
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Evaluation of Higher-Order Coupling
Schemes with FEniCS-preCICE

Niklas Vinnitchenko



SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Evaluation of Higher-Order Coupling
Schemes with FEniCS-preCICE

Beurteilung von Kopplungsverfahren
höherer Ordnung mit FEniCS-preCICE

Author: Niklas Vinnitchenko
Supervisor: Prof. Dr. Hans-Joachim Bungartz
Advisor: M.Sc. (hons) Benjamin Rodenberg
Submission Date: 15.01.2024



I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.01.2024 Niklas Vinnitchenko



Abstract

Multi-physics problems are often simulated with the help of partitioning to reduce
the complexity of this task. Partitioning entails the coupling process. This thesis aims
to evaluate the waveform iteration as a higher-order coupling scheme experimentally.
For that, the theory of an already existing higher-order monolithic solver for the
heat equation, implemented with FEniCS and Irksome, is dissected. Additionally, the
partitioning process is described, and the idea of the waveform iteration is discussed. To
solve the partitioned heat equation, the monolithic solver is modified to be compatible
with FEniCS-preCICE. This allows the functionalites of the coupling library preCICE
to be conveniently incorporated in the code. As a central technique to assess the
accuracy of the computed solution, the method of manufactured solution is applied
exemplarily to the heat equation. Conducted experiments focus on time integrators of
higher order and waveform degrees of higher degree. They show that the waveform
degree correlates with the convergence order of the solution.
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1 Introduction

Water flowing over a heated plate, the beating of a heart, or a tank of a ship filled with
fluid on the sea, all of these scenarios are physical processes that combine multiple
physical fields. Such phenomena are commonly referred to as multi-physics scenarios
or models. [16]
A prevalent method to tackle complex problems is the divide-and-conquer approach.
By breaking down the problem into subproblems, it becomes more manageable.
Suppose your goal is to simulate a multi-physics scenario. In that case, a possible idea
is to define the subproblems so that already existing software can solve each. This
divide-and-conquer approach is known as partitioning.
While partitioning simplifies the solving process, the subproblems remain interdepen-
dent, meaning that partitioning always entails an additional step called coupling that
must be considered. In the context of partitioning and coupling, a solver, such as an
algorithm, of a subproblem is called participant. A distinction can be made between the
two coupling types, volume coupling and surface coupling [1]. Yet volume coupling
shall be of no interest in this thesis. Using surface coupling requires the assumption
that information within the domain of a subproblem is not relevant to other problems.
Instead, merely information on the surface of the domain is of interest. It is, therefore,
sufficient to only exchange data on the surface, or in other words, on the boundary of
the computational subdomain. If two or more subproblems have a common boundary,
we call this boundary a coupling boundary.
A concrete example of a time-dependent coupling scheme is the waveform iteration, also
called waveform relaxation. While the idea of waveform iteration is not new [17], it has
great relevance in the domain of solving partitioned problems nowadays. The eponym
of this scheme is the waveform. The waveform is a time-dependent function defined
on each coupling boundary and interpolates time-discrete values provided on such
a boundary. Waveforms are solely defined at nodes that are directly on the coupling
boundary prescribed by the spatial discretization of the finite element method (FEM).
This coupling scheme is, therefore, applicable to time-dependent problems that are
numerically solved. [13][17]
This thesis aims to evaluate how the convergence order of a time-dependent partitioned
problem behaves if the waveform iteration is used as a coupling scheme, assuming that
the FEM is employed for spatial discretization.
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1 Introduction

The heat conduction equation, or short heat equation, serves as a time-dependent test
case. It is solved with the FEM and time integrators of the Runge-Kutta family.
Software components used for solving the heat equation are the partial differential
equation (PDE) solving library FEniCS paired with concepts of Irksome to enable easy
usage of different time-stepping schemes.
To allow coupling, the computational domain of the heat equation is divided into two
subdomains, leading to the partitioned heat equation. preCICE v3, which officially
supports coupling with waveforms, is used for coupling. At the time of writing, an
official release of version 3 was not published. Therefore, experiments were only carried
out with one specific commit on the development branch of the preCICE repository1.
In the paper [13], tests with moderate waveform degrees and convergence orders of time
integrators already show that using the waveform iteration improves the convergence
order if it is used instead of a constant interpolant. Thus, more tests are conducted
with waveforms of higher degrees and higher-order time-stepping schemes.
After Chapter 2 presents basic concepts for solving partitioned time-dependent PDEs,
explained practically oriented with examples, FEniCS, Irksome, and preCICE are intro-
duced in Chapter 3 and Chapter 4 covers crucial aspects of implementing the coupling
of the partitioned heat equation. The subsequent Chapter 5 explains how tests are
conducted and addresses how the waveform iteration affects the convergence order of
the solution.

1The commit can be viewed at this link: https://github.com/precice/precice/pull/1914/commits/
a174c66e669d4e0e700679185a577439833e6c4e
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2 Solving higher-order time-dependent
partitioned PDEs

This section introduces concepts to solve higher-order time-dependent partitioned
PDEs. While assuming that the FEM is used, no introduction to it is provided and the
reader is referred to [4]. Rather, this section emphasizes strategies that are necessary
explicitly for partitioned and time-dependent PDEs.
Beginning with time discretization, time integrators from the Runge-Kutta family are
defined, and one member is exemplarily presented in Section 2.1. To obtain a unique
solution of a given PDE, defining the variational formulation of a boundary value
problem (BVP) with Dirichlet, Neumann and mixed boundary conditions is introduced
subsequently. In Section 2.3, a strategy is developed to solve the heat equation with
time-stepping schemes of arbitrary order.
The final topic of this chapter is partitioning (Section 2.4). We exemplarily investigate
how the partitioned heat equation is defined and what the coupling procedure looks
like. Dirichlet-Neumann coupling and waveform iteration are presented as examples,
illustrating their relevance in the context of solving time-dependent partitioned PDEs.

2.1 Runge-Kutta methods

Differential equations that depend on the time derivative of the solution require
methods that integrate time. A prominent method for that is the explicit Euler method,
which is defined as

un+1 = un + δt f (tn, un),

where un is the solution of the n-th time step, δt is the time step size, and f (t, u) is the
first derivative in time.
However, the explicit Euler method converges only with order O(δt) and has fur-
thermore no desirable stability properties [2]. As a result, it does not suffice to get a
higher-order solution.
Thus, different time-stepping methods of higher order are necessary. Ideally, they can
be obtained with arbitrary order algorithmically to avoid an implementation by hand.
In this regard, the focus is directed exclusively towards Runge-Kutta methods, which
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2 Solving higher-order time-dependent partitioned PDEs

are introduced in the following. Like the explicit Euler method, which is also part of
the Runge-Kutta family, Runge-Kutta methods are time integration methods.
An s-stage Runge-Kutta method is defined by

un+1 = un + δt
s

∑
i=1

biki (2.1a)

ki = f (tn + ciδt, un + δt
s

∑
j=1

aijk j). (2.1b)

Every such method can be condensely represented in a Butcher Tableau, which is of
the form

c A
bT (2.2)

where b, c ∈ Rs and A ∈ Rs×s.
Solely choosing A, b and c arbitrarily does not define a Runge-Kutta method of a certain
order. During the definition of a Butcher Tableau, the two vectors and the matrix must
fulfill specific properties that can be viewed in [2].
From Equation 2.1 and Equation 2.2, we obtain for the explicit Euler method

1 0
1

.

2.2 The variational form of a boundary value problem

PDEs can have multiple solutions, such as the Poisson equation

−∆u = f in Ω, (2.3)

where Ω is the domain in which the equation is defined. Only formulating a PDE on
some domain is usually insufficient to obtain a unique solution.
When seeking a unique solution that satisfies specific requirements, adding boundary
conditions resolves the problem of non-uniqueness. The problem statement of finding
the unique solution with an equation and boundary conditions on the boundary ∂Ω of
Ω is called BVP. Different types of boundary conditions exist, but only the Dirichlet
and Neumann boundary conditions are of interest in this thesis. [4]

4



2 Solving higher-order time-dependent partitioned PDEs

2.2.1 Formulating a boundary value problem

This section aims to formulate Equation 2.3 as a BVP whose solution is u in Ω.
The first type of boundary condition is the Dirichlet boundary condition, often referred
to as the essential boundary condition that prescribes a value of the unknown solution
at ∂Ω. A correctly defined boundary value problem with Dirichlet boundary conditions
requires, therefore, additionally

u = g on ∂Ω, (2.4)

where g is some function defined on ∂Ω prescribing one solution of u. The definition
of the Poisson equation as a BVP would be

−∆u = f in Ω

u = g on ∂Ω.

Neumann boundaries, called natural boundary conditions, prescribe the derivative
normal to ∂Ω of u at the boundary ∂Ω.

∂u
∂n

= h on ∂Ω, (2.5)

where h is some function defined on ∂Ω.
Regarding Chapter 5, mixed boundary conditions are also important to look at. If a
boundary value problem has mixed boundary conditions, different sorts of conditions
are applied to different parts of the boundary.
Let for example Γ1 and Γ2 be a partition of ∂Ω, i.e. Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ∅, then
mixed boundary conditions look exemplarily like

u = g on Γ1

∂u
∂n

= h on Γ2
.

Both g and h are defined identically to the functions for the Dirichlet and Neumann
boundary conditions. The boundary Γ1 is thus a Dirichlet boundary and Γ2 a Neumann
boundary. [4]

2.2.2 Formulation of the variational form

The variational equation, often referred to as the weak form of a BVP, is the basis for
deriving the FEM.[4] Formulating the variational form is a central aspect when solving
a BVP with the FEM, which can also be seen in the software used later in Chapter 3.
The software requires solely the weak form of a PDE and the boundary conditions from
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2 Solving higher-order time-dependent partitioned PDEs

the user to compute the solution. This motivates the introduction of the variational
equation.
Consider Equation 2.3 with the Dirichlet boundary g = 0. The sought-after solution
u is expected to be twice differentiable in all spatial directions within Ω. To deduce a
problem’s variational formulation, we first multiply a test equation v of the test function
space V on both sides and then take the integral over the domain. [4]
Green’s first identity

−
∫

Ω
v∆u dx =

∫
Ω
∇v · ∇u dx −

∫
∂Ω

v
∂u
∂n

ds

leads to the equation ∫
Ω
∇v · ∇u dx −

∫
∂Ω

v
∂u
∂n

ds =
∫

Ω
f v dx.

The test function v can be chosen such that v vanishes on ∂Ω. Thus, you would arrive
at ∫

Ω
∇v · ∇u dx =

∫
Ω

f v dx

which is called the variational formulation of the Poisson equation.
The equation prescribes that f only needs to be integrable and u not twice differentiable
anymore - the prerequisites that were posed in the equation before are, therefore,
weakened. [4]

2.3 Heat conduction equation

The heat equation is given by

∂u
∂t

− ∆u = f in Ω × (0, T],

u = u0 at t = 0,
(2.6)

where Ω ⊆ Rd with d ∈ {1, 2, 3}, T ∈ R+ and u0 is the initial value. [7] Defining the
boundary conditions is omitted for now, but Equation 2.6 is regarded as a BVP in
the following. Without any assumptions regarding the boundaries, the subsequent
explanations can be done in a more general manner.
The heat equation is chosen as it is a rather trivial PDE that is time-dependent and
thus suitable to evaluate the waveform iteration later. Before the testing, it is used to
exemplarily show how the variational form can be defined with arbitrary time-stepping
schemes and what a partitioned equation looks like.

6



2 Solving higher-order time-dependent partitioned PDEs

2.3.1 Time integration of the heat equation

Following the approach as in Subsection 2.2.2, the variational form of Equation 2.6 is
given by ∫

Ω

∂u
∂t

v dx +
∫

Ω
∇u∇v dx −

∫
∂Ω

v
∂u
∂n

ds =
∫

Ω
f v dx. (2.7)

To deduce time integration formulas for both inhomogeneous boundaries of a single
type and mixed boundary conditions, specifications for the test functions, such as that
they vanish at the boundary, are postponed.
Compared to the Poisson equation, the solution of Equation 2.6 is also dependent on
the time derivative. As this is an additional unknown, it is necessary to eliminate it to
solve the equation. There are two ansatzes which can be used to resolve the problem.
The first is to replace ∂u

∂t with a rearranged time integration scheme. For instance, use
the implicit or backward Euler given by

un+1 = un + δt f (tn+1, un+1)

and solve it for the time derivative f (tn+1, un+1) of u at the time tn+1 according to this
scheme. In this case, the rearranged equation is f (tn+1, un+1) =

un+1−un
δt . Bear in mind

that each time-stepping scheme describes the time derivative differently. Consequently,
the resulting weak form differs from the following, assuming a different time-stepping
scheme is used. After inserting the time derivative from the implicit Euler, Equation 2.7
becomes∫

Ω

un+1 − un

δt
v dx +

∫
Ω
∇un+1∇v dx −

∫
∂Ω

v
∂un+1

∂n
ds =

∫
Ω

f (tn+1, ·)v dx. (2.8)

Replacing u with un+1 and evaluating the right-hand side f of the heat equation at tn+1

is necessary because the inserted time derivative is defined for the end of the current
time step, so tn+1 = tn + δt. [3] Note that the normal vector of un+1 is no unknown
because the integral is only taken at the boundary, and therefore, the value can be
determined with the boundary conditions.
Albeit this works fine with most explicit and simple implicit time-stepping methods,
the definition of the variational form with implicit multi-stage methods is complex and
error-prone.
And, due to the stiffness of the heat equation [3], one cannot expect useable results from
the computations when using explicit time integration schemes. They do not fulfill
stability properties that are required to solve equations such as the heat conduction
equation numerically stably [2]. Hence, this approach is not expedient for getting
higher-order solutions.
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2 Solving higher-order time-dependent partitioned PDEs

The second approach from [3] has a fundamentally different idea of dealing with
the time derivative. Instead of replacing it, this method replaces u such that the sole
unknown is the time derivative of u. As an example, a general two-stage Runge-Kutta
method shall be used to show how this approach works.

c1 a11 a12

c2 a21 a22

b1 b2

(2.9)

The Butcher Tableau of an arbitrary two-stage method is given in 2.9. For Runge-Kutta
methods, the stages ki represent time derivatives of the solution at different times,
namely t+ ciδt. An equation must be formulated for each stage to assemble the discrete
evolution according to Equation 2.1a. In that sense, a system of equations is defined.
For 2.9, we get two equations for the two stages, k1 and k2.∫

Ω
k1v1 dx +

∫
Ω
∇(un + δt

s

∑
j=1

a1jk j)∇v1 dx

−
∫

∂Ω
v1

∂u
∂n

(tn + c1 · dt)ds =
∫

Ω
f (tn + c1δt, ·)v1 dx

(2.10a)

∫
Ω

k2v2 dx +
∫

Ω
∇(un + δt

s

∑
j=1

a2jk j)∇v2 dx

−
∫

∂Ω
v2

∂u
∂n

(tn + c2 · dt)ds =
∫

Ω
f (tn + c2δt, ·)v2 dx

(2.10b)

The u and f are replaced similarly to the first ansatz. That means that the right-
hand side is evaluated at the appropriate stage time and the variable u is replaced by
un + δt ∑s

j=1 aijk j which is exactly the definition of u in this stage (see Equation 2.1b).
Adding Equation 2.10a and Equation 2.10b leads to the weak form of the heat equation
that uses a generic two-stage Runge-Kutta scheme. Mind that each equation has a
different set of test functions vi ∈ Vi.
A closer look at the two equations reveals that their structure is identical because the
structure is defined by the variational form of the non-discretized PDE. If the weak
form of a given equation is determined, formulating each equation follows the same
scheme, namely by plugging in the definition of each stage as in our example. While
the user is still responsible for the first part, the definition of the equations can be done
by an algorithm. Consequently, using multi-stage methods implies neither more work
nor higher complexity for the implementation.
The first presented approach is disregarded in the rest of this thesis, as this flexibility
to get the weak form for different time-stepping schemes is not given.
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2 Solving higher-order time-dependent partitioned PDEs

2.3.2 Time integrator dependent boundary conditions

In the previous section, only the deduction of the weak form of Runge-Kutta time
integrators is presented, while formulating the boundary conditions was skipped. As
imposing the conditions is not as straightforward as shown in Subsection 2.2.1, this
short section is dedicated to explaining how the different types of boundary conditions
are handled.
In both equations of Equation 2.10, the term

∫
∂Ω

∂u
∂n (tn + ciδt)vi ds explicitly defines the

Neumann boundary conditions 2.5, if the directional derivative and vi are nonzero. So,
the Neumann conditions can be imposed directly using the equations deduced in the
second ansatz of Subsection 2.3.1. [3]
For Dirichlet boundaries, we cannot use Equation 2.4 directly even though Equation 2.10
is deduced from the heat equation. Instead, the equation of the stage ki demands the
time derivative of u at the respective stage time tn + ciδt as the Dirichlet boundary
condition. Thus, we get as the Dirichlet boundary condition

∂u
∂t

(tn + ciδt, ·) = ∂g
∂t

(tn + ciδt, ·) on ∂Ω. (2.11)

Additionally, the terms from Equation 2.10 that describe the natural boundary condi-
tions are dropped.
Mixed boundary conditions are imposed similarly as described in Subsection 2.2.1. If
Γ1 is a Dirichlet boundary, Equation 2.11 is only applied on Γ1 instead of ∂Ω and if Γ2

is a Neumann boundary, the integral
∫

∂Ω ·ds from Equation 2.10 is the integral over Γ2

instead, so
∫

Γ2
·ds. [3]

Taking a closer look at how Dirichlet and Neumann boundary conditions are imposed
is crucial in this context. Because it is a fallacy to assume that Neumann boundary
values represent gradients of the time derivative of u just because Dirichlet boundary
values represent time derivatives of u.

2.4 Partitioned heat conduction equation

The first step necessary to get to a partitioned PDE setup is partitioning the domain
into at least two subdomains. Regarding the complexity, we dissect Ω only into two
domains ΩD and ΩN as seen in Figure 2.1 and assume that Dirichlet boundaries are
applied on ∂Ω.
After the partitioning, the heat equation is solved on the two subdomains instead of

Ω. Additional prescribed boundary conditions on the two new boundaries ΓD and ΓN

that emerged during the partitioning are not allowed. They must be defined by the

9



2 Solving higher-order time-dependent partitioned PDEs

Figure 2.1: An exemplary partitioned setup on the domain Ω = [0, 2] × [0, 1] with
ΩD = [0, 1]× [0, 1] and ΩN = [1, 2]× [0, 1]. In this case, ΓD is a Dirichlet
boundary, and ΓN Neumann boundary accordingly. The figure is taken
from [13].

solution that lives in the two subdomains. The data dependency between ΩD and ΩN
is overcome by coupling.

2.4.1 Coupling

Many different coupling approaches and configurations exist. Implicit or explicit,
parallel or serial, unidirectional or bidirectional, and surface or volume coupling
schemes can be used. [1]
Not all schemes are presented, as only one configuration is utilized throughout the
rest of the work. Omitted coupling schemes can be looked up in [1]. Which coupling
scheme is used eventually is defined by the problem we want to solve and the boundary
conditions at ΓD and ΓN [1].
For the partitioned heat equation, we will use Dirichlet boundary conditions on ΓD,
referred to as Dirichlet boundary, and Neumann boundary conditions on ΓN , referred
to as Neumann boundary. This specification leads to the Dirichlet-Neumann coupling,
predestined for black-box coupling. Defining each participant as a black box is desirable
because it minimizes the information each participant must provide. [6]

10



2 Solving higher-order time-dependent partitioned PDEs

2.4.2 Dirichlet-Neumann coupling

The Dirichlet-Neumann coupling is an iterative coupling scheme shown in Algorithm 1.
It is a slightly modified version of [10], which uses relaxation factors that depend on the
current iteration. As currently, only constant under-relaxation is possible in preCICE
with the coupling scheme we eventually use, this acceleration scheme is used in the
presented algorithm. Additionally, a stopping criterion is introduced, imbued by a
coupling scheme from [13] that defines a time-dependent Dirichlet-Neumann coupling,
which is presented in Subsection 2.4.3.
Algorithm 1 is a serial and bidirectional coupling scheme because first, the Dirich-
let participant must solve the problem (lines three to five), and only afterward the
Neumann participant is allowed to compute the solution (lines six and seven). It is
also bidirectional because the Dirichlet participant uses the results from the previous
iteration of the Neumann problem, which is embedded into gk. This coupling scheme
is also implicit. After initialization, it reuses previous results to refine the current
result, so it employs bootstrapping until some convergence measure is reached. In
Figure 2.2, such an implicit, bidirectional, and serial scheme is generally depicted for
two participants. A is, in the case of Algorithm 1 constant under-relaxation.
Recall that the heat equation is a parabolic PDE, which leads to the question of how
boundary conditions for time-stepping schemes are obtained at the coupling surface
during the coupling process. The remedy is to modify the Dirichlet-Neumann coupling
to be compatible with time-dependent problems, resulting in the waveform iteration.

Algorithm 1 Dirichlet-Neumann coupling with constant under-relaxation [10][13]

1: Let g0 at ΓD be chosen appropriately.
2: Set k=0.
3: Solve the Dirichlet problem:
4: Get the solution uD,k on ΩD with boundary conditions gk and the given bound-

aries at ∂ΩD.
5: Compute hk =

∂uD,k
∂n with n directing in ΩN on the coupling surface Γ.

6: Solve the Neumann problem:
7: Get the solution uN ,k on ΩN with boundary conditions hk and the given bound-

aries at ∂ΩN .
8: gk+1 = θuN ,k|ΓN + (1 − θ)gk, with θ ∈ (0, 1]
9: if ∥gk+1 − gk∥ smaller than some tolerance then

10: return the solution uN ,k ∪ uD,k
11: else
12: Continue on line three with k = k + 1
13: end if

11



2 Solving higher-order time-dependent partitioned PDEs

Figure 2.2: A schematic data flow of a serial bidirectional implicit coupling scheme.
S1 and S2 are the participants that are coupled. First, S1 is computed,
and then S2 (serial). S2 uses results from S1 and S1 uses data from S2

after applying the acceleration scheme A (bidirectional and implicit). ∆t =
tn − tn−1 = tn+1 − tn and the dashed lines represent times at which S1 and
S2 are coupled. [1]

2.4.3 Waveform iteration

To adequately explain the Dirichlet-Neumann waveform iteration, conditions and vari-
ables present in a problem to which the waveform iteration can be applied are first
defined.
It makes sense to use the waveform iteration for time-dependent problems only, leading
to the first two assumptions that the problem’s evolution in the time interval [0, T]
with granularity ∆t is sought. The value of ∆t defines the frequency with which the
solutions of the participants are synchronized, or in other words, coupled. The time
interval is also called the time window, and T shall be an integer multiple of it. Each
participant must deliver a value at the end of each time window.
In each time window, the partitioned heat equation is solved with a given time-stepping
scheme where δt is not confounded with ∆t. The time step size δt is defined for each
participant and can be chosen independently of the coupling scheme. If δt < ∆t, we
speak from subcycling, i.e., if one participant computes more than one time step within
one time window. If the time step size of the Neumann participant δtN and of the
Dirichlet participant δtD are not equal additionally, this is called multirate time-stepping.
For δtN and δtD, ∆t is not required to be an integer multiple of them. As the reduction
of δt will not impair the accuracy of the result, δt can be chosen smaller if necessary by
δt = min{n · ∆t − t, δt}, where (n − 1) · ∆t ≤ t < n · ∆t; so the current simulation time
t is in the n-th time window.
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2 Solving higher-order time-dependent partitioned PDEs

The idea of the waveform iteration is to provide boundary conditions that are inter-
polated in time within a time window. Providing such boundaries is motivated by
time integrators that not exclusively use values at the beginning and the end of a time
window, where the values are given due to the coupling process, but in between.
The interpolant of the time-dependent boundary conditions is called waveform. It is
defined piecewise in one time window and for each participant. So ΓD and ΓN have
independently defined waveforms. Interpolation conditions the waveform must fulfill
are the value at the initial time of the current time window and the results from each
time step. Waveforms of higher order can be created if at least subcycling is used.
Participants then provide more data points of u at the boundary, leading to more
interpolation conditions the waveform must fulfill.
A time-stepping scheme that requires boundary conditions between coupling times can
then sample the waveform at arbitrary times of the current window. [13]
Algorithm 2 is not as intricately presented as in [13] because, for a compact representa-
tion, it is necessary to introduce a set of notations that would be beyond the scope of this
thesis. Instead, the algorithm is didactically broken down into a higher-level algorithm.
Additionally, the constant under-relaxation taken from [9], is directly included here
unlike in the algorithm from [13].
Comparing Algorithms 1 and 2, the structure of both is only marginally different. Both
must first solve the Dirichlet and then the Neumann problem; the stopping criterion
and the acceleration scheme are also identical. Significant differences are the necessary
time-stepping and the computation of the waveforms.
Be aware that the Dirichlet participant uses the waveform defined by the Neumann par-
ticipant from the previous iteration, and the coupling happens during the time-stepping
for both participants as they sample ck

D and ck
N that the respective other participant

determines.
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2 Solving higher-order time-dependent partitioned PDEs

Algorithm 2 Dirichlet-Neumann coupling with waveform iteration [9][13]
Lines marked with ∗ are only valid in the first time window. For every other window,
the algorithm uses for c0

D a constant interpolant with the value of the end of the
previous time window, u0

D,0 and u0
N,0 are the solutions at the end of the previous time

window. tini is the initial time of the current time window.

1: Let c0
D at Γ be an initial guess∗.

2: Let u0
D,0 and u0

N,0 be given as the initial condition∗.
3: Set k = 0.
4: Solve the Dirichlet problem with nD time steps, uk

D,0 and ck
D:

5: for i ∈ {1, ..., nD} do
6: Solve Dirichlet Problem at t = tini + i · δtD and get uk

D,i.
7: end for
8: From (uk

D,1, uk
D,2, ..., uk

D,nD
), retrieve interpolation variables (ck

N,1, ck
N,2, ..., ck

N,nD
),

where ck
N,i =

∂uk
D,i

∂n , ∀i ∈ {1, ..., nD}
9: Interpolate with (ck

N,1, ck
N,2, ..., ck

N,nD
) to get the waveform ck

N .
10: Solve the Neumann problem with nN time steps, uk

N,0 and ck
N :

11: for i ∈ {1, ..., nN} do
12: Solve Neumann Problem at t = tini + i · δtN and get uk

N,i.
13: end for
14: From (uk

N,1, uk
N,2, ..., uk

N,nN
), retrieve interpolation variables (ck

D,1, ck
D,2, ..., ck

D,nN
)

15: Interpolate with (ck
D,1, ck

D,2, ..., ck
D,nN

) to get the waveform c̃k+1
D .

16: ck+1
D = θck

D + (1 − θ)c̃k+1
D , with θ in(0, 1]

17: if ∥ck+1
D (t)− ck

D(t)∥ smaller than some tolerance then
18: return the solution uN,k ∪ uD,k
19: else
20: Continue on line four with k = k + 1
21: end if
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2 Solving higher-order time-dependent partitioned PDEs

In Figure 2.3, the idea of waveforms is visualized. The scenario on the right side
shows the effect of waveforms quite clearly. Both waveforms of D and N use the
solutions which are computed with time step sizes δtD and δtN as interpolation condi-
tions. Comparing the two waveforms, an obvious observation is that a more refined
time-dependent boundary can be obtained by increasing the number of intermediate
solutions.
If no waveform is used, the left scenario of Figure 2.3 arises. Only the last value of
the time window is used as a reference, while the remaining results within the time
window are ignored, resulting in a worse representation of the time-dependent result.

Figure 2.3: The two visualizations show the difference between a constant time inter-
polant and the waveform. On the left side, D and N no waveform is used,
resulting in a constant interpolant of the boundary conditions.
On the right side, the waveform interpolates all results of the participants,
resulting in a preferable representation of the boundary conditions. The
number of intermediate steps depends on the definition of the time step
sizes δtD and δtN . [13]
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3 Software

After introducing the necessary details to solve or implement higher-order partitioned
partial differential equations, the software and its core features used for the code in
this thesis are introduced.
FEniCS provides the functionality of solving PDEs automatically, and Irksome is a part
of Firedrake, which is similar to FEniCS and is responsible for time discretization of
time-dependent PDEs. As FEniCS does not provide time discretization methods and
is used in the code of this thesis, some functionalities of Irksome are embedded into
FEniCS code.
preCICE is the software component that couples partitioned solutions produced by
FEniCS.
This section also serves the purpose of introducing the basic application programming
interface (API) that is provided by the preCICE adapter FEniCS-preCICE used in the
implementation later.

3.1 FEniCS

Information of the section is taken from [7].
FEniCS is an open-source software that is primarily a Python library that simplifies
solving PDEs for users.
It consists of a collection of libraries itself and offers functionalities that cover most
of the simulation pipeline, reaching from mesh creation to outputting the computed
results into files. Computing solutions of PDEs with the FEM requires, therefore, in
most cases, only the FEniCS project. Two of the most important packages of FEniCS
are the DOLFIN and the UFL packages. Some of the functionalities required for FEM
will be discussed in the following.
UFL, or Unified Form Language, provides operators and atomic expressions to define
weak forms in code. The code representation differs only marginally from the mathe-
matically correct representation so that it can be easily understood and written. For
instance, the weak form of the Poisson equation∫

Ω
∇u · ∇v dx −

∫
Ω

f v dx = 0
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3 Software

can be represented in UFL as

F = dot(grad(u), grad(v)) * dx - f * v * dx

DOLFIN is the main interface for the programmer. It is a wrapper for the functionalities
of the other packages and represents the core software component as it is responsible for
the communication among most of the packages and provides central data structures
which are needed for using the FEM. Some of the data structures are meshes, function
spaces, expressions, and boundary conditions.
FEniCS also offers an API that directly determines the solution of the weak form for
given boundary conditions. The function solve() only demands the variational form
defined as a UFL expression and the boundary conditions and returns the solution.
The user can, therefore, conveniently string together functions that FEniCS provides to
solve PDEs with FEM without needing to know the mathematical background of the
FEM.

3.2 Irksome

Irksome is an open-source package of Firedrake. Firedrake is another project, similar
to FEniCS, which allows the user to solve PDEs with the FEM. [5] The package is
responsible for the time discretization, i.e., if you solve a time-dependent PDE with
Firedrake, Irksome provides a convenient operator extending the UFL notation that
takes care of time-stepping.
Extending the weak form from above with a time derivative, the resulting equation is∫

Ω
∇u · ∇v dx −

∫
Ω

f v dx +
∫

Ω

∂u
∂t

v dx = 0.

With Irksome and UFL, it can be easily represented as

F = dot(grad(u), grad(v)) * dx - f * v * dx + Dt(u)*v*dx

Such a simple modification is not possible when using FEniCS. Irksome modifies the
weak form later according to a given time-stepping scheme, eventually replacing the
Dt operator. [3] This modification is already described in the second ansatz of Subsec-
tion 2.3.1 that must be done by hand in FEniCS code. A set of time-stepping schemes
from the Runge-Kutta family, such as Gauss-Legendre (GL), LobattoIIIC (LIIIC), and
RadauIIA (RIIA) with arbitrary many stages, can be obtained from the ButcherTableau

class of the Irksome package.
As in this thesis, Firedrake is not used, we cannot use Irksome for the time discretiza-
tion as is, but we only use the class ButcherTableau1 to conveniently use different

1In the GitHub repository of Irksome (https://github.com/firedrakeproject/Irksome), the class can
be found in the file "irksome/ButcherTableaux.py".
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classes of time-stepping schemes. Due to that, the code is versatilely applicable as the
time-stepping scheme can be quickly changed by modifying a single line.

3.3 preCICE and its ecosystem

After the introduction of the software components which are needed for solving PDEs
with the FEM, the last remaining component to solve partitioned PDEs shall enable the
communication between subdomains.
This is what preCICE, or Precise Code Interaction Coupling Environment, is responsible
for. It is an open-source coupling library for partitioned multi-physics simulations,

Figure 3.1: An overview about the core functionalities offered by preCICE and the
general data flow. The diagram is taken from [1].

meaning it is the communication interface of two or more participants that together
solve a multi-physics problem. The following paragraphs summarize the description
of the functionalities of preCICE from [1] and give a concise overview of the most
important API for the coupling process that is provided by the FEniCS-preCICE adapter.
All participants are treated as black boxes, so neither preCICE nor other solvers can
access internal details about a solver, such as spatial and time discretization. Core
functionalities are, as seen in Figure 3.1, the communication, data mapping, coupling
schemes, and time interpolation. Some of the functionalities can be configured to the
needs of the user to achieve the best possible solution.
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Adapters

Adapters provide a high-level API for solvers to communicate with preCICE. They
define an intermediate software layer between preCICE and the solver itself that
simplifies the incorporation of the coupling library. Therefore, participants that use
solvers compatible with existing adapters interact only indirectly with the coupling
library through an instance of the adapter class. One of the adapters is FEniCS-preCICE.
As the name already suggests, this adapter is compatible with FEniCS solvers. It is
used throughout the entire thesis, and most information required for this adapter is
obtainable from [12].
If no such adapter exists for a used solver, the low-level API of preCICE can be directly
used instead.

Communication

Communication comprises the sending and receiving of data to and from participants.
As the participants are treated as black boxes, preCICE is unaware of what data each
participant demands. Thus, participants provide preCICE data whenever they can and
request data from preCICE whenever they need it. So, the coupling library offers an
API for the communication.
The function read_data(dt) returns the value at the boundary relative to the current
time window. If t is the initial time of the current time window, read_data(dt) returns
the value of all FEM nodes at the coupling boundary at the time t + dt. preCICE
takes the values from the waveform of the respective other participant, according to
Algorithm 2.
Participants update the waveform by sending data to preCICE with the function
write_data(val), where val represents the computed solution of the participant of
the whole spatial domain. val is used as the interpolation condition for the waveform
at the current coupling time. The coupling time can be updated independently by each
participant with advance(dt). Calling this function advances the current coupling time
by dt and does not influence the simulation time of other participants as they might
use different time step sizes.

Coupling schemes and time interpolation

For coupling, the adapter provides the coupling_expression data structure. Each
coupling boundary requires one coupling expression and can be initialized with
create_coupling_expression(). This method returns a coupling expression for the
coupling boundary. It is used as the boundary condition for the coupling boundary and
is updated with update_coupling_expression(coupling_expression, data), where
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data is obtained by calling read_data.
In addition to the coupling expressions, the configuration file precice-config.xml

exists that defines, among other things, the exchanged data during coupling and the
coupling scheme that shall be used.
Listing 3.1 defines the waveform iteration as seen in Algorithm 2.

<data:scalar name="Temperature" waveform−degree="2" />
<data:scalar name="Heat−Flux" waveform−degree="2" />

...
<coupling−scheme:serial−implicit>

<participants first="Dirichlet" second="Neumann" />
<exchange ... from="Dirichlet" to="Neumann" ... />
<exchange ... from="Neumann" to="Dirichlet" ... />

...
<acceleration:constant>
<relaxation value="0.375" />

</acceleration:constant>
</coupling−scheme:serial−implicit>

Listing 3.1: This listing presents crucial sections of the preCICE configuration file to
define the waveform iteration as a coupling scheme. In this case, a serial
implicit bidirectional scheme that uses constant under-relaxation as the
acceleration scheme is defined. The two participants are called "Dirichlet"
and "Neumann" and the two values that are exchanged should both be
represented as waveforms of degree two.

In order to configure preCICE properly, it is vital to categorize the coupling scheme
used correctly.
Additional noteworthy attributes are relative-convergence-measure tolconv which
defines the stopping criterion of the coupling scheme, max-time, which defines the
end time of the coupling and time-window-size, which defines the time window size
∆t. After reaching the coupling time max-time, preCICE won’t couple the participants
anymore. While participants have no knowledge about this value, they can test if this
time is reached by calling is_coupling_ongoing(). tolconv is used as a value for the
condition in line 17 of Algorithm 2.

Data mapping

Suppose participants have different representations of their data or use, in the case of
the FEM, different meshes. In this case, preCICE modifies the representation of the
data in such a way that it exactly corresponds to the requirements of each participant,
and thus the user does not need to mind the compatibility of two solvers. This would
be an example of data mapping. Users of the coupling library can again configure a
specific data mapping approach by modifying the configuration file.
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This section serves the purpose of showing how an implementation of code looks like
that can solve partitioned PDEs with higher-order using the software introduced in
Chapter 3.
Again, the heat equation is chosen as an instructive example.
The presentation of the implementation starts with two ideas on how to numerically
compute the derivative of a function whose term is unknown and that can be sampled
only (Section 4.1). Computing the time derivative is necessary because the second ansatz
from Subsection 2.3.1 requires time derivatives at the boundary. Still, the Dirichlet-
Neumann waveform iteration uses the heat flux and the temperature, not the heat
flux and the time derivative of the temperature. preCICE provides, therefore, only a
waveform that interpolates the heat flux and the temperature in time, respectively. Both
a finite difference approach and an ansatz where the unknown function is interpolated
with samples of the unknown function are discussed.
Implementation details on how the heat equation can be solved with higher-order
time-stepping schemes in FEniCS are omitted as it is scrutinized extensively in [18].
Instead, in Section 4.2, differences are highlighted between the code that solves the
monolithic heat equation and the code that solves the partitioned heat equation with
the waveform iteration. This includes how boundary conditions are determined on
the coupling boundaries, how to modify preCICE such that waveforms of arbitrary
degree can be used, and how the original simulation loop from [18] is modified to use
preCICE as a coupling library.1

4.1 Time derivatives

This section solely serves the purpose of explaining how the derivative of preCICE’s
waveform can be obtained, as an API to retrieve it directly from preCICE is not
implemented now. Therefore, the methods to get the derivatives are only a temporary
workaround until this functionality is implemented.2 Hence, in the following, two
ideas are presented concisely.

1The implementation can be examined here: https://github.com/precice/tutorials/pull/415.
2The current development status can be viewed at https://github.com/precice/precice/issues/

1908.
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4 Implementation

4.1.1 Finite differences

Using finite differences is a convenient way to approximate arbitrary derivatives of a
function of arbitrary order. To determine the i-th derivative f (i) of some function f ,
with order 2N and equidistant sampling points of f , the sampling points are weighted
with a coefficient. Afterward, the sum of all weighted function values determines the
derivative.
The starting point to find the coefficients is to write the weighted sum of the derivative
with the unknown coefficients ck.

f (i)(x) =
N

∑
i=−N

ci f (x + i · h), (4.1)

where h is the distance between two sampling points. As you can see, this ansatz uses
the central difference scheme, but in the generalized case, the forward and backward
difference schemes can also be applied.
The next step necessary to obtain ci is to expand ci f (x + i · h) for all i ∈ −N, ..., N with
the Taylor expansion up O(h2N+1). If the i-th derivative is sought, all other derivatives
of f must vanish in the Taylor expansion, resulting in the following linear system of
equations:

 s0
−N . . . s0

N
...

...
s2N−1
−N . . . s2N

N

 ·

c−N
...

cN

 = h−i



0
...
i!
...
0

 , (4.2)

where sl
k is the l-th coefficient of the Taylor expansion at f (x + k · h).

The right-hand side for the n-th equation is defined by i!
hi δ(n − i), where δ(·) is the

Kronecker delta. [15]
After computing the result of Equation 4.2, plugging it into Equation 4.1 leads to the
sought-after derivative.
Let [a, b] with a, b ∈ R be the domain where f is defined.
The central difference quotient cannot be used if the derivative of f is sought at either
a or b. The remedy is to use forward divided differences for the derivative evaluation
at a, so the ansatz of Equation 4.1 becomes,

f (i)(x) =
2N

∑
i=0

ci f (x + i · h),

For an evaluation at b, the backward variant can be used, so compute ∑0
i=−2N instead.

However, the general structure of Equation 4.2 stays the same.
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Implementation

The code of this ansatz is straightforward. After defining the order, the matrix and the
right-hand side can be determined. A linear algebra library, like the linalg package of
scipy, incurs the solving process. Once the linear system is solved, the coefficients can
be reused throughout the entire program execution. If a derivative should be computed,
it is merely necessary to insert the corresponding sampling distance h and the samples
of the functions. To find a somewhat useful derivative, you can iteratively try to find
a good approximation. Following the deduction of the general formula of the n-th
order first derivative, smaller h should lead to better approximations, and thus, the
difference between the approximation of the last and the current iteration should get
smaller each time h is reduced. Due to that, it makes sense to compare two subsequent
results and use it as a stopping criterion. First tests, seen in Figure 4.1, conducted in
Matlab, show that defining a proper stopping criterion is more intricate than at first
glance. Although the results look promising for the sizes of h used later in the tests,
the derivative approximation is still a temporary workaround, and therefore, extensive
investigations on ideal stopping criteria are ceased. Approximating the derivatives
with B-Splines is a more convenient way where no such investigations are necessary.
Hence, the finite difference ansatz is disregarded hereinafter.
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Figure 4.1: In this figure, errors resulting from the finite difference scheme with different
convergence orders O(hn) are depicted depending on h.
The function used for this test is f (x) = x4 + 3x3 − 5x2, and the derivative
is approximated at x = 0.5. For omitted data points, the error is zero.
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4.1.2 B-Splines

A different method to approximate the first derivative is to sample the waveform of
preCICE and reconstruct this time interpolant. In other words, we interpolate the
waveform of preCICE. B-Splines have some nice properties, making them a preferred
option over other interpolants. After finding the interpolant, representing the deriva-
tive, you can relatively cheaply evaluate this function at arbitrary points [14]. You
additionally have the property that B-Splines are numerically stably constructed and
well-conditioned for small B-Spline degrees [8]. Thus, they fulfill properties that are
desired in numerics.

Implementation

As this method of approximating the derivatives is used in most tests, this implemen-
tation is described in more detail than Subsection 4.1.1. The key functions which are
used are from the scipy.interpolate package:

splrep(x, y, w=None, xb=None, xe=None, k=3, task=0

, s=None, t=None, full_output=0, per=0, quiet=1)

BSpline(t, c, k, extrapolate=True, axis=0)

BSpline.derivative(order)

The function splrep returns a triplet, which is required to initialize the class BSpline

and defines a B-Spline representation corresponding to the function parameters.
The BSpline object holds this interpolant and offers the method derivative(), which
enables the user to retrieve an arbitrary derivative, which then can be evaluated in
the same interval as its antiderivative. As only the first derivative of the waveform is
needed, derivative(1) is used.
The only parameter that needs to be determined during runtime is the set y. This
parameter represents the function values of the function that should be interpolated,
and therefore, it is necessary to evaluate the waveform of preCICE at the points
prescribed by x. After the function call of splrep, an instance of the BSpline function
is created, and lastly, the derivative is computed by the respective function call.
Once the derivative is determined, you can use it within the whole time window. That
means even if you use a multi-stage time-stepping scheme, it is only necessary to
evaluate the computed derivative at the corresponding time.
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4.2 Solver for partitioned PDEs

As seen in Chapter 2, solving a partitioned PDE includes coupling and setting further
boundary conditions in addition to aspects that need to be considered for solving a
monolithic PDE.
[18] already shows how to implement higher-order implicit Runge-Kutta methods for
the heat equation in a monolithic setup with FEniCS and the Butcher Tableau class
provided by Irksome. This code is used as a basis for implementing the partitioned
setup. Hence, steps equal to the reference are not explained in detail here.
That is why only code segments that underwent essential changes regarding partitioning
and coupling are presented. How subproblems are tackled is explained first. Afterward,
it is only necessary to assemble each code segment into one program that is compatible
with the FEniCS-preCICE adapter and thus allows coupling.

4.2.1 Used version of preCICE

During the writing process of this thesis, preCICE v3 was still under development. No
official release version of the library is therefore used. To circumvent the problem of
getting incoherent testing results, the preCICE repository was not updated and rebuilt
after starting the testing process. In the used version, preCICE only allows waveforms
up to degree three. To allow waveforms of higher degree, the preCICE source code was
modified.
Modifying the line

Time::MAX_WAVEFORM_DEGREE = 3;

of the file src/time/Time.cpp of the preCICE repository permits this.3

Not only is the new version of the coupling library under development, but also the
adapters. Hence, the version of the used FEniCS-preCICE adapter is also not an official
release version.4

The program is written with the preCICE Python bindings of version 3.0.0.0dev2.

4.2.2 Initialization of Boundary conditions

Implementing the boundary conditions, which are not coupling boundaries, is identical
to the reference implementation. Dirichlet boundaries are defined by the time derivative
as in Equation 2.11.

3Concretely, for the commit that is used in this thesis, here: https://github.com/precice/precice/
blob/76f871124a813c59394e4fdcc1da990dce8064ea/src/time/Time.cpp

4The version of FEniCS-preCICE is the following commit: https://github.com/precice/

fenics-adapter/commit/6f998598aac79f923235bf1288fd9dd28ae07ef6.
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The coupling boundaries, however, are updated according to the used coupling scheme.
Hence, it is necessary to obtain the boundary values from preCICE and set them as the
boundary conditions. For an s-stage time-stepping scheme, s different boundary condi-
tions must be imposed as seen in Equation 2.10. Consequently, s coupling_expressions
must be initialized by one adapter. As a coupling expression created by an adapter does
not modify the state of the adapter itself, multiple coupling expression instances can be
created and used. A possible implementation for initializing the Dirichlet boundary
conditions can be viewed in Listing 4.1.

# get time derivative of u
du_dt_expr = u_D_sp.diff(t_sp)
du_dt = [Expression(sp.ccode(du_dt_expr), degree=2,

t=float(stage_times[i])) for i in range(tsm.num_stages)]
# set up coupling expressions for boundary conditions
coupling_expressions = \

[precice.create_coupling_expression() for _ in range(tsm.num_stages)]

...

# initialize boundary conditions
bc = []
for i in range(tsm.num_stages):

if problem is ProblemType.DIRICHLET:
bc.append(DirichletBC(Vbigs[i], du_dt[i], remaining_boundary))
bc.append(DirichletBC(Vbigs[i], coupling_expressions[i],

coupling_boundary))
else:

bc.append(DirichletBC(Vbigs[i], du_dt[i], remaining_boundary))
F += vs[i] * coupling_expressions[i] * ds

Listing 4.1: A Code snippet that shows how boundary conditions can be initialized.
In the first segment, the derivative of the boundary values is computed;
below, the Dirichlet boundaries are initialized for both participants at the
remaining_boundary. For the Neumann participant, the conditions of the
coupling boundaries are enforced directly by adding them to F, whereas for
the Dirichlet participant, the coupling_boundary is defined identically to
the remaining_boundary.

Vbigs is an array that stores the function space for each stage of the time-stepping
scheme. For each stage, boundary conditions need to be defined, which comprise
the coupling_boundary and the remaining_boundary. The remaining_boundary repre-
sents the part of the boundary that is not the coupling boundary. If boundary conditions
should be defined for a Dirichlet participant, they will all be Dirichlet boundary con-
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ditions. Hence, the remaining_boundary of the i-th stage gets the prescribed time
derivatives du_dt[i] of the solution and the coupling_expressions the computed time
derivative from the waveform at the relative stage time.
The boundary conditions for the Neumann participant, so the participant of the
Dirichlet-Neumann coupling which has one boundary with Neumann boundary con-
ditions, needs a slightly different implementation for the coupling boundary as this
is a case of mixed boundaries. We know from the waveform iteration we use that the
Dirichlet side computes the heat flux as interpolation conditions for the waveform.
Sampling the waveform on the Neumann side with read_data hence returns the heat
flux. According to Equation 2.10, the Neumann conditions are explicitly given in
the weak form. The weak form F is augmented correspondingly in the last line of
Listing 4.1.

4.2.3 Simulation loop

The simulation loop of the partitioned ansatz has the same structure as Algorithm 3
that represents the sequence of the most important solving steps for a monolithic solver.
Intuitively, it makes sense because each participant is a monolithic solver itself.
Essential differences are found in the definition of the time step size and the end time
of the simulation, as well as in the update of the boundary conditions. The additional
functionality for exchanging data must also be added to the simulation loop.

Algorithm 3 The high-level structure of the simulation loop. Regardless of a monolithic
or partitioned setup, each step remains in the solving process while the implementation
details may differ. In a partitioned setup, the only missing step would be the coupling
process.

1: while simulation not complete do
2: Update boundary conditions.
3: Find the solution of the weak form obtained by Equation 2.10.
4: Assemble the discrete evolution to determine the sought-after solution.
5: Advance the time.
6: end while

Changed code segments

Instead of using constant time step sizes, which are defined before the runtime, the
time steps of the participants, δtD and δtN , need to be adapted to the time window
size that preCICE prescribes. Due to coupling, the last time step of each participant
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within a time window must end exactly at the time the time window ends. So, the δt a
participant uses is defined as follows:

precice_dt = precice.get_max_time_step_size()

dt.assign(np.min([fenics_dt, precice_dt]))

Here, dt is the time step size of the participant, and fenics_dt is the local definition of
the maximal time step size. get_max_time_step_size() returns the difference between
the current simulation time and the time at which the current time window ends.
From those two time step sizes, the minimum is chosen as the step size of the current
iteration.
The problem we want to solve should be coupled during the whole simulation, so
preCICE must couple it from start to end. max-time in the preCICE configuration file
marks, therefore, the endpoint of the simulation. If is_coupling_ongoing() returns
false, the simulation loop can be left.
After the solution of the current time step is computed and exchanged with preCICE,
preCICE’s internal coupling time is updated by advance(dt).
Lastly, the implementation of the update of the boundary conditions at the coupling
boundary remains. As this code change is strongly connected with the exchange of
boundary conditions, the modifications regarding boundary conditions are described
in the following paragraph.

Updating boundary conditions

Excluding the coupling boundaries, updating the boundary conditions is identical
to the reference. For the coupling boundaries, it is necessary to determine if the
participant has a Neumann or Dirichlet boundary. Updating the Neumann coupling
boundary in Listing 4.2 is straightforward. For each stage of the time-stepping scheme,
the waveform is sampled at the respective stage times and the coupling expression is
updated accordingly.

for i in range(tsm.num_stages):
precice.update_coupling_expression(

coupling_expressions[i], precice.read_data(stage_times[i]))

Listing 4.2: The code snippet of the implementation that shows how the Neumann
boundary conditions at coupling boundaries are updated.

The variable coupling_expressions is the same as in Listing 4.1.
Updating the boundary conditions of the Dirichlet participant is more intricate. We
recall the theory from Subsection 2.3.2: the Dirichlet boundary needs the time derivative
of the sought-after solution, so the derivative of the waveform is computed first to up-
date the boundary conditions. In each time step, the program executes Listing 4.3. The
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variable bsplns_der stores for each node ky at the coupling boundary the continuous
time derivative of the waveform. The nodes are prescribed by the spatial discretization
of the FEM. Updating the boundary conditions requires renewing the values at each
prescribed node for each stage i. The value is determined by evaluating all B-Splines
at the stage time of the i-th stage stage_times[i].

for i in range(tsm.num_stages):
# values of the derivative at the current time
val = {}
for ky in bsplns_der.keys():

val[ky] = bsplns_der[ky](float(stage_times[i]))
precice.update_coupling_expression(coupling_expressions[i], val)

Listing 4.3: The code that updates the coupling boundary for the Dirichlet participant.
If preCICE provided a function that returns the derivative of the waveform
directly, building the dictionary val for all stages would be not required.

Updating the waveforms is the residual code segment.
After each performed time step, the participant sends the result to preCICE with
write_data() function. The Dirichlet participant computes the heat flux of his solution
before calling the function, as the Neumann participant expects a waveform that
interpolates the heat flux.
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In this chapter, experiments with the implementation of the previous chapter are
conducted regarding the convergence order.
First, the method of manufactured solutions (MMS) is introduced in Section 5.1. It is a
method that is used throughout this section to verify if the program computes results
with a certain convergence order.
Next, Section 5.2 discusses the methodology of the experiments. This includes the
testing setup, so, among other things, restrictions on the computational domain, the
partitioning and time step sizes. We also determine the ideal relative convergence
measure to obtain sensible results.
With this setup, the results of the partitioned solver are compared with the results of
the monolithic solver, which served as a reference in Chapter 4, first. Furthermore,
we investigate how the choice of waveform degrees influences the overall convergence
order. To this end, convergence studies with different time integrators paired with
waveforms of different degrees are created.

5.1 Method of manufactured solutions

The MMS allows us to verify the convergence order of a numerical algorithm. Using
this method requires manufacturing a solution that can be independent of the equation
you want to solve. Prerequisites for such manufactured problems are non-triviality and
a way to compare the results with the analytical solution. [11]
The paper [7] gives a basic example function for the heat equation, namely

u(x, y, t) = 1 + x2 + 3y2 + 1.2tn, (5.1)

where n ∈ N.
If we want to verify that the solution of a time-stepping scheme of order n′ has the
same convergence order, we set n as n′ and use the function u as our sought-after
solution. Errors within machine precision indicate that the solver computes solutions
with convergence order n′. This is a reasonable assumption because a time-stepping
method of order n should produce error terms only for functions that exceed the n-th
degree due to the deduction of Runge Kutta methods via Taylor expansion. [2]
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This function and a slightly modified version of it are used throughout this section.
The different form of u from [13], which will be used, is

utri(x, y, t) = 1 + sin(t)x2 + 3y2 + 1.2t.

Introducing this non-polynomial term leads to a time-dependent heat flux. A constant
heat flux over the whole simulation time may hide faulty boundary conditions because
these do not change over time. Faulty boundary conditions would, therefore, be
concealed by boundary conditions that were correctly set once. Such a bug will be
recognized when looking at the resulting errors in the computations. Wrong boundary
conditions lead to higher errors than expected or even reduce the convergence order of
the solution.
Furthermore, the sine function is non-zero for all derivative orders. Thus, no time-
stepping scheme produces errors within machine precision for arbitrary large time
steps.

5.2 Methodology

At this point, it should be clear that the accuracy of the computation depends on several
parameters. The testing is organized in two parts to keep an overview of the sheer
number of possible configurations and test cases. The first part consists of verifying the
implementation, determining if the order of the time-stepping methods is preserved,
and comparing it with the results of monolithic solvers from [18]. Secondly, it is tested
how the convergence order of the solution reacts to different waveform degrees. As a
byproduct of the tests, we can verify if the boundary conditions are imposed correctly.
The function utri is used for this. To ensure that the scope of the tests is limited to the
essentials, sensible restrictions are placed on the tests at the beginning.

The first restriction is applied to tolconv of preCICE. Even though this variable can
impact the runtime and accuracy of the program tremendously, it is fixed to a value of
10−11, as long as the coupling scheme converges within 100 iterations. This value seems
to be a good balance between strictness and computational cost since the comparison
of the error behavior is solely dependent on the relative convergence measure shows
that the error reduction from 10−11 onward was only marginal, as seen in Figure 5.1. In
each test series, the time-stepping scheme, time window size, polynomial degree of the
manufactured solution, and B-Spline degree were fixed.
The B-Spline degree is set to the highest possible order, namely five. It may seem
counterproductive to interpolate a linear function piecewise quintic. Still, we can
assume that even if the knots are all on a straight line within small perturbations, the
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Figure 5.1: Errors dependent on the relative convergence measure with different time-
stepping schemes and time step sizes. For a fixed time window size ∆t =
0.125, the magnitude of the errors does not change significantly for tolconv <

10−11.

interpolant changes locally as this method is numerically stable.
If not other specified, the following setup is used:

• Figure 2.1 shows the domain used, including the partitioning.

• The time step sizes are chosen as δt = δtN = δtD

• Each partition of the domain has 11 nodes in each the x and y direction

• The waveform degrees are chosen as pN = pD = p, so both waveform degrees
are identical

• The time window size is chosen minimal as ∆t = p · δt

• Relaxation factor of 0.375

5.3 Results

5.3.1 Comparsion to monolithic solutions

In the partitioned setup, creating tests identical to the reference [18] is impossible as we
need to define more than just the time step size. The reference uses the Gauss-Legendre
method with different stage numbers. This method shall also be used in the parti-
tioned setup. First, we keep the time step size defined for the time-stepping schemes
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identical to the size used for the monolithic results, so δt = 0.03125. Additionally,
the setup from [18] requires Ω = [0, 1]× [0, 1] and T = 2. The partitioning is chosen
as ΩD = [0, 0.5] × [0, 1] and ΩN = [0.5, 1] × [0, 1]. Second, the waveform degree is
chosen to be equal to the convergence order of the time-stepping scheme. The second
column of Table 5.1 defines the n of Equation 5.1. For now, waveform degrees less than
the polynomial degree shall be neglected even if they provide at least equally precise
results.
The error in the last row is by a magnitude of 106 worse than the result of the monolithic
solution. The high tolconv required for convergence of the coupling scheme is certainly

Monolithic results from [18] Partitioned results
Number of

stages
Polynomial order

of RHS
error error

1 2 1.098e-14 1.156e-13
2 4 7.456e-15 6.614e-14
3 6 7.228e-15 7.822e-13
4 8 7.612e-15 3.985e-12
5 10 7.907e-15 -
6 12 7.976e-15 -
7 14 7.793e-15 -
8 16 8.099e-15 2.976e-09∗

Table 5.1: Comparison of errors between the monolithic and partitioned heat equation.
The waveform degree is equal to the polynomial order of the right-hand side.
Entries with no values cannot be computed with δt = 0.03125 because the
simulation end time is no integer multiple of ∆t. preCICE would prematurely
terminate the program in this case. An issue regarding this is already been
opened on the GitHub repository.1The entry marked with ∗ has a relaxed
convergence measure of 5 · 10−8 as the coupling does not converge within
100 iterations otherwise.

the reason for the bad approximation. As seen in Figure 5.1, choosing tolconv ≈ 10−8

instead of 10−11 may result in losing precision of about 103 for simulations that already
end at T = 1. We can, therefore, not conclude from Table 5.1 that the solution of the
last test has a convergence order lower than 16. If the convergence order of the solution
computed with GL(8) actually is 16, which is tested later, we can deduce from that that
the simulation is poorly configured, and thus, a direct comparison with monolithic
solvers is not feasible.

1The issue can be accessed via https://github.com/precice/precice/issues/1922.
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Reasons for the larger deviation from the analytical solution for all tests are that the
time derivative needs to be approximated by the Dirichlet participant and the coupling
process. Both steps produce errors that are to some extent unavoidable, like deviations
arising from interpolation, but do not concern the monolithic solvers.
Still, the experiments of the first four rows approximate the analytical solution, espe-
cially when putting the magnitude of the error into perspective, only marginally worse
than the monolithic solver. Furthermore, you can assume these values are exact within
machine precision.

5.3.2 Correlation between waveform degree and convergence order

This section investigates how the waveform degree and the overall convergence order
correlate. To this end, the function utri is used as the manufactured solution.
Now, merely computing the solution for one time step is insufficient to determine
which convergence order the chosen preCICE and FEniCS configuration has, and,
consequently, a convergence study is necessary. The following computations are done
with different time step size sets T with δt ∈ T . We define T as

TT(pmax) = {δt =
1
2l ·

T
pmax

|l ∈ {0, ..., 5}},

where pmax ∈ N is the maximal waveform degree used in a test series. We define that
each test series comprises six computations with different time step sizes. δt is reduced
by the factor 0.5 for each test. For the time window sizes, we choose for δt = 1

2i · T
pmax

,

∆t = 1
2i · T independent of the waveform. So, we use a time window size that is not

minimal for a given p and δt.

Time-stepping schemes of order four

Figure 5.2 shows that lower waveform degrees reduce the overall convergence of the
solution. Though for p = 4, the errors converge with the same convergence order as
the time stepping scheme, waveforms of degrees two and one reduce the convergence
by a quadratic and approximately cubic order, respectively.

Time-stepping schemes of order eight

In Figure 5.3, tests with time-stepping schemes of eighth order are depicted. Regarding
the convergence of the results, this plot provides the same conclusion as in Figure 5.2,
excluding the errors of the first time step size. Increasing waveform degrees leads to a
better convergence order.
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Figure 5.2: L2 errors of different time-stepping schemes and different waveform degrees
p. The convergence order of the result diminishes if the waveform degree is
smaller than the order of the time-stepping scheme.
For this convergence tests T1(4) is used.
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Figure 5.3: L2 errors produced by LIIIC(5) and GL(4) with different waveform degrees
p. For this convergence tests T32(8) is used. Instead of tolconv = 10−11,
tolconv = 10−9 is used as the coupling scheme did not converge for some
tests.
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Time-stepping schemes of order 16

Testing the convergence order for waveform degrees and time-stepping schemes of
order 16 led, for multiple attempts, to convergence plots where a statement about the
convergence order was difficult. The configuration of the test series in Figure 5.4 is the
most satisfactory of all and is, hence, presented. In the plot, we can only recognize the
convergence order to some extent in the data points of the two to three largest time step
sizes for waveforms of large degree. All time-stepping schemes converge, as it seems,
to a straight line that increases with decreasing time step sizes. As with increasing time
steps, more computations are necessary, this line represents the unavoidable error in
the applied configuration of the testing series. This unavoidable error increases with
increasing computations since each calculation step on a machine produces an error.
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Figure 5.4: L2 errors of the GL(8) method with different waveform degrees. The setup
for this testing series is T16(16), tolconv = 5 · 10−8 and 0.5 as the relaxation
factor.

5.3.3 Convergence results for minimal time window sizes

While conducting convergence tests for the previous chapter, a slightly modified testing
setup led to a different and remarkable result regarding convergence.
If ∆t is chosen minimally, the convergence behavior is not necessarily identical to ∆t
that is not minimal. The sole reason ∆t is not minimized for all waveform degrees in
Subsection 5.3.2 is to use a uniform set of time step sizes. A uniform set of time steps
compatible with minimized time windows for all waveform degrees that should be
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tested results in significantly smaller time steps. The computational effort is, however,
unreasonable since the maximal time step would be T divided by the least common
multiple of all waveforms used in a test series.
In this section, the two time-stepping schemes GL(2) and GL(4) and the results from
the previous section are used to investigate how minimal time window sizes influence
the convergence behavior of the error.
Figure 5.5 shows that minimizing ∆t can have a positive effect on the convergence
behavior. Instead of a quadratic convergence order, the experiment with the two-stage
time-stepping scheme converges approximately cubic to the analytic result.
While the minimization process with GL(2) delivers better results, experiments with
time-stepping schemes of higher order as in Figure 5.6 cannot reproduce the same
properties.
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Figure 5.5: The convergence for the GL(2) method, waveform degree two and different
time window sizes.Values of GL(2) ∆t = 4δt are taken from Figure 5.2. The
convergence of the diamonds, which is the test series with the minimized
time window, is approximately cubic. Larger time steps have, in contrast,
apparently no negative influence on the convergence order.

37



5 Testing methodology & Results

10−1 100
10−13

10−11

10−9

10−7

10−5

10−3

10−1

δt

L 2
er

ro
r
∥
·∥

∞

GL(4) p = 6, ∆t = 8δt
GL(4) p = 6, ∆t = 6δt
GL(4) p = 4, ∆t = 8δt
GL(4) p = 4, ∆t = 4δt

O(δt8)

O(δt4)

Figure 5.6: The convergence results for the non-minimized time windows are the same
as in Figure 5.3. No improvement of the convergence can be detected in
these experiments.
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To simulate multi-physics systems, the divide-and-conquer approach can be utilized
to reduce the complexity of the problem statement to a bare minimum. Partitioning
entails the coupling process that is not necessary when solving problems monolithically.
Hence, to obtain higher-order solutions, the coupling should, at best, be no bottleneck
for the convergence order.
In this thesis, the theory about solving time-dependent PDEs monolithically was
discussed that is versatilely applicable to arbitrary Runge-Kutta methods and PDEs.
Based on this, the time-dependent coupling method, called waveform iteration, was
introduced. FEniCS and Irksome form the framework used in the implementation to
easily develop a program that solves the monolithic heat equation, as seen in [18]. This
code was augmented in this thesis to solve the partitioned heat equation instead.
Since preCICE offers only the waveform iteration as a higher-order coupling scheme,
this coupling scheme was presented and used in testing.
In Chapter 5, we verified the convergence order of the results with the method of
manufactured solutions. While the errors of the partitioned ansatz are higher than
those produced by the monolithic solver we used as the basis for the implementation,
we concluded that a one-to-one comparison is not sensible. However, in this comparison,
the results of the partitioned heat equation were within machine precision for time-
stepping schemes of orders two, four, six, eight, and 16.
Furthermore, this thesis investigated how the convergence of the solution and the
waveform degree correlate. To this end, the Gauss-Legendre method of different orders
paired with waveforms of different degrees was mainly employed. The overall outcome
of these experiments is that smaller waveform degrees lead to worse convergence
orders, while the convergence order of a time-stepping scheme remains unchanged
if a waveform of the same degree as the convergence order is used. Still, the results
demonstrate that choosing waveform degrees not coinciding with the convergence
order of the time-stepping scheme is viable. Hence, waveform degrees are another
variable for steering the convergence order of a partitioned solver.
For one configuration, the time window size also influences the convergence order
positively. Choosing minimal time window sizes can lead to better convergence behavior
compared to non-minimized time windows.
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Regarding the experiments already conducted in [13], especially the results for orders
six, eight and 16 give new insights about the convergence behavior using the waveform
iteration as a coupling scheme with preCICE. Generally speaking, the experiments
yield that the waveform iteration in preCICE can be used to compute solutions beyond
the convergence order four if preCICE dismisses restricting the maximal waveform
degree of three.

In this thesis, the tests focused on the correlation between the waveform degree
and the convergence order while using the same time integrator, time step size and
waveform degree. Experiments that have no restrictions regarding the equality of these
parameters would supplement the tests conducted in Chapter 5, showing that the
waveform iteration maintains the convergence order regardless of the configuration of
participants. Furthermore, finding other configurations that lead to better convergence
for minimized time windows is an interesting topic for further experiments since a
pattern may materialize for such cases.
A highly intriguing enhancement for the code presented in Chapter 4, or rather preCICE,
is an API to retrieve the time derivative directly from preCICE instead of a self-
implemented workaround.
Ideally, this API returns the values of the coupling boundary equally to the already
existing API for reading data, in order to use it directly. A possible function signature
could look like

read_data(dt, order)

The already existing function is merely augmented by a second parameter that defines
the desired order of the derivative of the waveform, inspired by the BSpline API. The
code from Listing 4.3 shrinks then to

for i in range(tsm.num_stages):
precice.update_coupling_expression(precice.read_data(stage_times[i], 1), val)

Additionally, the implementation presented in Subsection 4.1.2 ceases.
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Abbreviations

API application programming interface

BVP boundary value problem

FEM finite element method

GL Gauss-Legendre

LIIIC LobattoIIIC

MMS method of manufactured solutions

PDE partial differential equation

RIIA RadauIIA
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