
Negative Nonlinear CD−ee Dependence in Polycrystalline BINOL
Thin Films
Kevin Liang, Florian Ristow, Kevin Li, Johannes Pittrich, Natalie Fehn, Lukas Dörringer, Ueli Heiz,
Reinhard Kienberger, Gennaro Pescitelli, Hristo Iglev,* and Aras Kartouzian*

Cite This: J. Am. Chem. Soc. 2023, 145, 27933−27938 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Generally, the relationship between the observed circular dichroism and the enantiomeric excess in chiral systems
(CD−ee dependence) is linear. While positive nonlinear behavior has often been reported in the past, examples of negative
nonlinear (NN) behavior in CD−ee dependence are rare and not well understood. Here, we present a strong NN CD−ee
dependence within polycrystalline thin films of BINOL by using second-harmonic-generation circular dichroism (SHG-CD) and
commercial CD spectroscopy studies. Theoretical calculations, microscopy, and FTIR studies are employed to further clarify the
underlying cause of this observation. This behavior is attributed to the changing supramolecular chirality of the system. Systems
exhibiting NN CD−ee dependence hold promise for highly accurate enantiomeric excess characterization, which is essential for the
refinement of enantio-separating and -purifying processes in pharmaceuticals, asymmetric catalysis, and chiral sensing. Our findings
suggest that a whole class of single-species systems, i.e., racemate crystals, might possess NN CD−ee dependence and thus provide
us a vast playground to better understand and exploit this phenomenon.

Ranging from the characterization of enantiomeric
compositions1 to sensorics2 and optoelectronics,3,4 the

demand for understanding and the application of chirality
continues to increase.5 Examples of the importance of chirality
in energy conservation and efficient conversion include low
energy consumption and large memory density devices and
electronics using chiral perovskites6−8 and chirality transfer to
transition metal complexes for the application of asymmetric
catalysis.9−12 The most common manifestation of optical
activity in a system is its circular dichroism (CD),13−23 the
preferential absorption of one circular polarization (CP) of
light over the other.
There is a steady demand for improvement of enantio-

separating and -enriching processes not only motivated by the
pharmaceutical industry.24−26 Chiroptical spectroscopic tech-
niques provide a simple, quick, and nondestructive way to
determine optical activity. However, without a clear under-
standing of the relation between the obtained CD and the
enantiomeric excess (CD−ee dependence), this information is
of little value. CD−ee dependence is most commonly a simple
linear relationship but can also deviate in a positive nonlinear
(PN) or a negative nonlinear (NN) manner (see SI).27−30

Currently we have a good understanding of PN CD−ee
dependence based on models such as the van Gestel
model,31,32 employing helicity reversal penalty and mismatch
penalty, or the mass-balance model introduced by Markvoort
and co-workers to explain the phenomenon.33,34 NN CD−ee
dependence, on the other hand, is rarely reported and
accordingly is not well-understood. Recently a racemate rule
effect (RRE) was suggested as a phenomenological description
of this behavior.35 The RRE is rooted in the “favored
heterochirality” in the system, an idea that has found some
evidence beyond catalytic applications, in the literature.27,28

The majority of chiral crystalline substances are racemate
compounds, meaning that as a racemic mixture they prefer
forming racemic crystals over conglomerates of enantiopure
crystals.36 In other words, crystals of racemate compounds
favor heterochiral interactions, and thus it can be hypothesized
that according to the RRE crystalline films of racemate
compounds should show NN CD−ee dependence. One
commonly used and well-understood racemate compound is
BINOL (1,1′-bi-2-naphthol), making it a suitable model
system to test the above hypothesis.20,37−43

We investigate CD−ee dependence in polycrystalline thin
films of BINOL fabricated by evaporating BINOL molecules
onto glass under ultra-high-vacuum conditions. We also
employ SHG-CD (second-harmonic-generation CD), which
provides a magnification of chiroptical effects.38,44−48 FTIR
experiments are also performed to provide a link between the
CD−ee dependence and the molecular structure of the
samples, while microscopy is used to monitor the change in
the supramolecular structure with an ee at the ∼100 μm scale.
With the help of theoretical calculations on the energetics of
the crystals, a clear understanding of the observations can be
obtained.
In the following, we use the g-value instead of CD as the

measure of optical activity, as it is normalized with respect to
concentration and path-length and is generally defined as
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where ILCP and IRCP refer either to the light intensity that is
absorbed by the sample with left CP and right CP light,
respectively, for CD measurements performed with commer-
cial instruments or to the SHG light intensity generated by the
sample with each CP light. However, any g-value versus ee
relationships will still be referred to as CD−ee dependence to
be compatible with previous literature. The CD−ee depend-
ence in polycrystalline BINOL films at 310 nm, close to the 1Lb
transition,49 presented in Figure 1a, is extracted from g-value

curves of the samples after considering and removal of all
known nontrue-CD contributions20,50−53 (see SI). The data
clearly show a nonlinear CD−ee dependence with a zero-
crossing around 80% ee. Also shown is the CD−ee
dependence of solutions of BINOL in ethanol (20 mg/L of
a BINOL mixture in ethanol), which shows a linear CD−ee
dependence as expected. We intuitively assign this difference
between the two curves to the CD that originates from the
structure of the thin film samples. Optical activity of the films
can be understood as a superposition of the molecular
contribution from individual BINOL molecules in the films
and a supramolecular contribution that is due to the chiral
crystals.54,55 This agrees with the fact that the highest g-value
does not belong to the enantiopure samples but to mixtures
with ∼50% ee, showing a remarkable 7-fold higher g-value.
Independent confirmation is delivered by SHG-CD, which not
only provides us with much higher chiroptical sensitiv-
ity38,44−47 but also can be used to disentangle different
contributions to the optical activity, as it is intrinsically free
from nontrue-CD41 (see SI). CD−ee dependence of

polycrystalline BINOL films at 310 nm measured by SHG-
CD is presented in Figure 1b. Here again a clear nonlinear
relationship is observed, with a zero-crossing in g-value
between 84% ee and 92% ee. The CD−ee dependences
presented in Figure 1a and 1b both clearly indicate negative
nonlinear behavior, as indicated by a zero-crossing at ee values
other than zero.
After having established the NN CD−ee dependence in

BINOL films, we attempted to describe this observation.
According to Chen and co-workers, NN CD−ee can be
explained as the tendency of the building blocks, either single
molecules or aggregates, to favor heterochiral interactions over
homochiral interactions. Consequently, in such systems,
racemates will be more readily formed compared to
conglomerates, and thus the effect was coined “racemate rule
effect”.35 To relate our findings to the currently available
phenomenological theory, we try to explain the observed NN
CD−ee dependence in terms of favorable interactions between
heterochiral units in the BINOL crystals. We know that
enantiopure BINOL forms crystals with 31 homochiral helices,
while racemic BINOL forms crystals with a pack of 21
homochiral helices of opposite enantiomers. In both cases all
BINOL molecules within each helix are of the same
handedness, and thus all interactions between them are of
homochiral nature.42 This seems to defy the stated require-
ment put in place by the RRE. However, a closer look at the
unit cell of the racemic crystal reveals that it requires the
alternative packing of homochiral 21 helices, which appropri-
ately can be labeled as heterohelices, whereas the homochiral
31 helices in the enantiopure crystals are logically labeled as
homohelices. Accordingly, the observed NN CD−ee depend-
ence in BINOL crystals can indeed be related to the favored
heterochiral interaction between neighboring 21 helices of the
racemic crystal. Within this interpretation, the addition of
relatively small amounts of the opposite enantiomer forces the
crystal structure to change its units from 31 helices to 21
helices. Since both helices are fully homochiral, no large
rearrangements are required and the molecules can keep their
neighbors within each helix. The preference for the
neighboring helix, however, becomes clearly heterochiral.
IR signature of hydrogen bonding between neighboring

BINOL molecules for solid state BINOL can be used as an
indicator of the structure.42,56,57 In FTIR spectra of the
racemic structure a donor/acceptor pair is observed for OH
absorption at 3405 and 3486 cm−1, respectively, and for the
enantiopure structure these bands are around 3435 and 3510
cm−1, respectively.42 We will refer to the hydrogen bonding in
the racemic structure as belonging to heterohelices to indicate
the heterochiral preference of the 21 helices in the unit cell and
the hydrogen bonding in the enantiopure structure as
belonging to homohelices in contrast.
Since FTIR does not distinguish between the enantiomers,

Figure 2 only depicts the data for ee between 0% and 100%.
Figure 2a indicates that although there is a range of ee for
which both peak pairs are observed, the OH absorption
behaves in a binary fashion being in either one or the other
state without any gradual frequency shifts in between. Figure
2b summarizes the share of hetero- and homohelices in percent
as calculated by taking the ratio of the peak height at 3486
cm−1 relative to the racemic case and the ratio of the peak
height at 3510 cm−1 relative to the enantiopure sample,
respectively (see SI). In terms of relative share, a shift from
homohelices to heterohelices can be observed with decreasing

Figure 1. g-value vs ee (a) for polycrystalline BINOL thin films (solid
circles , solid line) and for BINOL in solution (open circles, dashed
line) at 310 nm and (b) for BINOL thin films measured by SHG-CD
(bottom panel) at 310 nm (at a fundamental wavelength of 620 nm).
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ee starting at +84% ee. We thus concluded that the NN CD−
ee dependence of the BINOL thin films is related to the
change in the nature of the crystal structure as indicated by the
OH peak position since a zero-crossing in the CD−ee curve is
observed also in the same ee range.
Inspection of the racemic and enantiopure crystals of

BINOL reveals that not only hydrogen bonds but other
noncovalent interactions also contribute to the stabilization of
the 21 and 31 helices (Figure 3), respectively.

42 In the racemic
compound, each BINOL unit is involved in eight short-range
interactions, two of OH···π type and six of CH···π type, of
which four with the homochiral and four with the heterochiral
species. In the enantiopure compound, each BINOL unit is
involved in six interactions, two of OH···π type and four of
CH···π type. Apart from the net difference in the number of
interactions, DFT calculations on all distinguishable first-
neighbor dimers, namely, two for 21 helices and four for 31
helices, find an overall energetic preference of 1.6 kcal/mol for
the racemate architecture (see SI). The latter also has fewer/
smaller voids than the enantiopure crystal, which is in accord
with higher density for the racemic compound.42

Microscopy images shown in Figure 4 also confirm the
relationship between the change in the crystal structure and
the CD−ee dependence of the films. Obvious differences in
structure between the pure enantiomers, with larger crystal
domains, compared with samples closer to the 0% ee, with
smaller and finer crystal domains, are observed. The dramatic

change in structure that starts at 75% ee and completes at 84%
ee on the way to the enantiopure structure is distinctly
different from the smooth transition at lower ee’s. This
behavior aligns with the change in g-value, found in Figure 1,
and is also compatible with the findings of Figure 2.
Both PN and NN CD−ee dependences are highly desired

for chiral-sensing applications. In PN systems, the slope of the
CD−ee curve is steeper than that of the linear CD−ee curve
close to 0% ee, and thus a smaller change in ee translates into a
larger change in CD, providing a higher sensitivity for ee

Figure 2. (a) FTIR peak intensities for OH absorption specific to the
racemic crystal structure (heterohelices) at 3405 and 3486 cm−1 and
for the enantiopure crystal structure (homohelices) at 3435 and 3510
cm−1. (b) The normalized share of OH intensities for the bands at
3486 and 3510 cm−1.

Figure 3. Short intermolecular contacts measured (in Å) on the X-ray
structures of the racemic (a) and enantiopure (b) BINOL. Pink:
OH···π interaction; blue: CH···π interaction.

Figure 4. Cross-polarization micrographs of the thin film samples of
BINOL of different ee’s.
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measurement at low ee. For NN the same is true at high ee
values. While many systems with PN CD−ee have been
reported, systems exhibiting NN CD−ee are very scarce.28 In
this study, BINOL thin films of different enantiomeric excesses
were investigated and identified to exhibit an NN CD−ee
dependence. SHG-CD, along with CD, were used to
demonstrate the presence of supramolecular contributions
within the optical activity of a seemingly simple single-species
chiral system. This work unambiguously demonstrates the
dominant role supramolecular chirality can play in the case of
polycrystalline thin films of chiral molecules. This is further
supported by microscopy images, which followed the change in
the supramolecular structure with ee and the structural
dependence of the optical activity, as indicated by the share
of OH bonds belonging to the structure that favors the
proximity of heterohelices. Additionally, theoretical calcula-
tions reveal that the favored heterochirality has its origin in the
better packing of the structure and higher coordination
number of each BINOL molecule in the racemate structure,
which is a common property of racemate compounds. These
results suggest that other racemate compounds might also
possess NN CD−ee dependence in the polycrystalline film
state, providing us with a large number of easily available
systems to investigate and thus paving the way to a deeper
understanding of NN CD−ee. Most importantly, the fact that
for this system showing NN CD−ee a much higher g-value can
be obtained at an ee of ∼50% compared to the enantiopure
films will be of great benefit to all applications demanding
material with high optical activities, e.g., chiral photovoltaics,
chiral sensors, and spintronics.
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