
Procedure-Aware Stateless Systems for
5G & Beyond Core Networks

Endri Goshi†, Vignesh Karunakaran†, Hasanin Harkous∗, Rastin Pries∗, Wolfgang Kellerer†
†Technical University of Munich, ∗Nokia

E-Mail:†{endri.goshi, vignesh.karunakaran, wolfgang.kellerer}@tum.de,
∗{hasanin.harkous, rastin.pries}@nokia.com,

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—As public and private cloud-native deployments of
the 5G Core (5GC) networks are rolling-out on a wide scale,
attention is shifting towards efficient state management. While
stateful deployments were the default method in the previous
generations of mobile networks, they lack the necessary flexi-
bility that cloud-native orchestration demands. Yet, traditional
approaches taken to enable stateless deployments require the
operators to sacrifice on performance due to the frequent state
transactions. To overcome this issue, in this paper we propose a
Piggyback-based and a Proactive-Push approach which allow for
procedure-aware stateless 5GC systems. Our evaluations highlight
the advantages of the Piggyback approach for two synchronous
control procedures, reducing their completion time by ∼44% and
∼70% compared to the baseline. For asynchronous procedures,
the Proactive-Push approach outperforms the baseline with ∼13%
and ∼22%. More importantly, these mechanisms do not pose
additional overhead on CPU and bandwidth utilization.

I. INTRODUCTION

The introduction of the 5th Generation (5G) of mobile
communication networks has drastically changed the way how
the future core networks (CN) will be designed and operated.
The advances in Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) paved the way for
the adoption of these paradigms in the telecommunication
domain. The concept of Control and User Plane Separation
(CUPS) was initially introduced by 3GPP in Release 14 [1] to
increase the network management flexibility and enhance CN’s
performance when handling an increased volume of traffic,
thus laying the foundations of the novel 5G Core (5GC) design.
Guided by the requirements of new 5G-powered use-cases for
more scalable, flexible, and agile CN architectures, the Service-
Based Architecture (SBA) was introduced in Release 15 [2].

The 5G SBA adopts cloud-native design principles such
as the modularization of the Network Functions (NF) and
a client-server model for the inter-NF communication via
the Service-Based Interfaces (SBIs). The high functional de-
composition resulted in a range of new NFs, e.g.,: Access
and Mobility Function (AMF), Authentication Server Function
(AUSF), Network Repository Function (NRF), Network Slice
Selection Function (NSSF), Policy Control Function (PCF),
Session Management Function (SMF), Unified Data Manage-
ment (UDM) and Unified Data Repository (UDR).

To fully leverage the advantages of cloud-native environ-
ments, such deployments are characterized by the stateless

NSSF

NRF PCF UDR UDM

AUSF AMF SMF

UDSF

UPF

Fig. 1. Stateless 5G Core Architecture. NFs in red boxes maintain their
state in UDSF. NRF and UDR are stateless by design, while NSSF does not
maintain any UE-specific information.

nature of the NFs. Unlike traditional stateful applications, a
stateless NF implements a logical compute-storage separation
by maintaining the state information in a remote database
(DB), thus, allowing for flexible and efficient orchestration.
A stateless 5GC architecture is noted by the deployment of
the Unstructured Data Storage Function (UDSF) as the state
management DB. For the SBA system shown in Fig. 1, AMF,
AUSF, SMF, PCF and UDM will store their User Equipment
(UE) context in this DB.

Due to frequent state transactions, stateless deployments
may come with a high cost in terms of increased control plane
latency and hindered system’s scalability [3], [4]. In this work,
we demonstrate that these performance concerns can be ad-
dressed by designing procedure-aware stateless systems which
reduce the frequency of state transactions, while still providing
orchestration flexibility. To this end, we propose and develop
two approaches, namely Piggyback-based and Proactive-Push
state management mechanisms. These systems are deployed
in a private cloud-native environment and compared with a
baseline stateless 5GC. Our extensive evaluations show that
the completion time of control procedures in stateless 5GC
can indeed be improved, while not causing additional overhead
in terms of CPU and bandwidth utilization. We believe that
the contributions of this work are beneficial to the research
community and for the deployment of cloud-native 5G &
Beyond CNs as the performance penalty for building resilient
and flexible NFs can be alleviated.

The remainder of the paper is structured as follows. In
Section II, we provide background information regarding the
stateful and stateless paradigms. A summary of related work

is presented in Section III. In Section IV we introduce the
procedure-aware systems and provide details on their imple-
mentation, while the evaluation setup and results are presented
in Section V. Lastly, Section VI summarizes future directions
and concludes the paper.

II. BACKGROUND

In cloud-native environments, the NFs are commonly de-
ployed as containerized applications. This procedure represents
a lightweight virtualization technique that provides adequate
levels of isolation without the large runtime overhead of
using Virtual Machines (VMs) [5]. The management of these
containerized workloads and services is done through container
orchestration tools such as Kubernetes (K8s) [6] that try
to efficiently utilize the available resources. However, cloud
environments are highly dynamic and containers are frequently
moved between the machines or horizontally scaled to adapt
to the incoming traffic. Moreover, containers are not designed
as highly available entities, therefore making container failures
a common occurrence.

Due to the reasons mentioned above, state management
techniques play an important role in the deployment strategies
for mobile core networks. In general, we can distinguish
between stateful and stateless NFs.

Stateful NFs maintain locally the entire context that is
necessary for them to operate correctly. This allows them to
start processing requests as soon as they arrive, as illustrated by
NF-3 in Fig. 2. However, the critical drawback of stateful NFs
is that the state, and consequently the processing of a request,
is bound to a specific instance. If the orchestrator decides to
terminate the running instance or an internal failure occurs, the
state information is lost and thus directly affecting the services.

Stateless NFs on the other hand, implement a processing
logic and state management separation. In this case, the state
is not maintained locally anymore, but stored in a remote state
DB which is queried every time the NF needs access to this
information. Likewise, the updated state information is sent
to the DB after the NF has finished processing the request.
This separation is important for containerized workloads as
it helps the system recover quickly from unexpected failures.
In addition, it simplifies the orchestration process in scenar-
ios where a scale-out operation is necessary to handle the
incoming traffic (i.e., the number of instances is increased).
However, the flexibility of stateless NFs comes with the cost of:
i) increased processing time, and ii) communication overhead.

To facilitate the deployment of stateless 5GC, 3GPP in-
troduced the Unstructured Data Storage Function (UDSF)
to serve as the state DB [7]. Statelessness in 5GC can be
implemented at a transactional or procedural level [3]. A
transaction represents a single interaction between two NFs
(e.g., request/response), while a procedure can comprise a
set of transactions. To better understand the difference, we
refer to Fig. 2 where NF-2 depicts a transactional stateless
application. The start of the transaction is marked by the
incoming request. Before starting to process it, NF-2 needs
to query UDSF for the UE context information. Likewise, as
the transaction finishes, the updated context is sent to UDSF.

NF-1 UDSF NF-2 NF-3

Request #1

Resp. nf-1_ue_ctx
GET nf-1_ue_ctx

Start processing
Request #1

HTTP Req. #1

Resp. nf-2_ue_ctx
GET nf-2_ue_ctx

Process
HTTP Req. #1

201 OK
POST nf-2_ue_ctx

HTTP Resp. #1
Finish processing

Request #1

Response #1

Request #2
Start processing

Request #2
HTTP Req. #2

Transactional stateless N
F

Process
HTTP Req. #2

HTTP Resp. #2

Further communication until end of procedure

Stateful N
F

201 OK
POST nf-1_ue_ctx

Pr
oc

ed
ur

at
 st

at
el

es
s N

F
Fig. 2. A hybrid system where the NFs implement three different types
of state management approaches: i) procedural stateless shown in blue, ii)
transactional stateless shown in green, and iii) stateful shown in red.

Considering the high number of transactions between NFs, this
approach imposes high overhead. NF-1 on the other hand,
implements a procedural stateless approach and only queries
and sends the UE context at the beginning and the end of a
procedure. Compared to the transactional approach, it is less
granular as the state is maintained locally for the duration
of the procedure. Hence, the main difference lies in the fact
that a transactional stateless NF can recover from failures that
occur during a procedure execution, with the cost of higher
bandwidth utilization and control procedure completion times.

III. RELATED WORK

In the recent years, many works have researched the
advantages and the impact that stateless deployments have
in the context of mobile core networks. A stateless Mobility
Management Entity (MME) was introduced in dMME [8],
allowing for geographically distributed deployments with re-
mote storage. Developed as a highly available and distributed
architecture, ECHO [9] maintains state in an external entity
which ensures reliability using an end-to-end distributed state
machine replication protocol. An alternative implementation to
stateless MME was proposed in MMLite [10]. It is designed
as a stateless and fully decomposed MME, where each control
procedure is implemented in its own microservice. In [11],
three techniques are proposed to reduce latency due to state
management in 4G: i) bypassing sequential flows, ii) pipelining
control data, and iii) parallelizing control procedures. However,
these systems focus only on the legacy 4G core networks.

ML-SLD [12] introduces a message-level stateless design
for cloud-native 5GC, based on the NAS/NGAP communica-
tion protocols. They propose the servitization of the RAN-Core

interface through a middleware called RAN Integrated Service
Enabler. In [3], the authors evaluate the impact of stateless
AMF, SMF and UPF in 5GC SBA. They propose mechanisms
leveraging state-sharing among NFs and exploit parallel ex-
ecution to reduce the cost of transactional statelessness. A
piggybacking mechanism in proposed in [13], similar to the
one in this work. However, their approach considers only AMF,
SMF and UPF, unlike our Piggyback-based approach that spans
all the involved NFs in the execution of control procedures.
Also, we present and evaluate a Proactive-Push approach for
efficient state management. Lastly, the impact on performance
of transactional stateless 5GC is highlighted in [4], where
it is shown that such deployments scale poorly due to the
frequent state-related communication. The procedure-aware
systems proposed in this paper are evaluated and compared
against the Stateless Free5GC that is introduced in [4].

IV. PROCEDURE-AWARE STATE MANAGEMENT

For UEs to be able to register with the operator and
communicate with other UEs or exchange data with services in
the Internet, a set of control procedures need to be executed.
These procedures represent the sequences of communication
that must take place in 5GC in order to manage the life-cycle
of the UE, as introduced in [14]. In this work, we consider four
important control plane procedures: i) Registration attaches the
UE to 5GC, ii) PDU Session Establishment establishes the data
plane communication, iii) PDU Session Release terminates the
data plane session, and iv) Deregistration detaches the UE from
the network.

In principle, procedural stateless NFs provide enough or-
chestration flexibility and with a lower cost than transactional
stateless NFs. However, most of the 5GC NFs (with the
exception of AMF and SMF) are not procedure-aware (i.e.,
they cannot deduce which procedure is being executed). Thus,
leaving transactional statelessness as the only feasible approach
to be implemented [4]. To tackle this issue, in this work we in-
troduce two approaches that aim to bring procedure-awareness
to the 5G & Beyond CNs. The Piggyback-based and Proactive-
Push state management techniques are the result of a thorough
analysis based on the 3GPP specifications and empirical data
gathered from the deployment of Stateless Free5GC. In the
following subsections, we provide details regarding the design
and implementation of these two approaches. In both cases,
we leverage AMF’s procedure-awareness to achieve our goal.

A. Piggyback-based State Management

In computer communications, piggybacking refers to the
process of appending additional data in a request/response in
order to reduce the bandwidth utilization of the network. In a
stateless 5GC, a piggyback-based state management approach
helps by making the state information available to NFs at the
same time that they receive the request to be processed.

First, global_ue_ctx is defined as a data structure that
maintains the UE context of all the stateless NFs, on a per
UE basis. The global_ue_ctx is essentially a dictionary
that contains entries with the name of the NF as key and
their specific UE context information as data. Moreover, parts

AMF UDSF AUSF UDM

New Request

Resp. global_ue_ctx
GET global_ue_ctx

Parse & extract
UE contexts

HTTP Req. + ausf_ue_ctx + udm_ue_ctx

HTTP Req. + udm_ue_ctx

Parse ausf_ue_ctx &
process HTTP Req.

HTTP Resp. + udm_ue_ctx*

Update
global_ue_ctx

Parse udm_ue_ctx &
process HTTP Req.

Further communication until end of procedure

201 OK
POST global_ue_ctx*

Process request

HTTP Resp. + ausf_ue_ctx* + udm_ue_ctx*

Fig. 3. Communication diagram of a 5G system implementing the Piggyback-
based approach.

of UE context previously kept in many NFs simultaneously
are included only once in this structure, avoiding redundancy
and saving resources. In the Piggyback-based system that we
propose, the global_ue_ctx is queried from UDSF only at
the beginning of the procedure and the updated version is then
stored at UDSF at the end of the procedure. Being procedure-
aware and the entry point of control-plane traffic to 5GC, we
have selected AMF as the only NF that performs these tasks.

To better understand the communication flow, we re-
fer to Fig. 3. When AMF receives a NAS/NGAP mes-
sage that marks the start of a new control procedure
(e.g., Initial UE Registration Request), it requests the lat-
est version of global_ue_ctx from UDSF. Next, AMF
parses this information into its local memory and uses the
amf_ue_ctx to process the request it received. As the
communication progresses, AMF sends HTTP requests to other
control plane NFs, e.g., UE_Authentication_Request
sent to AUSF. If AUSF is the only NF that will be in-
volved in this operation, AMF will append ausf_ue_ctx
to the UE_Authentication_Request as a piggyback.
If that is not the case, and e.g., AUSF will send a
Generate_Auth_Data request to UDM, AMF will also
piggyback the udm_ue_ctx to the same request that it sent
to AUSF. While it would be easier to forward the entire
global_ue_ctx between NFs, a decision was made to
forward only the relevant information because it is more
efficient in terms of network bandwidth utilization. Similar to
how the contexts are initially propagated via requests, the other
NFs piggyback the updated information to the HTTP response
messages that they send (denoted with * in Fig. 3). Once they
reach AMF, the information in global_ue_ctx is updated
accordingly.

To implement this state management approach, the follow-
ing steps are taken:

• The procedural call-flows are analyzed to identify the NF
chains that are triggered after every request that AMF

AMF UDSF AUSF UDM

New Request

Resp. nf-1_ue_ctx

GET amf_ue_ctx +
Trigger ctx_push to

AUSF & UDM

Further communication until end of procedure

Process request

Trigger!

POST ausf_ue_ctx
POST udm_ue_ctx

201 OK
201 OK

HTTP Req. #1

Load local ausf_ue_ctx

Process HTTP request

HTTP Req. #2

Load local udm_ue_ctx

Process HTTP request

HTTP Resp. #2
HTTP Resp. #1

POST amf_ue_ctx +
Trigger ctx_pull from

AUSF & UDM

Trigger!

201 OK GET ausf_ue_ctx
GET udm_ue_ctx

Resp. ausf_ue_ctx
Resp. udm_ue_ctx

Fig. 4. Communication diagram of a 5G system implementing the Proactive-
Push approach.

sends. Based on this analysis, AMF’s implementation is
modified to enable piggybacking the UE contexts.

• The UE state machine in AMF is leveraged to mark the
start and finish of control procedures. The processing
logic is modified such that AMF can communicate with
UDSF and (de)serialize the global_ue_ctx.

• Other Stateless Free5GC NFs’ implementation is ex-
tended to: i) parse context from incoming requests and
if applicable append it to the next-in-line NF, and ii) the
set of SBIs that NFs expose now includes endpoints that
are able to process piggybacked information in addition to
the HTTP request. To simplify the operation, all the NFs
are made aware of structure of the global_ue_ctx and
know how to parse it, but AMF is the only responsible
NF to update its information. Modifications are thus
performed on AUSF, SMF, PCF, and UDM.

B. Proactive-Push State Management

Aiming at making the UE context available to the NFs
before they receive requests, we design and implement a
Proactive-Push state management technique. In essence, the
system that we propose differs from the default pull-based
approach of Stateless Free5GC in that the UE context is
pushed from UDSF to the control plane NFs, and not the other
way around. Contrary to the piggyback-based approach, this
technique does not require defining a data structure like the
global_ue_ctx. Instead, we maintain the same UE context
definitions as in Stateless Free5GC [4].

Referring to Fig. 4, we can observe that after receiv-
ing a request from the UE, marking the start of a control
procedure, AMF contacts UDSF to get the latest version of
amf_ue_ctx. However, in this proposed system, this request
is modified such that it includes trigger information. In addition
to its own UE context, AMF asks UDSF to push UE context
information to the other involved NFs, which will maintain a

Worker Node

Master Node

Emulator Node

gNBEmul

Collector

NF Po
d

Po
d

Envoy-Proxy

 Kubernetes Control Plane

Kubelet

 Metrics Exporter

Prometheus

Fig. 5. Overview of the K8s testbed setup for the evaluations.

copy of this information in a local dictionary until the end of
the procedure. From this point on, each NF in the chain will be
able to quickly access the UE context from the local dictionary.
When AMF determines that the procedure has finished, it will
store its amf_ue_ctx and at the same time trigger a pull
operation on the UDSF. In other words, UDSF will now query
the latest UE context information from each NF, as specified
by AMF in the request. Once this operation finishes, each NF
deletes their local copy of UE context.

From an implementation perspective, this approach requires
the following:

• AMF’s implementation is augmented with information on
the involved 5GC NFs in each control procedure.

• UDSF API endpoints are extended to be able to under-
stand trigger information sent from AMF.

• The set of SBIs that AUSF, SMF, PCF and UDM expose
now include new endpoints, enabling them to: i) receive
state information via POST requests and store it locally,
and ii) receive GET requests and respond with their latest
UE context information.

V. PERFORMANCE EVALUATION

To assess and compare the performance improvements of
the procedure-aware stateless systems, we consider a private
cloud-native environment. To this end, we set up a K8s-
orchestrated cluster consisting of 1 master and 11 worker
nodes (machines), shown in Fig. 5. To avoid cases where 5GC
NFs compete for the same physical resources, we distribute
their deployment to separate nodes (i.e., one NF per node).
A homogeneous set of DELL OptiPlex 9020 workstations is
used for worker machines, each equipped with 16GB of RAM
and an octa-core Intel i7-4770 CPU running at 3.40GHz.
Moreover, by interconnecting the nodes using a 1Gb switch, we
create an isolated environment and avoid network interference.
In addition to 5GC, in the K8s cluster we deploy an evaluation
framework, consisting of:

• Prometheus [15] – a monitoring application with wide-
spread use in K8s environments. Its main function in
our testbed is to collect metrics during measurements and
make them available for post-processing.

• Envoy-Proxy [16] – deployed as a sidecar container, it
intercepts all the traffic to and from an NF. While its

Stateless Free5GC Piggyback Proactive-Push

25 50 100 150
Initiated UEs/s

100

200

300

400

PC
T

[m
s]

(a) Registration

25 50 100 150
Initiated UEs/s

20

40

PC
T

[m
s]

(b) Deregistration

25 50 100 150
Initiated UEs/s

40

60

80

PC
T

[m
s]

(c) PDU Session Establishment

25 50 100 150
Initiated UEs/s

10

20

30

PC
T

[m
s]

(d) PDU Session Release

Fig. 6. Procedure Completion Times w.r.t. the number of new initiated
procedures per second for each of the considered control procedures. Outliers
are omitted for better visualization.

primary functionality is to facilitate traffic routing, it
also collects HTTP metrics which are later queried from
Prometheus.

• Metrics Exporter – a Python application deployed in each
worker node, collecting metrics every 1 s and reporting
them to Prometheus. The main metrics collected are the
CPU and memory utilization values.

• gNBEmu – a gNB & UE Emulator able to generate
high volume of 5G control plane traffic (UE requests).
It achieves this by emulating control procedures’ com-
munication for an arbitrary number of UEs, sending
real requests and responses to 5GC. Each procedure is
timestamped to calculate their completion time.

With respect to the Key Performance Indicators (KPIs), this
paper focuses on the average CPU utilization of each system,
and Procedure Completion Times (PCTs) for four control plane
procedures: i) Registration, ii) PDU Session Establishment,
iii) PDU Session Release, and iv) Deregistration. Other KPIs
such as memory utilization and total payload of the HTTP
communication are evaluated but not presented in this paper
due to space limitations. Nonetheless, the results show that
the performance of the procedure-aware systems on these two
KPIs is very similar to the baseline Stateless Free5GC system.
In the baseline, AMF is procedural stateless while the rest of
the NFs are transactional stateless. The number of new UEs/s,
which represents the scale of the input traffic, is varied between
[25, 50, 100, 150], with new arrivals uniformly distributed with
an interarrival time of 3ms. Each measurement runs for 45 s
and 8 campaigns executed for each scenario. The following
subsections present and discuss the results of our evaluations.

A. Procedure Completion Times

Procedure Completion Time (PCT) is defined as the time
it takes for the execution of a control procedure to finish,

measured from the moment the first message is sent from
the UE, until the last response or acknowledgment is received
from 5GC. With the goal of comparing the impact of different
stateless approaches in control plane latency, PCT represents
the main KPI in our evaluations.

During the execution of the Registration procedure (see
Fig. 6a), piggybacking the UE contexts leads to a completion
time reduction of ∼44% compared to the baseline, while the
Proactive-Push approach achieves an improvement of ∼14%.
Moreover, by observing the trend for the different input traffic,
we see that the Piggyback approach shows a considerably
better performance in terms of scalability, compared to both
the baseline and Proactive-Push. During Deregistration, the
situation is similar to the Registration procedure, as shown
in Fig. 6b. The Piggyback-based system performs the best
with an improvement of ∼70% compared to the baseline.
The Proactive-Push approach on the other hand, achieves an
improvement of ∼30%.

However, the situation changes for the next two procedures,
as shown in Fig. 6c and Fig. 6d. The Piggyback approach
exhibits a very similar performance to the baseline in the case
of PDU Session Establishment, but an increased average PCT
of ∼17% during PDU Session Release. The reason behind this
behavior is the asynchronous nature of communication during
these procedures, which nullifies the benefits of piggybacking
the state information. Therefore, the overhead that comes
from processing the global_ue_ctx leads to the increased
PCTs. Nonetheless, because of its design, the Proactive-Push
approach is not affected by the asynchronous communication,
while still reaping the benefits of proactively making the state
information available to the NFs. Thus, the Proactive-Push
approach achieves lower PCTs than the other systems in both
these procedures. It completes the PDU Session Establishment
and PDU Session Release ∼13% and ∼22% faster, respec-
tively, compared to the baseline.

B. CPU Utilization

Resource utilization is an important metric to evaluate
the efficiency of cloud-native 5GC deployments as it can be
directly linked to the system’s scalability. Hence, we provide a
comparison of the CPU utilization of the proposed procedure-
aware systems and the baseline Stateless Free5GC. In Fig. 7,
the average CPU utilization values of 5GC NFs are shown,
collected over 8 independent measurement campaigns. In each
bar plot, we distinguish between: i) AMF shown in a hatched
pattern, ii) UDSF shown in gray, and iii) the rest of the involved
NFs shown in solid colors. NFs’ average utilization values are
stacked and the height of the bars represents the total system
CPU utilization.

Compared to the Stateless Free5GC, the Piggyback ap-
proach reduces the overall CPU utilization during the Regis-
tration and Deregistrations procedures, by ∼10% and ∼38%,
as shown in Fig. 7b and Fig. 7d. Comparing only AMF, we
observe that its utilization is in fact slightly higher than the
baseline. This happens because in the Piggyback approach
AMF has to (de)serialize the entire global_ue_ctx instead
of only its own UE context, and process HTTP packets with

25 50 100 150
Initiated UEs/s

0

200

400

600

C
PU

U
til

iz
at

io
n

[%
]

(a) Registration

25 50 100 150
Initiated UEs/s

0

100

200

C
PU

U
til

iz
at

io
n

[%
]

(b) Deregistration

25 50 100 150
Initiated UEs/s

0

200

400

C
PU

U
til

iz
at

io
n

[%
]

(c) PDU Session Establishment

25 50 100 150
Initiated UEs/s

0

100

200

300

C
PU

U
til

iz
at

io
n

[%
]

(d) PDU Session Release

Fig. 7. Average CPU utilization of 5GC NFs w.r.t. the number of initiated
procedures per second for each of the considered control procedures.

larger payload (due to the piggybacked state information). This
is compensated with the decreased utilization of UDSF, since
it is only contacted by AMF at the beginning and the end of
the procedure. These values hold true for all the configurations
of input traffic. However, during PDU Session Establishment
and PDU Session Release, this approach consumes ∼10%
more resources. In the case of PDU Session Establishment
shown in Fig. 7c, this is due to an increased CPU utilization
from AMF and SMF, again stemming from processing the
global_ue_ctx. In the case of PDU Session Release shown
in Fig. 7d, the overall increase is attributed to AMF only, for
the same reasons as the other procedures.

The Proactive-Push approach on the other hand, outper-
forms the other systems only during PDU Session Release
where it utilizes ∼21% less CPU resources, on average. During
Deregistration it performs only slightly better than the baseline,
while during PDU Session Establishment it exhibits similar
resource consumption. Proactive-Push shows the highest uti-
lization relative to the other systems during the Registration
procedure, where it shows ∼8% more CPU utilization in the
scenario with 150 UEs.

The results of our evaluations suggest that there is not a
single optimal procedure-aware system that exhibits the best
performance for all the control procedures. The involvement
of different NFs in the control procedures means that the
communication patterns and the complexity of their inter-
workings play a big role. As such, the Piggyback approach
achieves the best performance in terms of both PCT and CPU
utilization during procedures that are completely synchronous.
While the Proactive-Push approach outperforms the baseline
during all the procedures in terms of PCT, compared to the
Piggyback approach it performs better only during procedures

with asynchronous communication patterns. Therefore, a hy-
brid procedure-aware implementation would be able to achieve
optimal performance. A detailed analysis of the communica-
tion patterns for the most critical procedures would allow for
a correct classification of them into synchronous and asyn-
chronous. Then, based on this classification, a hybrid system
can be implemented by following a converged approach that
uses the global_ue_ctx and the push-triggers in UDSF.

VI. CONCLUSION

With the deployment of cloud-native 5GC systems reaching
a wider scale, attention is shifting towards efficient stateless
implementations. Traditional transactional stateless approaches
in the control plane suffer from increased latency and resource
utilization. In this work, we introduce two procedure-aware
approaches that aim to overcome the impact of statelessness
on control plane latency. The measurements conducted in
our testbed confirm the advantages of the Piggyback-based
and Proactive-Push approaches during synchronous and asyn-
chronous procedure execution, respectively. Most importantly,
these come at no additional CPU and bandwidth utilization
costs compared to the transactional stateless baseline. In the fu-
ture, we plan to develop a hybrid system leveraging both these
approaches, hence achieving optimal performance regardless of
the interworkings of the control procedures.

REFERENCES

[1] 3GPP, “3GPP TS 23.002 - Network architecture (Rel 14),” 2017.
[2] ——, “3GPP TS 23.501 - System architecture for the 5G System (Rel

15),” 2021.
[3] U. Kulkarni, A. Sheoran, and S. Fahmy, “The cost of stateless network

functions in 5G,” in Proc. of ACM ANCS, 2021.
[4] E. Goshi, R. Stahl, H. Harkous, M. He, R. Pries, and W. Kellerer,

“PP5GS -an efficient procedure-based and stateless architecture for next
generation core networks,” IEEE TNSM, 2022.

[5] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A comparative
study of containers and virtual machines in big data environment,” in
Proc. of IEEE CLOUD, 2018.

[6] “Kubernetes,” https://kubernetes.io/, [Accessed April-2023].
[7] 3GPP, “TS 29.598 - Unstructured data storage services (Rel 16),” 2020.
[8] X. An, F. Pianese, I. Widjaja, and U. G. Acer, “dMME: Virtualizing

LTE mobility management,” in Proc. of IEEE LCN, 2011.
[9] B. Nguyen, T. Zhang, B. Radunovic, R. Stutsman, T. Karagiannis,

J. Kocur, and J. Van der Merwe, “ECHO: A reliable distributed cellular
core network for hyper-scale public clouds,” in Proc. of ACM MobiCom,
2018.

[10] V. Nagendra, A. Bhattacharya, A. Gandhi, and S. R. Das, “MMLite: A
scalable and resource efficient control plane for next generation cellular
packet core,” in Proc. of ACM SOSR, 2019.

[11] Y. Li, Z. Yuan, and C. Peng, “A control-plane perspective on reducing
data access latency in LTE networks,” in Proc. of ACM MobiCom, 2017.

[12] K. Du, L. Wang, X. Wen, Y. Liu, H. Niu, and S. Huang, “ML-SLD:
A message-level stateless design for cloud-native 5G core network,”
Digital Communications and Networks, 2022.

[13] U. Kulkarni, A. Sheoran, and S. Fahmy, “Towards a low-cost stateless
5G core,” in Proc. of IEEE LANMAN, 2022.

[14] 3GPP, “3GPP TS 23.502 - Procedures for the 5G System (5GS),” 2022.
[15] Prometheus Authors, “Prometheus,” https://prometheus.io/, [Accessed

April-2023].
[16] Envoy Project Authors, “Envoy Proxy,” https://www.envoyproxy.io/,

[Accessed April-2023].

