liquid.

• In Appendix A we review the contact approximation for two dimensional scatter-
ing and provide a theory for more general Feshbach resonances. We also discuss a
non-equilibrium field theory approach to the impurity problem in the presence of a
Feshbach resonance.

• Appendix B discusses a derivation of the effective Hubbard model and includes a
detailed stability analysis of the spin-liquid phases in our model.

• Chapter 6 concludes this thesis by summarizing our results and highlighting future
directions.
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2
Preliminaries

We introduce important concepts for models and experimental platforms relevant to this
thesis.

2.1 Modelling many-body systems

Even if one was handed a many-body wavefunction of an exotic state, the difficult task of
identifying the basic principles which govern its stability would remain. This, however, is
crucial for both our understanding of condensed matter physics and our ability to prepare
exotic quantum phases in experiments. The goal of a condensed matter theorist is therefore
to develop and understand simple models, which can serve as a bridge between theoretical
ideas and experimental observations. The hope is that these models capture universal be-
haviour which remains applicable to more complicated systems found in the real world. An
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additonal advantage of such systems is that they are often computationally more tractable,
which is important as the cost to simulate a quantum system generally scales exponentially
with system size. In certain cases, they allow for the construction of exact or approximate
solutions, which helps to gain a deeper understanding of a systems’ behaviour.

For the purpose of this thesis, there are two major models which guide the physical thinking
in the field strongly correlated electron systems: the Jelliummodel and the Hubbard model,
which we introduce below. We concentrate on two-dimensional variants of these models,
where quantum fluctuations and interactions are particularly strong. In this context, exotic
phase transitions and quasi-particles emerge. We conclude this chapter by highlighting that
two-dimensional materials provide natural experimental platforms, well described by these
models.

2.2 Jellium model

The simplest possible starting point for studying electronic quantummatter, are spinful
electrons moving on a two dimensional plane. In a realistic system, electromagnetism tells
us that charges repel, which means that we should really study electrons in the presence of
Coulomb repulsionV(x) = e2/4πεε0|x|. A good starting point is then provided by the
following Hamiltonian

Ĥ =
∑

σ∈{↑,↓}

∫
d2x ψ†

σ(x)(
→2

2m∗ −μ)ψσ(x)+
∫

d2x
∫

d2y (n̂(x)−n0)V(x−y)(n̂(y)−n0),

(2.1)
where ψ†

σ(x) creates an electron in spin state σ at position x, n̂(x) is electronic charge den-
sity, μ is the chemical potential, and we have subtraced the background density n0 we have
implicitly added a neutralizing charge background. The Jelliummodel described by Eq. 2.1
has a long history and some of its properties are already well understood [25, 13].

Fermi liquid— If the system does not undergo a phase transition, i.e. does not form for
example a magnet or a superconductor, metallic states prevail. In this case, Fermi liquid
theory states that quasi-particle excitations close to the Fermi surface are still connected to
free electronic state even in the presence of repulsive interactions. Specifically this means
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that the inverse lifetime of electronic excitations scale as τ−1 ∼ Max (T2/E2F, !2ω2/E2F),
where T is temperature and !ω is the energy of the excitation measured from the Fermi sur-
face. In some sense this implies that a metal can still be thought of as a free Fermi gas, albeit
with renormalized parameters [25]. This result is remarkable, because metals are gapless and
thereby particularly susceptible to perturbations.

Wigner crystal— In the limit where interactions dominate over the kinetic energy, one may
imagine that the electrons will form a minimal packing configuration given by a triangular
lattice. This indeed happens for Eq. 2.1 in the strongly interacting limit when electrons
spontaneously break translational symmetry to form aWigner, named after EugeneWigner,
who first predicted the phase in 1934 [26]. The strength of interactions is quantified by the
dimensionless rs parameter which relates kinetic and interaction energies as follows:

rs =
Eint.
Ekin.

= m∗e2/(4πε0ε!2
↔
πne) ∼ 1/↔ne (2.2)

Interactions are strongest in the dilute limit. While both Coulomb-interactions and kinetic
energy grow with decreasing particle separation, the interaction energy term dominates at
low densities. QuantumMonte Carlo calculations suggest that a Wigner crystal is formed
for rs ! 30 [27].

Transition and intermediate phases—The transition is best analyzed by constructing the
free energy of the system, F, in a phenomenological Landau Ginzburg approach. In general,
the free energy is a function of only a few variables, including temperature, pressure and a
set of order parameters η, which are non-zero only in the spontaneously symmetry breaking
phase: F = F(T, p, η). In the crystalline phase the density is modulated in a triangular
lattice, described by reciprocal lattice vectors

G1 =
1

2πa(1, 1/
↔
3)T and G2 =

1
2πa(−1, 1/

↔
3)T, (2.3)

with a the lattice constant. We parameterize the density modulation via

〈n(x)〉 − n0 =
∑

G&=0

〈ñ(G)〉eiG·x, (2.4)

where n0 is the average density and ηG = 〈ñ(G)〉 ≃= 0 signal broken translational symmetry.

9



Since under translations x → x+ awe find

ηG → eiG·aηG, (2.5)

any non-zero fourier harmonic indicates breaking of translations. Close to the transition it
is reasonable to assume that crystal formation is dominated by the 6 lowest harmonics of the
triangular lattice {Gi}i=1,...6. Such triangular structures are special, as three reciprocal lattice
vectors of equal length can sum to zero:

G1 + G2 + G3 = 0, (2.6)

see Fig. 2.1 for an illustration. This mathematical fact is related to the fundamental obser-

G2 G1

−G1 − G2

Figure 2.1: Reciprocal lattice vectors of the triangular lattice. Reciprocal lattice vectors of the Wigner
crystal related by a 120◦ rotation (grey arrow) sum to zero in groups of three (black and blue arrows).
This renders the crystallization transition first order.

vation, namely that crystallization transitions are first order [1, 28, 29]. This can be under-
stood by the phenomenological construction of F(T, p, η) based on analyticity and sym-
metry. Assuming that one can expand in the order parameters close to the transition, this
motivates the following form for the free energy

F/V =
6∑

i=1
r |ηGi

|2 − w
6∑

ijk=1

ηGi
ηGj

ηGk
δGi+Gj+Gk,0

+u
6∑

ijkl=1

ηGi
ηGj

ηGk
ηGl

δGi+Gj+Gk+Gl,0,

(2.7)
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where ηG = η∗−G, r,w and u depend on temperature, pressure, density, etc.. The cubic term
is only present due to the triangular lattice structure Eq. 2.6, while the transition is driven
by a sign change of r. By minimizing Eq. 2.7 one finds that unless w is fine-tuned to zero,
the cubic terms turn the transition (weakly) first order [28]. First order transitions are ac-

Figure 2.2: Schematic of the phase diagram of the 2d electron gas. For low rs (high densities), the
system forms a Fermi liquid, while for high rs (low densities) the system forms a triangular crystal.
Since direct first order transitions are forbidden in the electronic system due to long‐range interac‐
tions, intermediate phases must exist.

companied by phase separation, however, in the case of the Jelliummodel this is forbidden
by long-range repulsion [30]. This prohibits a direct transition between the Fermi liquid
and theWigner crystal phase. Rather the transition must be replaced by potentially several
intermediate phases, such as stripes and bubbles [31].

This is where we reach the unexplored regime of the model Eq. 2.1. The nature of the
intermediate phases, as well as the spin order in the Wigner crystal phase are still uncer-
tain [32, 13, 33]. These long-standing problems are not just hard to treat theoretically, but
also difficult to explore in experiments, partially because it is hard to directly probe spatial
correlations in the model [34]. We make progress on the latter problem in Chapter 3, where
we introduce novel optical techniques that allow us to probe the crystalline order and its
precursors. Furthermore, we demonstrate how to couple bosonic modes to the Fermi-liquid
phase in a tunable fashion in Chapter 4. This is interesting as it this allows us to to modify
the properties of the Fermi liquid as well as to drive instabilities to ordered phases such as
superconductors.

2.3 The Fermi-Hubbard model

Restricting fermions to move only on a discrete lattice, is generally a good idea. Given that
almost all material systems in condensed-matter physics can be thought of as electrons re-

11



siding in orbitals of an underlying atomic lattice, this is very close to physical reality. From a
theoretical perspective, it allows for a rigorous definition of many-body Hamiltonians since
lattice models are mostly free from unphysical divergences. More importantly, however,
lattice systems are fundamental to understand correlated insulators and magnets, as they
naturally stabilize novel phases of matter. The simplest such lattice model is described by
the following Hamiltonian:

Ĥ = −
∑

ij,σ
tij c†i,σcj,σ − μ

∑

i,σ
nσ(i) + U

∑

i
n↑(i)n↓(i), (2.8)

where c†iσ creates an electron on site i of the specific lattice we are considering, tij denotes the
tunneling strength between lattice sites i and j, μ is the chemical potential andU is a repul-
sive interaction which penalizes two electrons sharing a single lattice site. These interactions
originate from Coulomb repulsion, but it often suffices to only retain on-site contributions
of strengthU*. Eq. 2.8 is the Hubbard model, named after John Hubbard, who introduced
it in 1963 [35].

Correlated insulators— For smallU/t the system generically behaves similar to the Fermi
liquids discussed in the Jelliummodel. However a correlatedMott insulator appears in the
limitU/t ) 1 at half filling. In this case hopping is allowed for electrons in opposite spin
states, but necessarily generates double-occupancies. These are strongly suppressed by the
large energy scaleU. Therefore, charges remain frozen and obey an effective single occupancy
constraint

n↑(i) + n↓(i) = 1, (2.9)

while the fluctuations of electronic spins are described by anti-ferromagnetic Heisenberg
Hamiltonians [36], gives rise to quantummagnetism. The interplay between spin and
charge fluctuations enriches Metal-Insulator transitions much beyond to their well-understood
bosonic counterparts [3]. In high dimensions Metal-Insulator transitions are often first
order, while continuous transitions may exist in two dimensions on special lattice geome-
tries [14, 37]. Interest in the Hubbard model has been growing, every since the discovery of
high-Tc superconductivity in 1986 [38], which is believed to be described by a hole doped
Fermi-Hubbard model on a square lattice. Soon thereafter, it was realized that innocuous

*Longer-range interactions are easily included. We discuss their effects in appendix B.
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looking constraints like Eq. 2.9 may play an important role in forming superconducting
order [39, 40]. However, despite years of work, the phase diagram of the doped Fermi-
Hubbard model on square and triangular lattices, remains debated [15, 37, 41, 42].

Despite this lack of consensus, there are reasons to be hopeful. In an interesting turn of
events, the difficulty in analyzing the Fermi-Hubbard model has sparked experimental ef-
forts, aiming to design platforms which closely mimic the Hubbard model [43, 16, 44]. In
contrast to the cuprates, some of these platforms are highly tunable, which provides an ideal
test bed for theorists [45, 46]. By leveraging the properties of these platforms, we explore
the phase diagram of the Hubbard model on a triangular lattice in Chapter 5. We demon-
strate that in the presence of strong magnetic fields the single-occupancy constraint rise to
a robust spin-liquid phase. This is a concrete example, how a gauge theory, such as elec-
tromagnetism, can emerge in a realistic model. We also discuss candidate critical theories,
which govern the appearance and disappearance of this spin liquid phase.
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2.4 Emerging Experimental Platforms

Searching for exotic phases of matter in solid-state systems is a difficult task, as properties
of solids are generically hard to control experimentally which limits progress in under-
standing their underlying physics. Furthermore, experimental platforms in which ideal-
ized theoretical models can be controllably engineered and tested are rare and were so far
limited to small parameter regimes. This leaves exotic states, such as high-Tc supercon-
ductivity and spin liquids, as well as their underlying mechanisms, poorly understood.
Remarkably a recent surge of experimental advances in the field of two-dimensional ma-
terials, atomic quantum gases, and quantum computing platforms has made it possible to
systematically explore exotic phases of matter due to the unusually high tunability of these
systems [16, 44, 47, 22, 48, 23, 24].

Two dimensional materials as emerging experimental platforms

The experimental realization of atomically thin materials had a large impact on solid state
physics as they allow for tunable electron densities and can naturally host strong Coulomb
interactions as screening is suppressed compared to bulk three dimensional materials. Fur-
thermore, a large class of systems such as Graphene and transition metal dichalcogenides
(TMDs) have a particularly simple atomic structure, which makes it possible to theoreti-
cally model their electronic properties. For both of these materials, atoms are arranged in a
triangular lattice with two atoms per unit cell. In the case of Graphene two pz orbitals form
low-energy bands, which hostDirac cones at theK andK′ = −K points in the Brillouin
zone. These points dominate much of the electronic protperties of Graphene and are pro-
tected by time reversal T and inversion symmetry I (which exchanges the two sublattices).
As such, Graphene has an emergent relativistic symmetry, and a vanishing density of states
at the Fermi level, which in combination with the steepness of the Dirac cones suppresses
interaction effects. In TMDs, on the other hand, the unit-cell is composed of one metal
(M) and two out-of-plane separated chalcogen atoms (X), introducing a staggered poten-
tial for electrons on the A and B sublattices, thereby breaking I symmetry and gapping out
the Dirac Cones [49]. The lattice and the Brillouin zone is schematically shown in Fig. 2.3a.
The points of lowest energy remain at theK andK′. However, the electronic dispersion is
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Figure 2.3: Schematic electronic structure of monolayer TMDs. Single layers of group‐IVB TMDs
have a chemical composition of one metal and two chalcogen atoms (MX2). a) Top‐down and side
view of the hexagonal atomic lattice, which forms a honeycomb structure with metal atoms sitting
at the A‐sites (shown in blue) and two chalcogen atoms sitting at the B‐sites (shown in red). The
corresponding Brillouin zone is shown on the right, which possesses in‐equivalentK‐ andK′‐points.
The TMDs considered here are direct‐band gap semiconductors and the minima (maxima) of their
conduction (valence) bands are located at theK (K′) valley. b) Schematic illustration of the relevant
band structure for MoSe2 in the low doping limit. The bands disperse approximately quadratically
and electronic spin is locked to the valley by strong spin‐orbit coupling close to theK‐points, which
results in spin‐polarized bands indicated in the figure by black arrows. The chemical potential μ can
be adjusted and is shown as a dashed grey line.

rendered parabolic with heavy effective electron and hole masses on the order of the bare
electron massm∗ * me. This is captured by an effective k · p expansion, and described by
the following low-energy Hamiltonian

Ĥ±K = at(±kxσx + kyσy) +
Δ
2
σz ∓ λσ

z − 1
2

sz, (2.10)

where a is the lattice constant (a * 3.3 forMoSe2 [50]), t is the effective hopping integral
and Δ * 1.5eV labels the band direct gap, while λ encodes the leading effects of spin-orbit
coupling. The resulting bands are shown in Fig. 2.3b. The large electron mass strongly sup-
presses kinetic energy and makes Coulomb interactions important even for finite charge-
doping. Hence TMDs are ideal test-beds to explore strongly correlated quantum gases of
electrons and holes.

In the following we will work mostly in the continuum limit described by Eq. 2.10, which
is an excellent approximation since typical energy scales set by temperature T, fermi energies
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Figure 2.4: Exciton formation in a TMD monolayer. Due to their direct band‐gap, it is possible to
optically excite electron‐hole pairs, which form strongly bound excitons, shown as red dashed lines.
Optical selection rules imply that σ+/σ− polarized photons generate excitons only in theK/K′‐
valley. Due to large electron and hole massesm∗

e,h and strong Coulomb interactions, their binding
energies are on the order of 0.5eV and exceed typical scales in the system. This separation of scales
makes it possible to treat them as structureless bosons.

εF, etc. are small compared to the band gap Δ.

Excitons as composite bosons

Signatures of strong correlations in TMDs appear already when analyzing the systems op-
tical excitation spectrum. Since the TMDs considered here are direct band-gap semicon-
ductors, it is possible to excite electron-hole pairs optically. Once excited, electron and hole
will experience Coulomb interactions and form a bosonic molecule, known as an exciton.
The excitonic binding energies are close to atomic scales and reach up to E0X * 0.5eV.
This implies that they are effectively composite bosonic objects with a small Bohr radius
of aX * 1nm. This makes it possible to model them as fundamental bosonic objects with
creation operators x†(r).

Light-matter coupling in semiconductors is constrained by optical selection rules: the quan-
tum numbers of the entire system before and after absorbing a photon, must remain the
same. Since σ+ (σ−) polarized photons carry intrinsic angular momentum of±!, they can
only be absorbed if they transfer their angular momentum to the material. Eq. 2.10 encodes
that promoting an electron from valence to conduction band in theK (K′) valley is accom-
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panied by an angular momentum change of+! (−!). This ensures that σ+ (σ−) polarized
light couples directly to theK (K′) valley, as shown in Fig. 2.4. More quantitative calcula-
tions of the excitation spectrum can be made by minimally coupling the electromagnetic
field to Eq. 2.10:

k → k+ eA(x, t), (2.11)

whereA(x, t) is the electromagnetic vector potential. T symmetry exchanges theK andK′

valley and ensures that excitons created in the two valleys have the same energies.

As excitons can be thought of as polarization waves, they directly couple to incident light
fields. Conveniently this implies that reflection measurements on TMDs can easily access
excitonic correlation functions within linear response, which allows us to probe

GR(t− t′, k = 0) = −iΘ(t− t′)〈
[
xk=0(t), x†k=0(t

′)
]
〉. (2.12)

This provides us with import information about the system, which contains the spectral
function of the exciton

Ax(ω) = −2i Im{GR(ω, k = 0)}. (2.13)

Of course, since optically active excitons can be excited, they can decay spontaneously by
emitting a photon, with a rate Γ. We treat this process in detail in Chapter 4.

Exciton-Charge interactions andMolecules

On a first glance, the presence of Fermi surface in the form of doped charges modifies the
properties of the exciton only slightly: as discussed, their binding energies E0X ) εF *
10meV are larger than typical Fermi energies studied in experiments. Although momenta
smaller than the Fermi momentum kF can no longer efficiently contribute to exciton for-
mation due to the Pauli exclusion principle; the tight binding of the exciton implies that its
wave function consists mostly of electron-hole pairs at large momenta k > kF. Thus, we
expect only quantitative changes, such as a small reduction in the excitons binding energy.
Exciton-electron interactions, on the other hand, can lead to strong and qualitative changes
of the excitons properties by correlating with the surrounding electrons, even if the struc-
ture of the exciton itself is unmodified. In the following we will discuss exciton-electron
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Figure 2.5: Bound state formation in the presence of a Fermi sea and the Fermi polaron. a) Tightly
bound excitons can interact with free carries to form charged bound‐states, known as trions. Due to
Pauli‐blocking trions primarily form with holes which reside in a valley opposite to that of the exci‐
ton. b) The presence of a Fermi surface changes the properties of the exciton. We plot the spectral
function of the exciton computed within a T‐matrix approximation as a function of frequency for
a Fermi energy of εF/E0T = 1

6 and a radiative broadening of Γ = 1
30E

0
T. The spectrum exhibits

collective excitations known as attractive and repulsive polarons, with spectral weights and energies
which depend on the value of the Fermi energy. The attractive polaron can be thought of as a col‐
lective molecular excitation, essentially forming an attractive dressing cloud and thereby lowering
its energy compared to the bare molecule. The repulsive polaron, is connected to the bare exciton
in the εF/E0T → 0 limit, but acquires a short lifetime and is pushed to higher energies by repulsive
interactions with the Fermi surface.

interactions and show that an exciton coupled to a Fermi-sea is best thought of as a mobile
quantum impurity, which forms a quasi-particle commonly referred as a Fermi polaron.

Although excitons are neutral bound-states they are sensitive to nearby charges. On the
one-hand there are long-range interactions as the electric field of an elecron can polarize
the exciton, thereby inducing a dipole moment d = αE, where α is the polarizability of
the exciton. The energy of the induced dipole scales with the usual electrostatic relation
d · E. Since the electric field of the charge decays as E ∼ er/r2, we find that the interaction
between an exciton and a charge separated by a large distance |r| follows a power-law:

VX−e(r) ∼
1
r4 , (2.14)

and is attractive. In addition there are contributions when electron and exciton are nearby.
Experiments; as well as microscopic three-body calculations, found that these interactions
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can be attractive and lead to the formation of charged ”molecular” bound states, known
as trions, which reach binding energies E0T * 30meV. Interactions between the exciton
and charges are repulsive, if the excess charge shares the same quantum numbers as the con-
stituents of the exciton. This effect can be attributed to Pauli blocking, which increases the
energy of the configuration such that the state becomes unbound. Consequently, positively
charged trions can be thought to consist of an exciton bound to a hole, which resides in the
valley opposite to that of the exciton, as depicted in Fig. 2.5a); while acting repulsively in the
opposite configuration. In the limit of low carrier-density, exciton-electron interactions can
be safely described by short-range pseudo-potentials, without changing the relevant low-
energy scattering physics [51], since typical momenta are too small to efficiently resolve the
microscopic details of interactions as dictated by the uncertainty principle. For the rest of
this thesis, we therefore model electron-exciton interactions by a regularized contact interac-
tion:

V̂X−e = UΛ

Λ∑

k,k′,q

x†kxk−q c†k′ck′+q, (2.15)

where strengthUΛ and momentum cut-off Λ are chosen to reproduce the scattering physics
and binding energies of the microscopic potential. This procedure is commonly used in
describing the physics of ultra-cold atomic quantum gases [43], which already hints at an
analogy between two-dimensional materials and atomic physics. In Chapter 4 we will dis-
cuss and extend this connections and utilize it to show how exciton-electron interactions
can be tuned in multi-layer systems by changing external electric fields.

Polaron formation

A single quantum particle in contact with a gas of (Bosons) Fermions is known as the (Bose)
Fermi polaron problem. The Polaron problem was first discussed by Landau and Pekar to
provide a theory of electron conduction in ionic crystals. They demonstrated that the elec-
trons mass increases significantly by coupling to vibrations of the underlying lattice. This
turns out to be a generic effect of Polaron formation: the properties of the bare impurity
are often strongly altered as it interacts with the bath. Remarkably, static impurities can
modify the properties of the entire system, in what is known as Andersons orthogonality
catastrophe [52], which is crucial in understanding X-ray absorption experiments [53]. Fur-
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thermore, polarons can be thought of as strongly imbalanced Bose-Fermi mixtures, which
makes them well-defined starting points to understand the rich phase diagrams which ap-
pears at finite impurity density. Nevertheless, many open questions remain and strongly
coupled Polarons are being actively explored in atomic gases and solids [54, 55, 56, 57, 58,
59].

Naively one may expect that an exciton immersed in an electron gas will form a molecule to
lower its energy, thereby changing its statistics. This, however, does not happen. Instead the
many-body system contains bosonic eigenstates |Pol〉, i.e. attractive polarons, which have a
lower energy than the molecular state and retain a finite overlap with the bare exciton

Zα =
∣∣ 〈Pol|

(
x†α|Ω〉

) ∣∣ ≃= 0. (2.16)

In Eq. 2.16 we have grouped all quantum numbers of the exciton, such as k, valley polariza-
tionK/K′, etc., into the label α. While a finite value of Zα implies that the exciton remains a
well-defined quasi particle, their properties will be strongly renormalized by forming a dress-
ing cloud. Theoretically attractive polarons can be understood with a simple variational
ansatz wavefunction:

|Pol, α〉 = Zα x†α|FS〉+
∑

β,k,q

Cα(β, k, q) x†βe
†
keq|FS〉, (2.17)

where |FS〉 is the Fermi sea and Cα(β, k, q) are coefficients parameterizing the dressing. In
writing down Eq. 2.17 we have assumed that the exciton excites at most one more electron-
hole pair from the Fermi sea. This Ansatz turns out to be equivalent to the field theoretic
approaches discussed in detail in Chapter 4, if interactions are short-range [60]. The result-
ing excitonic spectral function and an illustration of the dressing cloud is shown schemati-
cally in Fig. 2.5b), which also demonstrates that the attractive polaron has lower energy than
the bare molecule. This fact is best visualized by viewing the attractive polaron as a super-
position of molecular states involving many electrons. In the limit EF ) E0T, the attractive
polaron contains most of the spectral weight and is the relevant excitation in the system.
Similar to the Landau and Pekar problem, dragging around a dressing cloud is costly and
increases the mass of the attractive polaron. For positive energies the many-body system
only supports a very broad resonance, as excitons interact repulsively with the Fermi surface.
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This resonance is commonly referred to as the repulsive polaron.

Due to the large separation of scales, TMDs constitute an ideal platform to explore polaron
physics and Bose-Fermi mixtures in parameter regimes, which are currently inaccessible in
other systems. In Chapter 4, we discuss the two-dimensional polaron problem and demon-
strate that experiments can reach strongly correlated regimes. As we shall see, this provides
an interesting theoretical basis for tunable optical and electronic properties in solids.

Hubbard models in twisted multi-layer TMDs

Figure 2.6: Moiré physics in bilayer systems. moiré lattice physics emerging from bilayer TMD struc‐
tures. a) Top‐down view of a two TMD layers, where top and bottom layer are twisted by an angle θ.
The top (bottom) layer is shown in red (blue). The relative twist angle leads to a moiré pattern with
lattice constant aM ) a. To identify the periodic structure, we have shown how the hexagonal
Wigner‐Seitz cells of both layers determine the larger moiré Wigner‐Seitz cell. b) Equivalent mo‐
mentum space picture. The Brillouin zone of the top and bottom layer are twisted, which leads to a
smaller moiré Brillouin zone shown in black. We denote high‐symmetry points in the mini Brillouin
zone by small Greek letters (γ, κ, κ′, κ′′′). c) Approximate band structure for holes forming in a moiré
potential with aM = 10nm. Since the electronic energies strongly depend on the local stacking
of the two layers, electrons can be localized in the moiré pattern. We show the band‐structure of
holes along a cut through the moiré Brillouin zone. There is an isolated hole‐band, well described
by a tight‐binding model, taking into account only nearest and next‐nearest neighbor tunneling, as
shown by the red dashed line.

When waves with different frequencies ω and ω′ are superimposed, the resulting wave is
composed of rapid oscillations whose amplitude is modulated with a characteristic beat fre-
quency ω − ω′. If the frequencies of the two waves can be tuned to be sufficiently close, one
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can therefore engineer low-frequency modulations. Similarly, superimposed patterns in two
dimensions exhibit the same effect: If two patterns differ only slightly in their orientation
or lattice spacing, they will give rise to so-calledmoiré patterns, which repeat only on much
larger scales.

This holds true even on the atomic scale, when two dimensional materials are stacked to
form heterostructures. If the different layers are displaced or rotated with respect to each
other, or differ in their lattice constants; a moiré pattern is generated, see Fig. 2.6a. In the
simplest case, two layers are combined and doped charges feel a variation in their potential
energyVM(r) due to the spatially varying atomic stackings, as illustrated in Fig. 2.6a). For
large structuresVM(r) is often well approximated by

VM(r) =
6∑

j=1
vgj eigj·r, (2.18)

where {gj|j = 1, . . . , 6} are the smallest reciprocal lattice vectors of the mini Brillouin zone.
While the situation for twisted bilayers of Graphene turns out to be subtle [61], twisted bi-
layer TMDs can admit simple descriptions [44]. In the low energy limit the corresponding
moiré bands are given by the single particle Hamiltonian:

ĥ =
!2
2m∗

e
→2 + VM(r), (2.19)

where we have suppressed potential dependence on internal the structure of the electrons.
Generically this will lead to isolated bands, as shown in Fig. 2.6c), which can be well rep-
resented by a simple tight binding model once suitable Wannier functions are determined.
Taking Coulomb interactions into account, the many-body Hamiltonian takes the form of
a simple Hubbard model:

Ĥ = −
∑

ij,σ
tij c†i,σcj,σ−μ

∑

i,σ
ni,σ+U

∑

i
ni,↑ni,↓+V

∑

〈i,j〉

(ni,↑ + ni,↓)
(
nj,↑ + nj,↓

)
, (2.20)

where tij is the hopping matrix andU andV specify on-site as well as nearest-neighbor in-
teractions and we have neglected direct-exchange interactions [62]. In deriving Eq. 2.20, we
have included the effect of the moiré potential on the hole bands only, such that we only
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need to worry about a single spin degree of freedom, c.f. Fig. 2.3 b).

These Hubbard models enjoy a large amount of tunability, while being able to access low
temperatures that can stabilize exotic quantum phases. Subsequently a lot of emphasis was
placed on understanding electronic orders such as generalizedWigner crystals andMott
states [22, 48, 47, 63], while the magnetic properties of these models remains largely un-
explored, see Ref. [46, 64, 65, 66] for notable exceptions. In Chapter 5, we discuss how
topologically ordered spin states can be engineered in multilayer TMD structures.
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3
Optical detection of strongly correlated

electrons: Mott states, Wigner crystals, and
quantumHall states

This chapter is based on the publications

• “Optical signatures of charge order in a Mott-Wigner state”, Yuya Shimazaki*, Clemens
Kuhlenkamp*, Ido Schwartz*, Tomasz Smolenski, Kenji Watanabe, Takashi Taniguchi,
Martin Kroner, Richard Schmidt, Michael Knap and Atac Imamoglu, Physical Re-
view X 11, 021027 (2021)

• “Observation of Wigner crystal of electrons in a monolayer semiconductor”, Tomasz
Smoleński, Pavel E. Dolgirev, Clemens Kuhlenkamp, Alexander Popert, Yuya Shi-
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mazaki, Patrick Back, Martin Kroner, K. Watanabe, T. Taniguchi, I. Esterlis, Eugene
Demler and Atac Imamoğlu, Nature 595, 53-57 (2021)

Text, figures and structure have been modified for this thesis.

3.1 Signatures of correlated electrons in two dimensions

When Coulomb interactions dominate over kinetic energy, electrons in two dimensions
organize themselves in various different phases. Famous examples include QuantumHall
states andWigner crystals in continuum systems; as well as non-trivial Mott-Wigner insu-
lators when electrons are confined to move in a periodic lattice. The quest to understand
these phases has motivated numerous theoretical and experimental studies of solid state
systems over the years [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. Striking signa-
tures of such phases were discovered also in the context of two dimensional materials [21,
80], which in turn sparked the development of novel methods to characterize electronic
states [81]. Despite this effort, a majority of the reported signatures were not sensitive to the
spatial correlations of the quantum state. Studies of the two-dimensional Wigner crystal, for
example, have primarily focused on DC and AC conductivity measurements.

This has a simple reason: these correlations appear on much smaller scales than one could
hope to access optically. Probing spatial correlations, however, remains a highly desireable
task, as correlated systems have a strong tendency to break translational symmetries in order
to minimize interaction energies.

In this chapter, we discuss a solution to this longstanding problem by introducing a class of
particularly simple, yet completely generic optical signatures of emerging electronic order,
that is directly sensitive to the spatial structure. First, we will discuss a theoretical model
of optical signatures and then apply these ideas to probe the appearance of a Mott-Wigner
state, a Wigner crystal and a magnetoroton mode in the integer QuantumHall effect.
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3.2 Theoretical model

Due to strong exciton-electron interactions in TMDmonolayers [82, 83, 51] described in
Eq. 2.15, the formation of periodically ordered electrons has the potential to modify the
spectrum of the exciton. As a result we will find that a newUmklapp exciton-polaron peak
can appear in the resonant reflection spectrum, heralding the presence of electronic order.
By applying band-theory the energy shift of this new resonance is determined by the recip-
rocal lattice vector of the emerging order and by the strength of exciton-electron interac-
tions. For simplicity we focus only on a single layer which hosts the electrons.
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Figure 3.1: Electron crystallization and optical signatures. (a) Schematic depiction of the simplified
exciton dispersion in a monolayer semiconductor hosting an electron system in various structural
phases. The exciton bands are split by the electron‐hole exchange interaction J into parabolic‐ and
linear‐in‐momentum branches that correspond to the exciton dipole oriented along transverse (T)
or longitudinal (L) directions with respect to the momentum vector. For the electrons in a liquid
state (b), the exciton bands are blueshifted with respect to the undoped case due to polaron forma‐
tion (a), while we neglect broadening due to scattering of the Fermi surface. In a crystalline phase (c),
the exciton umklapp scattering off the periodic electron lattice leads to band‐folding. This gives rise
to emergence of a new, zero‐momentum umklapp resonance with an energy ΔEU * !2G2/2M
determined by reciprocal lattice vectorG of the electronic order.

We first introduce the Hamiltonian describing a dilute concentration of excitons. Due to
the steep light-cone, optically active excitons carry momentum k = 0 and are σ+ (K-valley)
and σ− (K′-valley) polarized. However, for exciton momenta outside the light cone, the
long-range electron-hole exchange interaction strongly couples theK andK′ valley exci-
tons [84, 85, 86]. In the pseudo-spin basis, where spin-up (down) corresponds to an exciton
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in theK (K′) valley, the dynamics of an exciton is described by the following Hamiltonian

H0 =
∑

k

(
x†k,K
x†k,K′

)T [
!2k2
2mX

+
|k|
|K| J

(
0 e−i2θ

e+i2θ 0

)
+

|k|
|K| J

](
xk,K
xk,K′

)
, (3.1)

where x†k,K (x
†
k,K′) creates an exciton in theK (K′) valley with center of mass momentum

k, ! is Planck’s constant,mX is the exciton mass, θ = atan(ky/kx) and J is the exchange
coupling*. The second and the third terms of Eq. 3.1 describe inter-valley and intra-valley
exchange interaction, respectively. We remark that the exchange coupling is not easily acces-
sible experimentally, but that its value can be estimated to be J * 300meV†. The exciton
dispersions are given by E±(k) = !2k2

2mX
+ |k|

|K| J±
|k|
|K| J and are schematically depicted in Fig. 3.1

a. Exchange interactions split the polarizations into two branches with parabolic and linear
dispersion. The linearly dispersing excitons fall on a steep cone, which leads to a large energy
detuning from the parabolic branch.

The interaction between electrons and excitons is modelled by an effective repulsive con-
tact interaction, which is justified, as we limit our discussion to features that appear at low
energies 0 ≤ E - |E0T|. The electron-exciton interaction Hamiltonian then takes the form:

Hint
e−x =

∫
d2r λe−x

[
n̂e(r)n̂KX(r) + n̂e(r)n̂K

′

X (r)
]
, (3.2)

where n̂K,(K
′)

X is the density operator of excitons in the K (K’) valley and n̂e is the density
operator of the electrons. The interaction itself is short-range and repulsive and we as-
sume for simplicity that the strength λe−x is identical for both polarizations. Once electrons
choose to order, it becomes sensible to perform an expansion around the order parameter
〈n̂e(r)〉 =

∑
{Gi} e

iGirñ(Gi), which leads to a simple mean field model

Heff = H0 +

∫
d2r λe−x

[
n̂KX(r) + n̂K′

X (r)
]
〈n̂e(r)〉, (3.3)

*To model the experiments we usemX = m∗
e + m∗

h = 1.3me, wherem∗
e = 0.7me [87] andm∗

h =
0.6me [88, 89] are the effective masses of electrons and holes.

†While first principle calculations yield large values of J ∼ 1 eV, we expect, that the experimentally relevant
coupling is likely to be reduced by dielectric screening due to the hBN encapsulation, as well as due to screen-
ing by electrons [86]. The conclusions in this chapter are however insensitive to the precise value of J and are
unaffected for a range of couplings 1 eV ≥ J ≥ 150 meV.
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This suggests the following picture: excitons feel a spatially modulated potential, which
allows excitonic states with momentum k and k + Gi to hybridize. Via this hybridization,
excitons carrying the ordering wavevector of the electrons can pick up oscillator strength
from the optically bright k = 0 modes and become visible in optical experiments. We refer
to excitons carrying a reciprocal lattice momentum colloquially as umklapp excitons. These
bright states allow us to distinguish liquid and crystalline order, as shown in Fig. 3.1 b-c.
The energy separation between the exciton and the first Umklapp scattered exciton in the
limit of weak λe−x is given by the following expression

ΔEXU−X =
!2|G1|2

2mX
, (3.4)

whereG1 is chosen from the smallest reciprocal lattice vectors of the electronic order.

A full calculation yields further restrictions due to the symmetry of the electronic order.
We illustrate this for electrons ordered in a triangular lattice —the configuration that opti-
mizes Coulomb energy in two dimensions. There, the six reciprocal lattice vectors suggest
12 bright states, arising from the K and K′ valley. However, only two out of these bands
can become optically active at the Γ point: one in σ+ polarization and one in σ− polariza-
tion. The restricted number of bright states is a consequence of the C6 symmetry of the
triangular lattice. Owing to strong long-range electron-hole exchange interaction, 6 of these
bands (associated with longitudinally-polarized excitons) are pushed to high energies, and
are therefore inaccessible. The remaining 6 lower-energy finite-momentum excitons mix
with the two main (k = 0) resonances via the electronic lattice potential. The C6 symmetry
only allows bright k = 0 states to couple to umklapp states in the same irreducible repre-
sentation. Consequently, the k = 0 exciton inK± valley mixes only with one σ±-polarized
umklapp state, corresponding to a properly-phased-superposition of the exciton states at
k = Gi with a C6 eigenvalue of exp(±iπ/3). The remaining four umklapp bands remain
optically dark which, as we will see, is in agreement with experimental observations.

The relative oscillator-strength of the Umklapp states can be estimated by their zero-momentum
exciton content

|〈k = 0|XU(Γ)〉|2
|〈k = 0|X(Γ)〉|2 , (3.5)

where |X〉 and |XU〉 are the exciton and the bright Umklapp-exciton states of a given po-
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larization, while Γ labels vanishing lattice momentum. In Eq. 3.5, the vector |k〉 is a plane
wave state of the exciton with proper momentum k. The amount of mixing and the band
splittings are determined by the strength of the potential and the density profile of the elec-
trons. We will show later, that the relative brightness of the Umklapp state can reach several
percent compared to the main exciton resonance.

We also highlight, that this constitutes a non-invasive probe. The delocalized nature of op-
tically generated excitons ensures that the electronic states are largely unperturbed if the
intensity of the probe-light is sufficiently weak.

3.2.1 Magnetic field dependence

Amain concern of this proposal, is that additional bright states could have various origins
and are not bound to originate from finite momentum k = G excitons. Strikingly, we can
circumvent this issue and identify finite-momentum excitons by their unusual properties
in finite magnetic fields. In the presence of a perpendicular magnetic field B, the excitonic
Hamiltonian Eq. 3.6 picks up an additional Zeeman term:

H = H0 +
1
2
gμBB

∑

k

(
x†k,K
x†k,K′

)T

σz

(
xk,K
xk,K′

)
, (3.6)

where g ∝ 4.3 is the exciton g-factor which we assume to be independent of the exciton
momentum [90, 91, 92, 93]. This coupling leads to the usual Zeeman splitting of k = 0
excitons, which lifts the degeneracy of the σ+ and σ− polarizations. For excitons with fi-
nite momentum k, however, the exchange interaction quickly dominates over the Zeeman
term J|k|/|K| ) gμBB. This is another way of saying, that finite momentum excitons
—and Umklapp excitons in particular— are strongly polarized in-plane and will resist ex-
ternal magnetic fields. If the Umklapp states are sufficiently bright, this behaviour can be
confirmed experimentally, simply by switching on external fields.

Before moving on to experiments, we note that by usingHeff, we neglect the dynamical
dressing of excitons by virtual excitations out of the electronic state. While this is an excel-
lent approximation in the presence of classical charge order, we abandon this assumption at
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the end of this chapter, where we discuss the optical signatures of roton-modes in quantum
Hall states.
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3.3 Optical detection of CorrelatedMott-Wigner states in bilayer TMDs

hBN

MoSe2

MoSe2
hBN

hBN

Graphene

Graphene

Vtg

Vbg

Exciton

Electron

a) b)

Figure 3.2: Moiré lattice inMoSe2/hBN/MoSe2 and basic characterization. (a) Schematic picture
of the device structure. The left bottom picture shows a moiré lattice. (b) Schematic picture of the
potential for excitons created by electrons trapped in a moiré lattice.

Here we apply the theoretical model to study a twistedMoSe2/hBN/MoSe2 homobilayer
structure, which exhibits an incompressible single-layer Mott state for unity-filling of the
underlying electronic moiré potential [47]. The device is shown schematically in Fig. 3.2
a). In comparison to hetero-bilayer structures [22, 48], the presence of monolayer hBN in
between the MoSe2 monolayers leads to two new features: first, the on-site and possibly
inter-site Coulomb repulsion energy exceeds the strength of the moiré potential, which is
drastically weakened by the hBNmonolayer. Second, the energy difference between the
electronic states in the two layers is tunable, resulting in a robust layer pseudo-spin degree-
of-freedom that can be controlled using an applied vertical electric field.

Before proceeding, we note that a moiré potential in bilayer structures generally also im-
prints directly on excitons [94, 95, 96, 97, 98]. This periodic potential is particularly strong
if the TMDmonolayers are in direct contact, which has lead to the observation excitonic
resonances arising either from localization at high symmetry stacking points or fromUmk-
lapp processes [99, 100, 101]. In stark contrast to these works, the periodic static moiré po-
tential experienced by the excitons in our sample is weak compared to the exciton linewidth
due to the hBN barrier layer, which is why we can neglect a direct effect of the Moire poten-
tial on the excitons.
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Figure 3.3: Exciton band structure based on the effective model. Exciton bands along a path in a
moiré Brillouin zone, assuming J = 300meV. The oscillator strength of each state is indicated by the
color bar, which is saturated for all blue lines. As photons carry almost vanishing momentum, only
modes close to the Γ‐point may obtain finite oscillator strength (we artificially extended the mo‐
mentum range of the bright states for better visibility). While most states remain dark, only a single
Umklapp band per polarization obtains sizable oscillator strength. (Left) Dispersion in the absence
of magnetic field. The splitting between Umklapp state and main resonance is∼ 3 meV. The addi‐
tional bright state carries 1.2% of the oscillator strength of the bare exciton. The oscillator strength
of higher bands is significantly suppressed due to the larger energy splitting, which reduces the cou‐
pling to light. (Right) Exciton dispersion for B = 7 T. While the main resonance splits significantly,
the Umklapp peaks are only marginally affected by the magnetic field.

Since the moiré potential is expected to be weak also for electrons and Coulomb interac-
tions are long-ranged, the electronic wavefunctions will localize in the incompressible Mott-
like phase. Up to details of their wavefunction, electrons will therefore generate an effective
potential for the excitons, as illustrated by the cartoon in Fig. 3.2 b). Assuming that the elec-
trons are rigidly locked in place in the correlatedMott state, we can model the system with
Eq. 3.3. We phenomenologically fix the Hartree shift induced by λe−x to match the experi-
mentally measured blue-shift of the repulsive-polaron resonance induced by the electrons at
low densities. This determines λe−x = 2.1× 10−12 meV · cm2 to produce an excitonic blue-
shift of 0.4 meV at fillings slightly away from ν = 1, where the electron density is expected
to be homogeneous. To keep our model minimal, we assume a Gaussian density profile for
electrons 〈n̂e(r)〉 = 1

2πξ2
∑

R e
− 1

2ξ2
(r−R)2 , whereR is a triangular lattice vector and ξ charac-

terizes the extent of the electronic wave functions around the moiré sites [102]. The lattice
constant aM for this device has been previously determined using different methods in [47]
to be* 25nm. We show the band-structure resulting from the electron-induced potential
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in Fig. 3.3(b) for an electronic lattice with aM = 25 nm and ξ = 4 nm. While the precise
localization of the electrons is not known, we have checked that our results are roughly in-
dependent on ξ’s within 3 nm< ξ < 6 nm. The new bands in the moiré Brillouin zone
appear as a consequence of the periodic excitonic potential, which couples excitons carrying
momentum k = Gi with optically active k = 0 excitons. Using Eq. 3.5 our model predicts
a an oscillator strength of* 1.2% relative to the main peak, a value well within experimen-
tal detection capabilities. As mentioned in the theory section, only two states among the
first Umklapp band become bright. To have non-vanishing coupling to light the relevant
states need to be circularily polarized. This corresponds to eigenstates of C6 with eigenval-
ues exp(ilπ/3)where l = ±1. The oscillator strength of the bright resonances decreases
rapidly as the Umklapp energy increases; which is why we expect that only the first Umk-
lapp band is accessible in experiments.

3.3.1 Experimental observation in a TMD bilayer
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Figure 3.4: Exciton resonances in the presence of charge doping. Differential reflectance differen‐
tiated with respect to energy as a function of chemical potentialVμ. aWe fixVE = 0.24 V, to
ensure only the top layer is doped. bWe fixVE = −1.98 V, to ensure only the bottom layer is
doped. In both a and b the exciton resonances of the two layers are clearly visible. A Mott state
appears for ν = 1 indicated by the dashed blue line. At this point we observe the appearance of
additional bright states at higher energies, which we denote byXU

top/bot. The scale of the color bars

are logarithmic for |d(ΔR/R0)/dE| > 102 eV−1 and linear for |d(ΔR/R0)/dE| < 102 eV−1.

In the experiment graphene sheets on the top and bottom of the device are used as gates.
We define the gate voltage axes asVE andVμ, as linear combination of top and bottom gate
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voltages, which leave the electric field and the chemical potential invariant. This allows us
to change the chemical potential in each layer individually. The system is studied by op-
tically probing the excitonic spectral function via the differential reflectance (ΔR/R0 =

(R−R0)/R0). R denotes the reflectance of the MoSe2/hBN/MoSe2 homobilayer structure,
whereasR0 is the background reflectance obtained from a region of the sample without
MoSe2 layers. Even in the absence of charge doping, the exciton resonances in the top and
bottom layer posses a small energy shift, which we attribute to inhomogeneous strain [103,
104, 105]. This allows us to distinguish the optical response of the top and bottomMoSe2
layers. When one of the layers is electron doped, exciton-electron interactions lead a new
attractive resonance around the trion-binding energy of* 30meV and a blue-shift of the
resonance frequency of the exciton due to polaron formation [57, 106]. Since the exciton-
electron interactions are short-ranged and tunneling of electrons is suppressed by the hBN
layer, excitons in a given layer scatter almost exclusively with electrons in the same layer.

The electrons become visibly correlated in a half-filled moiré subband (ν = 1), where each
moiré site is occupied by a single electron. Since our structure has a layer degree of free-
dom, we specify the electron filling factor of top and bottom layers as νtop and νbot, with
ν = νtop + νbot (see the Supplemental Material S2 in Ref. [107] for the identification of
filling). In Fig. 3.4(a), we show the chemical potentialVμ dependence of the reflectance
spectrum. We choose a fixedVE for which the bottom layer remains neutral and only the
filling of the top layer is tuned along theVμ axis‡. Remarkably, once the top layer is doped
to ν = 1 where (νtop, νbot) = (1, 0), an additional higher energy exciton resonance labeled
as XU

top appears. The estimated energy separation between Xtop and XU
top is* 2.7 meV,

which agrees well with the expectation based on our theoretical model. A corresponding
resonance XU

bot also appears when only the bottom layer is doped to ν = 1, which is indi-
cated in Fig. 3.4(b). The energy separation between Xbot and XU

bot is also estimated to be
* 2.7 meV. As discussed in the previous section, the energy of the new bright states should
be determined predominantly by the reciprocal lattice vector of the electron-induced poten-
tial, which is fixed by the moiré-periodicity.
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Figure 3.5: Exciton and Umklapp exciton resonances at ν = 1 under magnetic field Bz = 7 T. (a),
(b)Vμ dependence of differential reflectance differentiated with respect to energy E in σ+ (a) and
σ− (b) polarization. (c), (d) Line cuts of the reflectance spectrum (c) and its energy differentiation (d)
at ν = 1,VE = 0.61 V.

3.3.2 Magnetic field dependence of Umklapp states

The matching of observed and predicted energy splittings as well as oscillator strenghts, is
suggestive, but does not unambiguously identify the Umklapp states as originating from
finite momentum. As discussed in the theory section, one should check their magnetic field
dependence to see if the excitons are indeed in-plane polarized. Therefore we apply a mag-
netic field of B = 7 T. Polarization resolved ΔR/R0 measurements show the emergence of
Umklapp states (XU

top) in both σ+ and σ− polarization around ν = 1 where (νtop, νbot) =

(1, 0), see Fig. 3.5(a) and (b). In Fig. 3.5(c) and 3.5(d) we show the line cuts of the ΔR/R0

spectrum and its derivative with respect to emission energy at ν = 1 where (νtop, νbot) =

(1, 0). Compared to the large Zeeman splitting of Xtop of* 2 meV, the energy splitting of
‡This is also evidenced by the blue shift of Xtop resonance
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XU
top is much smaller.

This observation has two main implications: On the one hand, the vanishingly small Zee-
man splitting of the high energy resonances appearing at ν = 1 confirms their identification
as Umklapp peaks. On the other hand, our measurements provide a direct evidence for the
important role played by long-range electron-hole exchange interaction for high momen-
tum exciton states. Overall, the appearance of a single Umklapp line per polarization, its
estimated oscillator strength, and its behaviour under magnetic fields are in good agreement
with our theoretical predictions. This confirms that Umklapp exciton/repulsive-polaron
resonances provide a direct probe of the periodic structure of the Mott-like correlated in-
sulating state. We emphasize that previously reported optical spectroscopy of Mott-like
correlated insulators states revealed signatures of incompressibility, but a direct evidence
for the presence of periodic ordering of electrons has been elusive. The observation of the
Umklapp exciton resonance on the other hand, is a direct consequence of the emergence of
a periodic lattice of electrons.

In the next section, we shift gears to investigate the appearance of Umklapp peaks in a com-
pressible state, where it provides direct evidence for spontaneous breaking of translational
invariance due to formation of a Wigner crystal [26, 68, 108, 34].
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3.4 Observation ofWigner crystallization in two dimensions

The electronic properties of most metals and semiconductors at low temperatures can be
described using Fermi liquid theory. This is a consequence of the fact that in most material
systems typical kinetic energy of electrons exceeds the Coulomb interaction energy. Inves-
tigation of strong electronic correlations that emerge in the complementary regime where
the ratio rs of the Coulomb interactions to the kinetic energy well exceeds unity has been a
holy grail of condensed-matter physics. As discussed in the introduction a landmark state
of strongly correlated matter is a Wigner crystal [26]. In this state electrons spontaneously
break translational symmetry and form a periodic lattice. QuantumMonte Carlo calcula-
tions [27] indicate that rs ! 30 is necessary for the Wigner crystal to be the ground state
of a two dimensional electron system. Since rs = m∗

e e2/(4πε0ε!2
↔πne)with ε, ne andm∗

e

denoting the dielectric constant, electron density and effective electron mass, systems with
large electron massesm∗

e , low densities ne and weak screening ε should be used to reach the
required rs values. However, simultaneously satisfying the above mentioned stringent con-
ditions is difficult. Up to a few remarkable exceptions [109, 110, 111], this has hindered the
search for an electronic Wigner crystal in the absence of magnetic fields. Instead, the major-
ity of the experimental efforts[67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79] have focused
on two dimensional electron gases in the presence of large magnetic fields B > 0 at ne much
lower than the Landau level (LL) degeneracy. In this regime, the magnetic field quenches
the kinetic energy of electrons and Coulomb interactions remain the only relevant energy
scale.

As we have discussed in the introduction, TMDmonolayers offer new opportunities to
overcome this conundrum. One the one hand, highm∗

e and reduced screening makes it pos-
sible to reach the high rs values necessary for ne ∼ 1 · 1011 cm−2 even when B = 0: [112]. On
the other hand, Umklapp scattering of excitons allows for direct optical signatures of trans-
lational symmetry breaking. Here we discuss the principle behind optical signatures of crys-
tallization and present the recently found experimental evidence for an electronic Wigner
crystal in TMD devices [113, 114]. A more careful experimental analysis is described in the
main text and the supplemental material of the original publication [113].
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3.4.1 Experimental signatures of crystallization
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Figure 3.6: Optical signatures of a Wigner crystal at zero magnetic field and mK‐temperatures.
(a) Doping‐dependence of the reflectance contrast spectrum featuring charge‐neutral and electron‐
doped regions. (b) Close‐up into the exciton spectral range in the low‐density regime (marked
by dashed rectangle in panel a) showing derivative of reflectance contrast with respect to the
top gate voltage. The weak, higher‐energy resonance is due to Umklapp scattering of the exci‐
tons off the electron Wigner crystal. Black dashed line marks the fitted position EX of the exci‐
ton resonance, while the green line corresponds to the expected position of the Umklapp peak
EX + ΔEU. (c) Energy splitting ΔEU between the exciton and Umklapp peaks determined as a
function of the electron density ne. Solid line marks the linear fit corresponding to the exciton mass
ofmX = (1.1± 0.2)me.

We first discuss what has been observed experimentally. The optical reflectance contrast
spectrum (R−R0)/R0 = ΔR/R0 of a TMDmonolayer at B = 0 and T = 80 mK is shown
in Fig. 3.6a. R is the reflectance measured in the MoSe2-monolayer region, whileR0 repre-
sents a background reflectance. As in the bilayer case charge doping can be controlled by
applying a voltageVt to a nearby graphene gate. The presence of free electrons then dresses
optical excitations due to interactions with the Fermi sea. This leads to the formation of
an attractive polaron (marked as AP in the figure), which is clearly visible in Fig. 3.6a at
Vt > 0. In parallel, the exciton transforms into a repulsive polaron that blueshifts with in-
creasing ne. The interaction parameter rs is maximal for small electron densities, so we focus
on the low ne region to search for signatures of periodic order. Remarkably, after differen-
tiating ΔR/R0 with respect toVt, or equivalently ne (Fig. 3.6b) an Umklapp peak appears
in the spectral the spectral vicinity of the exciton resonance for low densities. The Umklapp
resonance blueshifts faster than the exciton with increasing ne and becomes indiscernible
at ne ! 3 · 1011 cm−2. At the same time, its energy splitting ΔEU from the main exciton
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transition, determined by fitting both resonances with dispersive Lorentzian spectral pro-
files [113], scales linearly with ne and extrapolates to zero at ne = 0 (Fig. 3.6c). Electrons in
this systems form aWigner crystal at low ne and low temperature!

Ordering wavevector—The energy of the Umklapp resonance ΔEU is simply determined
by the exciton kinetic energy !2G2/2M at an ordering wavevectorG, whereM is the exci-
ton mass. Here the reciprocal lattice vector |G| ∼ 1/aW ∼ ↔ne, which implies that the
Umklapp energy increases linearly with ne, as the Wigner crystals lattice constant aW is re-
duced, in full agreement with the experiments. Knowing the exciton mass therefore allows
us to estimate |G| of the Wigner crystal. Conversely, assuming that electrons form a trian-
gular lattice, the Umklapp energy is given by ΔEU/ne = h2/

↔
3mX. Thus, by extracting the

slope of the Umklapp peak from the data in Fig. 3.6c, one can determine the exciton mass.
Experimentally, it is more natural to fit the slope, which yieldsmX = (1.1± 0.2)me which is
in good agreement with previous literaturemX = 1.3me [88, 87].

Order parameter and melting transition—Recall that the order parameters for the Wigner
crystal phase are expectation values of

〈ñ(k)〉 ≃= 0, for any k ≃= 0. (3.7)

Up to a factor of λe−x it is exactly these Fourier harmonics ñ(k)which introduce the peri-
odic potential to the excitons. Consequently, the emergence of the Umklapp resonances is
directly related to the spontaneous symmetry breaking of the Wigner crystal. Strikingly, we
can infer both the wavevector |G| and the strength of the order parameter by carefully ana-
lyzing the resonance. Based on Fermi’s golden rule, the oscillator strength of the Umklapp
peak scales roughly with the squared order parameter ñ(G)2 for small λe−x. As temperature
is increased the order parameter, and therefore the oscillator strength of the Umklapp peak
are suppressed. Figure 3.7a shows the temperature dependence of back-gate (Vb) voltage
evolution of d(ΔR/R0)/dVb. Strikingly, the Umklapp signature becomes almost indis-
cernible already at T ∝ 10 K and disappears completely for T = 17 K, even though the main
exciton transition remains only weakly affected by increasing T. This observation signals
a phase transition from aWigner crystal to a liquid state. To determine the corresponding
melting temperature Tm, we fix ne ∝ 1.6 · 1011 cm−2 where the Umklapp resonance is par-
ticularly well-resolved and analyze T-dependence of the average value of d(ΔR/R0)/dVb
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Figure 3.7: Phase transition between Wigner crystal and electron liquid at B = 0. (a) Back‐
gate‐voltage evolution of the derivative of the reflectance contrast spectrum with respect toVb
measured in a variable‐temperature‐insert‐based setup at B = 0 and different temperatures of
the sample: 4.5 K (left) and 17.0 K (right). Black dashed lines indicate the fitted energy EX of the
main exciton resonance, while green one represents the expected position of the Umklapp peak
EX + h2ne/

↔
3mX for the triangular geometry of the Wigner crystal lattice andmX = 1.3me.

(b) Cross‐sections through color‐scale plots from panel (a) atVb = −0.45 V correspond‐
ing to ne ∝ 1.6 · 1011 cm−2. (c) Temperature‐dependent differentiated reflectance contrast
d(ΔR/R0)/dVb averaged over 0.8‐meV‐wide energy range around the Umklapp resonance
(marked by the shaded region in panel b). Solid line represents the fit of the data points with a linear
decrease at temperatures T < Tm and constant background level at T > Tm, which corresponds
to the Wigner crystal melting temperature of Tm = (11± 1) K.

in a spectral window around the Umklapp energy (see Fig. 3.7b). As shown in Fig. 3.7c,
such Umklapp amplitude initially exhibits a linear decrease with T and then saturates at a
constant background level for larger T. By tracing the crossover between these two regimes
we extract Tm = (11 ± 1)K. Similar values of Tm are also obtained for ne ranging from
1.2 − 1.9 · 1011 cm−2 (see the supplemental material of Ref. [113]). Based on the previous
discussion, the linear decrease in the spectrum suggests a decrease of order parameter with
exponent 1/2. This is expected from standard mean field calculations of continuous phase
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transitions. Nevertheless crystallization transitions (in particular for triangular lattices) are
generally first order, which is based on arguments dating back to Landau. Both in theory
and experiments it is usually a difficult task to determine the nature of the a quantum phase
transition. This can have a simple explanation: the jump in order parameter may be too
small to resolve and could be smoothed out by disorder. In the future it will be interesting
to explore melting transitions of electronic crystals in more detail. Before moving on, we
remark that signatures persist at finite magnetic fields and all the usual checks of the Umk-
lapp peak can be performed. To make a long story short, we find that the experiment results
agree with theory models based on Eq. 3.3 and Eq. 3.6 when ne(x) in the Wigner crystal is
modelled by Gaussian quantum states [113]. However, the presence of magnetic fields can
also lead to qualitatively new features in the optical spectrum, which are discussed in the
next section.

3.5 Optical signatures of correlations in liquids: Magneto-rotons in the
Integer QuantumHall state

We now shift our focus to explore correlations in electronic liquids. On a first glance, one
may expect that these states have rather unremarkable signatures: the average electron den-
sity is homogeneous in a liquid, therefore interactions do not affect the optical response in
any obvious way. Thankfully, it turns out that the physics is much richer even for linear-
response quantities. Imagine a strongly correlated liquid that is in close proximity to a crys-
tallization transition, where the crystalline state is characterized by an ordering wave vector
G. If we perturb the density distribution of the liquid by a generic wave-like pattern, this
will be accompanied by a large energy cost as density-accumulations in the liquid gener-
ically repel each other. However if the modulation-pattern is described by a wave vector
close toG, the energy of the configuration can be low as this resembles the nearby crystalline
ground state. A particularly nice example of this effect is found at finite magnetic fields B, if
the electrons form integer or fractional quantumHall states. There, density excitations are
gapped and are dominated by a single eigenstate known as themagneto-plasmon. This mode
can become soft when it carries a reciprocal lattice momentumG of the nearbyWigner crys-
tal. We now derive the effects of such low-lying density-modes on optical excitations.
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3.5.1 Excitations of QuantumHall states
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Figure 3.8: Excitations of Quantum Hall states. (a) Landau levels forming in the the conduc‐
tion band of a two dimensional Fermi liquid in finite mangetic fields. The spacing of Landau levels
defines the cyclotron frequency !ωc = B/m∗. In the ν = 1 state the lowest Landau level (LL0) is
fully occupied and the system is an insulator. The excitation gap is then simply given by !ωc, which
is highlighted by the red double arrow. Kohn’s theorem guarantees that there exists an exact excita‐
tion at !ωc even in the presence of interactions. (b) Schematic depiction of the low energy density‐
wave excitations in the Quantum Hall state, known as magneto‐plasmons. Interactions endow their
dispersion with a characteristic roton‐minimum close to the reciprocal lattice vector of a nearby crys‐
talline configuration, which is indicated by the dashed line.

Studies of quantumHall states are often restricted to their rich ground-state properties.
Deep inside integer and fractional quantumHall phases this is a good starting point. How-
ever, once a phase transition is approached, the dynamical collective excitations start to play
important roles. Such excited states can be highly non-trivial in the presence of strong cor-
relations: while charged excitations can be fractionalized, neutral (density) excitations carry
information about nearby phases. In the presence of magnetic fields the kinetic energy is
fully quenched and eigenstates form flat Landau levels (LL). Correlations are then quanti-
fied by the ratio of Coulomb interaction (Ec) to the cyclotron energy (!ωc): κ = Ec/!ωc =

m∗
e e/(4πε0εl0!B) = rs

√
ν/2, where l0 =

√
!/(eB) and ν denote the magnetic length

and LL filling factor, respectively§. For simplicitly we focus on ν = 1 quantumHall states,
where the lowest Landau level (LL0) is fully occupied, see Fig. 3.8 a. A simple neutral ex-
cited states is formed when an electron is lifted to the next Landau level, indicated by the red

§Since κ ≥ 30 for B ∼ 5 T in TMDmonolayers, interactions lead to strong LL mixing and it is no longer
possible to treat electron motion as being restricted to a single LL
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arrow. Rather intuitively such an excitation costs !ωC, if it carries zero momentum k = 0.
Remarkably, Kohn’s theorem ensures that this naive picture remains exact even for κ ≃= 0,
where many Landau levels will be mixed [115]. A quantitative analysis in this regime was
performed by Kallin and Halperin, who calculated the dispersion of neutral excitations us-
ing a Bethe-Salpeter approach [116]. They found the energy of density-wave excitations at
larger momenta k starts to depend on the interaction strength κ. The case κ - 1, is de-
termined by single-particle physics. In the opposite limit where κ ) 1 (but small enough
to ensure an electron liquid) a well-defined eigenstate at energies lower than !ωc appears.
Its dispersion is sketched in Fig. 3.8 b. The minimum in the dispersion is called amagneto-
roton, in analogy to the roton mode that appears in superfluid helium [117]. A softening
of the magneto-roton energy indicates a competing charge-density-wave order. Indeed, one
finds that the momentum around the magneto-roton minimum is roughly given by the
reciprocal lattice vector of a triangular lattice, indicated as a dashed line in Fig. 3.8 b¶. We re-
mark that our conclusions also carry over to the fractional quantumHall effect, which hosts
a similar magneto-roton mode discovered by Girvin, MacDonald and Platzmann [118].

3.5.2 Optical signatures of neutral excitations

We now continue analyzing the optical signatures of this mode. To this end we first revisit
the Hamiltonian of the electron-exciton system:

H = H0 +Hel. +

∫
d2r λe−x n̂e(r)[n̂KX(r) + n̂K′

X (r)], (3.8)

whereHel. is the electronic Hamiltonian tuned describing a correlated integer quantum
Hall state which is close to a Wigner crystallization transition. In contrast to the previous
sections, electrons are not classically ordered and reside in a liquid states. By inserting two
identity operators we can rewrite the Hamiltonian as follows:

H = H0 +Hel. +

∫
d2r λe−x

∑

αβ

〈α|n̂e(r)|β〉 |α〉〈β| [n̂KX(r) + n̂K′

X (r)], (3.9)

¶Indeed, one should think of a crystal as a condensate of a density-wave excitation with finite momentum
k = G.
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Figure 3.9: Optical sensing of a magento-roton. (a) Spectral function of the exciton due to
the presence of a soft magneto‐roton mode in a liquid IQH state, based on the self‐energy given in
Eq. 3.14. The qualitative behaviour is in good agreement with experimental obervations. The roton‐
mode leads to the appearance of a broad mode that is particularly visible in σ− polarization and
much broader than the Umklapp resonance. (b) Experimental observation of a satellite peak at ν =
1. Top‐gate‐voltage dependence of the differentiated reflection contrast spectrum for B = 14T
and T = 80mK in the two circular polarizations: σ− (left) and σ+ (right). Grey horizontal lines mark
integer filling factors, while white (black) dashed (dotted) lines indicate the fitted energy of the co‐
polarized (cross‐polarized) main exciton resonance in each map. The dashed rectangle marks the
region where a higher‐energy peak reappears around ν = 1. At lower fillings the appearance of an
Umklapp peak is also visible.

where α, β label a complete set of states, which includes the soft magnetoroton mode. Since
we expect a broad continuum of density wave excitations at energies !ωc ! 2, we restrict
this sum to the two low-energy modes we expect to be dominant, i.e. the vacuum |Ω〉 (α =

0) and the magneto-plasmon |Pl., k〉 (α = Pl., k). This yields

H * H0 +Hel. + λe−x
∫

r
nX(r)

∑

q
〈0|ne(r)|Pl., q〉 |0〉〈Pl., q|+ h.c.

= H0 +Hel. + λe−x
∑

q
nX(−q) 〈0|ne(q)|Pl., q〉︸ ︷︷ ︸

Zne (q)

(bq + b†−q),
(3.10)

where b†k creates a magneto-plasmon with momentum k and Zne(k) is known as the wave-
function renormalization of the magneto-plasmon. The latter simply measures with which
amplitude a density operator excites the mangeto-plasmon after acting on the vaccuum
|Ω〉. Either way, it can be extracted by repeating the diagrammatic analysis by Kallin and
Halperin [116], and then playing the same identity insertion trick on the density-density
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response function χne,ne(ω, k) of the electrons [119]. This yields:

χne,ne(ω, k) ∼ |Zne(k)|2 1
ω − ωpl.(k) + i0+ + regular terms, (3.11)

if the energy !ω is taken to be sufficiently close to the energy !ωpl.(k) of the magneto-
plasmon. To determine the effect of this pole on the exciton, we can proceed perturbatively
to second-order in λe−X. Diagrammatically the (single-excited-plasmon) self-energy of the
exciton has the following representation

= + .

The dark/light blue line denote the dressed/bare propagator of the exciton, while the dashed
line represents the propagation of an excited density-wave mode. Translating this expression
into equations we find:

ΣX,ab(ω, k) = iλ2e−X

∫ d2q
(2π)2

dω′

2π χnene(q, ω′)G(0)
X,ab(ω − ω′, k− q). (3.12)

Here indices a, b refer to the two valleys andG(0)
X,ab is the unperturbed exciton Greens func-

tion. Using the same approximation as above, we obtain:

ΣX(ω, 0) * λ2e−X

∫ d2q
(2π)2Uq diag

[
|Zne(q)|2

ω − λ+(q)− ωp(q) + i0+ ,
|Zne(q)|2

ω − λ−(q)− ωp(q) + i0+

]
U†

q

= diag(Σσ+σ+
X ,Σσ−σ−

X ),
(3.13)
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whereUq is the unitary matrix which diagonalizes the exciton Hamiltonian of Eq. 3.6, and
λ± are the corresponding eigenenergies. In components this yields

Σσ+σ+
X = λ2e−X

∫ d2q
(2π)2

[εq + 1
2gμBB
2εq

|Zne(q)|2
ω − λ+(q)− ωp(q) + i0+

+
εq − 1

2gμBB
2εq

|Zne(q)|2
ω − λ−(q)− ωp(q) + i0+

]
,

Σσ−σ−
X = λ2e−X

∫ d2q
(2π)2

[εq + 1
2gμBB
2εq

|Zne(q)|2
ω − λ−(q)− ωp(q) + i0+

+
εq − 1

2gμBB
2εq

|Zne(q)|2
ω − λ+(q)− ωp(q) + i0+

]
.

(3.14)

The fact that the exciton Greens function is also diagonal for k = 0 simplifies the compu-
tation of the two spectral functions. By plugging in Zne and ωp(q) obtained by the Kallin
and Halperin analysis, one obtains the excitonic spectral function illustrated in Fig. 3.9 a.
Remarkably, the soft magnetorotons of the integer QuantumHall state imprint a resonant,
high energy peak in the exciton spectral function. On a first glance this satellite peak ap-
pears to be similar to the Umklapp resonance of the crystalline state. However, its origin
must be completely distinct as the underlying electronic state is a liquid. On a physical level
it appears due to a transition of the optically active exciton into a virtual state containing
a magneto-roton carrying momentum qmin. and an exciton with equal and opposite mo-
mentum−qmin.. qmin. denotes the momentum for which the magneto plasmon dispersion
reaches its minimum. If the magneto-roton is sufficiently soft, the energy of this interme-
diate state is roughly determined by !ωp(|qmin.|) + !2q2min./2M * !2q2min./2M. In stark
contrast to the signatures of a crystal, this mode gives a finite-width resonance even at T = 0
for a clean system. Since the spectral function integrates to the commutation relation of the
exciton operators, we can compute an approximate spectral weight of the roton-induced
satellite peak. For experimental parameters, we estimate it to be a few percent.

The magneto-roton mode was also explored experimentally, in the same monolayer TMD
as before, albeit in the presence of a magnetic field B = 14T. The differentiated reflectance
spectrum in σ− (σ+) polarization as a function of electron doping is shown in the left (right)
panel of Fig. 3.9 b. At low doping, we find a characteristic Umklapp peak. In σ− polariza-
tion, it appears below the main exicton resonance due to the large Zeeman splitting of the
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main resonance. At intermediate electron doping, however, Umklapp signatures are ab-
sent. An exception arises when the electrons form an incompressible state at ν = 1. In this
regime a broad resonance appears in the region highlighted by the dashed box. This feature
is clearly visible in σ− polarization as expected from our theoretical model. As discussed,
we identify this resonance as originating from a soft magneto-roton. The observation of an
additional satellite peak in experiments supports our claim that the state at integer filling is
a quantumHall state. The energy of the peak and its width are indicative of strong corre-
lations present in the underlying quantumHall state. In chapter 5 we will briefly return to
roton modes appearing in the spin-response of exotic Mott insulators. Unlike in continuum
systems, on lattice models the roton may soften fully in the vicinity of a universal critical
point, since spin-ordering on a lattice is not necessarily a weak first order transition.
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3.6 Outlook

In conclusion, we proposed, analyzed and found novel optical signatures of spatial correla-
tion in two dimensional semiconductors. Optically bright Umklapp-excitons appear due to
scattering off the electronic density profile. The method was applied to probeMott-Wigner
states in bilayer TMDs [107], whose existence had already been suggested by indirect oberv-
ables [47]. It further proved useful in monolayer devices, where the appearance of Umklapp
peaks allowed for a first observation of Wigner crystals in monolayers of two dimensional
materials [113]. In stark contrast to previous studies, which focused predominantly on in-
direct signatures such as compressibility and transport, Umklapp scattering is directly sen-
sitive to translational symmetry breaking in the system. This is a main advantage of our ap-
proach. Furthermore, during these efforts we realized that low-lying collective density-wave
modes in electronic liquids can lead to optically bright states whose energies scale similarly
to the Umklapp peaks. However, these states are distinguished by their large broadening
even at zero temperatures. This allowed us to identify the presence of soft modes magneto-
rotons in ν = 1 quantumHall states, which are precursors of crystallization and herald the
proximity of a phase transition [113].

Moving forward, there are several interesting opportunities to advance this line of research.
For one, our findings open up possibilities to study strongly correlated electrons in previ-
ously inaccessible territory. The metal to Wigner crystal transition in two-dimensions is par-
ticularly challenging to model theoretically and turns out to be subtle as phase separation is
forbidden by long-range interactions [30]. This paves the way for exotic intermediate phases
such as Bubbles, stripes and emergent magnetism [120, 121]. In fact, Umklapp signatures
have been used very recently to analyze thermal and quantummelting transitions of crystals
in this regime [122].

Another exciting direction is the investigation of emerging spin order and its relation to the
crystalline structure [123]. Our calculations based on Eq. 3.3 assumed an exciton-electron
coupling independent of electrons spins. Strictly speaking, this assumption is not justified
since different exciton-electron scattering channels give rise to similar, but not identical,
repulsive interactions [51]. While this was a good approximation for the experiments con-
sidered in this thesis, it is in principle possible to not only probe crystalline charge order but
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also spin-density wave order. Probing schemes in this direction would be highly desirable,
since triangular lattices are geometrically frustrated and appear naturally in Wigner crystals
or can be designed in twisted bilayers. As a result, the magnetic order in these systems is de-
bated and is potentially exotic. We have already taken first steps to explore such signatures in
Ref. [124].

Once experimental sample quality improves further, more exotic states will become accessi-
ble in particularly clean devices. A prime example are fractional quantumHall liquids and
their nearby crystalline and liquid phases. While the integer quantumHall state exists in
absence of interactions, they are crucial in stabilizing its fractional counterpart. This nat-
urally leads to the appearance of roton modes. First estimates suggest that our method is
indeed sensitive to such collective excitations. Furthermore, it will also be interesting to
probe collective spin-modes in two dimensional electronic systems. In combination with
complementary non-optical approaches, such as the recently introduced quantum-twist-
microscopes, a clear track to obtain a more complete understanding of correlated electrons
in two dimensions seems to be within reach.
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4
Tunable interactions via solid-state

Feshbach resonances

This chapter is based on the publications

• Clemens Kuhlenkamp, Michael Knap, Marcel Wagner, Richard Schmidt and Atac
Imamoglu: “Tunable Feshbach resonances and their spectral signatures in bilayer
semiconductors”, Physical Review Letters, 129, 037041, (2022)

• Caterina Zerba, Clemens Kuhlenkamp, Atac Imamoglu andMichael Knap: “Realiz-
ing Topological Superconductivity in Tunable Bose-Fermi Mixtures with Transition
Metal Dichalcogenide Heterostructures”, arXiv:2310.10720, (2023)

Text, figures and structure have been modified for this thesis.
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Long-range interactions among quantum particles give rise to charge-ordered crystalline
configurations. Surprisingly, even in a dilute and gaseous phase—that is when the average
particle separation l0 ∼ n−1/2 is large compared to the typical range of interactions r∗—
quantum particles can nevertheless exhibit strong correlations which drastically alter the
properties of the gas [125]. While strongly correlated gases sound like an oxymoron, scatter-
ing of slow quantum particles differs from our classical expectation: for attractive potentials
the effective length-scale awithin which slow quantum particles interact with each other is
set by the inverse binding-energy E−1

B of two-body complexes. This scale a * !/
√
2μredEB

is known as the scattering length. Importantly, a can be entirely independent of the typical
range of interactions r∗ and can be the largest scale in the system a ) l0, r∗ which is due
to the wave-like nature of particles which have large de-Broglie wavelengths at low temper-
atures. By the uncertainty principle such lowmomentum waves cannot probe arbitrarily
short distances which explains why short-ranged potentials can then be described only by
their scattering length a.

If the binding energy of a bound state is very small EB → 0, the scattering length diverges
a → ∞. This effect is known as a resonance, and signals the onset of strong correlations
even in dilute gases. Such resonances rarely occur naturally as binding energies have no rea-
son to be particularly small, but they can be reached by tuning external parameters in what
are known as Feshbach resonances [126]. The main idea is simple: the energy of an existing
bound state EB is reduced by penalizing its formation with a tunable energy-barrier.

4.1 Feshbach Resonances in atomic gases

Feshbach resonances thus far have had their biggest impact in atomic physics and consti-
tute one of the most important tools in ultra cold atomic gases [127, 128, 43, 129]. There,
the precise control of the scattering length a3D enabled the study of polaron formation, the
BEC-BCS crossover including the formation of pseudo-gaps, Bose-Fermi mixtures and var-
ious aspects of Bose and Fermi Hubbard models [130, 131, 132, 133, 54, 134]. The basic
principle of an atomic Feshbach resonance is illustrated in Fig. 4.1 a). Two atoms separated
by large distances r experience an attractive van der Waals potential which decays as 1/r6.
This potential hosts several bound-states independent of the atomic spin configuration.
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Figure 4.1: Illustration of a Feshbach resonance in atomic physics. (a) Schematic interaction poten‐
tials for two atoms in different spin configurations, neglecting hyperfine interactions. Electronic
spins are denoted as arrows and the nuclear spin changes are denoted by color changes of the
atoms. For large separations two atoms reside in an electronic triplet, which constitues the open
(blue) channel. Energetically costly configurations form the closed (red) channel. By changing the
magnetic field, the energy of the low‐lying bound state (shown as a thick red line) in the closed chan‐
nel can be tuned relative to the open channel. This induces a Feshbach resonance once the two
channel mix due to finite hyperfine coupling. (b) Behaviour of the 3D scattering length across the
Feshbach resonance. At the resonance position B0 the lowest lying molecular state becomes un‐
bound. This is reflected in a sign change of the scattering length at a → ∞. The resonance width is
defined as the magnetic field distance between the points where a crosses zero and diverges.

The configuration of spatially separated atoms defines their scattering channels. In a typical
quantum gas experiment, magnetic fields are applied to polarize the electronic spins S of
the atoms, meaning that atoms predominantly scatter off each other with electronic spins
in a triplet configuration, shown by the blue potential in Fig. 4.1 a). Since this is the typ-
ical configuration of atoms, it is referred to as the open channel and has energy εO. Other
spin-configurations, such as the singlet have higher energies εC and are referred to as closed
channels, since they are energetically inaccessible. Nevertheless, closed channels can also
host bound-states whose energies may be close to the to the open-channel threshold, these
are shown in red in Fig. 4.1. The nuclear spin I couples only weakly to magnetic fields and
is important mostly to fix symmetry properties of the wavefunction, it is indicated by the
color of the atoms in Fig. 4.1a). Note that the Zeeman effect is responsible for the energy
splitting between channels

εC − εO ∼ δμ B, (4.1)
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where δμ is the difference in magnetic moment. By adjusting the magnetic field, it is there-
fore possible to bring a closed-channel bound state into proximity of the scattering con-
fiugration of an open channel, i.e. the typical energetic configuration of the atoms in the
quantum gas. Hyperfine interactions of the form Ĥhf ∼ αhf S · I, couple open and closed
channels. This allows atoms in the open channel to couple to molecular states in the closed
channel. A naive energetic counting shows that open-channel atoms can feel an attractive
reduction of energy which is roughly εC − εO − EB, where EB is the binding energy of the
relevant bound state in the closed channel. Combined with Eq. 4.1, this tells us that the
magnetic field can efficiently tune an attractive interaction between the two particles in the
open channel. Detailed calculations, which can be found in Ref. [127, 43], reveal that the
three-dimensional scattering-length for atoms in the open channel takes the simple form:

a3D(B) = a0
(
1− ΔB

B− B0

)
, (4.2)

where a0 denotes the background scattering length, B0 labels the position of the resonance
and ΔB its width. The functional behaviour of Eq. 4.2 is shown in Fig. 4.1 b).

In the rest of this chapter we establish connections between cold atomic gases and two-
dimensional materials by demonstrating how interactions between electrons and excitons
can be tuned by changing external electric fields, thereby realizing solid-state versions of Fes-
hbach resonances.

4.2 Solid-State Feshbach Resonances

We now turn to bilayer structures of 2d materials, which were introduced as fascinating
platforms for realizing exotic phases of electronic matter [135, 136]. Much of their suc-
cess is driven by a new level of control, arising from twisting the two layers with respect to
each other during stacking. This has lead to the discovery of unconventional supercon-
ductivity [21, 137], correlated insulators, and charge density waves [48, 22, 47] in bilayer
graphene and transition metal dichalcogenides (TMDs). As discussed in chapter 2 of this
thesis, semiconductors such as TMDs can also host bosons in the form of excitons, which
act as rigid and mobile quantum impurities. Excitons interact with free electrons or holes to
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Figure 4.2: Tunable Feshbach resonances in bilayer heterostructures. Illustration of exciton‐carrier
scattering in a bilayer TMD. The electrostatic potential energy is different in the two layers and can
be tuned by a perpendicular electric field Ez. Scattering between excitons and electrons is enhanced
when the intra‐layer trion energy is tuned into resonance with the energy of an electron and an
exciton in seperate layers.

form charged trions. This renders bilayer TMDs as promising candidates to study complex
Bose-Fermi mixtures. However, in solid state structures the molecular binding energies, and
correspondingly the interaction strength among particles, are generically fixed by material
properties, limiting the experimentally accessible regimes.

Motivated by the opportunities Feshbach resonances revealed in atomic quantum gas ex-
periments, we address this challenge by introducing a solid-state analogue of a such reso-
nances. Using the layer degree of freedom as a pseudo-spin, we demonstrate that the energy
of a closed-channel bound state can be tuned with respect to scattering states in an open
channel, simply by applying an external electric field Ez. The counterpart of hyperfine in-
teractions in atomic systems, is provided by coherent inter-layer electron or hole tunneling.
The emerging Feshbach molecule controls the inter-layer scattering and originates from the
hybridization of exciton-electron scattering states with the intra-layer (closed channel) trion
state [138]. As such, it is fundamentally distinct from the formation of inter-layer trions
due to interactions determined by the material properties that are not tunable [139]. We
demonstrate the impact of such Feshbach resonances on the spectrum of a single optically-
injected exciton immersed in a Fermi sea of charge carriers, taking into account the radiative
exciton decay. Close to the Feshbach resonance we find a striking modification of the exci-
ton spectrum. In particular, we show that the spectral shape is sensitive to the finite range of
the effective interactions relative to the Fermi wavelength.
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4.3 Effective description of bilayer TMDs: Connections to atomic physics

We consider a bilayer semiconductor setup as depicted in Fig. 4.2. As we are interested in
low-energy scattering, details of the underlying atomic lattice are irrelevant due to the large
separation of scales between the lattice momentum and the momenta of excitons and elec-
trons. In this regime excitons and electrons have essentially parabolic dispersions. Tunnel-
ing of electrons (or holes) between the two layers can be described by an effective average
coupling constant t, which can be adjusted by incorporating tunnel barriers [47]*. For con-
creteness we focus on two identical TMD layers separated by a distance d. Generically, the
exciton resonances in the top and bottom layers have different energies, either due to differ-
ence in material properties or strain, enabling layer-selective exciton creation. Furthermore,
hybridization between inter- and intra-layer excitons is small, due to the sizable difference
in binding energies. This allows us to focus only on intra-layer excitons †. For simplicity we
assume that excitons are injected optically and are present only in the top layer. The system
is then described by the effective Hamiltonian

Ĥ =
∑

k

x†k
k2
2Mxk +

(
c†k,T
c†k,B

)(
ξk + Δ t

t ξk

)(
ck,T
ck,B

)
+

U
V
∑

kk′q

c†k,Tck+q,Tx†k′xk′−q, (4.3)

where x†k creates an exciton of massM in the top layer, and c†k,T and c
†
k,B create fermions of

massm in the top and bottom layer, respectively.

From now on we refer to itinerant charges as electrons, although all conclusions apply
equally to holes. We omit the valley and spin degree of freedom and assume that electrons
and excitons reside in different valleys, since only this scattering channel will be resonantly
enhanced. As the exciton’s Bohr radius is small, excitons and electrons experience sizable
attractive contact interactionsU, only when both particles are in the same layer and oppo-
site valleys. We also neglect the composite nature of the exciton and treat it as a structureless

*The phenomenological treatment of the tunnel coupling t can break down for specific stackings: if the
layer separation d is small, pronounced moire potentials with spatially modulated tunneling will form. In
this case our phenomenological description is useful only for Fermi wavelengths much larger than the lattice
constant of the super lattice.

†Large electric fields could overcome the energy difference resulting in sizable hybridization with inter-
layer excitons, which would then contribute to inter-layer scattering of electrons and excitons. Here are we are
interested in smaller fields on the order of the trion binding energy where these processes are suppressed.
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boson [51]. The potential energy difference Δ = qdEz between the two layers, can be tuned
by changing Ez, as illustrated in Fig. 4.2. We consider the scenario where Δ is chosen such
that electrons reside predominantly in the bottom layer.

4.4 Feshbach resonance in exciton-electron scattering

To understand scattering properties in such a heterostructure, we focus on the two-particle
subspace of the system. In the center of mass frame, Eq. 4.3 can then be expressed in first
quantization as:

Ĥ2 body = Ĥ0 + Û

=

⎛

⎝− ∇2
R

2mtot
− ∇2

r
2μred

+ Δ t
t − ∇2

R
2mtot

− ∇2
r

2μred

⎞

⎠+ U
(
δ2(r) 0
0 0

)
,

(4.4)

where μred = 1/(m−1 +M−1) andmtot = m +M are the reduced mass and the total mass
respectively. The wave function carries the layer degree of freedom and the part describing
the relative motion can be expressed as ψ(r) = (ψT(r), ψB(r))T/

↔
2. As in the atomic

case, asymptotic eigenstates with large spatial separation between the two particles define
the open and closed channel. We consider Ez for which Δ * |E0B|, where E0B is the binding
energy of the intra-layer trion. Although both channels are hybridized between the layers,
only the open channel is energetically accessible and electrons reside predominantly in the
bottom layer (Fig. 4.3). The scattering threshold for the open (εO) and closed (εC) channel is
εO,C = Δ/2∓

√
t2 + Δ2/4.

The outgoing scattering states |ψ+
α 〉, in channel α with energy E can be found as solutions of

the Lippmann-Schwinger equation:

|ψ+
α 〉 = |φα〉+

1
E− Ĥ0 + i0+

Û|ψ+
α 〉, (4.5)

where 〈r|φα〉 ∼ eikx is an incoming plane wave [129, 140, 119]. We can reformulate the
problem by introducing the T-matrix T̂R|φα〉 = Û|ψ+

α 〉, which connects the incoming
plane waves with the full outgoing scattering state. Eq. 4.5 translates to an equation for the
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Figure 4.3: Illustration of scattering channels. (a) Inter‐particle potential for an exciton and an elec‐
tron prepared in the open (blue) or closed (red) channel. Tunnel coupling imprints the closed channel
attraction also on the open channel. (b) Threshold energies of the open and closed channel εO and
εC, as the electric field is varied. The bare closed channel bound‐state has a binding energy of EB
and is denoted by the red line. This bound state can be brought into resonance with εO for an appro‐
priately chosen electric field.

off-shell T-matrix T̂R(E):

T̂R(E) = Û+ Û
(
E− Ĥ0 + i0+

)−1
T̂R(E). (4.6)

We solve Eq. 4.6 analytically in a plane-wave basis which diagonalizes Ĥ0:

T̂R(E, k) = [12×2 − Û ·ΠR(E, k)]−1 · Û

ΠR
αβ(E, k) =

∫ d2q
(2π)2

δαβ
E− q2

2μred
− k2

2mtot
− εα + i0+

,
(4.7)

where E is the scattering energy, and k is the total incoming momentum. The 2 × 2 matrix
structure of T̂R(E, k), and Û, due to the two channels, is implicitly assumed.

Scattering can be resonantly enhanced if Ez is tuned such that the closed channel bound
state is in proximity of the open channel threshold εO, see Fig. 4.3 (b) for an illustration.
Similar to cold atomic systems, we are interested in two-particle collisions with small in-
coming momenta. In this case, scattering is accurately described by a finite-range expansion,
which is performed by expanding the denominator of the T-matrix in powers of E − εO. In
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two dimensions the finite range expansion of the on-shell T-matrix takes the universal form:

TR(k2/2μred, 0)
−1 =

μred
2π

(
iπ − ln(k2a2) + r0k2

2
+O(k3)

)
, (4.8)

which is characterized by the scattering length a and effective range r0 [141, 142]. We relate
this expansion to our effective description by integrating Eq. 4.7 and matching the open
channel scattering amplitude TR

OO(k2/2μred, 0) to Eq. 4.8. This way we obtain the open
channel scattering length aO and effective range r0:

aO = a exp
{
− 1
2

(
Δ
2t +

√
1+ Δ2

4t2

)2

ln −E0B↔
4t2 + Δ2

}
,

r0 =
1

2μred
(Δ/2+

√
t2 + Δ2/4)2

t2
√

t2 + Δ2/4
,

(4.9)

where a = 1/
√
2μE0B is the scattering length of the closed channel in absence of tunnel cou-

pling. Analyzing Eq. 4.7–4.9 we find that the open channel T-matrix has a pole at energies
below the scattering threshold εO. This is the signature of a Feshbach molecule which forms
in inter-layer scattering [119]. Eq. 4.8 demonstrates that the energy of the molecule depends
on both the scattering length aO and range r0. We plot the energy of the Feshbach molecule
as a function of detuning in Fig. 4.4 for three different t. As the detuning becomes large and
positive, the scattering length starts to diverge while the molecular energy approaches the
scattering threshold. For large detunings the binding energy is then approximately given by
1/2μreda2O. In the case E0B,Δ ) twe obtain simple expressions for the binding energy of the
Feshbach molecule EB and the effective range close to resonance, which read

EB * E0B
1
e−2

∣∣∣∣
Δ
E0B

∣∣∣∣
− Δ2

t2

, r0 *
1
μred

Δ
t2 .

(4.10)

This demonstrates the power of a Feshbach resonance: complete control over the energy
of the Feshbach molecule can be achieved simply by changing Ez. Thus the system can be
electrically tuned to arbitrarily large scattering lengths [143]. ‡ We remark that while we
discuss structures consisting of two identical TMD layers, the emerging Feshbach physics

‡More importantly, for any given electron density, it is possible to choose Ez such that kFaO ∼ 1, which
yields the strong correlation regime.
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Figure 4.4: Feshbach molecule binding energy. Molecular energy as a function of electric field (solid
blue lines). We have assumed an exciton mass ofM = 2m and contact interactions between the
exciton and electron. In two dimensions, and in the absence of inter‐layer repulsion, a bound state
exists for all values of Δ. When the size of the molecule exceeds the range of the interactions, the
scattering length alone determines the binding energy (blue dots). For large positive detunings the
molecular energy approaches the open channel threshold εO (arrows), implying that the binding
energy EB goes asymptotically to zero. For large negative detunings the binding energy approaches
the energy of the bare intra‐layer trion.

is universal. By choosing different TMD’s and spacer materials one can vary the tunnel
coupling and therefore the resonance width r0. While the binding energy of the Feshbach
molecule changes exponentially, the effective range r0 depends only linearly on Ez. We find
that weakly coupled layers lead to large values of r0, and the resulting physics is reminiscent
of narrow Feshbach resonances in atomic systems appearing for small hyperfine coupling.
However, the exponential behaviour is completely distinct from that of three dimensional
resonances appearing in atomic systems. There, the dependence on the tuning parameter is
algebraic, as can be seen in Eq. 4.2. This difference persists, even in the presence of repulsive
background scattering, as discussed in appendix A, and can be attributed to the purely two
dimensional geometry in the system.
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4.5 Effective TwoChannelModel close to resonance

Close to a Feshbach resonance, when Δ * E0T, scattering is dominated by the inter-layer
trion bound state. We can thus consider an effective model for the T-Matrix where scatter-
ing between exciton and top layer electrons is mediated by a virtual molecule. In this limit,
we expect our system to be described by an effective Hamiltonian containing holes ĉ, trions
(molecules) m̂, and excitons x̂:

Ĥ =
∑

k

k2
2mĉ†kĉk+

∑

k

( k2
2m+ 2M +Δ

)
m̂†

km̂k+
∑

k

k2
2Mx̂†kx̂k+ g

∑

k,k′
[m̂†

kĉk′ x̂k−k′ +h.c.],

(4.11)
where the first three terms describe the energies of propagating charges in the open channel,
the closed-channel molecules and the excitons. All interaction effects are encoded in the last
term, and are quantified by the bare molecule-exciton-hole coupling g.

To understand how these coefficients relate to those of the full Feshbach problem, we match
the off-shell T-matrices. To second order in gwe find that Eq. 4.11 gives rise to:

TE(ω) ∼ g2
ω − E0T + Δ + iε , (4.12)

which has a pole at the molecular energy. For a consistent description we require this pole to
be the same as the one encountered in the microscopic model for exciton-charge scattering,
which close to resonance yields

2πE0T
μred(ω − E0T + Δ + iε) . (4.13)

This relation is obtained by expanding the logarithm of the two-dimensional T-matrix. The
tunneling process is added perturbatively by introducing a vertex with tunneling strength
t and a propagator that describes tunneling of the upper layer charge carrier to the bottom
layer. Then, close to resonance, the tunneling process to the bottom layer and back con-
tributes a factor t2

Δ2 . The T-matrix is thus∼ 2πE0T
μredΔ

2(ω−E0T+Δ+iε) t
2. Comparing the two expres-
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sions yields a simple matching condition:

g =
√

2π
μredE0T

t, (4.14)

relating the scattering matrix in the microscopic and effective model. This makes the narrow
resonance limit t → 0 explicit. In this case the coupling g vanishes and molecules, charges
and excitons are completely decoupled.

4.6 Strongly coupling a single Boson to the Fermi sea

Figure 4.5: Exciton spectra across the Feshbach resonance. The spectral function of a dissipative
exciton as a function of the bias Δ, computed within a T‐matrix approximation. The Fermi energy EF
is increasing from left to right: (a) EF = E0B/30, (b) EF = E0B/20, (c) EF = E0B/10. All spectra
are computed for weak channel coupling t = 0.15E0B. The splitting of the repulsive and attractive
branch depends on EF, as highlighted in the line cuts of the spectra for two different Δ in the lower
panels. For large EF, finite range corrections become increasingly important and the repulsive branch
is stabilized and regains oscillator strength. Motivated by experiments [144, 145], the exciton is
assumed to have a radiative lifetime of Γ = E0B/30.

Resonantly enhanced two-particle scattering affects correlations in electron-exciton mix-
tures. We consider a low concentration of excitons injected into a Fermi sea of electrons in
the open channel. The excitons in such a system are mobile impurities and form collective
excitations known as Fermi polarons [57, 146, 106, 147, 55]. Here we analyze the polaron
spectrum as Ez is tuned over the Feshbach resonance.

Our previous discussions focused on two-body scattering with small but finite momentum,
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for which the exciton is long-lived and the scattering matrix is essentially unitary§. Here, we
focus on optically excited k = 0 excitons. In this regime excitons couple to the radiation
field, which allows them to decay via electron-hole recombination via emission of an optical
photon. As this decay process is essentially memory-less, it can be described by a Lindblad
master equation

ρ̇(t) = −i[Ĥ, ρ] +
∑

k

LkρL†
k −

1
2
{L†

kLk, ρ},

Lk =
√
2Γ(k) xk ,

(4.15)

where Γ(k) is the decay rate of the exciton and Lk denotes the quantum jump operator. In
the presence of a Fermi sea Eq. 4.15 constitutes a complex many-body system, which can
not be solved exactly. However, it was found that key properties can already be inferred
purely from the scattering properties of the system [148, 149] and that T-matrix approxi-
mations provide an accurate description of the ground and excited states of mobile impuri-
ties [60, 150, 151, 152, 153, 154, 155, 142, 156].

For our heterostructure setting we develop a T-matrix approximation to include dissipation
as well as finite-range corrections from the Feshbach resonance:

T̂R(E, k) = [12×2 − Û ·ΠR(E, k)]−1 · Û

ΠR
αβ(E, k) =

∫

|q′|>kF

d2q′
(2π)2

δαβ
E− ξq′ − εα − (k−q′)2

2M + iΓ(k− q′)
. (4.16)

Details on the calculation can be found in appendix A. Compared to Eq. 4.7, the momen-
tum of the electron in the open channel is now restricted to lie above the Fermi surface due
to Pauli blocking by the Fermi sea. Exciton recombination results in an imaginary part iΓ(k)
of the exciton energy [158, 159]. Using this T-matrix, we then determine the self-energy of
the exciton as a function of frequency ω:

ΣR(ω, k) =
∫

|q|<kF

d2q
(2π)2T

R
OO(ω + ξq, k+ q). (4.17)

This equation originates from the creation of a particle-hole pair in the open channel, with
§Finite momentum excitons are long-lived due to the steep light-cone, which renders only k = 0 excitons

optically active.
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hole momentum |q| < kF. The spectral function of the exciton then reads

Ax(ω, k) = −2Im
[

1
ω − k2/2M− ΣR(ω, k) + iΓ(k)

]
. (4.18)

As the master equation fulfills fluctuation-dissipation relations and we have treated dis-
sipation exactly, the resulting spectral function respects the sum rule

∫ dω
2π Ax(ω, k) =

〈[xk, x†k]〉 = 1.

We compute the spectrum as a function of detuning, by integrating Eq. 4.18 numerically.
We show the resulting exciton spectra in Fig. 4.5 for three different Fermi energies (a)-(c).
They are characterized by the formation of an attractive branch, with maxima at negative
frequencies; and a repulsive branch, with maxima at positive frequencies. For small Fermi
energies (Fig. 4.5(a)) the two resonances approach the Feshbach molecule and bare exciton
energy respectively: the spectrum can be understood in terms of the formation of a Fermi
polaron and is highly asymmetric. We observe that the repulsive polaron abruptly transfers
spectral weight to the attractive branch as the Feshbach molecule becomes weakly bound
and blue-shifts in energy.

With increasing carrier density, the maximal splitting between the repulsive and attrac-
tive branch grows (Fig. 4.5(b)). Surprisingly, we find that the repulsive polaron branch
is stabilized with growing electron densities, as seen in Fig. 4.5(c), despite the possible re-
laxation channel via excitations in the Fermi sea. This change in spectral shape cannot be
explained assuming contact interactions, but rather arises from significant finite range cor-
rections [160, 161]. Since the average scattering process involves momenta on the order of
kF, the non-logarithmic terms in Eq. 4.8 become successively more important at high den-
sities and strongly renormalize the spectrum. In our setup Feshbach resonances are rather
broad, which leads to characteristic spectral asymmetries due to the strong coupling to a
continuum of scattering states. For Feshbach resonances based on polaritons on the other
hand, this coupling is typically very weak due to the steep polariton dispersion, which can
obscure the relevant scattering physics [162]. As the spectral function of the exciton is di-
rectly accessible in reflection measurements, the features we identified provide particularly
clear experimental signatures of strong correlations, which we study in the next section.
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4.7 Experimental realization of strong correlations close to a Feshbach res-
onance

This section is based on the publication

• Ido Schwartz, Yuya Shimazaki, Clemens Kuhlenkamp, Kenji Watanabe, Takashi
Taniguchi, Martin Kroner and Ataç Imamoğlu: “Observation of electrically tun-
able Feshbach resonances in twisted bilayer semiconductors”, Science 374, 6565, pp.
336-340, (2021)

Text, figures and structure have been modified for this thesis.
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Figure 4.6: Optical properties of a bilayer TMD device. (A) Schematic depiction of the experimental
setup consisting of two MoSe2 layers separated by a single layer of hBN. (B)VE dependent differ‐
ential reflectance spectra at a fixed chemical potential for ν = 3. A Feshbach resonance is reached
when the energy of a top‐layer trion is in resonance with a bottom layer hole, as highlighted by the
dashed green box.

Here we demonstrate a tunable Feshbach resonance in a homobilayer MoSe2/hBN/MoSe2
heterostructure, which provides the experimental basis for tunable interactions between
bosonic (exciton or polariton) and fermionic (electron or hole) particles. The experimental
setup is illustrated in Fig. 4.6A, and is aligned with the general theoretical model introduced
in the previous sections. The hBN spacer suppresses the inter-layer hole tunneling. Top
and bottom gate voltagesVtgandVbgallow us to adjust the filling and electric field indepen-
dently, which is important as the latter tunes the potential energy of the holes depending on
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their layer-configuration. We useVE andVμ to denote linear combinations ofVtg andVbg

that results in a minimal change to Ez and the chemical potential μ. The main difference to
the theoretical model is a finite twist-angle between the twoMoSe2layers, which introduces
a weak moire superlattice and leads to a striking filling factor dependence of the many-body
system: for unity filling of the moire superlattice (ν = 1) we observe the Mott-like correlated
insulator states in the top or bottom layers, as evidenced by the observation of an umklapp
resonance as discussed in chapter 3. Nevertheless, for high fillings ν > 1, excess holes in the
system are tunnel-coupled and occupy layer hybridized sites in the moire lattice. In this limit
signatures of the Feshbach resonance appear, which we study via the strong electric field
(Ez) and hole density dependence of the exciton spectrum [57, 106], which demonstrates a
strong-coupling regime of the Fermi polaron.

We show a wide range of theVE dependent ΔR/R0 spectra at ν = 3 in Figure 4.6B. The ex-
citation spectrum clearly shows the neutral exciton resonances Xtop and Xbot of the top and
bottom layers. AsVE is increased from−2V to 2V, doped holes in the system transferred
from top to bottom layer. The shift of holes to the bottom (top) layer is evidenced by the
disappearance of the Xbot (Xtop) exciton resonance as the bottom (top) layer is charge doped
and the exciton starts to be modified by the presence of fermions in the same layer. At the
same time this also leads to the formation of an attractive polaron APbot (APtop) in the bot-
tom (top) layer at lower energy. A more interesting effect occurs once the molecular energy
of a top layer trion becomes resonant with a hole in the bottom layer, which is marked by
the green box in Fig. 4.6B. ForVE ≥ 1.3V, the oscillator strength of theVE-dependent top
layer AP transition starts to increase and exhibits a highly asymmetric anti-crossing with the
top-layer exciton transition atVE = 1.4V. The corresponding avoided crossing between
the bottom layer AP and the bottom layer exciton transitions is observed atVE = −2.1 V.
These are the Feshbach regions, which we will focus on in the following. There the Xtop

(Xbot) resonance is modified, despite the top (bottom) layer being almost completely void
of holes. The increasing oscillator strength of the top layer AP originates from intra-layer
trions resonantly coupled to a continuum of inter-layer exciton-hole states and identified as
a Feshbach molecule [127].

For finite doping the Feshbach resonance allows us to strongly couple the exciton to a Fermi
sea. We demonstrate this experimentally in Figure 4.7, where we show the derivative of
ΔR/R0 with respect to energy in the spectral region highlighted with the green dashed box

65



Figure 4.7: Signatures of the polaron spectrum close to the Feshbach resonance. Evolution of the
VE dependent differential reflectance spectrum differentiated with respect to energy E, for hole‐
densities ν = 2, ν * 2.5 and ν = 3. The spectrum around the top‐layer exciton resonanceXtop
is visibly asymmetric even though holes predominantly reside in the opposite layer. For larger Fermi
surfaces the effect is more pronounced, as expected from Fermi polaron formation with a Feshbach
molecule.

in Fig. 4.6B. For small densities ν * 2 the splitting between the exciton and the molecu-
lar branch is much smaller than the coherent hole tunnel rate, as expected for a Feshbach
resonance. As the filling ν is increased from 2 to 3, we find that the splitting grows: this en-
hancement is consistent with the fact that the oscillator strength of the Feshbach attractive
polaron resonance as well as the splitting between the attractive and repulsive resonances
scale with the density of holes. As such, the nature of the anti-crossing is strikingly different
from that of a simple avoided crossing: the physics underlying the excited state splitting is
the tunnel coupling of a single molecular (trion) state to a continuum of exciton-hole scat-
tering states. The observed strongly asymmetric anti-crossing in the optically excited state
is therefore a purely many-body effect and is due to the formation of attractive and repul-
sive polarons associated with the emerging inter-layer Feshbach molecule. Remarkably, the
observed hole density dependence of the avoided crossing is in good agreement with the
theoretically predicted density-dependence of the Fermi-polaron.

We also point out that our theoretical model is easily adapted to explain off-resonant fea-
tures in the full range ofVE. As before we perform a T-matrix approximation, but also al-
low for a large population of holes in the same layer as the exciton. The resulting spectral
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functions for a Fermi energy of 1meV and a radiative decay rate of Γ = 1.5meV are shown
in Fig. 4.8. Even though we do not take into account interference effects arising from the
device geometry (which lead to the dispersive line shapes observed experimentally), the the-
oretical model still captures the most important features shown in Fig. 4.6B. The exciton

Figure 4.8: Theory of exciton spectra across the Feshbach resonance. Spectral functions of a single
exciton coupled to a Fermi sea of holes, as a function of detuning Δ = edEz. (A) shows a full elec‐
tric field scan. Two regions are distinguished: (I) For weak electric fields, observed shifts arise from
hybridization of holes between the two layers. (II) Once Δ * ET, scattering is strongly enhanced
due to the formation of a weakly bound inter‐layer molecule. Remarkably, in this regime the holes
are strongly pinned to the opposite layer of the exciton. (B) shows a zoom‐in on the resonant region,
where the asymmetric transfer of spectral weight between the attractive and repulsive polaron is
clearly visible. The bare trion energy in the absence of tunnel coupling, and the energy of the Fesh‐
bach molecule are shown as dashed (grey) and solid (red) lines.

spectrum is characterized by two distinct regimes:

1. For eEzd * 0 we find an attractive polaron branch originating close to the intra-
layer trion energy |ET| ) EF, with small oscillator strength. In the experiment this is
the APtop branch that is associated with holes originally at the MM sites of the moire
lattice. AsVE is increased, this branch continues to blue shift while losing oscillator
strength. This is a consequence of the fact that asVE is increased, the probability of
finding a lowest energy MM site hole in the top layer is decreased. Since the hole in
the initial state of the optical transition is predominantly in the bottom layer, the
photon energy required to create a top layer AP increases linearly withVE. Naturally,
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for largeVE the probability to find the hole in the top layer MM site is small, which is
confirmed experimentally by the very faint APtop signal.

2. Once eEzd * |EB| the molecular bound state is close to the continuum of scattering
states at which point the system features resonantly enhanced interactions between
the exciton and the Fermi sea. Here, the exciton can efficiently scatter particle-hole
pairs, leading to an abrupt loss of the excitonic (repulsive polaron) branch, as clearly
seen in Fig. 4.8B.

Although our modeling given by Eq. 4.4 and Eq. 4.17 neglects complex features of the ex-
periment such as the underlying moiré potential, the fact that inter-layer hole-tunneling is
only possible around the MM sites of the moiré lattice, long-range Coulomb interactions
and mass renormalization, we are able to obtain very good qualitative agreement with the
experimental observations. This demonstrates that the underlying physics can be effectively
described by a simple model of a rather broad two-dimensional Feshbach resonance. Our
observation therefore provides unequivocal evidence for a 2D Feshbach resonance [162]
and the presence of attractive and repulsive polaron branches associated with the emerging
inter-layer Feshbach molecule.

4.8 Conclusions andOutlook

In this chapter we have carried atomic Feshbach resonances over to solid state systems. This
establishes important connections between distinct experimental platforms, whose typi-
cal energy scales are separated by several orders of magnitude. Further, expressed in terms
of electric field tunable layer pseudo-spins of electrons, the condensed matter set-up makes
the Feshbach mechanism of introducing an energy barrier for bound-state formation par-
ticularly evident. Since excitons and electrons in these setups are naturally and strongly
confined to two dimensions, this allowed us to study the previously unexplored regime of
perfectly two dimensional Feshbach resonances. More importantly, however, solid-state Fes-
hbach resonances enable tunable, strong correlations in Bose-Fermi systems independent
of their total density; which posed a major obstacle in their experimental realization. As a
proof of principle, we have shown that the formation of Fermi Polarons can be controllably
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studied via the Feshbach resonance. We observed experimentally and theoretically that the
Fermi polaron exhibits a highly asymmetric and density-dependent spectrum in the strongly
interacting regime. This can be understood as a realization of a maximally imbalanced Bose-
Fermi mixture. While such systems have also been studied in cold atomic gases [55], solids
can reach much lower temperatures on the order of fewmK, which corresponds to remark-
ably low ratios T/TF - 0.1, which have remained inaccessible until now.

In the future, several directions will be particularly interesting to explore. For one, our ob-
servations open the exciting direction to increase the Boson density away from the Polaron
limit which can enable a controlled study of the rich phase diagram of Bose Fermi mixtures.
We have already made first steps to extend our setup to finite exciton densities, where exci-
tations of an excitonic Bose gas mediate superconductivity in a Fermi sea [163, 164]. Since
the bound state exists only for excitons and electrons with different spin/valley degree-of-
freedom, the Feshbach-resonance allows for spin selective interaction control which drives
exotic pairing channels, where Cooper pairs can carry finite angular momentum. Strik-
ingly, such systems typically break time-reversal symmetry and can host elusive Majorana
fermions.

We want to highlight that Feshbach resonances can also form in different scattering chan-
nels than the one considered here, i.e. an electron and an inter-layer exciton in resonance
with an intra-layer bound state. This could prove to be useful in the context of long-lived
indirect exciton condensates [165]. This is possible as inter- and intra-layer excitons have
been shown to hybridize due to tunneling, and the energy of the former can be tuned elec-
trically [47, 166].

Lastly, our work generates the opportunity to study few-body physics in two dimensional
semiconductors. The tunable scattering length can be used to explore exotic multi-particle
bound states, where a single electron binds multiple excitons [167, 168]. While we specif-
ically considered resonant scattering between excitons and electrons, Feshbach physics in
2Dmaterials could be a generic phenomenon that may also be relevant for understanding
purely electronic processes [169].
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To believe or not to believe.

Xiao GangWen

5
Stabilizing Chiral Spin Liquids in twisted

TMDs

This chapter is based on the publication

• Clemens Kuhlenkamp, Wilhelm Kadow, Atac Imamoglu, Michael Knap: “Tunable
topological order of pseudo spins in semiconductor heterostructures”, arXiv:2209.05506
(2022)

Text, figures and structure have been modified for this thesis.

5.1 Spin Liquids and the triangular lattice Hubbard model

If a many-body state is invariant under all symmetries of the Hamiltonian it naively seems to
describe a rather trivial disordered configuration, such as a paramagnet. In the presence of
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strong interactions, however, disordered quantum states can develop intricate entanglement
structures and host exotic excitations. Such states are known as spin-liquids and are studied
by high-energy, condensed-matter and quantum information physicists alike. Given the
large amount of approaches and ideas, it is difficult to write down an inclusive definition of
what constitutes a spin liquid without being too restrictive [11, 12]. This makes defining a
spin liquid a surprisingly non-trivial task. Nevertheless, there are several properties which a
state of matter usually fulfills if it is referred to as a spin liquid:

1. As the name suggests, the building blocks of spin-liquids are usually bosonic spin
degrees of freedom residing on a lattice. In contrast to conventional magnetic phases,
spin-liquids are typically disordered in their quantum ground state and not described
by any local order parameters.

2. All spin-liquids host fractional excitations: any local operator acting on the ground
state generates at least two quasi-particles. Experimentally, this implies that measur-
ing properties of isolated quasi-particles is difficult, since linear response measure-
ments reveal a broad continuum of states rather than a single sharp mode. On a the-
oretical level this motivates parton constructions, where local operators (i.e. S(x)) are
decomposed into redundant partons. These redundancies naturally lead to an emer-
gent gauge-structure and connect the field to high-energy physics. Spin liquids are
then identified as the deconfined phases of gauge theories. We will discuss this point of
view in section 5.7. Since gauge theories are not inherently quantum, fractionaliza-
tion can also be observed in classical systems, such as spin-ice [170].

3. Ground states of gapped spin liquids should possess a notion of robust long-range
entanglement, which makes it impossible to easily connect the spin liquid to a simple
product state, such as a ferromagnet. This robustness, which is independent of any
symmetry, is called topological order [171].

Already the first requirement is difficult to satisfy, as spin systems at low temperatures
have a strong tendency to form various types of magnetic order. The first examples of spin-
liquids appeared in the context of magnetic systems on triangular lattices by Philip Warren
Anderson in the 70s [172]. Geometric frustration, as it is present on the triangular lattice, is
a convenient way to disfavor anti-ferromagnetic order of Ising spins, see Fig. 5.1. The main
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idea behind Andersons proposal was to find low energy states in the Heisenberg model by
superimposing singlet coverings of the lattice. A canonical guess for a spin-liquid wavefunc-
tion is a coherent superposition of all dimer coverings, known as a resonating valence bond
(RVB) state. Excitations in RVB states are naturally fractional, as breaking a singlet gener-
ates two spin-1/2 excitations. However, the RVB state turns out not to be the ground-state
of the Heisenberg model on the triangular lattice. Classical order prevails and a 120◦ Neel
ordered state is formed, which is illustrated schematically in Fig. 5.2. This state sponta-
neously breaks SU(2) symmetry and hosts gapless Goldstone modes. Surprisingly, recent
unbiased numerical studies suggest that the triangular lattice Hubbard model does host a
bona-fide spin liquid phase close to the Mott transition [41]. The phase diagram is summa-
rized in Fig. 5.3. ForU/t - 1 electrons are mobile and the system is metallic or undergo
a superconducting instability. In the complementary limitU/t ) 1 the system is well de-
scribed by an effective Heisenberg model and orders magnetically. As the Mott transition
atU/t * 9 is approached from the insulating side, corrections to the Heisenberg Hamilto-
nian are particularly strong due to the small charge-gap. In this regime the system is found
to form a spin liquid, which happens to spontaneously break time-reversal symmetry [173].
This is remarkable and we will discuss the properties of the spin liquid in the next section.
However the small area in the phase phase diagram Fig. 5.3 tells us that experiments must be
carefully designed to reach and observe a spin liquid regime.

This situation is rather generic. Spin liquids happily exist in theory land but despite hav-
ing attracted tremendous amounts of theoretical and experimental studies, the decade long
quest for the experimental realization of such long-range entangled states has been chal-
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Figure 5.1: Geometric frustration of the triangular lattice for Ising spins. Simple Ising anti‐
ferromagnets are forbidden.

72



Title Text

29

A

B

C

Figure 5.2: 120◦ Neel state. Illustration of the ground state magnetic order in the Heisenberg model
on the triangular lattice. The spins are co‐planar. The system is organized in A,B and C sites, on
which the spins are ordered in a 120◦ pattern. Other possible ground‐state scan be obtained by
SO(3) spin rotations of this configuration.
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Figure 5.3: Potential diagram of the triangular lattice Hubbard model. The system is found to spon‐
taneously break time‐reversal symmetry to form a fully gapped spin liquid close to the Mott transi‐
tion aroundU/t * 9. Numerical values and a detailed investigation can be found in [41]

lenged by their fragility. In particular, when topological order is encoded in an electronic
spin degree of freedom, a characterization and manipulation of the excitations becomes
intractable. Even in theoretical models, spin liquids often appear only for very specific pa-
rameters, which makes finding good candidate materials difficult [12, 174]. Consequently,
conclusive evidence for spin liquids in solids is hard to come by, which makes it essential to
identify tunable solid-state platforms that allow for novel probes of the spin liquid states.

Here, we show that large external magnetic fields can induce a particularly rich phase dia-
gram, ranging fromHofstadter physics for small interactions to spin-liquid phases in the
Mott insulating regime [175, 172, 176, 173, 177, 64]. Strikingly, the magnetic field reli-
ably tunes ring-exchange processes, which stabilize exceptionally robust chiral spin liquids
(CSL) [177, 178]. While this stability is a generic feature of the triangular lattice Hubbard
model, we will focus on and propose a particularly natural experimental realization in moiré

73



heterostructures of two dimensional materials. In both conventional materials and two
dimensional materials, large magnetic fields eventually polarize the electronic spin. How-
ever, as we have seen in chapter 4, one can retain a SU(2) symmetric model by considering
a synthetic layer pseudo-spin degree of freedom instead [179, 180, 59]. By engineering a
moiré lattice, the lowest bands of such systems in the presence of external magnetic fields
can be described by effective triangular lattice Hubbard models with large lattice constants.
The large moiré unit-cell then makes it possible to insert a high enough flux and therefore
to explore the full spectrum of the Hofstadter butterfly [175, 181]. This is an ideal setting
to study the interplay of geometric frustration and strong interactions [48, 47, 22, 65, 64].
Indeed, we will see that such systems enable us to study a large variety of previously inacces-
sible phases, including exotic insulator-to-insulator transitions between topological charge
and spin sectors.

5.2 FrustratedHubbard physics in twisted TMD bilayers

Figure 5.4: Proposed setup. A twisted AB‐stacked homobilayer TMD setup to realize a triangular
Hubbard model is shown in the left panel. Top and bottom layers are drawn in blue and red. Elec‐
trons with pseudo‐spin up (down) in the effective Hubbard model are depicted as blue (red) spheres
in the right panel.

Heterostructures of two dimensional (2D) materials formmoiré patterns, either if there is a
lattice constant mismatch between the materials, or if some of the layers are twisted against
each other. This commonly results in honeycomb and triangular structures, which imprint
lattices on the electrons. Motivated by recent work [64, 182], we consider triangular moiré
patterns, in which two lattices in different layers coincide spatially. This can be achieved in
multiple ways: in ’sandwich’ stacked trilayer systems; for AB-stacked homobilayers with a
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twist [64, 183], as shown in Fig. 5.4; via twisted hexagonal boron nitride structures in prox-
imity to a homobilayer TMD [182, 184]; or via electrostatically imprinted potentials [185].
Depending on the depth of the lattice potential [186], the lowest lying moiré band of the
TMD heterostructure can then realize an effective triangular Hubbard model, with two
electronic degrees of freedom: spin and layer. Here we explore the phase diagram of these
models by tuning the external magnetic field Bz. Once the Zeeman effect fully polarizes the
electrons, their spin can be discarded and the TMD system is described by an interacting
Hofstadter-Hubbard model on the triangular lattice:

Ĥ = −t
∑

〈ij〉,σ={T,B}

(
eiφij c†i,σcj,σ + h.c.

)
+ t⊥

∑

i

(
c†i,Tci,B + h.c.

)
+ U

∑

i
ni,T ni,B, (5.1)

where we have assumed that longer-range interactions have been screened by nearby gates.
The operator c† (c) creates (annihilates) spin-polarized fermions and the index σ ∈ {T,B}
labels the top and bottom layer of the heterostructure, see Fig. 5.4 for an illustration. Elec-
trons are subject to a hopping term with strength t and an inter-layer tunnel coupling t⊥. In
AB stacking, one of the layers is rotated by 60◦ which exchanges theK andK′ points. Due
to spin-valley locking, this strongly suppresses t⊥. For sandwich structures and twisted h-
BN imprinted potentials, t⊥ can be made vanishingly small via an insulating barrier. In the
following we analyse Eq. 5.1 and assume t⊥ = 0 throughout. We interpret electrons in the
top (bottom) layer as having pseudo spin+1/2 (−1/2). The magnetic field does not couple
directly to the pseudo-spin, and its only effect is the generation of Peierls phases φij.

Hamiltonian 5.1 then describes lattice versions of quantumHall systems, which give rise
to a large variety of phases. In the absence of interactions the system realizes a Hofstadter
model that hosts a multitude of topologically non-trivial electronic bands which are in-
duced by the magnetic field; see Fig. 5.5 a) for an example. As solid state systems are generi-
cally interacting, it is crucial to study the fate of these bands once electron repulsion is con-
sidered. While some states directly connect to the Hofstadter model atU = 0, interactions
stabilize exotic phases of matter. One such example are excitonic superfluids, which arise
when pseudo-spin symmetry is broken spontaneously by the interactions. Another, even
more exciting possibility, is the formation of states with intrinsic topological order, such as
fractional Chern insulators. As opposed to integer Chern insulators they feature emergent
gauge fields, anyonic excitations and long-range entanglement [187, 188].
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Figure 5.5: Schematic phase diagram. a) Typical topological band structure of the Hofstadter model
at π/2 flux and vanishing interactions. b) Schematic phase diagram of the half‐filled triangular Hub‐
bard model as a function of flux and interactions. Circles represent iDMRG data obtained on cylin‐
ders of circumference Ly = 6 and stars mark phase transitions. Remarkably, for intermediate to
large interactions the dominant fraction of the phase diagram is a Chiral Spin Liquid (CSL). For weak
interactions, the magnetic flux gives rise to a large variety of Hofstadter states, which can directly
transition to the CSL.

As correlated insulating phases give rise to particularly interesting spin physics, we consider
a single electron per moiré unit cell ne = 1 from now on. This allows the system to become
Mott insulating for strong enough interactions, which is the natural regime for TMDs [189,
114, 113]. This limit is understood by eliminating the doubly occupied subspace with a
Schrieffer-Wolff transformation [177], leading to the following effective Hamiltonian

Ĥeff. =
1
U
∑

ij,σσ′
tijtji (c†iσciσ′) (c

†
jσ′cjσ)−

2
U2

∑
tijtjktki (c†iσciβ) (c

†
kβckα) (c

†
jαcjσ)

+O(t4/U3),

(5.2)

which is equivalent to an effective spin system

Ĥeff. =JH
∑

〈ij〉

Si · Sj + Jχ
∑

Si · (Sj × Sk) +O(t4/U3), (5.3)

with anti-ferromagnetic Heisenberg interactions JH and a chiral spin coupling Jχ. The cou-
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plings are related to the Hofstadter-Hubbard model parameters as follows

JH = 2t2/U, Jχ = 24 sin(Φ) t3/U2, (5.4)

where Φ is the magnetic flux per triangle, which is given by φij + φjk + φki if i, j, k label sites
on a single triangle.

Although the triangular lattice is frustrated, the ground state of the pure Heisenberg model,
obtained forU = ∞, is a co-planar 120 degree (pseudo-) magnet [190, 191]. However,
when interactions are lowered or the magnetic flux is increased, the ground state of the
fermion system is still a subject of debate. We will show that Jχ can melt the 120 degree
order and give way to an exceptionally stable CSL. The hallmark of this exotic phase is a
fractionalization of the spins into spinons fα, which is captured by a parton ansatzεS =
1
2
∑1

α,β=0 f†αεσαβfβ. Expressing Eq. 5.3 in terms of the spinons leads to a Hamiltonian, identi-
cal to Eq. 5.2 with electrons replaced by the spinons. The price to pay in this representation
is a single occupancy constraint

∑
α f

†
i,αfi,α = 1 which must be imposed on each site i. This

is similar to the Schrieffer-Wolff construction in Eq. 5.2, where we projected out double oc-
cupancies to describe the Mott insulator. Spinons evolving with Eq. 5.2 may move freely in
a correlated fashion if self-consistently generated hopping terms acquire non zero expecta-
tion values

∑
β〈fi,βf

†
j,β〉 ≃= 0, but remain confined for conventional magnetic phases such as

the 120 degree order. A mean-field decoupling around such configurations leads to simple
trial Hamiltonians for the spin liquid:

Htrial =
∑

〈ij〉,α

t̃ijf†iαfjα. (5.5)

This illustrates one of its key properties: a stable mean field solution for the chiral spin liq-
uid exists, when the (self-consistently determined) hopping matrix t̃ij ∼

∑
β〈fi,βf

†
j,β〉 breaks

time reversal symmetry and induces topological Chern bands. The ground state of the CSL
can be thought of as a Chern insulator composed of spinons. Projecting out double occu-
pancies to satisfy the single occupancy constraint then gives the spinons anyonic charac-
ter [171, 177]. Despite the fragility of the CSL at zero flux and the fact that a Mott state
retains a nonzero (but small) fraction of double occupancies, we will show that magnetic
fields strongly favor the formation of a quantum spin liquid, see Fig. 5.5 b) for a schematic
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phase diagram.

While this discussion assumed strong magnetic fields to fully polarize the electronic spin, we
point out that rich physics also arises when Zeeman splittings are small. Then, the system
has additional approximate symmetries which have been proposed to give rise to more ex-
otic SU(4) spin liquids [64]. How this and other phases interplay with the Hofstadter states
is an interesting open question, which is beyond the scope of this work.

Furthermore our discussion based on the effective spin model neglects higher order ring-
exchange processes, which become increasingly important close to the Mott transition. In
order to fully capture the properties of the system, we instead study the electronic Hamil-
tonian of Eq. 5.1 directly, without projecting out the higher energy subspace [41]. In the
following, we emphasize the rich physics of the model by studying a subset of phase transi-
tions fromHofstadter states to the CSL.

5.3 Phases of the pseudo-spin Hofstadter-Hubbard model at specific flux

We consider in detail the half-filled triangular Hubbard model deep inside the Hofstadter
butterfly regime with two fluxes Φ ∈ {π/3, π/2}. These flux values correspond to total
filling factors of νT = 2πne/2Φ ∈ {3, 2}, where 2Φ is the flux per unit cell and ne is the
number of electrons per unit cell (ne = 1 at half-filling, which is what we consider through-
out this work). For these flux values various exotic phases of matter can be stabilized. For
example, at weak interactions the system could realize gapped bilayer integer quantumHall
(IQH) and gapless excitonic insulators, respectively. For large interactions, these phases
compete with magnetic ordering and exotic spin liquids. Given the insights from the effec-
tive spin model in Eq. 5.3 the precise value of the external flux only determines the ratio of
Jχ/JH in the Mott insulator. However, in the quantumHall regime its value is essential, as it
determines charge gap. In order to determine which phases are stabilized by the microscopic
Hofstadter-Hubbard model, we resort to numerical methods.

Studying fermions in magnetic fields poses a significant numerical challenge. Here, we use
matrix product states (MPS) to obtain an unbiased variational approximation of the many-
body wave function. This Ansatz allows for an expansion in terms of the entanglement,
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Figure 5.6: Ground state correlation length forΦ = π/2. We show the correlation length in the
charge sector (Sz,Q, ky) = (0, 0, 0) as a function ofU/t for different values of the bond dimen‐
sion χ. AroundU * 10.5t the correlation length grows with bond dimension, which is indicative of
phase transition melting the bilayer quantum Hall state. The dotted grey line serves as a guide to the
eye.

that is controlled by the maximal bond dimension χ of the MPS. If both the quantumHall
states and the CSL are gapped, they can be efficiently represented in terms of anMPS on a
cylindrical lattice, that is finite in one direction but infinite in the other, because the total
amount of entanglement is finite for such lattice geometries. This method has been success-
fully applied to phases with intrinsic topological order, which lead to a better understanding
of fractional quantumHall (FQH) and fractional Chern insulators; see e.g. [192, 193, 194].
We variationally optimize the MPS by infinite Density Matrix Renormalization Group
(iDMRG), implemented via the TeNPy library [195]. Since the bond dimension, and hence
the numerical costs, grow exponentially with the cylinder circumference, in this work we
focus on Ly = 6, which fits both fluxes Φ = π/2, π/3 with periodic boundary conditions.

Working in the infinite limit along the x-direction, we can directly obtain the correlation
functions as well as the correlation length from the transfer matrix of the corresponding
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MPS unit cell. We use these methods to determine the ground-state phase diagram of the
Hofstadter-Hubbard model given by Eq. 5.1. Even though the precise points of the phase
transitions may shift depending on the cylinder circumference, we expect the structure of
the phase diagram to be similar in the two dimensional limit [41]. To be able to perform the
simulations with high bond dimensions and therefore small truncation errors, we utilize the
U(1)×U(1) symmetries generated by the z-component of pseudo spin

∑
i Szi =

∑
i n̂Ti − n̂Bi

and particle conservation
∑

i n̂Ti + n̂Bi as well as translation symmetry along the y-direction
[196, 197], which determine the Sz,Q, and ky quantum numbers, respectively.

5.4 Quantum phase transition at Φ = π/2

For Φ = π/2 flux per triangle and smallU/t the system is in a bilayer IQH state, defined
by a fully filled topological band with Chern number C = 1 for each pseudo spin, see
Fig. 5.5a). We find signatures of a phase transition by studying the ground state correlation
length as a function of interactionsU/t, which is shown for operators carrying the quan-
tum numbers (Sz,Q, ky) = (0, 0, 0) in Fig. 5.6. As interactions are increased, the correla-
tion length grows significantly with bond dimension around a critical interaction strength
ofUc ∼ 10.5t, which indicates a gap closing phase transition. In contrast to the bilayer IQH
state, identifying the phases forU > Uc is more subtle. The most relevant competing states
are 120 degree spin-order, tetrahedral spin-order, excitonic insulators, and the chiral spin
liquid.

We shed light on the largeU phase by noticing that the enhanced correlation length is ac-
companied by a simultaneous reorganization of the half-cylinder entanglement spectrum,
shown in Fig. 5.7 (a,b). The entanglement spectrum directly encodes the energy levels of
the edge theory on a half-infinite cylinder, which are distinct for the bilayer IQH and the
other candidate phases. The edge theory of the bilayer IQH for smallU/t is given by two
chiral modes, one for each layer. Their excitations are understood as follows: For ky = 0
there is a unique state where neither of the edge modes is excited, leading to a single dom-
inant entanglement eigenvalue. To create a momentum ky = 1 · 2π/Ly excitation, one
can shift the lowest lying electron by one momentum quanta, and promote it to the state
just above the Fermi level. As this can be done in both layers, we find two such excitations,
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Figure 5.7: Topological properties forΦ = π/2. Edge properties and charge pumping for
Φ = π/2 forU = 5t (a,c) andU = 15t (b,d). a) Ground state entanglement spectrum in the
IQH phase for χ = 10000 and chargeQ = 0. The spectrum obeys a (1,2,5,10,…) counting rule
characteristic for an edge theory of two chiral bosons, which suggests an IQH state in both the top
and bottom layer. b) Ground state entanglement spectrum in the CSL for χ = 10000 and charge
Q = 0. The spectrum obeys the (1,1,2,3,5,…) counting rule for the edge theory of the CSL phase.
(c,d) Pumped charge under flux insertion through the cylinder. Red and blue dots indicate flux that
is inserted equally and oppositely in the two layers. While the pumping in c) is a direct consequence
of two charge‐carrying edge modes of the bilayer IQH state, the charge pumping in the CSL regime
d) vanishes entirely, consistent with the separation of spin and charge degrees of freedom while the
spin remains quantized.

leading to two entanglement eigenvalues. In the appropriate basis these excitations decouple
completely and correspond to total-density and spin-density wave excitations. Continuing
this counting, one finds that the momentum resolved entanglement spectrum for increas-
ing momenta ky is given by (1, 2, 5, 10, . . . ) entanglement eigenvalues in each spin sector,
see Fig. 5.7 a). These density- and spin-wave modes are arranged in a representation of an
underlyingU(1) ⊗ SU(2)1 algebra, as expected for the boundary of a double copy of an
IQH state. ForU > Uc, on the other hand, the ground state loses several edge excitations;
see Fig. 5.7 b). This is natural once the system turns Mott insulating, at which point density
waves acquire a finite energy cost. The spectrum then consists only of spin waves described
by a representation of the SU(2)1 algebra, which leads to a (1, 1, 2, 3, 5, . . . ) counting. The
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edge is therefore captured by a chiral SU(2)1 Wess-Zumino-Witten model, which matches
the edge theory of the chiral spin liquid [198, 199].

We further analyse the topological character of the bilayer IQH and the suspected CSL by
inserting fluxes through our cylinder, which realizes Laughlins charge pump [200, 201].
The IQH state responds to the insertion of 2πmagnetic flux by transferring a single charge
from one end of the cylinder to the other in each layer, illustrated in Fig 5.7 c) (red markers).
To couple to the charge-neutral spin edge modes, one has to thread opposite fluxes in the
two layers. The IQH state then pumps one electron in the top and one hole in the bottom
layer each carrying a spin of 1/2, leading to a pseudo-spin transfer of unity, see Fig 5.7 c)
(blue markers). Combining these results, we infer that the excitations carry both charge and
spin.

ForU > Uc the system no longer pumps electric charge when threading magnetic fluxes,
consistent with a Mott insulating state. However, it still exhibits quantized spin transfer
for oppositely inserted fluxes, see panel d) of Fig. 5.7. Inserting π flux for the electrons cor-
responds to a 2π flux insertion in the effective spin Hamiltonian Eq. 5.3. From this point
of view we pump a single spin after threading 4π spin-flux, realizing a fractional spin Hall
effect. This can be intuitively understood via the Kalmeyer-Laughlin construction, where
the spin system is mapped to a half-filled Bose-Hubbard model in the presence of a fictitious
background magnetic field [176]. Our observed spin pumping is then explained by the for-
mation of a ν = 1/2 bosonic FQH state which is identified as the chiral spin liquid in the
spin picture. As such, excitations of the CSL are semions, which are abelian anyons with a
statistical phase θ = π/2. This leads to a doubly degenerate ground state on cylinders in
the thermodynamic limit Ly = ∞, which reside in the ky = 0 and ky = πmomentum
sectors respectively. In our geometry, the ground state energies in these sectors approach
each other and cross shortly after the transition, which is a finite size effect of our simu-
lations [41, 178]. The same conclusion can be reached starting from a purely fermionic
model, although the discussion is more involved [171]. The fractional spin-Hall effect and
the absence of charge transport therefore serves as a direct signature of a fractional Hall state
for spin. Putting these findings together we identify the phase into which the bilayer IQH
phase transitions when increasing interactions toU > Uc as a CSL.
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5.5 Competition betweenHall states and spin liquids at Φ = π/3

Figure 5.8: Transition forΦ = π/3. The ground state correlation length for operators in the sector
(Sz,Q,ky) = (0,0,0). In the lowest energy ky = π state, the correlation length strongly increases
aroundU * 8.5t, indicating a sharp transition to a chiral spin liquid. The energy crossing of the k =
0 and k = π states is indicated by the vertical lines and is a finite size effect. The two momentum
states are expected to be the degenerate ground states of the CSL in the thermodynamic limit.

For νT = 3, we no longer expect a quantized Hall conductance as the Landau bands are
partially filled. This opens the possibilities for other charge liquids, such as excitonic super-
fluids. Here, we choose unit cells of size Lx = 3, which allows us to reliably prepare states
with fixed momenta along the y-direction. We provide details in appendix B, where we find
that for smallU/t the system does not exhibit any quantized pumping. Although it is sug-
gested by the continuum limit, we do not find long range ferromagnetic correlations of the
Hall liquid, which may be a feature of the Hofstadter-Hubbard model at half filling. While
we cannot uniquely identify the nature of this state, its response is consistent with a feature-
less Hall state [202]. However, once interactions are raised a sharp transition occurs around
U * 8.5t, as evidenced by the growing correlation length; see Fig. 5.8.
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We find that the transition (on finite cylinders) occurs in steps: First, for smallU/t the
ground state is found at zero momentum. AsU increases the correlation length in the ky =
π sector diverges. Then, quickly after this divergence the ky = π state becomes the new
ground state of the system. Afterwards the energy splitting between the two states remains
roughly constant, as shown in appendix B.

There are several possible candidate states once the system becomes insulating. Following
the analysis of the previous section we can identify the phase forU ≥ 8.5t as a CSL, see
appendix B. In particular, the state exhibits a fractional spin-Hall effect and shows the char-
acteristic half-cylinder entanglement spectra. Although the ky = 0 state is higher in energy
than the ky = π state forU ≥ 8.5t, the edge theories of both states are in good agreement
with the SU(2)1 WZWmodel describing the boundary of the CSL.

While the robust spin liquid is a universal feature of the largeU phase for both fluxes, the
charge to spin liquid transitions are clearly distinct for νT = 2 and νT = 3. Most notably
for νT = 3 the CSL appears already for much weaker interactions compared to νT = 2.
This indicates that the charge liquid at νT = 3 is less stable, than the νT = 2 bilayer IQH
state. A sketch of the expected phase boundaries is shown in Fig. 5.5 c). This behaviour is
reminiscent of the competition betweenWigner crystals and Hall states in electron gases,
where integer and fractional quantumHall states extend further into the gapped crystalline
phase than their gapless counterparts [203, 113].

5.6 Signatures of layer pseudo spin

Potentially the biggest challenge in spin-liquid physics is to find experimental signatures
for their existence. Many of the previously proposed detection schemes of electronic-spin
liquid states —such as a quantum thermal Hall effect—are readily generalized to layer-spin
systems. However, layer pseudo spin is easier to manipulate and probe which presents a
crucial advantage and opens new avenues to detect the spin liquid: (I) By turning on an ex-
ternal magnetic field Bz the ground state changes from a 120 degree Néel state at Bz = 0
to the CSL, as sketched in Fig. 5.5 b). Associated experimental signatures are the temper-
ature dependence of the pseudo spin susceptibility χ(T). At high temperatures, it follows
the net-Weiss law∝ (T − θCW)−1, with negative Curie-Weiss temperature θCW due to an-
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tiferromagnetic interactions. At low temperatures, the Néel phase has a broad peak and
approaches a constant value towards T = 0. The CSL, on the other hand, has a spin gap
ΔS, which leads to exponential decay of χ(T) below kBΔS. As we discuss below, χ(T) can
be measured optically, which makes these signatures accessible in present-day experiments.
(II) In stark contrast to intrinsic electronic spin, pseudo-spin can be electrically addressed,
which allows us to couple the two pseudo-spin states to different electric fields (cf. discus-
sion surrounding Fig. 5.7 c) and d)). This enables counterflowmeasurements, which will
exhibit a fractionally quantized Hall response, a hallmark of a CSL. While sample inhomo-
geneity and the difficulty in electrical isolation of the two layers render such a measurement
rather demanding, it would be able to uniquely identify the topological order of the chiral
layer-pseudo-spin liquid and distinguish it from all other phases in the phase diagram [64].
(III) Topological properties of the CSL are encoded in the gapless modes on its edge [204].
In addition to spin-modes, one can measure the decay of electron correlation functions
〈c†σ(x, t)cσ′(0, 0)〉 on the edge, which serve as additional probes of the spinons.

While observing fractional pseudo-spin Hall conductivity requires transport experiments,
other signatures of the CSL could be obtained using all-optical measurements, which over-
come several obstacles through tight focusing of the probe lasers into regions where the
moiré potential is uniform. The spin-susceptibility at finite field Ez can be extracted via the
attractive polaron resonance strength of each layer, which measures howmany electrons the
exciton can form a bound trion state with and thereby directly depends on the electron den-
sity [57, 205]. Probing the pseudo-spin magnetization 〈Sz〉 is then possible since each layer
generically has a different exciton resonance*. As outlined above, measurement of magne-
tization as a function of Ez at low temperatures kBT - Δs should show the existence of a
spin-gap. The appearance of the charge gap in turn, is evidenced by the cusps in attractive
and repulsive polaron resonances, indicating the modification of dynamical screening of ex-
citons by electrons [47]. Such local probes are particularly relevant for near term devices as
they are readily accessible and largely insensitive to large-scale disorder. Further, direct evi-
dence for the emergence of a gauge field could be verified using optical Hall measurements.
It has been demonstrated that effective electric fields can be imprinted on excitons using
crossed magnetic and time dependent electric fields [206]. A combination of such an effec-

*This is true also for twisted homobilayer structures where strain lifts the degeneracy of the exciton reso-
nance
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tive dipole electric field and the emergent gauge field should result in layer-contrasting Hall
effect [207], which can be measured by determining the spatial dependence of the attrac-
tive polaron resonance in each layer along the axis that is orthogonal to the dipole electric
field. Furthermore, novel momentum-resolved techniques unique to 2Dmaterials could
also allow for the measurement of ARPES-like spectra [208] which can provide signatures
of spinon excitations in quantum spin liquids [209].

Complementary insights could be obtained by measuring 〈Szq=0(t)Szq=0(0)〉 using correla-
tions between resonantly scattered photons on the attractive polaron resonance. If coherent
optical Raman manipulation of layer pseudo-spin is possible, then suppression of spin noise
along all axes for kBT - Δs can be measured [210].

5.7 Gauge theory interpretation and phase transitions

We now construct the field theory describing the appearance and disappearance of the chiral
spin liquid. While the construction of such theories is rather standard, it gives us important
experimental hints on how one may go about probing the spin liquid and provides us with
potential critical theories which give rise to these exotic phases. We will therefore give more
details than necessary. What follows is largely based on [211]. Understanding the critical
theory in our system is important for several reasons:

• The critical theory illustrates the mechanism with which the chiral spin liquid is lost.
Although the transition may be first order, this gives insights as to how a realistic spin
liquid state could be stabilized.

• While topological order is hard to detect, change of order has much stronger thermo-
dynamic and dynamical signatures. Indeed, we have seen in chapter 3 that soft modes
heralding phase transitions can be detected in experiments. As such, critical points
are of primary interest to experiments. Unfortunately, the critical theory of the chi-
ral spin liquid is non-trivial and hard to solve. Not all is lost, however, as we can still
make predictions that can serve as strong experimental evidence for the formation of
the chiral spin state.
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Figure 5.9: Schematic of potential gap closings atΦ = π/2. ForU/t ≤ 12 the system is in a
fully gapped integer quantum Hall state with C = 2. The Mott transition is driven by closing of the
charge gap, leading to the CSL state with total C = 0. Later on the charge gap grows withU, while
the spin remains closed once the system forms 120◦ order at aroundU/t ! 25.

• We will see that the transitions of the CSL are related to a remarkable duality web [5].
While this is not immediately useful for experiments, it relates to deeper physical
structures within quantum field theory.

Before discussing the critical point, we motivate the main ingredients of our physical de-
scription based on our numerical results. The first transition from Chern insulator to chi-
ral spin liquid changes the Hall conductivity. The Chern insulator at lowU/t has a total
Chern number C = 2 while the chiral spin liquid is a charge-insulator with C = 0. This
implies a closing and opening of the charge gap at the Mott transition. Furthermore, the
system supports edge spin-waves described by the SU(2)1 theory in both phases, which sug-
gests that the bulk spin gap remains open. The second transition to the 120◦ Neel state is
comparatively simpler. AtU/t ) 1, exciting charges is very costly, but the system hosts
gapless spin waves due to the formation of 120◦ magnetic order. As such this transition will
be described by a closing of the spin-gap. This scenario is depicted in Fig. 5.9.

Motivated by the above it seems that charge and spin-degrees of freedom could decouple in
this system. This suggests the following decomposition of the electron operator [211]:

ci,σ = fiσbi, (5.6)
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where the spinon fiσ carries information about the spin, while the chargon described by bi
encodes charge fluctuations. This provides a first hint pointing towards the emergence of
a gauge structure, since this expression remains invariant under the local U(1) transforma-
tions:

fiσ → eiαi fiσ, bi → e−iαibi. (5.7)

This invariance is built into the parton ansatz and must hold in everything that follows to
faithfully describe the Fermi Hubbard model. Such a decomposition is always possible. It
corresponds to a drastic, artifical enlargement of the local Hilbert space dimension. Among
the set of enlarged states there are only four physical states per site

|0〉phys ↔ |0〉gauge
c†↑|0〉phys ↔ |n↑f = 1, nb = 1〉gauge
c†↓|0〉phys ↔ |n↓f = 1, nb = 1〉gauge

c†↑c
†
↓|0〉phys ↔ |n↓f = 1, n↓f = 1, nb = 2〉gauge,

(5.8)

where nσf = f†σ fσ and nb = b†b label the occupation of spinons and chargons. In other
words physical states must satisfy the gauge constraint that

∑

σ
f†i,σ fi,σ = b†i bi, (5.9)

on every site i. This can be viewed as a version of Gauss’s law, satisfied by every physical
state, and expresses the fact that spinon and chargon carry opposite charge under the local
U(1) symmetry. On this level we can perform an exact rewriting of the partition function of
the Fermi Hubbard model:

Z =

∫
Da0

∫
DfDf̄

∫
DbDb̄ eiS[f,b]ei

∑
i
∫
dt a0i (b̄ibi−

∑
σ f̄iσfiσ)

S[f, b] =
∫

dt
∑

i,σ
f̄i,σ i∂t fi,σ + b̄i i∂t bi + t

∑

〈ij〉,σ

eiφij f̄i,σfj,σb̄ibi + h.c.− U
2
∑

i
|b̄ibi|2,

(5.10)
where we introduced a real scalar a0 to satisfy the gauge constraint Eq. 5.9 and used that the
Hubbard interactions only depend on the total charge described by the chargons. This is
arguably worse than what we started with due to the correlated hopping. The standard ap-
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proach to simplify the action is to decouple the correlated hopping via a Hubbard-Stratonovich
field χ〈ij〉, yielding a new action

S[f, b, χ] =
∫

dt
∑

i,σ
f̄i,σ i∂t fi,σ + b̄i i∂t bi +

1
t
∑

〈ij〉

χ̄〈ij〉σx χ〈ij〉

−
∑

〈ij〉

(
χ̄〈ij〉Ψ〈ij〉 + Ψ̄〈ij〉χ〈ij〉

)
− U

2
∑

i
|b̄ibi|2,

, (5.11)

where we have grouped Ψ〈ij〉 = (̄fi,σ fj,σeiφij , b̄jbi)T. The saddle point of Eq. 5.11 demon-
strates mutually generated hopping terms, since χ〈ij〉 = tσx〈Ψ〈ij〉〉, which indicates that
spinons see flux and completely fill Chern bands on the triangular lattice, while the char-
gons do not. Since we are interested in the proximity to the critical point and the systems
ground-state properties, most microscopic details, such as the lattice constant, are unim-
portant as long-wavelength fluctuations dominate the systems behaviour. However, under
gauge transformations the Hubbard Stratonovich field transforms as a gauge field χ〈ij〉 →
ei(αi−αj)χ〈ij〉, which constrains the effective action. Assuming a closed manifold, the spinons
can be integrated out in the bulk, where they contribute a Chern-Simons term at level
C = 2. The charges on the other hand are gapped out in the Mott phase. The critical the-
ory for a Mott transition in a bosonic field is well known and hosts a relativistic symmetry as
the transition is not density changing [3]. The particle excitations of ϕ essentially describe
double occupancies close to the Mott state, while anti-particles correspond to holes. Fol-
lowing Ref. [3] one obtains the following effective action valid in the vicinity of the Mott
transition:

S[a, φ] = 2
4π

∫
a ̸ da+

∫
d3x |(i∂μ − Aμ + aμ)ϕ|2 +m2|ϕ|2 − λ|ϕ|4 + . . . , (5.12)

where Aμ is the background vector potential, where we have kept only relevant terms in the
renormalization group sense. We now discuss the phases appearing in limiting cases.

(I) Weak interactions: Physically, we expect any bosonic field to condense at low tempera-
tures in the weakly correlated regime. At tree level this condensation transition appears for
m2 > 0. Coupling to the U(1) gauge fields Aμ and aμ affects the U(1) symmetry breaking
due to the Anderson-Higgs mechanism [119]. A translationally invariant mean-field solu-
tion 〈ϕ〉 ≃= 0 exists when a = A. This removes fluctuations of the gauge field a and leaves
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behind a gapped superfluid. However, the Chern-Simons term remains and now reads:

S〈ϕ〉&=0[a, ϕ] =
2
4π

∫
A ̸ dA+ . . . . (5.13)

Since A is the background electromagnetic gauge field, this action describes a genuine C =

2 integer QuantumHall effect, as we have observed numerically [171]. This is also seen
directly from the parton ansatz of Eq. 5.6 where spinons can be identified with electrons
in the Higgs phase ci,σ = fiσ〈bi〉 ∼ fiσ, which suggests that the electron operator is not
fractionalized.

(II) Strong interactions: In this regime double occupancies and holes are energetically
strongly suppressed and the system develops an interaction induced gap. In the effective
action 5.12 this occurs whenm2 < 0. In this limit ϕ can be integrated out. Since the coeffi-
cient of the Chern-Simons term is quantized, it is not renormalized and describes a ν = 1/2
fractional quantumHall effect [171]. The Chern-Simons action essentially encodes a flux
attachment procedure. Coupling a spin or charge current js,cμ minimally to aμ yields a flux
attachment, such that spin and charge excitation transmute into semions with a statistical
phase of θ = π/2.

(III) IQH to CSL Critical point: At the critical point, the system undergoes a Mott transi-
tion to change the quantized Hall conductivity. Both sides of this topological transition are
gapped insulators, while the charge gap at the critical point vanishes, suggesting a finite con-
ductivity close to the critical point. This is rather peculiar and can potentially probed via
AC and DC conductivity measurements. Furthermore the critical point of Eq. 5.12 is pro-
posed to have a dual fermion description: TheWilson-Fisher fixed point of a boson coupled
to a level-2 Chern-Simons actionU2(1) is dual to a fermion plus aU−3/2(1)Chern-Simons
theory [5]. We will not treat this dual description of critical point in detail here, but it serves
as a good starting point to make experimental predictions about the transition and to search
for extended symmetries.

This gives a rather complete picture of the topological phase transition atU/t * 12. Al-
though we did not observe it numerically, we expect that a second transition takes place
forU/t ≥ 20 after which the system should form a 120◦ Neel state [178]. Since the mag-
netic phase is confined one of two things will happen: either a field that is charged under
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Figure 5.10: Schematic phase diagram and interpretation in the gauge picture. The integer quantum
Hall effect can be understood as a Higgs phase, where the Meissner effect requires the emergent
and physical gauge fields to equal to each other a = A. The transition to the chiral spin liquid at
U * 12 can be continuous and is dual to a Dirac fermion. The magnetic ordering transition at
U * 25 deep inside the Mott phase, is accompanied by the softening of a spin‐wave mode at the
K/K′ point. A natural mechanism for a continuous ordering transition would be the closing of the
spinon dispersion at another Dirac point.

the emergentU(1) symmetry is condensed leading to a Higgs mechanism, or the topological
spinon-gap closes which confines theU(1) gauge theory by monopole proliferation [212].
The latter has a natural interpretation: the chiral spin liquid is aU(1)2 fractional Quan-
tumHall state of spins. We have seen in chapter 3, such states generically give rise to soft
(spin) density wave modes [118]. In our case this would imply a softening of spin-wave
modes at theK/K′ points, which are the ordering wavevectors of the Neel state. These soft
spin-waves can be identified as vortex anti-vortex pairs [213], which can become soft due
to a closing of another Dirac cone. This provides an appealing picture describing the phase
boundaries of the CSL state, which we depict in Fig. 5.10. In the future it will be interesting
to develop numerical and analytical tools to study their properties. Furthermore, the soft-
ening of a spin-density-wave mode atK/K′ momentum can be experimentally explored via
quantum twist microscopes [208, 214].
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5.8 Conclusions andOutlook

We have shown how a large class of quantum phases and transitions can be studied in multi-
layer TMDs. In particular, topologically ordered CSLs can be stabilized by utilizing the
layer degree of freedom as a synthetic spin [64, 59, 215]. The absence of a magnetic Zeeman
effect for the pseudo-spin allows us to target topological states by controlling the strength of
ring exchange processes using large external magnetic fields. For weak interactions a variety
of Hofstadter states can be prepared by sweeping Bz, while a CSL forms for intermediate
interaction strengths. At specific fluxes, our model realizes topological insulator-insulator
Mott transitions. Understanding the details of these transitions is an interesting direction
for future work and will help to better understand the phase boundaries of the CSL. Re-
markably, the field induced CSL is found to be exceptionally robust and occupies a large
region of the phase diagram. Combined with the electric tunability and layer-selective read-
out of layer pseudo-spin, this makes TMD heterostructures particularly promising plat-
forms to study spin liquid physics. Novel probing schemes unique to the pseudo-spin de-
gree of freedom offer an additional advantage of these systems over conventional spin liquid
candidates. Competing spin and charge ordered phases can be more easily identified; while
counterflowmeasurements [64] directly probe the topology of the spin liquid. It is also
possible to find fingerprints of the spin liquid phase with all optical measurements, which
provide local probes that are crucial for near-term devices.

Our results open up several theoretical and experimental avenues to study topological order
and exotic phase transitions. For one, Mott insulators can be stabilized at fractional fillings
by longer-ranged interactions, leading to spin systems with different lattice geometries and
more exotic states for small interaction strengths. More specifically, for Φ = π/3 densities
of ne = 1/3, 1/9, . . . realize excitonic insulator candidates and FQH states respectively,
both of which eventually transition to frustrated spin states in Mott-Wigner insulators at
largeU/t. This poses interesting questions about the nature of quantum phase transitions
between topological order in the charge and spin sectors. Furthermore, in the weak field
limit a variety of interesting competing states emerges, and their interplay is largely unex-
plored. Most notably, this regime is expected to feature Hofstadter physics, quantumHall
ferromagnetism and SU(4) spin liquids [64].
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A
Feshbach resonances

A.1 Exciton electron interactions and renormalization

Since excitons in TMDs are tightly bound, we have treated the exciton-electron scattering
as an effective two particle problem. Microscopically, however, the scattering properties and
the exciton-electron potential need to be determined from the eigenstates of the three body
problem of a single hole and two electrons. It was shown in Ref. [51], that a simple contact
potential between exciton and electron of the form

V̂ = U
∑

k,k′,q

x†kxk−q c†k′ck′+q, (A.1)

can adequately reproduce the correct long-wavelength scattering physics, if logarithmic UV
divergences due to large-momentum virtual states are properly renormalized. Such diver-
gences express the fact that naive contact-like interactions of the formV(x) = Uδ2(x) are
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ill-defined, which can be fixed by introducing a momentum cutoff Λ and a regularized in-
teraction strengthUΛ, which boils down to replacingV(x) by a pseudo-potentialVΛ(x).
The idea here is that the pseudo-potentials strength and width—controlled byUΛ and Λ,
respectively— can be tuned to match the proper scattering physics of the underlying micro-
scopic model.

UΛ is matched by ensuring that the scattering length a, or the relevant binding energy E0B,
is correctly reproduced. To fixUΛ we compute the T-matrix and match the position of its
pole to the physical value of E0B

1
UΛ

=

∫

|k|<Λ

d2k
(2π)2

1
E0B − k2

2μred
+ i0+

. (A.2)

The binding energy of the exciton-electron complex in monolayer TMDs has been experi-
mentally determined to be around E0B * 30meV. Note that while cut-off Λ is now a free
parameter, it tunes the width ofVΛ(x) potential as it represents the largest resolvable mo-
mentum scale. Taking Λ much larger than any other physical scale, while fulfilling Eq. A.2,
ensures that we are describing a short range potential, which is fully captured by specifying
E0B.

A.2 Interlayer scattering

If the spatial separation between the two semiconductor layers is sufficiently large, inter-
layer scattering in the open channel can be safely neglected. For small separations, or for
Feshbach resonances formed with inter-layer excitons, inter-layer molecules may form. As a
top-layer exciton with an electron (or hole) in the opposite layer constitute the open chan-
nel, an inter-layer molecule (trion) leads to attractive background scattering. Here we study
the effect of background scattering on the Feshbach resonance discussed in the main text, by
solving Eq. 2 in the presence of an inter-layer molecule with binding energy EIB. Motivated
by recent experiments on spatially separated TMDs which suggest inter-layer binding ener-
gies EIB ≤ 0.5 meV, we focus on weak background scattering. The resulting eigenenergies
of the system are shown in Fig. A.1(a) for EIB/E0B = 1/30 and t/E0B = 1/10.
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Figure A.1: Exciton electron problem and the effects of background scattering. (a)Molecular en‐
ergies measured from threshold as a function of detuning. Molecules in the presence (absence) of
an inter‐layer bound state are shown as solid (dashed) lines. Hybridization between the inter‐ and
intra‐layer molecule pushes the Feshbach molecule into the continuum for finite detunings, where
it unbinds. For large positive detunings the only remaining bound state is the open channel (inter‐
layer) molecule. (b) Scattering length determined by fitting the low‐momentum T‐matrix in the open
channel. In the presence of inter‐layer scattering (solid line) the scattering length diverges when the
lowest lying molecule dissolves. In the absence of the inter‐layer scattering the molecule remains
stable for all detunings (dashed line).

Far from resonance, the molecule with highest energy approaches the energy of the inter-
layer trion EIB. Once the inter- and intra-layer molecule energies are comparable the two
states repel and the Feshbach molecule is pushed into the continuum, leading to a diverging
scattering length even at finite detuning shown in Fig. A.1(b).

While the scattering length remains fully tunable, background scattering may modify many-
body properties such as Fermi polaron spectra. We investigate this possibility by including
weak attractive inter-layer interactions in our T-matrix analysis.

The resulting spectrum is shown in Fig. A.2(a), and retains the characteristic asymmetry be-
tween attractive and repulsive polaron. The repulsive polaron branch, however, never loses
its spectral weight completely, which is in contrast to the case of vanishing background scat-
tering as shown in Fig. A.2(b). The repulsive polaron persists, since the Feshbach molecule
asymptotically approaches EIB for large electric fields. In the limit EIB - EF the weight of
the repulsive branch vanishes for large electric fields, recovering the situation discussed in
the main text.
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Figure A.2: Comparison of exciton spectra. (a) Spectral function of the exciton as a function of de‐
tuning, for an inter‐layer molecule energy EIB/E0B = 1/60 and EF/E0B = 1/15. For large detunings,
the two branches correspond to the attractive and a repulsive polaron associated to the inter‐layer
trion. Due to attractive background scattering the repulsive branch never fully dissolves, however
the spectral weight transfer between the branches remains strongly asymmetric. It occurs when the
binding energy of a molecule is comparable to the Fermi energy. (b) Exciton spectral function in the
absence of background scattering (cf. Fig. 4 in the main text). In this case the binding energy of the
Feshbach molecule vanishes asymptotically for large detunings, where the polaron energy quickly
approaches that of a bare exciton.

A.3 Non-equilibrium formalism

In the following we find an approximate solution to Eq. (9) of the main text using non-
equilibirum field theory. It has been shown that generic Master equations can be mapped
to a functional integral. This is achieved by rewriting the real time evolution of Eq. (9) in a
coherent state basis, which yields a field theory on a Keldysh contour [158]. As the density
matrix is now in general non-thermal, the system admits two possibly inequivalent correla-
tion functions

G>
k (t, t′) = −i〈xk(t)x†k(t

′)〉,

G<
k (t, t′) = −i〈x†k(t

′)xk(t)〉,
(A.3)

which would be related to each other by fluctuation-dissipation relations, if the system was
in thermal equilibrium. In our case only the excitons couple to the radiation field, which
leads to quantum jump operators Lk, linear in the exciton operators xk and x†k. Conse-
quently, dissipation can be treated to all orders simply by modifying the impurity propa-
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gator. In the impurity limit nI =
∑

r〈x†rxr〉/V ∝ 0, this yields

G>(ω, k) = 2iΓ(k)
(ω − k2/2M)2 + Γ(k)2 , G<(ω, k) = 0. (A.4)

Other quantities, such as the retarded response function GR, contain no additional informa-
tion and are defined in terms of G≶ as usual:

GR(t, t′) = Θ(t− t′) (G> − G<) (t, t′),

GR/A(ω, k) = 1
ω − k2/2M± iΓ(k) .

The electrons on the other hand are in thermal equilibrium and their correlation functions
take the simpler form:

G>
α (ω, k) = −2πi (1− nF(ω)) δ(ω − k2/2m− εα + εF),

G<
α (ω, k) = 2πi nF(ω)δ(ω − k2/2m− εα + εF),

where nF(ω) is the Fermi-Dirac distribution function and α ∈ {O,C} labels the channel.

As before we can reconstruct the retarded fermion correlation function

GR
α (t, t′) = Θ(t− t′) (G>

α − G<
α ) (t, t′),

which takes a particularly simple form in frequency space:

GR
α (ω, k) =

1
ω − k2/2m− εα + i0+ .

In our analysis we consider Fermions at zero temperature, which is a good approximation
for solid state systems as they can be cooled down to milli-Kelvin temperatures. For ex-
perimentally typical electron densities≥ 1 × 1011, one can easily reach the regime where
kBT - t,EF,E0B. That being said, studying the effects of finite temperature on Fermi po-
larons is an interesting prospect for future work.
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A.4 T-matrix approximation to the exciton self energy

Here we determine the T-matrix of Eq. (9) on a Keldysh contour, taking into account the
ground state of the electrons. This will allow us to construct an approximate expression for
the self energy. Although our nonequilibrium setting allows for additional correlations, the
local-in-time structure of the interaction significantly restricts the number of independent
components of the T-matrix [157]. In the end the T-matrix has the same causality structure
as the propagators and can be expressed in terms of T≶(t, t′). The diagrammatic structure
remains the same as for the two-particle problem in Eq. (4) except that time arguments now
live on a Keldysh contour

= + .

We use Langreth rules to decompose the above equation, which yields the following equa-
tions for the components of the T-matrix:

T≶
k (E) = UΛ

[
K≶

k (E)T
A
k (E) + KR

k (E)T
≶
k (E)

]
=UΛ

K≶
k (E)TA

k (E)
1− KR

k (E)
,

TR/A
k (E) = UΛ

[
1+ KR/A

k (E)TR/A
k (E)

]
=UΛ

1
1− UΛKR/A

k (E)
, where

K≶
αβ(t, x) = −G≶(t, x)G≶

0,α(t, x)δαβ, and KR/A
αβ (t, x) =± Θ(±t) (K> − K<)αβ (t, x).

(A.5)
Θ(x) is the Heaviside step function and the kernelsK can be explicitly computed as before.
Eq. A.5 implies that T<(t, t′) = 0, as it is proportional toG<. This is a consequence of the
impurity limit, as T< is proportional to the density of molecules, which vanishes for a single
exciton.

We now compute an approximate self energy of the exciton from the many body T-matrix.
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Its form is given by the following Dyson equation

= + ,

which encodes the following equations

GR(ω, k) = GR
0 (ω, k) + GR

0 (ω, k) · ΣR(ω, k) · GR(ω, k),

ΣR(ω, k) = −i
∫ d2q

(2π)2
dδω
2π Tr{TR

k+q(ω + δω) · G<
0 (δω, q)},

(A.6)

where the trace is performed over the two scattering channels. To obtain the second equa-
tion we have already assumed T<(ω, k) = 0, as the number of molecules is negligible in the
impurity limit.
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B
Stabilizing Chiral Spin Liquids

B.1 Determining the effective Hubbard paramters

We derive the parameters of the Hubbard model frommicroscopic properties of the TMDs,
following the procedure outlined in Ref. [44]. In the set-up discussed in the main text, holes
in the two doped TMD layers feel a potential energy variationVM(r)which is well approx-
imated by the lowest few harmonics {gj|j = 1, . . . , 6} in the limit of small twist angles and
reads:

VM(r) =
6∑

j=1
vgj eigj·r. (B.1)

The lowest harmonics of the potential are fully specified by vg1 = v0eiψ. In the low-doping
limit, we approximate the valence band dispersion of the TMDs as parabolic and solve the
corresponding Schrödinger equation to determine the Moire bands and Bloch functions
un(q). The hopping parameter t in the Hubbard model is determined by fitting a tight-
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Figure B.1: Hubbard model parameters. U/t andV/U for a WSe2 system as a function of lattice
constant aM, assuming d = 2nm, ψ = −94◦ and ε = 7. Favorable regimes for the CSL are
shaded in red. Top: Increasing aM drives the system deeper into the Mott phase which eventually
gives rise to a 120 degree magnet once JH dominates indicated by the upper dashed line, while the
system tends to form an integer quantum Hall state forU/t ≤ 10, as confirmed by our numerical
simulations. Middle: Nearest neighbor interactions are strongly suppressed for large aM. We find
that the CSL remains robust whenV/U ≤ 1/6 as indicated by the dashed line. Bottom: Resulting
phase diagram of the t−U− V Hubbard model, as a function of aM. The CSL is stable in proximity
to the Mott transition.

binding dispersion to the lowest-lying Moire band. We calculate the interaction parameter
U by employing a projective construction [216, 217] to determine a complete set of local-
izedWannier functions for the lowest band wRn(r), whereRn labels the position of the unit
cell. This yields

U =

∫
d2x
∫

d2y |wRn(x)|2 VC(x− y) |wRn(y)|2, (B.2)

and a similar expression for the strength of nearest-neighbor interactions

V =

∫
d2x
∫

d2y |wRn(x)|2 VC(x− y) |wRn+1(y)|2. (B.3)

101



Where we assume an electrostatic Coulomb potential

VC(r) =
e2
4πε

(
1
|r| −

1↔
r2 + 4d2

)
, (B.4)

which takes into account the dielectric constant of the environment ε and that electrons in-
duce mirror charges in a metallic gate separated by a distance d, which screens the Coulomb
law down to dipolar interactionsVD(r ) d) ∝ 2e2d2/4πε|r|3 when their separation is
much larger than the distance to the gate. Longer-range interaction terms beyondU and
V can be neglected as they are strongly suppressed. For concreteness, we focus on a trilayer
WSe2/MoSe2/WSe2 setup in the following and assume a potential strength v0 * 10meV
and ψ = −94◦ as suggested by DFT calculations [44], although our results do not depend
strongly on the precise values of v0 and ψ, and apply qualitatively also to the other setups
discussed in the main text. The functional dependence ofU/t andV/U on the Moire lattice
constant aM is shown in Fig. B.1, for d = 2nm. ForU/t ! 25 (aM ! 7nm) the Heisen-
berg coupling dominates and the system forms a 120 degree state [218]. In the limit of small
lattice constants, or larger twist angles, the system eventually forms an bilayer IQH state.
For intermediate lattice constants our numerical analysis suggests the CSL is stable over a
sizable regime even in the t − U − VHubbard model. We study the robustness of the CSL
to perturbations in detail in the next-section.

B.2 Robustness of the CSL to perturbations

B.2.1 Nearest neighbor interactions

So far, we have discussed the ideal Hubbard model, described by t,U and Φ. Here, we show
robustness of the observed CSL phases persists in the presence of nearest-neighbor interac-
tionsV, which are naturally present in 2Dmaterials due to strong Coulomb repulsion. We
therefore include repulsive terms in the Hamiltonian, which then reads:

Ĥ =− t
∑

〈ij〉,σ={T,B}

eiφij c†i,σcj,σ + h.c.+ U
∑

i
ni,T ni,B

+ V
∑

〈ij〉

ni,Tnj,T + ni,Bnj,B + ni,Tnj,B + ni,Bnj,T.
(B.5)
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Figure B.2: Effect of nearest neighbor interactionsU/V = 6 on the entanglement spectrum and
charge pumping. For both panelsΦ = π/2 andU = 17t. Left panel: Entanglement spectrum for
χ = 10000. The symmetry‐resolved spectrum and its degeneracies agree with the CSL prediction
even for sizable nearest‐neighbor interactions. Right panel: The system pumps an integer pseudo
spin under flux insertion, confirming the topological nature of the spinon bands.

In the Mott insulating limitU,V ) t, the nearest neighbor interactions indeed reduce the
effective Heisenberg coupling in second-order degenerate perturbation theory

JH = 2t2/U → 2t2/(U− V), (B.6)

which points to a destabilization of the CSL. To study the robustness of the spin-liquid
phase, we determine the ground state of Eq. B.5 using iDMRG, with a conservative estimate
ofU/V = 6. ForU/t = 17 this corresponds to physical parameters of ε = 7, d = 2nm,
v0 = 6meV and ψ = −94. Having assumed a constant value forU/V, we significantly over-
estimateV for smaller twist angles, where the plain Hubbard model is an excellent approx-
imation, albeit overall energy gaps are suppressed by t/U. The phase diagram of the main
text can be reproduced reliably ifU/V ≥ 6 and the topological features of the CSL can
be recovered, as shown in Fig. B.2. Our analysis therefoer reveals a favorable experimental
regime for the observation of spin liquid states at intermediate twist angles as highlighted in
the bottom panel of Fig. B.1. We note that the CSL regime could be enhanced even further
by engineering the dielectric environment to maximize electronic screening as commonly
assumed in the literature [64, 65].
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Layer SU(2) symmetry breaking

As a topologically ordered state, the chiral spin liquid is robust to any small perturbation.
While symmetries are not essential ingredients for the CSL, the extent to which SU(2) can
be broken before the spin liquid is destabilized is not clear a priori. Although it can be elec-
trostatically ensured that

∑
i〈Sz(i)〉 = 0, strain can induce hopping of different strengths

in the two layers. The minimal model to study these perturbations is given by the following
Hamiltonian:

Ĥ = −
∑

〈ij〉

eiφij tTc†i,Tcj,T + tBc†i,Bcj,B + h.c.+ U
∑

i
ni,Tni,B, (B.7)

where tT(B) = t +
(−)δ label the tunneling strengths in the top (bottom) layer. The IQH state is

expected to be robust as the wavefunction is close to a direct product of the two layers. For
the CSL, the situation is less clear, as the two layers are correlated due to interactions. We
find the leading order correction to the effective spin model describing the CSL by perform-
ing a Schrieffer Wolff transformation, which yields the effective spin Hamiltonian:

Ĥeff = 2 t
2 + δ2

U
∑

〈ij〉

Si · Sj + 4δ
2

U
∑

〈ij〉

Szi Szj +O(
t3
U2 ,

δ3

U2 ), (B.8)

where chemical potential terms of the form∼ t δU(nT − nB) have already been compensated
by external electric fields. SU(2) breaking terms only appear at orderO(δ2/U)which in-
troduce some anisotropy. This is in accordance with the result of our DMRG simulations
for δ = 0.1t and a flux of Φ = π/2, which find very similar phase boundaries, as shown
in Fig. B.3 a). The entanglement spectra shown in Fig. B.3 b), clearly show well-defined
chiral edge modes that match the expected counting rules of the Chern insulator and the
CSL as discussed in the main text. Due to the topological protection of the quantized Hall
response, the edge theory remains well-defined and retains its SU(2)multiplets even for siz-
able perturbations δ.
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Figure B.3: Triangular lattice Hubbard model with broken SU(2) symmetry. Ground state properties
of the triangular lattice Hubbard model for δ = 0.1 atΦ = π/2 flux on an infinite cylinder with
Ly = 6. (a) Ground state correlation length in the charge sector (Sz,Q) = (0, 0). As for the
SU(2)‐symmetric model, the correlation length is enhanced aroundU/t * 10.5. (b). Panel 1 and 2
show the ground state entanglement spectrum for χ = 10000 and chargeQ = 0 at small and large
U/t, respectively. We find the characteristic eigenstate countings of a ν = 2 Chern insulator and
the CSL. The degenerate SU(2) multiplets remain well‐defined on the edge, although the underlying
Hubbard model is no longer symmetric.

B.3 Gauge choice for different flux values

To implement a static magnetic field on the triangular lattice we perform a Peierls substi-
tution tij → tijeiφij , where the choice of phases φij is not unique. To accommodate for the
Φ = π/2, π/3 flux per triangle and to keep translational invariance in y direction, we per-
form our simulations on unit cells of size Lx = 2, 3. In the main text we chose gauges lead-
ing to the phase patterns shown in Fig. B.4. As any gauge choice breaks explicit translational
invariance, we work with unit cells and cylinder geometries which are commensurate with
the flux.

Remarkably, for Φ = π/2, the half-filled Hubbard model has a particle-hole symmetry,
meaning that the Hamiltonian is invariant under the transformation

c†i,σ → ci,σ̄
ci,σ → c†i,σ̄,

(B.9)
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Figure B.4: Gauge choices for different fluxes. Flux patterns on the triangular lattice leading toΦ =
π/2 (a) and Φ = π/3 (b). Hopping along a bond in the direction of a red (blue) arrow yields a phase
factor of ei2π/3 (eiπ/3), while hopping along a black arrow yields a phase of eiπ/2. Squiggly bonds
carry a factor of−1.

followed by complex conjugation of all hopping elements. This is surprising, as the trian-
gular lattice is not bipartite, which spoils particle hole symmetry in the absence of mag-
netic fields, as can be easily seen from the asymmetric single-electron dispersion. At Φ =

π/2, however, the flux pattern is mapped to a gauge-equivalent configuration, as shown in
Fig. B.5. This simple physical observation imposes important constraints on the quantum
Phase transition in the Hubbard model: The continuum field theory describing the critical
point must be symmetric under a combined T · C transformation and therefore has Lorentz
symmetry. Note that this does not hold for other fluxes such as Φ = π/3 as the particle
hole transformation maps this to a pattern with Φ̃ = 4π/3 per triangle, however it may still
emerge close to a quantum critical point.

Figure B.5: Extended particle‐hole symmetry atΦ = π/2. Exchanging particle and hole operators
changes the flux pattern from π/2 flux per triangle (left) to a pattern with−π/2 flux per triangle
(right). A subsequent conjugation of the hopping matrix maps the second‐quantized Hamiltonian
back to a (gauge‐equivalent) version of itself.
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B.4 Ground state crossing for Φ = π/3

We can reliably prepare states in the ky = π and ky = 0 sectors on the Lx = 3 unit cell and
flux Φ = π/3. As discussed in the main text, the two ground states of the CSL sectors lie
at ky = 0, π but are slightly split due to finite size effects. Therefore, in our truncated sys-
tem the transition from the Hall states to the CSL occurs in two steps: First the correlation
length in the ky = π sector diverges and shortly thereafter its energy crosses with the ky = 0
state and becomes the true finite-size ground state. We show the difference in ground state
energies as a function of interaction strength and bond dimension in Fig. B.6. We find that
the crossing takes places aroundU ∼ 8.75t, where the correlation length of the ky = π state
is still very large, as discussed in the main text.

Figure B.6: Energy difference of the lowest lying ky = 0 and ky = π states forΦ = π/3. We find
that forU * 8.5t the ground‐state energies of the two momentum sectors cross. This point moves
to weaker interactions as the bond dimension increases. This level crossing occurs in the vicinity of
the enhanced correlation length observed in the main text. We expect that in the CSL phase both
eigenstates are degenerate in the thermodynamic limit.

B.5 Characterizing the phases for Φ = π/3

While the precise value of the flux is important in the Hofstadter regime, as it determines
the filling of the Chern bands, in the Mott insulating limit it simply controls the strength
of the chiral spin term Jχ. Therefore, we generically expect chiral spin liquids to appear in
the Mott insulator, as long as Jχ ∼ sin(Φ) is large enough. Here we discuss the fate of the
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Mott insulator for Φ = π/3, which corresponds to a filling of νT = 3. Following the

Figure B.7: Entanglement spectrum and charge pumping forΦ = π/3 andU = 15t. Left panel:
Entanglement spectrum for χ = 10000. The symmetry resolved spectrum and its degeneracies
agree with the SU(2)1WZW edge theory of the CSL. Right panel: The system pumps an integer
pseudo spin under flux insertion, confirming the topological nature of the spinon bands.

analysis done for Φ = π/2 in the main text, we compute the entanglement spectrum and
analyze the pumped charges under flux insertion. Our results in the Mott limit are shown in
Fig. B.7 forU = 15t. The entanglement spectrum agrees with the spectrum of the SU(2)1
WZWmodel describing the spin-density-wave excitations on the edge (left panel). The ab-
sence of gapless density-wave excitations, in addition to the vanishing pumped charge un-
der the insertion of real magnetic flux (right panel) indicates that charges are frozen and
hence that the state is insulating. Under the insertion of opposite fluxes in the two layers,
i.e., when coupling to charge-neutral, spin excitations, we find a fractional spin Hall effect,
as discussed in the main text [176, 41]. As expected, no charge is pumped under the inser-
tion of opposite fluxes, and no spin is pumped under symmetric flux insertion (not shown).
Hence, the state describes a CSL. These results demonstrate that the CSL is a generic fea-
ture of the Hofstadter-Hubbard model at strong coupling independent of the specific val-
ues of the magnetic field.

The fate of the Hofstadter states in the presence of weak interactions is a priori not obvious.
For Φ = π/3, we find that the system no longer exhibits quantized charge or spin pumping
in the charge-liquid regime. To study the propensity of the state to develop long range or-
der, we analyze spin, density and superconducting correlation functions, which are shown
in Fig. B.8. The formation of excitonic insulators and other layer-spin ordered states is ruled
out, as we find exponentially decaying spin correlations, see Fig. B.8 a). Similarly, density
correlations show an initial exponential decay before saturating at a weak residual value of

108



Figure B.8: Correlations in the weakly interacting phase forΦ = π/3. Correlation functions are
plotted forU/t = 3 as a function of distance along the x‐direction. a) Spin‐correlations are ex‐
ponentially decaying, showing the absence of long‐range spin order. b) Density correlations show
an initial exponential decay and a weak residual tendency to form charge order. c) Superconducting
correlations are small and decay exponentially. This indicates that the state may be a featureless Hall
state.

∝ 10−4, which indicates weak charge order, shown in Fig. B.8 b). Since this value is very
small and the circumference of the cylinder is finite, we attribute this to finite size effects.

In the absence of magnetic fields, superconductivity has been discussed as a possible phase
in the triangular Hubbard model [219]. The tendency to become superconducting is cap-
tured by pairing terms of the form: Δ̂(x, y) = (c†T,x,y+1c

†
B,x,y − c†B,x,y+1c

†
T,x,y)/

↔
2 and the

corresponding correlation functions are depicted in Fig. B.8 c). This shows that correlations
decay exponentially and we do not find signatures of superconducting order. Our analysis
therefore suggests that the Φ = π/3 state in the half-filled triangular lattice is consistent
with a featureless Hall state.

B.6 Probing the other sectors of the CSL

In the fermionic system, the two topological ground states of the CSL carry momentum
ky = 0 and ky = π. Due to finite size effects these states are not perfectly degenerate [178,
41]. We prepare these states in our iDMRG simulations by initializing them with product
states carrying πmomentum in the y-direction. We show the entanglement spectra of the
resulting ground states in Fig. B.9. As for the trivial sector, we observe a clear separation
between bulk and edge modes and the number of dominant eigenvalues in each spin sec-
tor continues to follow the (1,1,2,3,…) counting rule. The lowest lying states of the SU(2)1
algebra are now doubly degenerate and are part of a spin 1/2 representation rather than a

109



Figure B.9: Entanglement spectra in the semion sector. Entanglement spectra in the CSL phase for
U = 15t and χ = 10000. For bothΦ = π/2 (left panel) andΦ = π/3 (right panel) the
entanglement spectra obey the (1,1,2,3,5,…) counting rule for the edge theory of the CSL. In contrast
to the trivial sector, the lowest lying state is now part of a spin 1/2 representation.

singlet, see Fig. B.9. We remark that instead of preparing finite momentum states via the ini-
tial conditions, the two sectors can also be interchanged by threading magnetic flux through
the cylinder.
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6
Conclusion

We conclude by briefly reviewing the results of the research presented in this thesis and pre-
senting potential future directions.

We began by developing novel optical probes to revisit the long-standing problem of elec-
tronic crystallization transitions. To this end we provide a theory for Bragg scattering of
optically induced impurities off the electronic lattice. The resulting optical response of the
system is directly tied to the electronic charge order. In subsequent collaborations with ex-
periments, we utilized this effect to unveil the formation of Wigner crystals in monolayers
of atomically thin semiconductors. We have also demonstrated theoretically and experimen-
tally that collective excitations of quantumHall states can be probed, which herald the for-
mation of charge order and signal strong correlations. In the future it will be interesting to
apply this tool-box to study correlations in fractional quantumHall states as well as exotic
intermediate phases which shield the direct liquid-to-solid phase transition. Remarkably, at
the time of writing this thesis, there are already reported advancements in the exploration of
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the latter direction [122].

Inspired by the apparent similarity between ultra-cold atomic gases and two dimensional
materials, we developed a theory of perfectly two dimensional Feshbach resonances. This
mechanism allows us to control interactions among quasi-particles in the solid state sim-
ply by changing external electric fields. These predictions were subsequently observed ex-
perimentally, where it was possible to strongly couple a dilute concentration of excitons
to a Fermi sea of holes. We modelled the experiments by using non-equilibrium field the-
ory to account for recombination of the excitons. In principle our theory can be applied
just as well to long-lived bosonic quasi-particles, allowing for the formation of true equilib-
rium states with tunable interactions [165, 220]. An exciting direction will be to modify
electronic transport and engineer pairing instabilities in degenerate Bose-Fermi mixtures.
Furthermore, some aspects of the developed scattering theory may apply also to completely
distinct systems, which are just starting to be explored [221, 222].

Finally we showed how exotic topological order can appear in the triangular lattice Hubbard
model, assuming strong external magnetic fields. In this limit, strong correlations among
electrons give rise to a particularly robust chiral spin liquid phase appears. While this regime
of the Hubbard model is out of reach for conventional solids, a natural platform in two
dimensional materials is discussed. Crucially this allows for new optical and more direct
probes of topological order as well as its phase transitions. We also propose theories for the
phase transitions, which suggest physically transparent ways in which topological order is
formed and destroyed. Looking forward, it will be interesting to study these critical theories
in more detail to see if their signatures, such as the emergence of spin-roton modes, can be
observed experimentally. Furthermore, a generalization of our setup to non-abelian spin
liquids is conceivable.
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