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A formulation is presented to model ionic conduction efficiently inside, i.e., across and along grain boundaries. Efficiency and
accuracy are achieved by reducing it to a two-dimensional manifold while guaranteeing the conservation of mass and charge at the
intersection of multiple grain boundaries. The formulation treats the electric field and the electric current as independent solution
variables. We elaborate on the numerical challenges this formulation implies and compare the computed solution with results from
an analytical solution by quantifying the convergence toward the exact solution. Towards the end of this work, the model is firstly
applied to setups with extreme values of crucial parameters of grain boundaries to study the influence of the ionic conduction in the
grain boundary on the overall battery cell voltage and, secondly, to a realistic microstructure to show the capabilities of the
formulation.
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The technology of solid-state batteries (SSBs) has made remark-
able progress in recent years toward their usage in real-world
applications. However, some key challenges still remain and are
part of current research.1 One of the challenges is to tune the grain
boundaries inside polycrystalline solid electrolytes to obtain the
desired properties. They occur in polycrystalline solid electrolytes
between the grains of oxides (e.g., garnet LLZO) or sulfides (e.g.,
LPS).2 Grains can be defined as the geometric domains where atoms
are periodically arranged,2 and therefore, grain boundaries are the
locations where this periodicity ends.

The role of grain boundaries in terms of their influence on the overall
cell performance is part of the discussion in the scientific community.
Among others, the following physical effects are observed at grain
boundaries: The deposition and growth of lithium filaments,3 a different
ionic conductivity inside of the grain boundary compared to the grains,2,4

the grain boundary as an electron conductor in the solid electrolyte5 and
in the SEI,6 the grain boundary as an ionic resistor,4 or cracking along the
grain boundary.2 In the past years, results have been reported to modify
and thereby improve the properties of grain boundaries.7–10 A model that
resolves the ionic conduction along the grain boundaries is needed to
best profit from the possibility of modifying the properties of grain
boundaries. Such a model is also demanded in the literature.2 A model
allows quantifying the competing transport mechanisms through the
grains and through the grain boundaries.4 Especially for sulfides with
high grain boundary conductivity, which could reach the magnitude of
the bulk conductivity,11 such a model becomes inevitable. Different types
of models have been reported to capture the effect of grain boundaries,
ranging from atomistic models4,12,13 to continuum models which
discretize the grain boundaries by a phase field.14 However, a continuum
model that is based on the conservation of mass and charge, as typically
done for electrochemical systems (e.g., Refs.15–17), geometrically re-
solves the grain boundaries sharply, i.e., not by a smeared phase field,
and is applicable to realistic microstructures, is still missing. One
challenge is that the thickness of the grain boundary, which is reported
to be less than 10 nm,18,19 is significantly smaller than the typical length
scale of a realistic microstructure of a battery cell, and therefore, a
standard numerical discretization would exceed the limits of available
computational resources (c.f. Ref.20). Another challenge comes with the

need to incorporate the intersection of multiple grain boundaries at one
point while maintaining conservation properties.

In this paper, we propose a continuum model that resolves the
ionic conduction property of grain boundaries across and along the
grain boundary together with a mass- and charge-conserving
formulation at the intersection of grain boundaries. Afterwards, the
model is analyzed in terms of convergence and conservation
properties. Later, it is applied to realistic microstructures. The model
is parametrized using experimental studies that differentiate the
contribution of measured ionic conductivities into the bulk and the
grain boundary.21,22

Many sources indicate that the ionic conductivity of the grain
boundary is usually smaller than the conductivity of the solid
electrolyte.2,4,22 However, it was shown that the electrochemical
properties of grain boundaries can be tuned using surface modifica-
tion by coating the grains with another solid electrolyte23 or
modifications in the lattice structure.24 Thus, we varied the ionic
conductivity of the grain boundary in a wide range to quantify its
influence on the effective conductivity of the solid electrolyte.

An Efficient and Conservative Model for Grain Boundaries
within SSBs

In this paper, we present a novel model to include the effect of
ionic conduction across and along the grain boundaries into a
microstructure-resolved continuum model for solid-state batteries.
The effect of grain boundaries on the entire cell performance in
terms of ion conduction can only be studied if the grain boundaries
are geometrically resolved within the solid electrolyte to also
account for potentially preferred conduction paths along the grain
boundaries. Therefore, a set of Eqs. describing the conservation of
mass and charge in the electrodes, the electrolyte, and the current
collectors, as well as inside the grain boundaries, is required.

Geometric definitions.—In Fig. 1, an SEM image of grains
(bright domains) and grain boundaries (dark lines) of LLZO is
shown.

One geometric characteristic of grain boundaries is that more
than two can intersect at one line (in the two-dimensional picture at
one point). An abstract geometric schematic containing all relevant
domains, interfaces, and boundaries of a full battery cell (c.f.
Figure 2) includes:

The current collector on the anode side Ωcc,a, the anode Ωa, the
solid electrolyte Ωel, the cathode Ωc, and the current collector on the
cathode side Ωcc,c. At the intersection of two domains (Ωi, Ωj)zE-mail: stephan.sinzig@tum.de
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interfaces are defined as Γi−j. The outer boundary is split into real
physical boundaries at the current collectors Γcc−o and modeling
boundaries Γcut that are required to limit the size of the geometry in
the lateral direction. Additionally, grain boundaries are defined
within the solid electrolyte Ωgb with the interface between them
and the solid electrolyte Γgb−el. They intersect at one location
marked with ’*’. Note that this location is a point in two-dimensional
setups and lines and points in three-dimensional setups. The
electrodes Ωed = Ωa ∪ Ωc and the current collectors
Ωcc = Ωcc,a ∪ Ωcc,c are summarized to simplify the notation.

Governing Eqs. in a continuum formulation.—We introduced
the set of conservation Eqs. of charge and mass for SSBs in a
continuum form in our previous work.25 The governing Eqs. are

∂
∂

− ∇·( ∇ ) = Ω [ ]c

t
D c 0 in , 1aed
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with the overvoltage η= Φed − Φel − Φ0(c). The used symbols are
listed in Table I.

Note that we consider the ionic conductivity κel as constant and
isotropic inside the grains of the solid electrolyte within this work.
However, including an anisotropic and inhomogeneous ionic con-
ductivity would be conceptually easy.

This set of governing Eqs. is extended by Eqs. to model the
transport of ions in the grain boundaries and the exchange of ions
between the grains and the grain boundaries. We model the grain
boundaries as single-ion conductors, such that the charge density ρgb

Figure 1. SEM image of the cross-section of LLZO including grains and
grain boundaries (image from M. Balaish, Department of Chemistry,
Technical University of Munich).

Figure 2. Schematic sketch of the geometry of a battery cell including all domains Ωi, boundaries Γi, and interfaces between domains Γi−j.

Table I. List of symbols.

Symbol Description

c concentration of species in the electrode
D diffusion coefficient in the electrode
F Faraday constant
i electric current density
i0 exchange current density
j mass flux density
n normal vector
R universal gas constant
ri interface resistance
T temperature
t time
t+ transference number in the solid electrolyte
z charge number
αa anodic symmetry coefficient
κ ionic conductivity in the solid electrolyte
Φ electric potential
σ electronic conductivity in the electrodes and current collectors
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and mass density, expressed in terms of the concentration cgb inside
the grain boundaries, are linked by the charge number z, the
transference number t+ = 1, and the Faraday constant F:
ρgb = zFcgb. Therefore, it is sufficient to only model the conserva-
tion of charge inside of the grain boundaries. For the derivation of
the conservation of charge inside of the grain boundaries, we begin
with the general equation for the conservation of charge ρgb

ρ∂
∂

= ∇· + Ω [ ]ρi
t

s in , 2
gb

gb gbgb

with the electric current igb. The constitutive equation for the electric
current is given by

κ= − ∇Φ Ω [ ]i in , 3gb gb gb gb

to model ion conduction inside of the grain boundary.2 No
accumulation of charge occurs due to the assumption of electro-

neutrality and a transference number of one, i.e.
ρ∂
∂

=
t

0
gb

. Note that

the formation of space-charge layers at grain boundaries is
reported,26 and the assumption of electro-neutrality might not be
valid everywhere. However, the formation of space-charge layers
could be incorporated as outlined in Ref.27.

In our previous work,20 we showed that thin layers in SSBs can
be modeled as two-dimensional manifolds if the transport phe-
nomena that are orthogonal to the layer can be approximated by
a priori knowledge. Often, this is given if both the local curvature of
the layer and the thickness of the layer are significantly smaller than
a typical length scale of the surrounding geometry. A similar concept
is used in this work to model the conservation of charge inside of the
grain boundaries. Here, we assume that the normal component of the
electric field En = E · ngb =− ∇Φ · ngb is constant throughout the
thickness of the grain boundary while it may vary along the grain
boundary (see Fig. 3 for the definition of ngb). This leads to the
following set of Eqs. with the Nabla operator ∇Γ being evaluated on
curved surfaces

∇ · + = Γ × [ ]ρΓ i s t0 on , 4agb gb gbgb

κ− ∇ Φ = Γ × [ ]Γ i ton , 4bgb gb gb gb gb

− · = ¯ ∂Γ × [ ]i n i ton , 4cgb gbh gb

η= + Γ × [ ]ρ ρs
t r

s ton , 4d
coat n

gb gbgb,0

with the Neumann boundary of a grain boundary ∂Γgbh. The surface
Γgb is defined in the center of Ωgb. From geometric considerations, it
becomes obvious that no external fluxes across the outer edges of the
grain boundary occur, i.e., ¯ =i 0 on Γgb ∩ Γcut and Γgb ∩ Γed. A
model for the electric current between the grain boundaries and the
solid electrolyte is formulated by a simple linear kinetics law

· = =
Φ − Φ

Γ × [ ]ρi n s t
r

ton , 5el gb
gb el

c
gb gbgb,0

with the contact resistance rc between the solid electrolyte and the
grain boundary domain. However, any other kinetics law is applic-
able as well. A geometric characteristic of grain boundaries is that
more than two can intersect in one line (see the location of the
*symbol in Fig. 2). The conservation of charge needs to be
guaranteed at these locations as well. When modeling the grain
boundaries as a two-dimensional continuum, the formulation of
conservation of charge at these locations is equivalent to Kirchhoff’s
circuit laws in electrical circuits: (1) the electric potential at the tip of
all branches of the grain boundaries is equal, and (2) all currents into
and out of the branches have to sum up to zero. This results in the
following two constraints wherever n grain boundaries intersect

Φ = Φ ∀ ∈ [ ]i n, 6ai

∑ · = ∀ [ ]i n n0 , 6b
i

n

i i

with the normal vector ni on the tip of the branches of the grain
boundaries Γ igb as defined in Fig. 3.

An exemplary slope of the electric potential (blue line) and of the
electric current (red line) is added to Fig. 3 to visualize the
constraints at the intersection point. While the electric potential is
equal (denoted by the circular dotted line), the currents need to sum
up to zero (denoted by the same length of the red arrows). Note that
only the contribution of the flux out of the grain boundary is
constrained in a three-dimensional setup.

Figure 3. Schematic of the intersection of three grain boundaries (black
lines) with the definition of the normal vectors and exemplary slopes of the
electric potential (blue line) and the electric current (red line), including the
constraints at the intersection. The arc illustrates the equal electric potential
at this location, and the red arrows sum up to zero, indicating the constraint
on the electric current.

Figure 4. Geometry for the convergence study. The grain boundaries occur
at the intersection of the solid electrolyte domains (colored rectangles). The
edge size of each grain is a = 4 or 2a. The coordinates xi are defined along
the grain boundaries. The electric potential is set as a boundary condition at
the ends of the grain boundaries marked with a circle.
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Numerical realization of the model.—First, we summarize the
numerical discretization of the novel continuum model. Afterwards,
the solution strategy applied to the discretized system of Eqs. is
discussed.

Discretization of the model and solution of the nonlinear
system.—For the discretization of the novel model in space, we
apply the finite element method and, in time, the one-step theta
method. The resulting nonlinear, algebraic system is solved by the
iterative Newton-Raphson scheme.

We propose to include the constraints formulated in Equation 6a
and 6b by treating both the electric potential Φ and the electric
current i as independent solution variables in the domain of the grain
boundary Γgb. In the remaining domains, the electric potential Φ and
the concentration c are considered as solution variables. This results
in more unknowns inside the domain of the grain boundary (i.e., the
electric potential and the vector-valued electric current per node).
However, we believe that this is affordable as the number of nodes in
the grain boundary is significantly smaller than the total number of
nodes if the grain boundary is resolved as a two-dimensional
manifold.

The weighted residual in the domain of the grain boundary consists of
the sum of the standard residual Rgb,std, and the residua originating from
the constraints of the electric potential ΦRgb,constr and of the electric
current Rgb,constri: = + + =ΦR R R R 0gb gb,std gb,constr gb,constri . The stan-
dard residual is given by multiplication of the balance equation (Eq. 4a),
the constitutive equation (Eq. 4b), and the homogeneous Neumann
boundary (Eq. 4c) with an arbitrary test function w and subsequent
integration over the entire domain or boundary, respectively

∫ ∫

∫ [ ]
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Applying Gauss divergence theorem and the product rule of the
divergence to the first term leads to

∫ ∫
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where we make use of wΦ = 0 on ∂Γ ⧹∂Γgb gbh. The constraints
(Eqs. 6a and 6b) are enforced by introducing Lagrange multipliers
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The constraint matrix Ci is chosen, such that the flux constraint
(Eq. 6b) is satisfied. Therefore, the constraint is split into a slave and
a master side and reorganized with ns
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of the normal vector ns ( = ( )n n n nmax , ,x y z

s
1

s s s ), and n n,s
2

s
3 the

other components

∑ ∑ ∑+ + = + = [ ]
= =

−

=

C ii i
n

n
i

n

n
i 0. 9

j

n
j

j

k

n

j

n

k
j k

j

is
1

2
s

s

s
1

1

1

1
m,

m,

s
1 s

1
m

dim dim

In the remaining domains, only the electric potential and the
concentration are considered unknown, leading to the following
form of the weighted residual

∫ ∫ ∫

∫ ∫ ∫ ∫
[ ]

κ σ= ∇ ∇Φ Ω + ¯ Γ + ∇ ∇Φ Ω

+ ¯ Γ + ∂
∂

Ω + ∇ ∇ Ω + ¯ Γ =

Ω Φ Γ Φ Ω Φ

Γ Φ Ω Ω Γ

10

R w w i w

w i w
c

t
D w c w j

d d d

d d d d 0.c c
h

c

bulk el
el

T bulk
elh

T

ed,cc

T bulk

ed,cch

T

ed

T

ed

T

ed

T

The residua Rgb and Rbulk are discretized in space using the finite
element method, and the resulting nonlinear, algebraic system is
solved using the Newton-Raphson scheme (see Appendix for the
derivation of the linear system of Eqs. in the grain boundaries and
Appendix for the remaining domains). Thereafter, two linearized
systems of Eqs. (KgbΔΨgb =− Rgb, KbulkΔΨbulk =− Rbulk) arise

Figure 5. Analytic solution of the electric potential (blue) and the current
(orange). The solid line is along the coordinates x1 and x2, and the dashed
line is along the coordinate x3 of Fig. 4. The vectors denote the sign of the
normal direction of the three grain boundaries (Γ1 - Γ3) at the intersection of
each of the three grain boundaries. The direction of the flux for positive
values is in the positive coordinate direction and vice versa.

Figure 6. Convergence of the relative L2-norm (blue line). Model evalua-
tions are marked with a cross. The dashed lines represent linear and quadratic
convergence rates, respectively.
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The systems of equations for the grain boundaries and the bulk
domains are coupled by the coupling flux defined in Equation 5.
Therefore, the systems of equations contain the additional contribu-
tions Φ ΦKbulk gb and
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Solution of the linear system.—Due to robustness and efficiency,
this linear system of equations (Equation 13) is solved
monolithically.28 Iterative solvers are required as soon as the size
of the linear system of Eqs. exceeds a certain threshold, which is
often the case for realistic microstructures. This monolithic system
could include a zero-block on the main-diagonal sub-block ΦΦKgb if
the source term ρs

gb
is not a function of the electric potential,

i.e.
Φ

∂

∂ ˆ =
ρs

0
gb

gb . Many iterative solvers fail for such saddle-point

problems, i.e., systems that contain a zero sub-block on the main
diagonal (c.f.29). However, the determinant of the entire matrix K is
non-zero if proper boundary conditions are applied, such that a
solution exists.

In this work, we adapted an approach that employs the Block-
Gauss-Seidel (BGS) algorithm (see Algorithm 1, adapted from
Ref.30). Therefore, the linear system of equations (Equation 13) is
split into physically meaningful sub-blocks, which, in this case, are
the bulk domains (i.e., electrodes, solid electrolyte, and current
collectors) and the domain of the grain boundary
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Application of the BGS algorithm results in multiple smaller systems of
linear Eqs. that only require inverting the main-diagonal blocks. We
know that the main-diagonal block of the grain boundary domain could
have a saddle-point structure. Therefore, the system of Eqs. of this sub-
block is solved with a direct solver (in this case UMFPACK31) while
the other sub-blocks are solved using an algebraic multigrid
solver (c.f. Ref.32) together with a row and column-based equilibration.
This is affordable, as for realistic microstructures, the number of
unknowns in the grain boundary block is significantly smaller (for our

example at the end of this work: · =6, 200 nodes 4 24, 800 dofsdofs

node
)

compared to the number of unknowns in the other domains

( · =157, 000 nodes 2 314, 000 dofsdofs

node
), and thus, the computation-

ally greater amount of workload of direct solvers does not weigh heavy.
Note, that several other methods are available to circumvent the

solution of a saddle-point system, e.g., by making use of the Schur-
complement (c.f. Ref.29 or Ref.33). However, the focus of this work
is not on the assessment and comparison of different solvers.

Remarks on alternative formulations.—Alternative formula-
tions exist to enforce the constraint on the electric current using
the finite-element method. One possibility is to change the function
space of the shape functions to Hermite shape functions (c.f.34 for
details). These shape functions include the derivative at the nodal
values, which scales with the electric current, as an additional
unknown. Thereby, constraints on the electric current could easily be
applied. However, this change of the function space requires a
fundamental reformulation of finite element codes and is often not
applicable. Another possibility is given by enforcing the constraint
in standard formulations using Lagrangian shape functions.
However, there, the derivative of a quantity includes, in general,
all nodes of an element, and therefore, the constraint affects not just
the nodes at the interface Γgb−el but all elemental nodes, which adds
additional hurdles to the implementation.

Numerical Examples

We first analyze the novel model and show the correctness of the
model and its implementation for a geometrically simplified setup.
Afterwards, the influence of ionically conducting grain boundaries
on the effective conductivity of solid electrolytes is discussed for a
simple geometry. Finally, results for grain boundaries in realistic
microstructures are shown. All results are computed with the
implementation of the novel model in the software project BACI 35

and the spatial discretizations are created using Coreform Cubit,
2021.

Analysis of the novel model.—The correctness of the model is
shown by a numerical convergence study with an analytical solution
as a reference and the evaluation of the conservation of charge at the
intersection between three grain boundaries.

Convergence study on simple grain geometries.—An analytic
solution can be found for certain geometric setups and boundary
conditions. This analytic solution serves as a reference for a spatial
convergence analysis. Here, a three-dimensional setup without units
is chosen where three planar grain boundaries are modeled between
solid electrolyte grains (see Fig. 4). They intersect at one line
(depicted in the quasi two-dimensional setup in Fig. 4 as a point).
The coordinates x1, x2, and x3 are introduced along the grain
boundaries.

The electric potential in the grains is fixed to zero Φel = 0. Thus,
the equation for the conservation of charge inside the grain
boundaries reduces to a one-dimensional differential equation

κ
∂ Φ
∂

−
Φ

= ∀ ∈ [ ]
x t r

i0 1, 2, 3, 15
i

gb

2
gb

2

gb

gb n

with the second term being the exchange current between the grain
boundary and the grains. The analytic solution of the electric
potential Φgb,ana is given by
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with the constants c c,i i
1 2. Consequently, the current igb,ana is
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By enforcing the constraints defined in Equations 6a and 6b and
applying Dirichlet boundary conditions for the electric potential at
all ends of the T-shape (Φ1 = 0, Φ2 = 0.1, Φ3 = 4, see circles in
Fig. 4), the constants c c,i i

1 2 can be computed. The analytic solution
of the electric potential and the electric current within the three grain
boundaries Γ1 - Γ3 are plotted in Fig. 5 for κgb = 1, and

κ =t r 10gb gb n . The positive direction of the current is defined
in the positive direction of the respective coordinate. As expected,
the currents sum up to zero, i.e., i1n1+ i2n2 + i3n3 = 0, with ii
denoting the current of each grain boundary Γi at the intersection.
Note that the direction of the normal vectors of the three grain
boundary domains w.r.t. the coordinate has to be considered when
computing the sum. A spatial convergence study is performed based
on this analytic solution. Therefore, the relative L2-norm ϵ of the
deviation of the numerical solution of the electric potential Φgb from
the analytic solution is computed as

∫

∫
ϵ =

(Φ − Φ )

Φ
[ ]

x

x

d

d
. 18

gb,ana gb
2

gb,ana
2

The development of the relative L2-norm for a decreasing edge
length of the hexahedral elements used to mesh the three-dimen-
sional geometry is shown in Fig. 6 together with two lines
representing linear and quadratic convergence, respectively.

As expected, quadratic convergence is observed, which confirms
a correct formulation and implementation of the constraints.

Conservation at non-orthogonally intersecting grain bound-
aries.—A geometry including non-orthogonal intersections of the
grain boundaries is investigated in another three-dimensional ex-
ample, again without units. The solid electrolyte grains are modeled
as three intersecting cylindrical grains (see circles in Fig. 7).

The electric potential in the solid electrolyte grains is fixed to
zero Φel = 0. At the outer ends of the grain boundaries, the electric
potential is fixed (Φ1 = 0, Φ2= 0.1, Φ3 = 2, see Fig. 7) to different
values and the ionic conductivity of the grain boundaries is set to
κ= 0.1. For this setup, the sum of the currents at the intersection of
the grain boundaries can be evaluated to quantify the fulfillment of
the constraints. Therefore, the relative sum of the electric currents

into the grain boundaries ϵ = i

i
sum

tot
is computed at the intersection of

the grain boundaries with isum= ∑ini · ii, and the total
current itot = ∑i∣ii∣. For the outlined case, the electric current is

shown in Fig. 8 and the relative sum is ϵ = = · −6.8 10i

i
9sum

tot
at the

intersection, which shows the fulfillment of the charge conservation
at the intersection within the expected numerical tolerances.

Assessment of the influence of the grain boundaries.—An
artificial geometry with regularly arranged grains, as shown in
Fig. 9, allows finding analytical results for extreme cases of the ionic
conductivity inside of the grain boundary.

These results serve as a basis to gain deeper insights and enable
comparison with the solution obtained from the simulation. We
analyze the difference in electric potentialΔΦel through the solid
electrolyte, i.e., from the leftmost point of the solid electrolyte to the
rightmost point, for a given current i through the solid electrolyte.
The difference in electric potential is a measure of the effective
conductivity of the solid electrolyte. We distinguish between two
extreme cases: (1) the ionic conductivity inside the grain boundaries
approaches zero, and (2) the ionic conductivity inside the grain
boundaries approaches infinity. In the first extreme case, conduction
inside the grain boundaries is unfavored, and therefore, the shortest
conduction path is exclusively in the z-direction, i.e., it is strictly
orthogonal across the grain boundaries, which are normal to the z-
direction. For this case, the difference in electric potential can be
estimated by a series of resistors of nel = 12 solid electrolyte grains

( =
κ

r n t
el el

el

el
), ngb = 11 grain boundaries ( =

κ
r n

t
gb gb

gb

gb
), and 2ngb

contact resistances (rgb−se = 2 ngbrc) scaled by the current i

Figure 7. Geometry with non-orthogonally intersecting grain boundaries.
The grain boundaries occur at the intersection of the solid electrolyte
domains (colored domains with a radius of r = 1). The electric potential is
set as a boundary condition at the ends of the grain boundaries marked with
circles.

Figure 8. Current in the grain boundary. The jump at the intersection, s.t. the
net current sums up to zero, is visible. Note that the geometry is distorted for
visualization compared to Fig. 7.
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In the second extreme case, conduction in the grains is unfavored.
Therefore, the shortest conduction path is through the grain
boundaries because their resistance approaches zero in the limit of
infinite ionic conductivity. Thus, the remaining resistance originates
from two solid electrolyte grains ( =

κ
r 2 t
el

el

el
) and two contact

resistances (rgb−se = 2rc)
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The solution of both Eqs. is plotted in Fig. 10a in dashed lines for
different values of the ionic conductivity in the grain boundary κgb.

The other parameters are constant as defined in Table II.
It can be seen that both curves are separated from each other, and

especially if the focus of the investigation lies between the extreme
cases, a model that resolves conduction along the grain boundary
becomes vital. Vertical lines exemplarily indicate the values for the
conductivity of LLTO inside the grains (dark gray) and inside the
grain boundary (light gray). They highlight that the incorporation of
conduction inside grain boundaries is important for realistic material
parameters. The difference in electric potential of evaluations of the
novel model with different values for the ionic conductivity of the
grain boundary κgb are added to Fig. 10a. It can be seen that the
proposed model is able to cover both extreme cases with a smooth
transition between them. This transition is within a relevant range of
the ionic conductivity of typical solid electrolyte materials and grain
boundaries and, therefore, requires resolving charge transport also
along the grain boundary. Based on these two extreme cases, a
deeper understanding of the ionic conduction in the grain boundary
can be derived. Therefore, we modify single parameters from
Equations 19a and 19b and plot the results in Fig. 10b together
with the results of evaluations of the novel model. It can be seen that

the characteristic shape remains the same for all combinations while
the magnitude and slope change:

• Reduction of the contact resistance (blue curve, reduction by
one order of magnitude) reduces the total resistance. This is relevant
within a large range of the ionic conductivity of the grain
boundaries. For small ionic conductivities of the grain boundaries,
the total resistance is dominated by this small ionic conductivity, and
therefore, the influence of the contact resistance becomes negligible
in these regions.

• Reduction of the ionic conductivity in the solid electrolyte (red
curve, reduction by two orders of magnitude) increases the total
resistance. However, this is only relevant for high ionic conductiv-
ities of the grain boundary as for small ionic conductivities, the total
resistance is dominated by this small ionic conductivity.

• Reduction of the current (yellow curve, reduction by factor 2.5)
parallelly shifts the difference in electric potential. For this setup, the
current is simply a linear amplification.

• Reduction of the thickness of the grain boundary (purple curve,
reduction by one order of magnitude) reduces the total resistance for
small ionic conductivities of the grain boundary while it remains the
same for high ionic conductivities.

We can conclude that the novel model is capable of resolving all
variations, including the extreme cases.

Application of the model to a realistic microstructure.—The
focus of this work is to establish a formulation to include ion
conduction in intersecting grain boundaries into a continuum model
for SSBs. Hence, for completeness, we show its applicability to a
realistic and, therefore, complex microstructure.

Microstructure.—The grains are approximated as spherical
particles (see Fig. 11a, blue: solid electrolyte, gray: cathode active
material, red: grain boundaries, silver: anode, silver/brown: current
collectors).

Figure 10. Evaluation of the influence of the
ionic conductivity of the grain boundary on the
voltage drop in the solid electrolyte. (a) The
extreme cases (infinite conductivity and zero
conductivity in the grain boundaries) are shown
by dashed lines, and evaluations of the proposed
model are represented by the green line. The
ionic conductivity of the grains (dark gray) and
the grain boundary (light gray) are indicated by
vertical lines for LLTO.21 (b) Variation of
parameters that influence the extreme cases.
The dashed black line represents the default
values and the colored lines the variations of the
parameters in the following manner: blue:

<r rc c0, red: κ κ<el el0, yellow: i < i0, purple:
<t tgb gb0, where the index 0 represents the

default value. The evaluations with the novel
model are symbolized by the dotted lines.

Figure 9. Regularly arranged solid electrolyte grains (colored domains). The grain boundaries occur between the solid electrolyte grains. The difference in
electric potential is ΔΦel = Φ2 − Φ1.
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The composite cathode consists of active material particles (mean
of diameter distribution μc = 2.3, and standard deviation
σc = 0.05,36 evaluated in μm) and solid electrolyte grains
(μel = 1.831, σel = 0.548,37 evaluated in μm) which follow a log-
normal distribution for the diameter d with the probability density
function

⎜ ⎟
⎛
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⎠σ π

μ
σ

=
−( ( ) − )

[ ]p
d

d1

2
exp

ln

2
20

2

2

Both phases have a volumetric ratio of =
+

0.48v

v v
c

c el
. The thickness

of the composite cathode is 30μm. The anode is modeled as a planar
lithium metal foil with a thickness of 10μm. A thin current collector
foil with a thickness of 2μm is attached to both electrodes. The
separator is located between the electrodes with a thickness of
20μm. It consists of the same solid electrolyte grains as in the
composite cathode. We construct a planar grain boundary where two
solid electrolyte grains intersect. Thereby, a connected network of
grain boundaries is created (see Fig. 11b). The average porosity of
the porous separator and the porous composite cathode is ϵ= 0.15.
The lateral edge length is 36 μm to limit the size of the computa-
tional domain. Note that the approximation of solid electrolyte
grains by spherical particles might not always be a good choice, and

the creation based on polyhedrons might be more suitable (see
e.g.38).

Materials.—The active material of the cathode is NMC622, the
solid electrolyte is LLTO, the anode is lithium metal, and the current
collectors are copper and aluminum, respectively. The material
parameters are summarized in Table III.

Boundary and initial conditions.—A discharge scenario is
simulated. Therefore, the initial concentration in the electrodes is

chosen to represent a charged state, i.e. =c 21, 000c,0
mol

m3 and

= =ρ
c 76, 900

Ma,0
mol

m
a

a
3 . A constant voltage of Φ= 0 V is enforced

at the current collector on the anode side, and a constant current is
applied to the current collector at the cathode side, such that the
battery cell is discharged with a c rate of 0.1C until the cutoff
voltage between both current collectors ofΔΦ= 2.7 V is reached.

Results.—The electric potential in the grain boundaries at the end
of discharge is shown in Fig. 12.

A decrease in the electric potential from the anode to the cathode
occurs due to the battery cell being discharged. The current along the
grain boundary is computed as = − ( )i i n i nt

gbT gb to investigate the
influence of the grain boundary in more detail. The averaged in-

plane current is ¯ =
∫

∫

∣ ∣ Γ

Γ

Γ

Γ
i

i

t

d

d

gb
t

gb

. It is shown in Fig. 13a for different

values of the ionic conductivity of the grain boundary.
We observe that the in-plane current increases with higher ionic

conductivities as the conduction path inside the grain boundaries
becomes more preferred compared to conduction in the grains.
Furthermore, it can be seen that the in-plane current does not remain
constant but changes over time. This can be attributed to the
inhomogeneous lithiation of the cathode, which results in an
inhomogeneous electronic conductivity in the cathode (see
Equation 27) and an inhomogeneous distribution of the equilibrium
potential at the interface between cathode and solid electrolyte and,
therefore, to shifted optimal conduction paths during discharging. If,
thereby, the impedance in the cathode is increased, conduction in the

Figure 11. Geometry of battery cell with grain boundaries. The grain boundaries occur at the intersections of the solid electrolyte grains and are modeled as
planar surfaces. (a) Battery cell with porous separator and composite electrode. (b) Network of grain boundaries.

Table II. Parameters for the setup with the regular grains.

symbol value

κgb [ ]−10 , 107 2 S

m

κel · −7.86 10 2 S

m

tel 3 μm
tgb 10 nm
rc 2 · 10−2 Ωm2

i 2.07 A

m2
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solid electrolyte and, hence, along the grain boundaries become
more favored and vice versa. Thus, the current along the grain
boundary changes over time. Additionally, the cell voltage is shown
in Fig. 13b together with a zoom into the in-plane current for the
standard value of the ionic conductivity in the grain boundary to
highlight the dependence of the state of charge of the in-plane
current.

In Fig. 14, the geometrically resolved magnitude of the in-plane
current inside of the grain boundaries is shown for different values
of the ionic conductivities at the end of the discharge in a slice close
to the anode.

Note that the dominant direction of the current is out of the
shown plane, i.e., in the z-direction of Fig. 11a. An increase in
current is observed for higher conductivities (indicated by the
different color bars in Fig. 14). Moreover, an increased current is
also observed at the intersection between more than two grain
boundaries, marked with red circles in Fig. 14. This is caused by the
current that is merged from two grain boundaries into one grain
boundary; therefore, this increase is not observed in non-intersecting
grain boundaries (purple circles in Fig. 14). This local increase in
current could be unfavored as it could initiate the development of
dendrites or local lithium deposition.39–41 Beyond this physical
insight, this also highlights the necessity of consistent constraint
enforcement at the intersections to properly resolve the increase in
current there.

Summary

A modeling approach is presented to incorporate the ionic
conduction along grain boundaries into a continuum model for
solid-state batteries that geometrically resolves the microstructure.
Based on a formulation to represent transport in thin layers of solid-
state batteries,20 the grain boundaries are reduced to a two-dimen-
sional manifold. This reduction raises the question of how to
guarantee the conservation of mass and charge at locations where
more than two grain boundaries, modeled as two-dimensional
manifolds, intersect. In terms of ionic conduction inside of the grain
boundaries, this means a unique electric potential and a net current
of zero. These constraints are enforced by treating the electric
potential and the electric current as independent unknowns within
the system of equations. This formulation comes with some
numerical challenges like the solution of a saddle point system,
which we discuss in this work together with solution strategies for
them.

Table III. Material parameters for the simulation with the realistic geometry.

domain quantity symbol value source

cathode Ωc electronic conductivity σ Equation 27 Ref.36

diffusion coefficient D Equation 28 Ref.36

open circuit voltage Φ0 Fig. 15 Ref.42

max. concentration cmax ·5.19 104 mol

m3
Ref.36

max. lithiation χmax 1 Ref.36

lithiation range [χ0%, χ100%] [1, 0.404] defined
solid electrolyte Ωel ionic conductivity κ · −7.86 10 2 S

m
Ref.21

transference number t+ 1 defined

grain boundary Ωgb ionic conductivity κ · −1.88 10 2 S

m
Ref.21

transference number t+ 1 defined

anode Ωa electronic conductivity σ 105 S

m
Ref.36

current collector anode Ωac electronic conductivity σ ·5.81 107 S

m
Ref.43

current collector cathode Ωcc electronic conductivity σ ·3.77 107 S

m
Ref.43

interface current coll. - electrode Γcs−ed interface resistance ri 2 · 10−3 Ωm2 defined

interface cathode—solid electrolyte Γc−el exchange current density i0 4.98 A

m2
adapted for NMC622 - β-LPS from Ref.25

and Ref.36

interface anode—solid electrolyte Γan−el exchange current density i0 8.87 A

m2
Ref.36

interface grain boundary—solid electrolyte
Γgb−el

interface resistance ri 2.0 · 10−2 Ωm2 defined

Figure 12. Electric potential in the grain boundaries at the end of discharge.
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We show the fulfillment of the formulated constraints as well as
the convergence of the numerical error. Afterwards, we discuss
extreme cases for the limit of infinite and zero ionic conductivity of
the grain boundaries in terms of their influence on the voltage drop
within the solid electrolyte. We observe that the novel formulation is
able to cover both extreme cases as well as a smooth transition
between them. Finally, we show the applicability of the model to
realistic microstructures, extract the current along the grain bound-
aries, and find an increase in the magnitude of the flux at the
intersection of grain boundaries, which could be attributed to
degradation mechanisms in further studies. Furthermore, the results
of impedance measurements could now be classified into contribu-
tions from grain boundaries and bulk domains.

The outlined formulation is exemplarily shown for ionic con-
duction in the grain boundaries. However, recent publications
indicate that also electronic conduction5 may occur in grain
boundaries of solid-state batteries. With the model established in
this work, this and also various other transport phenomena in grain
boundaries can be incorporated into the model together with
advanced interface kinetics to also model, e.g., lithium deposition
in the grain boundaries.
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Discretization of the Eqs. in the Grain Boundary
For discretizing Equation 8a to 8c the unknowns Φgb, igb and the

test functions wΦ, wi, polynomial shape functions that are organized
in the matrix N, i.e., [Φ ] = [Φ̂ ˆ ˆ ˆ ]Φ Φi w N i w ww, , , , , ,i igb gb

T
gb gb

T are
employed. In this work, linear Lagrangian polynomials are used to
form the space of the shape functions. The spatially discretized
forms of the weighted residua are
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The residual ˆ = ˆ + ˆ + ˆ
ΦR R R Rgb gb,std gb,constr gb,constri is reorganized

w.r.t. nodal values of the discretized functions by introducing the

Figure 13. In-plane current over time. (a) In-
plane current for different values of the ionic
conductivity in the grain boundary: The stan-
dard value (κ = · −1.88 10gb

2 S

m
, blue curve), a

lower value (κ = · −1.88 10gb
4 S

m
, red curve), and

a higher value (κ = 1.88gb
S

m
, yellow curve). (b)

Zoom into the in-plane current for the standard
value of the ionic conductivity. Additionally,
the cell voltage is shown.

Figure 14. Electric current inside of slices through the grain boundaries for different values of the ionic conductivity of the grain boundary (from left to right:
small to large, κ = ·[ ]− −1.88 10 , 10 , 1gb

4 2 S

m
) at the end of discharge. Note the different limits of the color bar that indicate the different orders of magnitude of the

current for the different ionic conductivities. The red circles indicate the intersection between three grain boundaries. The purple circle indicates non-intersecting
grain boundaries.
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subscript ’i’ for interior values that are neither assigned to master nor
to slave nodes
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The test functions ŵ have arbitrary values, s.t. each term has to be
individually zero, i.e.
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This nonlinear, algebraic system of equations is iteratively solved for the
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The subscripts denote the interior, master, or slave side matrices.
The Lagrange multipliers, as well as the slave side values, are
removed from the global system of Eqs. by static condensation, and
the final system of linear Eqs. is
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with the condensed vector of unknowns Ψ Φ Φ= [ ˆ ˆ ˆ ˆ ]i i, , ,gb i m i m
T.

Discretization of the Eqs. in the Bulk Domains
For discretizing Equation 10, the unknowns Φbulk, c and the test

functions wΦ and wc are as well discretized with polynomial shape
functions N, i.e., [Φ ] = [Φ̂ ˆ ˆ ˆ ]Φ ΦN c w wc w w, , , , , ,c cbulk

T
bulk

T. Again,
linear Lagrangian polynomials are used to form the space of the
shape functions.
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The linearized system of Eqs. for the Newton-Raphson scheme in
the bulk domains is given as
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with K= ∫Ω∇NT∇NdΩ, S= ∫ΩN
TNdΩ and a time discretization

scheme for
∂ˆ
∂
c
t

; in this case the one-step theta method
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The expression {κ, σ} denotes the ionic or electronic conductivity in
the respective domains.

Block Gauss-Seidel Algorithm for Saddle-point Systems
The Block Gauss-Seidel algorithm (c.f. Algorithm 1) is used to

iteratively solve the linear system of Eqs. KΔx= R until
( Δ − )E KE x E Rnorm r c r is smaller than a tolerance ϵ. Thereby,

only systems of Eqs. that contain the n blocks on the main-diagonal
blocks need to be solved. If this sub-system contains a saddle-point
structure, a direct solver is employed. The full system of Eqs. is
equilibrated by row (Er) and column (Ec) multiplication to improve
its condition. We chose both equilibration matrices as diagonal
matrices containing the reciprocal of the largest value of the
respective row or column within each sub-block.
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Algorithm 1.Block Gauss-Seidel with saddle-point structure
←A E KEr c ▹ Equilibration

←c E Rr

← ∀ ∈y i n0i

←h 0
while ϵ>r do

← +h h 1
for ∈ { … }i n1, , do ▹ Loop over main-diagonal blocks

←g ci

for ∈ { … }j n1, , do ▹ Loop over off-diagonal blocks
if <j i then

← − −g g A yij j
h 1

else if >j i then

← −g g A yij j
h

end if
end for

←yi ( )A gSolve , , iii

end for
← ( − )Ay cr norm

end while
Δ ←x E yc ▹ Substitution from equilibration
function Solve ( )A gSolve , , i
if = = ( )i Block gb then
return ( )A gDirectSolver ,

else
return ( )A gAMGSolver ,

end if
end function

Material Parameters

The electronic conductivity

[ ]σ ( ) = (− + − + − ) 27x x x x x100
S

m
exp 202.90 322.38 178.23 50.06 13.47 ,4 3 2

with x= 1− χ and χ χ= ( )Fdetc

c max
max

, and the diffusion coefficient

of NMC622 are a function of the lithiation state36

[ ]

χ χ χ

χ χ χ
χ χ χ
χ

( ) = ( · · − · ·

+ · · − · · + · ·
− · · + · · − · ·
+ · · − · )

28

D
1

1000

m

s
exp 9.3764575854 10 5.4262087319 10

1.368 855 670 3 10 1.9734363260 10 1.789 724 416 0 10

1.057 673 529 7 10 4.068 846 529 5 10 9.8167452940 10

1.346 892 357 8 10 8.027 084 791 4 10 .

2
5 9 6 8

7 7 7 6 7 5

7 4 6 3 5 2

5 3

The open circuit potential42 of NMC622 is shown in Figure 15.
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