
Learning the Koopman Eigendecomposition: A Diffeomorphic Approach

Petar Bevanda, Johannes Kirmayr, Stefan Sosnowski, Sandra Hirche

Abstract— We present a novel data-driven approach for
learning linear representations of a class of stable nonlinear
systems using Koopman eigenfunctions. Utilizing the spectral
equivalence of topologically conjugate systems, we construct
Koopman eigenfunctions corresponding to the nonlinear system
to form linear predictors of nonlinear systems. The conjugacy
map between a nonlinear system and its Jacobian linearization
is learned via a diffeomorphic neural network. The latter allows
for a well-defined, supervised learning problem formulation.
Given the learner is diffeomorphic per construction, our learned
model is asymptotically stable regardless of the representation
accuracy. The universality of the diffeomorphic learner leads to
the universal approximation ability for Koopman eigenfunctions
- admitting suitable expressivity. The efficacy of our approach
is demonstrated in simulations.

I. INTRODUCTION

For complex nonlinear systems, models based on first-
principles often do not fully resemble the true system due
to unmodeled phenomena. To better deal with the afore-
mentioned, flexible machine learning techniques are em-
ployed (e.g. neural networks or Gaussian processes) for pre-
diction [1], [2], model-based control [3] and analysis [4],
[5]. Although classical nonlinear system representations en-
joy incredible success, multi-step prediction, analysis and
optimization-based control are substantially more challeng-
ing than that of their linear analogues. Inspired by the
infinite-dimensional but linear Koopman operator - named
after B.O. Koopman’s seminal work [6] - a rise of interest for
global linearizations is observed in various research fields.
Trading infinite-dimensionality for linearity enables the use
of efficient linear techniques for nonlinear systems - leading
to more challenging identification but efficacious prediction,
analysis and control [7]. The challenge of identification in-
volves ”lifting” the original system state to suitable higher-
dimensional coordinates that represent the linear Koopman
operator (generator) in a finite-dimensional form.

A dominant train of thought assumes a predefined library
of functions approximating the operator - akin to the well-
known extended DMD (EDMD) [8]. However, a “good”
library of functions representing the Koopman operator (gen-
erator) should be both dynamically closed and relevant for
reconstructing the original state evolution. Hence, apriori
access to a suitable function library is a strong assumption
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- commonly leading to only locally accurate models and no
practicable learning guarantees. Other approaches leverage
the expressive power of neural networks or kernel methods
to learn a suitable library of functions [9], [10] but often lack
theoretical justification.

However, the (generalized) eigenfunctions of the opera-
tor are dynamically closed coordinates by definition. Thus,
to learn a Koopman operator (generator) representation
for long-term accurate prediction, it is vital to construct
genuine eigenfunction-coordinates. Nevertheless, very few
works consider direct learning of genuine Koopman eigen-
functions for linear prediction models, such as Korda et al.
[11]. Although assuming no spectral or feature knowledge,
its performance is dependent on trajectory data, a specific
choice of eigenfunction lattices and basis functions for in-
terpolation. Similarly to our own, the work of Folkestad et
al. [12] proposes to learn a conjugacy between the nonlinear
dynamics and its Jacobian linearization to construct Koop-
man operator eigenfunctions for linear prediction. Crucially,
however, the aforementioned method solves a markedly un-
derdetermined learning problem while employing heuristics
that are not theoretically justified. Furthermore, although
considering stable systems, it provides no stability guarantees
that would allow for safety and physical consistency even
for unseen states [13].

This paper presents a novel data-driven approach for
learning Koopman operator generator eigenfunctions for pre-
diction. To construct Koopman eigenfunctions, we learn a
diffeomorphism between a hyperbolic nonlinear system and
its linearization using a diffeomorphic neural network. The
latter, together with explicit training targets, leads to a well-
defined supervised learning problem. The learner’s universal
approximation capability of diffeomorphisms transfers to that
of the nonlinear system’s Koopman eigenfunctions - allowing
for sufficient expressivity. Additionally, our framework also
ensures safety in the sense of guaranteeing global asymptotic
stability of the Koopman operator dynamical model - regard-
less of the representation accuracy. The superior performance
of our approach - also compared to existing techniques - is
demonstrated in simulation examples.

This paper is structured as follows: After the problem
setup and introduction of required system-theoretical results
in Sec. II and III, we propose a novel data-driven framework
- KoopmanEigenFlows - for constructing genuine Koopman
operator eigenfunctions in Sec. IV. Thereafter in Sec. V, we
propose a linear representation of the nonlinear systems with
our algorithm KoopmanEigenFlow Mode Decomposition
(KEFMD). It is followed by numerical evaluation in Sec. VI
and a conclusion.



II. PROBLEM FORMULATION

Consider a partially known, continuous-time nonlinear
system 1

ẋ = f(x) = Ax+ r(x) (1)

with continuous states on a compact set x ∈ X ⊂ Rd

containing the origin, consisting of a known A ∈ Rd×d and
an unknown r : X 7→ Rd.

Assumption 2.1: We assume that the origin of (1) is glob-
ally exponentially stable.
The above system class includes dynamical systems rep-
resenting motion as well as various dissipative Lagrangian
systems. Due to their continuous-time nature, the dynamics
are fully described by the forward-complete flow map [14]
of (1) given by

x(t0) ≡ x0, F t(x0) := x0 +

∫ t0+t

t0

f(x(τ))dτ, (2)

which has a unique solution on [0,+∞) from the initial con-
dition x at t = 0 due to stability of the isolated attractor [15].
This flow map naturally induces the associated Koopman
operator semigroup as defined in the following.

Definition 2.1: The semigroup of Koopman operators
{Kt}t∈R+,0

:C(X) 7→C(X) for the flow (2) acts on a scalar
observable function h∈C(X) on the state space X through
Kt

fh = h ◦ F t.
Definition 2.2 ( [16]): The operator GK, is the infinitesi-

mal generator

GKh = lim
t→0+

Kth− h

t
=

d

dt
h, (3)

of the time-t indexed semigroup of Koopman operators
{Kt}t∈R+,0 .
The natural linearly evolving coordinates are the eigenfunc-
tions of evolution operators.

Definition 2.3: An observable ϕ ∈ C(X) is an eigenfunc-
tion if it satisfies

[GKϕ](x) = ϕ̇ (x) = λϕ(x), (4)

associated with the eigenvalue λ ∈ C.
Property 2.1: Since GK is the infinitesimal generator of

the semigroup of Koopman operators {Kt}t∈R+,0
, the fol-

lowing is also satisfied

[Kt
fϕ](x) = ϕ

(
F t(x)

)
= eλtϕ (x) , (5)

along the vector field’s flow.
Due to Assumption 2.1, the Koopman operator generator has
a pure point spectrum for the dynamics (1) [17]. Thus, for
each observable h, there exists a sequence vj(h) ∈ C of

1Notation: Lower/upper case bold symbols x/X denote vectors/matrices.
Symbols N/R/C denote sets of natural/real/complex numbers while N0

denotes all natural numbers with zero and R+,0/R+ all positive reals
with/without zero. Function spaces with a specific integrability/smoothness
order are denoted as L/C with the order (class) specified in their exponent.
The Jacobian matrix of map h evaluated at x is denoted as Jh(x).

A flow induced by a vector field ẋ = f(x) is denoted as F t(x) with its
associated family of composition (Koopman) operators {Kt

f}t∈R+,0
. The

Lp-norm on a set X is denoted as ∥·∥p,X.

mode weights, such that action of the Koopman generator is
represented through the following decomposition

ḣ = GKh =

∞∑
j=1

vj(h) (GKϕj) =

∞∑
j=1

vj(h)λjϕj . (6)

Given the existence of the decomposition (6), we are inter-
ested in learning a model of the following form

z0 = ϕ(x(0)), (7a)
ż = Λz, (7b)
x = V z, (7c)

where ϕ = [ϕ1, · · · , ϕD]⊤ are the finite-dimensional eigen-
function coordinates, Λ ∈ RD×D and V ∈ Rd×D. We
consider the full-state observable to be the output of interest
h(x) = id(x) in (7c). The goal is to trade the nonlinearity of
a d-dimensional ODE (1) for a nonlinear “lift” (7a) of the ini-
tial condition x(0) to higher dimension (D ≫ d) leading to
a linearly evolving model ẋ = V Λϕ(x) with a closed form
flow x(t) = V eΛtϕ(x(0)). In general, the output of interest
(7c) can be any other observable function h(x) as well.

III. MODELING VIA EQUIVALENCE RELATIONS

To reliably construct Koopman eigenfunctions, we utilize
equivalence relations between the nonlinear system (1) and
its linearization around the origin. To utilize the aforemen-
tioned to build models of the form (7), we introduce some
relevant Koopman eigenfunction properties.

Property 3.1 ( [18]): If the function space of eigenfunc-
tion is chosen to be a Banach algebra (e.g. C1(X)), the set of
eigenfunctions forms an Abelian semigroup under point-wise
products of functions. Thus, for GKf

with eigenvalues λ1 and
λ2, ϕ1ϕ2 is also an eigenfunction of GKf

with eigenvalue
λ1 + λ2.

Definition 3.1 ( [12], [19]): Consider a system ẏ = Ay
and a multi-index m = [m1, ...,md] ∈ Nd

0 such that
∥m∥1=m1+ · · ·+md ≤ p for p ∈ N. Consider {Ep}
to be the eigenpair group - a collection of all eigenvalue-
eigenfunction pairs - of the Koopman operator generator GKA

for ẏ = Ay with its minimal group generator PE :

{Ep} =

{(
p∑

i=1

miλi,

p∏
i=1

φmi
i

)
| (λi, φi) ⊂ PE

}
. (8)

Then, the elements of PE are principle eigenvalues-
eigenfunction pairs (λi, φi) of GKA

.
Less formally, principle eigenpairs form the minimal set used
to construct arbitrarily many other eigenpairs (8).

A. Topological Proxy to Koopman Eigenfunctions

Here, we define the notions relevant for the geometric
equivalence relations considered in this work.

Definition 3.2: Consider a bijective map g : Rn 7→ Rn.
The bijective map g is a homeomorphism if both the map and
its inverse g−1 are continuous. If the maps g and g−1 are
also continuously differentiable, then g is a diffeomorphism.

Definition 3.3: Two flows F t : X 7→ X and Ct : Y 7→ Y
of vector fields ẋ = f(x) and ẏ = c(y) are topologically



conjugate if there exists a homeomorphism g : X 7→ Y such
that g ◦ F t = Ct ◦ g holds ∀x ∈ X and t ∈ R.

Proposition 3.1 ( [18]): Consider the same two flows
from Definition 3.3. If (eλt, φ) is an eigenpair of Kt

c, then
(eλt, φ ◦ g) is an eigenpair of Kt

f .
Extending the topological conjugacy to the entire region

of attraction is formalized in the following.
Proposition 3.2 ( [12]): Assume that the nonlinear system

(1) is topologically conjugate to its Jacobian linearization via
the diffeomorphism d : X 7→ Y. Let B ⊂ X be a simply
connected, bounded, positively invariant open set in X such
that d(B) ⊂ Qr ⊂ Y, where Qr is a cube in Y. Scaling Qr to
the unit cube Q1 via the diffeomorphism g : Qr 7→ Q1 gives
(g ◦ d)(B) ⊂ Q1. Then, if φ is an eigenfunction for Kt

A at
eλt, then φ◦g◦d is an eigenfunction for Kt

f at eigenvalue eλt,
where Kt

f is the Koopman operator semigroup associated
with the nonlinear dynamics (1).

Theorem 3.1 ( [20]): Consider the system (1) with
r(x) ∈ C2(X). Under Assumption 2.1, the matrix A in (1)
is Hurwitz i.e., all eigenvalues have negative real parts. Then
in the region of attraction S of the origin there exists ϱ(x) ∈
C1(S) : S 7→ Rd, such that y = d(x) = x + ϱ(x) is a C1

diffeomorphism with ϱ(0) = 0 in S and satisfying ẏ = Ay.
By utilizing topological conjugacy, one exploits the fact that
the eigenvalues are shared between the full nonlinear system
(1) and its linearization around an asymptotically stable fixed
point. Subsequently, one is able to construct arbitrarily many
eigenfunctions from the principal ones via Definition 3.1
and Theorem 3.1. Using these properties allows for learning
Koopman-based dynamical models by lifting to eigenfunc-
tion coordinates by design.

B. Asymptotic Stability Guarantees

By Theorem 3.1 we deal with diffeomorphic mappings,
motivating the definition of a stronger equivalence notion.

Definition 3.4 ( [21]): Vector fields ẋ=f(x) and ẏ=t(y)
are said to be diffeomorphic, or smoothly equivalent, if there
exists a diffeomorphism d : Rd 7→ Rd such that ∀x ∈ Rd

t(d(x))=Jd(x)f(x) holds.
To ensure safety, we are interested in transferring the asymp-
totic stability properties of the linearization to the lifted linear
system (7). That is enabled by the following result.

Theorem 3.2: Consider a system (1) satisfying Assump-
tion 2.1, its Jacobian linearization ẏ = Ay and a diffeo-
morphic map d. Let the Koopman eigenfunctions (7a) cor-
responding to GKf

of system (1) be constructed via Propo-
sition 3.2 utilizing Definition 3.1. Then, the associated GKf

-
realization of the form (7) is guaranteed to be asymptotically
stable.

Proof: First we show the transition matrix in (7b) is Hur-
witz. As A is Hurwitz by Assumption 2.1, then Λ in (7b) is
as well with eigenvalues satisfying Re[

∑p
i=1 miλi] < 0 per

Definition 3.1. Secondly, we show the lifting (7a) is an im-
mersion - rank(Jϕ(x))=dim(x). Consider an eigenfunction
library φ(y) constructed by concatenating elements of {Ep}
of Definition 3.1. As it forms a monomial basis, its rank
equals dim(y) making it an immersion. Diffeomorphisms

g and d prescribed by Proposition 3.2 are immersions by
definition. As compositions of immersions are an immersion,
the immersibility of ϕ=φ◦g◦d is ensured. With Λ Hurwitz
and ϕ immersible, the asymptotic stability of the lifted model
(7) follows via [22, Proposition 1].

Remark 3.1: The result of Theorem 3.2 establishes that
the asymptotic stability of the Jacobian linearization carries
over to the linear predictor of the form (7) when constructed
by diffeomorphically transforming the eigenfunctions of a
linear system.

IV. LEARNING EQUIVALENCES VIA INVERTIBLE NEURAL
NETWORKS

In order to learn the Koopman eigenfunctions through an
equivalence relation for the system (1) in a well-conditioned
manner, one needs to ensure the function approximator is
constrained to be a diffeomorphism. Allowing for that are
flow-based neural networks, where coupling flow invert-
ible neural networks (CF-INN) present a powerful tool. Al-
though with their form restricted compared to vanilla neu-
ral networks, there are CF-INN architectures exhibiting Lp-
universality/sup-universality for a large class of diffeomor-
phisms [23]. Hence, they can be relied on for learning of
Koopman eigenfunctions via Proposition 3.2..

Assumption 4.1: Let D2(X) be the set of all C2(X) dif-
feomorphisms. Then, there is a class D of universal approx-
imators d̂ such that for any d ∈ D2(X) and any ε > 0,∃d̂ ∈
D such that ∥d− d̂∥p,X < ε.
The above assumption is hardly restrictive as it is fulfilled by
almost all diffeomorphisms and thus systems (1). Therefore,
we can state the following result on the expressivity of learn-
ing Koopman eigenfunctions constructed via Proposition 3.2.

Lemma 4.1: Let there exist a C2-diffeomorphism making
the system (1) smoothly equivalent to its Jacobian lineariza-
tion. Consider a function approximator d̂ fulfilling Assump-
tion 4.1 and let GKf

-eigenfunctions of (1) be constructed via
Proposition 3.2 such that an approximate eigenfunction has
the form ϕ̂ = φ ◦ g ◦ d̂. Then, for any δ > 0 and any ϕ, ∃ϕ̂
such that ∥ϕ− ϕ̂∥p,X < δ.

Proof: Due to continuity on their corresponding do-
mains, there exist Lipschitz constants Lφ and Lg , associated
to φ and g respectively so that ∥d − d̂∥p,X < δ

LφLg
holds.

Then, we have

∥ϕ− ϕ̂∥p,X
Prop. 3.2
= ∥φ ◦ g ◦ d− φ ◦ g ◦ d̂∥p,X
≤ LφLg∥d− d̂∥p,X < δ,

(9)

concluding the proof.

A. Affine Coupling Flows (ACF)

The approach of NF is to compose a complicated bijective
function successively from multiple simpler bijections - using
the fact that the composition of bijective functions is again
bijective. In our case, we form a diffeomorphism between
the nonlinear system and its linearization by multiple simpler
diffeomorphisms d̂i so that y = d̂(x) = d̂k ◦ ... ◦ d̂1(x)
- as visualized in Fig. 1. The bijectivity of the individual
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Fig. 1: Construction of a linearizing diffeomorphism

functions d̂i is ensured by a special structure - called affine
coupling layers

d̂i(x
(i)) =

[
x
(i)
a

x
(i)
b ⊙ exp(si(x

(i)
a )) + ti(x

(i)
a )

]
, (10)

where xa ≡ x1, ..., xn, xb ≡ xn+1, ..., xN , ⊙ denotes
Hadamard product and exp denotes pointwise exponential.
The input vector x(i) is split dimension-wise into two parts
x
(i)
a and x

(i)
b ; x(i)

a is then scaled with exp(s(x)), and trans-
lated with t(x), and multiplied/added element-wise to x

(i)
b .

It is important to change the policy of splitting for each
affine coupling layer to leave any component unaltered. The
scaling functions si : Rn 7→ RN−n and translation functions
ti : Rn 7→ RN−n are learned and parametrized by multi-
layer neural networks with suitably smooth activation func-
tions to form a diffeomorphism. The parameters that have to
be trained in order to learn a diffeomorphisms are therefore
the weights and biases in the neural networks of the scaling
and translation functions - concatenated in parameters w =
[w⊤

s1
,w⊤

t1 , · · · ,w⊤
sk
,w⊤

tk
]⊤.

Remark 4.1: As the special structure of the affine coupling
layer already ensures bijectivity and invertibility by design,
there are no restrictions to the neural networks of the scaling
and translation functions and they can be learned freely.

B. Supervised Learning of a Linearizing Diffeomorphism

As a corollary of Theorem 3.1 and Definition 3.4 the
following equations

ẋ=J−1
d (x)Ad(x), Jd(0)=I, d(0)=0, (11)

are to be fulfilled by a linearizing diffeomorphism. Assume
the availability of a data-set of N input-output pairs DN ={
ẋ(i),x(i)

}N
i=1

for the system (1) satisfying Assumption 2.1.
Then, the solution d̂(x) := dŵ(x) to (11) can be obtained
in terms of the ACF parameters w by solving the following
optimization problem

ŵ = argmin
w

N∑
i=1

∥ẋ−J−1
dw

(x)Adw(x)∥22+ (12a)

∥Jd(0)−I∥22+∥d(0)−0∥22. (12b)

C. Constructing Nonlinear System’s Eigenfunctions

Algorithm 1 provides a pseudo code for the construction
of Koopman eigenfunctions. Since the eigenfunctions are
constructed via the learned diffeomorphism through Normal-
izing Flows, we call this approach KoopmanEigenFlows. We
first calculate the eigenfunctions of the linearized system.
Let v = {v1, ...,vd} be the eigenvector-basis of matrix A
corresponding to non-zero eigenvalues {λ1, ..., λd}. Then the
adjoint basis w = {w1, ...,wd} is given via the transposed

cofactor-matrix of v so that ⟨vi,wj⟩=δij and wk is an
eigenvector of A∗ at eigenvalue λk. Then, the inner product
φp,i = ⟨y,wj⟩ is a nonzero principal eigenfunction of the
Koopman generator GKA

of the linearized system cf. [12,
Prop. 1]. As a corollary of (6) for observable h = id, we
know that the modal decomposition of x is given through

x =

∞∑
j=1

vjϕj(x) , (13)

where the infinite sum results from the infinite dimensionality
of the Koopman operator. For a practicable representation
of (13), we create a library of eigenfunctions taking the
principle ones to predefined maximum powers p(1), ..., p(d)

for each principal eigenfunction φp,i using Property 3.1. With
this finite number of eigenfunctions, (13) can be written in
matrix-vector notation, i.e. x̂ = V ϕ̂(x) = V z, with the re-
construction matrix V . The simple library of eigenfunctions
of the linearized system φ is then converted to a library of
eigenfunctions of the nonlinear system via ϕ̂(x) = φ ◦ g ◦
d̂(x). The eigenvalues are preserved, since they are shared
between topologically conjugate systems.

Algorithm 1 KoopmanEigenFlows

Input: Jacobian linearization A; DN={ẋ(i),x(i)}Ni=1; maxi-
mum powers p(1), ..., p(d) of the d principal eigenpairs

1: Learn a diffeomorphism d̂ through NF:
d̂(x)← NF (id(x))
d̂(x)← (12)

2: Construct principal eigenpairs of the linearized system:
λp,j , φp,j ← A, ⟨y, wj⟩, j = 1, ..., d

3: Construct library of eigenpairs of the linearized system:
for M = all combinations of [p(1), ..., p(d)] do

λi ←
∑d

j=1 M [i, j] · λp,j , i = 1, ...,
∏d

k=1 p
(k) + 1

φi ←
∏d

j=1 φ
M [i,j]
p,j

4: Construct eigenpairs of the nonlinear system:
ϕ̂← φ

(
g(d̂(x))

)
, φ = [φ1, ..., φi, ..., φD]T

Output: A library of eigenvalue-eigenfunction pairs (λ, ϕ̂)

Corollary 4.1: Let diffeomorphisms d = d̂k ◦ . . .◦ d̂1(x)
be parameterized through coupling layers (10), which are
defined using C1-functions si, ti. Then, every solution of
the optimization problem (12) constructed via Proposition
3.2 utilizing Definition 3.1 yields a stable system (7).

Proof: As ACFs form diffeomorphisms per construction
with C1-function approximators si and ti, the asymptotic
stability asserted by Theorem 3.2 holds regardless of the
approximation accuracy.

Remark 4.2: In essence, the result of Cor. 4.1 decouples
safety from performance in Alg. 1 as asymptotic stability is
guaranteed regardless of how well (12) fits (11).

V. KOOPMANEIGENFLOW MODE DECOMPOSITION
(KEFMD)

To construct linear predictors using Koopman eigenfunc-
tions for nonlinear dynamics, we develop a method to build



a linear model in the space of Koopman eigenfunction-
observables. As KoopmanEigenFlows are utilized to con-
struct the Koopman eigenfunction coordinates, we name
our algorithm KoopmanEigenFlow Mode Decomposition
(KEFMD). Since we inherit the spectrum from the lineariza-
tion we do not append “Dynamic Mode Decomposition”.
Furthermore, mode decomposition is a general concept re-
sulting from operator theoretic identification - transcending
the original DMD algorithm [24] that only considers observ-
ables that are linear functions of the state.

A. The KEFMD Framework

The developments of Sec. III and IV allow for a system
identification approach that extends the spectral properties of
a Jacobian linearization of the system around an equilibrium
to the corresponding nonlinear system. With the output of
Algorithm 1, an LTI-system in eigenfunction coordinates - as
defined in (7) - is constructed. Once the initial condition is
lifted (7a), the evolution (7b) as well as the state reconstruc-
tion (7c) is linear - permitted through Assumption 2.1. The
corresponding flow of the original state is given explicitly
as x̂(t) = V eΛtz0 . We can define a discretized matrix
Λd = eΛt by fixing t to a certain time-step value. This way,
we obtain a discretized linear evolving model where x̂k+1 =
V Λk

dz0. with the discrete-time index k, so that the state
x can be predicted linearly. The pseudocode is provided in
Algorithm 2.

Algorithm 2 KoopmanEigenFlow Mode Decomposition−KEFMD

Input: Eigenvalue-eigenfunction pairs (λ, ϕ̂) from Alg. 1
1: Construct the lifted LTI-system:

Λ← diag(λ)

z ← ϕ̂(x)

V ← xz†

2: ˙̂x← V Λz

3: x̂k+1 ← V Λk
dz0

Output: Λ,Λd,V , ϕ̂

VI. EVALUATION

To validate the proposed approach, we demonstrate the
performance of the constructed Koopman operator dynamical
models on two examples with different properties. In both,
ACF with 7 coupling layers are used, whose composition re-
sults in the diffeomorphism. The neural networks for the scal-
ing and translation functions in each affine coupling layers
have 3 hidden layers, 120 neurons each with an Exponential
Linear Unit (ELU) as the activation function. Batch learning
is performed with a batch size of 64 and the initialization of
the weights is defined such that d̂(x) is an identity map.

Example 6.1 (A simple illustrative example): Consider
the following dynamical system [12]:

ẋ =

[
µx1

λ
(
x2 − x2

1

) ] = [ µ 0
0 λ

]
x+

[
0

λ
(
−x2

1

) ] , (14)

with µ=−0.7 and λ=−0.3. N=4800 training data is gen-
erated from 24 equally long trajectories with sampling time
dt=0.065s, with the starting points are uniformly distributed

on the edges of X=[−5, 5]2. The maximum powers are set
to p(i)=5 which results in 36 lifted coordinates z. For this
system the exact diffeomorphism d(x)=[x1, x2− λ

λ−2µx
2
1]

⊤

is known, allowing us to directly compare it to the learned
one. Fig. 2 shows the error between the learned and the true
diffeomorphism; demonstrating the mapping is well captured
by our ACF design from Subs. IV-A.
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Fig. 2: Dimension-wise plot of the error between the true and
learned diffeomorphism.

The main goal, however, is the linear prediction of the state
x - given through x̂k+1=V Λk

dz0 in KEFMD. To validate
our algorithm we compare it with the related KEEDMD [12]
and the established EDMD approaches with monomials and
radial basis functions - in their continuous-time, Koopman
generator versions [25]. In contrast to our deep learning
approach, the EDMD approaches use a predefined, function
basis as lifting functions. A basis that is not data-driven
provides good predictive performance only when it spans a
Koopman-invariant subspace. As Koopman-invariant coordi-
nates are unsupervised features - presuming a suitable basis is
available apriori is a strong assumption. The KEEDMD [12]
approach has similar system-theoretic considerations, but
employs a very different learning procedure.

Tab. I shows an statistical evaluation (mean and standard
deviation) of the root mean squared errors (RMSE’s) of 100
trajectories with start points on an uniformly spaced grid
for each of the methods. The suitable size of the lifting
dimension can be determined via cross-validation. Besides
KEFMD, the EDMD-monomials approach gives an almost
perfect result since the relevant eigenfunctions for the system
of Ex. 6.1 are spanned by monomials.

Example 6.2 (Exact modes unknown apriori): Consider
the following dynamical system:

ẋ = f(x) =

[(
a+ c · sin2(x2)

)
x1

bx2

]
, (15)

with a=−1.3, b=−2, c=1.5 and the Jacobian linearization
ẏ=[ay1 by2]

⊤. The data set with N=11200 data points is
generated from 56 equally long trajectories with sampling
time dt=0.015s, starting on the edges of X=[−5.5, 5.5]2.
The number of lifted coordinates is 196. For this system we
do not know the explicit diffeomorphism and do not apriori
know whether an exact finite representation exists.
Fig. 3 shows how our learned Koopman operator dynami-
cal model, although linearly evolving, reproduces a clearly
nonlinear time response in original coordinates. Therein are
also the resulting state trajectories generated by the differ-



ent approaches with identical training data. Only KEFMD
captures the nonlinear system’s behavior well - as quantified
in Tab. I and illustrated in Fig. 3. Note that the differing
dimension of EDMD-monomials in Ex. 6.2 is due to higher
order monomials not performing as well.

Remark 6.1 (Ill-posedness of KEEDMD): The related ap-
proach of KEEDMD [12] does not pose a fully supervised
learning problem due to not having explicit training targets as
our approach does in (12). The aforementioned, coupled with
the use of vanilla NNs - a non-diffeomorphic hypothesis class
- results in a severely underdetermined formulation. With the
addition of employing heuristics that are not theoretically jus-
tified, the KEEDMD learning framework is ill-posed - which
the performance evaluation in Tab. I demonstrates as well.
Even though considering stable systems, it offers no stability
guarantees - making the ill-posedness also apparent in Fig.
3 - as the trajectories show no convergence to the origin.

KEFMD KEEDMD 2 EDMD-mon.3 EDMD-RBF 2

6.1 0.002 ± 0.001(36) 9.12± 6.92(36) 0.001 ± 0.001(36) 1.19± 0.52(36)

6.2 0.014 ± 0.000(196) 1.41± 0.62(196) 0.71± 0.8(81) 0.76± 0.32(196)

TABLE I: RMSE mean and standard deviation for different ap-
proaches. The lifted state dimension is written in brackets.

−6 −4 −2 0 2 4 6
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0
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x
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KEEDMD EDMD-mon. true

EDMD-RBF KEFMD data

Fig. 3: Linear prediction performance of the different approaches.4

VII. CONCLUSION
In this paper, we present a novel reliable and safe frame-

work for learning Koopman eigenfunctions for constructing
linear prediction models for a class of nonlinear dynamics.
These results demonstrate superior performance compared
to related works and showcase the utility and transferrabil-
ity of Koopman operator theory to data-driven realizations.

2https://github.com/Cafolkes/keedmd
3https://github.com/sklus/d3s
4For clarity of presentation every 5th datapoint is plotted.

The reliable learning of our approach offers extensions to
controlled systems for efficient optimal control using linear
systems theory.
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