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Abstract

Abstract

Driven by the energy transition and the increasing decentralized generation of renewable, electrical en-
ergy, storage capacities are needed to balance the volatile generation and variable demand. Stationary
battery storage systems offer one way of providing the necessary flexibility. Electric vehicles offer a
further opportunity for flexibility. Electric cars, electric buses or electric boats are purchased for the
primary purpose of mobility of people and goods, but are not used during part of the time. If they
are idle and connected to the electricity grid, the potential of the vehicles can be used for Vehicle-to-X
use cases, for example Vehicle-to-Grid or Vehicle-to-Home. Vehicle-to-X concepts are developed and
investigated in this thesis. For this purpose, battery storage systems in stationary applications are
first identified, simulated and representative battery load profiles in these applications are determined.
The drive-related usage patterns of the means of transport are then investigated using simulation and
field data. The usage profiles of mobile batteries are also compared with those of stationary batter-
ies. In addition, a method of gradually anonymizing electrical load profiles is developed to enable
the anonymization and subsequent open-access use of otherwise non-shareable data. A Python-based
tool is developed for this purpose and made available for usage in the community. Based on real
commercial driving data, power capability profiles are also developed that indicate the power electric
vehicles could provide for Vehicle-to-X at any given time. With the help of these profiles, an aggregator
concept is developed that optimizes electric vehicle pools for various electricity markets in terms of
pool revenues. These vehicle pools are then evaluated with regard to battery size and economic sector.
Finally, Vehicle-to-X is simulated with a simulation tool for the various vehicle types and electricity
markets and the effects on the vehicle batteries are examined. Overall, this work shows the finan-
cial and temporal potential of using various means of electric transportation for Vehicle-to-X services
during idle times.
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Kurzfassung

Getrieben durch die Energiewende und die zunehmende dezentrale Erzeugung erneuerbarer, elek-
trischer Energie, werden Speicherkapazitäten benötigt, um die volatile Erzeugung und die variable
Nachfrage auszugleichen. Stationäre Batteriespeicher bieten hier eine Möglichkeit, die notwendige Fle-
xibilität bereitzustellen. Elektrofahrzeuge bieten eine weitere Möglichkeit der Flexibilität. Elektroau-
tos, Elektrobusse oder Elektroboote werden für die Mobilität von Personen und Gütern angeschafft,
werden jedoch einen Teil der Zeit nicht genutzt. Sind diese geparkt und an das Stromnetz angeschlossen,
kann das Potential der Fahrzeuge für Vehicle-to-X, beispielsweise Vehicle-to-Grid oder Vehicle-to-Home
genutzt werden. In dieser Arbeit werden Vehicle-to-X-Konzepte entwickelt und untersucht. Dazu wer-
den zunächst typische stationäre Batteriespeicheranwendungen identifiziert, simuliert und repräsenta-
tive Batteriebelastungsprofile in diesen Anwendungen ermittelt. Anschließend wird das Fahrverhalten
von Transportmitteln anhand von Simulations- und Felddaten untersucht. Dabei wird auch die Be-
lastung der mobilen Batterien mit stationär eingesetzten Batterien verglichen. Darüber hinaus wird
eine Methode entwickelt, elektrische Lastprofile graduell zu anonymisieren, um die Anonymisierung
und anschließende open-access Nutzung von ansonsten nicht teilbaren Daten zu ermöglichen. Dazu
wird ein Python-basiertes Tool entwickelt, das öffentlich verfügbar ist. Auf Basis realer gewerblicher
Fahrdaten werden außerdem Leistungs-Potential-Profile entwickelt, die angeben, welche Leistung Elek-
trofahrzeuge zu welcher Zeit für Vehicle-to-X bereitstellen könnten. Mithilfe dieser Profile wird ein
Aggregatorkonzept entwickelt, dass Elektrofahrzeugpools für verschiedene Elektrizitätsmärkte hin-
sichtlich Einnahmen optimiert zusammenstellt. Anschließend werden diese Fahrzeugpools bezüglich
Batteriegröße und ökonomischem Sektor ausgewertet. Zuletzt wird die Vehicle-to-X-Nutzung mit
einem Simulationstool für die verschiedenen Fahrzeugtypen und Elektrizitätsmärkte simuliert und
die Auswirkungen auf die Fahrzeugbatterien untersucht. Insgesamt zeigt diese Arbeit das finanzielle
und zeitliche Potential, verschiedene elektrische Transportmittel während Standzeiten für Vehicle-to-
X-Services zu nutzen.
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1 Introduction

1.1 Motivation and scope of this work

In order to achieve the European Union (EU) climate targets, a decarbonization of society is neces-
sary [16]. This includes various areas such as energy supply and transport sector. In the area of energy
supply, not only improved energy efficiency, but also the increased usage of renewable energy systems
are seen as suitable measures [16, 17]. As of 2023, the EU target is to achieve a 45% share of renewable
energies in the energy mix by 2030 [18]. This target corresponds to a doubling of the renewable share
in nine years, as it was 21.8 % in 2021 [19]. At increased shares of renewable energy systems, flexibility
in the electricity grid is also required to compensate for fluctuations in generation [20]. Stationary
energy storage systems (ESSs) provide one way to supply this flexibility [20]. At times of excessive
power generation, ESSs can charge energy, and at times of insufficient generation, they can discharge.
Another area to be decarbonized is the transport sector. The road transport sector, for example,
was responsible for 740 million tonnes of carbon dioxide emissions in the EU in 2021 [21]. To reduce
emissions from cars, the EU requires new cars to have zero carbon dioxide emissions from 2035 [22].
Here, electrically powered vehicles are seen as a possibility for decarbonization [20]. When charged
with renewable energy, they produce fewer greenhouse gas emissions over their entire service life than
comparable vehicles with internal combustion engines [23].

Alongside the increased interest in decarbonization in recent years, the lithium-ion battery (LIB), which
was introduced in the 1990s, has been further enhanced [24]. Compared to other battery technologies
such as lead-acid batteries or nickel-metal hydride batteries, LIBs offer advantages in several categories.
For example, they have a relatively high gravimetric and volumetric energy density combined with a
high lifetime [25]. In addition, a variety of usable material combinations exist for the cathode and anode
of LIBs [24, 25]. Due to economy of scale effects in recent years, LIBs are now also cost competitive
compared to other battery technologies in various applications [25, 26].

Along with consumer electronics applications such as smartphones and laptops, LIBs are increasingly
being deployed in stationary battery storage systems (BSSs), which are a subgroup of ESSs [26, 27].
When installed together with wind farms or photovoltaic (PV) parks, BSSs can provide the necessary
flexibility for temporal fluctuations of generated electricity [28, 29]. In addition, there are other ap-
plications for stationary BSSs: Small-scale BSSs of up to 30 kWh are installed in combination with
household PV systems to increase the self-consumption rate and the self-sufficiency [27, 30, 31]. Com-
panies install medium sized industrial BSSs of 30 to 1000 kWh also for solar self-consumption increase
or to cover the peaks in their electrical load profile, which is called peak shaving [27, 32, 33]. Further-
more, large-scale BSSs of up to 3 GWh provide balancing power to compensate for fluctuations between
power generation and power consumption [34–36] or support renewable energy integration [27].

The main driver for the further development of LIBs in recent years has been the rise of electromobil-
ity [24, 37, 38]. In political and social terms, interest in electric vehicles (EVs) increased. Accordingly,
the number of electric cars (e-Cars) sold worldwide grew from one million in 2017 to ten million in

1



1 Introduction

2022 [38]. In Europe every fifth car sold in 2022 was an e-Car [38]. In Germany, the federal govern-
ment’s goal is to reach 15 million e-Cars on German roads by 2030 [39]. But it is not only the number
of e-Cars that has increased in recent years. Other electrically powered vehicles, such as electric buses
(e-Buses) and electric boats (e-Boats), are also gaining relevance [40–42]. From 2020 to 2021, sales
of e-Buses increased by 40 % worldwide, although the global bus market remained constant [40]. In
addition, the global market for e-Boats is expected to double in volume from 2022 to 2028 [42].

The increasing number of EVs entails large battery capacities. If Germany, for example, reaches its
goal of 15 million e-Cars in 2030, those cars are estimated to have 750 GWh of total capacity assuming
an average battery capacity of 50 kWh. Studies on the mobility of German households show that
private cars are parked 97 % of the time [43]. If these cars were connected to the electricity grid
with bidirectional 11 kW chargers, 165 GW could theoretically be discharged for a short period of time
assuming the grid was designed for that power. This is about twice as much as the annual load peak in
Germany, which corresponded to about 81 GW in 2021 and just under 79 GW in 2022 [44]. Accordingly,
e-Cars can contribute significantly to stabilizing the electricity grid in the future or take on other tasks,
such as shifting the consumption of solar energy into the nighttime hours. Even unidirectional vehicles
can provide flexibility for the electricity grid through controlled smart charging. However, the potential
is greater if the e-Cars and other types of EVs are bidirectional in the future, i.e., they must not only be
able to charge from, but also to discharge into the grid [45, 46]. Depending on how the EVs are used,
this concept is called Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H) or Vehicle-to-Building (V2B).
These terms are summarized under the general term Vehicle-to-X (V2X) [47].

EVs are used for the mobility of people and goods and are therefore only temporarily connected to
the electricity grid. Furthermore, the vehicle batteries with their mostly 30 to 100 kWh large batteries
are often smaller than industrial and large scale stationary BSSs. However, minimum power and
capacities of 1 MW and 1 MWh, respectively, are often required to provide balancing power [36] and
minimum bid sizes also exist for spot market trading on the day-ahead and intraday market [48]. For
these reasons, EVs must be pooled in virtual power plants and controlled by aggregators if they are to
provide V2G [49]. Relevant questions arise for aggregators about how pools should be composed and
how required power should be allocated to the EVs.

In general, the stationary and mobile applications place varying demands on the batteries. In EVs,
gravimetric and volumetric energy density are relevant in order to have the smallest and lightest
possible battery system. In addition, the battery system should be able to be charged at high power
to enable short-term fast charging on longer journeys. In stationary applications, the above properties
are less relevant compared to others [28]. Depending on the requirements of the application, LIBs can
be improved in the future in terms of relevant characteristics and the system design can be adapted
to meet the requirements. This demands a specification of the requirements and representative or
exemplary publicly available data of the various applications.

This thesis follows up on this requirement. Stationary and mobile battery applications are examined
and the load on the batteries is investigated. The respective storage load profiles are published open-
source and thus available to the general public. In addition, the financial V2G potential of EVs in
frequency containment reserve (FCR) and arbitrage applications is examined and a methodology is
developed to optimize vehicle pool compositions according to various V2G markets. Finally, e-Cars,
e-Buses and e-Boats are simulated in various V2X applications and the battery stress is quantified.

2



1.2 Thesis outline

1.2 Thesis outline

This publication-based dissertation is based on seven contributions. An outline of the thesis is shown
in Figure 1.1. After the introduction and motivation, chapter 2 explains the fundamentals of stationary
and mobile BSSs and of V2X provision. Here, the general BSS applications are described based on
the state of the art and the concept of V2X is explained. Furthermore, previous work on the topics
is elaborated, research gaps are identified, and concepts and terms introduced in the context of the
dissertation are explained.

Chapter 3 contains three journal publications on the topics of battery applications and load profiles [1,
3, 4]. In section 3.1, the three stationary storage applications self-consumption increase (SCI), FCR,
and peak shaving (PS) are simulated [1]. The simulation of stationary energy storage systems (SimSES)
tool developed at the Chair of Electrical Energy Storage Technology (EES) of the Technical University
of Munich (TUM), is used for this purpose. Furthermore, a methodology is presented to extract
representative storage load profiles from a set of profiles using six key characteristics. Section 3.2
then discusses the three mobile storage applications, e-Car, e-Bus, and e-Boat, and evaluates the
impact of the applications on the vehicle batteries [4]. For the e-Cars, data was simulated using
the python based open-source tool emobpy [50]. For the e-Buses and e-Boats, real field data was
collected from Hamburger Hochbahn AG respectively Torqeedo. The battery-relevant parameters of
the mobile applications are also determined using SimSES. This involves simulating and comparing
various unidirectional charging strategies for the vehicles. The stationary and mobile application data
is made available open-access in consultation with the industry partners so that industry and research
can use them in their own developments and simulations. In an exchange with other industry partners
on data from various applications, the research question arose as to whether electrical load profiles
could be anonymized before sharing or publishing. The requirement was that the load profiles could
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1 Introduction

be changed gradually, i.e. to different degrees, depending on the preferences of the owning entity of the
data. Since no publicly available tool met these requirements, a python-based open-source tool was
developed and published as part of this thesis. Section 3.3 presents the methodology of the gradual
electrical load profile anonymization and determines the impact on BSS relevant parameters for two
stationary battery applications [3].

In chapter 4, V2G provision with fleets of commercial EVs is subsequently investigated. The results
were published in two journal and one conference publications that form the three sections of this
chapter [2, 7, 11]. Section 4.1 includes the generation of ”power and energy capability profiles” of
commercial EVs and the monetary potential of the EV pool in the German FCR market [11]. For this
purpose, publicly available data from commercial vehicles with internal combustion engines is used
to simulate the driving of these vehicles as EVs. Afterwards, power and energy capability profiles of
each EV are determined. The profiles are then aggregated and the potential for the FCR application
in Germany is determined. In addition, potential changes in FCR market regulations and impacts on
aggregate pool revenues are evaluated. Section 4.2 then presents the concept of the optimized profile
combination using the power and energy capability profiles from section 4.1 [2]. A methodology based
on genetic algorithms is presented to optimize the composition of the pool in order to maximize revenue
per participating vehicle in various V2G markets. The optimized vehicle pools are then analyzed in
terms of their composition in section 4.3 [7]. Here, vehicle battery sizes and economic sectors are

Table 1.1: Main research questions of the thesis and chapter numbers.

Research question Chapter/
Section

What are typical stationary applications of BSSs and how are LIBs utilized in
these applications?
How can representative profiles be determined from a set of stationary BSS load
profiles?

3.1

What are typical mobile applications of BSSs and how are BSSs utilized in these
applications?
To what extent are battery-relevant parameters in mobile applications similar
to stationary applications and could therefore similar LIBs be used in those
applications?

3.2

How can electrical load profiles be anonymized gradually and how could an
open-source tool look like that allows anonymization?
How much may an original electrical load profile be modified to maintain pa-
rameters critical to a storage application?

3.3

How much power can commercial EV fleets offer for the market of FCR over
different time periods?
How much money can commercial EVs expect to earn through FCR in Germany?

4.1

Can aggregators of EV pools gain a competitive advantage through smart selec-
tion of vehicles?
How large are potential revenues in various electricity markets for random and
for optimized pools?

4.2

Which EV battery sizes are explicitly suitable for providing balancing power or
arbitrage trading in energy markets?
EVs of which economic sectors are particularly attractive for the considered
markets?

4.3

How predictably do e-Cars, e-Buses, and e-Boats behave and what is their tem-
poral V2X-ready ratio over the week?
How do battery-relevant parameters change due to the provision of V2X and
what are the effects in terms of battery aging?

5

4



1.2 Thesis outline

evaluated.

In chapter 5, the topics of chapter 3 and chapter 4 are linked in a conference publication [5]. Here,
the data from the stationary and mobile applications are used to simulate various types of vehicles
in SimSES. Beyond unidirectional charging strategies, V2X-based charging strategies are simulated.
Subsequently, effects of V2X provision on battery-relevant parameters are quantified and battery aging
is simulated.

Lastly, Chapter 6 presents a summary and outlook. The latter presents potential future research
questions and connecting points to this thesis. Table 1.1 shows an overview of the research questions
dealt with in the respective chapters and sections. At the beginning of each chapter, the individual
topics are presented in more detail and the research questions are explained.
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2 Fundamentals of battery storage systems and
Vehicle-to-X

This chapter introduces the relevant topics of the dissertation. It thus lays the foundations for the
following chapters, which deal with stationary and mobile applications of BSSs and the topic of V2X.
Each individual paper in the following chapters also presents the individual topics in detail and provides
literature reviews. First, section 2.1 explains the basics of LIBs and introduces battery parameters
relevant for the thesis. Subsequently, stationary applications of BSSs are explained in section 2.2.
Section 2.3 then explains mobile BSS applications and the driving behavior in these applications.
Section 2.4 deals with the topic of load and usage profiles, before section 2.5 finally introduces the
topic of V2X.

2.1 Lithium-ion battery basics and relevant parameters

The fact that LIBs have gained popularity in many different applications is due to a number of
advantageous properties over other battery technologies [24, 25, 51]. Lead-acid batteries have been in
use for over 150 years and have the lowest cost per kWh as a comparison of different battery technologies
showed in 2021 [51, 52]. But LIBs outperform lead-acid batteries in terms of lifetime, power density,
energy density and efficiency [51]. Other technologies such as nickel-cadmium battery (NiCd) (usable
in wide temperature range) and nickel-metal hydride battery (NiMH) (high safety) have individual
advantages [51], but the overall package offered by LIBs led to a focus on this technology for mobile
and stationary applications [24, 25].

Basically, there is no single LIB technology. Instead, various anode and cathode materials, electrolyte
compositions and additives are employed in commercial cells [24]. The two cathode materials with the
largest market share are lithium nickel manganese cobalt oxide (NMC) and lithium iron phosphate
(LFP), often combined with a graphite anode [24]. LIBs with NMC cathode offer high energy and
power density, which is why they are often used in e-Cars [53]. LFP cathode-based LIBs have the
advantage of high cycling stability and thus relatively long lifetime and high safety [24, 53]. The
disadvantage is a lower energy density compared to NMC [24, 53]. On the anode side, apart from
graphite, lithium titanate and silicon-graphite composites show advantages and are therefore being
further researched [54, 55].

For this thesis, several parameters of LIBs are relevant. They will be explained in the following. The
first parameter is the state-of-charge (SoC), which describes the currently remaining available capacity
of a battery in relation to the nominal capacity. The SoC can be calculated according to equation 2.1,
which is based on reference [56]. Here, SoC(t0) describes the start SoC, I(t) the current at each
point in time, ηc the coulombic efficiency and Qn the nominal capacity of the battery [56]. The sign
convention in this representation is that during charging the current is positive and during discharging
it is negative [56]. An SoC of 0 % describes a fully discharged battery and an SoC of 100 % a fully
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2 Fundamentals of battery storage systems and Vehicle-to-X

charged battery.

SoC(t) = SoC(t0) +

∫ t

t0
I(τ) · ηcdτ
Qn

(2.1)

The second relevant parameter is the state-of-energy (SoE). This parameter describes the currently
remaining available energy of a battery in relation to the nominal energy [56]. For this purpose the
power is integrated over time and divided by the nominal energy, as shown in equation 2.2, which is
based on reference [56] and extended by the energy efficiency ηe [57]. Analogous to the SoC calculation,
SoE(t0) describes the start SoE.

SoE(t) = SoE(t0)−
∫ t

t0
P (τ) · ηedτ

En
(2.2)

Due to various aging mechanisms, a battery loses capacity over the course of its life. For this reason,
the state-of-health (SoH) was introduced, which indicates the currently available capacity when fully
charged relative to the initial nominal capacity [58]. The calculation of the SoH is shown in equation 2.3.
Here, Qdischarge(t) describes the capacity that can be discharged in the fully charged state at time t

and at nominal discharge conditions. At the beginning of its life, a battery has an SoH of 100 %.

SoH(t) =
Qdischarge(t)

Qn
(2.3)

Another important parameter for charging and discharging LIBs is the depth-of-discharge (DoD). This
parameter describes the depth to which a battery is discharged (see equation 2.4). For this purpose,
the SoC at the end of a discharge cycle is subtracted from the SoC at the beginning of the cycle. In the
laboratory, batteries are often cycled with a fixed DoD to test battery behavior [59, 60]. In the field,
the DoD varies depending on the application and the energy management strategy. In addition to the
expression DoD, the expressions depth-of-cycle (DoC) and ∆SOC are also used to take account of the
DoCdis in the discharging direction and DoCcha in the charging direction [59, 61]. In chapter 3.1 of
this thesis the expression DoCdis is used as a synonym for the DoD.

DoD = SoCcycle,start − SoCcycle,end (2.4)

Furthermore, the charging rate (C-rate) is a relevant parameter for LIBs. The C-rate describes the
current at which a battery is charged or discharged relative to its nominal (or rated) capacity [12].
The calculation of the C-rate is shown in equation 2.5. For example, if a battery with a rated capacity
of 2 Ah is charged with 1 A, the C-rate is 0.5h−1 and the battery would be fully charged after 2 hours.
Battery cell manufacturers also often specify maximum charge and discharge C-rates for their batteries.
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2.2 Battery Storage in stationary applications

Crate(t) =
I(t)

Qn
(2.5)

The number of equivalent full cycles (EFCs) is also relevant for the degradation of batteries [62, 63].
The EFCs experienced by a LIB can be calculated by dividing the energy throughput Etp by two times
the rated energy of a battery, as displayed in equation 2.6. Alternatively, the energy throughput in
one direction can be divided by the rated energy content. While some research works call the term
EFC [9, 62, 64], others use the term full-equivalent cycle (FEC) [12, 59, 63, 65].

EFC =
Etp

2 ∗ Erated
(2.6)

LIBs are subject to aging processes that can be categorized into calendar and cyclic aging. The former
occurs over time independently of charging and discharging processes of the battery. The latter depends
on the cyclization of the battery. The aging of LIBs is apparent on the one hand by a decrease in
the available capacity, which is often quantified by the SoH, and on the other hand by an increase in
the internal resistance. Reduced available capacity means reduced range in e-Cars, for example. A
higher internal resistance, in contrast, means that losses during charging and discharging increase and
an e-Car can no longer be charged with the same high power. Critical to the aging of LIBs are stress
factors that trigger chemical reactions and processes in LIBs that reduce capacity or increase internal
resistance [12]. For instance, higher battery cell temperatures and SoCs typically lead to accelerated
calendar aging [12]. Cyclic aging, conversely, is enhanced by higher C-rates, higher DoCs, high or low
temperature, and more EFCs [12]. The aforementioned stress factors then lead to effects in the battery
cell such as the growth of a solid electrolyte interphase (SEI) and lithium plating at the anode and
particle cracking at the cathode [12]. These effects cause lithium inventory and anode and cathode
active material to be lost, reducing capacity and increasing internal resistance [12].

The end of life of a battery is often defined as 70 % or 80 % SoH, i.e. 70 % respectively 80 % of the
initial capacity [66–68]. These values are used because the available capacity, which decreases slowly
at the beginning, may eventually reach a knee point and decrease rapidly [68, 69]. If this knee point
is exceeded, the performance of a battery drops quickly and safety-relevant problems can occur.

Aging models have been developed to quantify the aging of LIBs in calculations and simulations.
Physicochemical aging models, on the one hand, directly represent the physicochemical aging effects,
such as SEI growth in differential equations. Semi-empirical aging models, on the other hand, such
as those by Naumann et al. [59, 70] and Schmalstieg et al. [60], quantify the decrease of capacity and
the increase in internal resistance on the basis of stress factors like SoC and DoD. In this thesis, these
semi-empirical aging models are used in chapters 4.2 and 5.

2.2 Battery Storage in stationary applications

Electricity grids traditionally consisted of generators, transmission elements such as cables and trans-
formers, and consumers. In the days when the electricity grids were built, generators were often large
power plants that produced electricity for a large number of households or businesses from coal, for
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example. Today, many decentralized generators exist in electricity grids, often producing electricity
from renewable sources. For instance, PV systems are transforming households from consumers to
so-called prosumers that consume and generate electricity. The increasing importance of renewable
generators is also evident in numbers: The share of renewable-generated electricity in net electricity
generation in Germany nearly doubled from 25.8% to 49.8% between 2012 and 2022 [44]. Worldwide,
the share rose from 21.25% to just under 30% in the same period [71]. However, renewable generators
such as wind and PV are subject to natural volatility due to variable wind conditions and day-night
cycles. Here, ESSs offer the opportunity to store energy during periods of high generation and make
it available again during periods of low generation.

The principle of ESSs has been used for more than two centuries. As early as 1795, a mill in New York
used the tidal range to generate mechanical energy from stored water flowing downhill [72]. In the
second half of the 19th century, the first pumped hydro storage power plants were built in Europe [72].
Later, other energy storage technologies were developed, such as the flywheel, which stores energy
in kinetic form, and compressed air energy storage, which stores energy in the form of compressed
air [73, 74]. The development and technical advances of batteries have enabled another energy storage
technology: BSSs, which store energy in electrochemical form.

Various technologies exist as possible battery types for BSSs, such as lead-acid batteries or redox
flow batteries [73, 74]. In the last 10 years, however, LIBs have become the most popular battery
technology in BSSs [27, 75]. The development of LIBs was originally driven by mobile electronics
such as camcorders and later cell phones and smartphones [24]. However, the potential of using LIBs
in transportation and the associated further development led to them also being increasingly used in
stationary BSSs [37, 75]. In 2012, the global share of LIBs in stationary BSSs was 30 % and increased
to almost 90 % by 2016 [75]. Battery technologies such as lead-acid, which also had a 30 % share in
2012, have largely been displaced from the market [75]. The areas of application for stationary BSSs
are described subsequently.

A variety of applications exist for stationary BSSs. The applications can be divided into behind-
the-meter (BTM) and front-of-the-meter (FTM). In the former, battery storage is installed behind
the electricity meter. Subsequently, they can be used for intermediate storage of locally generated
energy or to help balance the load profile to prevent peaks in grid energy consumption. The latter are
installed in front of the electricity meter and therefore act on the side of the electricity grid. There
they can stabilize the electricity grid by balancing out fluctuations between total generation and total
consumption, or they can trade on the electricity market.

The open-source simulation tool SimSES developed at the TUM allows to perform time series simula-
tions of stationary ESS in various applications [10]. The modular python-based tool enables users to
evaluate ESS technologies technically and economically. Various topologies, system components and
storage technologies can be simulated in a storage application. SimSES includes a variety of energy
management strategies for different applications. For the SCI application, which is explained in the
following section a household load profile and a PV generation profile are required as input. The
energy management system then decides at each simulation step how the ESS should behave. The
ESS itself consists of one or more alternating current (AC) systems, which in turn consist of one or
more direct current (DC) systems connected by power electronic elements. These contain the energy
storage technologies, for example LIBs. A large number of LIB models, including degradation models,
can be selected in SimSES. There are also thermal and auxiliary models. Following the simulation, the
ESS behavior is evaluated technically and economically. As part of this thesis, SimSES is extended to
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2.2 Battery Storage in stationary applications

mobile applications, bidirectional charging strategies are developed and V2X simulations are carried
out.

The stationary storage applications relevant to this thesis are explained in the following. An overview
of the applications with the corresponding section numbers is shown in Figure 2.1.

2.2.1 Self-consumption increase

A typical BTM application of stationary BSSs is the SCI of self-generated energy. In private households
with PV systems, home storage systems (HSSs) are often used to temporarily store the energy generated
during the day and use it in the evening or at night. HSSs enable households to use a larger share
of their self-generated electricity and thus increase their self-consumption rate (SCR) rSCR [76, 77].
The SCR describes the proportion of PV energy that is used by the household itself and not fed into
the grid (see equation 2.7). In addition, HSSs reduce the amount of electricity purchased from the
grid, increasing the household’s self-sufficiency rate (SSR) rSSR [77, 78]. This indicator shows what
proportion of the load can be covered by self-generated energy, i.e. how independent a household is
from the electricity grid (see equation 2.8). The storage capacity of HSSs is typically below 30 kWh
and averaged 8.8 kWh in Germany in 2022 [27].

rSCR =
Edirect

PV + Echarged
BSS

EPV
(2.7)

rSSR =
Edirect

PV + Edischarged
BSS

ELoad
(2.8)

Low-voltage
Self-consump�on
increase (SCI) with home 
storage systems (HSS)

2.2.1

Medium and high voltage

Peak Shaving
(also possible in low-voltage grid)

2.2.2

Grid services (e.g. Frequency 
Containment Reserve)

2.2.3

2.2.4 Spot market trading

Integra�on of
renewable energy

Buffer for EV Fast-
Charging Sta�ons

2.2.5

Off-grid

Black start 
capability

2.2.5

Uninterruptable 
power supply (UPS) 2.2.5

2.2.5

2.2.5

Figure 2.1: Graphical overview of stationary battery storage applications. The green circles represent
the section of the thesis in which the application is addressed.
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The business model of HSSs results from the fact that the feed-in tariff of PV electricity is often lower
than the electricity purchase costs [79]. In Germany, as of June 2023, the 20-year fixed feed-in tariff for
PV electricity from systems smaller than 10 kWp that feed in only a portion of their generated energy
was 0.086 €/kWh [80], while the average electricity price was 0.4627 €/kWh [81]. This means that every
kilowatt hour charged and discharged improves the economics of a HSS and reduces the electricity bill
of the household. However, this only applies if the battery and power electronics efficiency is sufficiently
high. Nevertheless, a survey of the HSS market in Germany showed that monetary investment was
not a primary reason for purchasing the HSS in 2018 [82]. In contrast, the main reasons were a
hedge against rising electricity prices and wanting to make a contribution to the energy transition [82].
Other reasons for installing HSSs are protection against power outages, as some models can provide
an emergency power supply, and general interest in technology [82].

In 2016, Truong et al. identified the gap between feed-in tariff and electricity purchase costs, storage
investment costs, and usable battery capacity as the three factors that most affect the economics of an
HSS [79]. They showed that in 2016, with German electricity prices and feed-in tariffs at that time, the
return on investment (ROI) was negative in most scenarios considered [79]. The same conclusion was
reached in 2017 by Uddin et al. for a household considered in the UK [31]. They developed an aging
model for the battery of a HSS in the field and used it to estimate battery aging costs. The result was
that the HSS had no economic benefit. The conditions for the profitability of HSSs have improved due
to the rise in electricity prices in Germany in recent years and the simultaneous fall in battery prices
and feed-in tariffs. However, whether a specific HSS is profitable depends on the individual load and
generation profile.

Despite the lack of profitability at the start of the ramp-up of the HSS market in Germany, the number
of installed HSSs has increased strongly [27]. While only 10,000 HSSs were installed in Germany in
2014, their number was already 220,000 in 2022 [27]. This makes Germany the largest HSS market
in Europe with a market share of 59 % in 2021 [83]. Furthermore the numbers in other European
countries such as Italy, Austria and UK are also increasing [83]. In Europe as a whole, the HSS market
grew by 107 % from 2020 to 2021 [83]. The market for HSS is also growing steadily in the US [84] and
other countries worldwide [85, 86].

The operation of HSSs can be carried out according to a variety of operation strategies. Relevant for
almost all operation strategies is the residual load, which results from the current energy generated by
the renewable source (mostly PV) and the current load according to equation 2.9 [78, 87].

PRes(t) = PLoad(t)− PPV (t) (2.9)

The simplest and most primitive charging strategy of a HSS is to charge the BSS directly as soon as
the residual load is negative, i.e. PV generation exceeds the load [78, 88]. In chapter 3.1, this strategy
is applied and called greedy. In the literature, the strategy is also called direct charging or increased
self-consumption [78, 88]. If HSSs are operated with the greedy strategy, they often charge up to an
SoC of 100 % in the morning, especially in the summer months, and then remain in this SoC for several
hours. On the battery side, this long stay in the high SoC range leads to accelerated battery aging, as
described in chapter 2.1. On the distribution grid side, stopping the HSS from charging at 100 % SoC
can cause the PV energy fed into the grid to ramp up significantly and peak around noon [88]. For
the above reasons, smarter operation strategies for HSS have been developed. First, the grid feed-in
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could be limited to a fixed value and the HSS would only be charged above this value [88]. This would
reduce the impact on the distribution grid, but the HSS would then only be charged insufficiently on
cloudy days. The SCR would consequently decrease. Second, grid feed-in could also be dynamically
limited depending on weather and load forecasts [88]. This strategy would reduce the maximum grid
feed-in and at the same time not reduce the SCR or only reduce it slightly in the case of forecast
errors. In chapter 3.1, this strategy is called feed-in damping. The strategy chooses the daily grid
feed-in limit based on the last time of PV generation of the day and is based on a work by Zeh and
Witzmann [89]. During the course of the day the battery charging power is then increased depending on
the spare battery capacity in order to achieve an SoC of 100 % by sunset [89]. More advanced operation
strategies of HSSs include multi-objective optimization [77, 90], more comprehensive prediction models
for PV generation and load profile [76, 91], and machine learning approaches [92–94]. In addition to
HSS, SCI applications can also take place in company buildings having a PV system installed. The
strategies can be basically identical to those described above, but the BSSs are often larger dimensioned
due to the higher power consumption and larger PV systems. Moreover, the economic incentives are
different due to other electricity tariffs.

The SCI application is discussed in more detail in chapters 3.1 and 3.3 of this thesis. In chapter 3.1,
representative storage load parameters of HSS in SCI applications are determined. In chapter 3.3,
household load profiles are anonymized, which are subsequently used and evaluated for SCI simulations.

2.2.2 Peak shaving

In Germany, for example, the price of electricity for private households is calculated on the basis of
the energy consumed in addition to a base price [81, 95]. The peak load of the household is not
taken into account. However, this does not apply to companies whose electricity consumption exceeds
100,000 kWh per year [95]. These companies must pay grid fees for the annual load peak in addition to
the energy-based price. This is because the electricity grid has to be designed and possibly expanded
for this load peak. There are also special regulations for end consumers with a temporary high power
consumption [95]. Electricity grid operators must offer these consumers an individual grid fee based
on monthly power charges [95]. The amount of the grid fees is then based on the number of hours the
electricity is consumed [95]. If, for example, an industrial customer in Germany with a consumption
of over 10 GWh uses the electricity for at least 8,000 hours, the grid fee has to be at least 10 % of
the regular published grid fee [95]. Due to these load-peak-dependent grid fees, PS has also emerged
as a BTM application for industrial companies [27, 96]. In this application, load peaks that occur
are covered by discharging the BSS instead of drawing from the grid. The PS performing BSS in
the industrial customer sector often have capacities between 30 and 1000 kWh [27]. Analogous to the
HSS, the number of industrial BSS in Germany has increased in recent years [27]. This also applies to
industrial storage capacities worldwide [97].

The simplest operation strategy of PS is to constantly maintain 100 % SoC and discharge as soon as
a load peak exceeds a defined threshold [98]. The BSS is then fully charged again as soon as the load
is below the threshold without exceeding the threshold [98]. This strategy can cause the BSS to stand
idle for a long time at high SoC, which is critical for the calendar aging of the batteries, as described
in chapter 2.1. For this reason, more sophisticated operation strategies have been developed to predict
peak loads [98, 99]. This allows the BSS to be kept at a medium SoC range and only charged to 100 %
SoC when a load peak is expected. Further research on PS is focused on optimal battery capacity and
power design [98, 100].
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In addition to the conventional BTM application of PS where the load peak at a single grid connection
point is reduced, PS can also be performed on the distribution grid side [8, 32, 33]. For instance,
decentralized HSS can be used to significantly reduce the load peak at low voltage substations in
residential areas [32]. Furthermore, companies can use stationary BSSs that communicate with each
other to operate PS at the point of common coupling instead of locally [8, 33].

The PS application is addressed in chapters 3.1, 3.3 and 5 of this thesis. As for the SCI application,
representative storage load parameters are determined for the PS application in chapter 3.1. Likewise,
an anonymization of e-Car charging station load profiles is performed with subsequent evaluation of the
impact on a PS application in chapter 3.3 . Chapter 5 examines the PS application with bidirectional
e-Cars and quantifies the impact of the V2X provision on battery-relevant parameters.

2.2.3 Frequency containment reserve

One FTM application for stationary BSS is the provision of frequency regulation [28, 75]. In prin-
ciple, generation and consumption must always be balanced in an electricity grid. However, since
there are forecast errors in load and (renewable) generation, storage capacity is needed to balance
these fluctuations, charging when there is excessive generation and discharging when there is excessive
consumption [75]. The grid frequency serves as an indicator for the mismatch between generation and
consumption. In Europe, where the nominal grid frequency is 50 Hz, the transmission system operators
(TSOs) are responsible for the electricity balancing [101, 102]. Accordingly, the four German TSOs
invite tenders for balancing capacities on a public platform, for which pre-qualified storage entities can
apply over different time periods [103].

The three product types frequency containment reserve (FCR), frequency restoration reserve with au-
tomatic activation (aFRR) and frequency restoration reserve with manual activation (mFRR) can be
distinguished [104]. Storage offering FCR must be able to activate the marketed power within 30 sec-
onds and provide it for 15 minutes [104]. AFRR offering storage systems replace FCR storage after
5 minutes [104]. After 15 minutes, mFRR offering storage systems replace aFRR storage systems [104].
As of the end of 2023, the offer time sections are four hours each [105]. This means that stationary
BSSs must hold the marketed power ready over these four hours. In the FCR application, the provision
is bidirectional [106]. It must therefore be possible to charge and discharge the storage system with
the marketed power. In addition, only multiples of 1 MW can be offered on the FCR market [105].
In Germany, 570 MW are currently being tendered to cover the fluctuations for all four hour slots, for
which pre-qualified energy storage entities can apply [103]. Possible FCR-providing ESSs are pumped
hydro power plants or gas power plants. In the meantime, however, 630 MW of large-scale BSSs have
also been prequalified for the provision of FCR [27, 107]. In this context, large-scale BSSs are storage
systems that have more than 1000 kWh of battery capacity.

In contrast to the SCI and PS application, the operation strategy of FCR BSSs is relatively constrained
by the TSOs. First, there are prequalification conditions that dictate the dimensioning of the BSS [108].
Second, the ramping up of power in case of frequency deviations is predetermined and an allowed
operating range is defined [108]. However, there are also degrees of freedom in the provision of FCR
with BSSs. For instance, an overfulfillment of up to 120 % of the required power can take place [108].
Moreover, there is a dead band between 49.99 Hz and 50.01 Hz in which charging and discharging can
take place [109]. Additionally, schedule transactions are allowed to recharge or discharge the storage
system to reach the allowed SoC range [109].
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Due to the cost degression of BSSs, the FCR application became the focus of not only BSS operators
but also research institutions in the 2010s. In 2013, Swierczynski et al. described the operation of a
stationary BSS to provide FCR in Denmark with a focus on the battery degradation [110]. Zeh et al.
studied the impact of newly published TSO frameworks on BSS profitability in 2016 [36]. Moreover, Zeh
et al. and Thien et al. published control algorithms that met the new regulatory framework [35, 36].
Other research studies investigated the economics [111], bidding strategies [112] and efficiencies [113]
of FCR BSSs. In addition to these single-BSS considerations, Hollinger et al. published an approach
for FCR provision with distributed HSSs of 10 kWh each [114].

Stationary BSSs can generate revenue by participating in the FCR market. In 2016, Zeh et al. calcu-
lated possible revenues of 130 € per kWh and year in Germany if the power had to be kept available
for 15 minutes (so called 15-min criterion) [36]. Filippa et al. investigated the participation of BSSs
in the FCR-N market in Eastern Denmark in 2019 [115]. This publication showed that no scenario
considered was profitable, taking into account the battery ageing and the tax regime at the time, and
that regulation is the determining factor. In 2018, there were already 46 large-scale BSS projects in
Germany that planned to participate in the FCR market [116]. However, as German FCR prices fell in
2019, market growth in this area slowed [117]. Market growth picked up again in 2022 due to increased
FCR prices [27].

In this thesis, the FCR application is covered in chapters 3.1, 4.1, 4.2, 4.3 and 5. In chapter 3.1,
analogous to the SCI and PS applications, the FCR application is investigated and the representative
load on the batteries is determined. The provision of FCR with pools of commercial EVs is investigated
in chapter 4.1. Then, the power capability profiles defined there are used in chapter 4.2 to assemble
optimized vehicle pools. These optimized pools are examined in chapter 4.3 before the impact of FCR
provision with various modes of transportation on battery-relevant parameter is examined in chapter 5.

2.2.4 Spot market trading

Another FTM application is spot market trading, where electricity is traded on wholesale markets.
In Central Europe, the European Power Exchange EPEX Spot SE exists for this purpose. A total of
621 TWh of electricity was traded on EPEX in 2021 [48]. The order of magnitude of the electricity
traded there becomes apparent when comparing it with Germany’s gross electricity generation, which
was 587.1 TWh in 2021 [118]. The large amount of electricity traded is due to the fact that a kilowatt-
hour can be virtually traded several times before it is executed. Electricity can essentially be traded on
EPEX in two forms. One is day-ahead trading, where electricity is traded in the form of blind auctions
for each hour of the following day [48]. It is also possible to trade block orders for several hours
with the same price. The other form is intraday trading, where electricity can be traded in smaller
time segments (intraday auction) and continuously (intraday continuous) [48]. For Germany, Austria,
Belgium and the Netherlands, trading is possible up to five minutes before delivery [48]. Intraday
trading is further subdivided into the two products auction and continuous trading. In addition to
hourly products, half-hourly and 15-minute products can also be traded here [48].

The approach of spot market trading with BSSs is based on arbitrage trading. Electricity is purchased
at times of relatively low prices and the BSS is charged. At times of high prices, the BSS is dis-
charged again and the electricity is sold. In principle, arbitrage trading is also possible with other ESS
types [119]. While the idea is simple, some points should be considered when performing arbitrage
trading with BSSs: First, BSS efficiencies during charging and discharging and self-discharge of the
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storage technology have to be taken into account [119]. If the losses are high, the price spread must be
correspondingly higher. Second, a good prediction of the price development on the respective market is
required [120]. For this purpose, optimization models and bidding strategies have been researched and
published [120–122]. Third, battery degradation plays an important role in the profit of the BSS [123,
124]. If the BSS is frequently charged and discharged at a high C-rate, this leads to accelerated aging,
as described in chapter 2.1 [123]. To account for degradation in the optimization models, penalty costs
are often introduced into the objective function to prevent trading at small price spreads [123, 124].
Fourth, regulation affects the profitability of arbitrage trading. Higher taxes and fees on electricity
purchases and sales lead to lower attractiveness of arbitrage trading in a country [125, 126]. Finally,
a larger number of arbitrage trading BSSs leads to reduced attractiveness of the arbitrage trading
due to increased market saturation [127]. Underestimating this effect may lead to overestimating the
economic value of BSSs [128].

Spot market trading in the form of arbitrage trading is examined in more detail in chapters 4.2, 4.3
and 5 of this thesis. In chapter 4.2, a simple arbitrage algorithm with perfect foresight is used to
estimate the revenues of pools of commercial e-Cars on the day-ahead and intraday market. The
optimized vehicle pools determined are then evaluated in chapter 4.3 in terms of vehicle size and
economic sector. In chapter 5, data from reference [124] are used to evaluate the stress of arbitrage
trading with pools of e-Cars, e-Buses and e-Boats on the LIBs.

2.2.5 Further stationary applications and multi-use

In addition to the extensively presented applications for stationary BSSs, there are a number of other
applications that are less relevant to this thesis. Another BTM application is to ensure uninterrupt-
ible power supply [73, 129]. Stationary BSSs are installed in hospitals, for example, and kept in a
charged state in order to continue to meet power requirements in the event of power failures. Large
scale BSSs can also be installed BTM side by side with PV or wind farms to prevent large feed-in
peaks and to smooth the feed-in [130–132]. This would also prevent shutdown when there is excessive
wind or solar radiation. In this way, the integration of renewable energy into the electricity grid
would be supported. Another exemplary FTM application is BSSs providing black start capability
to rebuild the electricity grid in case of outages [28, 133]. In addition, BSSs can be applied off-grid
using renewable generators and BSSs, where the BSS covers the load at times of insufficient genera-
tion, similar to the SCI application [28, 134]. An application of stationary BSSs associated with the
ramp-up of electromobility, is buffer storage placed at fast charging stations for EVs [135–137].
With the help of buffer storage, EVs can be charged simultaneously with high power. If the charging
stations are subsequently no longer occupied, the buffer storage can be recharged with lower power.
This means that the electricity grid does not have to be expanded, or only to a lesser extent, in order
to install the fast charging stations at the location [137]. Buffer storage can be provided by flywheels,
hydrogen storage or, due to their low cost and high efficiency, batteries [136].

In addition to the individual applications described, concepts have been developed to combine them
in multi-use operations [64, 138, 139]. Multi-use can be executed sequentially, in parallel or dynami-
cally [140, 141]. In sequential multi-use, different applications are executed one after the other [140].
For instance, a stationary BSS can provide FCR at night and be used for PS during the day. Parallel
multi-use is defined by the simultaneous provision of different applications [140]. In this case, a certain
fraction of the power and energy of the BSS is allocated to each application. In dynamic multi-use,
the allocated fractions of power and energy vary so that more or less power and energy is allocated
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to the applications depending on factors relevant to the application [140]. Research has shown that
combining applications can increase the profitability of BSSs [140, 142]. However, regulatory hurdles
must be overcome for implementation of multi-use [142, 143]. A special form of sequential multi-use
is the combination of mobile applications and stationary applications. Batteries of e-Cars that are
temporarily used for mobility can either be used in stationary applications after the mobile usage time
in second-life or second-use scenarios. Alternatively, mobile applications and stationary applications
can alternate by using the vehicles for stationary applications during idle times. This V2X use is
introduced in section 4.1 of this thesis as ”dual use”.

The topic of stationary BSS applications runs throughout the whole thesis. The focus is on the
applications SCI, PS, FCR and spot market trading, as these are the dominant stationary applications
with already existing markets [27]. These applications will therefore be interesting for the V2X use
of EVs in the future. In chapter 3.1, the questions of what typical stationary applications are and
how LIBs are used in these applications are answered. The LIB stress is compared with mobile
applications in chapter 3.2. In chapter 3.3, load profiles are anonymized and then the impact on the
load of stationary BSSs in different applications is evaluated. Subsequently, in chapters 4.1 to 4.3, the
provision of typical stationary applications with commercial EVs is simulated and optimal vehicle pools
are formed. Therein, various research questions on the potential of providing stationary applications
with pools of EVs are answered. Lastly, chapter 5 then answers research questions on the V2X impact
on e-Cars, e-Buses, and e-Boats in various stationary applications.

2.3 Battery storage in mobile applications

In addition to the stationary applications described, LIBs are also used in mobile applications. Cam-
corders and cell phones were the first portable applications for LIBs in the 1990s [24]. Other portable
electronics applications today include tablets, laptops, wearables and power tools [53]. The focus of
this thesis is on transportation means that have also been gradually electrified over the last 30 years [24,
53]. In contrast to the stationary battery applications, the purpose of using batteries in transporta-
tion means is self-explanatory: transporting people and cargo. Chapter 3.2 of this thesis addresses
research questions related to mobile applications. One focus is on the energy consumption of e-Cars
and e-Buses. Another focus is on the battery stress in the e-Cars, e-Buses and e-Boats applications.
A comparison to the stress in stationary applications will be made and the influence of the charging
strategy will be discussed. In the following, the markets and characteristics of e-Cars, e-Buses and
e-Boats are explained, as these three means of transport are relevant for this thesis. Subsequently,
other means of transport will be briefly presented. In chapter 2.5, the link to the V2X use of the means
of transport is then drawn.

2.3.1 Electric Cars

In Germany, approximately 48,750,000 passenger cars were registered as of 01.01.2023 [144]. This
corresponds to an increase of 6 % in the last five years [145]. But not only the total number of cars
has increased in recent years. The number of pure battery electric cars increased by a factor of 19
from 54,000 in 2018 to 1 million cars in 2023 [144, 146]. Together with hybrid vehicles, the stock of
passenger cars with alternative drives was 3.75 million at the beginning of 2023 [144]. The number of
electric vehicles is also on the rise worldwide. As described in section 1.1, the number of e-Cars sold
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Figure 2.2: Power and capacity ranges of stationary and mobile BSSs. The areas of the stationary
BSSs are marked according to Figgener et al. [27, 149]. The ranges for mobile applications
are own estimations based on data from industry partners. The electric boats are on the
scale of catamarans, while large electric ferries can have capacities of over 1000 kWh.

worldwide rose from 1 million in 2017 to 10 million in 2022 [38]. Sorting the available models worldwide
by vehicle size, it is noticeable that almost 60 % of the models are sports utility vehicles (SUVs) or
large cars (E and F segments) [38]. The average battery capacities of e-Cars depend on the vehicle size
and the country considered. In 2022, small e-Cars had a sales-weighted average of 25 kWh in China,
35 kWh in Germany and 60 kWh in the USA [38]. For SUVs and large e-Cars, on the other hand,
the sales-weighted average in the countries named was 70 to 90 kWh [38]. Compared with the average
8.8 kWh HSS in Germany (see section 2.2.1), e-Cars therefore have an average battery capacity that
is three to ten times higher. Figure 2.2 compares the capacities and possible charging and discharging
power of the transportation means with the dimensions of stationary BSSs. Large e-Cars typically
have capacities of up to 100 kWh. The power with which e-Cars are connected to the electricity grid
corresponds to up to 22 kW in a domestic context and up to 350 kW with fast charging stations. With
the battery capacities mentioned, the e-Cars achieve ranges of 220 to 600 km [38]. However, a study
on mobility behavior in Germany showed that private cars (not specifically e-Cars) have an annual
mileage of 14,700 km, driving an average of only 40 km per day [43]. For e-Cars, studies showed even
lower annual mileage. A study from Belgium showed annual mileages of 5,000 to 6,000 km [147] and a
study in Shanghai almost 12,000 km [148]. The study on mobility behavior in Germany further showed
that private cars are parked on average 97 % of the time, and at home over 84 % of the time [43]. In
e-Cars, NMC LIBs are often used due to their advantages in terms of energy density [38]. Their market
share was 60 % in 2022 [38]. However, the share of LFP LIBs in e-Cars has increased in recent years,
mainly driven by China’s car manufacturers, so that their share amounted to 30 % in 2022 [38].
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2.3.2 Electric Buses

Alongside e-Cars, electrically powered buses are also gaining in popularity. From 2020 to 2021, the
number of e-Buses sold worldwide increased by 40 %, while the total number of sales remained con-
stant [40]. In 2022, the global share of e-Buses in all buses sold was already 4.5 % [38]. For example,
in Finland, where the government aims to reduce emissions in public transport, the share was already
65 % [38]. A leading country in the field of e-Buses is China, which accounted for 80 % of all e-Buses
sold worldwide in 2022 [38]. Figure 2.2 ranks the capacities and power ranges of e-Buses in comparison
to e-Cars and stationary BSSs. Compared to e-Cars, e-Buses have larger battery capacities. Depend-
ing on the application of the e-Buses, for instance as a school bus or transit bus, average capacities are
between 137 and 345 kWh [38]. Hochbahn Hamburg operates e-Buses with a capacity of up to almost
400 kWh, as will be shown in chapter 3.2. This means that the capacities of e-Buses are a factor of
five to 14 higher than those of small e-Cars (with 25 kWh) and in the range of industry BSSs. The
charging power is typically between 100 and 350 kW. The driving ranges of e-Buses vary depending on
the manufacturer and battery capacity. A study of the Chinese e-Buses market showed average ranges
of approximately 440 km for 2021 [150]. Despite the lower volumetric and gravimetric energy density,
95 % of e-Buses sold in China in 2021 were based on LFP batteries [150]. The reasons for this are the
lower cost, higher durability and higher safety compared to NMC batteries [150].

2.3.3 Electric Boats

The third mobile BSS application relevant to the thesis are e-Boats. While the market for e-Boats is
generally smaller than that for e-Cars and e-Buses, it is also forecasted to grow. Thus, the market
volume is expected to double from 2022 to 2028 [42]. In general, a distinction can be made between dif-
ferent types of boats. The EU defines a recreational boat as a boat used for sports and leisure purposes
that is between 2.5 and 24 meters long [151]. Catamarans, which are currently tested as autonomous
electric passenger ferries in Helsinki, for example, are often of a similar size [152]. Figure 2.2 compares
the capacity and power of e-Boats with the other means of transportation and stationary BSSs. The
battery capacities of catamarans range from 60 to 240 kWh [153]. The electric boat propulsion man-
ufacturer Torqeedo, who provided data for the results obtained in chapter 3.2 of this thesis, develops
drives for boats of a similar and smaller size [154]. Torqeedo uses NMC and LFP batteries as cell
chemistry [154]. An order of magnitude above the catamarans are ferries. These can also be powered
by batteries. Since May 2015 an electric car ferry has been operating in Norway, covering a distance of
5.7 km with its 1090 kWh battery [155]. There are also some hybrid concepts with battery and diesel
in the field of ferries [155]. For international shipping, i.e. ships of larger size driving larger distances,
LIBs are not yet seen as an option for decarbonization [156]. Batteries do not play a role as propulsion
systems here, in contrast to biofuels and e-fuels [156]. However, battery applications on international
ships do exist, for instance as backup power, spinning reserves and for load optimization [157].

2.3.4 Further transportation means

In addition to the three mobile applications for BSSs described in detail, a variety of other applications
exist where batteries are still a niche market. Trucks are also gradually being converted to alternative
propulsion systems [38]. Depending on the distance to be driven by the trucks, batteries in combi-
nation with electric motors offer a possibility of propulsion [158]. Fast-charging or battery swapping
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stations enable operation with few interruptions [158]. In 2022, 1.2 % of all trucks sold worldwide were
electrically powered trucks [38]. The average battery capacities of electric trucks in 2022 were between
92 and 311 kWh, depending on the truck size [38]. In addition, individual models reach capacities of up
to 800 kWh [38]. Another mobile application is trains powered by batteries [159]. In Germany, 36 % of
rail passenger traffic was carried by diesel trains in 2017 [160]. Worldwide, a quarter of passenger rail
transport was powered by diesel in 2019 [159]. Train manufacturers such as Bombardier and Siemens
are developing battery-electric trains to cover the routes without overhead lines, which could replace
diesel trains [160, 161]. Depending on the model, these trains have battery capacities of 300 to 700 kWh
and achieve battery-powered ranges of 35 to 80 km [160, 161]. Bombardier and Siemens rely on LIBs
with NMC cathodes and graphite or lithium titanate oxide (LTO) anodes for their 2020 models [160,
161]. Flight applications, such as drones, electric vertical take-off and landing aircraft and
small battery-powered aircraft, are other mobile applications of BSSs [162]. For these applications,
the specific energy density is most relevant [162]. While battery-powered drones are already in use,
electric vertical take-off and landing aircraft are still in development [163, 164]. Battery-powered re-
gional aircraft are not expected until after 2030, and commercial aircraft with more than 70 seats are
not expected until between 2040 and 2050 [165].

2.4 Usage profiles

A key focus of this thesis are time-series power demand profiles in various forms. Profiles are temporal
courses of values, which can have different temporal resolutions. Figure 2.3 provides an overview of the
forms of profiles relevant to this work. In this chapter, section 2.4.1 deals with the basics and forms of
profiles and section 2.4.2 with the analysis, processing and anonymization of load profiles.

2.4.1 Basics and forms of profiles

In this thesis, a distinction is made between various types of profiles, which are shown in simplified form
in Figure 2.3. One form of profiles are electrical load profiles, which describe the energy consumption of
devices, households or companies over time. In Germany, standard load profiles exist for households,
agriculture and commerce, which aim to describe the behavior of these entities in a representative
manner [166]. The standard load profiles have a resolution of 15 minutes and are often used in energy
system simulations and calculations where detailed, individual, measured load profiles are missing [89,
167, 168]. Household load profiles of 74 households with a resolution of 1 second were measured by
the HTW Berlin and published open-access [169]. These household load profiles are referenced in
chapter 3.1. In general, household load profiles change due to the increasing electrification of vehicles
and heat generation [170]. A simplified example of a load profile is shown in Figure 2.3 a).

Generation profiles can be measured from renewable generation units such as PV systems or wind
turbines. The profiles describe the power that is generated at the selected location and with the
dimensioned system at any given time. For Munich, for example, a PV generation profile with a
resolution of 1 second was measured at the Technical University of Munich and has been used in
several publications [79, 89, 171]. Figure 2.3 b) shows a simplified generation profile of a PV system
on a cloudless day. Residual load profiles can be generated as a result of load and generation profiles,
as explained in chapter 2.2.1. Figure 2.3 c) shows an example of a residual load profile. While load
and generation profiles always have a constant sign or are zero, residual profiles can have positive and
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Figure 2.3: Forms of Profiles relevant to this thesis.

negative values.

In addition to those demand and generation based profiles, BSS power profiles and BSS SoC profiles
can also be measured for storage facilities. Figure 2.3 d) shows a simplified BSS power profile where
the BSS is discharged in the morning, charged around noon and discharged again in the evening. As
shown in the exemplary figure, the residual load is not always reproduced in the BSS power profile
due to energy management decisions or voltage limits. Furthermore, SoC profiles can be measured for
storage systems using the battery voltage, indicating the SoC between 0 and 100 % at any time (see
Figure 2.3 e)). In chapters 3.1 and 3.2 of this thesis, batteries are simulated in various applications
and the power and SoC profiles are published open-access.

Chapter 3.1 also develops a methodology for determining representative candidates from a data set of
BSS power profiles. One approach would be to simply determine the mean value of all profiles at all
times. The problem with this methodology is that characteristic peaks are smoothed and the averaged
profile would therefore not represent the original profiles. The approach presented in this thesis is
based on the determination of a representative profile using various characteristics. Six characteristics,
such as the number of EFCs and the round-trip efficiency, are calculated for each profile. Subsequently,
the distributions of the characteristics of all profiles and their medians are calculated. The deviation
from the median of all profiles is then calculated for each profile and each characteristic. For this
purpose, the root mean square percentage error is calculated. The profile with the smallest root mean
square percentage error in all six characteristics is then selected as the representative profile. One
advantage of this method is that a real profile is determined as a representative profile for the set
of profiles, whereby characteristic peaks are retained. In addition, the method is straightforward to
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understand, reproduce and expand. If, in contrast, a random profile were selected, it could be an
outlier profile with regard to individual characteristics. The methodology is implemented in a storage
profile analyzer tool and presented in detail in chapter 3.1.

Another form of profiles related to EVs are vehicle driving demand and charging profiles (see Fig-
ure 2.3 f)). These profiles include discharging and recuperation during journeys and charging sequences
when the vehicle is connected to the electricity grid. Related to this, SoC profiles can also be deter-
mined for vehicles, as displayed in Figure 2.3 g). Moreover, in chapter 4.1 to 4.3 of this thesis power
and energy capability profiles are created. These profiles are based on the driving profiles of com-
mercial combustion engine vehicles. With the help of vehicle characteristics and assumptions about
consumption, for example, vehicle driving demand and charging profiles of EVs are simulated. These
profiles are used to determine the amount of power and energy a vehicle could additionally charge and
discharge for V2X provision in every time step while being idle. Figure 2.3 h) shows such a simplified
power capability profile. It indicates the possible additional chargeable and dischargeable power. If the
vehicle is at the charging station and already charged to a minimum SoC, the vehicle can still charge
and discharge a constant amount of power. If it is on the road or unplugged, the power capability
is zero. When the vehicle returns, the chargeable power is lower because the vehicle is already being
charged. However, charging could also be interrupted and the battery could be discharged instead.
For this reason, more power than the maximum charging station power can be released for the grid
during the charging process. As a result, the dischargeable power during the charging process is greater
than during idle times without charging. As soon as a threshold setpoint of minimum required SoC
is reached, the full charging and discharging power is available again. For the exact calculation of the
power capability profile, the available capacity and the service time of the respective market are also
taken into account, as the vehicle may also be energy-limited due to a very high or very low SoC.
Similarly to the power capability profile, an energy capability profile can be formed, which indicates
at what time how much energy can additionally be charged and discharged. These power and energy
capability profiles are used to determine possible revenues of commercial EVs on the FCR market in
chapter 4.1 and to compile vehicle pools optimally for various V2G applications in chapter 4.2.

2.4.2 Profile analysis, clustering and anonymization

Electrical load profiles of households and companies are of particular relevance for grid operators and
electricity supply companies. They use aggregated load profiles to predict electricity consumption
at various grid connection points. Load profiles can be evaluated in different ways. First, a simple
division into base and peak load is possible. An extension to five parameters was published by Price
in 2009, adding rise time, high load duration and fall time to base and peak load [172]. In addition
to the analysis in the time domain, load profiles can also be analyzed in the frequency domain using
discrete fourier transformation (DFT) [173]. The advantage of the analysis in the frequency domain is
that a data reduction is possible so that the amount of data to be stored is reduced compared to the
time domain [172]. A prerequisite for all analyses of load profiles is the prior recording of these, which
can be done using smart meters [173].

If a larger amount of data on load profiles is available, the clustering of these profiles is of particular
relevance. Clustering creates groups of similar profiles and new load profiles can be assigned to one
of the groups. The clustering can be carried out directly on the basis of the temporal load profiles or
indirectly on the basis of features that are calculated from the profiles [174]. Analogous to load profile
analysis in the frequency domain, feature-based clustering can save memory compared to clustering
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temporal load profiles [175]. If residential load profiles are clustered, four time ranges should be
considered according to Haben et al.: Overnight, morning, daytime and evening [176]. Clustering of
household load profiles is often performed using the k-means algorithm [177–179].

In addition to load profile analysis and clustering, the generation of synthetic load profiles is a focus
of research. Two approaches exist for the generation of synthetic household load profiles: bottom-
up and top-down [180]. In the first approach, the load profiles are formed on the basis of cumulative
consumption and temporal use data of individual consumers and appliances [181, 182]. Electric vehicles
and heat pumps can also be taken into account [183]. The top-down approach instead uses aggregate
data for countries or regions and breaks it down to individual households [180]. Here, for example,
seasonality and distribution of households are used [184]. Another form of top-down approaches uses
generative adversarial networks [185]. In this approach by Pinceti et al. the network learns from real
hourly resolved weekly load profiles to generate synthetic load profiles [185].

Load profiles of households and businesses are sensitive data that are not willingly shared or made pub-
licly available. However, since research institutions aim to use data from smart meters, Efthymiou et
al. have developed a method to anonymize smart meter data [186]. Anonymization of entire temporal
sequences was addressed by Pensa et al. by hiding infrequent, potentially sensitive, subsequences [187].
With their method they achieved k-anonymization, so that an individual household could not be dis-
tinguished from at least k-1 other households. The k-anonymization was extended by Machanavajjhala
et al. to include l-diversity, where for each sensitive attribute in a data set, there must be at least l
other attributes in the data set [188]. In addition to this anonymization of datasets, work also exists in
which load profiles were modified. For instance, if load profiles are discretized, the error in power loss
evaluations depends on the amount of discretization [189]. In addition, load profiles can be normalized
in various ways [190]. Besides normalization to the maximum, minimum and maximum can also be
used together. Last, one approach to anonymization is permutation of values. Li et al. permuted pairs
of values every 50 to 100 h to randomly change the profile [191].

Following up on the research, chapter 3.3 presents a new methodology to anonymize load profiles
via random permutations of base and peak sequences. For this purpose, individual load profiles are
automatically divided into base and peak sequences in a python-based tool and, depending on the
desired level of anonymization, the sequences are subsequently permuted randomly. Afterwards, the
effects of anonymization on the load of BSSs are determined in simulations. The advantages of the
method developed are easy traceability and the fact that a single load profile is sufficient to generate
one or more anonymized load profiles. The tool is published open-source and can be used by industry
and research [192].

2.5 Vehicle-to-X (V2X)

After introducing stationary applications in chapter 2.2, showing the growth of mobile applications
in chapter 2.3 and discussing load profiles in chapter 2.4, a key question is to what extend vehicles
can provide formerly stationary applications during idle periods. Private individuals and companies
buy vehicles for mobility and for transporting goods. This has the highest priority and the vehicle is
expected to be available for transportation when needed. But private cars are parked on average 97 %
of the time in Germany without being used for mobility [43]. Even if charging processes, buffer times
and desired constantly available minimum SoCs are factored in, there remains a considerable amount
of time in which the vehicle could be used for V2X. Manufacturers of e-Cars have also discovered the
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potential of V2X [193]. There is an increasing number of manufacturers who are implementing or have
announced bidirectionality for their e-Cars [193]. Developers of charging stations are now also working
on bidirectional and no longer just unidirectional charging stations [193].

In the following, the concept of V2X and the various forms of it are presented first (section 2.5.1).
Section 2.5.2 then explains the opportunities and barriers of V2X. After that, section 2.5.3 examines
the role of aggregators and how pools of EVs can be formed. Section 2.5.4 then presents the financial
potential of V2X in balancing markets. Subsequently, section 2.5.5 presents pilot projects and im-
plementations of V2X. Finally, section 2.5.6 introduces V2X beyond e-Cars with a focus on e-Buses,
electric trucks (e-Trucks) and e-Boats. Figure 2.4 provides an overview of the sections in this chapter.

2.5.1 Forms of V2X

A preliminary form of V2X is smart, unidirectional charging. This form of controlled charging can
already relieve the electricity grid and generate revenue, for example [45, 46]. Vehicles can be equipped
bidirectionally with additional software and hardware. For instance, the charging station must be
capable of bidirectional charging. In addition, the communication interface must be expanded, as
defined in ISO standard 15118 for communication between the car and the charging station [198].

The simplest form of V2X is Vehicle-to-Load (V2L). Here, energy from the vehicle is used to power
a consumer load. These loads can be construction sites or campsites, for example [199]. This allows
EVs to be used to provide electrical energy in places without a grid connection or renewable generators
with storage capabilities [199]. In 2011, for instance, V2L was used as an emergency power supply in
Japan after an earthquake [199].

The next level of V2X is V2H or V2B. In the former, the vehicle is used to supply the house with
electrical energy [199]. In the latter, the supply is made to a building, which is, for instance, a
company [200]. These forms of V2X are BTM applications because they are carried out behind the
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Figure 2.4: Overview of V2X sections. ”From research to industry” section shows an excerpt of the
projects with the logos from the final reports [194–197]. The green circles represent the
section of the thesis in which the topic is addressed.
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electric meter. In households, e-Cars can replace or supplement HSSs to serve as backup power or
in SCI application. In addition, vehicles used for commuting could be charged with (surplus PV)
electricity at the employer’s site and discharged in the evening at home to meet the household load.
For businesses, residential or commercial EVs (e-Cars or e-Buses) could also be used as backup power.
In addition, pools of EVs could also perform PS for the company, replacing or supplementing stationary
commercial BSSs. If the vehicles are also at the company site in the evening or at night, for example
in the case of commercial vehicles, these could also operate in SCI application by storing PV energy
during the day and discharging it again in the evening and at night. V2H and V2B concepts are
sometimes grouped together as vehicle-to-customer [47]. A special form of the BTM V2X applications
is Vehicle-to-Vehicle (V2V) [201]. Here, one vehicle is discharged in order to charge another vehicle.
This can make sense for commercial fleets or carsharing concepts if a vehicle is fully charged but is
needed later than a vehicle that is not yet charged [201, 202].

The concept of using EVs during idle times for FTM applications is called V2G [201]. In V2G, the
vehicles can be used for arbitrage trading on the intraday market to charge the vehicles at times of
low prices and discharge them again at times of high prices. In addition, pools of vehicles can be used
to provide balancing power to the electricity grid in the FCR application.

2.5.2 V2X opportunities and barriers

The V2X concepts presented bring opportunities, but barriers also exist to their implementation.
First, all concepts represent a general improvement in the sustainability of vehicles. Instead of being
used exclusively for mobility, the vehicle batteries can also be used during idle times. In chapters 3.2
and 4.2, we introduce the utilization ratio, which indicates the proportion of time a battery is used in
stationary and mobile applications. We show in those works that the utilization ratio is increased by
V2X provision. If the existing batteries in EVs are utilized more, the construction of new stationary
BSSs can be reduced and thus sustainability improved.

Second, V2X concepts enable business benefits for vehicle owners and economic benefits for
societies. Vehicle owners can sell their battery capacity to aggregators during idle periods. However,
care must be taken to ensure that the aging costs of the battery due to V2X provision do not exceed
the revenues [63, 203]. Possible revenues and profits from the provision of balancing services with EVs
are discussed in detail in section 2.5.4. From a macroeconomic perspective, pools of EVs participating
in the FCR market can reduce the cost of balancing power. In addition, the cost of grid expansion
requirements can be reduced when vehicles meet peak loads by discharging or peak generation by
charging [201].

Third, the vehicles introduce flexibility on the generation and consumption side. Through variable
charging and discharging, they can support the expansion of renewable energy through V2H and
V2G [199]. At the distribution grid level, this would allow more PV systems to be installed without
causing voltage problems. Thus, V2X concepts contribute to the decarbonization of electricity supply.

Based on the advantages described above, the question arises as to why the currently available EVs are
not yet V2X-capable. This has several reasons. First, there are stakeholder barriers. On the one
hand, the ramp-up of electromobility has only been in full swing for a few years. Car manufacturers
were focused on the development of EVs, so few resources were available for the ”add-on” V2X. On
the other hand, established car manufacturers are new to the electricity sector. Before the electromo-
bility, the transportation sector and the electric power sector were separate. This further complicates
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the implementation of V2X on the car manufacturer side. However, many manufacturers have now
recognized the potential of V2X and announced V2X capable vehicles [193].

But the implementation of V2X also means major changes for other stakeholders, which entails grid
barriers. TSOs and distribution system operators (DSOs) always had to deal with large, centralized
generators and a variety of consumers. Large-scale stationary BSSs are similar to existing pumped-
storage power plants as energy storage facilities, and were therefore easier to integrate into the elec-
tricity grid from a regulatory perspective than many small BSSs. The development of smaller HSSs
that could also provide grid services together as a pool required TSOs to expand their regulatory
framework [204]. However, unlike HSSs, EVs are not always available and the grid connection point
varies depending on the location of the vehicle. Accordingly, V2X-enabled EVs can sometimes be
connected to bidirectional charging stations and sometimes to unidirectional charging stations. In ad-
dition, EVs can be connected to DC charging stations and to AC charging stations. In the former, the
charging station converts the AC grid current into DC vehicle current when charging and vice versa
when discharging. If a bidirectional EV is connected to the grid in this way, the necessary grid codes
for grid connection can be implemented in the DC charging station [193]. However, if the vehicle is
connected to AC charging stations, the AC/DC converter must be installed in the vehicle. Accordingly,
the grid codes for the grid connection would have to be installed in the vehicle [193]. The vehicle’s
behavior would therefore have to vary depending on its location [193]. Furthermore, standards for
the infrastructure and communication are required [199]. These are currently being created through
adapted ISO standards [193]. Despite the mentioned difficulties, the European TSOs have recognized
the potential of bidirectional vehicles and plan to adapt the market rules accordingly [101].

In addition to stakeholder and grid barriers, there are also technical barriers. Since the 1st generation
of EVs dominate today’s market and were often not developed with bidirectional charging capability,
there has been little incentive for charging station developers to develop bidirectional charging stations.
As a result, the market for bidirectional charging stations is still relatively small and prices are accord-
ingly higher than those for unidirectional charging stations [205]. However, this is currently changing
and more and more manufacturers are developing and producing bidirectional charging stations [193].
Another technical barrier in some countries like Germany and United Kingdom are missing smart
meters [206]. These are needed to measure the charged and discharged energy at least quarter-hourly.
This is especially relevant for V2G applications. To eliminate this problem, a new smart meter law
has been enacted in Germany in May 2023 to accelerate the rollout [193, 207].

Lastly, there are regulatory barriers to the implementation of V2X. In general, taxes and levies
are incurred for the consumption of electricity. The household electricity price in Germany in 2021
was around 0.322 €/kWh, of which only 0.079 €/kWh was for procurement and distribution [81]. At
the same time, average wholesale electricity prices were below 0.07 €/kWh [81]. If a V2X-capable EV
now pays the household electricity price including taxes and levies, the price spreads would have to
be extremely wide to achieve a profit margin. The fact that the electricity would only be temporarily
stored in the vehicles and then sold to end consumers, who in turn have to pay taxes and levies, leads
to double taxation [193]. According to Hecht et al., one solution to this could be to reimburse the
taxes and levies on the electricity fed back to the EV owner [193].
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2.5.3 Aggregator role and pool composition

In order to use EVs for V2X provision, aggregators are required that bundle the capacities of the vehicles
and decide on the charging and discharging processes [208, 209]. The need for aggregators arises from
the structure of the electricity markets. If FCR is to be provided in Central Europe, a minimum
capacity of 1 MW is required and the minimum volume on the EPEX intraday market is 100 kW [48,
105]. In addition to interfaces to the EVs, aggregators also need interfaces to the grid operator [208].
Independent of V2X, aggregators enable smart, cost-effective charging of the EV fleet [121, 210, 211].
In addition, algorithms have been developed on how aggregators can automatically bundle capacities,
anticipate driving behavior, cover all charging needs and bid on the elctricity markets [212, 213].

When selecting EVs for a pool or fleet to provide V2X, aggregators can use all vehicles of one com-
pany [214]. However, as early as 2011, Bessa et al. found that some EV types are better suited to
various V2X services than others [215]. The authors stated that at that time, fuel cell vehicles were
best suited for peak power sales and battery EVs for the regulation reserve market [215]. The authors
also noted in 2011 that the ancillary service market could become saturated with high EV partici-
pation [215]. In 2014, Schuller et al. found that V2G could be particularly worthwhile for retirees
with high charging power outlets [211]. The driving habits of this group of people make their vehicles
particularly interesting for V2X aggregators.

Following on from the research results, chapter 4.2 answers the question of how pools of commercial e-
Cars can be composed in an optimized manner. For this purpose, a new methodology on the basis of the
energy and power capability profiles of the vehicles is developed. An optimization method is applied to
determine which vehicle pool composition would generate the highest revenue per vehicle on the FCR,
intraday and day-ahead markets. This optimization problem is non-linear, as the revenue is divided by
the number of vehicles in the pool. If a vehicle is added to the pool, the revenue must be shared with
another vehicle. In addition, the decision variables are integer, as a vehicle can only be completely part
of the pool or not. For this nonlinear optimization with integer decision variables, genetic algorithms
are a suitable approach used in this work [61, 216, 217]. This metaheuristic optimization algorithm is
based on inheritance, mutation and recombination [216]. Genetic algorithms can solve the non-linear
optimization problem with large solution space relatively efficiently and faster than other algorithms
[217]. A disadvantage of genetic algorithms is that these metaheuristic approaches do not necessarily
find the global optimum. The optimized pools composed in chapter 4.2 are then analyzed in chapter 4.3.
Influencing factors such as economic sector and battery size are taken into account.

For the optimal pool composition, a utilization ratio is defined for the vehicles that describes the
proportion of time the vehicles are used for mobility or V2G provision. In chapter 3.2, in which only
unidirectional charging strategies are evaluated, this value is called temporal utilization ratio. The
additionally introduced dual use ratio in chapter 4.2 also describes the proportion of the possible V2G
time during which the EV is actually charged or discharged. In addition, the temporal V2G-ready
ratio is defined in chapter 3.2. This ratio indicates what proportion of the total time a vehicle type
can be used for V2G. In chapter 5, this parameter is called temporal V2X ready ratio, as not only
V2G but also V2B is taken into account there.

2.5.4 Economic potential in balancing markets

The economic potential of V2X depends on many influencing factors. First of all, EV models, installed
batteries and wallbox types are diverse. Which LIB is installed and how do the battery cells degrade due
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to the additional load? Is the vehicle battery capacity 20 kWh or 100 kWh? Is the vehicle connected
to an 11 kW charger at home or to a 200 kW fast charging station on the road and what are the
conversion efficiencies? Secondly, the driving behavior of the vehicle owner varies. Is the vehicle used
for commuting or only as a second car? Thirdly, revenue potential depends on the possible markets
at the location of the respective vehicle. These vary depending on the country or region. Finally, all
parameters are subject to development over time. Battery technologies, battery capacities, wallboxes
(power and bidirectionality), driving behavior and market prices develop or vary over time. These
points make it difficult to make fundamental statements about the economic potential of V2X. In the
following, the results of some published case studies and simulations on possible revenues from the
provision of balancing power by EVs are presented.

In 2005, Kempton and Tomić calculated potential annual revenues of $ 4928 if frequency regulation was
provided by a Toyota RAV4 in California in 2003 [218]. The revenue was offset by costs of $ 2374 [218].
Here they assumed a NiMH battery and round trip efficiencies of 73 % [218]. In 2019, Thingvad et al.
calculated possible annual revenues of 1395 € if Frequency Normal Operation Reserve was provided
with Nissan e-NV200 (24 kWh) and Nissan LEAF (30 kWh) in Eastern Denmark [46]. In their work,
the authors assumed V2G use between 4 p.m. and 7 a.m. with a possible charging and discharging
power of 10 kW [46]. Bañol Arias et al. extended the work to include costs and calculated annual
profits of between 100 € and 1100 € per EV [219]. Thingvad et al. carried out field tests and after
five years of operation determined the battery ageing and the real revenue of EVs providing balancing
power in Denmark [63]. Taking into account battery degradation and conversion losses and neglecting
investment and maintenance costs, annual profits of 751 € per EV were found [63]. Doumen et al.
determined the potential profit of EVs on the Dutch ancillary service market in 2019 [220]. In addition
to revenue, they also took investment and operational costs into account and came to the conclusion
that FCR provision with FCRs in the Netherlands was not worthwhile at that time, as the annual profit
in the best-case scenario was around -410 € [220]. In their work on multi-use with EVs, Englberger
et al. calculated 2224 € in annual cash flow when FCR provision is combined with SCI, PS and spot
market trading [9]. In this study, e-Car profiles were simulated with the emobpy tool which correspond
to the mobility behavior of private cars in Germany [50]. The prices for FCR and intraday trading
were based on the year 2020 and the location Germany [9].

In chapter 4.1 of this thesis, the question of potential revenues of commercial EVs on the FCR market in
Germany is answered. In addition, the influence of the increasing flexibilization of the FCR market from
weekly to daily to 4-hour provision is examined. For this purpose, real driving data from commercial
combustion vehicles in Germany is used, equivalent EV battery capacities are estimated using the
vehicle size and the power and energy capability profiles of the EVs already presented in section 2.4.1
are formed. These profiles are used to estimate potential revenues on the FCR market. This resulted in
potential revenues of 450 € to 750 € per vehicle in 2021. Following on from this, the profiles are used in
chapter 4.2 to compile optimized vehicle pools. The chapter also introduces the power utilization rate.
This rate describes what proportion of the possible EV pool power is actually used in FCR provision.
Due to regulatory requirements and bid increments of 1 MW, not all of the power can be marketed for
FCR. Chapter 4.3 then examines, among other things, how a reduction in increments and minimum
bids affects revenue in the FCR market.
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2.5.5 From research to industry

The potential of V2X was already recognized over 20 years ago [221]. In the last decade, in parallel
with the growth of electromobility, a number of research and pilot projects were launched worldwide
to test the V2X capability of EVs.

In California, a project called Vehicle-to-grid demonstration project: Grid regulation ancillary service
with a battery electric vehicle already took place in the early 2000s [222]. In this project, an e-Car
was expanded to include bidirectional charging capability in order to test the provision of balancing
power. An aggregator function was then developed that act between the grid operator and the ve-
hicle and informed the vehicle via the internet which power was to be charged and discharged. The
results of the project were that the wireless data transmission times met the ISO conditions and the
energy throughput during the provision of balancing power roughly corresponded to the load of daily
driving. [222]

From 2012 to 2015, the INEES project took place in Germany, which investigated the intelligent grid
connection of e-Cars for the provision of ancillary services [194, 223]. For the one-year fleet trial,
20 Volkswagen e-Ups were expanded to include bidirectional charging capability and tested for the
provision of aFRR (then called secondary control reserve). The results of the project were that pools
of EVs are generally technically capable of providing balancing power, but the load leads to increased
battery degradation. [194, 223]

In the Los Angeles Air Force Base Vehicle-to-Grid Demonstration project, 29 combustion vehicles
were replaced by bidirectional EVs by 2018 and tested for frequency regulation provision [224]. Over a
period of 20 months, the EVs generated 255 MWh of up regulation and 118 MWh of down regulation.
This corresponds to an average of around 15 kWh of additional discharged energy per day and vehicle
and 6.5 kWh of additional charged energy per day and vehicle. The capacity loss of the vehicle batteries
was between 5 % and 10 %, whereby the sole influence of V2G use could not be determined. However,
since, according to the authors, the vehicles only consumed an average of 1.4 kWh per day for trips, a
large proportion of the degradation can be attributed to the provision of V2G. [224]

The Parker project was carried out in Denmark from 2016 to 2018 [195, 225]. In this field test, FCR
was successfully provided with various EVs models and DC V2G chargers. Potential revenues were
also determined here, but these depend heavily on the influencing factors of FCR prices, V2G charger
cost and efficiency, energy costs and battery ageing. As a result, the profit per car and year in the test
was between -955 € and 2304 €. [195, 225]

Furthermore, the V2GB - Vehicle to Grid Britain project ran from 2018 to 2019 [196]. This project
determined value and costs of V2G in the UK. One result was that by reducing the need for grid
expansion due to peak demand reduction, £ 200 million can be saved between 2020 and 2030 compared
to uncontrolled charging. [196]

Between 2019 and 2023, the German research project BDL - Bidirectional Charging Management
investigated which use cases could be of interest for V2X [197]. For this purpose, 20 test vehicles were
tested in the field for V2X provision. The project partners came to the conclusion that V2H, V2B and
V2G will all be economically viable in the future, with the economic viability of V2H being the most
robust in the evaluations. [197]

In addition to the aforementioned research projects, there have also been a number of industrial pilot
projects in recent years. A wide variety of companies have already tested V2X [226, 227]. In June
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2023, Renault announced that the Renault 5, which will be sold from 2024, will be V2G-capable [228]
Other manufacturers have also announced bidirectionality for their e-Cars, although some of these are
limited to V2L [193].

2.5.6 V2X with further means of electric transportation

Due to the expected market size and the long idle times, V2X research is largely focused on e-Cars.
However, the relatively large battery capacities and predictable driving style of e-Buses have also led
to an increased investigation of V2X provision with e-Buses in recent years [47, 229, 230]. Already in
2014, Noel et al. compared the use of V2G-capable electric school buses with diesel-powered school
buses [231]. The authors concluded that in each case of their sensitivity analyses the e-Bus would
bring a net present benefit [231]. Part of the benefit was V2G revenue, which amounted to $ 15,000
per year by participating in the US PJM frequency regulation market [231]. Verbrugge et al. also
recommended including V2X features in e-Bus charging management strategies in their 2021 publica-
tion [230]. Manzolli et al. found in 2022 that it would be economical for e-Bus operators to provide
V2G below 100 €/kWh battery replacement costs [232]. This could reduce operating costs by 38 % in
2030 [232]. A paper by Fan et al. analyzed in 2023 the V2G provision with e-Buses in Japan and
concluded that the revenue from the provision is lower than the revenue from bus tickets and that
arbitrage trading with e-Buses in Japan is more economical than FCR provision [233].

Alongside e-Buses, there is also research into the provision of V2X with e-Trucks [234, 235]. In 2012,
De los Rios et al. investigated the reduction of operating costs of a fleet of delivery trucks, assuming
that the trucks were V2G capable [234]. They came to the conclusion that the total cost of ownership
could be reduced by 5 to 11 % through V2G [234]. Furthermore, Zhao et al. showed in 2016 that
V2G provision with e-Trucks can not only reduce the total cost of ownership, but also greenhouse gas
emissions [235].

Moreover, some research work exists on V2X provision with e-Boats and electric ships [236–238]. In
2019, Mahmud et al. published a method in which they used the energy from bidirectional e-Boats to
cover the electrical demand and provide ancillary services on a remote island [236]. Two years later,
Pintér et al. published a study on the energy storage potential of ”boat-to-grid” at Lake Balaton in
Hungary [237] According to the authors, the e-Boats available there in 2021 had a total capacity of
4.8 MWh and therefore represent a potential that should be exploited using V2G [237]. Jozwiak et al.
used the flexibility of e-Cars and e-Boats in their investigations of a marina in Denmark [238]. They
also calculated possible cost savings through V2G with e-Cars and the flexibility of e-Boats.

Chapter 5 of this thesis aims to fill the research gap on the V2X use of e-Buses and e-Boats and the
associated additional load on the LIBs. The temporal utilization ratio and the resulting V2X ready
ratio are relevant for V2X use with various vehicles. In addition, the effects on battery-relevant param-
eters, the predictability of the driving behavior and the available capacity and power are important
indicators. Chapter 5 examines those important indicators and shows the predictability of the EVs.
Moreover, it analyzes how the V2X ready ratio varies over the course of the week. In addition, param-
eters relevant to LIBs with and without V2X provision are examined and the effects of V2X on the
degradation behavior of e-Car LIBs are investigated using a degradation model.
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Chapter 3 of this thesis summarizes three research publications on BSS applications and load profiles.
First, section 3.1 presents an investigation of stationary BSSs in the three applications SCI, FCR
and PS. It also presents a methodology for determining representative storage power profiles from a
set of profiles. Then, in section 3.2, the three mobile BSS applications e-Car, e-Bus and e-Boat are
examined and the impact on the batteries in these applications is investigated in addition to the energy
consumption. Finally, section 3.3 presents a methodology that can be used to gradually anonymize
electrical load profiles.

3.1 Investigation of stationary battery storage systems in various
applications

This section presents the research paper entitled Standard battery energy storage system profiles: Anal-
ysis of various applications for stationary energy storage systems using a holistic simulation framework
[1]. The paper examines three stationary applications for BSSs and determines representative storage
load profiles. Representative standard load profiles, such as the H0 load profile and worldwide harmo-
nized light vehicles test procedure (WLTP) load profiles, exist for private households in Germany and
e-Car loads [166, 239]. Such representative load profiles were lacking for BSSs in stationary applica-
tions. This made it difficult to compare simulation results from different institutions if they are based
on various assumptions or locations. If, for example, the performance of a new battery technology is
to be assessed and compared with established technologies in stationary applications, distortions may
occur due to variable load and generation profiles. This section presents a method for generating rep-
resentative load profiles of stationary BSSs. Furthermore, storage and SoE profiles are also published
as open-access data to enable their use in other works.

The work focuses on the three stationary applications SCI, PS and FCR. The applications are simulated
using input profiles in the simulation tool SimSES. For the households in SCI applications 74 open-
access household load profiles and one PV generation profile are used, for the PS application 36
industrial load profiles and for the FCR application five grid frequency profiles are used. The systems
and energy management system strategies are designed according to regulatory requirements (FCR)
and typical configurations (SCI and PS). This results in a number of storage load and SOE profiles,
which are then analyzed in a profile analyzer tool developed within this work. The profile analyzer tool
quantifies six key characteristics with relevance to layout, performance and ageing related behavior of
the BSS for each profile, such as average SoC and number of EFCs. The median values of the six key
characteristics are then determined for each set of profiles of an application and design. The profile that
has the minimum root mean square percentage error from the median value in all six characteristics
is then selected as the reference profile.

The research questions answered in this section are:
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1. What are typical stationary applications of BSSs and how are LIBs utilized in these applications?
2. How can representative profiles be determined from a set of stationary BSS load profiles?

The results of this section show that stationary BSSs are stressed differently in the three applications.
The annual EFCs range from 19 to 282 and the round-trip efficiency varies between 83 and 93 %,
also depending on the system design. Furthermore, mean cycle depths, length of resting periods and
changes of sign vary in the three applications. In addition, a methodology for extracting representative
storage load profiles is developed and published and the reference profiles determined are published
open-access as part of the publication.

The results regarding the utilization of LIBs in stationary applications are then compared with the
load in mobile applications in section 3.2. In addition, the load profiles determined in the stationary
applications are used in chapter 5 to simulate the V2X provision of e-Cars, e-Buses and e-Boats. For
this purpose, depending on the available pool size, a fraction of the power provided by the stationary
BSS is provided by the vehicle during idle times.

Author contribution
Daniel Kucevic was one of two first authors tasked with coordinating and writing the paper and
developing SimSES. Benedikt Tepe was the other first author, who programmed the profile analyzer
tool and wrote contents within the data preparation, analysis and results. Both Daniel Kucevic and
Benedikt Tepe contributed equally to this work. Stefan Englberger helped with programming and
writing the peak-shaving algorithm. Anupam Parlikar helped with gathering data and the selection of
the characteristics. Markus Mühlbauer was co-responsible for the dynamization of the input data and
helped with the selection of the characteristics. Both Oliver Bohlen and Andreas Jossen contributed
via fruitful scientific discussions. Holger Hesse reviewed the manuscript and was giving valuable input
throughout the manuscript preparation. All authors discussed the data and commented on the results.

32



3.1 Investigation of stationary battery storage systems in various applications

Standard battery energy storage system profiles: Analysis of
various applications for stationary energy storage systems

using a holistic simulation framework

Daniel Kucevic, Benedikt Tepe, Stefan Englberger, Anupam Parlikar, Markus Mühlbauer, Oliver
Bohlen, Andreas Jossen and Holger Hesse

Journal of Energy Storage, Volume 28, 2020

Permanent weblink:
https://doi.org/10.1016/j.est.2019.101077

Reproduced under the terms of the Creative Commons Attribution 4.0 License
(CC BY, http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse of the work in any medium, provided the original work is
properly cited.

33

https://doi.org/10.1016/j.est.2019.101077
http://creativecommons.org/licenses/by/4.0/


Journal of Energy Storage 28 (2020) 101077

Available online 28 January 2020
2352-152X/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Standard battery energy storage system profiles: Analysis of various 
applications for stationary energy storage systems using a holistic 
simulation framework 

Daniel Kucevic a,1,*, Benedikt Tepe 1,a, Stefan Englberger a, Anupam Parlikar a, 
Markus Mühlbauer b, Oliver Bohlen b, Andreas Jossen a, Holger Hesse a 

a Institute for Electrical Energy Storage Technology, Technical University of Munich (TUM), Arcisstr. 21, Munich 80333, Germany 
b Department for Electrical Engineering and Information Technology, Munich University of Applied Sciences (HM), Lothstr. 64, Munich 80335, Germany   

A R T I C L E  I N F O   

Keywords: 
Battery energy storage system 
Lithium ion 
Storage system design 
Stationary application 
Operation strategy 
Standard profiles 

A B S T R A C T   

Lithium-ion batteries are used for both stationary and mobile applications. While in the automotive industry 
standard profiles are used to compare the performance and efficiency of competing vehicles, a similar 
comparative metric has not been proposed for stationary battery energy storage systems. Because standard 
profiles are missing, the comparable evaluation of different applications with respect to efficiency, long-term 
behavior and profitability is very difficult or not possible at all. This work presents a method to create these 
standard profiles and the results are available as open data for download. Input profiles including frequency data, 
industry load profiles and household load profiles are transformed into storage profiles including storage power 
and state of charge using a holistic simulation framework. Various degrees of freedom for the energy manage
ment system as well as for the storage design are implemented and the results are post-processed with a profile 
analyzer tool in order to identify six key characteristics, these being: full-equivalent cycles, efficiency, depth of 
cycles, resting periods, number of changes of sign and energy throughput between changes of sign. All appli
cations examined in this paper show unique characteristics which are essential for the design of the storage 
system. E.g., the numbers for annual full-equivalent cycles vary from 19 to 282 and the efficiency lies between 
83% and 93%. With aid of this work in conjunction with the open data results, users can test and compare their 
own cell types, operation strategies and system topologies with those of the paper. Furthermore, the storage 
power profiles and state of charge data can be used as a reference for lifetime and profitability studies for sta
tionary storage systems.   

1. Introduction 

A high share of renewable energies poses new challenges to the 
power grid. Due to decreasing costs of Lithium-Ion Battery (LIB), sta
tionary Battery Energy Storage Systems (BESSs) are discussed as a viable 
building block in this context. In Germany, the installed storage power 
with batteries increased from 126 MW in 2015 to over 700 MW in 2018 
[1]. Many use cases seem to be of interest for BESSs, as summarized in a 
report by Eyer and Corey [2]. In particular, the provision of Frequency 
Containment Reserve (FCR), Peak Shaving (PS) in the industry sector 
and Self-consumption Increase (SCI) in the private sector are seen as the 
most prominent applications for BESSs [3,4]. There seems to be 

consensus, that these applications are the main drivers for the stationary 
battery storage market. However, if it comes to quantitative analyses of 
profitability, efficiency and aging of storage systems in a singular use 
case or even across applications, striking differences in numbers become 
apparent. In order to make single applications easier to compare, 
open-source available reference profiles for stationary BESS, similar to 
the widely used Worldwide Harmonized Light Vehicles Test Procedure 
(WLTP) for electric vehicles applications, are suggested herein and may 
help to assess the performance of BESSs. 

1.1. Literature review 

The state of the art of LIB based stationary BESSs is reviewed e.g. by 
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Diouf et al. [5] and Hesse et al. [3]. Both conclude that LIB based sta
tionary BESSs have advantages in different stationary applications 
compared to alternative technologies. A more general overview of sta
tionary storage systems, including other storage technologies, is given 
by Palizban and Kauhaniemi [6], Resch et al. [4] and Dunn et al. [7]. All 
authors highlight the high efficiency of LIB-based BESSs, but the 
numbers, due to different definitions, vary from less than 90% up to 
94%. A systematic review of Energy Management System (EMS) for 
BESS was published by Weitzel and Glock [8]. The placement in dis
tribution grids of stationary BESS is summarized in the review of Das 
et al. [9]. An example for optimized placement using simultaneous 
perturbation stochastic approximation method was published by 

Carpinelli et al. [10]. 
Regarding the provision of FCR with BESS, a number of papers have 

been published in the past. Specifically for several techno-economic 
evaluations different approaches exist [11–15]. Münderlein et al. [16] 
analyzed a large scale 5 MW and 5 MWh BESS in the FCR market. Apart 
from the fact that the focus of the individual authors is different, it is 
noticeable that many different numbers exist. For example the authors 
in [16] determined 147 Full Equivalent Cycles (FEC) per year, while the 
numbers of FECs in [13] varies from 207 to 254 per year. 

In the case of SCI, many publications with various objectives exist. 
The publications can be split into economic analyses [17–20] and sizing 
of the system [21–23]. All authors conclude that a BESS for SCI can be 

List of Abbreviation 
AC Alternating Current 
BESS Battery Energy Storage System 
C Carbon-Graphite 
DC Direct Current 
DOC Depth of Cycle 
DOF Degrees of Freedom 
E-rate Energy Rate 
ECM Equivalent Circuit Model 
EMS Energy Management System 
FCR Frequency Containment Reserve 
FEC Full Equivalent Cycles 
IDM Intra-Day Market 

IP Input Profile 
LFP Lithium-Iron-Phosphate 
LIB Lithium-Ion Battery 
NMC Nickel-Manganese-Cobalt-Oxide 
OCV Open Circuit Voltage 
PE Power Electronics 
PER Power to energy ratio 
PS Peak Shaving 
PV Photovoltaic 
SCI Self-consumption Increase 
SimSES Simulation Tool for Stationary Energy Storage Systems 
SP Storage Profile  

Fig. 1. Graphical overview of this work. The input profiles including frequency data, industry load profiles and household load profiles are transformed into storage 
profiles including storage power and state of charge using the simulation framework SimSES. The selection of suitable reference profiles is done with a profile 
analyzer tool developed as part of this publication. 
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economically viable, if the Photovoltaic (PV) unit and the storage ca
pacity are dimensioned correctly. However, a wide variety of input data 
and parameters for the storage system (e.g. the efficiency for the LIB 
varies from 95% in [21] to 98% in [20]) are used in the publications, 
which makes comparability difficult. 

For industry PS BESSs with LIB, fewer publications are available, in 
contrast to SCI BESSs. Martins et al. [24] present an approach for an 
optimal component sizing and the authors also performed an economic 
analysis. They showed in a case study that the number of FEC varies 
between 1 and 51 per year. Dagdougui et al. [25] show an EMS for a real 
world example. They optimized the size of a PS BESS for a university 
campus. It has been found that in this example the economically optimal 
storage capacity is 436 kWh. Telaretti and Dusonchet [26] concucted an 
economic analysis and compared the use of LIB in PS applications with 
three other electrochemical technologies: Lead-acid, flow based batte
ries and sodium-sulphur. 

Although each author makes different assumptions and sets the focus 
differently, the results, some of which are very diverse, indicate that 
open data available standards for stationary BESS are desired. 

1.2. Scope of this work 

This work presents a method to create standard Storage Profile (SP) 
including the storage power and the SOC from Input Profile (IP) 
including frequency data, industry load profiles and household load 
profiles. The IPs are transformed into SPs by using the holistic simula
tion framework Simulation Tool for Stationary Energy Storage Systems 
(SimSES). Various Degrees of Freedom (DOF) for the EMS and the sys
tem configuration are implemented in SimSES and the results are post- 
processed with a newly developed profile analyzer tool in order to 
identify some key characteristics, such as efficiency, FEC or Depth of 
Cycle (DOC). 

Fig. 1 shows the scope of this paper in detail. The simulation 
framework, as well as the results, including SPs and the SOCs, are made 
available as open-source. The results are available in one second reso
lution and may facilitate the comparison of the same applications among 
each other in the future. As an example, own system configurations or 
developed EMS can be compared with the numbers of this paper. 
Furthermore, the open-source available data can be used as a reference 
for lifetime and profitability studies for LIBs. 

1.3. Paper structure 

Section 2 gives an overview of the origin of the IPs and the pre- 
processing of the raw data sets. Section 3 describes the simulation tool 
SimSES with various DOFs and the developed EMS. In the remaining 
part of the paper, the SPs are analyzed (Section 4) and the choice of the 
reference profiles (Section 5) is described. Section 6 gives an outlook to 
future work and concludes this paper. 

2. Profile data and preparation 

In this chapter, the database of household load profiles, industry load 
profiles and frequency data is explained (Section 2.1). Herein, the data 
sources and time frames are described. The processing of this data is 
covered in Section 2.2. Subsequently, the normalization of the profiles is 
illustrated, which is required for comparison of data (Section 2.3). 
Finally, Section 2.4 covers the clustering of profiles. 

2.1. Data basis 

The creation of reference load and storage profiles demands a data
base that is sufficiently detailed to represent the specific type of profile. 
As described in Section 1, this paper considers three different applica
tions of storage systems: SCI in the private sector, PS in the industry 
sector and the provision of FCR. These three applications require specific 

data with specific resolution which is displayed in Table 1. 
Firstly, high resolution frequency data is required to investigate the 

storage application of FCR [27]. This one second resolution data for the 
years 2013 until 2017, that can be measured at every socket within the 
synchronous grid of Continental Europe, is provided by the transmission 
system operator 50hertz Transmission GmbH [27]. Exemplary data of the 
year 2017 is shown in Fig. A.12. 

The analysis of the performance of SCI requires household load 
profiles and photovoltaic generation profiles. Therefore, 74 load profiles 
published by the HTW Berlin are used [28]. Moreover, one photovoltaic 
profile measured at TU Munich which was already published in several 
previous papers [17,19,29] was used. These profiles also have a reso
lution of one second. To perform PS with a storage system, industry load 
profiles are needed. Therefore, 36 annual industry profiles with a reso
lution of 15 min are gathered within the EffSkalBatt project2Frequency 
data, household load profiles and industry load profiles work as IPs for 
SimSES (see Fig. 1) which will be explained in Section 3. 

2.2. Data processing 

The gathered data of frequency, load and photovoltaic profiles is 
processed before using them within the simulations. The frequency data 
for performing FCR with a BESS contains some doubtful values ( < 49 
Hz or  > 51 Hz). All such values were replaced by linear interpolation of 
frequencies before and after. As the raw industry load profiles used for 
PS have a resolution of 15 min, this data is transformed into profiles with 
a resolution of one second. For this reason, the following procedure is 
applied to create second-based profiles: First, the 15-min points are 
interpolated linearly to create points based on minutes. Then random 
numbers are build, which replace each interpolated value. Each random 
number lies within the coefficient of variation of 0.25 of the normal 
distribution with a mean of the interpolated value. Afterwards, the 
minute-based values are interpolated linearly again to reach a second- 
based load profile. 

This procedure only estimates the high-resolution load profile. 
Possible load peaks that just appear for a few seconds are not taken into 
account. Those short peaks are crucial when regarding battery lifetime 
and safety [30,31]. Within the application of PS the presented procedure 
to reach second-based load profiles is sufficient, as the storage system 
only has to provide the required energy when peaks appear as long as 
the storage’s power is sufficient. The required energy can also be 
extracted from the 15-min load profile. Moreover, the yearly industry 
load profiles are chopped to match a Monday to Sunday pattern. 

2.3. Normalization 

After the aforementioned data pre-processing, the industry profiles 
are normalized, which is necessary for a comparison of profiles. The 

Table 1 
Storage applications, the data basis, the required data and the data resulution 
used in this work.  

Application: FCR SCI PS 

Database 5 years of 
Frequency Data 

74 yearly load profiles 
& one PV generation 
profile 

36 yearly 
industry load 
profiles 

Data resolution 
(raw data) 

1 s 1 s 15 min 

Data resolution 
(simulation) 

1 s 1 s 1 s  

2 EffSkalBatt Project: Efficient scalable system technology for stationary 
storage systems. Research project funded by the Federal Ministry for Economic 
Affairs and Energy (BMWi) with grant number 03ET6148 (http://www.ees.ei. 
tum.de/en/research/effskalbatt/). 

D. Kucevic et al.                                                                                                                                                                                                                                 

3 Battery applications and load profile anonymization

36



Journal of Energy Storage 28 (2020) 101077

4

industry profiles are normalized to their maximum value within the 
year. Thus, the maximal value of each profile is one and the minimal 
value is zero. This normalization method on each highest peak might 
differentiate profiles that are similar except for their highest peaks. If 
only those load profiles were compared, this method would not be 
appropriate. However, regarding the application of peak shaving, which 
concentrates on the highest peaks, those profiles are very different. With 
this method of normalization users can compare their own profiles with 
the published ones and add their profiles to the simulation. The raw data 
of household load profiles is already normalized to each maximal value. 

2.4. Clustering 

Prior to the creation of reference profiles from the pre-processed 
data, a clustering of the different groups of profiles is considered. This 
is due to the fact that, for example, the industry profiles do not all have 
homogeneous curves. Thus, similar profiles are clustered into groups. 
The clustering is performed using the simulation platform MATLAB® 
and the clustering algorithm k-means with euclidean distances as mea
sure of dissimilarity [32]. The k-means algorithm was chosen, as it ap
pears to be the most prominent one when comparing electric load 
profiles [33–35]. Other possible clustering methods would have been 
the hierarchical clustering or self-organizing maps, as published in [36] 
and [37]. 

When comparing the household load profiles to each other, they 
appear very homogeneous. The average value of each yearly household 
load varies between 0.6% and 4.4% of its yearly maximum value. In 
addition, the mean absolute deviations of the profiles’ offsets lie be
tween 0.8 and 3.6 percentage points. In contrast to that, the industry 
load profiles show bigger variations. The mean load of each profile lies 
between 30% and 75% of the profile’s yearly maximum. Thus, the in
dustry profiles’ offsets are substantially higher than the households’ 
ones due to their increased base load. The industry loads’ mean absolute 
deviations vary between 0.8 and 23 percentage points. 

As a consequence, the industry load profiles are clustered into three 
different groups while the household load profiles remain in one group. 
The number of three is chosen because three is the best compromise 
between differentiation and effort. 

Cluster 1 and 3 have an average load of 70% to 80% during the day 
and a base load of 20 to 30% at night but are shifted by a few hours. 
During the weekend, Cluster 1 exhibits the typical nightly base load 
while the load of Cluster 3 only sees the base load on Saturdays. In 
comparison, Cluster 2 does not have a typical day vs. night load profile. 
During working days the load varies between 50% and 100% and on 
weekends between 35% and 70%. 

3. Simulation framework for stationary energy storage systems 

To generate battery profiles and SPs from the IPs in Section 2 the 
software SimSES was used. SimSES is a modular object-oriented simu
lation tool, which was initiated by Naumann and Truong [38] and is now 
being further developed by the authors. The software allows the flexible 
usage of components, such as the power electronic or battery cell, of a 
BESS. The software code is programmed in MATLAB®, but will be 
converted to Python in the future and made available completely 
open-source. The current open-source version, including the simulation 
scripts for this publication and a link to the code of SimSES can be found 
online3. In this chapter the structure of SimSES (Section 3.1), the 
developed operation strategies (Sections 3.2–3.4) as well as the com
ponents used (Section 3.5) will be described. 

3.1. Simulation structure 

In SimSES the battery is implemented as a single-cell Equivalent 
Circuit Model (ECM). The terminal voltage UT of each cell is calculated 
from the Open Circuit Voltage (OCV) and the voltage drop (overvoltage) 
ΔU across the series resistance Ri, due to the current I (Eq. 1). The OCV is 
a function of the SOC. The series resistance Ri is dependent on the cur
rent direction sign sgn(I), the temperature T and the SOC. 

UT = UOCV − ΔU = UOCV − I⋅Ri(SOC, sgn(I),T) (1) 

The Power Electronics (PE) efficiency is modeled as a function which 
relies on the absolute output power |PStorage|, the rated power PRated and 
the current direction sgn(I) (Eq. 2). Fixed PE efficiency values or other 
functions, for example based on own investigations, can be modeled in 
SimSES as well. Beside the Direct Current (DC)/Alternating Current (AC) 
link, the PE can also include a transformer model. 

ηPE = f
(
|PStorage|,PRated, sgn(I)

)
(2) 

The core of SimSES is the EMS, which allows to simulate various 
tasks for a stationary BESS. As described in Section 1, the focus of this 
work is on the single-use applications FCR, SCI and PS. 

3.2. Frequency containment reserve 

The EMS for providing FCR in SimSES was developed according to 
the German regulatory framework [39,40]. The requested charging and 
discharging power PStorage,set is proportional to the frequency deviation 
Δf and is dependent on the prequalified power PPQ, which has a mini
mum of 1 MW (Eq. 3). Below 49.8 Hz or above 50.2 Hz PStorage,set is set 
to  ± PPQ. 

PStorage,set(t) = PPQ⋅
Δf (t)
0.2 Hz

for |Δf| ≤ 0.2 Hz

PStorage,set(t) = PPQ for Δf > +0.2 Hz

PStorage,set(t) = − PPQ for Δf < − 0.2 Hz

(3) 

If the SOC falls below a predefined lower limit (SOClow) or it exceeds 
an upper limit (SOChigh) the BESS in these simulations charges or dis
charges by trading energy on the electricity market, in particular the 
Intra-Day Market (IDM) [14]. Due to the current legal interpretation 
(May 9, 2019) [41], a BESS in the FCR market has to ensure that at all 
times the full prequalified power PPQ can be provided for 15 min as long 
as the frequency f is in normal progression. The normal progression 
means that the frequency deviation Δf is continuously less than 50 mHz 
or none of the following criteria is met:  

• |Δf| > 200 mHz  
• |Δf| > 100 mHz for more than 5  min  
• |Δf| > 50 mHz for more than 15  min 

The SOC limits also depend on the prequalified power PPQ and the 
storage capacity EBESS, and are calculated according to Eq. 4. 

SOChigh =
EBESS − 0.25 h⋅PPQ

EBESS
SOClow =

0.25 h⋅PPQ

EBESS
(4) 

To reach these limits as infrequently as possible, the efficiency must 
be taken into account and therefore the SOC setpoint is above 50% (Eq. 
5). The mean efficiency ηmean is calculated at the beginning of the sim
ulations and is dependent on the efficiency of the battery and PE. 

SOCOffset = 0.5⋅
(
1 − η2

mean

)

(
1 + η2

mean

) SOCSet = 50% + SOCOffset (5) 

Additionally to the SOC setpoint shift, the regulatory framework in 
Germany allows three different DOFs: 

3 http://www.ees.ei.tum.de/simses/ 
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• Frequency dead band: In the frequency range between 49.99 Hz and 
50.01 Hz, the output power of the BESS can be set to 0 MW and must 
not follow the frequency derivation according to Eq. 3.  

• Overfulfillment: It is allowed to overfulfill the requested power (Eq. 3) 
by 20 %.  

• Slope: The requested FCR power (Eq. 3) must be provided within 30 s 
or earlier. Therefore, the slope of the provided FCR power can be 
adjusted within the time interval of 30 s allowing to control the 
charging or discharging rate. 

In SimSES all DOF are only used, if the requested power either brings 
the SOC closer to optimum again or at least not further away. All degrees 
of freedom as well as the SOC limits, depending on the prequalified 
power PPQ, are shown schematically in Fig. 2. 

3.3. Residential photovoltaic battery storage system 

In SimSES two different operation strategies for the SCI of BESS are 
implemented: Greedy and an extension of feed-in damping based on Zeh 
and Witzmann [29]. 
Greedy 

The EMS for the greedy algorithm works with a simple comparison 
between the generation of the PV power system PPV and the consump
tion by the household Pload at each timestep. Whenever a solar surplus 
occurs (PPV > Pload), the BESS is charged and vice versa (Eq. 6). This 
conventional strategy is shown in Fig. 3 (top). These summer days show 
that the BESS is fully charged at around 9AM, which causes a rapid rise 
of the power fed into the grid. Another disadvantage of this strategy is 
the high charging power, which may lead to a faster decrease of the LIB 
capacity due to an increase of lithium plating as described in [30]. 

Fig. 3. Operation Strategies (top=greedy, bottom=feed-in damping) for the Residential Photovoltaic Battery Storage System. The shaded yellow area shows the 
generation of the PV power system, the blue line shows the load of the household and the gray line shows the storage power (positve=charging). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Degrees of freedom and the SOC limits, depending on the prequalified power PPQ. The top left subfigure shows the frequency dead band and the possible 
overfulfillment. The two subplots on the right show the slope and the bottom left subfigure shows the SOC limits. 
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PStorage = PPV − Pload (6)  

Feed-in damping 
In order to reduce the maximum power fed into the grid, a nearly 

constant BESS charging power PStorage, Ch during the whole daytime is 
calculated by the EMS. Reducing the maximum feed-in power allows for 
a higher self-consumption rate, if the maximum feed-in power is limited 
by the distribution grid operator as described in [19]. If a surplus (PPV >

Pload) occurs, the charging power PStorage,Ch is calculated by dividing the 
remaining battery capacity EBESS,re by the predicted remaining time tre, 
until the load is higher than the PV generation, and the mean efficiency 
ηmean of the BESS (Eq. 7). 

In this work, a perfect foresight for the duration of PV generation is 
assumed. If there is a higher consumption by the household than gen
eration by the PV power system, the BESS is discharged. Fig. 3 (bottom) 
displays this operation strategy. In contrast to the greedy algorithm, the 
charging power is constant during the whole first day. The second day 
shows a more cloudy day. The remaining time tre at this day is smaller 
than in day 1, so according to Eq. 7 the charging power PStorage,ch is 
higher. In addition, the second day also shows that after the PV gener
ation surpasses load again (PPV − Pload > 0), the remaining time tre is 
recalculated. In this case, the storage can be charged with the full power, 
due to the short remaining time tre. 

PStorage,ch =
EBESS,re

tre⋅ηmean
for PPV > Pload (7)  

3.4. Peak shaving storage system 

Motivated by a tariff system consisting of an energy and a power 
related component, the storage application PS has the goal to minimize 
the maximum power peak value within a defined accounting period. 
Particularly large electricity consumers (annual demand  > 100 MWh 
(in Germany)) can reduce the peak power provided by the power grid, 
which directly results in reduced operating expenses in form of reduced 
grid charges [42]. 

In order to reduce the power at the point of common coupling, the 
excess demand has to be covered by another power providing unit, such 
as a BESS. The BESS is used to decouple the supply and demand over a 
specified time. To maximize the benefit of the application, it is impor
tant that the dimensioning of the storage system is the best possible 
match for the power demand curve. Similar to other publications 
[43–45], a two-step approach of a linear programming algorithm and 
SimSES is applied. 

First, a pre-processing linear optimization algorithm is used to 

minimize the power value for the peak shaving threshold PSthreshold, 
while it complies with the necessary constraints, such as meeting the 
power demand, and satisfying the energy and power specifications of the 
BESS. Depending on the shape of the load profile, the resulting value of 
the power threshold varies. Secondly, the resulting peak shaving 
threshold is used as an input parameter for the operation strategy within 
SimSES. This operation strategy works as follows: as soon as the power 
at the point of common coupling (from the grid) is above the specified 
threshold, the additionally required power is provided by the BESS, as 
illustrated in Fig. 4. In addition, the BESS will recharge if the power 
value is below the previously determined optimal peak shaving 
threshold. This ensures that the charging of the storage system does not 
cause the exceedance of the threshold. 

Through a close coordination of the two simulation tools in the 
chosen two-stage approach, both a near optimal PS threshold is found 
and simultaneously, the detailed technical specifications of the BESS are 
simulated via SimSES. 

3.5. Simulation parameters 

The battery cell used in all simulations was a LIB with a Lithium-Iron- 
Phosphate (LFP) cathode and a Carbon-Graphite(C) anode [46]. It is 
worth to mention, that other LIB types are also implemented in the 
simulation tool but the LFP:C cell is a promising battery chemistry for 
stationary applications, because of its characteristics such as high 
thermal stability, long cycle as well as calendar lifetime [3,47,48]. The 
parameterization of the ECM for the simulated LFP:C cell was carried out 
by Naumann [49]. 

To analyze the effects of cell selection, another cell with a Nickel- 

Fig. 4. Exemplary week of an industry load profile and its optimized PS threshold PSthreshold following the PS operating strategy. The power above the threshold is 
provided by a stationary BESS. The solid blue line shows the industry load profile with the PS BESS. The associated SOC is illustrated at the subplot at the bottom. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Parameters of the simulated Lithium-ion cells. Celltype 1 is a Lithium-ion battery 
with a Lithium-Iron-Phosphate (LFP) cathode and a Carbon-Graphite (C) anode. 
Celltype 2 is a Lithium-ion battery with a Nickel-Manganese-Cobalt (NMC) and a 
Carbon-Graphite (C) anode.  

Parameter Unit Cell 1 [46] Cell 2 [50] 

Cell Identification - US26650FTC1 IHR18650A 
Manufacturer - Murata E-ONE Moli Energy Corp. 
Chemistry - LFP:C NMC:C 
Capacity mAh 2850 1950 
Max. Charge Current A 2.85 2 
Max. Discharge Current A 20 4 
Nominal Voltage V 3.2 3.7 
Voltage Range V 2 - 3.6 3 - 4.2  
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Manganese-Cobalt-Oxide (NMC) cathode and a C anode [50] was also 
simulated in the FCR application. The characterization of this cell is 
based on the work of Schuster [51]. The self-discharge and the tem
perature dependency of the cell is neglected in this work. Table 2 
summarizes the parameters of these battery cells. 

The PE is implemented as a function, which shows a high efficiency 
above 10% of the rated power PRated (Eq. 8). Exemplary values used for a 
high efficiency PE are k = 0.0345; p0 = 0.0072, according to Notton 
et al. [52]. Here ηPE is independent of the direction of the power flow 
and no hysteresis is implemented. The maximum efficiency is observed 
at 0.46 ⋅ PRated with an efficiency ηPE = 96.9%. 

ηPE =

|PStorage |

PRated

|PStorage |

PRated
+ p0 + k⋅

(
|PStorage |

PRated

)2 (8)  

Frequency Containment Reserve 
As already shown by others [3,13,14], a BESS in the FCR market is 

mostly in part-load operation. In order to achieve a high part-load effi
ciency, we minimized the inverter losses by modularization of the 
PE-unit into three identical smaller units based on the work of Schimpe 
et al. [53]. At 80% power of the rated power of PE unit 1, PE unit 2 starts 
to work. At 80% power of the rated power of PE unit 1 and PE unit 2, PE 
unit 3 starts to work. There is no hysteresis included in the simulations, 
which means that the switch-off values are equal to the switch-on 
values. According to the modeled PE efficiency, the average efficiency 
of this PE combination is 96%. This PE combination, together with the 
simulated LIB (ηLIB = 96%), results in an SOC shift, according to Eq. 5, 
of 54%. 

In this work the BESS capacity EBESS is set to 1.6 MWh with a 
maximum power of 1.6 MW. The prequalified power PPQ is 1.12 MW, 
which results in a Power to Energy Ratio (PER) of 0.7. Thus, the avail
able IDM power is 30% of the total BESS power. The losses of a trans
former model for a potential integration to higher grid voltage levels, 
which would be necessary having a 1.6 MW / 1.6 MWh storage, are 
neglected. 

Residential Photovoltaic Battery Energy Storage System 
To ensure comparability, the simulations are carried out with a fixed 

annual household load Eload,a of 5,000 kWh, which rounded corresponds 
to the mean of the IP. According to the work of Weniger et al. [21] and 
Hoppmann et al. [54], the PV system and the BESS can be operated 
economically in the ratio 1:1:1. An annual household load Eload,a of 5, 
000 kWh leads to a PV peak power of 5 kWp and a BESS capacity EBESS of 
5 kWh. 

Peak Shaving Storage System 
For the PS application, 36 anonymized annual load profiles from 

commercial electricity consumers are utilized. In order to generate 
comprehensive standardized profiles, all normalized load curves are 
scaled to a peak power of 100 kW (see Section 2.3). The BESS is char
acterized by a nominal energy content of 100 kWh. We assume that 

100% of the nominal storage energy and a rated power of 40 kW for the 
system’s PE unit (consisting of a single inverter) can be used to operate 
the application. 

Table 3 summarizes the parameter set for each simulation in SimSES. 
Other components, such as  

• a transformer model for a potential integration to higher grid voltage 
levels,  

• a cell-to-cell connection resistance,  
• a battery management system,  
• a thermal model for each cell as well as a thermal model for the 

whole storage system,  
• an aging model of the battery cell as well as all other subcomponets, 

were neglected in this paper, but can be modeled in principle in SimSES. 

4. Storage profile analyzer tool 

One goal of this work is finding reference SPs for the different storage 
applications. Therefore, groups of SPs were created using the software 
SimSES. In this chapter, a storage profile analyzer tool is presented 
which aims to extract the reference SP for each of the groups. The idea 
and the reasons for the analyzer tool are described in Section 4.1. Af
terwards, the different characteristics are explained in Section 4.2. 
Finally, the determination of reference profiles from the characteristics 
is described in Section 4.3. Moreover, Appendix B provides some further 
analysis of the SPs including the distribution of the energy rate (E-rate). 
The E-rate at each timestep i is defined according to Eq. 9. 

Erate,i =
PStorage,i

EBESS
(9)  

4.1. Reasons for the storage profile analyzer tool 

The extraction of a reference SP can be done in different kind of 
ways. Taking the mean SP by calculating the mean of all the SPs for the 
different applications is one option. This would lead to a smoothing of 
the profiles. Distinctive peaks would be neglected and the profiles would 
not be representative anymore. A more viable approach is the selection 
of one SP as reference SP for each application. Here, a median profile has 
to be found which represents the group of profiles. This selection is done 
using the storage profile analyzer tool. The tool takes the load of the 
storage and SOC data as input variables and outputs the characteristics 
described in the following subsection. 

4.2. Extracted characteristics from profiles 

To better analyze and compare the storage load profiles, six char
acteristics were defined which are distinctive for the profiles of the 
different applications. Those six characteristics aim to represent the 
differences within the storage applications. 
1. Number of full equivalent cycles (FEC) 

The total number of cycles FECyear within the year is calculated by 
dividing the positive energy throughput Epos

year by the storage capacity 
EBESS (Eq. 10). The FECyear varies between the applications and affects 
the aging of the battery [30]. 

FECyear =
Epos

year

EBESS
(10)  

2. Efficiency (ηBEES) 
The efficiency of the analyzed storage ηBEES is calculated by counting 

the yearly energy that is extracted from the storage system Eneg
year divided 

by the energy that is stored in the storage system Epos
year. The SOC at the 

beginning of the year and at the end of the year is taken into account as 
well (Eq. 11). This characteristic displays the losses in the storage system 

Table 3 
Summary of the parameters for the simulation of the three applications with 
SimSES.  

Application: FCR SCI PS 

Battery LFP:CNMC:C LFP:C LFP:C 
Storage Capacity 1.6 MWh 5 kWh 100 kWh 
Max. Power 1.6 MW 5 kW 40 kW 
PE mode modular single 

unit 
single unit single unit 

PV Power - 5 kWp - 
Operation 

Strategy 
15 min criteria greedy feed-in 

damp 
simple 

PER 0.7 - - 
IDM Power 0.48 MW - - 
PS-Limit - - variable 62 - 

92%  
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while operating in the specific application. For the calculation of the 
efficiency the surrounding temperature and the thermal management 
are not taken into account. 

ηBEES =
|Eneg

year|

Epos
year − [SOCend − SOCstart]⋅EBESS

(11)  

3. Cycle depth in discharge direction (DOCdis) 
The average DOC in discharge direction is calculated by using the SOC 

data of the current profile. This characteristic describes how deep the 
battery is discharged before recharging it. A higher DOC may lead to a 
higher cyclic aging of the battery [55]. To enable a comparison between 
the applications (different capacities) the DOC is measured in percentage 
of the total battery capacity. In SimSES a half-cycle detector is imple
mented. The beginning of the half-cycle is a change from charging 
respectively resting to discharging. Analogously the end is at every 
change from discharging to charging or if the BESS reaches an SOC of 0%. 
Then the DOC is calculated by subtracting the SOC at the beginning and 
the SOC at the end of the half-cycle (see Eq. 12). Taking only the change 
from discharging to charging leads to a dependency of the DOC on the 
resolution. Many small changes of load might outweigh larger trends. 

DOCdis = SOCcycle,start − SOCcycle,end (12)  

4. Number of changes of sign (nswapsign) 
Depending on the storage application, the SP might change from 

charging to discharging and vice versa very often or just a few times per 
day. Those changes of signs activate the power electronics. When 
analyzing experimental SPs the user of the storage profile analyzer tool 
would have to define a threshold value to prevent faults of noise when 
the SP is close to zero. As the simulated SPs do not show the noise, a 
threshold value is not necessary. 
5. Length of resting periods (trest) 

As the BESS is not used continuously over time, the length of resting 
periods represent another characteristic. During those times, the BESS is 
neither charged nor discharged. Here, the average value of resting 

period length in minutes is calculated. Depending on the application the 
length of those resting periods may vary significantly. This characteristic 
is chosen because auxiliary users can be turned off and other applica
tions can be performed during long resting periods. 
6. Energy between changes of sign (Eswapsign) 

Another chosen characteristic is the energy that is charged or dis
charged between changes of signs, respectively. The amount of the en
ergy is normalized to the battery’s capacity and thus comparable 
between the different applications with different capacities. Here 
charged and discharged energy are calculated separately. 

4.3. Determination of reference profiles 

The storage profile analyzer tool extracts the different characteristics 
from each of the profiles of the specific group of SPs. For each applica
tion the characteristics can then be displayed in boxplots to visualize the 
spread and show the median values. 

To determine each reference profile the percentage error δ of each 
profile’s characteristic to the median characteristic is calculated (Eq. 
13). This is done by subtracting the median of the characteristic K̃j from 
the profile’s characteristic Kj, dividing the difference by the median of 
the characteristic and multiply the result with 100. Here, i is the number 
of the profile and j the number of the characteristic. 

Afterwards, the root mean square percentage error (RMSPE) is 
identified for each profile (Eq. 14). This is done by taking the sum of the 
absolute percentage errors, dividing it by six (six characteristics), 
squaring it and extracting the root. This way all characteristics are 
weighted equally. 

δi,j =
Ki,j − K̃j

K̃j
⋅100 (13)  

RMSPEi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(∑6

j=1

⃒
⃒δi,j
⃒
⃒

6

)2
√
√
√
√ (14) 

Fig. 5. Characteristics of a BESS providing FCR. The left box in each plot shows a BESS with one PE unit and a LFP:C cell. The center one in each plot shows a BESS 
with three modular PE units and a LFP:C cell and the right box in each plot shows a BESS with three modular PE units and a NMC:C cell. 
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The reference profile is then chosen as the profile which has the 
minimum root mean squared percentage error. Thus, this profile rep
resents the group of profiles, while maintaining its variations and 
peculiarities. 

5. Results and discussion 

The storage profile analyzer tool outputs characteristics and refer
ence SPs which will be compared and discussed in this section. First, the 
characteristics of the different applications (FCR, SCI, PS) are displayed 
in Section 5.1. Here, a comparison is done within each application be
tween power electronics and battery technology (FCR), operation stra
tegies (SCI) and the three PS clusters. Afterwards, the characteristics of 
the reference SPs for different applications are compared to each other 
and thus differences in usage and load are explained (Section 5.2). 
Finally, exemplary days and weeks of the reference SP are shown and 
discussed (Section 5.3). 

5.1. Characteristics of storage profiles of different applications 

As described in Section 3, the simulated storage applications are FCR, 
SCI and PS. For each group of SPs performing one application, the 
different characteristics can be displayed in boxplots. These boxplots 
show the spread of the characteristics of a storage system performing the 
specific application. Each boxplot is created by using the characteristics 
of all the SPs. That means that for FCR five SPs, for SCI 74 SPs and for PS 
36 SPs were used. Each profile contributes to each boxplot with one 
value. Those are the yearly number of FEC, the efficiency (ηEES) over the 
year, the average DOC in discharge direction, the average length of 
resting periods (trest), the average changes of sign per day (nswapsign) and 
the average energy between changes of signs (Eswapsign). Each boxplot 
contains a red line which represents the median value. Moreover, the 
blue boxes display the 25th and the 75th percentiles, while the black 
whiskers correspond to a maximal absolute value of 2.7 times the 
standard deviation. The red crosses which are displayed above and un
derneath the boxplots show outlier outside of the box and whiskers. In 

addition, the red dot in each boxplot shows the value of the reference 
profile’s characteristic (see Section 4.3). The average distance between 
the median value and the reference value is 2 %. The distributions of 
SOC, DOC in discharge direction and E-rate for all profiles and for the 
reference profiles of each application can be found in the appendix 
(Figs. B.21–B.28). 

Fig. 5 displays the SPs characteristics of a BESS providing FCR. The 
PE units were varied as one differentiation while using the same battery 
technology (LFP:C). First of all, one PE unit was used (each left boxplot). 
Then a modular PE device was applied (each center boxplot). In addition 
to that, as a third boxplot, the LIB technology was varied as described in 
Section 3.5. Here also a modular PE device was used with a NMC:C LIB. 

The first characteristic (Fig. 5 (a)) is the number of FEC within the 
year. Using only one PE unit leads to an increased number of FEC within 
the year compared to modular PE units. The high number of yearly 
cycles ( > 240 FEC in all simulations), in combination with a small DOC 
(Fig. 5 (c)) requires a BESS, which has a high cycle stability in the middle 
SOC range (see also Appendix B.21–B.23). 

The efficiency (Fig. 5 (b)) can be significantly increased when using 
modular PE units or at least having a PE with a high part-load efficiency. 
Furthermore, there are almost no long resting periods (Fig. 5 (d)) and the 
number of sign changes (Fig. 5 (e)) is higher compared to the other ap
plications under test. Therefore, the PE must have a high control speed to 
meet these requirements. The positive energy of changes of sign (Fig. 5 
(f)) is a little smaller when having modular PE compared to only one 
device. The variation of the cell shows hardly any influence - underlining, 
that choosing a suitable PE design is key for improving the system’s ef
ficiency. It is worth to mention here, that battery aging was not modeled. 

Fig. 6 displays the SP characteristics of a SCI BESS. The order of the 
six boxplot-types is the same as described before. Only the ranges of the 
y-axes are different as a comparison within the SCI BESS is done at this 
point. Here, each diagram contains one boxplot for the greedy operation 
strategy and one for the feed-in damping strategy (see Section 3.3). The 
smoothing of the load at feed-in damping strategy leads to a smaller 
number of FEC (Fig. 6 (a)), a smaller DOC (Fig. 6 (c)), a higher length of 
resting periods (Fig. 6 (d)) and a smaller amount of charged energy 

Fig. 6. Characteristics of an SCI performing BESS. The left box in each plot shows a SCI with greedy algorithm. The right box in each plot shows a SCI with the feed-in 
damping algorithm. 
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between sign changes (Fig. 6 (f)) compared to the greedy algorithm. The 
efficiency of the SCI BESS with feed-in damping algorithm is lower than 
with greedy algorithm (Fig. 6 (b)). This is due to the fact that the feed-in 
damping storage system is more often in the partial-load range where the 
PE has a lower efficiency. 

While the lower efficiency is a disadvantage, the feed-in damping al
gorithm also leads to smaller Es-rate and lower rest times of high SOC 
compared to greedy algorithm (Appendix B.24 and B.25). Those two 
properties are advantages of the feed-in damping algorithm as longer 
periods of high SOC may lead to an increased calendar aging [56]. Home 
storage system manufacturers should take these findings into consider
ation and try to avoid simple rule based strategies (greedy). Moreover, 
both algorithms lead to the same number of changes of signs per day 
(Fig. 6 (e)), as only the time of changes vary. 

The SP characteristics of a BESS in the PS application are displayed in 
Fig. 7. The order of the diagrams is the same but the range of y-axes is 
different. The three box plots in each diagram contain the SP charac
teristics of the three clusters of IP (see 2.4). In contrast to the other two 
applications (FCR and SCI) the spread of the characteristics within each 
group is higher. The DOC, for example, varies between 2% and 10% for 
cluster 2. Thus, the storage’s load varies significantly depending on the 
industry IP. Only cluster 3 shows relatively consistent characteristics in 
all diagrams. 

5.2. Comparison of characteristics of reference storage profiles 

After the analysis of the characteristics of each application’s SPs, a 
comparison between application SPs is done in this subsection. There
fore, the six characteristics of each reference profile are displayed in 
spider diagrams with the same ranges to enhance comparability (Fig. 8). 
For the application of FCR the reference profiles’ characteristics of one 
PE unit and a modular PE device are displayed (top). The modular PE 
with an NMC:C cell is not displayed as its characteristics are almost 
similar to the LFP:C ones (see Fig. 5). For SCI the reference character
istics of the two algorithms are shown (middle) and the PS character
istics are displayed for the three clusters (bottom). 

FCR leads to a relatively high number of cycles ( > 240 FEC) and 
small average DOCs of 0.2%. Moreover, the average resting period 
length is small ( < 10 s) and the average number of changes of sign is 
relatively high (600 per day). This is due to the fact, that the grid fre
quency fluctuates around 50 Hz and the storage system reacts quickly on 
frequency changes by charging or discharging the battery (see 
Fig. A.12). The efficiency of the storage system performing FCR with 
modular PE is relatively high (93%). Using only one PE device leads to a 
reduced efficiency of 83%. This is because of the low converter effi
ciency in part-load operation. 

Operating the storage system for SCI leads to similar number of cy
cles within the year as the application of FCR. Compared to the modular 
PE FCR application, the efficiency is lower (approx. 85%). The average 
DOC is higher when performing SCI than when performing FCR (0.9% to 
0.75%). The average length of resting periods is much higher when 
operating as a SCI BESS than when performing FCR (38 to 65 min). 
During winter nights, for example, the storage rests for several hours, 
which increases the average resting period length. Moreover, the 
changes of signs per day are much lower than the characteristic of FCR. 
170 changes of signs per day on average still appear to be high for a SCI 
BESS. This is due to the fact, that during charging of the storage system 
by photovoltaic energy, a short increase of load or a decrease of gen
eration (e.g. clouds) can lead to a change of sign. 

Performing PS as an application leads to a much smaller number of 
cycles (FEC  < 30) and changes of sign (nswapsign  < 4 per day) compared 
to FCR or SCI. In contrast to that, the average DOC is higher than the 
other applications reference characteristics (2% to 5%). The average 
length of resting periods is in the same range as the SCI characteristics 
(20 to 65 min). Thus, it is in resting mode for a longer period of time, it 
does not switch between charging and discharging very often and it is 
discharged relatively deep, when a discharge cycle is initiated. The 
storage’s efficiency when performing PS is between 86% and 89%. The 
small number of FEC, in addition to the long average length of resting 
periods suggests potential benefits of application stacking (multi-use) 
for this application. However, this requires a sufficient power load 
forecast. 

Fig. 7. Characteristics of a BESS in a PS application. The left box in each plot shows the characteristics for IP cluster 1. The box in the center for IP cluster 2 and the 
right one for IP cluster 3. 
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5.3. Reference storage profiles of different applications 

After the analysis of the SP characteristics and the comparison be
tween the different storage applications, exemplary weeks of the refer
ence profiles are shown in this Section. As described in Section 2, the 
FCR reference profile and the SCI reference profile exist for a whole year. 
The PS reference profile is for 51 weeks starting with a Monday. 
Appendix A shows all complete reference profiles. All reference SPs as 

well as the SOC at each timestep are available online free of charge, and 
are hosted on the servers of TU Munich [57]. 

As an example, the 25th week of the reference profile of the FCR 
application with modular PE and LFP:C battery technology is displayed 
in Fig. 9. The diagram’s y-axis shows that the maximum power in this 
week is around 1.1 MW. IP for this resulting reference profile was the 
second year frequency profile [27] (year 2014, see Section 2.1). The 
profile shows a high fluctuation, which results in small DOCs, a lot of 
changes of sign and very short resting periods (see Section 5.2). To 
enable a greater degree of clarity, the profiles of FCR with one PE 
module and with NMC:C cell (modular PE) are not displayed within the 
diagram. These two show a similar course with high fluctuation. 

Fig. 8. Spider diagrams of the six characteristics of each reference profile (a: 
FCR, b: SCI and c: PS). 

Fig. 11. Reference Storage Profile of a BESS in a PS application. Exemplary 
week in June. (a: Cluster 1, b: Cluster 2 and c: Cluster 3). 

Fig. 10. Reference Storage Profile of a BESS performing SCI. Exemplary week 
in June. 

Fig. 9. Reference Storage Profile of a BESS providing FCR. Exemplary week 
in June. 
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Fig. 10 depicts the 25th week of the reference profiles of the two SCI 
BESS with greedy and feed-in damping algorithm. Input profile for those 
two resulting reference profiles was the 28th household load profile from 
the 74 HTW-Berlin load profiles [28] (see Section 2.1). As this week falls 
in June, the storage system gets charged by the PV generation during the 
day. In the evening and during the night it gets discharged until the 
battery is empty (e.g. Thursday night). The differences in the two 
operating strategies were explained in Section 3.3. The feed-in damping 
profile shows the typical limitation of the energy feed into the grid, 
which leads to lower Es-rate for the BESS. 

The reference profiles (exemplary week 25) of the three clusters of PS 
application are shown in Fig. 11 (a: Cluster 1, b: Cluster 2, c: Cluster 3). 
Here, the maximal storage power was chosen as 40 kW (see Section 3.5). 
As described in the previous section, the PS BESS has the fewest number 
of cycles and changes of signs per day. The reference SPs confirm these 
numbers. Moreover, the relatively long resting periods and the differ
ences between the three clusters are visible as well. The PS threshold 
values for the three clusters are set to 66 kW, 83 kW and 80 kW ac
cording to the pre-processing optimization in Section 3.4. 

6. Conclusion and outlook 

In this paper we presented a method to create standard profiles for 
stationary battery energy storage systems, the results of which are 
available as open data for download. Input profiles including frequency 
data, industry load profiles and household load profiles are pre- 
processed using a normalization and clustering method. These input 
profiles are then transformed into storage profiles including the storage 
power and the state of charge using a holistic simulation framework 
(SimSES). This modular object-oriented tool was used to analyze three 
standard applications for stationary battery energy storage systems in 
detail and an energy management system was programmed for the 
different applications: (i) The energy management system for providing 
frequency containment reserve in SimSES was developed according to 
the German regulatory framework and various degrees of freedom; the 
efficiency was taken into account to minimize the intra-day market 
transactions. Moreover, a modular power electronics topology was used. 
(ii) In addition to a simple greedy algorithm, a feed-in damping algorithm 
has been implemented for a residential battery energy storage system, 
which charges the storage system at a low E-rate over the whole day. 
(iii) A two-step approach with a linear programming algorithm and 
SimSES was applied for an industrial peak shaving battery energy stor
age systems to minimize the maximum power peak value. 

The results have been post-processed using a storage profile analyzer 
tool in order to figure out six key characteristics of the different appli
cations. These characteristics are essential for the design of a stationary 
battery energy storage system. For example, for a battery energy storage 
system providing frequency containment reserve, the number of full 
equivalent cycles varies from 4 to 310 and the efficiency from 81% to 
97%. Additional simulations done with SimSES for one year showed a 
degradation from 4% (frequency containment reserve) to 7% (peak 
shaving). 

The open data available results, including storage power as well as 
state of charge for all reference storage profiles, with a resolution of one 
second can be used for comparison with other self-developed energy 
management systems. Furthermore other system topologies or self- 
developed power electronic models can be simulated with SimSES and 
the simulation-outcome can be assessed against the numbers presented 
in this paper. Scientists are encouraged to conduct aging studies or 
battery management system tests using the platform SimSES and data 
provided herein. 

In order to compare both different cell chemistries as well as storage 
technologies, future work could focus in more detail on battery degra
dation. Future applications for stationary battery energy storage systems 
could be: buffer-storage system to reduce the peak power at (fast-) 
charging stations, uninterruptible power supply or island grids. As soon 

as the first data sets are available, it might be worthwhile to analyze 
these use cases more precisely. 
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Appendix A. Input and reference profiles 

Fig. A.12 shows the frequency data (IP) of the whole year 2017 (top) 
and of one exemplary day (185) of year 2017 (bottom). The 
Figs. A.13–A.20 show the complete reference profiles. The FCR refer
ence profile and the SCI reference profile are for a whole year. The PS 
reference profile are for 51 weeks starting with a Monday. All reference 

Fig. A.12. Sample sections of frequency data of the whole year 2017 (top) and 
of one exemplary day (185) of year 2017 (bottom). 
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SP as well as the SOC at each timestep can be downloaded in a MATLAB 
R2019a® data format (mat) or hierarchical data format (hdf5) from the 
servers of TU Munich [57]. 

Fig. A.16. Yearly reference profile of a BESS for SCI with one PE unit and a 
LFP:C cell with the greedy algorithm. 

Fig. A.17. Yearly reference profile of a BESS for SCI with one PE unit and a 
LFP:C cell with the feed-in damping algorithm. 

Fig. A.18. Yearly reference profile of a BESS in the application of PS with one 
PE unit and a LFP:C cell in cluster 1. 

Fig. A.13. Yearly reference profile of a simulated BESS with one PE unit and a 
LFP:C cell providing FCR. 

Fig. A.14. Yearly reference profile of a simulated BESS with three modular PE 
units and a LFP:C cell providing FCR. 

Fig. A.15. Yearly reference profile of a simulated BESS with three modular PE 
units and a NMC:C cell providing FCR. 

Fig. A.19. Yearly reference profile of a BESS in the application of PS with one 
PE unit and a LFP:C cell in cluster 2. 
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Appendix B. Further analysis with SimSES 

B1. Frequency containment reserve 

Figs. B.21, B.22 and B.23 shows additional analysis for the simula
tions of a BESS providing FCR. The left-hand plots (a, d) show the 

distribution of the SOC, the middle one (b, e) show the distribution of 
the DOC and the right-hand plots (c, f) show the distribution of the E- 
rate. The three plots at the top (a-c) at each figure show the mean results 
of all 5 simulations. The three plots at the bottom (d-f) show at each 
figure the result for the reference profile. All plots have a logarithmic y- 
axis. 

Fig. A.20. Yearly reference profile of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 3.  

Fig. B.21. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with one PE unit and a LFP:C cell providing FCR. The three plots at the top 
(a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 
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Fig. B.22. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with three modular PE units and a NMC:C cell providing FCR. The three 
plots at the top (a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 

Fig. B.23. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with three modular PE units and a LFP:C cell providing FCR. The three 
plots at the top (a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 
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Fig. B.24. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a SCI BESS with one PE unit and a LFP:C cell with the greedy algorithm. The three plots at 
the top (a-c) show the mean results of all 74 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 

Fig. B.25. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a SCI BESS with one PE unit and a LFP:C cell with the feed-in damping algorithm. The three 
plots at the top (a-c) show the mean results of all 74 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 
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Fig. B.26. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 1. The three plots 
at the top (a-c) show the mean results of all simulations in cluster 1. The three plots at the bottom (d-f) show the result for the reference profile in cluster 1. 

Fig. B.27. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 2. The three plots 
at the top (a-c) show the mean results of all simulations in cluster 2. The three plots at the bottom (d-f) show the result for the reference profile in cluster 2. 
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B2. Residential photovoltaic battery storage system 

Figs. B.24 and B.25 shows additional analysis for the simulations of a 
SCI BESS. The left-hand plots (a, d) show the distribution of the SOC, the 
middle one (b, e) show the distribution of the DOC and the right-hand 
plots (c, f) show the distribution of the E-rate. The three plots at the 
top (a-c) at each figure show the mean results of all 74 simulations. The 
three plots at the bottom (d-f) show at each figure the result for the 
reference profile. All plots have a logarithmic y-axis. 

B3. Peak shaving storage system 

Figs. B.26, B.27 and B.28 shows additional analysis for the simula
tions of a BESS in the application of PS. The left-hand plots show the 
distribution of the SOC, the middle one (b, e) show the distribution of 
the DOC and the right-hand plots (c, f) show the distribution of the E- 
rate. The three plots at the top (a-c) at each figure show the mean results 
of all simulations in the respective cluster. The three plots at the bottom 
(d-f) show at each figure the result for the reference profile in the 
respective cluster. All plots have a logarithmic y-axis. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.est.2019.101077 
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3.2 Investigation of mobile battery storage systems in various
applications

In this section, the research work entitled Lithium-Ion Battery Utilization in various Modes of e-
Transportation is presented [4]. Following the analysis of stationary applications in the previous sec-
tion, the mobile applications e-Car, e-Bus and e-Boat are evaluated in this section. While vehicle
manufacturers know the requirements for LIBs in their applications, publicly available data on the im-
pact on batteries in vehicles is scarce. However, the impact in various applications is essential for the
further development of battery technologies, for the evaluation of battery aging and for the estimation
of the V2X potential. For this reason, this section presents analyses and evaluations of the load on
LIBs in e-Cars, e-Buses and e-Boat. As in the previous section, the load profiles are published as open
data so that they can be used in further work in industry and research.

For the paper in this section, SimSES was extended from stationary applications to mobile applications.
In addition to the vehicle power profile, which specifies the power that the vehicle should discharge and
recuperate during trips, a binary profile is also required as an input profile. This binary profile specifies
the time at which a vehicle is connected to the electricity grid and the time at which the vehicle is
driving or parked but unplugged. The assumption here is that the vehicles are always plugged in when
they are at home, in the depot or in the dock. The load profile is then followed during trips. During idle
times, in contrast, different charging strategies are implemented. In addition to simple, uncontrolled
charging after arrival to 100 %, charging with minimum power until departure and paused charging are
also possible. In the latter case, the vehicle is first charged to a medium SOC, then paused and only
fully charged shortly before departure. Various input profiles were collected to enable the simulation
of the three vehicle types. For the e-Cars, the simulation tool emobpy was used, which simulates
the driving behavior of private e-Cars in Germany. The tool was used to simulate 60 e-Cars over a
period of one year. For the simulation of the e-Buses, we received data from Hamburger Hochbahn
AG from 82 e-Buses over a period of up to 14 months. After filtering, 53 of these e-Bus data sets were
considered in the evaluation. The e-Boats were simulated using six datasets from Torqeedo, with data
spanning three to nine months. Subsequently, the data is used as input to SimSES for in depth battery
performance analysis. First, the energy consumption of the e-Buses and e-Cars is evaluated, as data
on distances traveled was transmitted for these two vehicle types. In addition, various battery-relevant
parameters are determined for all vehicle types and compared with those of stationary applications
from section 3.1. Finally, the influence of the charging strategies is investigated.

The research questions answered in this section are:

1. How can various transportation modes be reproducibly simulated to obtain battery usage and
health indications?

2. How much energy do e-Cars and e-Buses consume in the exemplary datasets, and what is the
influence of the ambient temperature on consumption?

3. What is the typical stress of mobile battery storage systems in various transportation modes
regarding different parameters?

4. To what extent are battery-relevant parameters in mobile applications similar to stationary
applications and could therefore similar cells be used in those applications?

5. What’s the influence of charging strategies on the considered parameters?

The results of this work include energy consumption analyses of the buses. These show that the buses
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consume between 1 and 1.5 kWh/km and are minimal at 20 °C ambient temperature. Moreover, the
analyzed e-Buses perform 0.4 to 1 EFCs per day, while the analyzed e-Cars make less than 0.18 EFCs
per day. The daily EFCs of the e-Boats range between 0.026 and 0.3. The comparison with stationary
BSSs from section 3.1 shows that the applications SCI, FCR and e-Bus in particular are similar in terms
of some parameters such as the EFCs The collected and generated data is made available open-access
in the same way as in section 3.1.

The mobile application data from this section is used in chapter 5 to simulate the V2X provision of
the three vehicle types. In addition, the unidirectional, paused charging strategy is used as a basis and
V2X charging strategies are developed. The idea of V2X is also elaborated in sections 4.1 to 4.3 with
a focus on commercial e-Cars and V2G provision.

Author contribution
Benedikt Tepe was the principle author tasked with coordinating and writing the paper and devevel-
oping the methodology for the mobile storage data. Sammy Jablonski contributed to the data analysis
and focused on the electric bus energy consumption. Holger Hesse reviewed the manuscript and gave
valuable input throughout the manuscript preparation. Andreas Jossen contributed via fruitful scien-
tific discussions and reviewed the manuscript. All authors discussed the data and commented on the
results.
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A B S T R A C T   

The electrification of the transportation sector leads to an increased deployment of lithium-ion batteries in ve
hicles. Today, traction batteries are installed, for example, in electric cars, electric buses, and electric boats. 
These use-cases place different demands on the battery. In this work, simulated data from 60 electric cars and 
field data from 82 electric buses and six electric boats from Germany are used to quantify a set of stress factors 
relevant to battery operation and life expectancy depending on the mode of transportation. For this purpose, the 
open-source tool SimSES designed initially to simulate battery operation in stationary applications is extended 
toward analyzing mobile applications. It now allows users to simulate electric vehicles while driving and 
charging. The analyses of the three means of transportation show that electric buses, for example, consume 
between 1 and 1.5 kWh/km and that consumption is lowest at ambient temperatures around 20 ◦C. Electric buses 
are confronted with 0.4–1 equivalent full cycle per day, whereas the analyzed set of car batteries experience less 
than 0.18 and electric boats between 0.026 and 0.3 equivalent full cycles per day. Other parameters analyzed 
include mean state-of-charges, mean charging rates, and mean trip cycle depths. Beyond these evaluations, the 
battery parameters of the transportation means are compared with those of three stationary applications. We 
reveal that stationary storage systems in home storage and balancing power applications generate similar 
numbers of equivalent full cycles as electric buses, which indicates that similar batteries could be used in these 
applications. Furthermore, we simulate the influence of different charging strategies and show their severe 
impact on battery degradation stress factors in e-transportation. To facilitate widespread and diverse usage, all 
profile and analysis data relevant to this work is provided as open data as part of this work.   

1. Introduction 

The market introduction of lithium-ion battery technology in the 
1990s and its advancement since then is considered as enabler for the 
widespread electrification of the transportation sector [1]. Cars, buses, 
and boats are increasingly powered by electricity, replacing internal 
combustion engine-based propulsion systems [2–4]. Sales of electric cars 
(e-Cars) worldwide doubled to a total of 6.6 million from 2020 to 2021 
[2]. In the same timeframe, sales of electric buses (e-Buses) increased by 
40% worldwide, although the total number of buses remained constant 
[2]. For example, Hochbahn Hamburg, the operator of Hamburg’s 
subways and buses, plans to electrify its entire bus fleet by 2030 [5]. The 
global market for electric boats (e-Boats) is also expected to double in 
volume from 2022 to 2028 [4]. These three modes of transportation vary 
in several aspects, such as average travel distance and frequency. In 
addition, vehicle usage also varies within a mode. For example, e-Buses 

typically travel longer distances than e-Cars, and e-Cars themselves may 
be used for daily commuting or just for leisure activities. Accordingly, 
the load on the battery system and the time available for charging the 
vehicles differs. 

The present work analyzes the battery system load of different e- 
transportation modes. For this purpose, field data were collected from 
industry partners for the e-Buses and e-Boats. For e-Car data, a simula
tion tool is used, which is based on mobility data and simulates driving 
behavior. The collected data is used to emulate trips and charging 
behavior of the mobile applications with the help of SimSES, an open- 
source simulation tool extended for this purpose [6,53]. In an energy 
consumption analysis, the consumption of the vehicles is compared, 
and, for the e-Buses, the influence of the outside temperature is also 
shown. Various battery parameters such as the average state of charge 
(SOC), are then derived and compared. In addition, the parameters of 
the mobile battery storage systems (BSSs) are compared with those of 
stationary BSSs in three applications. We also consider the influence of 
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the charging strategy by emulating the load profiles using three different 
charging strategies. Finally, part of this publication is an open-data re
pository including all BSS load profiles for each of the three modes of 
transportation. 

In the following, we first describe the state of the art and existing 
literature before defining the research questions and presenting the 
scope of the work. In this work, the term e-Cars is used for cars instead of 
the often-used “electric vehicles” to distinguish between the electric 
vehicles of e-Cars, e-Buses, and e-Boats. 

1.1. Summary of existing literature 

In recent years, the electrification of cars, buses, and boats has been 
advancing [2–4]. Accordingly, research interest in these topics is also 
increasing. In the following, we summarize the literature on e-Cars, 
e-Buses, and e-Boats relevant to this paper. We then address vehicle 
charging strategies and the state of the art on relevant storage and 
battery KPIs. 

E-Cars are a relevant topic, as they change not only the mobility 
sector but also the energy sector [2]. For this reason, research interest 
focuses on various issues of e-Cars, such as charging strategies, including 
fast charging and vehicle-to-grid (V2G), the influence on the distribution 
grid [7] and battery thermal management systems [8]. However, 
research also addresses the use of e-Cars and typical car loads. For 
example, an analysis of the user behavior and energy consumption of 
e-Cars was conducted by De Cauwer et al., in 2015 [9]. In their work, the 
authors analyzed GPS data from the EVA and Move platforms in Belgium 
and measured the energy consumption of a Nissan Leaf. For the e-Cars of 
their dataset, a range of 5000 to 6000 km per year was derived, which is 
less than the annual distances covered by internal combustion vehicles. 
They also showed that real energy consumption on the road might ac
count for between 18 and 23 kWh/100 km – a value 30%–60% higher 
than the consumption measured by the New European Driving Cycle 
(NEDC). Similar trends were obtained by Hao et al., in 2020, who 
analyzed data from 197 e-Cars and determined energy consumption 
levels that were 7%–10% higher than those determined using NEDC 

[10]. A study by Chen et al., in 2020 evaluated data sets of 8000 e-Cars 
and plug-in hybrid electric vehicles (PHEVs) in Shanghai over a week 
and concluded that the e-Cars travel less than the PHEVs, averaging 
32.6 km per day (compared to 36.3 km per day for the PHEVs) which is 
nearly 12,000 km per year [11]. Moreover, Tansini et al. conducted their 
tests on three e-Cars and determined consumption between 15 and 29 
kWh/100 km with an average consumption of about 20 kWh/100 km 
[12]. In 2016, Zou et al. analyzed the driving behavior of taxi fleets 
consisting of 34 electrically powered taxis in Beijing [13]. On average, 
the taxis drove almost 118 km daily and consumed 11 to 30 kWh/100 
km. The authors also analyzed battery charging characteristics and 
determined that 59% of the charging processes began between 30 and 
50% SOC, and 74% were charged to an SOC higher than 90%. Conse
quently, the cabs were discharged by 40–70% during the trips. In the 
same year, Weldon et al. published a study of e-Car use in Ireland in 
which they evaluated eight privately used and seven commercially used 
e-Cars [14]. In contrast to Zou et al., the Weldon et al. study showed a 
wider distribution of SOCs at the start of charging: 58.7% of charging 
events started at an SOC between 50 and 100% [14]. However, this 
study used 2010 Mitsubishi i-MiEVs, which have a range of only 130 km. 
In addition, Zou et al. analyzed cabs, while Weldon et al. studied private 
and other commercially used e-Cars. Zhang et al. determined in a study 
of 55 e-Cars in Beijing that energy consumption depends on the outdoor 
temperature and that consumption is lowest at 15–20 ◦C [15]. They also 
showed that in Beijing, energy consumption was up to 10.26% higher for 
identical trips in winter than in the other three seasons. The descriptions 
of the state of research regarding e-Cars relevant to this work show that 
in practice they consume between 11 and 30 kWh/100 km and often 
cover smaller annual distances than internal combustion vehicles. Our 
work also presents the consumption and distances of a dataset of e-Cars 
but goes beyond this by evaluating and presenting further 
battery-relevant parameters. 

In the literature, there are also studies of mobility behavior based on 
surveys. One is the “Mobility in Germany” study [16,17]. Results of the 
2017 study were, for example, that on average, 3.1 trips and 39 km per 
person and day were made [17]. In addition, an e-Car in Germany is 

Nomenclature 

Abbreviations 
BSS Battery storage system 
e-Boat Electric boat 
e-Bus Electric bus 
e-Car Electric car 
EMS Energy management system 
EPA Environmental Protection Agency 
EV Electric vehicle 
eVTOL Electric vertical take-off and landing 
FCR Frequency containment reserve 
KPI Key performance indicator 
LMP Lithium-metal-polymer battery 
NEDC New European Driving Cycle 
NMC Nickel-manganese-cobalt lithium-ion battery 
PHEV Plug-in hybrid electric vehicle 
PV Photovoltaic 
PS Peak-shaving 
RQ Research question 
SCI Self-consumption increase 
V2G Vehicle-to-grid 
WLTC Worldwide harmonized Light-duty vehicles Test Cycles 

Parameters and variables 
b(t) Binary value indicating connection to electricity grid 

C-rate Charge rate 
Cact(t) Currently charged electrical charge 
Ctotal(t) Currently total possible capacity 
Crate, abs(t) Currently absolute C-rate 
Consumptiontrip Energy Consumption of a trip 
ΔSOEtrip Change in SOE 
Δdtrip Change in distance 
DOC Depth of cycle 
DOD Depth of discharge 
EBSS Energy content of battery 
Epos

year Charged energy in the year 
EFC Equivalent full cycles 
|I(t)| Currently absolute current 
n Total number of time steps 
P(t) Current power 
SOE State of energy 
SOC State of charge 
SOCcycle, start(t) State of charge at the beginning of a cycle 
SOCcycle,end(t) State of charge at the end of a cycle 
u(t) Binary value of current temporal utilization 
μutilization Temporal utilization ratio 
μV2G Temporal V2G-ready ratio 
v(t) Binary value of current V2G-ready ratio  

B. Tepe et al.                                                                                                                                                                                                                                     

3.2 Investigation of mobile battery storage systems in various applications

57



eTransportation 18 (2023) 100274

3

used for 45 min per day on average, which means that it is not used 
almost 97% of the time [16]. Furthermore, the authors published sta
tistics and probability distributions on mobility behavior in addition to 
these overall results. This data is used by emobpy, an open-source Python 
tool that can simulate the mobility behavior of e-Cars [18]. Since this 
tool is used in our work, we describe the simulation procedure and its 
parameters in chapter 2. 

E-Buses have also gained importance in recent years, so annual 
publications on this topic have increased more than tenfold from 2008 to 
2020 [19]. According to a review by Manzolli et al., the main trends of 
this research are vehicle and battery technology, fleet and energy 
management, and sustainability [19]. In the following, we focus on the 
research relevant to this paper on the driving behavior of e-Buses and 
the impact on battery systems. In 2015, Rogge et al. evaluated 1588 trips 
made by diesel buses operated by Stadtwerke Münster in Germany [20]. 
They used a method developed by Sinhuber et al. to dimension potential 
battery systems for the electrification of the buses and to simulate en
ergy consumption [21]. The simulated energy consumption, including 
auxiliaries, ranged from 2.26 to 2.69 kWh/km, with a mean value of 
2.47 kWh/km [20]. Three years later, in 2018, Gallet et al. evaluated 
4135 e-Buses in Singapore, which traveled on average 186 km per day 
[22]. The mean value of the energy consumption was 1.75 kWh/km, 
with articulated e-Buses consuming an average of 2.47 kWh/km, 
double-decker consuming 2.34 kWh/km, and single-decker e-Buses 
consuming 1.62 kWh/km. At 1.35 kWh/km, Gao et al. also obtained 
similar consumption values [23]. In 2017, they published a framework 
evaluating diesel buses from Knoxville (USA) and using their driving 
patterns to simulate e-Buses. An evaluation of 99 e-Buses from seven 
cities in China was published by Wang et al., in 2020 [24]. They 
determined optimal speeds of 11–18 km/h to maximize battery effi
ciency using a random forest algorithm. 

Furthermore, there is research on e-Buses that deals with charging 
management and associated degradation of the batteries. In 2018, Du 
et al. published an optimized control strategy for hybrid e-Buses to 
minimize life cycle costs by reducing battery aging [25]. Zhang et al. 
developed an optimized service and charging strategy for a fleet of 
e-Buses considering battery degradation and nonlinear charging pro
files, which helped extend battery life by 47.2–96.1% [26]. They also 
found that the initial SOC when leaving the depot should be as low as 
possible for reduced degradation. In 2022, Manzolli et al. developed an 
optimization model for charging a fleet of e-Buses, including 
vehicle-to-grid (V2G) and consideration of battery degradation [27]. If 
battery replacement costs fall below 100 €/kWh, providing V2G with the 
e-Buses in the example country Portugal could become economically 
attractive. Analogous to the presentations of e-Cars, our work also ex
tends the state of research on e-Buses concerning various 
battery-relevant parameters. 

E-Boats are less of a focus of research than e-Cars and e-Buses, ac
cording to our research. Research focuses on designing and modeling 
pure and hybrid e-Boats [28–30]. In 2012, Spagnolo et al. published a 
design for an electric catamaran powered by photovoltaic (PV) and 
batteries [28]. Kabir et al. published a similar system for small ferries in 
Bangladesh in 2016 [29]. A year before, Soleymani et al. published a 
design and energy management of a 14-m hybrid e-Boat [30]. 

Another topic relevant to this work is vehicle charging strategies. 
The most straightforward charging strategy is the direct recharging of 
the vehicle after arrival at the charging station. We call this type of 
charging uncontrolled charging, analogous to our previous work and 
literature [31,32]. This type of charging places the vehicles in high SOC 
ranges, which has been shown to lead to higher calendar degradation of 
the batteries [33,34]. Smart charging of vehicles, in contrast, can reduce 
not only vehicle battery aging but also lower charging costs and reduce 
the concurrency of charging [35,36]. In 2016, Lacey et al. defined a 
delayed charging strategy where the vehicle was kept at low SOC after 
arrival and charged just before departure to reduce calendar degrada
tion by lowering the average SOC [32]. In addition, the authors 

identified “less frequent charging” as another option to reduce calendar 
degradation by not charging after every trip. In 2017, Al-Karakchi et al. 
published a charging strategy with periodic pauses to reduce pressure 
and temperature [37]. This strategy reduced the capacity loss of exem
plary LG 18650 cells by 2.5% after 350 cycles. Instead, Chen et al. let 
users choose between three charging strategies, in which users could 
obey or not obey grid scheduling depending on their risk preference 
[38]. Houbbadi et al. published a charging strategy for an e-Bus fleet in 
2019, in which they optimized the charging behavior considering bat
tery degradation [39]. The optimized strategy performed even better in 
capacity loss than a delayed strategy, which they called postponed, and 
far better than an uncontrolled charging strategy, which they called 
greedy. In addition to the unidirectional charging strategies presented, 
there are also bidirectional charging strategies in which vehicles 
participate in electricity markets using V2G [40,41]. 

Analysis of battery health and performance is crucial to developing 
cost-effective electric vehicles. Several battery parameters are well- 
suited for deriving stress factors and health indicators. As described, 
for example, the SOC influences the aging of the batteries [32,34]. 
Furthermore, depths-of-discharge (DODs) and temperature are relevant 
for battery aging [42,43]. Especially for cyclic aging, the charge rate 
(C-rate) is another relevant parameter, which is the current divided by 
the nominal capacitance [44]. The energy throughput or, in relation to 
the battery capacity, the number of equivalent full cycles (EFCs) also 
contributes to this type of aging [44]. The parameters mentioned are 
generally relevant for batteries in mobile and stationary applications 
[45]. As proposed in previous work, the utilization ratio of mobile 
storage systems allows quantifying the proportion of time a vehicle 
battery is used, either to provide mobility or for V2G provision [31]. 

Research has already addressed driving patterns and energy con
sumption of e-Cars and e-Buses. There is generally less research on e- 
Boats, and much of it relates to sizing and design. The research gap we 
have identified relates to the stress on the battery due to driving patterns 
in various modes of e-transportation. To the best of our knowledge, the 
impact of driving and charging behavior on parameters relevant to 
battery life and performance indication has been looked at with insuf
ficient accuracy for e-Cars and e-Buses and not at all for e-Boats. This 
work aims to expand the publicly available knowledge about e-trans
portation. In addition, we found that no simulation tool exists that can 
be used to simulate different modes of e-transportation and quantify the 
stress on the battery system. Furthermore, vehicle usage profiles are 
scarce and rarely available as open data. We want to contribute to 
covering these research gaps in this paper and answer the following 
research questions (RQs): 

RQ 1) How can various transportation modes be reproducibly 
simulated to obtain battery usage and health indications (Section 
3.2)? 
RQ2) How much energy do e-Cars and e-Buses consume in the 
exemplary datasets, and what is the influence of the ambient tem
perature on consumption (Section 4.1)? 
RQ 3) What is the typical stress of mobile battery storage systems in 
various transportation modes regarding different parameters (Sec
tion 4.2)? 
RQ 4) To what extent are battery-relevant parameters in mobile 
applications similar to stationary applications and could therefore 
similar cells be used in those applications (Section 4.3)? 
RQ 5) What’s the influence of charging strategies on the considered 
parameters (Section 4.4)? 

1.2. Contribution and scope of this work 

This work aims to analyze and compare various transportation 
means, which we also refer to as mobile storage applications, in the 
following. For this purpose, field data from e-Buses and e-Boats were 
collected, and data from e-Cars were simulated. The data is used to 
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emulate the three use cases in the simulation tool SimSES [6]. For this 
purpose, energy management systems (EMSs) were developed to track 
mobile storage systems’ power or SOC profiles and simulate charging 
strategies at parking times. This extension of the prior published SimSES 
tool enables the simulation of mobile storage applications by others so 
that the storage behavior can be simulated and evaluated. Furthermore, 
we derive and analyze various storage parameters that allow compari
son between the three transportation means. We also show the impact of 
different charging strategies on the parameters. To enable the use of the 
data of the three battery applications, e-Cars, e-Buses, and e-Boats, we 
provide the profiles as open data as part of this publication. With the 
help of these profiles, researchers and industrial partners can make their 
own simulations or evaluations of transportation means. Accordingly, 
the work provides the basis for further research in the field of e-trans
portation. Based on the work, battery technologies for the different 
means of transport can be compared and optimized for the respective 
application in the long term. 

Fig. 1 shows an overview of the work. After a presentation of the data 
basis in chapter 2, the data processing and the simulation in SimSES is 
done in chapter 3. Chapter 4 presents the results of the work before 
chapter 5 gives a summary and an outlook. 

2. Database 

For the present work, data on various mobile storage applications 
were collected and processed. The specifications of the raw data sets are 
shown in Table 1. To achieve a large number of data sets from privately 
used EVs, the simulation tool emobpy from DIW Berlin is used [18]. This 
tool uses statistics on the driving behavior of private individuals in 
Germany and the standardized driving cycles WLTC (Worldwide 

harmonized Light-duty vehicles Test Cycles) and EPA (Environmental 
Protection Agency) to simulate the use of e-Cars. For example, it can 
simulate effects on the electricity grid due to charging behavior. For the 
present work, emobpy was extended together with DIW Berlin so that the 
power demand during trips can now be tracked to the second. To 
determine different driving profiles and power requirements of the 
e-Cars, various trips were simulated in emobpy: First, the three driver 
types of commuters, non-commuters, and free-time drivers were 
selected. The driving behavior of each of these three driver types was 
simulated over one year in ten simulation runs to account for a wide 
range of driving profiles determined by probability distributions. A time 
resolution of 60 s was chosen to reduce the duration and memory re
quirements of the simulations. Germany’s mean hourly resolved tem
perature was used as the ambient temperature in the simulations. In 
general, emobpy allows the selection of one of 39 European countries as 
simulated ambient temperature [18]. 

Then, in the second step, the power profiles for the e-Cars were 
simulated for the two vehicle models, Volkswagen ID.3 (2020) and Tesla 
Model 3 (2020), using the three simulated driver types. These models 
were selected because they were among Europe’s top three best-selling 
e-Car models in 2021 [46]. The results are a total of 60 e-Car load 
profiles. In addition to the load profiles, binary profiles were extracted 
that indicate whether the vehicle is parked at home or on the road. These 
binary profiles are used in SimSES to map the charging behavior with 
different charging strategies. Table A1 in the appendix shows the 
characteristics of the vehicles used for the simulation of the three ap
plications. The assumed charging power for the e-Cars is 11 kW. We 
describe the use of these parameters for the SimSES simulation in section 
3.2. 

For the mobile application of e-Buses, data was exchanged with 
Hochbahn Hamburg, which is converting its entire bus fleet to e-Buses 
by 2030 [5]. Hochbahn Hamburg provided the SOC profiles of 82 
e-Buses over up to 14 months for this work. The mileage, speed, and 
outside temperature were also measured and transmitted with the SOC 
data. The SOC profiles have a sampling rate of 10 s once the e-Bus is 
switched on. If the e-Bus is switched off, the SOC is not recorded. Thus, 
the charging behavior is not tracked. The six e-Bus models available in 
the dataset are listed in Table A1. For example, there are nine e-Buses 
from the manufacturer Evobus with Nickel–Manganese–Cobalt (NMC) 
lithium-ion batteries and a useable capacity of 190 kWh each. The total 
number of e-Buses in the table is 52, as 30 e-Buses are filtered out by the 
data processing described in section 3.1. We apply 150 kW as the 
maximum charging power at the bus depot for e-Buses with NMC battery 
and 80 kW for e-Buses with Lithium-metal-polymer (LMP) battery, as 
these are the charging power values of Hochbahn Hamburg. As the 
maximum power that can be charged and discharged from the batteries, Fig. 1. Structure of the work and respective chapter number.  

Table 1 
Datasets of the different transportation means.   

e-Car e-Bus e-Boat 

Number of 
datasets 

60 82 6 

Origin Simulated Measured Measured 
Available 

data 
Power, distance SOC, milage, 

ambient 
temperature 

SOC, power 

Length of 
datasets 

One year One day to 14 
months 

3–9 months 

Time 2021 2021–2022 2021 
Sampling rate 60 s 10 s 5 s 
Data 

resolution 
Power: values derived from 
trips’ energy consumption 
distance: 1 km for trips 

SOC: 
0.01% to 0.5% 
mileage: 0.1 km 
temperature: 0.1 
◦C 

SOC: 1% 
power: 10 W 

Industry/ 
Research 
Partner 

emobpy (DIW Berlin) [18] Hochbahn 
Hamburg 

Torqeedo  
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we apply 350 kW. 
The third mobile application of batteries considered in this work is e- 

Boats. To analyze this application, we collaborated with Torqeedo, who 
develops and sells electric propulsion systems for e-Boats. Torqeedo 
provided data from six e-Boats over three to nine months (see Table A1). 
These six e-Boats represent a smaller database compared to the e-Cars 
and e-Buses. However, the datasets include ferries and private boats, so a 
range of exemplary electric boats can be represented. The data includes 
the SOC and the power balance with a resolution of 5 s. In contrast to the 
e-Cars and e-Buses, no information is available about the distances 
traveled. Table A1 also shows the battery capacity and power of the e- 
Boats. The capacities of the small e-Boats (1–2 t) are 30–40 kWh. In 
contrast, the large e-Boats (7.5–37 t) have capacities between 80 and 
160 kWh. Regarding technical implementation, the 160-kWh e-Boats 
consist of four 40-kWh battery packs and the 80-kWh e-Boat consists of 
two 40-kWh battery packs. In the field, this allows variably connecting 
or disconnecting packs. We neglect this flexibility in this work and as
sume 160 kWh and 80 kWh battery packs for our simulations. The 
maximum powers are between 100 and 250 kW. Since the charging 
power of the e-Boats depends on the respective user and varies over 
time, we take the most frequently occurring charging power resulting 
from the load profiles as the standard charging powers. However, the 
most frequently occurring charging powers for Boat B and Boat C are 40 
W and 630 W, respectively. For these two e-Boats, we specify 7 kW as the 
minimum power, so the most frequently occurring charging powers are 
7.82 kW and 32.53 kW, respectively. These charging powers appear 
realistic for e-Boats with capacities of 80–120 kWh. 

3. Methodology 

This chapter focuses on the methodology of the work. First, section 
3.1 deals with the preprocessing of the raw data. Then, section 3.2 ex
plains the simulation of mobile storage applications in SimSES, 
including the charging strategies. Finally, section 3.3 describes relevant 
storage parameters used in the results to compare the mobile applica
tions with each other and with stationary applications. 

3.1. Preprocessing and analysis of raw data 

As described in chapter 2, emobpy is extended to simulate the e-Cars 
so that the load during trips is also recorded and saved. The output of 
emobpy is 60 annual power profiles and binary profiles for the two ve
hicles and three driver types (compare Table 1 and Table A1). For the 
preprocessing, the software MATLAB was used. A first analysis of the 

raw data is provided in Fig. 2, which shows two histograms of the 
average daily distances traveled by the e-Cars. In light orange, the 
annual distance driven by each e-Car is normalized to the total number 
of 365 days. In orange, the yearly distance is normalized to the number 
of days with driving activity. Overall, the simulated e-Cars travel 21–31 
km per day on average. On a day with vehicle usage, the average dis
tance is between 36 and 50 km. The distances traveled by the e-Cars in a 
year consequently range between 7700 and 11,100 km. Compared to the 
average mileage in Germany, which is 13,000 km, the private e-Cars 
simulated have relatively small mileages [47]. According to the de
velopers of emobpy, one reason could be that the study Mobility in Ger
many, whose data the tool uses, only asks for distance categories of 
individual trips, e.g., “trip over 150 km”. Moreover, studies have shown 
that e-Cars often drive shorter distances than internal combustion ve
hicles. For example, De Cauwer et al. determined around 5500 km as the 
annual distance of two pure electric vehicle fleets in 2015 [9]. In their 
study from Ireland, Weldon et al. obtained 26–33 km per day (9490 to 
12,045 km per year) [14]. Chen et al. found 32.63 km per day (11,900 
km per year) for e-Cars in Shanghai [11]. Based on these study results, 
we accept the deviation from the mean value of the annual distance 
driven by e-Cars in Germany at this point. 

The original e-Bus data is partitioned by day and is divided into 
individual CSV files for each e-Bus as a first step. Those files contain a 
timestamp and the SOC. In addition, a CSV is formed from timestamp 
and outdoor temperature, which allows an analysis of the influence of 
temperature on energy consumption in the further course of the present 
work (see section 4.1). Moreover, the following metadata is saved for 
each e-Bus: Bus number, bus manufacturer, battery type (NMC or LMP), 
useable battery capacity, average distance driven per day in kilometers, 
start time, and end time. Next, a data cleansing was performed in which 
requirements were defined that the individual e-Bus data records must 
fulfill to filter out small records and records with significant gaps (see 

Fig. 2. E-Car dataset (60 e-Cars): Histograms of e-Car average trip distance in 
km per day normalized to total number of days (light orange) and normalized to 
only days with driving activity (orange), respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 3. E-Bus data analyzed - cleansing (a) and cleaned data analysis (b). (a) 
Scatter plot showing the days without data between the first and last day of a 
dataset over the total length of the dataset. (b) Histograms of the average driven 
distance in km per day for days with driving activity. 
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Fig. 3 a). Each e-Bus record must therefore contain at least 100 days of 
data. In addition, at most 20% of those days may be without recorded 
activity. On the one hand, days without activity may be due to the 
normal break days since fewer city e-Buses are used on weekends 
compared to workdays. On the other hand, the e-Buses may also be in 
the repair shop on these days. In addition, errors could also have 
occurred during data acquisition. For this reason, all e-Buses with more 
than 20% of inactivity are filtered out. This data cleansing leaves 52 e- 
Buses that meet the requirements. Fig. 3 b shows a histogram of the 
distances driven per day with driving activity, analogous to Fig. 2. The 
52 filtered e-Buses travel between 113 and 207 km per day with 
recorded trips. If the e-Buses were used daily, this would correspond to 
an average of 56,210 km per year. Including the non-operating days, the 
e-Buses travel 94–189 km per day. This would correspond to 50,735 km 
per year. 

To simulate mobile applications, SimSES requires a binary profile in 
addition to a power or SOC profile. This binary profile indicates whether 
the vehicle is connected to the grid at a certain point in time (1) or not 
(0). When the vehicle is connected, it can then be charged according to 
charging strategies, further explained in the following section. The raw 
data already includes information on whether the e-Car is currently not 
at home but on the road, at work, shopping, or at home. In this work, 
only at-home times are interpreted as possible charging times. Since the 
binary profile does not exist for the e-Buses and e-Boats, it is generated 
for each SOC respectively load profile separately, as explained in ap
pendix section 6.2. 

The six e-Boat datasets include three to nine months of data. The e- 
Boat types with battery capacity and power are shown in Table A1. 
Analogous to the e-Cars and e-Buses, the raw data of the e-Boats is 
evaluated in the following. Fig. 4 shows the distribution of recorded 
driving activity for all six e-Boat types. The white spots in between 
describe periods (days, weeks, or months) without recorded data. After 
consultation with Torqeedo, the gaps are not errors but show regular 
periods without activity. In contrast to the e-Car and e-Bus data, the e- 
Boat data does not include traveled distance measurements. The storage 
simulation tool SimSES, described in the following section, allows the 
simulation of the storage behavior in different temporal resolutions. If 
gaps occur in the data, SimSES interpolates between the last and the next 
data point. In the e-Boat simulations, this results in e-Boats being 
continuously discharged over several days and weeks when no data was 
available. To prevent this, power values of 0 W were inserted at the 
beginning and end of gaps with more than 1-h durations. This causes the 
simulated boot to stay idle in accordance with the original data. 

3.2. Simulation of mobile applications in SimSES 

The storage simulation tool SimSES has been developed at the Chair 

of Electrical Energy Storage Technology at the Technical University of 
Munich [6]. It enables the simulation of stationary energy storage sys
tems in various applications. The time series simulation is com
plemented by a techno-economic analysis in which, e.g., efficiency and 
battery degradation are evaluated. SimSES can be used, for example, to 
simulate stationary home BSSs in self-consumption-increase (SCI) 
application and large-scale stationary BSSs in the frequency contain
ment reserve (FCR) application. For the present work, SimSES is 
extended toward mobile BSSs. Mobile BSSs are, for example, e-Cars, 
e-Buses, and e-Boats that are temporarily used for mobility and are 
temporarily connected to the power grid. For this reason, SimSES first 
requires the binary profile to simulate the vehicles. Next, it requires the 
load or SOC profile during times when the vehicle is not connected to the 
grid. This is especially relevant since vehicles are not always connected 
when they are parked. For the simulation of mobile applications, SimSES 
follows the load profile during the on-the-road times. The resolution 
used in the simulations is the resolution of the original data shown in 
Table 1. If the vehicle is connected, charging occurs according to a 
specified charging strategy. This fundamental principle applies to all 
mobile applications considered in this work. However, since data on the 
e-Buses is only available as SOC values, an energy management system 
(EMS) based on SOC data (SOC-EMS) is developed in addition to a 
power-based EMS (Power-EMS). In this strategy, the storage system 
follows the SOC data when the binary value is zero and allows charging 
according to similar charging strategies as in the power-based EMS when 
the binary value is one. For this purpose, the EMS calculates the required 
battery power from the SOC value to reach the desired SOC in each 
timestep. This approach approximates the real battery power but de
pends on the resolution of the SOC and the sampling rate. Real power 
peaks are thus not captured on the one hand, and unrealistic power 
peaks can occur on the other hand due to short peaks in the SOC profile. 
The resolution of the e-Bus SOC models is given in Table A1 in the “other 
info” column. A difference between the Power-EMS and SOC-EMS is that 
the charging strategies in SOC-EMS charge to a target SOC at the time of 
departure. This is necessary because otherwise, more significant dis
crepancies between the SOC in SimSES and the original SOC could occur 
during the next trip, which SimSES compensates for with high-power 
charging or discharging. In the case of the Power-EMS, the battery is 
charged to 100% SOC until departure since the target SOC is unknown. 

Three charging strategies have been implemented in the adapted 
version of SimSES, as depicted in Fig. 5: An uncontrolled charging 
strategy (a), a mean-power charging strategy (b), and a paused charging 
strategy (c). In uncontrolled charging, the vehicle is charged at 
maximum power up to 100% SOC (Power-EMS) or to the target SOC 
(SOC-EMS) immediately after connection to the electricity grid. In 
mean-power charging, perfect foresight determines when the vehicle 
will leave and charge accordingly with the power required to reach 
100% SOC or the target SOC at departure time. In paused charging, the 
vehicle is charged to a minimum SOC immediately upon arrival (e.g., 
60%), and subsequently, the charging process is paused. If the SOC at 
arrival is already above the specified minimum SOC, the current SOC is 
kept constant, as displayed in the night of January 26th in Fig. 5. During 
the pause, the EMS determines in perfect foresight when the vehicle will 
depart. Accordingly, the charging process continues at maximum power 
so that the vehicle reaches 100% SOC or the target SOC (SOC-EMS) at 
the time of departure. If 100% is set as the minimum SOC during the 
pause, this corresponds to the uncontrolled charging strategy. The other 
extreme is 0% minimum SOC during the pause. In this case, the vehicle 
would always hold the current SOC after arrival and only charge to 
100% SOC or the target SOC shortly before departure. This work’s se
lection of charging strategies represents a sample of possible non- 
optimized charging strategies. In the field, aggregators of vehicles 
would develop optimized charging strategies. Examples of charging 
strategies with optimization algorithms would be minimizing electricity 
costs, minimizing distribution grid load, or minimizing battery degra
dation [32,33,35]. 

Fig. 4. E-Boats database - days with driving activity are green, and days 
without driving activity or no data are white. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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The Power-EMS has a unique feature: If the SOC drops below 2% 
during a long drive, a fast charge with 150 kW to 80% SOC is simulated. 
For this purpose, a fast-charging station is assumed to be available on 
these trips. The trip is postponed by the charging time and is continued 
after the charge. With the SOC-EMS, implementing fast charging is not 
required since the SOC profile would already have included the fast- 
charging process during a long trip. For the Power-EMS, the simula
tion of fast charging is necessary because, with small vehicle batteries, 
the desired driving distance might not be achieved with only home 
charging. 

For the simulation of the mobile applications, the battery model of a 
lithium-ion NMC cell was used [42]. In addition, an inverter model by 
Notton et al. was applied [48]. The technical specifications of the battery 
cell are shown in Table A2 in the appendix. 

3.3. Relevant mobile storage parameters 

Storage systems can be characterized and evaluated in different ap
plications with various parameters (see Section 1.1). In the following, 
we define the parameters used in this work. 

The SOC of a storage system is defined as the fraction of the currently 
charged electrical charge (Cact(t)) to the total possible capacity (Ctotal(t)) 

as displayed in equation (3.1). Ctotal(t) is also time dependent since the 
total capacity of the battery reduces over time due to degradation ef
fects. Over the entire duration of the simulation or the profile, there is a 
value for the SOC at every point in time. In our evaluations in section 4, 
we determine each vehicle’s mean SOC for the different transportation 
modes. We also determine the SOC at the end of each trip, before the 
vehicle is connected to the electricity grid, i.e., the binary value becomes 
one. The SOC is relevant for lithium-ion batteries because both calendar 
and cyclic degradation depend on it [42–44]. High SOCs tend to lead to 
accelerated calendar aging [42,43], while cycling in high and low SOC 
ranges may lead to accelerated cyclic aging compared to a mid-range of 
45–55% SOC [42]. In general, battery degradation depends on the in
dividual cell type, but the SOC is often a relevant stress factor in battery 
degradation modeling [49]. For the e-Buses, the useable capacity is used 
as Ctotal(t), as the tracked SOC data ranges from 0 to 100%. However, the 
tracked SOC could deviate from the real battery SOC if the bus manu
facturer only releases a certain voltage range to be used. 

The following parameter is the depth of cycles (DOCs), determined 
according to equation (3.2). For this purpose, it is calculated for each 
cycle how deep the battery was charged or discharged. The cycles can be 
determined in different ways. In SimSES, a half-cycle detector is imple
mented [6]. Another possibility would be, for example, the use of a rain 
flow counting algorithm [50]. Here, a distinction can also be made be
tween the charging and discharging direction. The term depth of 
discharge (DOD) is often used in the discharging direction. Analogous to 
the mean SOC at the end of trips, we determine the mean DOD of the 
trips by subtracting the SOC at the beginning of each trip from the SOC 
at the end of the trip. 

Another relevant parameter is the C-rate, which describes the current 
(I) at which the battery is charged or discharged in relation to its total 
capacity (Ctotal). The calculation of the C-rate is shown in equation (3.3). 
It can be calculated as an absolute value as in the equation or separately 
in charge and discharge direction. As described in section 2, the e-Bus 
data consists of SOC values. In SimSES, these SOC values are tracked 
during the trips, and the power is determined in each time step that must 
be charged or discharged to reach the target SOC. The current can then 
be used to determine the C-rate. We use the original power profiles for 
the e-Car and e-Boat data to determine the current directly from the 
power, not from a SOC profile. The cycles that the battery completes 
over a period of time are often referred to as equivalent full cycles (EFCs) 
or full equivalent cycles (FECs). Equation (3.4) describes the EFC 
calculation as implemented in SimSES [45]. For this purpose, the 
charged energy in the year (Epos

year) is divided by the energy content of the 
battery (EBSS). 

Especially for mobile applications, another parameter is of relevance: 
The temporal utilization ratio μutilization, the calculation of which is given 
in equation (3.5) and described in detail in [31]. This parameter rep
resents the proportion of time a battery is charged or discharged in an 
application. For this purpose, the sum of the time steps at which the 
power p(t) is not equal to zero is divided by the total number of time 
steps n. For vehicles, this ratio means the proportion of time the vehicle 
is discharged due to trips or charged. The rest of the time, the vehicle is 
not used and is either parked somewhere on the road or at the charging 
point without being charged. In Germany, for example, a study found 
that private cars are parked for more than 23 h per day on average, 
resulting in a utilization ratio of less than 5% [16]. For stationary BSSs, 
the temporal utilization ratio describes the proportion of time that the 
BSS is charged or discharged. The rest of the time, the BSS is connected 
but not in use. 

The final parameter relevant to the transportation means is the 
temporal V2G-ready ratio μV2G. This parameter indicates the proportion 
of the time the vehicle is connected to the electricity grid but not being 
charged. The calculation of μV2G is shown in equation (3.6). Accordingly, 
the auxiliary variable v (t) is one if the vehicle is neither charged nor 
discharged (P(t) = 0) and the binary value is one (b(t) = 1). For the e- 

Fig. 5. Illustration of the three charging strategies for an exemplary time 
snapshot. a) Uncontrolled charging, b) mean-power charging, c) 
paused charging. 
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Bus, b(t) = 1 means that the e-Bus is in the depot, for the e-Car that it is 
at home, and for the e-Boat that it is at the dock. The variable μV2G is not 
simply one minus μutilization, since the vehicles can also be on the road 
without being charged or discharged or without being connected to the 
electricity grid. With the help of μV2G, it is possible to estimate the 
temporal V2G potential of the vehicle. At this point, V2G is represen
tative of all forms of power feedback from the vehicle, including vehicle- 
to-home (V2H), for example. 

SOC(t) =
Cact(t)
Ctotal(t)

(3.1)  

DOC= SOCcycle,start − SOCcycle,end (3.2)  

Crate,abs(t)=
|I(t)|

Ctotal(t)
(3.3)  

EFC =
Epos

year

EBSS
(3.4)  

μutilization =

∑n
t=1u(t)

n
(3.5)  

μV2G =

∑n
t=1v(t)

n
(3.6) 

With: u(t) =

{
1,P(t) > 0 ∨ P(t) < 0
0,P(t) = 0 . 

v(t)=
{

1,P(t) = 0 ∧ b(t) = 1
0, otherwise  

3.4. Procedure for determining e-bus energy consumption in dependence 
on the ambient temperature 

The e-Bus data includes not only the SOC profiles but also data on the 
mileage and the ambient temperature of the e-Buses. In Section 4.1, the 
energy consumption of the e-Buses is determined as a function of 
ambient temperature. Therefore, a combination of raw data (mileage 
and ambient temperature) and simulation results (energy consumption) 
from SimSES is used. To obtain a complete dataset for the e-Bus mileage, 
forward filling is used since the mileage is not recorded at each time 
sample. The SimSES simulations are performed with a resolution of 10 s, 
which can be directly matched with the raw data samples. Thus, the 
entire dataset contains the ambient temperature, e-Bus mileage, battery 
SOCs, and states of energy (SOEs). Here, the SOE indicates the total 
amount of electrical energy in kWh contained in the battery. For further 
analysis, the data is split into individual trips. Trips are time intervals 
during which the e-Buses are not connected to the grid, and an increase 
in mileage is observed. To disregard times when the e-Buses are con
nected to the grid, we check the binary value for b(t) = 0. Additionally, 
we defined the following criteria for a valid trip:  

- 2 h < trip duration <24 h  
- 20 km < trip distance <300 km 

Trips of less than 2 h and 20 km are neglected to ensure no service or 
test drives are considered. In regular operation, e-Buses are charged 
each night. Trips of more than 24 h are disregarded to disregard unusual 
operation. Finally, a bug in logging the mileage led to unreasonable 
jumps in the mileage counter. Overall, the analyzed e-Buses usually 
cover between 84 and 130 km in a complete shift of 8 h. Thus, an upper 
limit of 300 km is appropriate to filter out faulty mileage readings 
without neglecting valid trips. This procedure yields more than 22,000 
trips for all 52 e-Buses. 

During each trip, the e-Bus undergoes a change of SOE and mileage. 
The average energy consumption for each trip is computed as the frac
tion of change in SOE (ΔSOE) and distance driven (Δd): 

Consumptiontrip =
ΔSOEtrip

Δdtrip
(3.7) 

Additionally, the mean ambient temperature of each trip is 
computed to allow for the analysis of ambient temperature-sensitive 
energy consumption behavior. 

4. Results 

This chapter presents the results of our work. Section 4.1 describes 
the results on the energy consumption of the individual mobile appli
cations. In addition, we provide an in depth-analysis of the consumption 
of the e-Buses depending on the ambient temperature. Section 4.2 
compares the effects of the applications on the batteries with each other 
using the parameters presented. Subsequently, we compare these with 
the parameters of stationary applications in section 4.3. Lastly, the in
fluence of the charging strategies on the parameters is shown in section 
4.4. 

4.1. Energy consumption analysis of e-cars and e-buses 

This section shows the energy consumption results of the three 
transportation modes. At this point, the energy consumption refers only 
to the DC side and neglects, for example, charging losses. Fig. 6 a) shows 
the total energy consumption of the e-Cars over the distance traveled. 
The simulations were performed with emobpy over one year, and the 
models chosen are the Tesla Model 3 and the Volkswagen ID.3 (see 
section 2). As described in section 3.1, the distances traveled range from 
7700 to 11,100 km. The Tesla and the Volkswagen were simulated for 
each mobility behavior, resulting in each distance value occurring once 
in the diagram for each vehicle type. The energy consumed by the e-Cars 
was determined in SimSES and ranges from 1450 to 3200 kWh. The two 
lines in the graph indicate consumptions of 20 kWh/100 km and 30 

Fig. 6. a) Simulated e-Car energy consumption analysis separated by model. 
Tesla Model 3 avg. consumption: 26.78 kWh/100 km; Volkswagen ID.3 avg. 
consumption: 21.38 kWh/100 km. b) E-Buses energy consumption analysis 
separated by e-Bus types. 
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kWh/100 km. Per 100 km, the e-Cars’ energy consumption is between 
18 and 29 kWh. The Tesla Model 3 has a higher consumption than the 
Volkswagen ID.3, in line with previous results [18]. 

Fig. 6 b) shows the energy consumption of the e-Buses over the 
distances driven, broken down by the e-Bus types. In contrast to the e- 
Car data, the e-Buses were not all measured over the same period (see 
Fig. 3 a). This increases the differences in the distances traveled by the e- 
Buses. Consequently, the e-Buses have traveled between 17,400 and 
76,200 km. Analogous to Fig. 6 a), the two lines show exemplary energy 
consumption rates of 1 and 1.5 kWh/km. The diagram indicates that 
most e-Buses show an average consumption of 1–1.2 kWh/km. Four e- 
Buses show increased consumption of 1.4–1.6 kWh/km. These e-Buses 
are articulated buses, which explains the increased consumption. Apart 
from that, we did not find significant differences in average consump
tion between the different e-Bus models. Compared to the literature, the 
studied e-Buses investigated in this work show relatively low energy 
consumption (see section 1.1). On the one hand, this may be because the 
studied e-Buses are from the construction years 2019–2021, while the 
cited papers were published between 2015 and 2018 and therefore show 
older bus models. On the other hand, our results show only DC-side 
consumption, while other articles include charging losses in some 
cases. Moreover, Rogge et al. used a simulation model, not field data 
from e-Buses, and came up with over 2.2 kWh/km energy consumption 
in 2015 [20]. In 2017, Gao et al. already determined consumptions of 
1.35 kWh/km for real e-Buses [23]. Lastly, the outdoor temperature 
significantly impacts energy consumption, as shown in more detail 
below. This can result in different energy consumption rates for identical 
e-Buses in different countries. 

Fig. 7 also illustrates the consumption of the e-Cars and e-Buses per 
kilometer as boxplots, classified according to the models. The Volks
wagen ID.3 consumes, on average, between 0.184 and 0.25 kWh/km, 
while the Tesla Model 3 is between 0.25 and 0.29 kWh/km. The e-Buses 
consume, on average, between 0.89 and 1.58 kWh/km. E-Buses with 
smaller batteries tend to consume less energy than larger e-Buses, 
although the spread in the individual segments is relatively large in 
some cases. For example, the six 240-kWh e-Buses consume between 
1.06 and 1.11 kWh/km, while the six 309-kWh e-Buses consume be
tween 0.96 and 1.46 kWh/km. The two outliers in the 397-kWh e-Bus 
segment are two articulated e-Buses from Fig. 6 b). The two other out
liers in Fig. 6 b) form the maximum in the 309-kWh e-Bus segment. 
Other reasons for differences in individual e-Bus consumption could be 
external influences, such as the outside temperature or route- 
characteristics, in addition to the general driving style. We, therefore, 
perform an analysis of consumption depending on the outdoor temper
ature in the following paragraphs. 

As described in section 2, the e-Bus data contains values for the 

ambient temperatures of the e-Buses. Therefore, we analyze the trip 
energy consumptions of the 52 e-Buses described in Section 3.1 in 
dependence on the ambient temperature according to the methodology 
explained in Section 3.4. Each trip thus yields an average trip con
sumption and an average ambient temperature. All trips are weighted 
equally for the boxplots in Figs. 8 and 9. 

Fig. 8 shows the energy consumption of all trips in dependence on 
the average trip ambient temperature from 10 to 30 ◦C. Generally, e- 
Buses show minimal consumption at 20–22 ◦C. The analysis of all e- 
Buses and their respective trips yields the lowest median consumption at 
21 ◦C with a value of 0.98 kWh/km. Consumption increases for higher 
temperatures mainly due to air conditioning. The e-Buses show an in
crease to a median consumption of 1.16 kWh/km at an ambient tem
perature of 30 ◦C (+19%). For decreasing temperatures, electric heating 
shows an analogous increase in energy consumption. At 10 ◦C, a median 
consumption of 1.24 kWh/km (+27%) can be observed. Overall, the e- 
Bus energy consumption increase is almost symmetric regarding tem
perature variation from 10 to 30 ◦C. As a rule of thumb, energy con
sumption increases by 2–3% per 1 ◦C change in ambient temperature. 

Fig. 9 shows the resulting consumption behaviors depending on the 
ambient temperature for the two specific types of e-Buses, Solaris 240 
kWh and Evobus 309 kWh (excluding the two articulated buses of this 
type). The boxplots of the other four types are displayed in Appendix 
Fig. A2. The consumptions of the individual e-Bus categories reveal an 
almost identical behavior above 14 ◦C. At lower temperatures, the 
trends differ substantially. E-Buses of type Evobus 309 kWh show the 
expected behavior of increasingly higher consumption at lower ambient 
temperatures. The lowest median consumption of this type is found at 
22 ◦C with 0.89 kWh/km. At − 2 ◦C, the median consumption doubles to 
1.77 kWh/km. E-Buses of type Solaris 240 kWh have a minimum con
sumption of 0.94 kWh/km at a temperature of 21 ◦C. The consumption 
climbs for decreasing temperatures to a maximum median value of 1.37 
kWh/km at 8 ◦C, an increase of 46%. A sudden drop to a median con
sumption of 1 kWh/km is observable for temperatures below this 
threshold. The reason behind this divergence is the heating method. All 
E-Buses in this analysis contain a hybrid heating solution consisting of 
an electric heater and fossil fuel heating. The operation strategy of the 
latter differs between bus manufacturers. In this analysis, Solaris’ 240 
kWh e-Buses seem to switch to exclusive fossil fuel heating when the 
temperature drops below 8 ◦C. Such an operation strategy conserves 
battery to extend the driving range but has the disadvantage that these e- 
Buses remain dependent on fossil fuels. 

4.2. Comparison of mobile applications 

Following the analysis of e-Car and e-Bus consumption, this section 
compares the stress on the batteries in the three mobile storage appli
cations. Fig. 10 (a) shows the distributions of the energy consumption of 

Fig. 7. Simulated e-Car (a) and field-data e-Bus (b) boxplots of the vehicle 
mean energy consumption per kilometer for the different models. The symbols 
next to the type correspond to the symbols in Fig. 6. The numbers below the 
types indicate the number of car or bus types in the data sets. 

Fig. 8. Boxplot diagram of the energy consumption depending on the ambient 
temperature for all e-Busses of all categories. Outliers are removed to not 
distract from the general trend. The complete diagram with outliers is displayed 
in Appendix Fig. A1. 
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the three means of transport as boxplots. The left boxplot indicates the 
average energy consumption of the vehicles per day over the respective 
dataset length. The boxplot on the right shows the average daily energy 
consumption on which driving activities occurred. The simulated e-Cars 
thus consume a median of 6.3 kWh per day. On days when the e-Cars are 
used, they consume a median of 10.1 kWh. In contrast, the e-Buses 
consume 99 to 220 kWh per day. Since the e-Buses drive more frequently 
than the e-Cars, the right boxplot of the e-Busses differs only slightly 
from the left boxplot. The energy consumption of the e-Boats shows the 
most significant spread. There are e-Boats that consume, on average, 
only 1 kWh per day and e-Boats that consume 32.5 kWh per day. One 
reason for this could be the significant differences in e-Boat sizes. For 
example, the lightest e-Boat weighs only 1 ton, and the heaviest is 37 
tons (see Table A1). In addition, the e-Boats drive with different 

frequencies. The e-Boat that needs only 1 kWh per day consumes 4.5 
kWh on days with trips and thus forms the minimum in the right box
plot. In contrast, the e-Boat that consumes 32.5 kWh per day also travels 
almost daily, so the maximum of the right boxplot is 32.8 kWh. 

Below, Fig. 10 (b) shows the EFCs of the three means of transport also 
as boxplots and once per day and once per day with driving activity. As 
the battery capacities of the three means of transport vary, the daily 
EFCs do not differ as much as the energy consumption in Fig. 10 (a). The 
simulated e-Cars make between 0.07 and 0.18 EFCs per day with a 
median of 0.102 EFCs. The median value corresponds to about 37 EFCs 
per year. If only the days on which trips occurred are considered, the 
EFCs increase by 50%–70% for the e-Cars. The e-Buses make more EFCs 
despite having larger battery capacities ranging from 190 to 397 kWh. 
The median here is 0.60 EFCs per day and 0.67 EFCs per day with 
driving activity. Since the e-Buses run on more days than the e-Cars, the 
EFCs per day of driving activity only increase by up to 23%. At the peak, 
there are even e-Buses that make a mean of 1.1 EFCs on the days they 
operate. Accordingly, if an e-Bus battery has a cycle life of, for example, 
3000 EFCs, the e-Bus could be operated for 13.7 years at 0.6 EFCs per 
day. With 1.1 EFCs per day, the operation time would be 7.5 years. The 
e-Boats, in turn, make fewer EFCs than the e-Buses. On median, e-Boats 
make 0.19 EFCs per day and 0.26 EFCs per day with activity. Thus, on 
average, the batteries in the six e-Boats complete more equivalent full 
cycles than the batteries in the 60 simulated e-Cars but fewer than the 52 
e-Buses. If the EFCs per day with driving activity are calculated for the e- 
Boats, they are only 0.8% higher for one e-Boat that drives almost every 
day than if the EFCs were calculated for all days. The other extreme is an 
e-Boat that only drives every fourth day, which results in 0.026 EFCs per 
day, then 0.1 EFCs per day with driving activity. 

Next to energy consumption and EFCs, other parameters are of 
relevance for the three modes of transport. For this purpose, Fig. 11 
presents further boxplots of the three mobile applications. The boxplots 
of the mean SOCs of the means of transportation for the uncontrolled 
charging strategy are shown in Fig. 11 (a). The e-Cars show little spread; 
all have mean SOCs of 97.6–98.8%. In contrast, the mean SOCs of the e- 
Buses range from 72.8 to 88.7% SOC with a median of 81.2%. The 
median of the mean boot SOCs is 91.9%. Overall, the analyzed e-Bus 

Fig. 9. Boxplots of the energy consumption of the e-buses “Solaris 240 kWh” 
and “Evobus 309 kWh” in dependence on the outside temperature. The red 
vertical line indicates the X-axis limit from Fig. 8. Outliers are removed to not 
distract from the general trend. The complete diagrams with outliers are shown 
in Appendix Fig. A2. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 10. Boxplots showing energy consumption (a) and equivalent full cycles 
(EFCs) (b) for all vehicle types analyzed. Data normalized per day and per day 
with driving activity. 

Fig. 11. E-Car (60, simulated), e-Bus (52, field data), and e-Boat (6, field data) 
boxplots of mean (a) and mean end of trip SOCs (b), mean C-rate (c), mean trip 
DOD (d), temporal utilization ratio (e) and temporal V2G-ready-ratio (f). The 
bus SOCs, C-rates, and DODs each refer to the useable capacity of the buses. 
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batteries are at the lowest average SOCs due to frequent and long trips, 
e-Car batteries are at the highest average SOCs, and e-Boat mean SOCs 
vary the most. For the selection of battery cells for vehicles, this means 
that in the case of uncontrolled charging, vehicle batteries should have 
comparatively low calendar degradation in high SOC ranges. This is 
especially relevant for private e-Cars. 

Fig. 11 (b) shows the mean end-of-trip SOC of the three trans
portation means. For this parameter, the SOC is measured at the end of 
each trip, and then all these SOCs are averaged for each vehicle. The e- 
Cars have mean end-of-trip SOCs of 76–90% with a median of approx
imately 85%. The e-Buses, in contrast, end their trips with a mean SOC of 
48–67% and a median of 56.5%. Last, the e-Boats have similar mean 
end-of-trip SOCs as the e-Cars of 72–90% (median 79.7%). 

Diagram (c) of Fig. 11 shows the boxplots of the mean absolute C-rate 
of the e-Cars, e-Buses, and e-Boats. The average C-rates, meaning the 
current at which the batteries are discharged and charged normalized to 
the battery capacity in Ah, are between 0.018 and 0.244 1/h for all 
means of transport. E-Cars have the highest average C-rates at 0.10 to 
0.244 1/h compared to e-Cars and e-Boats. The mean C-rates of the e- 
Buses range from 0.07 to 0.21 1/h, and that of the e-Boats is below 0.21 
1/h. Here, the six e-Boats can be separated into two groups according to 
their battery capacity: Group 1 is Boat 1–3 and has battery capacities of 
80–160 kWh. Group 2 is e-Boat 4–6 with battery capacities of 30–40 
kWh (see Table A1). Group 1 then has very low C-rates of 0.024–0.042 
1/h with an average of 0.033 1/h. Group 2, in contrast, shows an 
average C-rate of 0.119 1/h. Since the charging strategy influences the 
mean C-rate, we discuss this impact in more detail in section 4.4. 

Subfigure (d) of Fig. 11 shows the mean DODs of a trip for the three 
modes, respectively, analogous to the SOC in (b). The mean trip DODs of 
the e-Cars range from 9.8 to 21.4%, with a median of 13.7%. In contrast, 
the mean trip DODs of the e-Buses are with 26–46% and a median of 
35.3% higher than those of the e-Cars. Per trip, the mean DODs of the e- 
Boats range from 4.2 to 27.9% (d). Accordingly, the dataset includes e- 
Boats that complete only short trips and other e-Boats that consume 
more than a quarter of the batteries’ energy per trip on average. 

Last, the bottom two plots of Fig. 11 show the temporal utilization 
ratio μutilization (g) and the temporal V2G-ready ratio μV2G (h), presented 
in section 3.3. The temporal utilization ratio indicates the proportion of 
the time the vehicle is charged or discharged. The e-Cars in Fig. 11 (g) 
are used for charging or discharging only 4–6% of the time. This is in line 
with the statistics for private e-Cars in Germany, according to which 
they are used for trips only 3–4% of the time [16]. If the time spent 
charging the e-Cars is added, the 4–6% for μutilization is obtained. The 
e-Buses investigated in this study are used much more frequently 
compared to private e-Cars, showing values of 26–51% for μutilization. 
Consequently, the e-Buses are used a quarter to half of the time either for 
trips or for charging the batteries. The e-Boat datasets show the greatest 
variation for the temporal utilization ratio. Thus, some e-Boats are used 
only 7% of the time, and other e-Boats are used 62% of the time, which is 
more than the most used e-Buses. However, when analyzing the utili
zation ratio of the e-Boats, it should be considered that the e-Boat data is 
available for three to nine months, mainly between May and November 
(see Fig. 4). Thus, actual utilization ratios of some rarely used e-Boats 
could be even lower over a whole year. 

The temporal V2G-ready ratio μV2G in Fig. 11 (h) represents the 
fraction of time a vehicle is parked at the depot/at home/at the dock and 
thus plugged but not charging. For example, the analyzed private ve
hicles are at home 70–80% of the time and are not charged. Accordingly, 
the e-Cars could be used for V2G provision during this time. Consistent 
with Fig. 11 (g), e-Buses have less potential for V2G deployment. They 
are in the depot 30–54% of the time without being charged. However, e- 
Buses drive more predictable than private e-Cars, which means that e- 
Buses could also be used for V2G one-third to one-half of the time. 
Generally, e-Boats that are regularly docked in harbors could be used for 
V2G deployment. The e-Boats analyzed in this work differ significantly 
in μV2G, analogous to Fig. 11 (g). Some e-Boats are at the dock only 7% of 

the time without being charged. Other e-Boats, however, are idle up to 
75% of the time. Consequently, the V2G potential of these means of 
transport depends strongly on the individual e-Boat. 

Overall, the batteries in the means of transportation are stressed 
differently: E-Cars have relatively high mean SOCs with uncontrolled 
charging, are exposed to small DODs on average between charging 
events and undergo 0.1 to 0.2 cycles per day on average. For batteries in 
e-Cars, this means that calendar degradation is more relevant than cyclic 
degradation. Cells that exhibit accelerated calendar degradation at high 
SOCs appear less suitable for private e-Cars. In contrast, the average SOC 
of e-Buses is lower at around 80% when charging is uncontrolled. 
Furthermore, the e-Buses perform larger cycle depths between charging 
events and cope with 0.5–1 EFC daily. Accordingly, cyclic degradation 
appears more critical for the e-Buses than for the e-Cars studied in this 
work. Thus, cycle-stable battery cells should preferably be installed in e- 
Buses. The results for the e-Boats show the largest spreads, as there is a 
relatively large difference in driving patterns and usage among the six e- 
Boats. E-Boats should therefore be divided into subcategories when 
selecting battery cells. Generally, cycle depths between charging events 
are less than those of the e-Buses and may even be less than those of the 
e-Cars. The EFCs of the e-Boats are in the range of the e-Cars and, in 
some cases, below them. In view of the EFCs, mean SOCs, and C-rates, 
the use of typical e-Car batteries appears to make sense for most e-Boats. 
Regarding the temporal utilization ratio, especially private e-Cars are 
used rarely. This parameter is considerably higher for e-Buses. E-Boats 
also show a large spread here. The potential of vehicle utilization during 
idle times is demonstrated by the V2G-ready ratio: E-Cars and some of 
the e-Boats show the greatest potential, but the analyzed e-Buses are also 
parked in the depot for 30–54% of the time without being charged. Last, 
the estimated SOCs, C-rates, and DODs each refer to the useable capacity 
of the vehicles. By oversizing the battery and enabling specific voltage 
ranges, the actual battery SOCs might deviate from those shown, and the 
C-rates and trip DODs might decrease. 

4.3. Comparison with stationary applications 

Batteries are used in stationary applications in addition to the three 
mobile applications discussed in this work. For example, BSSs can be 
installed with PV systems to store PV surplus energy during the day and 
discharge the storage at night. This application leads to an increase in 
self-consumption (SCI). In addition, stationary BSSs can also be used to 
provide balancing power. In Central Europe, for example, there is a 
market for FCR in which BSSs can participate to balance frequency 
fluctuations in the grid. Another application of stationary BSSs is peak 
shaving (PS). In this application, which is often used at industrial sites, 
peak loads of the industrial customers are covered by the BSS, which 
reduces the power price of the electricity purchase. In a previous work, 
we evaluated the behavior of BSS in these three stationary applications 
concerning several battery parameters [45]. Fig. 12 compares three 
selected parameters of BSSs in mobile applications and values obtained 
for stationary applications. For the SCI boxplots, 74 simulated home 
storage profiles were evaluated for which the BSS was charged using the 
“greedy strategy,” as is further explained in [45]. The FCR application 
shows the results of five BSSs with an LFP battery cell and modular 
inverter. Last, the PS boxplots show the distribution of 36 BSSs in the PS 
application that were divided into three clusters [45]. In [45], we have 
already shown the EFCs and mean DODs. For this work, we evaluated 
the power profiles of the stationary BSSs in terms of mean SOC and 
temporal utilization ratio. 

Fig. 12 a) shows the number of EFCs the batteries complete daily in 
the six applications. Stationary BSSs in SCI and FCR perform a similar 
number of EFCs, averaging 0.77 and 0.7, respectively, as e-Buses with an 
average of 0.66. In contrast, e-Cars and e-Boats make fewer EFCs per 
day, with averages of 0.11 and 0.17, respectively, and stationary BSSs in 
PS application make the fewest EFCs, with an average of 0.07. Fig. 12 b) 
represents the mean SOC of the batteries in the six applications. The 
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mean SOC of BSSs in the PS application is in a similar range as the mean 
SOCs of the private e-Cars when they are charged uncontrolled imme
diately upon arrival. We show the influence of charging strategies on the 
mean SOC in section 4.4. In contrast, the BSSs in the FCR application 
have mean SOCs in the range of 49–53%. The mean SOCs of BSSs in SCI 
are the lowest, ranging from 25 to 37%. Fig. 12 c) shows the temporal 
utilization ratio as displayed in Fig. 11 f) for the transportation means. 
The temporal utilization of the stationary BSSs varies considerably: 
While FCR-BSS are used about 75–80% of the time, the ratio for PS-BSSs 
is, on average, only 9%. The utilization ratio of the SCI-BSS is between 
40 and 50%. The utilization ratios of the mobile applications are all 
below 62%, which is below or equal to the FCR and SCI-BSS temporal 
utilization ratios. 

In total, the parameters of the mobile and stationary applications 
show that, for example, in terms of equivalent full cycles and utilization 
ratios, e-Buses and SCI place a similar load on the battery. The impact on 
batteries in stationary PS-BSSs are similar to the load that e-Car batteries 
see in terms of the three parameters: Low number of cycles, high mean 
SOCs, and small usage times. Infrequently used e-Boat batteries expe
rience similar loads as e-Cars and PS-BSS. As e-Buses, SCI BSS, and FCR 
BSS all post about a similar cycle load to a battery, those applications 
could aim for a similar type of cycle-stable battery. In contrast, e-Car, e- 
Boat, and PS BSS have low numbers of EFCs and could cope with a 
battery that does not provide high cycle stability. For the mean SOC, a 
similar interpretation is that calendar aging stability at high SOC values 
is relevant for e-Cars, e-Buses, e-Boats, and peak shaving, especially 
when the vehicles are charged uncontrolled. The temporal utilization 
ratio is of interest regarding V2G deployment. Thus, e-Cars could be 
combined with PS. However, a more detailed study is needed to deter
mine whether e-Car use and PS demand coincide or at independent 
times of the day. The evaluation also suggests that discarded bus bat
teries designed for high cycles and medium utilization ratios could be 
used for SCI or FCR in second life. If, on the other hand, an increased 
number of cycles is already achieved in the first life of bus batteries, 
subsequent use in the PS application could make sense since this requires 

fewer cycles. Discarded e-Car batteries, optimized for high energy and 
power density rather than high cycle life, could also be used in sta
tionary PS applications in second life. 

4.4. Influence of charging strategies 

This section investigates the charging strategy’s impact on two pa
rameters. For this purpose, the e-Cars, e-Buses, and e-Boats were simu
lated with the three charging strategies presented in section 3.2: 
uncontrolled charging, which was used for the results of the previous 
sections; charging with mean power; charging with a pause at 60% SOC. 
Fig. 13 shows the mean SOC (a) and mean C-rate (b) for the three 
strategies and the three modes of transportation. If the departure time is 
determined with the help of perfect foresight and charging is carried out 
with the mean power required, the mean SOC decreases because the 
vehicles are not parked for a long time at high SOCs. This strategy re
duces the median of all mean SOCs by 3.4 (boats) to 8 (buses) percentage 
points. Above all, however, the mean C-rate is drastically reduced dur
ing charging. Thus, the C-rates of all vehicles are below 0.1 1/h. Espe
cially the private e-Cars, with their long idle times between trips, show 
C-rates below 0.02 1/h with this strategy. In practice, this would 
correspond to charging rates of under 1.6 kW for the Tesla and under 1 
kW for the Volkswagen. These low charging powers would lead to 
considerable efficiency losses in a wallbox designed for 11 kW [51], for 
example, which is why an economically optimal charging power prob
ably lies between the mean power and the uncontrolled charging 
strategy power. The paused charging strategy, therefore, takes a 
different approach: After arrival, the vehicle is charged to a minimum 
SOC for spontaneous trips (60% in Fig. 13). The charging process is then 
paused and resumed shortly before the next journey. The effects of this 
strategy are shown in Fig. 13 on the right. Compared with the other two 
strategies, the paused charging strategy reduces mean SOCs. Thus, the 
e-Cars have mean SOCs around 90%, the e-Buses between 65 and 80%, 
and the e-Boats 76–97%. The generally still high SOCs, despite the break 
at 60% SOC, are because trips often end at higher SOCs (see Fig. 11 b). 
Note that active discharging down to 60% is not enforced in the simu
lations. The long idle time at high SOC increases the mean SOC despite 
applying the paused charging strategy. The mean charging rates of the 
vehicles in the paused strategy correspond to the rates of the uncon
trolled strategy since charging is also performed at maximum charging 
power before and after the pause. 

The break at 60% SOC is used as an example at this point to have 

Fig. 12. Comparison of three parameters of mobile and stationary applications. 
SCI: self-consumption increase, FCR: frequency containment reserve, PS: 
peak-shaving. 

Fig. 13. Influence of charging strategies on mean SOC (a) and mean C-rate (b) 
for the three transportation means. 
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energy available for spontaneous departures. Generally, the setpoint 
value can vary between 0 and 100% SOC. A pause at 0% would mean 
that each vehicle is held at the arrival SOC and only charged shortly 
before departure. A delay at 100% SOC corresponds to the uncontrolled 
strategy. To show the impact of the pause SOC on the mean SOC, we 
have plotted the boxplots of all vehicle types for various pause thresh
olds in Fig. 14. If the pause SOC value is reduced from 100% progres
sively, the mean SOCs decrease. However, the potential of further 
reducing the pause SOC eventually saturates in all three vehicle cate
gories. In the case of e-Cars, for example, reducing the pause SOC from 
80 to 60% results in only a one percentage point reduction in the median 
SOC. The negligible impact of the threshold on cars is because cars often 
end their trips at relatively high SOCs (see Fig. 11 b) and subsequently 
hold the arrival SOC when the threshold SOC is below. As a result, the 
mean SOC remains high even at lower threshold SOCs. E-Boats and e- 
Buses, in contrast, saturate at lower pause SOC values. This is because 
their arrival SOCs are often lower than the arrival SOCs of the cars. 

Overall, the evaluation shows the potential of charging strategies to 
reduce mean SOC and C-rate. For e-Cars, the results show that the mean 
SOC can be decreased by almost ten percentage points through paused 
charging. Due to the long idle times, this would certainly have a notable 
positive impact on calendar aging. The fact that the e-Cars often end 
their trips with a relatively high SOC means that a very low pause SOC 
does not significantly impact the mean SOC. Conversely, medium pause 
SOCs of 60% can also be selected without increasing the mean SOC 
significantly compared to a pause at 20%. For city e-Buses, the results 
imply that innovative charging strategies can reduce the mean SOC by 
over ten percentage points. E-Bus fleets often drive predictable routes. 
Furthermore, since trip DODs average below 50% (see Fig. 11), e-Buses 
could also be cycled in SOC ranges between 25 and 75%, thereby 
reducing calendar and cyclic aging of e-Bus batteries. The e-Boats can 
also reduce their mean SOC and C-rate depending on their driving style. 
Specifically, infrequently used e-Boats with small trip DODs could be 
cycled like the e-Buses by smart charging in medium SOC ranges. The 
same applies to frequent ferries as long as the route is foreseeable. Other 
charging strategies not simulated in this work could charge the vehicles 
to the SOC needed for the next day instead of 100%. This would further 
reduce the mean SOC but also require forecasting the required energy, 
which is more feasible for city buses than for private cars. In addition to 
these unidirectional strategies, bidirectional strategies could be devel
oped to enable the deployment of V2G. Those strategies could build on 
the paused strategy, as the vehicle is charged to a minimum SOC for 
spontaneous trips and then paused until shortly before departure. Dur
ing this pause, the vehicle could provide V2G services. 

5. Conclusion and outlook 

This work evaluated the impact of the operation of three electrified 
transportation modes on batteries using battery-relevant parameters. 
Simulated data from 60 e-Cars and field data from 82 e-Buses and six e- 
Boats were used. The data was pre-processed, analyzed, and filtered in 
the first step. Thus, 30 of the 82 e-Buses were filtered out due to insuf
ficient data length or quality. For the analysis of the transportation 
modes, the simulation tool SimSES developed for stationary BSS was 
extended to mobile BSS by using vehicle availability as a binary value. 
The presentation of the SimSES extension in Section 3.2 answers RQ1, 
how various transportation modes can be simulated with an open-source 
storage simulation tool. 

As the first part of the evaluation, we analyzed the energy con
sumption of the e-Cars and e-Buses. Here, we found that the simulated e- 
Cars consume between 0.18 and 0.29 kWh/km, while the consumption 
of the e-Buses is between 0.9 and 1.6 kWh/km (RQ 2). For the e-Buses, 
consumption increases with larger e-Bus batteries, probably due to the 
larger and heavier vehicles. However, the scatter within the e-Bus cat
egories showed that other influencing factors could lead to higher or 
lower consumption. One of these influencing factors is the ambient 
temperature. If trips occurred around 20–22 ◦C, the e-Buses showed an 
average energy consumption of approximately 1 kWh/km. At higher and 
lower temperatures, consumption increased by about 2–3% per 1 ◦C 
symmetrically. At temperatures below 10 ◦C, the e-Bus models showed 
varying behavior. For e-Bus models with electric heating, consumption 
below 8 ◦C increased as the temperature dropped. For e-Bus models with 
additional conventional heating systems, consumption below 8 ◦C 
decreased again because the battery was not utilized for heating. 

Next, we evaluated the stress on the vehicle batteries regarding 
various battery-relevant parameters (RQ 3). This analysis showed that e- 
Cars make between 0.07 and 0.18 EFCs per day, while e-Buses make 0.4 
to more than 1 EFC per day. The six e-Boats analyzed make 0.026 to 
0.28 EFCs per day. If only days with driving activity are considered, the 
EFCs increase by 50%–70% for e-Cars, up to 23% for e-Buses, and up to a 
factor of four for e-Boats. Regarding other parameters, the batteries in 
the means of transport are also differently stressed: Cars are often in high 
SOC ranges of 98% on average with uncontrolled charging and experi
ence relatively small cycle depths of 10–22% during trips. E-Buses, in 
contrast, have mean SOCs of around 80% and experience larger mean 
trip cycle depths of up to 46%. The six e-Boats differ more in size and 
driving characteristics than the other two modes of transportation. The 
mean SOCs of the e-Boats range from 76 to 98.7%, and the trip cycle 
depths are between 4 and 28%. Accordingly, for the detailed charac
terization of specific e-Boats, they could be divided into subcategories, 
such as ferries and recreational boats. Furthermore, the analysis of the 
temporal utilization ratio and the temporal V2G-ready ratio showed that 
e-Cars are parked and idle for 70–80% of the time. During these times, e- 
Cars could provide V2G services. In contrast, the temporal V2G potential 
of e-Buses is lower at 30–54%. However, due to the predictability of 
departure times of city e-Buses, they could also provide V2G services 
well. E-Boats again showed more significant differences between rec
reational boats that are idle for extended periods and ferries that move a 
lot. 

The comparison with stationary applications showed that the three 
parameters evaluated can have similarities with mobile applications 
(RQ 4). E-Buses and stationary home BSS (SCI) stress the batteries 
similarly concerning EFCs and utilization ratios, although the mean 
SOCs differ. Stationary BSSs in PS application and e-Cars result in 
equally low numbers of EFCs and low utilization ratios. In addition, the 
mean SOCs are similar in these two applications. Next, our sensitivity 
analysis of charging strategies showed that the mean SOCs of vehicles 
could be reduced by 8–13.8% points through smart charging strategies 
like paused charging at 60% SOC (RQ 5). In contrast, charging at the 
lowest possible power reduces the C-rate that vehicle batteries face to 
below 0.1 1/h for all vehicle types. These evaluations demonstrate the 

Fig. 14. Charging strategy sensitivity analysis: a) Mean vehicle SOCs for the 
uncontrolled and the mean power charging strategy. b) Mean vehicle SOCs for 
the paused charging strategy in dependence on the pause SOC. In the e-Bus 
simulations, a time resolution of 60s is chosen. 
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potential of smart charging strategies to reduce battery aging stress 
factors. 

Moreover, as part of this study, an open data repository is provided 
for both e-Bus and e-Boat data [52]. On the e-Bus side, we have uploaded 
the raw data and simulation results of the 52 used e-Buses. On the side of 
the e-Boats, the raw data and simulation results of the six e-Boats have 
been uploaded. Moreover, the e-Car results and the parameters deter
mined are part of the open data repository. Others are encouraged to use 
the data in research and industry for their simulations and evaluations. 

More in-depth analyses are possible building on our work. The six e- 
Boats represent only a small excerpt from the entire market of e-Boats. 
Due to the mix of ferries and private e-Boats, the results already show a 
range of the driving behavior of the e-Boats. Moreover, the e-Bus data 
and their consumption could be evaluated further, for example, based on 
speeds driven or weather conditions. If the vehicles were measured with 
a 1-s resolution, statements could also be made about the exact DOD, 
including recuperation, and not just about trip DODs. In addition, the 
work could be expanded to include other mobile applications. In this 
work, we have presented parameters that quantify the load on vehicle 
batteries. These parameters are partly stress factors that influence the 
degradation of batteries. Building on our work, aging models of specific 
battery cells could be used to quantify calendar and cyclic aging. 
Furthermore, the results can be used to explicitly optimize battery cells 
with respect to the load in the various transportation modes. In addition, 
all vehicle types have idle times in the depot or at home, during which 
the vehicles are not used. At these times, the vehicles could be used for 
V2G generation to utilize the resources used for battery production to 
the greatest extent possible. Finally, the evaluations can be used and 
extended to assess the second-life suitability of batteries from mobile 
applications for stationary applications. 
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Appendix 

Raw data details 

Table A1 shows detailed vehicle information about the three means of transportation 

Preprocessing – Creation of binary profiles  

Table A1 
Vehicle information about the e-Cars, e-Buses, and e-Boats. The second column shows the number of records of the respective vehicle type after filtering. The last 
column gives additional information (e-Car: Driver type, e-Bus: SOC resolution, e-Boats: weight).  

Data # Battery Capacity Max. Battery Power Charging Power Vehicle info Other info 

Car A_F 10 45 kWh 93 kW 11 kW VW ID.3 Driver type: Fulltime 
Car A_P 10 45 kWh 93 kW 11 kW VW ID.3 Parttime 
Car A_L 10 45 kWh 93 kW 11 kW VW ID.3 Leisure/Freetime 
Car B_F 10 79.5 kWh 358 kW 11 kW Tesla Model 3 Fulltime 
Car B_P 10 79.5 kWh 358 kW 11 kW Tesla Model 3 Parttime 
Car B_L 10 79.5 kWh 358 kW 11 kW Tesla Model 3 Leisure/Freetime 
Bus A 9 190 kWh 350 kW 150 kW Evobus NMC SOC res. 0.5% 
Bus B 6 240 kWh 350 kW 150 kW Solaris NMC 0.4% 
Bus C 5 291 kWh 350 kW 80 kW Evobus LMP 0.5% 
Bus D 6 309 kWh 350 kW 150 kW Evobus NMC 0.5% 
Bus E 3 316 kWh 350 kW 150 kW Solaris NMC 0.01% 
Bus F 23 397 kWh 350 kW 80 kW Evobus LMP 0.5% 
Boat 1 1 160 kWh 320 kW 8.93 kW – Weight: 7.5t 
Boat 2 1 120 kWh 320 kW 7.82 kW – 37t 
Boat 3 1 80 kWh 160 kW 23.53 kW – 18t 
Boat 4 1 30 kWh 80 kW 8.73 kW – 2t 
Boat 5 1 40 kWh 80 kW 2.66 kW – 1.5t 
Boat 6 1 40 kWh 80 kW 5.58 kW – 1t 
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For the creation of the e-Bus binary profiles, it is assumed that an e-Bus is connected to the grid if the SOC is greater than or equal to 99% or if the 
SOC increases, meaning the vehicle is charged (equation (6.1)). However, positive SOC deltas can also occur during journeys since the e-Bus can 
recuperate during braking while driving. In addition, there can be fluctuations in the SOC estimator so that the SOC increases slightly for a short time 
during trips. For this reason, we introduce as an additional condition that a contiguous depot time for charging the e-Bus must be at least 10 min long. 
Consequently, all binary values in the profile that are not part of a charging phase lasting at least 10 min are counted as journey times and set to zero. 
Finally, the binary profile is saved as CSV, together with the time stamp. 

b(t)=
{

1, SOC(t) ≥ 99% ∨ ΔSOC(t) > 0
0, otherwise (6.1)  

With: ΔSOC(t) = SOC(t) − SOC(t − 1). 
In addition, analogous to the e-Buses, binary profiles of the e-Boats are created, which indicate whether the e-Boat is connected to the electricity 

grid. Since SOC and power data are available for the e-Boats, the binary profiles are formed according to equation (6.2). First, analogous to the e-Buses, 
the binary value is set to one when the SOC is at least 99%. Furthermore, the e-Boat is defined as connected to the electricity grid if the power is 
positive. As for the e-Buses, we further use the condition that a contiguous grid connection time must be at least 10 min long. This way, short periods 
during driving with positive power values are not counted as “connected to the grid". 

b(t)=
{

1, SOC(t) ≥ 99% ∨ P(t) > 0
0, otherwise (6.2)  

Lithium-ion battery specifications  

Table A2 
Lithium-ion battery cell specifications [42,54].  

Manufacturer Sanyo 

Model UR18650E 
Capacity (minimum/typical) 2.05 Ah/2.15 Ah 
Allowed voltage range 2.5 V–4.2 V 
Proposed voltage range 3.0 V–4.1 V 
Cathode active material Li(NiMnCo)O2 
Anode active material Graphite 
Electrolyte material 1 M LiPF6 in an EC/EMC (1:1) solvent mixture  

Table A2 shows detailed vehicle information about the three means of transportation. 

E-Bus energy consumption – temperature analysis 

Fig. A1 depicts the boxplot diagram of the energy consumption of all buses depending on the ambient temperature, including outliers. In Fig. 8, the 
data is plotted without outliers. Moreover, Fig. A2 shows the energy consumption of all bus types separately depending on the ambient temperature.

Fig. A1. Boxplot diagram of the energy consumption depending on the ambient temperature for all e-busses of all categories. Outliers are shown in blue to not 
distract from the general trend.  
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Fig. A2. Bus temperature analysis detailed boxplots of all types of e-Buses. The number in the legend indicates the e-Bus battery capacities. Two articulated buses in 
the 309-kWh category and two articulated buses in the 397-kWh category are excluded. 
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3.3 Feature-conserving gradual anonymization of electrical load
profiles

The paper entitled Feature-conserving gradual anonymization of load profiles and the impact on battery
storage systems is presented in this section [3]. When working with load profiles, for example as input
profiles for SimSES, the question of whether load profiles could be anonymized arose in discussions
with industry partners. Original data that is as representative as possible is required by industry and
research institutions in order to carry out realistic analyses and simulations. At the same time, data
owners often have data protection concerns and prefer not to share data when in doubt. In addition,
data is often protected by non-disclosure agreements. This is where this section of the thesis comes in.
It presents a methodology that makes it possible to anonymize load profiles to varying levels in order
to enable subsequent open access publication.

An open-source tool was developed for the work, which enables users to anonymize the load profiles via
a graphical user interface. The approach of the methodology is to automatically divide load profiles
into base and peak sequences. The user can then select the level to which the load profile should be
anonymized. With simple anonymization in level 1, for example, the profile can be normalized to the
maximum value. If the level of anonymization is increased to 2, a synthetic load profile is created
based on features of the original profile. With stronger anonymization, the order of base sequences
is additionally permuted randomly in level 3, the order of peak sequences is permuted randomly in
level 4 or all sequences are permuted randomly in level 5. Two load profiles are used to demonstrate
the functionality of the methodology. On the one hand, a second-based household load profile from
RWTH Aachen University is used and, on the other, the load profile of a fast charging station, the data
for which was provided by an industrial partner. The former corresponds to classic load profiles, while
the latter corresponds to event-based load profiles. After anonymization at the various levels, the load
profiles themselves are compared with each other. The tool can then be used to simulate stationary
BSS applications in SimSES using the load profiles as input profiles. The household load profiles are
simulated in the SCI application and the EV charging station load profiles in the PS application.
Storage-relevant parameters are then compared and the effects of anonymization on the simulation
results are evaluated.

The research questions answered in this section are:

1. How can load profiles be anonymized gradually and how could an open-source tool look like that
allows anonymization and enables an easy and straightforward use in industry and research?

2. In which parameters do the anonymized load profiles differ from the original profiles and in
which are they similar?

3. How much may an original load profile be modified to maintain parameters critical to a storage
application?

4. How sensitive are the results from research question 3 to storage system design and adjustable
parameters, such as the threshold between base and peak sequences?

The results of this section include the new methodology of anonymizing electrical load profiles at var-
ious levels. In addition, the analyses of the profiles show that time-invariant indicators are retained.
However, the regularity is lost as a result of the anonymization, so that in time-dependent BSS ap-
plications, such as SCI, BSS-relevant parameters change to a greater extent For example, EFCs are
overestimated by up to 6 % and self-sufficiency is underestimated by up to 9 percentage points.
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The results showed that time-invariant indicators were preserved during anonymization. However, the
random permutation of the order of the sequences meant that in time-dependent applications such
as SCI, anonymization at higher levels led to a greater variation in battery-relevant parameters, for
example, the SCR and the SSR.
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• Application of the methodology to 
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applications. 

• Analysis of the effects on storage system 
operation using different KPIs. 
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A B S T R A C T   

Electric load profiles are highly relevant for battery storage research and industry as they determine system 
design and operation strategies. However, data obtained from electrical load measurements often cannot be 
shared or published due to privacy concerns. This paper presents a methodology to gradually anonymize load 
profiles while conforming to various degrees of anonymity. It segregates the original load profile into base and 
peak sequences and extracts features from each of the sequences. With the help of the features, a synthetic, 
anonymized load profile is created. Different levels of anonymization can be selected, which transform the 
original profile to the desired extent. A random permutation of the peak sequences or base sequences is used to 
achieve this transformation. Exemplary profiles from a household and an electric vehicle charging station are 
used to demonstrate the functionality of the anonymization. The indicators of the anonymized load profiles are 
compared with the original ones in both time and frequency domains, and the effects of load profile anonym
ization on the operation of battery storage systems in two scenarios are analyzed. While the anonymized load 
profiles retain the time-invariant indicators from the original profile, the permutation causes a loss of regularity 
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in the load profiles. As a result, relevant indicators of battery storage systems subjected to these anonymized 
profiles deviate to a greater extent in time-dependent applications such as self-consumption increase. This is 
reflected in the overestimation of equivalent full cycles by up to 6% and underestimation of self-sufficiency by up 
to 9 percentage points. In time-independent applications such as peak shaving, however, the indicators can be 
well reproduced with deviations of up to 3% despite the lost regularity. In order to make the anonymization 
methodology usable for everyone, we present the open-source tool LoadPAT, in which users can anonymize their 
load profiles and choose their desired level of anonymization. This work is intended to further encourage the 
dissemination of open-source data.   

1. Introduction 

We live in a time where individuals as well as companies and 
research institutions are constantly generating data. Between 2012 and 
2020, the volume of digital data generated each year worldwide 
increased tenfold from 6.5 to 64.2 zettabytes [1]. Although not all of this 
data is stored, the data volume of storage capacity in 2021 also 
amounted to 7.9 zettabytes [2]. In the electricity sector, this develop
ment is being driven by the digitalization of grid monitoring and control 
and the increasing installation of smart meters [3,4] At the same time, 
there is a trend towards openness of data, publications and code [5,6]. 
Research institutions, on the one hand, are interested in sharing 
collected and generated data and thus making it available to the com
munity. Companies, on the other hand, often have privacy concerns 
about the possible sharing of data. This conflict gave rise to the present 
work. The goal is to develop a methodology for anonymizing electric 
load profiles. We present a load profile anonymization tool (LoadPAT), 
which can gradually anonymize load profiles, that may aid to a greater 
usage of sharing data through industry and facilitate an increase of re
sources available for applied research. In this work, we show the gradual 
anonymization in various levels that is possible using the tool and the 
impact on load profile key performance indicators (KPIs). In addition, 
simulations show the effects of the load profile anonymization on the 
behavior and load of battery storage systems (BSS) in different appli
cations. With the help of LoadPAT, companies and research institutions 
can modify and thus anonymize load profiles according to their desired 
level before sharing with partners. 

In the following, the existing literature on the topic of anonymization 
of load profiles is presented and the research gap is identified. 

Subsequently, the research questions of this work are introduced before 
the scenario and the usage area of the tool are described. 

1.1. Summary of existing literature 

The topic of load profiles is relevant for research institutions and 
companies. The former need load profiles, for example, for simulations 
of the electricity grid or of BSSs. Companies such as distribution network 
operators make use of load profile data for estimating current and future 
consumption and for classifying customers [7]. Basically, in research on 
load profiles, a distinction can be made between load profile analyses 
including feature extraction and synthetic load profile generation. For 
the former, Table A1 in the Appendix shows existing literature, which 
will be described in more detail below. 

1.1.1. Load profile analysis and feature extraction 
In 2010, Price published methods for analyzing load profiles [8]. He 

defined five parameters for characterizing load shapes in the time 
domain: base load, peak load, rise time, high load duration and fall time. 
Li et al. built on Price’s work in 2021 and published a load profile 
analysis in the time and frequency domains using Discrete Fourier 
Transformation (DFT) [9]. To do so, they used smart meter data from 
188 buildings in Northern California with a time resolution of 15 min. 
The advantage of frequency domain analysis is that it captures the 
periodicity of the load profile as a baseline feature while allowing to 
reduce the amount of data to be stored [9]. DFT was also used by 
Campestrini et al. to evaluate SOC algorithms [10]. In this work, a 
number of driving profiles were analyzed to develop a representative 
synthetic profile in the frequency domain. 

When clustering load profiles, a basic distinction can be made be
tween direct clustering of time series profiles and indirect clustering via 
feature extraction [11]. In 2016, Haben et al. presented an analysis of 
smart meter data in which they identified the four key time periods 
overnight, morning, daytime, evening that should be considered for 
clustering residential load profiles [12]. In the same year, Al-Otaibi et al. 
published a feature extraction method to cluster daily load profiles 
based on these features [13]. In addition, clustering was performed after 
z-normalization, which considers the shape and disregards the magni
tude of the profiles. The results showed that compared to using the 
whole daily load profiles (48 values), extracting features can reduce the 
dimensions significantly while the clustering is still successful. A similar 
procedure was used by Park et al. in 2019, who compared the direct 
clustering after z-normalization using the k-means algorithm with a 
Gaussian mixture model [14]. In this publication, the k-means algorithm 
produced better results with a shorter runtime. The same algorithm was 
used by Trotta 2020 to cluster one-hour annual load profiles of Danish 
households [15]. The result of this publication are four clusters 
describing the typical behavior of Danish households. Czétány et al. also 
used the k-means algorithm to cluster Hungarian households, as k- 
means was advantageous over a fuzzy k-means and an agglomerative 
hierarchical clustering [16]. In 2022, Elahe et al. published a new 
feature extraction technique for load profiles that can be used to identify 
households with plug-in hybrid vehicles [17]. For this purpose, they 
used different classifiers that utilize a set of extracted features from the 
load profile. 

Abbreviations 

BSS Battery storage system 
BTM Behind-the-meter 
CDA Conditional demand analysis 
DFT Discrete Fourier Transformation 
EFC Equivalent full cycles 
EMS Energy-management-strategy 
EV Electric vehicle 
FTM Front-of-the-meter 
DOD Depth of discharge 
FCR Frequency containment reserve 
GUI Graphical user interface 
KPI Key performance indicator 
LoadPAT Load profile anonymization tool 
PS Peak shaving 
PV Photovoltaic 
RQ Research question 
SCI Self-consumption-increase 
SimSES Simulation of stationary energy storage systems 
SOC State-of-charge  
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1.1.2. Synthetic load profile generation and anonymization 
In addition to load profile analysis, clustering, and feature extrac

tion, synthetic load profile generation and anonymization are most 
relevant to this work. Table 1 gives an overview of literature on syn
thetic load profile generation and anonymization. While some of the 
papers presented describe the generation and anonymization of general 
datasets and sequences, others deal explicitly with household load 
profiles. Basically, load profiles can be created using bottom-up and top- 
down methods [29]. The former use behavior and data from individual 
consumers to generate a load profile. The advantage of bottom-up 
methods is that user behavior can be aggregated, and thus general 
statements can be made. The disadvantage, however, is that user data 
must be available in sufficient quantity. For example, Widén et al. and 
Richardson et al. used household member activities to generate high- 
resolution load time series [21,22]. Müller et al. extended the idea of 
electric household behavior to thermal and mobility behavior [27]. 
Another bottom-up approach was presented by Li et al. in 2021, which 
can be used to generate synthetic load profiles for households, busi
nesses, and industries based on the geographic location [30]. They use 
publicly available data and make three types of transformations: Tem
poral shifts, temporal permutations, and adding noise. Through these 
transformations, the authors perform a kind of anonymization without 
explicitly naming it anonymization. Top-down approaches do not use 
data from individual electrical appliances or persons, but aggregated 
data, such as national data, and break them down to individual house
holds [29]. The advantage of these approaches is that no individual user 
data is required. The disadvantage is that it is not possible to draw 
conclusions about individual user behavior. As early as 1984, Aigner 
et al. published a study that made it possible to break down total 
household load to individual parts [18]. For this purpose, the authors 
used the conditional demand analysis (CDA) which uses various 
regression equations to account for factors such as desired temperature 
and size of the residence when creating load profiles [29]. The advan
tage of the methodology at that time was the significantly lower effort 
compared to direct measurements at the end user [18]. In 1992, Bartels 
et al. presented DELMOD, a model that also uses CDA to generate load 
profiles for different types of days for a given scenario [19]. This model 

uses typical load profiles for different days and seasons and weather data 
that change the load profile. DELMOD has the advantage that detailed 
scenarios can be investigated and predictions can be made. In 2015, 
Jambagi et al. combined Richardson’s approach (time use surveys) with 
a top-down approach of a standard load profile, making the aggregate 
results more realistic [26]. To generate hourly electrical load time series, 
Han et al. used statistical methods in 2022 [28]. In their top-down- 
approach, they used three components of public data: seasonality, dis
tribution of residuals and the trend. A different approach to the gener
ation of synthetic load profiles was chosen by Pinceti et al [31]. They 
used generative adversarial networks to learn from hourly resolved real 
weekly load profiles and to generate synthetic load profiles. The 
disadvantage of this approach is that the training of the network takes a 
relatively long time. In contrast, the advantage is that the network can 
be used easily and quickly after training. 

Regarding anonymization of load profiles, Efthymiou et al. have 
published a paper in which they present a method for anonymizing 
smart meter data [23]. For this purpose, they use an escrow service that 
aggregates data from different households. This method does not focus 
on the modification and adaptation of time series-based load profiles, 
but rather on the process of transmitting high-frequency data via a data 
aggregator. Focus on the anonymization of temporal sequences put, for 
example, Pensa et al., who use k-anonymization for this purpose. [20]. 
The k-anonymization can be applied to data sets and describes that the 
information of an individual cannot be distinguished from at least k-1 
other individuals [32]. Pensa et al. applied this type of anonymization to 
datasets of sequences achieved k-anonymization of the data [20]. Shouh 
et al. extended the k-anonymization approach to another level, P-ano
nymization, which represents patterns within grouped time-series 
datasets [25]. This (k, P)-anonymization was shown in experiments to 
be resistant to linkage attacks while preserving pattern data. The 
concept of k-anonymization was extended by Machanavajjhala et al. to 
include l-diversity, which requires that for each sensitive attribute in 
data sets, at least l different attributes must occur [33]. A combination of 
k-anonymization and l-diversity consequently enables an anonymiza
tion that is more secure against attacks. 

The presented variants of the anonymization of data sets have in 

Table 1 
Summary of literature on synthetic load profile generation and anonymization of load profiles.  

Source Date Focus Method Sampling 
rate 

Results 

Aigner et al. [18] 1984 Creation with top-down 
approach 

Conditional demand 
analysis 

15 min Breakdown of total household load to individual parts using the 
conditional demand analysis. 

Bartels et al. [19] 1992 Creation with top-down 
approach 

Conditional demand 
analysis 

15 min Publication of DELMOD which uses conditional demand analysis to 
create household load profiles for different days and seasons. 

Pensa et al. [20] 2008 Anonymization of time 
series 

k-anonymity Arbitrary Application of k-anonymity to records of sequences, which can be used 
for all types of records and profiles. 

Widén et al. [21] 2010 Creation with bottom-up 
approach 

Stochastic modeling 1 min Activities of household members are simulated to create high  
resolution series. A validation with real data showed that the  
generated household load profiles are realistic. 

Richardson et al. [22] 2010 Creation with bottom-up 
approach 

Stochastic modeling 1 min Creation of one-minute resolution household load profiles based  
on specific activities and patterns of active occupancy. Validation  
with field data in East Midlands, UK. 

Efthymiou et al. [23] 2010 Anonymization of smart 
meter data 

Escrow mechanism 1–5 min Development of a method for anonymizing high frequent smart  
meter data using a third party escrow mechanism. 

Ogasawara et al. [24] 2010 Normalization approach 
for time series 

Normalization Arbitrary Presentation of ways to normalize all types of load profiles  
including dividing by maximum value, by using minimum and  
maximum value, and with adaptive neural networks. 

Shouh et al. [25] 2013 Anonymization of time 
series 

(k,P) - Anonymity Arbitrary Extension of k-anonymity by P-anonymity to (k, P)-anonymity. This can 
be used to preserve patterns effectively in addition to the standard k- 
anonymization. 

Jambagi et al. [26] 2015 Creation with bottom-up 
and top-down approach 

Activity based 
modeling 

1 s Development of a residential electricity demand model combining time 
use surveys with standard load profiles. A validation with measured data 
shows that the properties of the synthetic profiles are correct. 

Müller et al. [27] 2020 Creation with bottom-up 
approach 

Activity based 
modeling 

1 min Bottom-up approach model for electrical and thermal household load 
modelling regarding mobility behavior. 

Han et al. [28] 2022 Creation with top-down 
approach 

Decomposition and 
recombination 

1 h Generation of hourly household electrical load profiles using a statistical 
method of decomposition and recombination.  
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common that several load profiles must exist. However, the focus of the 
present work is on the anonymization of individual time series-based 
load profiles, which means that the presented variants are not appli
cable. For the modification of individual load profiles, Savov et al. 
published a paper in 2017 in which they analyzed the degree to which 
load profiles can be discretized [34]. The result was that the greater the 
discretization of the data, the greater the error in power loss evaluations 
in distribution grids. Ogasawara et al. presented ways to normalize load 
profiles in 2010 [24]. The normalization can be done by dividing by the 
maximum value, by using minimum and maximum of a profile and more 
complex by adaptive normalization with adaptive neural networks. The 
latter are a kind of sliding window techniques and have the advantage of 
creating individual data sequences from which statistical properties are 
determined for normalization. In their bottom-up approach, Li et al. 
used the aforementioned temporal permutation to change individual 
load profiles [30]. In their hourly load profiles, they permuted pairs of 
values every 50–100 h to add randomness. 

Few open-source tools already exist for anonymization of data and 
creation of load profiles. The ARX tool, for example, is an anonymization 
tool for structured data sets [35]. With this tool, data can be adapted 
according to k-anonymization and l-diversity, among other methods. It 
also has a graphical user interface (GUI) that allows users to anonymize 
their data sets. However, multiple datasets are required for anonym
ization in this tool. Thus, it cannot be used for anonymizing individual 
load profiles. To generate synthetic load profiles, the aforementioned 
Pinceti et al. have published the LoadGAN tool [36]. This tool uses the 
methodology of generative adversarial networks and users can directly 
generate a desired number of load profiles in a desired resolution and 
length. The LPAT tool by Schaefer et al. splits load profiles into sub-load 
profiles, which are then used to dimension storage for a hybrid energy 
storage system [37]. The division into sub-profiles is done by DFT, low- 
pass filter and inverse DFT. As a result, a load profile is decomposed into 
several load profiles that have different frequencies and thus can be 
covered by different storage technologies. However, the goal here is not 
anonymization, but the determination of the storage requirements. 
Therefore, no permutation or normalization takes place. 

1.1.3. Battery storage systems 
Load profiles have a fundamental influence on the design and 

operation of BSS [38-40]. A collection of load profiles or a generation of 
anonymized load profiles is especially relevant for battery research, 
since simulations on storage applications depend strongly on the load 
profile of the household or company [38]. In general, stationary BSS are 
operated in various applications. These applications can be divided, for 
example, into in-front-of-the-meter (FTM) and behind-the-meter (BTM) 
applications [41]. The former are related to markets and the electricity 
grid, such as arbitrage trading and frequency containment reserve 
(FCR). The latter describe applications behind the meter on the con
sumer side, which can be peak shaving (PS) or self-consumption increase 
(SCI) of energy generated by photovoltaic (PV) systems. In addition to 
these singular applications, the applications can also be combined in 
multi-use scenarios, which can increase the profitability, but bring 
regulatory barriers with it [41]. Since the focus of this paper is on the use 
of the load profiles in the SCI application and the PS application these 
are considered in more detail below. At SCI, BSSs are installed to in
crease the consumption of self-generated energy and feed less energy 
into the grid. This can be done by private households or businesses. In 
Germany, for example, 430,000 home storage systems have been 
installed by the end of 2021 [42]. The household load profile has an 
impact on the design of home storage systems [40]. If a large part of the 
energy consumed is covered by PV during the day, the BSS can be 
designed smaller than if a large part is consumed in the evening or at 
night. BSS in PS application are used to cover peaks in the load profile 
[39]. This is mainly relevant for industrial customers, who must pay a 
fee per kW for the peak power in a year over a 15-minute period. 
Accordingly, the load profile is also relevant for the storage design in this 

application. 
Several KPIs are relevant for BSSs, which are being discussed in the 

following [38]. The parameters extracted at this point will be used in 
Section 4.2 to estimate the storage performance with the anonymized 
load profiles versus the original load profiles. The appendix Section 7.2 
shows the equations of the different KPIs with a short description. In 
general, the degradation of BSSs is highly relevant in every application 
as it is decisive for the profitability. The degradation can be divided into 
cyclic and calendric ageing. On the one hand, cyclic degradation de
pends on the number of equivalent full cycles (EFCs), the depth of 
discharge (DOD), and the C-rate [43,44]. More EFCs, deeper DODs and 
larger C-rates lead to increased cyclic aging [44]. Calendar degradation, 
on the other hand, depends primarily on temperature and the state of 
charge (SOC) [45,46]. Particularly high, as well as particularly low 
temperatures and SOCs, usually lead to accelerated aging [44]. Two 
further parameters are of relevance especially for the SCI application: 
One is the self-consumption rate and the other is the degree of self- 
sufficiency [47,48]. The self-consumption rate describes the propor
tion of PV energy consumed locally and not fed into the grid. The degree 
of self-sufficiency specifies the independence from the electricity grid, 
thus the proportion of electricity consumption that can be covered by PV 
energy and battery discharge. The load profile of the household has a 
major impact on the two parameters [40]. For the PS application, 
another KPI is of particular importance: the fulfillment factor or per
formance criterion [49]. This factor describes at what proportion of the 
time a storage system was able to deliver the power requested by the 
energy management system. If a BSS operates in the PS application, 
failures and non-fulfillments of requested power can lead to enormous 
increases in power-related costs for the business. In addition, round-trip 
efficiency is described as a relevant parameter in the PS application 
[49]. 

The research gap we identified is manifold. On the one hand, many 
load profile analyses are limited to extracting features to cluster a set of 
profiles. On the other hand, bottom-up and top-down approaches exist 
to generate load profiles from, for example, user data. Various methods 
exist for anonymizing data, but these cannot be applied to individual 
load profiles because they require a larger data set. Existing open-source 
tools can either anonymize data (but not load profiles) or generate load 
profiles (but not anonymize existing ones). Often, the analyses, clus
tering methods and load profile generation methods are also limited to 
profiles with resolutions of 15 min [9,16], 30 min [13] or one hour 
[15,30,31]. In our point of view, what is missing is a methodology that 
can be used to gradually anonymize individual original load profiles 
with a high resolution of one to five minutes. In a publication by Beck et 
al, for example, 5 min was shown to be relevant for the sizing of the 
power of a storage system [50]. The presented methodology gives users 
the flexibility to decide to which degree the original load profile should 
be modified. Since modifying or anonymizing the load profile affects the 
design and operation of BSSs as described, we also investigate the 
impact of load profile anonymization on stationary BSSs in different 
applications. We will answer the following research questions (RQs) 
throughout the paper: 

RQ1) How can load profiles be anonymized gradually and how could 
an open-source tool look like that allows anonymization and enables an 
easy and straightforward use in industry and research? (Section 3). 

RQ2) In which parameters do the anonymized load profiles differ 
from the original profiles and in which are they similar? (Section 4.1). 

RQ3) How much may an original load profile be modified to main
tain parameters critical to a storage application? (Section 4.2). 

RQ4) How sensitive are the results from RQ 3 to storage system 
design and adjustable parameters, such as the threshold between base 
and peak sequences? (Section 4.3). 

1.2. Scope of this work 

The goal of the present work is to develop a methodology through 
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which users from industry and research can modify load profiles that are 
protected by data privacy laws so that they can share them with part
ners. The extent to which the load profiles must be modified for this 
purpose is to be decided by the owner of the data. For this reason, our 
methodology is intended to be flexible and allow users to anonymize 
gradually. Our approach is to extract features from the original load 
profile and then to recreate it based on these features. For this purpose, 
we divide the load profile into base and peak sequences, whereby the 
threshold between the ranges can be freely adjusted. Subsequently, 
features such as the mean value and the length of the sequence are 
determined for each sequence. The anonymized synthetic load profile is 
then formed from these stored features. The degree of anonymization 
can then be varied via levels, which determine the variant of the per
mutations. For example, simple normalization is possible in level 1, 
while only peak sequences are permuted in level 3 and base and peak 
sequences are permuted in level 5. The flexibility for users derives from 
the choice of the threshold between base and peak sequences and the 
choice of the anonymization level. After generating the anonymized 
load profile, a storage system simulation model can be called and 
executed that simulates the original and the anonymized load profiles in 
different storage applications. In this way, we test the impact of ano
nymization on BSS operation. The BSS applications we analyze in this 
work are PS (where peak loads are covered by storage systems) and SCI 
of PV-generated energy for households using storage systems. 

On the one hand, the developed methodology allows the anonym
ization of classical, continuous load profiles. On the other hand, it can 
also be used to anonymize load profiles that have idle sequences and 
peak sequences with high-power levels. In our analyses, such load pro
files are from charging stations at which electric vehicles (EVs) charge or 
whose load is zero apart from standby consumption. Users can thus 
anonymize daily, weekly, or annual load profiles. In addition, the tool 
can be used to generate several similar synthetic load profiles from one 
original load profile. In this way, small data sets can be multiplied and 
used for data augmentation. Furthermore, storage operators can use the 

tool to test a possible storage operation without having to give out or 
receive original load profiles. The contributions of this work are as 
follows:  

• Methodology to gradually anonymize load profiles by permutation of 
base and peak sequences while retaining the parameters essential for 
battery storage use  

• Analysis of effects of load profile anonymization on the parameters 
essential for battery storage utilization  

• Demonstration of the open-source tool LoadPAT for providing 
research and industry the opportunity to share data and present re
sults to public without conflicting with non-disclosure agreements 

2. Database 

For the present work, two types of load profiles were collected in 
exchange with an industrial partner and a research institution. These 
data can be classified in load profiles of a household and of an electric 
vehicle (EV) high-power charging station (see Fig. 1). The first is a 
typical load profile of a household, consisting of base load sequences and 
peak load sequences. The base load sequences result from appliances 
that always use electricity, such as refrigerators in private households. 
Peak load sequences are caused by more power demanding consumers 
used for a short time, such as kettles or electric stoves in private 
households. The EV high-power charging station load profile has a 
different pattern. It is composed of charging events and idle phases, in 
which the load is zero except for standby consumers. The charging 
stations for EVs provide high charging power during charging times but 
have very low power during resting periods without a connected EV. 

The data used in this work and their parameters are shown in 
Table 2. The household load profile was measured by the ISEA of RWTH 
Aachen University within the WMEP home battery storage program 
[51]. It is used over a whole year with a resolution of 1 min. The EV 
high-power charging station load profile was provided by an industry 
partner. It also originates from a storage application as it was measured 
at a charging station with a buffer BSS. It has a length of 6 months with a 
resolution of 1 min. The annual energy consumption of the household is 
approximately equal to the half-year consumption of the charging sta
tion. However, the peak power of the household is only 8.7 kW, while 
the charging station load profile showed a peak power of 248.1 kW 
within the six months. The complete load profiles are shown in the 
appendix. 

For this work, Python 3.8 was used with the Tkinter package to 
create LoadPAT and its GUIs [52]. Furthermore, MATLAB was used for 
data analysis and for the creation of the figures. 

3. Methodology of the gradual anonymization 

In this chapter, we describe the methodology of the feature- 
conserving load profile anonymization. First, the differences between 
the levels of anonymization are explained (Section 3.1). Subsequently, 
the features used for anonymization are described (Section 3.2). After
wards, the computational process of the anonymization is described in 
Section 3.3. In Section 3.4, the interface to the BSS tool Simulation of 
stationary energy storage systems (SimSES) is described, and the storage 
parameters of the applications are defined. Finally, we describe how 
Monte Carlo simulations can be used to determine the influence of the 
level of anonymization and to measure the respective deviations from 
the original profile (Section 3.5). Beyond this presentation of the 
methodology, there is a presentation of the open-source tool including 
screenshots in the appendix (Section 7.4). 

3.1. Levels of anonymization 

The gradual anonymization methodology allows differentiation into 
different levels. Before the exact synthesis of load profiles is presented in 

Fig. 1. Exemplary day of the household load profile (January 14th, 2021) and 
EV high-power charging station load profile (February 2nd, 2022). 

Table 2 
Database of load profiles of the different applications.   

Household load 
profile 

Charging station load profile 

Storage application Home storage 
system 

High Power EV Charger with 
buffer 

Length of datasets 12 months 6 months 
Time period 2021 Mid-January 2022 to Mid-July 

2022 
Resolution 1 min 1 min 
Consumption 10.8 MWh 9.47 MWh 
Peak Power 8.685 kW 248.1 kW 
Industry/ Research 

Partner 
ISEA RWTH Industry Partner  
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the following sections, an example is used to explain the levels of ano
nymization. To illustrate the various levels of anonymization, Fig. 2 and 
Table 3 show the differences. The top left diagram (a) shows an 

exemplary original load profile. This profile is an EV charging station 
load profile over the course of a day. At this point, a daily profile is 
chosen to explain the procedure of the anonymization. In the later 
course, the permutations are carried out over the half-year (EV charging 
station) or full-year profile (household). The original daily profile has 
three peak sequences and four base sequences. 

In the anonymization level 1, the original profile is merely copied 
and can be normalized if desired (Fig. 2 b). This is to enable an exclusive 
normalization of load profiles. From level 2 onwards, features are 
determined for every peak and base sequence from the original profile 
and the profile is then reconstructed based on these features. In this 
level, the order of base sequences and peak sequences is maintained. 
Fig. 2 c shows an example of an anonymized load profile of level 2. This 
profile is remarkably similar to the original profile at first glance. 
However, at second glance, differences within the peaks become clear. 
These are due to the recreation of the profile using the features presented 
later. Thus, this level of anonymization can be applied by users of the 
method who want to modify or hide variations within base or peak se
quences. The occurrence of peaks and base sequences in this level takes 
place at the same time as in the original profile. In level 3, sequences are 
exchanged for the first time (Fig. 2 d). The base or rest sequences are 
created identically to the original profile, while the peak sequences are 
randomly permutated (red colored circles). In the example, the 
maximum peak is now the second peak, whereas in the original profile it 
was the third one. Peak sequence 2 and 3 have swapped accordingly. It 
can also be seen that the peak shape differs. The random creation of the 
shape of the sequences will be explained in Section 3.3. The third level of 
anonymization can be applied when users want to hide the exact times at 
which conspicuous peaks occur. For example, times when industries use 
certain machines could be randomly shifted in the load profile. In level 
4, instead of the sequence of peaks, the order of base sequences is 
randomly varied. In Fig. 2 e the maximum peak is again the third peak, 
for example. The very long base period (number 1) of over 9 h between 
midnight and 9:30 in the original profile is no longer present at the same 
place in this level. Instead, the profile starts with base sequence number 
four of about 8 h, which is at the end of the day in the original profile. 
Base sequence number one is now after the second peak. Anonymization 
in the fourth level changes the load profile more than in the levels 
before. The times at which characteristic peaks occur change due to the 
permutation of the base sequences, which means that the use of ma
chines or larger household appliances can no longer be assigned to 
typical times in the load profile. Level 5 finally combines the variations 
of level 3 and level 4, randomly varying the order of base sequences and 
the order of peak sequences. As a result, it is now no longer possible to 
read the order of the peaks from the load profile. An example of this level 
is shown in Fig. 2 f. Users who select this level of anonymization change 
the load profile the most. Typical characteristics of the load profile still 
occur, but at completely randomized times. We will discuss the effects of 
the levels of anonymization in Section 0. The use of a daily load profile 
in this section serves to illustrate the levels. Within the results, the full 
profiles are used, resulting in a larger number of base and peak se
quences. The permutations are always performed over the entire load 
profile present. For the EV charging profile this means over half a year 
and for the household load profile over one year. At this point, it should 
be noted that the division into the two types of sequences, base and 
peak, is only one possible way of analyzing the load profile that is 
commonly used. Alternatively, we could also divide the load profile into 
four types of sequences, as Haben et. al did with household load profiles 
[12]. 

3.2. Features extracted and used for the anonymization 

To generate the anonymized load profiles according to levels 2 to 5, 
features of the base sequences and the peak sequences are calculated. 
These features are shown in Table 4. For each base sequence, the length 
of the sequence, the mean value, the standard deviation, and the 

Fig. 2. Examples of daily anonymized load profiles depending on the level of 
anonymization. 

Table 3 
Difference between the levels of anonymization.  

Number of 
Level 

Description 

Level 1 Copying of profile and normalization 
Level 2 Feature extraction of sequences and profile creation based on 

features 
Level 3 Level 2 + permutation of peak sequences 
Level 4 Level 2 + permutation of base sequences 
Level 5 Level 2 + permutation of peak sequences and permutation of base 

sequences  

Table 4 
Features extracted for the anonymization. Every feature is calculated for every 
base and peak sequence.  

Peak Features Base Features 

Length/ timesteps of peak sequence 
without ramp-up and ramp-down (n) 

Length/ timesteps of base sequence (n) 

Maximum (Pmax) Maximum (Pmax) 
Minimum (Pmin) Minimum (Pmin) 
Mean of delta between two consecutive 

values (μΔ) 
Mean of delta between two consecutive 
values (μΔ) 

Standard deviation of delta between two 
values (σΔ) 

Standard deviation of delta between two 
values (σΔ) 

Probability of change of sign of the delta 
between two consecutive values 
(pchange of sign) 

Probability of change of sign of the delta 
between two consecutive values (pchange 

of sign) 
Mean of peak without ramp-up and 

ramp-down (μ) 
Mean (μ) 

Ramp-up length (nup)  
Ramp-down length (ndown)   

B. Tepe et al.                                                                                                                                                                                                                                     

3.3 Feature-conserving gradual anonymization of electrical load profiles

81



Applied Energy 343 (2023) 121191

7

maximum are saved. In addition, the mean delta between two values 
and the standard deviation of this delta are calculated. Moreover, the 
probability of a change in the sign of this delta is determined. For each 
peak sequence, basically the same values are determined. However, a 
distinction is made between ramp-up phase, peak without ramping and 
ramp-down phase. The mean value and the standard deviation are 
calculated for the peak without ramping. In addition, the length and the 
slope are determined for the ramp-up and ramp-down phases. 

3.3. Computational process of the anonymization 

This section describes the process of anonymization including the 
calculation of the individual values. Fig. 3 shows a flow chart of the 
process for clarification. If anonymization is to be performed in level 1 
with normalization, the profile is normalized to its maximum value. If, 
in contrast, the desired level is between 2 and 5, the original load profile 
is analyzed (a) and a synthetic load profile is created (b). 

In the profile analysis (a), the values of the original load profile are 
cleaned up by setting values smaller than zero to zero. Next, peak se
quences are determined by checking at which points in time the load 
profile has values above the defined threshold. Conversely, base se
quences are also determined in this way. If peak sequences are only one 
time step short, they are filtered out and count as part of the current base 
sequence. Afterwards, all peak sequences are analyzed one after the 
other. During this process, the features mentioned above are deter
mined. The average value of the respective peak sequence is used as the 
threshold value for the end time of the ramp up. Likewise, for the start of 
the ramp down phase the time is used in which the load falls below the 
average value for the last time before the end of the sequence. With the 
help of the lengths, the start and end values of the ramp up and ramp 
down sequences, their slopes are then determined. After the peak se
quences, the base sequences are analyzed, and the features shown in 
Table 4 are calculated. Finally, all values are saved for the subsequent 
creation of the synthetic load profile. 

In the profile creation (b), the procedure depends on the selected 
level. According to the selected level, the order of the peak and base 
sequences is kept (level 2), the order of the peak sequences is randomly 
mixed (level 3), the order of the base sequences is randomly mixed (level 
4) or both orders are randomly mixed (level 5). The synthetic profile is 

then created sequence by sequence. 
The procedure for generating the sequences is identical for peaks and 

base sequences. The general idea is to use the mean and standard de
viation of the delta of the original sequence together with the probability 
that the delta changes its sign to generate synthetic values successively 
as displayed in equation (1). The average value μ of the sequence is 
selected as the start value of the synthetic profile P1. Starting from this, 
the next value is determined using the mean μΔ and standard deviation 
σΔ of the delta of the original sequence. For this purpose, the standard 
deviation is multiplied by the absolute of a random value from the 
standard normal distribution X. As shown in equation (2), the sign sk 
used depends on the sign used in the last time step and the probability of 
a change of sign of the delta of the original profile pchange of sign. For 
example, if the probability were 100 %, the sign would be multiplied by 
− 1 each time and thus the direction of the delta would be reversed in 
each timestep. Since a low probability of a change of sign could result in 
very low or very high power values, the values are limited by the 
maximum Pmax and minimum Pmin of the sequence displayed in equation 
(3). If one of the limits is torn, the sign sk is reversed for the respective 
time step so that the range is maintained. If the other limit is exceeded 
due to the change of sign, the limit that was torn first is selected as the 
next value. This way, the synthetic sequence contains few more sign 
changes than the original sequence, but this is accepted by the advan
tage of the more realistic power range. Restriction to the range between 
maximum and minimum power may cause the mean value of the syn
thetic sequence to differ significantly from the mean value of the orig
inal. This is the case when the maximum is far above, or the minimum is 
far below the mean value. An outlier upwards then leads to higher 
values, for example. To reduce this discrepancy between the original and 
synthetic mean values, the sequence is scaled to the mean value of the 
original sequence. 

Pk = Pk− 1 + sk • (μΔ + σΔ • |X k| ) (1)  

sk = sk− 1 • s0 (2)  

Pmin ≤ Pk ≤ Pmax (3)  

With :

k = 2 ... n  

P1 = μ  

s1 = 1  

s0 =

{
− 1, pchange of sign
+1, 1 − pchange of sign  

X k ∼ N (0, 1)

n : Length of original sequence 

In addition to the individual base and peak sequences, the synthetic 
profile also includes ramp-up and ramp-down phases before and after 
peak sequences. To take the ramp-up into account, the ramp-up is syn
thesized based on the last power value of the previous sequence and the 
mean value of the following sequence. From these two values and the 
known length of the ramp-up and ramp-down from the original profile, 
the slope is determined, and the values are appended to the profile. The 
slope of the original profile is not used here because the last value of the 
previous sequence fluctuates over each simulation and using the original 
slope and length may cause an overshoot or jump in the profile. In the 
ways described, the base sequences, ramp-up phases, peak sequences, 
and ramp-down phases are iteratively appended to each other to 
generate the synthetic profile. The order of the sequences depends on the 
selected level of anonymization, as described above. 

Fig. 3. Flow chart of the process of the anonymization.  

B. Tepe et al.                                                                                                                                                                                                                                     

3 Battery applications and load profile anonymization

82



Applied Energy 343 (2023) 121191

8

3.4. SimSES interface and storage parameters 

The storage system simulation tool SimSES is a python-based open- 
source tool that enables time-series-based simulation of storage systems 
[53]. In SimSES, a variety of parameters can be defined and varied. For 
example, users can select various energy-management-strategies (EMS) 
like PS or FCR or implement their own EMS [38]. Furthermore, various 
lithium-ion battery models with associated degradation models can be 
used. For a more detailed description of SimSES, please refer to [53]. 

In this work, SimSES is used to simulate BSSs in different applications 
using the original and the anonymized load profile. The applications are 
SCI for the residential load profile and PS for the EV charging station 
load profile. The standard sizing used in this work for the BSS in each 
application is shown in Table 5. In the SCI application the BSS is 
designed with 8.8 kWh and 7 kW, and the PV system has a power of 9.3 
kWp, since this was the design of the original system surveyed by the 
ISEA of RWTH Aachen University. As the focus of this work is on the load 
profiles, the PV profile available in SimSES is used as the default PV 
profile. The PV generation profile was measured at the Professorship 
Power Transmission Systems of the Technical University of Munich in 
2014. This profile corresponds to the location Munich and is scaled to 
the defined peak power of 9.3 kWp. The PV profile is open-source 
available as part of SimSES [53]. This peak power leads to a generated 
energy of the PV system of 8,373 kWh over the entire year. If the storage 
system is simulated with the described parameters and the original load 
profile over one year, 1,913 kWh are charged into the battery and 1,868 

kWh are discharged from the battery. 
In the PS application, the BSS is scaled to 140 kWh and 250 kW. The 

PS limit defined for the grid consumption is set to 32 kW in consultation 
with the industry partner whose load profile is being used. The designs 
are used for the simulations to show how the anonymization tool works 
and to quantify the impact on the BSS load. In Section 4.3, the influence 
of the design on the results is evaluated in more detail. 

The battery model used in both storage applications simulations is a 
lithium-ion nickel-manganese-cobalt cell from Sanyo, whose parameters 
have been published by RWTH Aachen [45]. The DC/DC converter is 
modeled as lossless and the AC/DC converter is modeled following a 
publication by Notton et al [54]. 

3.5. Monte Carlo simulations 

The generation of anonymized load profiles is based on random 
permutation of base and peak sequences in the different levels. This 
dependence on randomness leads to the fact that individual simulations 
can lead to special, non-representative results. Moreover, in the simu
lations, non-bijective mappings of load profile KPIs of the BSSs are 
created. Consequently, no inverse function can be formed to allow a 
correlation between storage behavior and load profile characteristics. 
Accordingly, 100 anonymized load profiles are generated for every level 
in Monte Carlo simulations. The results are ensembles in the solution 
space which are then evaluated statistically. In addition to the median of 
the typical KPIs, the scatter will also be shown in the results. In this way, 
we exclude the possibility that individual, very well-fitting results are 
displayed. 

Overall, this chapter and the tool description in the appendix show 
how an open-source anonymization tool can be designed to allow 
gradual anonymization in different levels for easy and straightforward 
use in industry and research. LoadPAT is available open source, it has 
GUIs that make anonymization easy for users and it has setting options 
like level of anonymization and threshold between base and peak 
sequences. 

4. Results 

This chapter presents the results of the work. In Section 4.1, exem
plary results of the anonymization are presented, and the load profiles 
are directly compared using various indicators. Subsequently, in Section 
4.2 the simulation results of SimSES of the original and the anonymized 
load profiles are compared. For this purpose, relevant storage KPIs are 
compared for the different storage applications. Finally, Section 4.3 
evaluates the influence of the threshold parameter between base and 
peak sequences, as well as the influence of BSS and PV design in sensi
tivity analyses. 

4.1. Comparison of the original and the anonymized load profiles 

In this section, exemplary results of LoadPAT simulation are pre
sented. Subsequently, the results of the Monte Carlo simulations are 
compared with respect to the similarity of the load profiles. An example 
of the anonymization of the EV charging station load profile is already 
shown in Fig. 2, where a one-day load profile was anonymized to 
demonstrate the functionality of the tool. Fig. 4 shows a one-day original 
household load profile together with exemplary profiles of the different 
levels of anonymization. The diagrams show that, as with the EV charge 
point load profile, the profile changes more as the level of anonymiza
tion increases. Especially the permutation of the base and peak se
quences is visible. 

For the following results, the two systems are designed according to 
Table 5 and the load profiles from Table 2 are anonymized. Conse
quently, the annual load profile is used for the household and the six- 
month load profile for the EV charging station. Permutations therefore 
take place over the entire profile length and not just over one day. For 

Table 5 
Storage parameters of the different applications used in the SimSES simulations.   

Home Storage System High Power EV Charger 
with buffer 

Profile description Household load 
profile 

Required load by charging 
EVs 

Energy-management 
strategy (EMS) 

SCI Peak-Shaving 

Battery capacity 8.8 kWh 140 kWh 
Max. power of storage 

system 
7 kW 250 kW 

Photovoltaic (PV) – nominal 
power 

9.3 kWp, Location: 
Munich 

– 

Peak-shaving-limit – 32 kW  

Fig. 4. Exemplary anonymized load profiles of a one-day household 
load profile. 
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each level, 100 anonymizations are performed in Monte Carlo simula
tions and the storage is simulated with SimSES. The evaluations in this 
section refer to the direct comparison of the load profiles without 
SimSES. 

Fig. 5 shows a comparison of four KPIs between the original and the 
anonymized profiles for the one-year household load profile. The KPIs 
are the mean (a), the standard deviation (b), the maximum value (c) and 
the energy (d). For each KPI, the results of the anonymization of the 
levels 2 to 5 are shown in boxplots. The boxes describe the inter quartile 
range from 25th to 75th percentile and the red line is the median. The 
black dashed vertical lines cover all values that are at most 1.5 times 
away from the maximum or minimum of the interquartile range. The red 
crosses show outliers that go beyond that. The horizontal dotted line 
represents the value of the original profile in each case. 

Within the three KPIs of mean, standard deviation, and energy there 
is no major difference between the original load profile and the ano
nymized load profiles. Only the occurring maximum in the original load 
profile cannot be reproduced exactly (c). This KPI is underestimated by 
up to 20%. As described in Section 3.3 the values of the anonymized 
sequence fluctuate randomly around the average original sequence 
value and between the maximum and minimum of the original 
sequence. By generating the sequences in this way, the maximum of the 
original sequence is not reached in every anonymized sequence. This 
effect can also be seen in Fig. 4. In the original profile, the maximum 
value is 4 kW. In the anonymized load profiles of level 2, 4 and 5, 
however, the value of 4 kW is not reached. The outliers in Fig. 5 whose 
maximum is above the maximum of the original load profile exist 
because each sequence is scaled to the mean value of the original 
sequence after generation. This can cause the maximum of the original 
load profile to be exceeded in rare cases. In general, forcing the original 
maximum to be reached would be possible. For example, the synthetic 
profile could be scaled so that the maximum corresponds exactly to the 
maximum of the original load profile. However, this would severely 
overestimate the mean value and energy consumption. If instead only 
the maximum value of the synthetic profile is set to that of the original, 
an unrealistically short, large peak would result, which is also not 
representative of the original profile. For these reasons, an underesti
mation of the load peak is tolerated at this point. Furthermore, Fig. 5 
shows that in all four KPIs, the differences between the levels of ano
nymization are not significant. This is because the permutation is not 

considered within these four KPIs as they are all time independent. 
Analogous evaluations are performed for the EV charging station 

load profile (appendix). The results are similar. Mean, standard devia
tion and energy are close to the original profile over all levels of ano
nymization. Furthermore, the maximum of the anonymized load profiles 
is again smaller than the original profile’s maximum. 

To determine the time-dependent similarity of the profiles to each 
other, a DFT of the original household load profile and of four exemplary 
profiles of the levels 2 to 5 was performed. This method has been used in 
the literature to cluster and classify load profiles based on periodic 
patterns [9,37]. The single-sided amplitude of the spectrum of the five 
profiles is shown in Fig. 6. The frequency range chosen is 0 mHz to 
0.0275 mHz, since this corresponds to a period of 10 h to the length of 
the profile (12 months). The top graph represents the single-sided 
amplitude of the spectrum of the original profile. The gray shaded 
areas correspond to periods of about 12 h, 24 h, and 7 days. The original 
profile shows a pronounced amplitude especially for a period of 24 h and 
for a period of 12 h. This profile therefore seems to have a period or 
regularity over days and half days. The period over 24 h emerges 
because peaks occur with a regularity at approximately the same times 
of the day. The period over 12 h, whose amplitude is smaller, can be 
explained by morning and evening load peaks. The spectrum of the 
profile in level 2, generated using the features from the original load 
profile, also shows regularity over days and half days. From level 3, 
where the order of the peaks is randomly permuted, the amplitudes 
disappear almost completely. There is only a slight increase at the 24- 
hour period in the spectrum. In Level 4 and 5, in contrast, regularity is 
no longer recognizable. This is due to the random permutation of the 
order of the base sequences, whereby the occurrence of peak sequences 
is shifted in time. 

Again, analogous to the industrial load profile, the frequency anal
ysis was performed for the EV charge point profile. The results are 
shown in Appendix. The original EV charging station load profile shows 
a regularity over 24 h. In level 2 this regularity can be maintained, while 
the amplitude in level 3 is smaller but still existing. From level 4 up
wards, the amplitude disappears completely. 

Overall, the analysis of the load profiles shows that time independent 
KPIs are preserved despite anonymization. In contrast, the regularity of 
base and peak sequences is lost due to anonymization, especially from 
level 3 upwards. 

Fig. 5. Comparison of time independent KPIs of original and anonymized one- 
year household load profiles. 100 anonymized profiles were generated for each 
level of anonymization. 

Fig. 6. Discrete Fourier transformation single-sided amplitude spectrum of one- 
year household load profile in the various levels. Resolution of data: 1 min. 
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4.2. Effects of the anonymization on relevant battery storage indicators 

After the load profiles were directly compared in the previous sec
tion, the battery storage applications are now simulated in SimSES using 
the load profiles. For this purpose, SimSES is invoked as described in 
Section 3.4 and the operation is simulated once with the original load 
profile and 100 times with anonymized profiles in every level. Subse
quently, various storage KPIs are compared, and it is checked to what 
extent the anonymization has influenced the behavior of the storage 
system. 

Fig. 7 shows six storage KPIs for the annual household load profiles. 
The load profiles were used to simulate a BSS in SCI application as 
described in Section 3.4. The appendix shows the same KPIs with the 
absolute values of the six storage KPIs. The calculations of the KPIs are 
shown in the appendix Section 7.2. The deviation over the anonymiza
tion levels 2 to 5 compared to the result when using the original load 
profile. The KPIs shown are the mean SOC (a), the EFCs (b), the mean 
DOD (c), the mean C-rate (d), the self-consumption rate (e), and the self- 
sufficiency rate (f). Diagrams a), c), e) and f), on the one hand, show 
deviations in percentage points, since their original values are already in 
percent. Diagrams b) and d), on the other hand, show the deviation in 
percent since their original values are absolute. Above each diagram the 
absolute value of the KPI of the original load profile is given. Since the 
deviation from the original is considered at this point, the value of the 
original is drawn as a dashed line at zero in each case. As in the previous 
section, the values of the 100 anonymized load profiles are shown as 
boxplots for each level. 

The figure shows that level 2 barely differs from the original in terms 
of the relevant storage KPIs. Mean SOC, EFCs, mean DOD and mean C- 
rate are close to the original load profile with small deviations within the 
100 anonymizations. The self-consumption rate and the degree of self- 
sufficiency deviate from the original by only about 1% on average. 
From level 3 upwards, the deviations from the original are greater with 
up to 10 percentage points for the self-consumption rate. However, 
despite the permutations and the abandonment of regularity (see Sec
tion 4.1), greater anonymization beyond Level 3 does not lead to greater 
deviations in the KPIs relevant for BSS. Accordingly, anonymization in 
level 5 does not appear to be more critical than in level 3 with respect to 
the KPIs relevant for home storage systems. From level 3 upwards, the 
average SOC can still be reproduced well. In simulations of the degra
dation of the BSS with the anonymized load profiles, this would mean 
that the calendar degradation can be represented well. The mean C-rate 
deviates only slightly from the C-rate of the original profile, at about 5%. 

The simulated BSSs make about 230 EFCs over the year from level 3 
instead of 218 in the original. This corresponds to an overestimation of 
under 6%. Mean DOD is also overestimated by about 2 percentage points 
resulting in a value of 8 to 9% instead of the 6.7% in the original. The 
bottom two plots show that the self-consumption rate and self- 
sufficiency rate are underestimated from Level 3, with deviations of 
up to 9 percentage points. 

In general, some of the results of the KPIs for the SCI case show a 
systematic overestimation (EFCs, DODs, C-rate) or underestimation 
(self-consumption rate and self-sufficiency rate) from level 3 to 5 
compared to the original values. The original load profile has distinctive 
peaks especially during the day. The anonymized load profiles between 
level 3 and 5 have their distinctive peaks distributed over the 24 h. A fan 
chart over the course of the day with all values for the year once for the 
original load profile (a) and once for an exemplary load profile in level 3 
(b) are shown in the appendix. This shows that the peaks from the 
daytime hours are distributed over the 24 h of the day due to the ano
nymization. The shift of the peak loads has an influence on the BSS KPIs. 
As a result, more energy is charged and discharged from the battery, so 
the BSS is fully discharged earlier at night and makes more EFCs overall. 
In addition, the BSS is discharged deeper during evening and night hours 
due to the load peaks which leads to an increase of mean DODs. The C- 
rate is slightly higher than the original since the BSS is charged more 
frequently during the day with high PV power because, for example, in 
level 3 higher day peaks are exchanged with lower peaks from the night 
and thus more power flows into the BSS. At level 4, the base sequences 
are permuted, which leads to even higher C-rates, since the higher base 
sequences from the daytime exchange with lower base sequences from 
the nighttime. Next, the self-consumption rate is lower, since less PV 
energy can be consumed immediately and, once the BSS is fully charged, 
a larger proportion of the PV energy is fed into the grid. In the evening 
and at night, more energy must be supplied from the grid, which de
creases the degree of self-sufficiency. Since the effects mentioned occur 
in levels 3, 4 and 5, but do not increase in levels 4 and 5, the KPIs remain 
relatively constant at higher levels. 

Fig. 8 shows BSS KPIs for the EV charging station load profile similar 
to Fig. 7 but over the period of six months instead of one year. Instead of 
self-consumption rate and degree of self-sufficiency, round-trip effi
ciency and fulfillment factor are displayed, as these are relevant for the 
PS application (see Section 1.1). The appendix again shows a diagram 
with the absolute values. The Y-axis scaling of the subfigures in Fig. 8 
differs from the scaling in Fig. 7 to show the spread of the boxplots. Fig. 8 

Fig. 7. Comparison of the deviation of BSS KPIs for the household load profile 
(1 year) in SCI application. a), c), e) and f) show the deviation in percentage 
points, b) and d) in percent. 100 anonymized profiles per level. PV: 9,3 kWp, 
E_Bat = 8,8 kWh, P_Bat = 7 kW. 

Fig. 8. Comparison of the deviation of BSS KPIs for the EV charging station 
load profile (6 months) in PS application. a), c), e) and f) show the deviation in 
percentage points, b) and d) in percent. 100 anonymized profiles. E_Bat = 140 
kWh, P_Bat = 250 kW, Peak-Shaving with Threshold 32 kW. 
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shows that in all KPIs, the anonymized load profiles show only minor 
deviations from the value of the original load profile of up to 3% for the 
C-rate and 3 percentage points for the mean DOD. For example, the 
mean SOC deviates by only up to 0.3 percentage points. More impor
tantly, the fulfillment factor corresponds to the original across all levels. 
In contrast to the SCI application, the deviation is constant over the four 
levels of anonymization. This is because the PS application does not 
depend on a time-varying PV generation. From level 3 onwards, the 
permutations cause a shift in the peaks, but this has no influence on the 
relevant BSS KPIs. This can also be seen from the fact that level 2, in 
which there are no permutations, deviates just as strongly in most KPIs 
as levels 3 to 5. The largest noticeable deviation across all six KPIs is 
mean DOD, which is underestimated by up to three percentage points, 
resulting in a mean of around 11.3% instead of 13.5%. To explain this 
underestimation, fan charts are included in the appendix showing the 
original load profile (a) and a level 3 anonymized load profile (b) over 
the course of the day. Similar to the fan charts of the household in, the 
diagrams show that there is a homogenization of the load peaks over the 
24 h. This homogenization decreases the mean DOD of the BSS, since the 
BSS is discharged less frequently by several consecutive load peaks. 
Furthermore, the maximum of the peaks is smaller as described in Sec
tion 4.1, which leads to a decrease of the DOD. For the same reason, the 
average C-rate is smaller compared to using the original load profile. 

Overall, our analyses reveal three results: First, load profiles for use 
in simulations of time-independent applications such as PS can also be 
anonymized up to level 5 and thus be strongly modified without 
changing KPIs relevant for BSS excessively. Smaller characteristic pe
culiarities in the sequences of the original load profile are consequently 
not relevant and can be replaced by mean values and random fluctua
tions. Second, load profiles in time-dependent applications such as SCI 
can easily be anonymized in level 2 without changing BSS KPIs drasti
cally (approximately 1% in all KPIs). Vice versa, the anonymized profiles 
can well be used to design a BSS with suitable sizing and realistic esti
mation of battery degradation. From level 3, the deviations are larger by 
up to 9 percentage points, and users would have to decide for themselves 
whether the deviation is still within a reasonable range in order to 
realistically represent the original load profile through anonymization. 
Third, if it is decided to anonymize the load profile beyond level 2 in 
time-dependent applications, higher anonymization in level 4 or 5 does 
not lead to larger deviations in the relevant BSS KPIs compared to level 
3. Accordingly, the load profiles can then be changed more strongly to 
achieve higher anonymization. 

4.3. Sensitivity analysis of threshold and system design 

In this section, we perform a sensitivity analysis of the SCI case with 
the household load profile to explain the impact of three sensitivity 
parameters on the results. The first sensitivity parameter is the threshold 
between base and peak sequences. This threshold describes the bound
ary between base and peak sequences as a multiple of the mean value of 
the load profile. It can be freely chosen by the users and is set to 130% in 
the base case, as this provides good separation between base and peak 
sequences. Basically, a shift in the threshold means that the division into 
base and peak sequences changes. If, on the one hand, the threshold is 
set very low, large power variations are all defined as peaks, which leads 
to larger fluctuations but lower maxima in the peak sequences of the 
anonymized load profile. If, on the other hand, it is set very high, the 
base sequences will have large fluctuations and the peak sequences 
become shorter but more pronounced. 

Fig. 9 shows for the household load profile the six BSS KPIs for the 
original load profile and the medians of the four levels of anonymization 
over the varying threshold. The threshold is varied in a range from 90% 

to 170% in 20% steps. The diagram shows the deviations of the KPIs 
from the original value, which is set to 0 as in Fig. 7. The values of levels 
2 to 5 correspond to the median value of 100 anonymizations. For a 
better understanding of the absolute values, a diagram showing the 
respective absolute KPIs is presented in Appendix. The number of EFCs 
increases over all levels slightly as the threshold rises (b). If the 
threshold is low, more shares of the profile are evaluated as peaks, so 
that the peak sequences have larger differences between their maximum 
and minimum. This leads to the fact that the maxima are reached less 
often and a larger part of the peak sequences can be covered by the PV 
energy. At a higher threshold the peak sequences become shorter, but 
more pronounced. These more pronounced peaks can no longer be 
covered directly by PV generation. Therefore, more peaks must be 
covered by the BSS, which increases the number of EFCs. Furthermore, 
the self-consumption rate (e) and self-sufficiency (f) decrease slightly in 
level 2 but remain relatively constant in levels 3 to 5. The decrease in 
level 2 comes from the larger fluctuations within the base sequences and 
the higher maxima in the peak sequences that occur at higher thresh
olds. This means that a slightly smaller proportion of the PV energy can 
be consumed directly. In the higher levels of anonymization, the per
mutations have already changed the load profiles in such a way that the 
influence of the threshold is lower than in level 2. Overall, Fig. 9 shows 
that level 2 deviates the least from the original across all thresholds, as 
expected. Over the varying threshold, however, the deviations within 
each level change only slightly. The influence of the choice of threshold 
is therefore small. 

As a second parameter, the BSS capacity of the home storage system 
is varied. Fig. 10 show the variation between 4.8 kWh and 12.8 kWh 
with a step size of 2 kWh in the same format as for the threshold vari
ation. Again shows the absolute values, while Fig. 10 shows the devia
tion. In contrast to the variation of the threshold, this variation of 
capacity also changes the value of the original profile. Therefore, the 
original value is shown as a single line and not as a horizontal line. Since 
Fig. 10 shows the deviation from the original, the respective original 
value is again shown as 0. 

Basically, shows that, for example, the EFCs decrease with increasing 
capacity, while the self-consumption rate and self-sufficiency increase. 
Here, the influence of the storage design on the six parameters exists as 

Fig. 9. Sensitivity analysis of the SCI use case with household load profiles: 
Threshold between base and peak sequences. Threshold defined as percentage 
of profile’s mean value. The levels’ values are the median values of 100 sim
ulations. The subplots show the deviation of the results in the levels compared 
to the original in percentage (b, d) and percentage points (a, c, e, f). 
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expected. Analogous to the analysis of threshold sensitivity, level 2 
again shows the smallest deviations from the original profile (Fig. 10). 
Furthermore, the deviation of levels 3 to 5 in terms of mean SOC 
(around + 1 to − 1.5 percentage points), mean DOD (around 2 per
centage points), self-consumption rate (-9 to − 5 percentage points) and 
degree of self-sufficiency (-7 to − 4 percentage points) is approximately 
constant over the increase in BSS capacity. An increase in storage ca
pacity, on the other hand, leads to greater deviations regarding EFCs (2 
to 10 %) and mean C-rates (1 to 10%). These deviations are constant 
over the levels. As described in Section 4.2, the presented anonymiza
tion leads to more EFCs. If the BSS capacity is now increased, more 
energy can be discharged at night by peaks occurring only in the ano
nymized load profile. Thus, the deviations of EFCs increase with 
increasing BSS capacity. The same applies to the C-rate, which is higher 
on average because the BSS must more frequently cover the peak loads 
that cannot be covered by the PV system. Overall, this sensitivity anal
ysis shows that anonymization is relatively robust with respect to the 
selected storage capacity. 

Finally, Fig. 11 show the variation of the PV peak power between 5.3 
kWp and 13.3 kWp in 2 kWp steps for the household load profile case. 
First, as with the BSS capacity variation, the influence of the size of the 
PV system on the KPIs can be seen: If the PV system is larger, the EFCs 
increase because more PV energy can be stored. Likewise, the mean C- 
rate increases, since the BSS is charged with a higher power due to the 
larger PV system. In addition, the self-consumption rate decreases and 
the self-sufficiency rate increases with increasing PV nominal power, as 
has already been confirmed using field data [51]. The results in Fig. 11 
are similar to those in Fig. 10. The deviations across the enlarged PV 
system are relatively constant for mean SOC, mean DOD, self- 
consumption rate, and self-sufficiency. However, in contrast to the 
BSS evaluations, the deviations of the EFCs and mean C-rates are large 
for small nominal PV power of 5.3 kWp with up to 20% over the levels 3 
to 5. If the PV system is small, the EFCs are therefore overestimated. The 
EFCs of the BSS in the original load profile are 137, while they are 163 
when anonymized according to level 5 which is an overestimation of 
19%. Basically, a smaller PV system can only insufficiently cover the 
load by the household (degree of self-sufficiency decreases). The per
mutation of the peak sequences and the possible shift to times without 
PV generation means that the BSS can be charged more during the day 
but is also discharged more at night. For this reason, EFCs increase 
especially when the nominal PV power is small. 

Overall, this section answers the question of how sensitive the results 

are to the threshold between base and peak sequences and the system 
design. The influence of the threshold is rated as low. The BSS KPIs 
change only slightly by varying the threshold and the deviations be
tween original and the different levels of anonymization remain rela
tively constant. In principle, this also applies to the variation of the 
capacity of the BSS and the nominal power of the PV system. Only 
particularly large capacities of the BSS and small nominal PV power lead 
to stronger deviations between two KPIs of the anonymized load profiles 
and those of the original (EFCs and C-rate). A realistic dimensioning of 
the system design is therefore necessary. 

5. Conclusion and outlook 

This chapter summarizes the work in Section 5.1. Furthermore, in 
Section 5.2, we discuss the usability of the tool and the strengths and 
weaknesses of the methodology, and we give an outlook on how the 
presented work could be followed up. 

5.1. Conclusion 

In this work, a methodology of anonymization of load profiles is 
presented. For this purpose, the existing literature of load profile clus
tering and anonymization is presented first. Within this research we find 
that a methodology to gradually anonymize existing load profiles has 
not been published yet. Hence, we develop a methodology to fill this 
research gap. Our approach extracts features from the original load 
profile and separates the profile into base and peak sequences. A syn
thetic, anonymized load profile is then generated from the features of 
each sequence. The gradual anonymization is enabled by anonymizing 
in different levels. A simple normalization of the original load profile is 
possible in level 1. In Level 2, the features are extracted and used for 
profile generation along with random values of the standard normal 
distribution, which represent a type of noise. From level 3 on, peak or 
base sequences are permuted. In level 3, the peak sequences are 
permuted in a random way, which shifts peaks that are characteristic for 
the load profile in time. In level 4, the base sequences are permuted in a 
random manner. The order of the peaks is preserved, but they also shift 
in time due to the change in base sequences order. Finally, level 5 allows 
the combined permutation of base sequences and peak sequences. This 
results in more strongly modified load profiles. To make the presented 
methodology usable for the public, the open-source load profile ano
nymization tool LoadPAT was developed. LoadPAT is coded in Python 

Fig. 10. Sensitivity analysis of the SCI use case with household load profiles: 
Storage capacity. The levels’ values are the median values of 100 simulations. 
The subplots show the deviation of the results in the levels compared to the 
original in percentage (b, d) and percentage points (a, c, e, f). 

Fig. 11. Sensitivity analysis of the SCI use case with household load profiles: 
Nominal PV power. The levels’ values are the median values of 100 simulations. 
The subplots show the deviation of the results in the levels compared to the 
original in percentage (b, d) and percentage points (a, c, e, f). 
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and can be used on any computer. This allows companies, research in
stitutions and private individuals to keep the original data on their 
computers and to create and subsequently share the anonymized load 
profiles themselves. The methodology presented and LoadPAT answer 
our first research question, how load profiles can be anonymized grad
ually and how an open-source tool could look like that allows ano
nymization and enables an easy and straightforward use in industry and 
research (RQ 1). 

Two load profiles were selected as use cases for testing the meth
odology within LoadPAT: A household load profile and an EV charging 
station load profile. For both use cases, 100 anonymized load profiles 
were created in Monte Carlo simulations across all possible levels. 
Subsequently, the anonymized load profiles were compared with the 
original load profile in each case. The results showed that the anony
mized load profiles correspond to the original load profile in time- 
independent KPIs, such as the mean value or the standard deviation. 
However, a subsequent analysis of the amplitude of the DFT of the load 
profiles shows that the regularity of the load profiles is lost due to 
anonymization from level 3 upwards (RQ 2). 

Afterwards, the original and anonymized load profiles are used as 
input profiles for the storage simulation tool SimSES and various storage 
applications are simulated. The household load profiles are used to 
simulate a SCI scenario. The EV charging station load profiles are used 
for a PS scenario. Our results show that anonymizing load profiles has 
only minor impact on KPIs relevant to BSS in time-independent storage 
applications such as PS. However, if time-dependent storage applica
tions such as SCI (dependence on PV generation) are considered, ano
nymization from level 3 leads to larger variations in relevant KPIs. If, on 
the one hand, this variation is considered by users to be significant, 
anonymization should only be performed up to level 2. If, on the other 
hand, it is considered acceptable, anonymization can even be performed 
up to level 5, since the differences between the KPIs of level 3 and 5 are 
small (RQ 3). 

Finally, we perform a sensitivity analysis in which we evaluate the 
influence of the threshold value between base and peak sequences and 
the influence of the system design (RQ4). This analysis indicates that 
although the choice of threshold leads to slightly different results, the 
deviations are relatively constant across the different levels of ano
nymization. The system design of storage capacity and PV system shows 
similar results. The KPIs relevant to BSS change with capacity and PV 
system size, as expected. The deviations across levels are also relatively 
constant here, except for particularly large capacities and particularly 
small PV systems. 

5.2. Discussion and outlook 

The presented methodology of LoadPAT allows the modification of 
load profiles so that characteristic times of peak and base phases are no 
longer identifiable. The methodology works for various types of load 
profiles such as the rather continuous household load profiles, but also 
the more event-based load profiles of EV charging stations. Moreover, 
the original load profile cannot be reconstructed from the anonymized 
load profiles, especially from level 3 onwards, due to the random per
mutations of a large number of peak or base sequences. In addition, the 
approach is easy to understand, does not require large data sets or 
processes with artificial intelligence involved. LoadPAT is easy to use 
because of the GUI including graphical representation of the load pro
files. Users can select the threshold between base and peak sequences 
and the level of anonymization, and if needed, normalize the load profile 
to the maximum value. They can even simulate the created load profile 
in the tool in different storage applications. A weakness of the meth
odology is that characteristic peaks (e.g. typical machines of a company) 

are shifted in time but can still be recognizable even at the highest level 
of anonymization. Here, the tool could be extended in the future to 
explicitly blur selected peaks. Furthermore, in the present version of the 
tool the resolution of the load profiles cannot be changed, and profiles 
cannot be shortened or extended. In addition, the permutations from 
level 3 are always performed over the entire length of the profile. A 
selectable period for the permutations, for example over weeks, could 
maintain seasonal fluctuations within the load profile. Another 
approach would be to extract a daily load profile from a monthly orig
inal load profile that is as representative as possible but anonymized. 
Similarly, a methodology could be developed to extract an anonymized, 
representative load profile from a set of load profiles. An approach that 
has already been published several times is the clustering of load profiles 
to summarize similar load profiles [14-16]. The LoadPAT methodology 
could be used to aggregate larger data sets of anonymized load profiles 
that would not be allowed to be shared without anonymization. Here, 
users could be allowed to upload their anonymized load profiles to a 
publicly available platform. This database could be made freely avail
able to users from industry and research and thus contribute to the 
standardization of load profiles. In addition, the methodology could also 
be further developed and adapted so that real-time smart meter data can 
be anonymized with the goal of masking resident attendance times. 
Finally, the methodology could be extended to storage profiles that are 
not only positive but change sign through charging and discharging. 

Data availability 

The Load Profile Anonymization Tool (LoadPAT) presented in this 
paper can be downloaded as an open-source Python version from Gitlab 
[55]. The household load profile will be part of a future publication and 
the EV charging station load profile is subject to a non-disclosure 
agreement. 
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Appendix 

Existing literature on analysis and clustering of load profiles 

Table A1 

Equations of the storage KPIs 
The KPIs used in this work for the behavior of the BSS are presented below. First, the mean SOC results from all SOC values of the storage profile 

(Equation (4)). We calculate the number of equivalent full cycles (EFCs) analogous to [38] after equation (5) using the energy charged into the storage 
system over the entire profile divided by the energy of the storage system. The mean DOD is also calculated analogously to [38] from the SOC at the 
start of the cycle minus the SOC at the end of the cycle (equation (6)). According to equation (7), the mean absolute C-rate is calculated using the 
absolute mean value of the current in ampere divided by the battery capacity in ampere-hours. The two KPIs relevant to self-consumption increase, the 
self-consumption rate and the degree of self-sufficiency, are derived from equation (8) and (9), respectively. The self-consumption rate, on the one 
hand, describes what proportion of the energy generated by the PV was consumed by the household or industry consumer. For example, if no energy is 
fed into the grid, the self-consumption rate is 100%; if half of the PV energy is fed into the grid, the self-consumption rate is 50%. The degree of self- 
sufficiency, on the other hand, describes the independence from the grid and therefore depends on the total consumption and the grid supply. If no 
energy is drawn from the grid, the degree of self-sufficiency is 100%, if half of the required energy is drawn from the grid, the degree of self-sufficiency 
is 50%. The round-trip efficiency is the energy discharged from the storage divided by the energy charged into the storage (equation (10)) [38]. 

The charged energy is corrected in the formula to account for the SOC offset between the beginning and end of the simulated period. The fulfillment 
factor, which is the percentage of time that the system was able to fulfill the requested service, is calculated using equation (11) [49]. Here, P* stands 
for the realized power and Psys for the power requested by the system. 

SOCmean =

∑n
t=1SOC(t)

n
(4)  

EFCs =
Epos

total profile

EBSS
(5)  

DODmean =

∑m
k=1SOCcycle k,start − SOCcycle k,end

m
(6)  

C − rateabs,mean =
|̄I|

CBattery
(7)  

Self consumption rate = 1 −
Egrid feed in

EPV Generation
(8)  

Self sufficiency = 1 −
Egrid supply

Eload total
(9)  

ηBSS =

⃒
⃒
⃒Eneg

total profile

⃒
⃒
⃒

⃒
⃒
⃒Epos

total profile

⃒
⃒
⃒ − [SOCend − SOCstart] • EBSS

(10)  

Fulfillment factor = 1 −

∫ ( ⃒
⃒P*(t) − Psys(t)

⃒
⃒
)
dt

∫ ( ⃒
⃒Psys(t)

⃒
⃒
)
dt

(11)  

With :

n : Length of load profile 

Table A1 
Summary of literature on load profile analysis and feature extraction.  

Source Date Focus Results 

Price [8] 2010 Load analysis Definition of five parameters to characterize load shapes in time-domain: Base load, peak load, rise time, high-load 
duration, fall time. 

Haben et al.  
[12] 

2016 Load analysis & clustering Analysis of customer smart meter data including seven attributes that describe relative seasonal and intraweekly power 
and standard deviation. Those attributes of each profile are used in a finite mixture-based clustering. 

Al-Otaibi et al.  
[13] 

2016 Feature extraction for 
clustering 

Calculation of specific maxima and minima in time range as features together with normalization and scaling leads to 
sufficient clustering results with much fewer features compared to 48 half-hour values of a daily load profile. 

Wang et al.  
[11] 

2019 Load analysis, forecasting & 
management 

Review on smart meter data analytics: Load profiling can be done directly using the time-series and indirectly using 
suitable features extracted from the profile. 

Park et al. [14] 2019 Clustering Direct clustering of building load profiles extracting three fundamental profiles that 94% of 1,832,807 daily load 
profiles of 3,829 buildings can be assigned to 

Trotta [15] 2020 Clustering (k-means) Four clusters of Danish household load profiles are identified including seasonal fluctuations. 
Li et al. [9] 2021 Load analysis Combination of time-domain (based on the work of Price [2]) and frequency-domain load profile analysis of 

commercial office buildings. Time-domain analysis based on six key parameters of the load profiles. 
Czétány et al.  

[16] 
2021 Clustering Three clusters of Hungarian household load profiles on daily and on yearly basis are identified. The K-means algorithm 

is favorable against fuzzy k-means and agglomerative hierarchical clustering. 
Elahe et al.  

[17] 
2022 Feature extraction Identification of households with plug-in electric vehicles using a new feature extraction technique.  
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m : number of cycles  

Illustration of the two original load profiles 
The Figs. A1 and A2 describe the annual household load profile and the 6 months electric vehicle charging station load profile described in Section 

2. 

Description of LoadPAT 
In this chapter we describe the open-source load profile anonymization tool LoadPAT. The basic idea of LoadPAT is to characterize a load profile 

and generate an anonymous, synthetic load profile based on various features. The similarity between the synthetic load profile and the original load 
profile can be distinguished by the user based on five anonymization levels. A screenshot of the GUI is shown in Fig. A3. On the left side, the levels of 
anonymization are explained. On the right side, the anonymization can be performed step by step. In step 1, the users browse to a CSV of the original 
load profile. Afterwards, the original profile is already plotted. 

Fig. A1. Annual household load profile for 2021.  

Fig. A2. 6 months electric vehicle charging station load profile from Mid-January 2022 until Mid-July 2022.  

Fig. A3. Graphical User Interface of LoadPAT.  
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In step 2, users then select the level of anonymization. Here they can also click in a tick box on “Normalization to 1” to normalize the load profile to 
the maximum value. In addition, the threshold between base and peak sequences can be set in this step. This threshold is to be specified as a percentage 
value of the average value of the original profile. If, for example, 100% is selected, the threshold value corresponds to the mean value. In our sim
ulations we choose as threshold 130%, as this provides good separation between base and peak sequences. To support the selection of the threshold 
value, the plot of the original profile shows once the average value of the profile dashed and once the threshold value. By clicking on “Update Plot”, 
users can update the original plot after changing the threshold value. 

In step 3, the actual anonymization takes place. By clicking on the “Anonymize” button, the anonymization is performed. The methodology of the 
anonymization is explained in detail in Section 3.3. The anonymized profile then appears next to the original load profile, and the users can compare 
the profiles visually. Moreover, some key metrics like mean values, standard deviation and maximal values are displayed next to the “Anonymize” 
button. If users are not satisfied with the generated anonymous profile, they can generate a new profile by clicking the button again. 

In step 4, users can simulate the original profile and the anonymized profile in a battery storage application via the storage simulation tool SimSES. 
Finally, in step 5, users can save their anonymized profile. To analyze the operation of LoadPAT, it is furthermore possible to run many anonymizations 
in Monte Carlo simulations followed by storage system simulations across all levels in succession. 

In this work, SimSES is invoked by LoadPAT and a BSS is simulated in different applications using the original and the anonymized load profile. The 
GUI for using SimSES within LoadPAT, which appears when clicking the “SimSES Simulation” button in the main window of the GUI, is shown in 
Fig. A4. On the left side, users can set parameters. First, this is the storage capacity in kWh and the maximum power of the storage in kW, which is 
limited by the power electronics. In addition, the start SOC and the resolution of the time series simulation must be defined. Furthermore, a lithium-ion 
cell and the EMS can be selected via drop-down menus. Depending on the EMS, the size of the PV system (SCI) or the limit for PS must then be defined. 
Afterwards, the storage behavior can be simulated with the original load profile and with the anonymized load profile. By clicking the “Show Results” 
button after the simulations are completed, the results of the storage simulation are displayed on the right side. In the upper part, the key KPIs 
determined by SimSES for the original profile and the anonymized profile are displayed as a table together with the percentage deviation. Below this, 
histograms for the KPIs SOC, C-rate, DOD and temperatures are plotted, allowing users to compare these four KPIs graphically. Finally, users can save 
the results from SimSES by clicking on the corresponding button. If users are satisfied with the results, they can then save the anonymized profile in the 
main window of LoadPAT. As of this publication, users have access to three battery models, two NMC-based lithium-ion batteries (SanyoNMC and 
MolicelNMC) and one iron-phosphate lithium ion battery (SonyLFP), whose data have been published in various publications [43,45,46,56]. As EMS, 
users can choose between two strategies: A strategy of SCI of PV energy (ResidentialPvGreedy) and a PS strategy (SimplePeakShaving). 

Results of the comparison of the original and the anonymized load profile for the EV charging station load profile 
Fig. A5 shows the comparison of load profiles for the EV charging station load profile. Fig. A6 shows the single-sided amplitude spectrum of the 

original profile and 5 exemplary anonymized load profiles for the EV charging station. 

SimSES KPI comparison: Plots of absolute values 
Figs. A7 and A8 show the comparison of the BSS KPIS for the household load profile anonymization and the EV charging station load profile 

anonymization in absolute values. 

Fan chart of the original household load profile and an exemplary load profile anonymized in level 3 
The Figs. A9 and A10 show fan charts of the original load profiles and one exemplary anonymized load profile from level 3 over the course of the 

day as mentioned in Section 4.2. 

Results of the sensitivity analyses of Section 4.3 
The Figs. A11–A13 show the absolute values of the BSS KPIs of the sensitivity analysis. In Section 4.3 Figure Fig. 9, Fig. 10 and Fig. 11 the de

viations from the original values are displayed. 

Fig. A4. Graphical User Interface of SimSES in LoadPAT.  
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Fig. A5. Comparison of load profiles. EV charging station load profile (6 months). 100 anonymized profiles per original profile.  

Fig. A7. Comparison of the BSS KPIs for the household load profile (1 year) in SCI application. 100 anonymized profiles per level. PV: 9,3 kWp, E_Bat = 8,8 kWh, 
P_Bat = 7 kW. 

Fig. A6. Discrete Fourier Transformation single-sided amplitude spectrum of 6-months EV charging station profile in the different levels. Time resolution of profile: 
1 min. 
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Fig. A9. Fan chart of the household load profiles over the course of the day. 365 values per minute (data for 1 year). The top diagram (a) shows the plot for the 
original load profile, the bottom diagram (b) the plot for an exemplary level 3 anonymized load profile. 

Fig. A8. EV charging station load profile (6 months). Comparison of SimSES characteristics. 100 anonymized profiles. E_Bat = 140 kWh, P_Bat = 250 kW, Peak- 
Shaving with Threshold 32 kW. 
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Fig. A10. Fan chart of the EV charging station load profiles over the course of the day. 181 values per minute (data for 6 months). The top diagram (a) shows the plot 
for the original load profile, the bottom diagram (b) the plot for an exemplary level 3 anonymized load profile. 

Fig. A11. Sensitivity analysis of the SCI use case with household load profiles: Threshold between base and peak sequences. Threshold defined as percentage of 
profile’s mean value. The levels’ values are the median values of 100 simulations. The subplots show the absolute values of the results in the levels. 
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4 Vehicle-to-Grid provision with electric vehicle pools

Chapter 4 deals with the V2G provision with pools of commercial EVs. The three sections of the
chapter each represent a research paper. Section 4.1 explains the basics of the work and generates
the power and energy capability profile of the commercial vehicles. In addition, evaluations are made
of the economic potential of FCR provision with vehicles. Section 4.2 builds on the results of section
4.1. A methodology is presented that can be used to optimize the composition of vehicle pools.
Moreover, potential revenues in various markets are determined according to random and optimized
pool composition. Section 4.3 then presents an analysis of the optimized pools from section 4.2. These
are examined in terms of vehicle battery size and economic sectors of the vehicles involved.

4.1 Provision of frequency containment reserve using pools of
electric vehicles

This section shows the results of the research paper entitled The Influence of Frequency Containment
Reserve Flexibilization on the Economics of Electric Vehicle Fleet Operation [11]. The paper examines
the provision of FCR by means of commercial e-Cars with regard to the increasing flexibilization of
the FCR market. While FCR in Central Europe had to be provided over an entire week until mid-
2019, time sectioning was reduced to 24 hours until mid-2020 and since then 4-hour time sections are
tradable. At the same time, the minimal bid sizes have remained constant at 1 MW minimum offer
and increment. These minimum bids prevent individual EVs from participating in the FCR market,
but the increasing flexibility in terms of time makes FCR provision attractive for pools of EVs during
idle times.

This work is based on a data set of over 460 commercial internal combustion vehicles from 14 economic
sectors. These vehicles were equipped with GPS sensors and measured over different periods of time
in order to record when the vehicles are at the company location and when they are on the road. In a
mobility simulator, the driving profiles are then combined with e-Car measurements, for example from
charging curves, and assumptions about battery capacity and energy consumption. Here, the driving
behavior is broken down into weekly probability distributions for, for example, trip start, trip duration
and trip distance. The output of the mobility simulator are energy and power capability profiles that
indicate what energy and power a vehicle can charge and discharge at any given time. These profiles
are then used to determine the potential FCR power of the commercial vehicles in the pool for the
various FCR service periods and prices and how much potential revenue would have been generated.

The research questions answered in this section are:

1. How much FCR power can commercial EV fleets offer over different time periods?
2. What power uncertainty can be expected during different time slots due to mobility?
3. What would be the effect of further reductions in FCR service periods on the economics of EV

fleets?
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4. How much money can EVs expect to earn through FCR?

A key finding of this section is that the shortening of the service periods of the Central European
FCR market has increased the economic attractiveness of participation with EVs. At the same time, a
further shortening of the periods would not bring much added value, as the idle times are often longer
than the current service periods of 4 hours. Possible revenues of commercial EVs in the 4h service
periods in Germany are between 450 € and 750 € per vehicle and year for the considered time period
of July 2020 to March 2022. This revenue does not represent the profit, as costs for battery ageing,
losses, bidirectional charging stations and fleet management would have to be taken into account when
calculating the profit. The calculated revenue is of a similar magnitude to previous publications (see
section 2.5.4). However, comparability is always difficult due to various time periods, markets and
driving profiles. Thingvad et al., for example, calculated €751 € as the profit for the provision of
balancing services in Denmark [63]. However, this already included ageing costs and conversion losses.

The power and energy capability profiles generated in this section for the commercial e-Cars are used
in section 4.2 to create optimized pool compositions for various markets. For this purpose, genetic
algorithms are used to determine the revenue per vehicle in various pool compositions and pools with
maximum revenue per vehicle are determined. In section 4.3, the optimized pools are then analyzed
in terms of battery size and commercial sector.
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A B S T R A C T   

In recent years, the spot and ancillary service markets have become a relevant source of revenue for stationary 
battery storage systems. During this period, many markets have become increasingly flexible with shorter service 
periods and lower minimum power requirements. This flexibility makes the markets attractive for pools of 
electric vehicles (EVs), providing the opportunity to earn additional revenue. In this paper, multi-year mea
surement data from 22 commercial EVs are used to develop a simulation model to calculate the available power 
of an EV pool. In addition, the driving logbooks of >460 vehicles from commercial fleets of 14 different economic 
sectors are analyzed. Based on our simulations, we discuss the influence of shorter service periods on available 
pool power and power uncertainty. The key findings are that, especially at times with a high pool power, the 
uncertainty is low. This leads to the conclusion that commercial fleets offer a highly reliable power profile during 
known idle times depending on the economic sector. All investigated 14 sectors show high and reliable power 
availability at night and most show this availability also during weekends while others show a regular driving 
pattern seven days a week. These results are applicable to any energy market. To have a concrete use case, the 
impact of frequency containment reserve (FCR) flexibilization on the economics of an EV pool is analyzed using 
the German FCR market design from 2008 to 2022. It is shown that, depending on the fleet, especially the two 
recent changes in service periods from one week to one day and from one day to 4 h generate the largest increase 
in available pool power. Further future reductions in FCR service periods will only produce minor benefits, as 
idle times are often already longer than service periods. According to our analysis, revenues of about 450 €/a to 
750 €/a could have been achieved per EV in the German FCR market between mid-2020 and the first quarter of 
2022.   

1. Introduction 

This section presents the thematic overview, a summary of existing 
literature on vehicle-to-grid (V2G) concepts with focus on the provision 
of frequency containment reserve (FCR) through electric vehicles (EVs) 
and highlights the scientific contribution of this paper. Fig. 1 provides a 
graphical overview of the paper. First, two databases (EV measurements 
and driving data) and EV master data are used for the development of a 
simulation model. The results of the simulation model are power 

capability profiles, which are the bidirectional power potential of 
different EV pools. The profiles are used together with historical FCR 
price data within a calculator to estimate FCR revenues for different 
market designs. We show that commercial fleets are generally capable of 
offering V2G services with a predictable uncertainty depending on day 
and time. Possible future flexibilization in form of shorter service pe
riods will have only little impact on the available power compared to the 
current service periods of 4 h. 
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1.1. Motivation and contribution 

The increasing integration of volatile renewable energy generation 
and flexible energy storage has led to an increasing flexibilization of spot 
and grid service markets in recent years. The term flexibilization refers on 
the one hand to the reduction of service periods for the respective market 
and on the other hand to the introduction of the required minimum power 
bids to participate in the market. Battery storage systems (BSSs), in 
particular stationary large-scale BSSs, already have a significant share of 
the global market for FCR. From this market, they continue to displace 
conventional market participants such as large power plants. In Germany, 
the share of stationary large-scale BSSs in the FCR market was about two 
thirds in 2021 [1–3]. However, these BSS have the problem that they are 
refinanced exclusively from FCR revenue. The ensuing price competition 
in order to win a contract in the bidding process has led to a 50 % decrease 
in FCR prices from 2015 to 2020 and made the market increasingly un
attractive as the main application for these large-scale BSSs [1]. For this 
reason, so-called multi-use concepts for BSSs are a promising way of 
generating revenue from various applications [4]. Decentralized BSSs can 
participate in virtual power plants at times when they do not fulfill their 
primary use. Such a pool can consist of BSSs of all types and includes 
stationary as well as mobile BSSs in the form of EVs. EVs, in particular, 
have a great potential of free battery capacities that are not used for 
mobility due to idle times of >95 % [5,6]. Especially commercially 
operated EVs often have short and regular (and thus plannable) distances 
and driving patterns that allow the provision of grid services [7]. There
fore, the increasing flexibility of the FCR market (decrease of minimum 
power bid from 5 MW to 1 MW and shortening of service periods from one 
month to 4 h in recent years) makes this market attractive for the fluc
tuating power of EVs in multi-use concepts. This paper analyses the in
fluence of FCR flexibilization on the profitability of commercially 
operated EVs in the use case of the German market design, which should 
be representative for a large region of Central Europe, since the FCR 
market of Germany, Belgium, the Netherlands, France, Switzerland, and 
Austria is coupled and the price varies only slightly between the countries 
[8]. Even though there is a variety of scientific publications on FCR and 
EVs, none of the literature focuses on the recent and possible future FCR 
flexibilization and its impact on the economics of EV fleets potential in 
this market. While other publications focus mainly on optimized opera
tion strategies and multi-use in a fixed market design, this paper analyzes 
the influence that the market changes themselves have on the economics 
of an EV fleet. Further, it quantifies the power uncertainty that different 
economic sectors have, which can be used by aggregators for all energy 
markets. This analysis has so far not been examined (see Section 1.2). We 

contribute with our paper to fill this gap. The key research questions 
answered are:  

1. How much FCR power can commercial EV fleets offer over different 
time periods? (Section 3.1)  

2. What power uncertainty can be expected during different time slots 
due to mobility (Section 3.1)?  

3. What would be the effect of further reductions in FCR service periods 
on the economics of EV fleets (Section 3.2)?  

4. How much money can EVs expect to earn through FCR? (Section 3.3) 

1.2. Literature review and differentiation 

There are many publications on the provision of frequency regula
tion by stationary BSSs or EVs, each with a different focus and data. We 
divide our literature research into the areas (1) provision of FCR using 
BSSs and combination of applications (see Table 1), (2) simulation and 
optimization of frequency regulation using EVs (see Table 2), (3) dem
onstrations, experiments, and field tests of frequency regulation using 
EVs (see both Appendix, Tables 9 and 10), and (4) generation of reve
nues using fleets of EVs for the provision of frequency regulation. We 
classify the sources according to Table 1 into respective focal points, 
which we discuss individually in the following.  

(1) The provision of FCR with large-scale BSSs has been investigated 
and shown to be possibly profitable, depending on the energy-to- 
power ratio (EPR) and specific market conditions [9–11]. Espe
cially the so-called “30-min” criterion when providing FCR with 
batteries in the German regulatory market had been determined 
as a crucial burden for providers [10,11]. This criterion required 
that the maximum offered bidirectional FCR power must be able 
to be provided for at least 30 min at any time within the 
respective service period. In 2019, the German federal network 
agency (FNA) obliged the transmission system operators (TSOs) 
to apply the 15-min criterion instead of the 30-min criterion for 
BSSs making the market more attractive to batteries due to 
smaller EPRs (see Section 2.6) [12]. Multi-use, the combination 
of different storage applications, has been studied for years 
[4,13–16]. The main results of these studies are that the combi
nation of different storage products increases the economic 
attractiveness, but that there are regulatory hurdles to overcome 
[13–15]. In this context, Englberger et al. published an open- 
source tool simulating multi-use including an economical and a 
technical analysis [16]. However, all mentioned publications 
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Fig. 1. Graphical abstract.  
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focus on stationary applications and do not evaluate the flexibi
lization of the FCR market, on which this paper focuses.  

(2) The concept of Vehicle-to-Grid (V2G) was first introduced by 
Kempton et al. [17,18]. Since then, the concept has been studied 
extensively. Table 2 provides publications, in which the provision 
of FCR with EVs has been simulated and optimized. The provision 
of different frequency regulation products by EVs offers economic 
potential for the owner and the aggregator [19–22]. Further
more, the grid can benefit from it [20]. Moreover, control algo
rithms for aggregators have been developed and bidding 
strategies optimized [23,24]. V2G can be carried out using uni
directional and bidirectional chargers. Despite their momentarily 
higher purchase costs, bidirectional chargers offer higher eco
nomic potential [25]. In addition, simulations show that the en
ergy throughput is increased by the provision of frequency 
regulation, which might lead to increased battery degradation 
[21,22]. However, none of the mentioned publications evaluate 
the impact of recent and possible future FCR flexibilization as this 

paper does. Further, the power uncertainty was not quantified 
before. 

The concept of second-life use means that after years of use for 
mobility, vehicle batteries are removed from EVs and integrated 
into other applications like stationary BSSs in order to provide 
grid services or trade energy [26–28]. However, batteries con
tained in EVs can also be used to provide these V2G services 
within their first life, if they are temporarily not required for their 
primary use, namely mobility. We therefore call this concept 
“dual use”.  

(3) Several demonstration projects have been and are being carried 
out to investigate the provision of frequency regulation with EVs. 
Appendix, Table 9, gives a selection of such projects, while Ap
pendix, Table 10, lists scientific publications done within these 
projects. In 2002, the first project on frequency regulation supply 
with EVs was implemented in California [29,30]. It showed that 
EVs are capable of providing frequency regulation to the grid. The 
German INEES project ran from 2012 to 2015 and analyzed the 

Table 1 
Summary of selected literature of the provision of FCR using BSSs and multi-use.   

Source Date Focus Results 

FCR Fleer et al. [9] 2016 Economics of the provision of FCR using BSS based on two case studies 
considering FCR prices and battery aging  

- BSS only profitable with a power-to-energy ratio of 1:1, not 
with 1:2  

- Decreasing battery prices will increase possible profit but 
could lead to lower achievable revenues due to market 
saturation 

FCR Zeh et al. [10] 2016 An optimal control algorithm for the operation of FCR with BSS is 
developed for the market conditions of 2015  

- FCR Market conditions for BSS of August 2015 (30-min- 
criterion) lead to unprofitable operation 

FCR Thien et al.  
[11] 

2017 Operation strategy for an installed 5-MW-BSS providing FCR is developed 
and influencing parameters are analyzed  

- Benefits could be enhanced having better market conditions 
such as 15-min instead of 30-min-criterion 

Multi- 
use 

Fitzgerald et al. 
[13] 

2015 Evaluation of different services BSS can provide in the US market including 
a meta-study and analysis of barriers  

- Combination of applications increase the economic value  
- Despite technical readiness, regulatory hurdles exist that 

prevent an economically profitable use of BSS 
Multi- 

use 
Stephan et al.  
[14] 

2016 Analysis of investment attractiveness of different single applications of BSS 
and their combination by developing a techno-economic model  

- Combination of applications improves the investment 
attractiveness  

- Market barriers often prevent the combination of 
applications 

Multi- 
use 

Braeuer et al.  
[15] 

2019 Evaluation of economics of BSS installed in German small and medium 
sized enterprises when combining applications of peak-shaving, FCR and 
arbitrage  

- Individual applications are not profitable, but combination of 
applications are  

- Influence of arbitrage application is small 
Multi- 

use 
Englberger et al. 
[16] 

2020 Simulation of energy storage systems serving multiple applications 
including an analysis of technical and economical parameters  

- Application stacking more economical than single use  
- Publication of open-source tool which combines BSS 

applications  

Table 2 
Summary of literature about simulation and optimization of the provision of frequency regulation using EV fleets.  

Source Date Focus Results 

Tomić et al. [19] 2007 Analysis of two fleets of utility EV providing power for regulation 
services in the US.  

- V2G enables potential revenue streams for EV owner in most ancillary 
service markets 

Han et al. [23] 2010 Proposition of an aggregator pooling EV to provide frequency 
regulation  

- Development of an optimal control strategy for EV fleet considering 
battery energy capacity and desired final SOC for driving purpose 

Sortomme et al.  
[20] 

2012 Development of a V2G algorithm for the scheduling of the provision of 
the ancillary services load regulation and spinning reserves in US 
markets  

- Algorithm combines several ancillary services  
- Simulations show that even though there are challenges, providing 

ancillary services can provide benefit for the owner, the aggregator and 
the grid. 

Bessa et al. [24] 2012 Optimized bidding of EV fleet in day-ahead and secondary reserve 
Iberian market.  

- Using an aggregator to optimize the bidding of energy decreases charging 
costs  

- Variables like the electricity price and the maximum available power in 
each time interval need to be forecasted 

Codani [25] 2015 Simulation of participation of 200,000 EV in FCR market in France  - Potential revenue higher with bidirectional charging compared to 
unidirectional charging  

- A high number of EV might saturate FCR market 
Hoogvliet et al.  

[21] 
2017 Economic analysis of the potential revenue EV owners can raise when 

providing regulating power in the Netherlands  
- Depending on EV type and driving pattern an EV owner can raise 120 € to 

750 € per year when providing regulating and reserve power  
- Provision will lead to higher battery energy throughputs (11 % to 55 %) 

David et al. [22] 2017 Economic analysis of the provision of frequency regulation using EV 
considering battery degradation and driving requirements  

- EV with highest battery capacity lead to the greatest economic benefit, as 
the cyclic degradation is lowest  

- Major constraint is the power capability of the EV and the chargers  
- Incentives should be developed to convince EV owners to provide 

frequency regulation  
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provision of secondary control reserve with an EV fleet of 20 V2G- 
compatible vehicles [31,32]. The provision proved to be techni
cally possible, but not profitable under the conditions prevailing 
at the time [31]. In addition, the impact on the distribution grid 
in terms of power quality and manageability was not assessed as 
negative [32]. Another demonstration project ran from 2013 to 
2018 in California, within which 29 bidirectional EVs provided 
frequency regulation [33,34]. Among other things, optimization 
models were used to minimize operating costs and maximize 
revenue from ancillary services [34]. The so-called “Parker” 
project, within which many scientific findings were published, 
ran from 2016 to 2019 in Denmark [35–41]. The scientists 
showed that FCR supply is possible with unidirectional charging 
stations, but is economically much more attractive with bidirec
tional charging stations [36,37,40]. Furthermore, it was found 
that the response times and accuracies of the charge controllers 
are sufficient to provide control power [37,38]. Nevertheless, 
communication delays and measurement errors turned out to be 
practical obstacles [39]. Factors influencing the economic benefit 
of providing control power are the availability of vehicles, the 
charging efficiency and the operation strategy used [39–41]. In 
addition, an industrial project ran between 2018 and 2019 in 
which the provision of frequency regulation with a prequalified 
EV was successfully tested in Germany [42]. Another project, 
monitored by the German research institution FfE (For
schungsstelle für Energiewirtschaft e.V.), started in 2019 and 
analyses use-cases of EVs in different electricity markets [43]. To 
analyze the interaction between EVs, charging infrastructure and 
the grid, 50 EVs will be tested in the field [43,44]. The inter
connection of EVs to a virtual power plant providing frequency 
regulation will be investigated in another industrial project until 
2021 [45,46]. However, these projects focused on the demon
strations of V2G applications and did not focus on the market side 
as this paper does.  

(4) Different publications have taken a look at the possible revenues 
that pools of EVs can generate when providing FCR. As early as 
2005, Kempton and Tomic estimated the possible annual reve
nues for the provision of frequency regulation using a Toyota 
RAV4 to reach $ 4928 [5]. In 2019, Thingvad et al. analyzed the 
economic value of EV reserve provision in Northern Europe [40]. 
Assuming a power availability of 10 kW, the possible annual 
revenues resulted to 1395 €. One year later, Bañol Arias et al. 
published an analysis of the economic benefits for EV owners 
when participating in primary frequency regulation markets 
[41]. Their resulting profits (costs were subtracted from reve
nues) ranged between 100 € and 1100 € per EV and year. In 2021, 
Thingvad et al. published another paper about the provision of 
frequency regulation with EVs [47]. In this work, they published 
battery degradation data about EVs which had provided primary 
frequency regulation over a period of five years. Moreover, they 
calculated the revenues the EVs had generated. Including battery 
degradation costs and conversion losses and neglecting invest
ment and maintenance costs, Thingvad et al. estimated a yearly 
profit of 751 €. Later in 2021, in Tepe et al. we published a work 
combining pools of EVs in an optimal manner [48]. In doing so, 
we estimated a yearly revenue per EV of 378 € in the German FCR 
market in 2020. However, none publication focused either on the 
influence of flexibilization nor power uncertainty of EV pools. 

The most important project (without focus on FCR) for this paper, 
“GO-ELK”, was conducted by the Institute for Power Generation and 
Storage Systems at RWTH Aachen University [49]. Within this project, 
22 commercially operated EVs were equipped with data loggers to 
measure quantities such as battery voltage and battery currents during 
charge and trips. The logged data build the basis of many of the results 
shown in this paper. 

2. Methodology 

This section describes the paper's methodology. It presents the used 
data, the developed driving profile generator, the modelling approach, 
and the market for FCR in Germany. 

2.1. Data collection 

This paper uses two databases containing the driving data of com
mercial vehicles. Table 3 compares the most important data of both 
databases and gives further information on calculations and 
assumptions. 

2.1.1. Database “Measurements” 
The first database, “Measurements”, was created by the Institute of 

Power Generation and Storage Systems (PGS) at RWTH University. The 
high-resolution data (T = 1 s) of commercially operated electric vehicles 
were measured between 2013 and 2016 within the project “Commercially 
operated electric vehicle fleets (GO-ELK)” [49]. In the project, four fleets 
of EVs were deployed in different sectors over a period of 30 months [49]. 
During their use, vehicle data (driving, charging and battery data) of the 
total of 22 EVs were recorded by data loggers in the vehicles and the 
charging stations. For a detailed description of data collection and 
adjustment, please refer to [49–52]. The values include battery voltage, 
battery current, start and end of a trip, distance travelled, consumption, 
and the location at the end of the trip. Further, the measurements were 
used to create charging curves as an input for the model (see Section 2.4). 

2.1.2. Database “Logbooks” 
The second database, “Logbooks”, was included within the project 

REM 2030 (regional eco mobility). The project was supervised among 
others by the Fraunhofer Institute for Systems and Innovation Research 
ISI and various institutes of the Karlsruhe Institute of Technology (KIT) 
and covered different topics of future urban mobility [53]. The goals 
were new innovative traffic concepts of individual mobility in order to 
avoid local emissions [53]. Within this project, Fraunhofer ISI collected 
travel data of commercial vehicles, which can be used free of charge for 
non-commercial purposes. The database contains over 91,000 journeys 
of 630 vehicles of different trades. We filtered the database so that only 
vehicles with a minimum number of one trip and a minimum logging 
duration of one week were considered. The vehicles are classified ac
cording to their economic sector (NACE criteria) [54]. The KIT classified 
the vehicles used from database "Logbook" into 15 economic sectors. 
Within the economic sector, there are further definitions of vehicle 
classes. The values include start and end of a trip, the distance travelled, 
and the location at the end of the trip. 

The database “Logbooks” contains only vehicles with internal com
bustion engines. In order to model these as fully electric vehicles, the 
unrecorded consumption and the plug and unplug behavior must be 
estimated. 

To estimate the consumption, the values shown in Appendix, Table 8, 
are used. These result from various studies, test results and manufacturer 
data sheets of EVs that are in the same vehicle class as the internal 
combustion engine vehicles. The average consumptions of the listed EVs 
range from 18 kWh/100 km and 27 kWh/100 km depending on the 
vehicle class [55]. To determine the consumption of the EVs in kWh per 
100 km of a trip, the consumption is distributed normally around the 
average consumption of the vehicle class (expected value: average 
consumption of all EVs in Appendix, Table 8, and variance: 1 kWh / 100 
km). This way, the effect of the temperature on the consumption is also 
statistically taken into account. 

To estimate the plug and unplug behavior, the information on the 
location is used, which is given as the distance to the company site. 
Whenever the distance symbolizes that the car is parked at the company 
site, it is assumed to be plugged. Therefore, the assumption is made that 
every EV has an available charging point. 
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2.1.3. Combination of the two databases 
For the combination of the datasets, the different data formats were 

unified and merged. For unification, driving profiles were created as both 
datasets contain start and end of a trip, distance travelled, and consump
tion (see Sections 2.2 and 2.3). These driving profiles are the input for the 
model described in Section 2.4. To merge the databases, the EVs from 
database “Measurements” were divided into the respective economic sec
tors and supplement the large KIT data set according to Appendix, Table 8. 
With 94 vehicles, the manufacturing sector has the largest number of ve
hicles, especially of the vehicle class “medium” (see Appendix, Fig. 23 
(left)). This is followed by public administration (71 vehicles) and 
healthcare service (58 vehicles), in which mainly small vehicles are used. 
Some clusters follow with 30–40 vehicles and there are also four clusters 
with <10 vehicles each. This should be considered when looking at the 
results, as the power capability profiles in these cases are only based on 
small sample sizes. The average duration of data recording for most clus
ters is about 20 days (see Appendix, Fig. 23 (right)). The analyses of our 
database “Measurements” (data recording periods of more than one year) 
show that these relatively short durations are already sufficient to reliably 
map daily operations in the examined sectors. 

2.2. Statistical analysis 

In the following, we present a short statistical evaluation of the data 

used. For better comprehensibility, we present the healthcare service as 
an example from database “Measurements”. This fleet shows the same 
driving pattern for the whole week, which makes the daily analysis done 
very representative. Further analyses on database “Logbook” indicate in 
general similar results as the evaluation done for the “Measurement” 
database. All vehicles of the two databases were evaluated analogously 
to the evaluations presented in this section. However, as this paper does 
not represent a mobility study, no further evaluations are made at this 
point and reference is made to mobility studies such as [56–59]. 

Fig. 2 shows the three events “plug & charge”, “end of charge”, and 
“unplug” of the Smart ED of a healthcare service. The health-care service 
runs in two shifts a day: 50 % of all unplug events are at around 7 a.m., 
which is the start of the first shift. It ends at around noon and the cars are 
plugged and charged. The second shift runs from around 2 p.m. to 9 p. 
m., which is again indicated by the “plug and charge events”. 

The average distance (see Fig. 3) between two charging operations is 
about 40 km, although the maximum possible distance range of the 
vehicle is around 100 km. Further, the average duration between unplug 
und plug is about 8 h (see Fig. 4). All travel durations above about 8 h 
can be assigned to shifts after which no charging process is initiated. 
This is the case for about 30 % of all trips. The regular charging with 11 
kW charging stations at the end of the shifts leads usually to a fully 
charged vehicle a short time after returning. While the average SOC after 
return is around 60 %, this value is often 100 % or near to 100 % when 

Fig. 2. Trip events of EVs in healthcare service (908 measured trips from database “Measurements”).  

Table 3 
Available data in the two databases used in this paper. 
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the vehicle starts a trip (see Fig. 5). The unplug events where the EV is 
not fully charged in the morning are mainly due to software issues with 
the internal SOC estimation showing values slightly below 100 % 
although the EV does not charge any more. The small amounts of needed 
energy underline the potential of free capacity ranges shown in recent 
literature (see Section 1.2). Due to the relatively short distances, the 
vehicle consumes on average only 40 % to 50 % of the battery energy 
capacity (see Fig. 6). The measurements also contain different con
sumptions as a function of the temperature as the EVs were measured 
over two years and thus within different seasons (a low temperature 
leads to high consumptions and vice versa). 

2.3. Driving profiles 

The statistical analysis is now used to generate driving profiles such 
as the probability of a trip start or day and time dependent distributions 
of distances, durations, and energy consumptions. The data is presented 
for a Smart ED that was part of the healthcare service fleet in the sta
tistical analyses shown in Section 2.2. 

The trip-start probability wstart of a plugged vehicle is calculated as a 
function of day and time. To get the trip-start probability, the number of 
unplug events are divided by the total number of days, when the car was 
connected to the charging station (see Eq. (1) and nomenclature in 
Appendix, Table 6). 

wstart(t) =

∑N

n=1
tripstart,n(t)

N

with tripstart,n(t) =

{
1, if trip started on day n at time t

0, otherwise

with N = number of days,where EV was plugged

(1) 

The trip-start probabilities are exemplarily shown in Fig. 7. The 
probability for starting a trip is over 60 % for the first shift and is most 
likely between 6 a.m. and 7 a.m. During the second shift, with cumu
lated probability values of approx. 40 %, the number of unplugs is 
slightly lower. Outside the shifts, the probability of plugging out from 
the charging station with values below 10 % is relatively low. Further, 
the trip distances (Fig. 8), durations (Fig. 9), and normalized con
sumptions are sorted by day and time to ensure a realistic driving 
behavior of the analyzed vehicles. The figures show the probabilities and 
distribution clustered for 1 h for clearer presentation. The resolution 
used for simulations is 15 min and thus higher (see Section 2). 

The value distributions presented, such as distance, duration, and 
consumption, are also evaluated as a function of time, resulting in 

separate distributions for each point in time. The distances driven and 
the durations between plug and unplug are subject to temporal fluctu
ations. Both, the longest distances and durations are the start of each trip 
of the two shifts in the healthcare service. Especially if the EV is not 
plugged after the end of the first shift, the distances and durations get 
longer as their values also cover the second shift and vice versa. 

2.4. Modelling 

The generated profiles are the input for an implemented mobility 
model. The model simulates the driving behavior and the grid 

Fig. 3. Distance between unplug and plug (908 measured trips of EVs in 
healthcare service from database “Measurements”). 

Fig. 4. Duration between unplug and plug (908 measured trips of EVs in 
healthcare service from database “Measurements”). 

Fig. 5. SOC at unplug and plug (908 measured trips of EVs in healthcare ser
vice from database “Measurements”). 

Fig. 6. Consumption between unplug and plug (908 measured trips of EVs in 
healthcare service from database “Measurements”). 

J. Figgener et al.                                                                                                                                                                                                                                 

4.1 Provision of frequency containment reserve using pools of electric vehicles

105



Journal of Energy Storage 53 (2022) 105138

7

connection of EVs via the charging station. Fig. 10 presents the general 
structure of the simulation:  

• If a vehicle begins a trip due to the calculated probability, it gets 
random but correlated values of the day and time-dependent distri
butions of distance, duration, and the normalized consumption per 
kilometer. The new EV data are updated with the given trip values and 
the car is plugged to the charging station after the given trip duration.  

• If a vehicle does not begin a trip, it charges in case the state-of-energy 
(SOE) is lower than the required energy for the mobility. This is 
explained in more detail in the following Section 2.5. 

The charging process of the vehicle is simulated with real charging 
curves measured in our laboratory at PGS RWTH Aachen University. 
Fig. 11 (left) depicts an 11 kW constant-power charge. The AC power on 
the grid side is larger than the DC power on the EV battery side, which 
shows the power losses due to the power converter. The efficiencies are 
around 93 % for the constant power phase and decrease during the 
power decline. Battery current and voltage are shown in Fig. 11 (right). 
The current values range in the case of this charge (11 kW) from 2 A to 
approximately 30 A at battery voltages of around 320 V to 390 V. During 
the constant power phase, current decreases while voltage increases 
with higher SOE. It is important to consider that at around 90 % SOE the 
constant-power charge turns into a constant-voltage phase resulting in a 
strong decline of current and power. When offering ancillary services, 
EVs with - in this case - SOEs above 90 % are therefore not chosen to 
participate in the pool because of their strong decline in power. That is 
why a charging SOE limit of the EV is implemented in the simulation. 
This limit is set dynamically and ensures that all logged trips could have 
been done, individually for each EV. The charging limit is mostly around 
80 % of the SOE and is further explained in Section 2.5. 

For the simulation, it is assumed that the EVs are solely charged at 
the company site and that all EVs have an available bidirectional 
charging point. 

2.5. Virtual sectioning of the battery 

The primary use of an EV is mobility. However, several studies as 
well as our presented data have shown that the average trip distance is 
quite low resulting in a low average energy needed for most trips. Thus, 
there are free energy capacities during most times that can be used for 
dual-use concepts in order to increase the economics of operation. 
Within these concepts, the primary use should not be limited by the 
secondary use. For dual use, the battery must be virtually divided into 
the energy range for primary use (mobility energy Emobility) and the en
ergy range for secondary use (marketable energy Emarket), as shown in 
Fig. 12. The mobility energy must be ensured at any time in order to 
undertake the regular trips of the vehicle. It consists of a reserved 
minimum energy for spontaneous trips at any time and a trip energy 
within certain time windows, when the vehicles are general, is the dif
ference of the total battery energy EBat and the current mobility energy 
as shown in Eq. (2). It is a derived quantity that describes how much of 

the battery's rated energy capacity a user would allow to use for a sec
ondary use such as FCR. 

Emarket(t) = EBat − Emobility(t) (2) 

Based on the state of energy (SOE), the marketable energy can be 
divided into the charge energy Echarge and the discharge energy Edischarge 
as shown in Eqs. (3)–(5) and in Fig. 12 (left). 

Emarket(t) = Echarge(t) +Edischarge(t) (3)  

Echarge(t) = EBat − SOE(t) ∀ SOE(t) > Emobility(t) (4)  

Edischarge(t) = SOE(t) − Emobility(t) ∀ SOE(t) > Emobility(t) (5) 

In order to calculate the FCR power an EV can provide, some basic 
calculations are necessary that are described in the following. Generally, 
the FCR power can either be restricted by: 

%
ni
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atrats

ot
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Fig. 7. Trip-start probability (Smart ED, healthcare service).  

Fig. 8. Distance distributions as a function of the departure time (Smart ED, 
healthcare service). 

Fig. 9. Duration distributions as a function of the departure time (Smart ED, 
healthcare service). 
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1. the rated power PEV of the battery converter of the EV,  
2. the rated power PCS of the charging station, or  
3. the charge or discharge energy in combination with the time of 

power supply. 

Eqs. (6) and (7) consider all three cases for calculating the available 
charge power Pcharge and discharge power Pdischarge taking the service 
period ΔTsupply of the required 15 min full FCR power into account. 

Fig. 10. Simulation flow of the implemented mobility model.  

Fig. 11. Measured grid and battery power (left) and battery current and voltage (right) of a Smart ED during charge at 11 kW AC power.  

Fig. 12. Virtual division of the battery energy capacity and calculation of available power. Left: static. Right: time-dependent in the case of EVs. Inspired by [31].  
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Pcharge(t) = min
{

Echarge(t)
ΔTsupply

;PEV ;PCS

}

(6)  

Pdischarge(t) = min
{

Edischarge(t)
ΔTsupply

;PEV ;PCS

}

(7)  

Example. Assumptions for calculating the charge power: 
EBat = 50 kWh (before constant voltage phase starts). 
Emobility = 15 kWh (30 % of EBat); SOE = 30 kWh. 
PEV = 11 kW; PCS = 22 kW, ΔTsupply = 15 min = 0.25 h. 
Calculation: 
Echarge = 50 kWh – 30 kWh = 20 kWh 

Pcharge = min
{

20 kWh
0.25 h

; 11 kW; 22 kW
}

= min{80 kW; 11 kW; 22 kW}

= 11 kW (power limited by EV in this case)

For our simulation, we assume a bidirectional charging station. 
Although most of the current charging stations at the time this paper is 
submitted are unidirectional, broad literature expects EVs to play an 
important role in ancillary services of the future and bidirectional 
charging stations will probably emerge for V2G and vehicle-to-home 
(V2H) applications (see Section 1.2). However, many car manufac
turers still do not provide any internal vehicle information such as the 
SOE to the charging station and prohibit the charge control as they use 
older Open Charge Point Protocols (OCPP version 1.5 or 1.6). Never
theless, protocols like OCPP version 2.0 with the corresponding ISO 
15118 protocol as well as the CHAdeMO protocol send information and 
allow charge and discharge control. 

The required energy for mobility changes with the time of day and 
the day of the week depending on the use profile of the EV (see Fig. 12). 
In order to take the individual use profile of the EVs into account, the 
minimum energy required is calculated on the basis of historical journey 
data. In addition, a spontaneous mobility buffer of at least 30 % of the 
battery energy is implemented. This value is specified by users in a field 
test as the desired minimum for spontaneous trips [31]. Whenever the 
SOE is above the mobility energy, the vehicle can provide grid services 
as long as the SOE is not within the ECV, where the constant-voltage 
charging phase takes place (see Fig. 11). In order to provide flexibility 
in charging and discharging the EV, an additional individual charge 
limit of about 80 % SOE is introduced (see Fig. 12 (right)). This upper 
limit is chosen as high enough that sufficient energy for all historical 
journeys is available. The individual charging limit ensures that the 
single EV is not yet in the constant-voltage phase of the charging process. 
If the energy for a trip exceeds the 80 %, the charging limit is not applied 
and the EV is charged to 100 % and cannot participate in FCR during this 

time. 

2.6. Frequency containment reserve 

This section presents the German FCR market design, its re
quirements for BSSs and the development of FCR prices. 

2.6.1. The German FCR market 
The frequency regulation is divided into frequency containment 

reserve (FCR, former primary control reserve), automatic frequency 
restoration reserve (aFRR, former secondary control reserve), and 
manual frequency restoration reserve (mFRR, former tertiary control 
reserve). The three types of frequency regulation have different activa
tion times and replace each other consecutively as shown in Fig. 13. 
Within 30 s after a frequency deviation of >10 mHz, FCR units in 
Continental Europe Synchronous Area have to provide FCR automati
cally [60,61]. This way the frequency drop (respectively rise) is sup
posed to be stopped. Providers of FCR must offer both positive and 
negative FCR power for the same service period. It is important to notice 
that other regions such as the Nordic Balancing Markets [62] or the UK 
[63] also have faster frequency regulation markets. 

The regulatory requirements for FCR varied during the last years as 
shown in Table 4. Appendix, Table 11, provides the decisions taken on 
FCR by the German Federal Network Agency (FNA) and the TSOs. Until 
mid-2011, FCR was tendered on a monthly basis in a pay-as-bid auction, 
which means that the supplier of FCR had to provide the service for one 
month continuously and the paid prices were the individual prices that 
providers bid in the auction [65,66]. From mid-2011 until July 2019, 
FCR was tendered weekly in a pay-as-bid auction [64,65] and the 
minimum bid size was decreased from 5 MW to 1 MW [65]. 

In July 2019, the service period was shortened to one day [65] and 
the pricing was modified to a market-clearing-price procedure for the 
offered power [64]. This means that every provider of FCR earns the 
price of the highest offer that is accepted for the respective bidding 
period. As a last modification, in July 2020, the service period was made 
even more flexible to six daily slots of 4 h each [64]. The EU had 
demanded this higher flexibility and short-term nature of FCR tenders 
[67]. 

2.6.2. Requirements on BSS and virtual power plants when participating in 
the FCR market 

BSS are technically able to provide frequency regulation due to their 
fast reaction times and high cycle stability, which is required when, for 
example, offering FCR [10,68,69]. In 2015, the German TSOs had 
decided on a 30-min-criterion for BSS, when providing FCR [70]. As the 
storages had to provide the positive and negative power simultaneously 
over the period of one week, the TSOs wanted the BSSs (or pools of BSSs) 
to be able to provide the awarded power for at least 30 min (instead of 
the usual 15 min) [70]. Only when BSSs were added to an existing pool 
to increase its flexibility, 15 min were sufficient [70]. In 2019, the 

Table 4 
Frequency containment reserve market before July 2019, after July 2019 and 
after July 2020 [64,65].   

Before July 2019 July 2019 – July 
2020 

Since July 
2020 

Direction Positive and negative power together 
Minimal bid 1 MW 
Minimal 

increment 
1 MW 

Reaction time 30 s 
Provision time 15 min 
Remuneration Pay-as-bid for 

power 
Market-clearing-price for power 

Time sectioning 1 week 24 h 4 h 
Tendering Tuesdays, 3 pm D-2, 3 pm, D-1, 8 am 
Demand Germany 551 MW - 620 MW 620 MW 573 MW  

Fig. 13. Division of frequency regulation with exemplary frequency curve (top) 
and power type responsibilities (bottom) based on [60]. Figure shows only a 
frequency drop, although FCR is bidirectional. 
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German FNA rejected this request of the TSOs as it would have 
discriminated the BSSs operators [12]. In addition to this minimum 
required amount of energy, an FCR provider must also maintain an 
additional quarter of its prequalified power as a buffer [71]. This is to 
ensure that storage management activities can be provided at the same 
time as FCR provision. For example, a pool of EVs that wants to provide 
3 MW of FCR power must have at least (3 MW • 1.25 =) 3.75 MW 
available. For a pool, the TSOs set a minimum size of 25 kW for the 
smallest plants and 2 MW for the pool [72]. A system may only partic
ipate in one pool at a time [72]. 

2.6.3. Development of the prices for FCR 
Fig. 14 (left) shows the development of the FCR prices from 2008 to 

2022. It contains all special features of the market history: the different 
service periods are marked by different colors. In addition, the range of 
values of 100 % of all prices shows that the monthly and weekly service 
periods still had a pay-as-bid price in contrast to the market-clearing 
price of the daily and four-hourly service periods. The FCR prices 
show volatility over the shown time period. Nevertheless, a clear trend 
towards falling prices can be seen from 2015 to the beginning of 2021. 
While prices in 2015 still averaged around 3600 €/MW/week (peaks 
above 6000 €/MW/week), by the beginning of 2021 they had fallen to 
<1500 €/MW/week. This was mainly due to the strong competition in 
the FCR market caused by the increasing number of large-scale BSSs 
[2]. However, from mid-2021 prices increased sharply to values in the 
range of 2000 €/MW/week to 4000 €/MW/week and spiked by the end 
of 2021 with prices of over 9000 €/MW/week. In 2022 the prices 
ranged from 2000 €/MW/week to 6000 €/MW/week. Therefore, the 
FCR prices followed the price development of all other energy markets. 
Further price developments stay unclear due to unpredictable situa
tions like political tensions around Russian gas supply and the war in 
Ukraine. 

Fig. 14 (right) shows the price ranges for different time spans of the four 
market designs. The prices for the monthly tendering were significantly 
higher than for other periods with a mean price of 3486 €/MW/week. 
While the prices averaged around 2585 €/MW/week during weekly service 
periods, the mean price during daily service periods was around 1281 

€/MW/week and during the service period of 4 h 2531 €/MW/week. 

3. Results 

In this section the results are presented and discussed. First, the in
fluence of flexibilization on the available power of an EV pool is 
examined. Subsequently, these results are used to calculate the revenue 
using the example of German FCR prices. These prices are representative 
for many countries in Central Europe. 

3.1. Available power and uncertainty 

As the EVs are on trips for several parts of the day, the available pool 
power fluctuates. Fig. 15 shows the distributions of the minimum bidi
rectional pool power of two exemplary clusters ((1) healthcare service 
care and (2) energy supply) for the current FCR market design of a 
service period of 4 h. In the following, the minimum bidirectional pool 
power is called “power capability profile”. The distribution shows all days 
of the year over a period of one week. While the median is represented 
by the thick line, the differently colored areas show the respective 
ranges of 50 %, 75 %, and 100 % of all values. 

The two clusters are chosen as they are quite representative for the 
others. While the cluster energy supply shows a pattern that is different 
for the days Mon-Fri and Sat-Sun, the cluster healthcare service shows 
nearly the same pattern seven days a week although the power is higher 
at the weekend. The median power of the energy supply cluster ranges 
from around 40 % of the pool power during day to around 90 % during 
night and the weekend. The median power of the healthcare service 
cluster ranges from about 25 % during day to 80 % at night. 

The power uncertainty is defined as the difference of the maximum 
and the minimum power within a certain time period. The two profiles 
both show a higher uncertainty during day than during night. Further, 
the energy supply cluster has only very small uncertainty values of a few 
percentage points during the weekends. 

Fig. 16 shows the median power and the uncertainty for all 14 
clusters. The following insights can be drawn from the analysis: 

Fig. 14. Left: FCR price development per week until March 2022. Analyzed data from [8]. The prices of the periods of one month, one day and 4 h are scaled to a 
weekly price for comparability. Therefore, the monthly prices are divided by four, and the daily and four-hourly prices are summed up within the respective week. 
Right: FCR price ranges for each market design. Analyzed data from [8]. 

J. Figgener et al.                                                                                                                                                                                                                                 

4.1 Provision of frequency containment reserve using pools of electric vehicles

109



Journal of Energy Storage 53 (2022) 105138

11

• Most clusters show either a clear difference between the days Mon- 
Fri and Sat-Sun (like the energy supply cluster, referred to as pro
file type A), or a similar pattern seven days a week (like the 
healthcare service cluster, referred to as profile type B).  

• The median power is with values of around 70 %–80 % of the pool 
power higher during night than during day (around 40 %–50 %) for 
both A and B. Further, for the A profiles, the weekends show the 
highest median powers during the weekend with values around 90 %.  

• The uncertainties and the median power have a negative correlation: 
Especially during the day, there are increased uncertainties around 
40 % (up to 80 %). However, during night and weekends, the un
certainties are rather small with values often below 20 % as some 
vehicles are seldom or not driven at all during these times.  

• The profiles already show that EVs are particularly suitable for short 
periods of ancillary services, as the availability of power varies 
greatly with the time. 

3.2. The influence of FCR flexibilization on available power 

Based on the time series of the power capability profiles, the influ
ence of FCR flexibilization can be further investigated. The minimum 
power within a service period represents the available FCR power. 
Fig. 17 illustrates the impact of different service periods using the 
healthcare service power capability profile for an exemplary week. 
While the absolute minimum of the week determines the FCR power to 
be marketed in the case of a service period of one week, shorter service 
periods allow the fleet to be used even at times when many vehicles are 
connected to the charging stations and can provide power. The power 
minimum of the weekly service period is <20 % of the pool power. Since 
the EVs in this case drive about the same seven days a week, the flex
ibilization from weekly to daily service periods provides on five days 
(Mon-Fri) only a slight increase in the daily minimum to about 25 % of 
power. On weekends, slightly fewer trips by the pool EVs provide a 
minimum above 30 %. The FCR power at the service period of 4 h can 
follow the volatile profile much better and even corresponds to the 

Fig. 15. Power capability profiles of the two clusters energy supply (top) and healthcare service (bottom) for all weekdays in the current FCR market design (service 
period of 4 h). 

Fig. 16. Median available pool power (top) and uncertainty (bottom) of the EV operating in the chosen sectors.  
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available pool power of 70 % to 80 % at night. At these times, the 
available power does not correspond to 100 %, since the vehicles are 
often not plugged overnight. 

Fig. 18 aggregates these evaluations for a whole year and shows the 
ranges of available power within the year. The influence of the service 
period on the available power is shown exemplarily for the two clusters 
discussed before. In total, there are four “real” service periods of the 
historical and current FCR market designs (1 month, 1 week, 1 day, 4 h) 
and two fictitious shorter service periods of 1 h and 15 min respectively. 
The two performance periods of one month and one week are very 
similar and the available power values are close to the absolute mini
mum. This is because such long periods often result in a situation where 
many vehicles are on the road at some point. For this reason, the 
respective clusters can only offer little power to be able to guarantee 
service even under worst-case conditions. In such cases, a pool would 
have to be significantly oversized. 

The change from weekly to daily service periods leads for the cluster 
energy supply already to significantly more time slices at which high 

powers can be offered. These are especially the weekends, where the 
cars do not drive that often. However, this change has significantly less 
effect on the available power of the healthcare service. This is because it 
operates nearly the same seven days a week and a service period of one 
day does therefore not bring much improvement. Nevertheless, if the 
service period is further reduced to 4 h, the power that can be offered by 
the healthcare service cluster also increases significantly. This increase 
is particularly due to the night when most of the EVs are connected to a 
charging station. Since the idle times are usually longer than 4 h, the 
further flexibilization through the 1-h and 15-min delivery periods will 
only result in slight increases in the available power for both clusters. 
The increase in power thus shows a decreasing sensitivity to the short
ening of the performance period. 

Fig. 19 shows the discussed flexibilization in form of shorter service 
periods for all 14 clusters. It becomes obvious for all clusters that it is 
either the change in service periods from weeks to days, the change from 
days to 4 h, or a combination of both which brings the highest increase 
in mean power. Depending on the profile, the increase in mean power at 
these two levels of flexibilization ranges from around 10 percentage 
points to 35 percentage points. The further shortening of the service 
time, on the other hand, has only a minor influence on the mean power 
to be offered. While the change from 4 h to 1 h still leads to an average 
increase of 4.6 percentage points, this value is only 1.4 percentage points 
for the change from 1 h to 15 min. 

This means for the future that the revenue will mainly depend on the 
evolution of the FCR price, as further flexibilization of the market will 
only have a minor impact on the power that can be offered. 

3.3. Achievable revenue 

This section examines the development of the theoretical revenue of 
a 1000 EV pool with a charging power of 11 kW per EV. 

Fig. 20 shows an example of the power capability profile for the 
healthcare service and the FCR price for a day in 2020 with a service 
period of 4 h. The following steps are taken to calculate the revenues. It 
becomes obvious that the FCR potential of the pool is limited both by the 
required buffer power (step 2) and the increment condition (step 3).  

1. Determination of the minimum power in the respective service 
period.  

2. Division of the minimum power by factor 1.25 in order to ensure the 
required 25 % power buffer. 

Fig. 17. Available pool power for different service periods for healthcare ser
vice cluster. 
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3. Rounding down the power rest to an integer multiple of 1 MW to 
correspond to the minimum power of 1 MW and the increment of 1 
MW in the current market design.  

4. Multiplying the time-dependent FCR power by the time-dependent 
FCR price to determine revenues.  

5. Summation of the revenues for the entire period and normalization 
to one week. 

This procedure is performed for the whole time series of the annual 
simulations (in the case of the service period of 4 h the simulation is half 
a year) of all clusters for the three selected service periods of one week, 
one day and 4 h with historical prices. 

Fig. 21 shows the results of the revenue per pool for the last service 
periods. The plot shows the achievable revenue per EV and year for all 
clusters based on an annual simulation of a 1000 EV pool for each 
cluster. Each box plot contains the 14 clusters for the different service 
periods. It can be seen that the revenues increase on average. The 
average revenue per EV increases from 263 €/a with weekly service 
periods, over 232 €/a (daily service period) up to 640 €/a with four- 
hourly service periods. Furthermore, the overall influence of flexibili
zation and falling prices clearly depends on the individual service profile 
as can be examined even more clearly in Fig. 22:  

• The change from weekly to daily service periods was accompanied 
by increasing flexibility and falling FCR prices. For the majority of 
the clusters the increased flexibility did not overcompensate the 
falling prices with mean revenue decreases of 31 €/a and maximum 
decreases of around 180 €/a per EV. However, there are also some 
clusters for which the flexibilization dominated and their pool rev
enue increased by up to 136 €/a. 

• The change from daily to four-hourly service periods was accompa
nied by increasing flexibility and increasing FCR prices. Both de
velopments lead to an increase in revenues from 340 €/a to 500 €/a 
(mean: 408 €/a) per EV. In this case, volatile profiles that differ from 
day to day could benefit both from offering higher FCR power as well 
as from increasing prices.  

• The overall change from weekly to four-hourly service periods was 
accompanied by increasing flexibility and nearly a constant mean 

FCR. The flexibility overcompensates for the falling prices signifi
cantly with mean revenue increases per EV of around 380 €/a. 
Especially the revenue for pool profiles that have a volatile profile 
within a day such as the healthcare service cluster increased by up to 
581 €/a per EV. These profiles can now use, for example, the night 
hours during which idle times are longer than the service periods of 
4 h (see Fig. 17). 

A detailed overview of the single sectors is given in Appendix, 
Fig. 24. We have also published an analysis that looks in more detail at 
the potential of each economic sector and vehicle size [73]. 

Fig. 20. Available pool power (with buffer and increment condition) and FCR 
price over one day (cluster: healthcare service). 

Fig. 21. Mean yearly revenue per EV based on simulation of 1000 EVs over the 
whole time of service period. Each box plot contains the mean of the 
14 clusters. 

Fig. 22. Change in weekly revenues per EV based on simulation of 1000 EV 
pool over the whole time of service period. Each box plot contains the 
14 clusters. 
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4. Discussion 

In this paper, we estimated the revenue potential of EV fleets using 
historic market prices, mobility profiles of different fleets, and EV 
characteristics such as the battery size, charging power, and consump
tion. However, a few points need to be considered for further classifi
cation of the results. These relate to techno-economic points and aspects 
of the charging strategies. 

4.1. Techno-economic aspects 

In our study, we focused on achievable revenues. These revenues are 
necessarily offset by associated costs. The costs are mainly composed of 
hardware and transaction. 

For the provision of FCR, a bidirectional charger for the EV is needed. 
Although, as of the beginning of 2022, most EVs are not used for bidi
rectional activities yet, but this situation could change quickly. Volks
wagen, for example, announced that their EVs will have bidirectional 
features from 2022 onwards [74]. First bidirectional products for pri
vate car owners supporting both standards (CHAdeMO or ISO 15118) 
already exist [75] (around 6000 € per 7,4 kW wallbox [76]) and they 
will most likely become cheaper with a growing market. 

Besides hardware, there are also operational expenditures such as 
metering costs, costs for pool management by an aggregator, and battery 
degradation due to increased battery cycling through FCR (around 250 
equivalent full cycles per year for large-scale BSSs [1,69]). The battery 
degradation costs of two field projects are estimated to be 50 €/a – 100 
€/a in [31] and 86 €/a in [47]. Further, the degradation is mainly 
influenced by calendar aging and not by cycle aging through V2G [47]. 
The only known source to the authors dealing with operational costs for 
EV dual use is the INEES project [31], in which the provision of aFRR 
through EVs was analyzed. The cost estimation for metering, commu
nication, and battery degradation summed up to 700 € to 750 € per year 
for 2016 and is projected to be 110 € to 350 € per year for a future 
scenario with bidirectional EV and charging stations. Comparing the 
possible revenue with the operational costs as of 2022, the profit could 
probably be around a couple of 100 € per year. This estimate fits well to 
reported real-world income of 21 € per month (252 €/a) in 2019 for the 
most earning private EV providing balancing power in the Netherlands 
for the company Jedlix BV [77]. All in all, the profits can possibly be in 
low positive ranges, if capital expenditures are neglected. However, this 
best-case scenario implies that the aggregator is always awarded a 
contract in the FCR tendering, which is rather unlikely with the growing 
number of batteries in the market, especially in the future. Besides these 
costs, high penalties and exclusion of the FCR market could occur, if FCR 
power cannot be provided in case an unforeseen high number of EVs is 
on the road. Aggregators should therefore have either absolutely plan
nable vehicle fleets such as busses or more reliable assets such as sta
tionary BSSs or other power plants in their portfolio. 

4.2. Charging strategies and “degrees of freedom” 

We assumed that the EVs are plugged whenever they are at the 
company site and that every EV has an available bidirectional charging 
station. In case people do not plug the EVs regularly, the power profile 
would be lower. Further, if not every EV has its own charging station, the 
power profiles would be lower for two reasons: (1) fewer EVs could 
provide FCR simultaneously as not all are connected and (2) more time 
of the charging station would be occupied for charging the energy for the 
mobility as several EVs have to be charged after a shift. 

In our estimation we assumed that the pool operator does not plan an 
optimal charge management of each individual EV. Therefore, the 
estimated revenue is the potential for a fleet with an undisturbed 

charging profile. The active charging management of the EVs by the pool 
operator offers the possibility to increase the power available for FCR 
provision which in turn would increase the revenue. In [11] such a real- 
world operating strategy of FCR provision for a large-scale BSS is pre
sented and discussed for the historic market design with the 30-min 
criterion. With an active charging management of each individual EV 
a pool operator could keep the fleet in a valid operating range to fulfill 
the 15-min criterion more often and to increase the pool's FCR power. 
Charge management often requires energy trading, e.g., from the 
continuous intraday market. One study [78] describing large-scale BSS 
operation in FCR market shows results where expenses for intraday 
recharge, trading services, and connection to trader sum up to about 15 
% of income when operating 4 MW/4 MWh storage capacity. 

Another way of charge management is the use of the “degrees of 
freedom” in the provision of FCR [79]. The ENTSO-E Handbook requests 
a minimum accuracy of the frequency measurement of 10 mHz. There
fore, FCR does not have to be provided if the deviation of the frequency 
is within 10 mHz from the nominal frequency of 50 Hz. However, FCR 
can be provided within this so called deadband. With the use of an ac
curate frequency measurement the charge management could opt to 
charge EVs with FCR in the deadband which reduces the costs of EV 
charging for users and can be regarded as additional revenue. Further
more, due to power measurement accuracy limitations, an overfulfill
ment of provided FCR power of up to 20 % is permitted. Also, this degree 
of freedom could be used to maximize the energy gained for EVs during 
the provision of FCR and be seen as additional revenue. The last degree 
of freedom that can be taken advantage of by a pool operator is the 
specified ramp rate due to regulations. In the case of FCR, a total acti
vation of the required power has to be activated within 30 s. A highly 
flexible unit, such as the battery of an EV, can react instantaneously in 
order to maximize energy when FCR is used to charge the EV. As an 
example for the impact of the degrees of freedom, one study [11] found 
that for a provision of 4 MW in the year 2014 with a large stationary 
storage system in Germany the energy gain due to the use of the degrees 
of freedom was 139 MWh. This rather complex topic for a real-world 
operating management for the provision of FCR with an EV fleet is a 
worthy research topic for the future. 

5. Conclusion and outlook 

This section draws a conclusion of the presented analyses and gives a 
brief outlook on market developments and future works. 

5.1. Conclusion 

Traditional grid services are undergoing a change of auction design 
towards flexibilization. A few years ago, the market for frequency 
containment reserve (FCR) to stabilize the grid frequency in Germany 
was provided exclusively by conventional power plants over service 
periods of up to one month. At present time, many large-scale battery 
storage systems as well as some battery pools are participating in the 
same market with service periods of less than one day. The market for 
FCR was a promising source of income for battery storage over the last 
years. After prices had fallen significantly in the face of the sharp in
crease in competition from battery storage systems, the prices increased 
sharply from 2021 onwards due to the political tensions with respect to 
gas imports and the war in Ukraine. This paper investigated the influ
ence of FCR market flexibilization and FCR price development on the 
economics of EV fleet operation. 

The service periods were shortened from one week over days to 4 h in 
accordance with the flexibility levels already achieved in the years until 
mid-2020. First, the average FCR price fell over years from 2585 €/MW/ 
week during weekly service periods to an average price during daily 
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service periods of 1281 €/MW/week. Then, the price increased to an 
average price of 2531 €/MW/week during the service period of 4 h. 

Regarding the available power, the flexibilization from either one 
week to one day or the flexibilization from one day to 4 h cause the 
highest increase in mean available power. A power increase of up to 35 
% resulting from the flexibilization of service periods from one week to 
one day can especially be seen for profiles that have regular driving 
profiles during the days Mon-Fri and little activity on the days Sat-Sun. 
However, for EV fleets that have the same driving pattern seven days a 
week, the further FCR flexibilization to service periods of 4 h is needed 
to significantly increase available power. This power can especially be 
provided during the idle times at night. Further, the times of high power 
show also only small values of power uncertainty. This makes com
mercial fleets especially interesting for V2G services as the idle times are 
known. 

Future possible flexibilization in form of shorter service periods like 
one hour and less will only have a small impact on an increase in 
available power as the idle times are often already significantly longer 
than the current service period of 4 h. Therefore, future income will 
largely depend on the uncertain development of FCR prices. 

While the potential revenue was on average below 250 €/EV/a 
during the daily service periods, the mean revenue increased to around 
650 €/EV/a for the service periods of 4 h from mid-2020 to March 2022. 
However, in all analyzed scenarios, the revenues are relatively low, and 
it remains questionable if they can overcompensate for the costs for 
metering, battery degradation, and pool management. 

5.2. Outlook 

In the future, we expect the flexibility of the spot and ancillary ser
vice markets to increase further. In parallel with a rapidly increasing 
number of EVs, there will be a huge potential of mobile BSS in the energy 
system for the near future. From an economic point of view, it is ad
vantageous to use EVs during their idle times for grid service instead of 
leaving this potential unused. With respect to these developments, it is 
questionable which flexibility markets will remain and in what form and 
whether there will be new markets. The analyzed FCR market, for 
instance, has a volume of below 600 MW. The regulatory agencies could 

decide to demand from EVs that they should have a frequency- 
dependent charging power profile. Such a law would effectively elimi
nate the FCR market as it is today. Such regulations are already part of 
the German renewable energy law (EEG), for example, which limits the 
feed-in power of photovoltaic systems. Furthermore, competition for 
aggregators will increase significantly. If there is enough battery ca
pacity in the energy system, efficient pool management is essential. 
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Appendix A 

A.1. Abbreviations and nomenclature  

Table 5 
Abbreviations sorted alphabetically.  

AS Ancillary services 
BSS Battery storage system 
EEG German renewable energy law 
ENTSO-E European Network of Transmission System Operators for Electricity 
EPR Energy-to-power ratio 
EV Electric vehicle 
FCR Frequency containment reserve 
FNA (German) Federal Network Agency 
NACE European Classification of Economic Activities 
OCPP Open Charge Point Protocol 
PGS Institute for Power Generation and Storage Systems 
RWTH Aachen University Rheinisch-Westfälische Technische Hochschule Aachen 
SOC State-of-charge 
SOE State-of-energy 
TSO Transmission System Operator 
V2G vehicle-to-grid 
V2H vehicle-to-home   
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Table 6 
Nomenclature.  

wstart trip start probability 
PEV Rated power of the battery converter 
PCS Rated power of the charging station 
Pcharge Charge power for FCR 
Pdischarge Discharge power for FCR 
EBat Battery energy capacity 
Emarket Marketable energy 
Emobility Reserved energy for mobility 
Echarge Charge energy for FCR 
Edischarge Discharge energy for FCR 
ΔTsupply Duration of FCR service period  

A.2. Additional information on used databases

Fig. 23. Vehicles clustered according to economic sector (left) and mean duration of data logging (right) from database “Logbook”.   

Table 7 
EVs from database “Measurements” used in the project GO-ELK [49]. Some EVs were switched between the different trades, which is why the number of 
EVs is greater than the measured 22 EVs.  

Healthcare service Energy supply Transportation Public administration 

Smart E.D. (17,6 kWh) Nissan e-NV200 (24 kWh) Nissan Leaf (24 kWh) Kangoo ZE (22 kWh) 
Smart E.D. (17,6 kWh) Nissan Leaf (24 kWh) Opel Ampera (16,5 kWh) Peugeot iOn (16 kWh) 
Smart E.D. (17,6 kWh) Nissan Leaf (24 kWh) BMW i3 (21,6 kWh) Peugeot iOn (16 kWh) 
Mitsubishi i-MiEV (16 kWh) Smart E.D. (17,6 kWh) Smart E.D. (17,6 kWh)  
VW e-up! (18,7 kWh) Kangoo ZE (22 kWh) Smart E.D. (17,6 kWh)  
Opel Ampera (16,5 kWh) Nissan Leaf (24 kWh) Smart E.D. (17,6 kWh)  
Nissan Leaf (24 kWh)  Smart E.D. (17,6 kWh)    

Nissan Leaf (24 kWh)    
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Table 8 
Electric vehicle data used to assume battery capacity and energy consumption for database “Logbook”. Calculation based on data from ADAC [55].  

Vehicle 
size 

Differentiation in 
REM2030 according 
to cubic centimeters 
(cc) 

Assumed 
differentiation E- 
vehicles 

Brand & model Battery 
Capacity 
kWh 

Consumption 
kWh/100 km 

ADAC Real 
Consumption 
kWh/100 km 

Factor between 
nominal and real 
consumption 

Vehicle 
weight 
kg 

Torque 
Nm 

Small Displacement 
<1400 cc 

Torque <220 Nm & 
Weight 1400 kg to 
2000 kg 

Citroën C-Zero 14.5 12.6 – – 1440  196 
Citroën E- 
Mehari 

30 20 – – 1838  166 

Peugeot iOn 14.5 12.6 16.94 1.34 1450  180 
Renault Zoe (22 
kWh) Life 

22 13,3 21.4 1.61 1943  220 

Smart Fortwo 
coupé electric 
drive 

17,6 15,1 19.2 1.27 1150  130 

Average 19.10 14.52 18.89 1.39 1545  179 
Assumed 19.1  18.9    

Medium Displacement 1400 
cc to 2000 cc 

Torque 220 Nm to 
380 Nm & Weight 
1600 kg to 2200 kg 

BMW i3 (94 Ah) 33.2 13.1 17.4 1.33 1620  250 
Ford Focus 
Electric 

33.5 15.4 22.4 1.45 2085  250 

Hyundai Ioniq 
Elektro 

28 11.5 14.7 1.28 1880  295 

KIA Soul EV 30 14.7 19.4 1.32 1960  285 
Mercedes-Benz 
B 250 e 

28 16.6 20.2 1.22 2170  340 

Nissan Leaf 24 15 20.39 1.36 1965  280 
Opel Ampera-E 60 14.5 19.7 1.36 2056  360 
VW eGolf 24.2 12.7 18.2 1.43 1960  270 
Volvo C30 
Electric 

22.7 15 28.3 1.89 1995  220 

Average 31.36 14.35 20.08 1.40 1966  283 
Assumed 31.4  20.1    

Large Displacement 1400 
cc to 2000 cc 

Torque 220 Nm to 
380 Nm & Weight 
1600 kg to 2200 kg 

Audi e-tron 55 
quattro 

95 23 – – 2565  664 

BMW Concept 
ix3 (2020) 

70 17.5 (calc) – –   561 

Hyundai Kona 
Elektro 

39.2 14.3 – – 1760  395 

Jaguar I-Pace 90 21.2 27.6 1.32 2208  696 
Tesla Model S 
P90D 

90 17.8 24 1.35 2670  967 

Tesla Model X 100 20.8 24 1.15 2534  660 
Average 80.7 19.31 24 1.27 –  680 
Assumed 80.7  27a    

Trans- 
porter 

Displacement 
>1400 cc 
Weight < 3500 kg 

Weight 1644 kg to 
2600 kg & mostly 2–3 
seats with a lot of 
storage size 

Citroen 
Berlingo 
Electric L2 

22.5 17.7 (NEFZ) – – 1644  200 

Iveco Daily 
Electric 

28.2 – – – 2500  300 

Nissan e-NV200 24 16.5 22.8 1.38 1.640  254 
Peugeot Partner 
Electric 

22.5 17.7 – – 1664  152 

Renault Kangoo 
Z.E. 

22 15.5 23.5 1.52 1520  226 

Streetscooter 
Work L Box 

40 19.2 (NEFZ) – – 1640  200 

VW eCrafter 35.8 21.54 – – 2522  290 
Average 27.86 18.02 23.15 1.45 2158  232 
Assumed 27.9  25.2a     

a As only few vehicles were tested by the ADAC, the real electricity consumption for large vehicles and transporter is calculated using the factor 1.4 (see small and 
medium average factor) and multiply it with the average nominal consumption. 
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A.3. Literature for further research  

Table 9 
Summary of projects working on the provision of ancillary services using EV fleets.  

Source Date Name Partner Focus & results 

[29] 2002 “Vehicle-to-Grid Demonstration Project: Grid 
Regulation Ancillary Service with a Battery Electric 
Vehicle” (V2GDP) 

AC Propulsion, California Air Resources 
Board, California Environmental Protection 
Agency,  

- Evaluation of the feasibility of the provision of 
grid regulation using EV  

- EV are able to provide grid regulation and the 
ISO system requirements regarding data 
transmission times could be fulfilled  

- Energy throughput when providing regulation 
power is equivalent to that resulting from daily 
driving 

[31] 2012–2015 “Intelligente Netzanbindung von Elektrofahrzeugen 
zur Erbringung von Systemdienstleistungen – 
INEES“(Intelligent grid integration of EV to provide 
system services) 

Fraunhofer IWES, LichtBlick SE, SMA Solar 
Technology AG, Volkswagen AG  

- Field tests of the provision of secondary control 
reserve using a fleet of 20 V2G-capable EV  

- Provision is technically possible, but under 
current costs and revenue not profitable 

[33] 2013–2018 Los Angeles Air Force Base Vehicle to Grid 
Demonstration (LAAFB) 

Lawrence Berkeley National Laboratory 
(LBNL), Kisensum LLC  

- Demonstration of a fleet of 29 bidirectional EV 
providing frequency regulation to generate 
revenue  

- Charging stations and EV should have a 
capacity/power ratio of at least two to 
participate in a fleet offering frequency 
regulation 

[35] 2016–2019 The Parker Project (Parker) DTU, Nuvve, Nissan, Insero, Enel X, Groupe 
PSA, Mitsubishi Corporation, Mitsubishi 
Motors Corporation, Frederiksberg 
Forsyning  

- Demonstration project to analyze the integration 
of V2G-capable EV into the electricity grid  

- Results show that EV are able to provide 
ancillary services  

- Recommendations are the planning of 
electrification of transportation, continuous 
research, “test zones and pilots on new market 
designs” and an international collaboration 

[42] 2018–2019 Industrial Pilot Project The Mobility House, ENERVIE, Amprion, 
Nissan  

- Demonstration of the provision of FCR using one 
EV that got prequalified from the German TSO 

[43] 2019–2021 “Bidirectional Charging Management – Field Trial 
and Measurement Concept for Assessment of Novel 
Charging Strategies” 

BMW, FfE e.V., FfE GmbH, Kostal Industrie 
Elektrik GmbH, TenneT TSO GmbH, 
Bayernwerk Netz GmbH, Karlsruhe Institute 
of Technology (KIT), University Passau  

- Analysis of the interaction between EV, charging 
infrastructure and the power grid  

- Identification and demonstration (using 50 EV) 
of use-cases of V2G in different markets. 

[45,46] 2019–2021 Industrial Pilot Project Tennet, Next Kraftwerke, Jedlix  - Field test of EV providing frequency regulation in 
a virtual power plant  

- Customers of Jedlix charging their EV receive 
financial benefit when providing secondary 
control reserve    

Table 10 
Summary of literature about demonstrations, experiments and field tests of the provision of frequency regulation using EV fleets.  

Source Date Project Focus Results 

Brooks, Gage  
[30] 

2001 V2GDP Analysis of ancillary services EV, hybrid vehicles and fuel-cell 
vehicles may provide by showing test results  

- Field tests show that the EV is capable of providing power and thus 
benefit to the grid  

- EV might be able to achieve lower net ownership costs in comparison 
to conventional vehicles by providing grid services 

Marinelli 
et al. [36] 

2016 Parker Centralized approach to provide FCR with EV using unidirectional 
charging and experimental validation of the approach  

- Provision of FCR with EV by only using unidirectional charging is 
viable with fast response time 

Thingvad 
et al. [37] 

2016 Parker Economic comparison of EV fleet providing Frequency Normal- 
operation Reserve (FNR) through unidirectional vs. bidirectional 
(V2G) charging in Eastern Denmark  

- Bidirectional FNR is more lucrative (factor of 6.6–13.3) and viable 
than unidirectional as it can be applied longer and independently of 
the driven distance  

- Experiments show that EV are able to perform unidirectional FNR and 
bidirectional FNR with delay times of 1 respectively 5 s 

DeForest et al. 
[34] 

2017 LAAFB EV fleet participating in California Independent System Operator 
(CASIO) frequency regulation market  

- Development of a Day-Ahead optimization model applied to the Los 
Angeles Air Force Base EV fleet minimizing operation cost and 
maximizing revenue from ancillary service 

Degner et al.  
[32] 

2017 INEES Analysis of the effects of EV secondary control reserve provision on 
the distribution grid using simulations and field tests  

- Power quality of the distribution grid is not negatively influenced by 
the EV provision  

- The EV impact on the distribution grid can be anticipated and 
managed well 

Hashemi et al. 
[38] 

2018 Parker Presentation of results from three different EV (Nissan Leaf, Peugeot 
iOn and Mitsubishi Outlander) providing FCR-N (frequency- 
controlled normal operation reserve) in Nord Pool energy market  

- All three EV were able to response within five seconds and with an 
accuracy of around 98 %  

- The depth-of-discharges (DoDs) were always smaller than 40 % 

(continued on next page) 
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Table 11 
Summary of selected literature of German rules and regulations on the frequency containment reserve (FCR) market.  

Source Date Content related to the provision of FCR using battery energy storage systems 

VDN [80] 2007 TransmissionCode 2007: Network and system rules of the German transmission system operators 
In Appendix D: Documents for prequalification for the Provision of primary control power to TSO - Degrees of freedom, rules and requirements that must 
be met by a provider of FCR 

FNA [65] 2011 German federal network agency (FNA) changes FCR bidding time from monthly to weekly 
German TSO 

[79] 
2014 Key points and degrees of freedom for the provision of FCR using BSS as an example 

German TSO 
[70] 

2015 Storage capacity requirements for the provision of FCR using batteries (e.g. 30-min-criterion) 

FNA [64] 2018 German federal network agency (FNA) changes FCR bidding time from weekly to daily starting in July 2019 and from daily to 6 daily sections of 4 h 
starting in July 2020. 

FNA [12] 2019 Decision of the German federal network agency (FNA) to stop the TSO from requiring the 30-min-criterion when providing FCR with BSS. From now on 
15-min-criterion for all providers including BSS. 

German TSOs 
[72] 

2019 Minimal requirements on the IT when providing control reserve. When pooling small systems (< 25 kW per system, maximum pool size 2 MW) the 
connection between the systems can from now on be made via the internet.  

Fig. 24. Mean annual revenue (left) and revenue change (right) of the economic sectors.  
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4.2 Optimal pool composition of electric vehicles in various
vehicle-to-grid applications

This section presents the research paper entitled Optimal pool composition of commercial electric
vehicles in V2G fleet operation of various electricity markets [2]. For the provision of balancing
power or for arbitrage trading on the electricity markets, EVs must be combined in pools. This is
because the power required on these markets often cannot be provided by individual vehicles alone.
Aggregators who are considering potential EVs for their pool have various options. They can approach
large companies, such as the postal service, and include all of the company’s EVs in the pool. The
fleets of large companies may already be large enough to provide FCR, for example. In addition, there
are many smaller companies that only own a few EVs. Aggregators could now blindly add the EVs
of any small company to the pool and equip them with bidirectional charging stations. However, it
can happen that the vehicles are on the road a lot and can only rarely support the pool. This is
where this section comes in: If they know the driving behavior of commercial vehicles, can aggregators
compile their pools in a smart way and only include those vehicles in the pool and equip them with a
bidirectional charging station that represent significant added value for the pool?

This section is based on the power and energy capability profiles of 468 commercial EVs from various
economic sectors from section 4.1. The aim of the optimization in this section is to identify pool
compositions that maximize the revenue per participating vehicle in different markets. Since this
is a non-linear optimization problem with discrete decision variables, genetic algorithms are used to
maximize the revenues per vehicle in the FCR, intraday arbitrage and day-ahead arbitrage markets.
Accordingly, only vehicles are included in the pool that increase the potential revenue to such an extent
that the revenue per vehicle increases. The achievable revenue with an optimized profile combination
is then compared with randomly compiled vehicle pools. Furthermore, the influence of V2G provision
on battery degradation is examined in the SimSES simulation tool using one specific driving profile.
For this purpose, the daily driving behavior of one commercial EV is repeated over several years to
estimate the degradation.

The research questions answered in this section are:

1. Can aggregators of EV pools gain a competitive advantage through smart selection of vehicles?
2. How large are potential revenues in various electricity markets for random and for optimized

pools?
3. Which markets are more interesting: balancing power or arbitrage?
4. What is the influence of dual use on battery degradation?
5. Could potential revenues from V2G participation cover the cost of additional degradation?

The results of the work show that aggregators can gain competitive advantages through smart pool
composition. In detail, the revenue per vehicle can be increased by up to seven times through optimized
pool composition compared to random pools. Randomly composed EV pools would have generated
an average of just under 220 € per EV and year. For the calculation, the average price between July
2020 and December 2020 is calculated for each 4-hour time slice of the week. The annual revenue is
then estimated from the weekly revenue. The reduction in annual revenues compared to the previous
section is due to the fact that different time periods are considered. From July 2020 to December
2020, the time period considered in this section, FCR prices were significantly lower than between
January 2021 and March 2022. In the previous section the FCR prices of the time period between
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July 2020 and March 2022 were used. This larger data set in the previous section is due to delays
in the publication process and the reviewers’ requirements to use the latest FCR prices. The large
differences again show the difficulty of comparing results of the economic V2X potential from different
publications. Nevertheless, it is possible to make a comparison within a work, for example between
randomly composed and optimized pools. The optimized pools in this work would have generated 378 €
per vehicle and year, which corresponds to an increase of 72 % compared to the randomly composed
pools. Another result of this section is that the FCR market would have been more attractive in 2020
than arbitrage trading on the intraday or day-ahead market. An exemplary simulation and subsequent
ageing analysis shows that the V2G revenue can cover the battery ageing costs. Whether the revenue
from V2G can cover the total costs depends on the specific costs for metering units, bidirectional
charging points and aggregators.

The optimized vehicle pools created in this section are evaluated in section 4.3 with regard to their
battery capacity and their economic sector. In addition, section 4.3 examines what further flexibiliza-
tion of the FCR market in terms of minimum bid size and increment would mean for the optimal pool
composition and potential revenues. Moreover, the influence of V2X provision on battery degradation
is examined in chapter 5 on a larger scale and not just on the basis of one vehicle.
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focused on data acquisition. Stefan Englberger supported in the development of the optimization
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increased degradation of the vehicle battery in V2G operation compared to sole use for mobility with a smart 
charging strategy. However, the additional revenue can make V2G financially worthwhile, depending on costs 
for measuring equipment, bidirectional charging stations, and aggregator costs.   

1. Introduction 

The ongoing shift from conventional, centralized energy producers 
to renewable, decentralized energy producers in Germany has become 
known worldwide as the “Energiewende” [1,2]. An ambitious goal now 
being pursued globally is the transformation of transportation from in
ternal combustion engines to electrically powered vehicles. Worldwide, 
10 million EVs were already in use at the end of 2020 [3]. The German 
government, for example, plans to have 7 to 10 million electric vehicles 
(EV) on German roads by 2030 [4]. The vehicles’ storage capacities offer 
an exceptionally large potential: 7 million EVs with an average assumed 
energy capacity of 50 kWh have a total capacity of 350 GWh. If each EV 
were connected to the grid with an average power of 11 kW, the 
maximal total available power would be 77 GW, which corresponds 
approximately to the maximum electricity demand in Germany in 2019 
[5]. Thus, on the one hand, if all EVs charged simultaneously at the time 
of the peak load, the peak load could double. On the other hand, the EVs 
could provide power to cover the entire load in Germany for a short 
time. Since, for example, German private vehicles are parked 97 % of the 
time, the additional use of vehicles to provide power for the electricity 
grid in the form of V2G is a promising approach [6]. This additional use 
of EV batteries can provide economic benefits to the owner through 
lower total costs of ownership [7]. Furthermore, from a national eco
nomic perspective, a higher utilization rate results in a more efficient use 
of resources. In this context, the use of EVs via V2G could reduce the 

number of required stationary storage systems [8]. 
Alongside the concept of second life, or second use, there is another, 

more recent concept: dual use [9,10]. In dual use, the vehicle is used 
alternately for mobility and for V2G applications over periods of mi
nutes, hours, and days. The priority here is mobility for the vehicle 
owner. Only free capacities are used in dual use to serve other appli
cations by means of V2G. The power that an EV can charge and 
discharge is usually not sufficient to participate in balancing power 
markets and spot markets. For this reason, aggregators, which bundle 
the capacities of individual EVs in pools, emerge [11,12]. These so- 
called virtual power plants can then participate together in those mar
kets [13]. 

In order to gain competitive advantages, aggregators could assemble 
their pools as efficiently as possible and not accept vehicles randomly. 
The optimization methods presented in this paper can help them to 
assemble their pools in the most efficient way. Knowing the driving 
profiles of the possible participants, aggregators can use the optimiza
tion methods as a basis for assembling their pools in such a way that each 
participating vehicle actually contributes. Without knowledge of the 
profiles, aggregators should measure or estimate the EV by known ve
hicles with similar characteristics before including it in the pool. In this 
way, the economic attractiveness of potentially adding an EV can be 
estimated. 

Fig. 1 gives an overview of the present work. We used driving data of 
468 EVs to determine power and energy capability profiles, that were 
presented in detail in a previous paper [10]. In this work, we use the 
profiles together with market data in the optimization methods. The 
markets considered here are the frequency containment reserve (FCR) 
market in central Europe, as well as the EPEX day-ahead auction and 
intraday continuous market. In the optimization, the revenue per 
participating vehicle of the pool is maximized. Consequently, only ve
hicles that make an essential contribution to the marketable pool power 
are included in the pool. 

In the following, we first summarize existing literature on V2G and 
EV fleet operation. Afterwards, we describe the scenario considered in 
this work. 

1.1. Summary of existing literature 

Since the turn of the century, the research field of electric vehicles 
and, in particular, the V2G sub-area has attracted much interest [14,15]. 
Thereby, it was shown that the use of EVs in electricity markets is 

Abbreviations 

BSS Battery storage system 
BTM Behind-the-meter 
CESA Continental European Synchronous Area 
EEX European Energy Exchange 
EFC Equivalent full cycles 
ENTSO-E European Network of Transmission System Operators for 

Electricity 
EOL End of life 
EPEX European Power Exchange 
ERCOT Electric Reliability Council of Texas 
EV Electric vehicle 
FCR Frequency containment reserve 
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NACE European Classification of Economic Activities 
NMC Nickel-Manganese-Cobalt 
PGS Institute for Power Generation and Storage Systems 
RQ Research question 
RWTH Aachen University Rheinisch-Westfälische Technische 

Hochschule Aachen 
SimSES Simulation of stationary energy storage systems 
SOC State-of-charge 
SOE State-of-energy 
TSO Transmission system operator 
V2G Vehicle-to-grid 
WPC Wasted power capability  

Fig. 1. Graphical overview of this work.  
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basically possible, but that there are still regulatory restrictions [16,17]. 
These lead to economic uncertainty regarding possible business cases 
[14,15]. In addition, increased battery degradation and lack of aggre
gation concepts were identified as technical barriers to the widespread 
implementation of V2G in 2017 [14,18]. Here, the increase in degra
dation depends largely on the energy throughput and is sensitive to the 
charging strategy, as Bishop et al. discovered in 2013 [19]. Petit et al. 
showed an increase in degradation in 2016 for LFP and NCA based 
lithium ion batteries [20]. 

There are also social obstacles: From the perspective of EV owners, a 
guaranteed minimum range and their range anxiety are the greatest 
influencing factors on the willingness to participate in V2G [21,22]. 
Nevertheless, V2G offers great potential: In recent years, much progress 
has been made in battery research and battery costs have been gradually 
reduced [16,23]. In addition, V2G has been tested in many field tests 
[24,25]. Moreover new aggregator concepts have been developed 
[26,27]. Therefore, the authors expect V2G to become relevant to a 
considerable extent in the future. 

For the provision of V2G, various electricity and power markets are 
of interest [16,28]. The focus of this work lies in the FCR market and the 
participation in European Power Exchange (EPEX) spot markets for 
arbitrage trading. Other methods sufficiently considered in research are 
for example the optimized charging of EVs [29,30]. 

The provision of balancing power using EVs was shown to be feasible 
in various field tests [24,25]. Moreover, optimization algorithms have 
been developed to improve performance [31], and economic analyses 
have been carried out to estimate possible revenue [32,33]. We pub
lished an in-depth review of the literature on performing frequency 
regulation with EVs in our previous work [10]. 

Two other markets in which pools of EVs can participate are part of 
the EPEX spot market. The markets analyzed in this paper are the day- 
ahead auction market and the intraday continuous market used for en
ergy arbitrage. Algorithms that maximize energy arbitrage revenues 
using stationary battery storage systems (BSSs) have already been 
developed [40,41]. Others do not only include BSS, but also wind and 
photovoltaic into virtual power plants optimizing profits from arbitrage 
trading [42]. According to a study, the profitability of arbitrage trading 

depends more on technical parameters such as efficiency and self- 
discharge than on price volatility [43]. Furthermore, the consideration 
of battery degradation has a major impact on profitability [41]. One 
study has shown that it can reduce revenues by 12–46% [44]. Another 
publication analyzing the US American ERCOT market showed that 
increasing calendar life of lithium-ion BSS provides greater benefits than 
increasing cycle life while energy arbitrage trading [45]. 

The pooling of EVs by means of an aggregator also offers the possi
bility of participating in arbitrage trading [11]. Table 1 gives an extract 
of publications on simulation and optimization of trading on spot mar
kets with EV fleets sorted by publication year. Several research works 
showed that optimized bidding in the spot markets reduces charging 
costs for an EV fleet [35,36] Shang et al. investigated the profitability of 
arbitrage using plug-in hybrid vehicles and showed that it is not 
economical considering battery degradation [38]. Giordano et al. 
showed that using V2G aggregator costs of day-ahead market charging 
of EV fleets could be reduced without restricting EV owners [27]. Zhou 
et al. developed scheduling models for EV charging regarding dynamic 
electricity prices and inconvenience for the EV owners [46]. 

When using EVs to provide balancing power or arbitrage trading, the 
uncertainty of vehicle availability should be considered. Therefore, 
Tuchnitz et al. modeled smart charging strategies by applying rein
forcement learning to EV fleets relieving grid congestion [47]. The 
comparison with optimization-based strategies showed that their strat
egy could better handle uncertainties such as spontaneous trips. The 
individual driving behavior of EV owners in the pool determines the 
total available capacity and power [48]. For example, Han et al. esti
mated the achievable power capacity of EVs using probability density 
functions in 2011 [49]. Fluhr et al. developed a stochastic model to 
estimate the availability of EVs for the provision of grid balancing ser
vices [50]. They concluded that at least 90 % of all EVs are parked 
(anywhere) at all times and more than one quarter is parked at home. 

Aside from the optimized bidding strategies and the field tests for 
providing FCR and arbitrage with EVs, the power capability profiles of 
individual vehicles have received little to no attention in research. These 
power capability profiles indicate how much power a vehicle can 
currently charge or discharge in addition to its primary use, which is 

Table 1 
Summary of literature about simulation and optimization of trading on spot markets with EV fleets.  

Source Date Focus Results 

Bessa [34] 2011 Optimization of an aggregated EV fleet trading in the Iberian day- 
ahead market and providing secondary reserve in the Iberian 
ancillary services market.  

- Optimized bidding reduces charging costs compared to naïve charging.  
- The additional provision of positive and negative secondary reserve is 

economically even more worthwhile. 
Schuller [35] 2014 Simulation and economic comparison of smart V2G vs. smart 

unidirectional vs. as-fast-as-possible charging considering 
degradation.  

- Smart charging strategies decrease charging costs by a minimum of 32 % 
(employees’ driving profile) to 51 % (retirees’ driving profile) in the 
considered scenario compared to charging the EV as fast as possible. 
Adding V2G capability leads to reduced costs of 39 % to 45 % (employees 
driving profile).  

- V2G can be beneficial, but regulatory incentives are required. 
Kiaee [36] 2015 Calculation of possible savings by clever charging of EV including 

V2G.  
- Allowing V2G and using a smart control strategy reduces charging costs by 

13.6 % compared to using only unidirectional charging. 
Sánchez-Martín [37] 2015 Development of a stochastic programming model to optimize 

charging process of EV from day-ahead and intraday market and 
provision of regulating reserves.  

- Energy costs for charging EVs can be reduced by 1 % to 15 % depending on 
price spreads and other characteristics analyzed in case studies. 

Shang [38] 2016 Creation of a stochastic optimization model to investigate the 
profitability of electricity arbitrage with PHEV.  

- Owners of PHEVs cannot generate additional revenue through arbitrage 
when considering battery degradation even when assuming optimistic 
future costs.  

- Reducing the costs of battery degradation or combination arbitrage with 
various applications could make arbitrage trading profitable. 

Guo [26] 2017 Development of a bidding strategy for an aggregator of EVs to 
participate in the day-ahead market.  

- Developed bidding strategies improve handling of risks in day-ahead 
markets.  

- V2G only worthwhile if costs for discharging and distribution tariff are 
reduced. 

Giordano [27] 2020 Optimization of day-ahead charging of an EV pool developing 
completely automated aggregator.  

- Aggregator costs can be reduced by up to 57 % when applying V2G energy 
arbitrage in the Italian day-ahead market compared to no V2G without 
restricting EV users. 

Zheng [39] 2020 Optimal bidding strategy in the day-ahead market is developed.  - Stochastic optimization model maximizes aggregator’s revenues involving 
multiple agent modes.  
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mobility or its charging [10]. Although driving profiles have received 
strong attention in the literature and have been analyzed, for example, 
in [35,51], the clever composition of pools of EVs has not yet been 
considered in depth. To the best of our knowledge, the targeted inclu
sion or rejection of vehicles to compose the most efficient vehicle pools 
for different markets has not been explored in more detail. With our 
work of optimized pool composition based on capability profiles, we aim 
to address this research gap. The methods presented can help aggre
gators to increase their profitability and gain competitive advantages. 
We consider the FCR market and arbitrage trading on the EPEX Spot 
markets intraday continuous and day-ahead auction. In detail, we would 
like to answer the following research questions (RQs) in the course of the 
paper: 

RQ1) Can aggregators of EV pools gain a competitive advantage 
through smart selection of vehicles? (Section 4.1) 
RQ2) How large are potential revenues in various electricity markets 
for random and for optimized pools? (Section 4.1) 
RQ3) Which markets are more interesting: balancing power or 
arbitrage? (Section 4.1) 
RQ4) What is the influence of dual use on battery degradation? 
(Section 4.2) 
RQ5) Could potential revenues from V2G participation cover the cost 
of additional degradation? (Section 4.2) 

1.2. Scenario 

Fleets of vehicles generally exist in different sizes. In this work, we 
distinguish between the categories (1) private households and (2) 

industries (see Table 2). Private households usually own one or two 
vehicles, rarely a few more. The size of fleets with vehicles that are used 
in combination for private and commercial purposes can vary signifi
cantly. Commercially used vehicles of small and medium-sized com
panies form fleets of typically up to 50 vehicles1. In contrast, fleets of 
large companies or companies that operate in the transport or postal 
sector consist of up to several hundred vehicles. These large fleets can 
participate independently in power and energy markets because they 
meet minimum bid sizes. The vehicles considered in this work for dual 
use are fleets of small and medium-sized companies. For these fleets, a 
separate participation in electricity markets is only conditionally 
worthwhile. A smart charging of EVs by trading on the intraday 
continuous market would be possible, for example. In contrast, arbitrage 
trading or the provision of balancing power is only possible with larger 
or combined fleets. Thus, in this work, we combine EVs of these small 
and medium-sized companies into larger pools of up to 468 EVs. 

The optimization methods presented in this work form pools of ve
hicles based on the power capability profiles of EVs of small and 
medium-sized companies. The objective is to maximize the revenue per 
participating vehicle. Thus, the highest possible revenue with the lowest 
number of vehicles is searched for. Aggregators who are able to forecast 
the driving profiles of their potential vehicles can use the algorithms 
presented in this work. Alternatively, aggregators could measure EVs 
over a period of, for example, two weeks before deciding to include them 
in the pool. This way, they can only include those vehicles in their pool 
and equip them with bidirectional charging stations that add value to 
their pool. Consequently, they would only offer participation in the 
virtual power plant to these vehicles and would therefore only reward 
these EVs financially. In contrast, aggregators could blindly assemble 
their pools. For this reason, we will compare the optimized pools with 
randomly assembled pools of the same number of vehicles. In principle, 
total aggregator revenues increase as the number of EVs in the pool 
increases. Thus, in a large market of possible EVs in the future, aggre
gators would not limit themselves to the maximum number of 468 EVs 
used in this work. However, the methodology is also applicable to more 
EVs leading to higher efficiencies compared to random pool 
compositions. 

Another potential use of the algorithm is the retrofitting of only a few 
vehicles of large fleets from combustion engines to electric drives. These 
vehicles to be retrofitted could be selected according to their potential to 
participate in electricity markets considering their driving profiles. 

In this paper, we assume that EVs will be mostly V2G capable in the 
future. Some car manufacturers, such as Nissan, already sell V2G- 
capable vehicles [15]. Furthermore, BMW and Renault, for example, 
are testing V2G in research projects [52,53]. Volkswagen has also 
announced plans to introduce bidirectional charging for its vehicles 
[54]. Other stakeholders include transmission system operators that 
have already recognized the potential of V2G flexibilities and grid 
support and are planning to adapt market rules accordingly [55]. 

Furthermore, we first maximize the potential revenues EVs can 
generate in the various markets. However, the additional degradation 
costs of the vehicle battery can be significant depending on the control 
algorithms [18,56]. Degradation of EV batteries has shown to be the 
greatest concern of EV owners when participating in V2G [21]. Thus, we 
investigate the additional degradation of the vehicle batteries in dual 
use using an exemplary driving profile in Section 4.2. In this work, costs 
for equipping the participating vehicles with smart metering devices and 
bidirectional charging stations are neglected, since these costs are 
incurred per vehicle and therefore reduce the revenues per vehicle of 
optimized pools as well as the random pools equally. After the presen
tation of the scenario, the following chapter deals with the basic data of 
the work. 

Table 2 
Fleet categories and scenario considered in this work (commercial, <50 EVs).  

Category Description Fleet Size Example 

Private Cars in private ownership typically 
1-2 

Private households 

Private +
Commercial 

Cars used for private and 
commercial mobility variable 

Employees in field 
service 

Commercial Company cars < 50 EV 
Small and Medium- 
sized companies 

> 50 EV Postal services  

Table 3 
Market characteristics of the markets considered in this work.   

Frequency 
containment 
reserve (FCR)  
[57] 

Intraday 
continuous market  
[60] 

Day-ahead auction 
market [60] 

Market ancillary service energy energy 
Direction bidirectional 

obligatory 
unidirectional & 
bidirectional 
possible (buy or 
sell) 

unidirectional & 
bidirectional 
possible (buy or 
sell) 

Provision time 15 min (to be 
activated in < 30 
s) 

minimum 15 min minimum 1 h 

Time sectioning 4 h 15 min 1 h 
Minimal bid 1 MW (Demand 

in Germany in 
2020: 573 MW) 

0.1 MW (0.025 
MWh) 

0.1 MW (0.1 MWh) 

Minimal 
increment 

1 MW 0.1 MW 0.1 MW 

Remuneration market-clearing 
price (power) 

pay-as-bid price 
(energy) 

market-clearing 
price (energy) 

Typical price 
range in 2020 

~ 30 €/MW/4h ~ 10–60 €/MWh ~ 20–50 €/MWh 

Tendering 8 a.m. (D-1) from 3p.m.(D-1) up 
to 5 min before 
power provision 

12 a.m. (D-1)  

1 The limit of 50 vehicles is not fixed, but only represents the order of 
magnitude and separates the categories. 
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2. Database 

This chapter describes the database of the present work. For this 
purpose, Section 2.1 explains the rules of the electricity markets under 
consideration. In addition, we present and analyze the price data of the 
markets. Section 2.2 presents the EV data. There, we describe the basis 
of the driving data and how profiles for the optimal pool composition are 
obtained from these data. 

2.1. Electricity market rules and price data 

This chapter presents the three markets identified in the literature 
research as potential areas of application for EVs. These include the FCR 
market as an ancillary service market and the two spot markets of (a) the 
intraday continuous market and (b) the day-ahead auction market. 
Table 3 provides an overview of the most important market character
istics and Fig. 2 depicts the weekly average prices for all markets. The 
respective subsections refer to both the characteristics and the price 
developments. Since this paper does not include bidding strategies, 
exclusively average prices are discussed. 

2.2. Frequency containment reserve market (FCR) 

FCR is the fastest of the three frequency regulation types in the 
Continental European Synchronous Area (CESA). Within the CESA, a 
total of 3,000 MW of FCR power is reserved, which is distributed among 
the member states according to generation capacity [57]. In 2020, 
Germany required 573 MW, which is tendered via the portal of the four 
transmission system operators (TSOs) as an anonymous tender auction 
and tendered according to a market-clearing power price [57]. The 
tendered power must be held in reserve as bidirectional power of an 
integer multiple of 1 MW for a time section of four hours at a time [57]. 
However, in accordance with the requirements of the TSOs, the per
manent provision of power must only take place for 15 min in a specific 
call, whereby it must be possible to provide the full power after 30 s 
[57]. In addition, for limited energy storage such as batteries, a mini
mum power buffer of 25% of the FCR power must always be maintained 
[57]. Detailed market and price analyses can be found in [58] and [59]. 
The average prices were around 30 €/MW/4h in 2020 and Sat-Sun had 

higher prices than weekdays Mon-Fri (see Fig. 2). 

2.3. Intraday continuous market 

In the intraday continuous market, energy is traded on a quarter- 
hourly basis in various block sizes of minimum 15 min [60]. Supply 
and demand are matched in a pay-as-bid process, resulting in a variety of 
prices for each quarter hour. The smallest tradable unit of power is 0.1 
MW [60], which means that a minimum of 25 kWh can be provided in a 
quarter hour. The average price shows high volatility; in 2020 average 
prices of over 80 €/MWh but also negative prices occurred (see Fig. 2). 
In general, prices ranged predominantly between 10 €/MWh and 60 
€/MWh. Further information on the intraday continuous market can be 
found in [61]. 

2.4. Day-ahead auction market 

On the day-ahead market, participants trade energy hourly in 
various block sizes of at least one hour for the following day. Unlike the 
intraday continuous market, supply and demand are matched together 
in a market-clearing price. The traded power over the traded provision 
time corresponds to the integer multiple of 0.1 MW [60]. From this 
value, it follows that the traded energy corresponds to an integer mul
tiple of 0.1 MWh due to the minimum block size of one hour. The hourly- 
changing price shows less volatility than the intraday curve and was 
around 20 €/MWh and 50 €/MWh in 2020 (see Fig. 2). Further price 
information can be found in [61], which also describes the impact of the 
Covid-19 pandemic. 

2.5. Vehicle data and capability profiles 

The optimized pool composition requires profiles that describe how 
much power and energy a vehicle can charge or discharge at any given 
time. We call these profiles power capability profiles and energy capa
bility profiles, respectively. In a previous paper, we described in detail 
how the power and capability profiles are determined from vehicle and 
driving data [10]. In this section, the most important points are briefly 
discussed. In addition, we explain the formation of intraday and day- 
ahead profiles. 

The basis of this work is two databases: One being measured data 
from the Institute of Power Generation and Storage Systems (PGS) at 
RWTH Aachen University in the project “Commercially operated electric 
vehicle fleets (GO-ELK)” [62]. In this project, data loggers measured 22 
EVs. A database from the REM 2030 (regional eco mobility) project was 
also used [63,64]. 

Using the vehicle data, we first carried out a statistical evaluation. 
For this purpose, probabilities for start, duration, and distance were 
determined over the course of the day and week. Using the statistical 
data of the vehicles, driving profiles were created in the second step. 
Afterwards, a simulation model to simulate driving profiles from the 
probability data was developed. As in our first work, a minimum of 30 % 
of the capacity is reserved for spontaneous mobility. For the charging 
process, we used measured charging curves from the PGS at RWTH 
Aachen University [10]. 

Weekly driving profiles were simulated for each vehicle. To deter
mine the power and energy capability profiles during parking times, we 
divided the respective vehicle battery virtually into energy for mobility 
(primary use) and freely available energy for dual use. This freely 
available energy over time results in the energy capability profile. The 
power capability profile indicates the power that a vehicle can charge 
and discharge at any given time when it is parked at the company site. 
This power depends on a) the power electronics of the EV, b) the power 
electronics of the charging station, and c) the available energy and the 
provision time over which the power must be delivered (depending on 
the market). Accordingly, the capability profiles for the different mar
kets vary. At the FCR market the provision time is 15 min. The power 

Fig. 2. Average weekly prices in 2020 for a) EPEX intraday continuous 
(weighted average pay-as-bid price), b) EPEX day-ahead auction (market- 
clearing price) and c) frequency containment reserve (FCR) provision in Ger
many (market-clearing price). 
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must therefore be provided over 15 min. The same applies to the 
intraday market. In the day-ahead market, in contrast, time slices are 
marked by the hour. This results in different capability profiles for the 
different markets. 

Similar to our previous work, we formed profiles of 468 vehicles 
from the REM 2030 database. These 468 vehicles meet the following 
three criteria: a) the vehicle was measured over at least one week, b) the 
vehicle must make at least one trip, and c) the vehicle must be at the 
company site at least once. In our previous work, we clustered the power 
capability profiles according to the economic sectors. In this work, we do 
not cluster the profiles but use each profile separately. 

In the two optimization methods presented in the next chapter, we 
use both the energy and power capability profiles. For the optimization 
of the pool composition in the FCR market, the power capability profiles 
of each vehicle over one week are used. For optimization in the spot 
markets, the energy and power capability profiles are both used. In the 
intraday continuous market optimization, 15-minute continuous trading 
and in the day-ahead auction market, 1-hour auction trading were 
considered. Due to the different provision times, the power capability 
profiles for the two markets vary, while the energy capability profiles 
are the same (see Section 0). In this work, we use weekly profiles 
because commercial vehicle profiles are relatively constant over a 
period of months and years. 

3. Methodology 

In this chapter, we present the methodology of building optimal pool 
compositions. Section 3.1 deals with the optimization method for 
balancing power markets, in our case the FCR market. Afterwards, in 
Section 3.2 we present the optimization method for arbitrage trading 
using energy and power capability profiles. In both sections, we provide 
examples using three EVs to show the functionality of the optimization 
methods. 

3.1. Optimized combination of power capability profiles in balancing 
power markets 

For optimization in balancing power markets, we use the weekly 
power capability profiles of the EVs introduced in Section 2.2. The goal 
of optimization is to maximize the revenues per EV contained in the 
pool. The optimizer consequently finds the optimal number of vehicles. 
Thereby, potential costs of the aggregation are ignored. Section 3.1.1 
explains the optimization problem for the FCR market. In Section 3.1.2, 
we discuss the results of optimization. Afterwards, in Section 3.1.3, we 
present a linear optimization method with an assumed fixed number of 
EVs. 

3.1.1. Optimization problem in balancing power markets 
The optimization problem of adding EVs to a pool to maximize the 

revenue per EV contained in the pool is nonlinear with discrete decision 
variables. An EV x can be part of the pool (1) or not (0). Eq. (1) shows the 
optimization problem of finding the maximum FCR revenues per EV in 
the pool (RevFCR). The revenue depends on the decision variable x→, the 
price of FCR provision during each service period of a week (price̅̅→

FCR) 
and the EV power capability profiles consisting of the maximal possible 
charging (Pch) and discharging power (Pdis). As weekly price curves, we 
use the average prices of each of the weekly 42 four-hour service periods 
of the second half of 2020 (see Section 2.1.1). The objective function 
RevFCR is calculated using Eq. (2). The decision variable x→ is a column 
vector that can contain the values 1 (in the pool) and 0 (not in the pool). 
The matrices Pch and Pdis contain the EV power capability profiles in 
charge and discharge directions. 

In the following, the individual parts of the objective function are 
described:  

1) a→= min(Pch • x→,Pdis • x→) calculates the minimum of the charging 
and discharging power capability of the composed pool at any time 
depending on the decision variable x→. This is done because FCR must 
be provided simultaneously in both directions (Section 2.1.1). Thus, 
the minimum possible charging and discharging power determines 
the power that can be offered on the FCR market. a→ is then an m- 
dimension vector with the number of timesteps (m).  

2) b =
⌊
min

(
a(i− 1)•16+1,⋯,i•16

)
/1.25

⌋
takes the minimum value of the 

pool power in the specific service period i since only the minimal 
appearing power can be offered during the timeslot. A week has 42 4- 
hour service periods and each of these service periods contains 16 
values corresponding to quarter hours. Furthermore, the value is 
divided by 1.25, since an additional 25% of the prequalified power 
must be kept available for storage management activities when of
fering FCR (see Section 2.1.1. Accordingly, only 80% of the mini
mum power can be used for FCR. Afterwards, the value is rounded 
down to multiples of 1 MW, since only multiples of 1 MW can be 
traded on the FCR market. If participating in the FCR market through 
aggregators, smaller units of power could also be marketed, but this 
is not assumed at this point.  

3) The pool minimum of each time slot is then multiplied by the mean 
FCR price of the service period, and the resulting revenues are 
summed up for the weekly 42 service periods of four hours each.  

4) This sum is then divided by the number of vehicles and multiplied by 
52 weeks per year to estimate the revenue per year and vehicle. 

max RevFCR

(

x→, price̅̅→
FCR,Pch,Pdis

)

(1)  

RevFCR=52

•

∑42
i=1Pricei

FCR•
⌊

min
(
[min(Pch• x→,Pdis• x→)](i− 1)•16+1,⋯,i•16

)
/1.25

⌋

∑n
j=1xj

(2) 

With: 

x→=

⎡

⎢
⎣

x1

x2

⋮
xn

⎤

⎥
⎦ xj ∈ {0; 1} j = 1⋯n  

n : Number of Profiles  

Pch =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pch
1
1 pch

1
2 ⋯ pch

1
n

pch
2
1 pch

2
2 ⋯ pch

2
n

⋮ ⋮ ⋱ ⋮
pch

m
1 pch

m
2 ⋯ pch

m
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Pdis =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pdis
1
1 pdis

1
2 ⋯ pdis

1
n

pdis
2
1 pdis

2
2 ⋯ pdis

2
n

⋮ ⋮ ⋱ ⋮
pdis

m
1 pdis

m
2 ⋯ pdis

m
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

m : Number of Timesteps  

price̅̅→FCR
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

priceFCR
1

priceFCR
2

⋮
priceFCR

42

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

To solve the described optimization problem, MATLAB’s genetic 
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algorithm (GA) toolbox is applied [65,66]. Genetic algorithms are 
metaheuristic algorithms that use experience from nature to determine a 
feasible and well-suited solution by means of inheritance and crossing. 
Each new generation represents a further possible solution to the opti
mization problem. The optimization problems to be solved by genetic 
algorithms often have several local optima. For this reason, the algo
rithms use mutations during inheritance, so that the chance of finding a 
global maximum increases. Restarts at different positions also contribute 
to this goal. Due to their metaheuristics, genetic algorithms do not 
necessarily find the global optimum [66]. In 1996, genetic algorithms 
were already proposed in publications for metaheuristic optimization in 
different applications [67]. Since then, they have been further devel
oped and are used, for example, for the optimization of hybrid genera
tion systems consisting of photovoltaic, wind and storage systems 
[68,69]. 

The optimization problems presented in this paper are nonlinear. 
Adding or removing one vehicle can either increase or decrease the 
revenue per vehicle. MATLAB’s GA can approximately solve this 
nonlinear optimization problem with discrete decision variables [65]. 
Since each of the 468 vehicles used has two possibilities (0 or 1), there 
are 2468 ≈ 7.6 • 10140 possible pool compositions. This number of 
combinations can no longer be checked manually. For this reason, in the 
next section the optimization is performed in a simplified way as an 
example with three power capability profiles for one day. 

3.1.2. Results of optimization using three profiles 
In this section, exemplary power capability profiles of three EVs are 

used (x1, x2, x3) and the pool’s revenue per EV is maximized using the 
presented algorithm. As a condition, it was demanded here that at least 
5 kW must be provided. Furthermore, increments of 5 kW are possible. 
For the provision of FCR, this condition will be set to 1000 kW with 
increments of 1000 kW. In addition, only one day is considered 
(Monday) at this point. The mean FCR prices for the six service periods 
of Mondays are used in this exemplary optimization. 

In Fig. 3, the absolute values of three exemplary power capability 
profiles x1, x2 and x3 are depicted in positive and negative directions. 
EV x1 can provide 11 kW in positive and negative directions from 
approximately 7p.m. until midnight. EV x2 can provide 11 kW the whole 
day except for a time section between 6:45 a.m. and 12:45p.m. More
over, EV x2 could provide positive power of 22 kW between 12:15p.m. 
and 12:45p.m. by stopping the charging process and discharging its 
battery instead. During those 30 min, the EV cannot provide negative 
power since the EV is already charging with its maximum power of 11 
kW. EV x3 can provide positive and negative power of 11 kW from 
midnight to 2:45p.m. 

The optimizer chooses the profiles x2 and x3 to be in the pool. Using 
those two maximizes the revenue per EV. Adding profile x1 to the pool 
would increase the available pool power in the service period from 8p. 
m. to midnight. However, the additional pool revenue would not be high 
enough to increase the revenue per EV, since the pool revenues had to be 
divided among three EV owners. For this reason, EV x1 is not used in the 
pool. Furthermore, the resulting pool profile shows that only the mini
mum amount of positive and negative power is used. Since EV x2 can 
provide 22 kW of positive power between 12:15p.m. and 12:45p.m., the 
pool would be able to offer 33 kW of positive power. However, since the 
negative pool power is 11 kW, the possible FCR pool power is 11 kW 
during those 30 min. 

Fig. 4 shows the available pool power capability during Monday 
(blue line) and the minimum pool power in each 4-hour service period 
(red line). Due to the buffer of at least one fourth of the FCR power, 
another 20% is subtracted from this minimum (yellow line). Moreover, 
the figure contains the offerable pool power when providing balancing 
power with the described condition of a minimum and an increment of 5 
kW (purple line). The pool can provide 15 kW during the first time slot 
and 5 kW during all others. Using the FCR prices displayed in Fig. 4 the 
yearly revenue per EV can be estimated. Since we made simplifications 
in this example, the annual revenues are not realistic in practice. 

To demonstrate that the optimization method work correctly, the 
revenues per vehicle and year were calculated manually for all combi
nations of the three profiles (see Appendix Fig. A1). The diagram shows 
that the combination of profiles x2 and x3 leads to the highest revenue 
per EV. 

3.1.3. Linear optimization with fixed number of vehicles 
Another approach than finding the optimal number of EVs would be 

to specify an exact number of vehicles to be selected optimally. The 
genetic algorithm could receive a fixed number in a constraint. How
ever, the metaheuristic optimization of the FCR market showed that the 
algorithm cannot guarantee to find the global optimum and might 
become stuck in a local optimum. For this reason, we created a linear 
optimization algorithm that uses a fixed number of vehicles as a 
constraint. We specified to this optimizer that it should select the best 
100 EVs out of all possible EVs, for example, and maximize the revenue 
per vehicle. 

The mixed-integer linear problem has two integer decision variables. 

First, the offered power that is provided from the EV pool ( P→
FCR

). Sec
ond, a binary variable ( x→) that determines if a specific power capability 
profile is selected in the optimized vehicle pool. Depending on the 
defined input parameter of the number of vehicles in the optimized pool 
(N), the decision variables are optimized in the objective function (3) 

Fig. 3. Three power capability profiles (each in positive and negative di
rections) and their optimized pool profile for frequency containment reserve 
(FCR) provision. 

Fig. 4. Course of the pool’s power capability profile, the minimum of the pool 
power capability in every service period and the offerable pool power for FCR 
for the pool of Fig. 3. Mean FCR price for the six time slots of Mondays between 
July 1st and December 31st 2020 from [57]. Minimum and increment: 5 kW; 
Revenue/EV/year: 241.5 €. 
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and two constraints. 

max
∑42

i=1
PFCR

i • priceFCR
i (3)  

P→
FCR

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PFCR
1

PFCR
2

⋮
PFCR

42

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The first constraint (4), determines that FCR power is provided in the 
respective 1 MW increments and that the reserve power of 25% is added 
when participating in the market. Since the FCR is a symmetrical 
product that must be provided in both positive and negative directions, 
the lesser of the charging and discharging power indicates the power 
offered. 

Eq. (5) guarantees that the sum of activated EVs in the optimized 
vehicle fleet corresponds exactly to the defined input parameter. The 
sum over all participating EVs (Eq. (5)) corresponds to the denominator 
in the genetic algorithm (Eq. (2)). In the genetic algorithm, we divided 
by the sum to optimize the revenue per vehicle over all possible 
quantities. 

P→
FCR

• 1MW • 1.25 ≤
∑

x→• min(Pch,Pdis) (4)  

∑n

j=1
xj = N (5) 

The optimizers presented in this section are applied to the 468 power 
capability profiles in the FCR market and the results are presented in 
Section 4.1. 

3.2. Optimization of the combination of power and energy capability 
profiles for arbitrage in spot markets 

In this section, the optimizer for arbitrage trading on the intraday 
continuous and day-ahead auction market is presented. As before, we 
maximize the revenue per participating EV. Section 3.2.1 shows the 
optimization problem and explains the algorithm. Afterwards, Section 
3.2.2 shows an example of arbitrage trading using three vehicles. 

3.2.1. Optimization problem for arbitrage in spot markets 
Arbitrage trading differs from smart charging, which is often used in 

the literature. In smart charging, purchases on the spot market are 
optimized for charging vehicles at times of low electricity costs. The 
arbitrage trading presented here, in contrast, is based on a free cloud 

capacity. This free cloud capacity is the sum of the free capacities of all 
vehicles in the pool. Moreover, we calculate a virtual cloud SOE, which 
represents the virtual state of energy of the pool. By using only the free 
capacities, the primary use of the EVs is not limited. In the following, the 
optimization process and the algorithm for the calculation of arbitrage 
revenue are explained. 

In principle, this optimization maximizes the revenue per partici
pating EV. For this purpose, we use another genetic optimization algo
rithm that varies the composition of the pool, calls the arbitrage 
algorithm, and receives the revenues per participating EV. Here, taxes 
and fees payable by households when purchasing electricity are 
excluded, similar to [70]. At the beginning, we define three character
istic values: The minimum price spread in €/MWh, the one-way effi
ciency of charging and discharging respectively, and the minimum bid 
size to trade on the intraday continuous or day-ahead auction market. 
The minimum price spread is set at 10 €/MWh, since this significantly 
reduces the number of cycles that the batteries make, while barely 
reducing revenues [70]. As one-way efficiency, we assume 93 % in both 
directions based on measurements [10]. In addition, 100 kW is used as 
the minimum offer size and increment analogous to the EPEX Spot 
markets. For hourly day-ahead auction trading, this means trading in 
100 kWh increments. For 15-minute intraday continuous trading, 25 
kWh increments are traded. A trade will not be executed below the 
minimum price spread and the minimum bid size. 

The arbitrage algorithm then receives the following input data:  

• The three characteristic values defined beforehand (minimum price 
spread, efficiency, minimum bid size).  

• Average 15-minute-prices of the EPEX intraday continuous market 
from 2020 or the 1-hour-prices of the EPEX day-ahead auction 
market from 2020, respectively.  

• Aggregated free cloud capacity of the current composite pool in kWh 
for every time slot of 15 min or 1 hour, respectively. 

• Power capability profile of each participating EV including distinc
tion between grid-sided and battery-sided power weighted with the 
efficiency. 

Since bidding strategies are not a focus of this paper, average prices 
for the two markets under consideration are used. The algorithm thus 
calculates the possible revenues on this basis and does not try to beat 
these average prices through bidding procedures. In general, the algo
rithm identifies purchase times of low prices and assigns them to high 
price sale times. An exemplary price development and the SOE curve 
resulting from arbitrage trading are shown in Fig. 5. First, the price 
minimum of the period under consideration is determined and is marked 
as the first time of purchase (Time 2). Afterwards, a possible time of sale 
is iteratively searched for starting with the time of highest price (Time 
7). The trade is executed when:  

a) the virtual cloud SOE remains between zero and the maximum free 
cloud capacity,  

b) the trade exceeds the minimum price spread and the minimum offer. 

If these conditions cannot be met, this potential sale time is tempo
rarily excluded and the time of the next highest price is tested as a sale 
time. This method is executed iteratively until a suitable sale time has 
been determined. The purchase and sale times are blocked for further 
iterations and the temporarily excluded purchase times are released 
again. 

A purchase at time 2 and a sale at time 7 is possible, so that com
bination (1) from Fig. 5 can be executed. The combination is marked by 
the dashed line. Next, time 8 is selected as time of sale and time 3 as time 
of purchase. This combination also does not violate any conditions and is 
therefore executed as combination (2). Subsequently, time 5 is identified 
as the next time of sale. The next lowest purchase price is at time 4, but 
since this trading would exceed the maximum virtual capacity, this time 

Fig. 5. Working principle of the arbitrage algorithm. a) Exemplary price curve 
and trading activity. b) Free cloud capacity and virtual cloud SOE curve. 
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of purchase cannot be realized. Instead, since the virtual battery already 
contains energy before the sale, times of purchase after the time of sale 
are also permitted. Within this search, time 6 is identified as the time of 
purchase and time 5 is set as the time of sale (see combination (3)). A 
sale time that lies before its assigned purchase time retroactively 
changes the physical assignment of purchase and sale times, but this has 
no effect on the accounting. The resulting revenue is then calculated 
according to Eq. (6), considering the losses that occur during charging 
and discharging. 

RevArbitrage =
∑#trades

n=1
(Price salen − Price purchasen) • Pn • ΔT • ηround− trip

(6) 

The optimizer then receives the resulting revenues of the current 
pool composition. Then, the algorithm is started with a different pool 
composition and its revenues are calculated. As in FCR optimization, this 
genetic optimization uses inheritance and mutation to change the pool 
composition in order to determine the optimal pool composition (see 
Section 3.1). 

3.2.2. Results of optimization using three profiles 
Similar to the FCR optimization, the spot market optimization is now 

presented with three exemplary profiles (x1, x2, and x3). In this 
example, the intraday continuous market with its 15-minutes resolution 
is used. The explanations are also valid for the day-ahead auction market 
with its 1-hour resolution. Furthermore, in this example we only 
consider Monday instead of the whole week, analogous to the FCR 
example. In addition, only this example defines 1 kWh as the minimum 
bid size, since the three vehicles cannot reach a bid size of 25 kWh 
required by the EPEX. However, the efficiency and the price spread are 
assumed to be 93 % and 10 €/MWh respectively, as described above. 

Fig. 6 a) shows the negative energy capability profiles (energy that 
can be charged) of the exemplary vehicles x1, x2 and x3 in 15-minute 
resolution during Monday. EV x1 is on the road until 7p.m. and can 
store 2.7 kWh after arrival. EV x2 is on the road between approx. 7 a.m. 
and 12:30p.m. and can also store 2.7 kWh during the parking time. In 
addition, it can store up to 7.5 kWh for a short time after arrival at 
12:30p.m., since the vehicle battery then has a lower SOE due to the 
journey just completed. Vehicle x3 is connected until 2p.m. and can 
store 2.7 kWh of energy at any time. The optimizer selects EV x2 and x3 
for the pool so that the free cloud capacity shown corresponds to the sum 
of the free capacities of EV x2 and EV x3. 

In Fig. 6 (b), the free cloud capacity and the virtual cloud SOE are 
shown. Moreover, the average Monday intraday continuous price curve 
is displayed (right y-axis). Purchase times are marked with a red triangle 
and sale times with a green square. The arbitrage algorithm determines 
14 trades on Monday with the pool consisting of EV x2 and EV x3. At the 
times of purchase, most often 2.75 kWh are purchased on the grid side, 
of which 2.56 kWh are stored due to efficiency. At the times of sale, 2.38 
kWh are then delivered to the grid. The revenue is finally calculated 
according to Eq. (6) over one year at 86.2 €. The results of the manual 
calculation of the intraday continuous revenue of the various combi
nations of x1, x2 and x3 are shown in Fig. A2. Analogous to the FCR 
optimization, the optimizer found the combination with the highest 
revenue per participating EV. 

4. Results 

This chapter shows the results of the optimization of the various pool 
compositions. Section 4.1 analyzes the weekly profiles of the optimized 
pools. In addition, the revenues of the optimized pools are compared 
with the revenues of randomly assembled pools of the same number of 
vehicles. Section 4.2 examines the additional degradation of EV batte
ries in dual use. Here, an example is used to simulate battery degrada
tion during uncontrolled charging, primary use-oriented charging and 
dual use-oriented charging. 

4.1. Comparison between optimized and random pools 

First, the optimized pools are compared to randomly assembled EV 
pools. For this purpose, the optimization problems presented in chapter 
3 are solved. The results are optimized pool compositions that provide 
maximum revenue per participating EV. In the following, the results for 
the provision of FCR and arbitrage trading on the intraday continuous 
and day-ahead auction market are presented. This is followed by an 
economic comparison of all markets. 

4.1.1. FCR market comparison 
First, the results of the optimization of pool composition in the FCR 

market are explained. Fig. 7 shows the accumulated weekly pool profile 
of one random EV pool (a) and the optimized pool (b) when providing 
FCR. The corresponding assumptions and the results of the optimization 
are presented numerically in Table 4. The achievable prices are derived 
from the mean values of the 42 weekly 4 h-slots of the months July to 
December in the year 2020. In addition, as usual in the FCR market, 1 
MW was assumed as the offerable minimum power increment. The 
power capability profiles introduced in Section 2.2 were used for the 
FCR optimization. 

If the annual revenue per vehicle is maximized, the optimization 
method selects 243 EVs, resulting in a total revenue of about 92,000€. 
Per participating EV, 378 € can be generated yearly. If FCR were pro
vided 10,000 times using a random pool of 243 EVs, the total yearly 
revenue would on average be 53,400 €, which results in 220 € per 
vehicle. In this case, the standard deviation of revenue per vehicle is 9.5 
€. 

The power values displayed in Fig. 7 show the minimum power 
capability in both directions at any time, since positive and negative FCR 

Fig. 6. a) Negative energy capabilities of three EVs in 15-minute resolution 
over a Monday and pool profile (free cloud capacity) in 15-minute resolution. 
b): Free cloud capacity and virtual cloud state-of-energy (SOE) with average 
intraday continuous price curve and marked prices of purchase and sale. 
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must be supplied simultaneously (see 2.1.1). The randomly assembled 
pool can offer a maximum of 1 MW. Particularly during daytimes on 
weekdays the power that can be offered drops below 1 MW due to the 
required buffer of 25% of the offered power. If the composition of the 
pool is optimized, the pool can provide 1–2 MW to the FCR market. The 
pool can use its available power more efficiently, generating higher 
revenues per EV. During the weekdays, the pool offers 1 MW, although 
the pool could often offer 1.5 MW at night. On weekends, the optimized 
pool can offer 2 MW apart from Saturday noon. Comparing the random 
pool’s available power and the optimized pool’s power, it can be seen 
that the optimizer only includes the minimum required number of EVs in 
the pool to provide the 1 MW or 2 MW, respectively. 

A parameter introduced at this point is the power utilization rate 
(τPUR). This value describes quantitatively how much of the possible 
usable power is actually used for FCR provision. For this purpose, the 
difference between the available power (power capability) and the 
offerable FCR power is calculated and scaled to the power capability (Eq. 
(7)). The average value is then calculated over the 672 15-minute time 
periods of the week and subtracted from one. Graphically, the parameter 
represents the mean percentage gap between the blue and purple curves 
from Fig. 7. At a value of one, the curves lie on top of each other, and the 

entire power is used. At a value of zero, none of the possible power is 
used. Due to the required buffer of 25% of the FCR power (i.e., min. 20% 
of the power capability), the maximum achievable τPUR is 80%. 

τPUR = 1 −
1

672
∑672

t=1

power capability(t) − FCR power(t)
power capability(t)

(7) 

The values of τPUR for pool compositions of 10,000 random pools and 
the optimized pool are displayed in Table 4. While the random pools on 
average reach a τPUR of 39%, the optimized pool improves the τPUR to 
62%. Consequently, the optimal pool makes better use of its potential 
and increases its efficiency (see Fig. 7). Thus, the usage of the V2G po
tential in the FCR case is increased though the optimized pool combi
nation by almost 60%. 

Since the optimizer determined the optimal number of vehicles at 
243 EVs and we compared the result with a random pool of 243 EVs, in 
the following, the pool is composed of a fixed number of EVs. For this 
purpose, the linear optimization method presented in Section 3.1.3 is 
used. We chose a fixed number of 50 to 450 vehicles with equidistant 
distances of 50 vehicles to cover the spectrum between very few EVs and 
the maximum number of 468 possible EVs. After the optimization, 
10,000 random pools with the respective fixed number were composed 
and the revenue per EV was determined. The results of the optimization 
with a variable number of EVs (orange dot), the optimization with a 
fixed number of EVs (blue dot) and random pools (boxplots) are 
depicted in Fig. 8. It turns out that an amount of 50 or 100 EVs is not 
sufficient to provide FCR power. From 115 EVs on, FCR can be offered in 
the optimal case. Random EV pools can increase their revenue per 
vehicle as the number of vehicles increases. This is because they can 
better serve the increments of 1 MW when increasing their number. Due 
to these increments, the revenue per vehicle is also not linear but drops 
briefly between 150 and 250 vehicles for the optimized pools, for 
example. Revenue per vehicle also appears to converge as the number 
increases, changing little between 350 and 450 vehicles. However, this 
is because 468 vehicles were considered in this analysis. If, for example, 
1,000 different EVs were considered, revenues would probably not 
converge between 350 and 450. The optimizer achieves an increase in 
revenue per EV in each case. However, its advantage decreases as the 
number of EVs increases. Again, the small advantage of the optimizer at 
450 vehicles exists because we considered 468 vehicles in total. 

As shown with the genetic algorithm, the optimizer found the 
optimal number of EVs to maximize revenue per EV at 243 vehicles. 
Especially at a fixed 150 EVs, the advantage of the optimizer becomes 
apparent: While the random pools reach an average of 109 €/EV and a 
maximum of 160 €/EV, the optimizer can generate 370 €/EV. The in
crease in revenue corresponds to a factor of 2.3 compared to the best 
random case and 3.4 compared to the average of the random pools. 

4.1.2. Intraday continuous market comparison 
In addition to providing balancing power, EV energy can also be 

traded on the spot market. The optimization of arbitrage trading on the 
intraday continuous market that was used here was explained in Section 
3.2. Executing this optimization results in an optimized pool of 48 ve
hicles, whose free cloud capacity and virtual cloud SOE are shown in 
Fig. 9 (a). By using the widest possible price spreads, areas are created 
where the free capacity of the vehicle batteries is not used, such as 
Saturday and Sunday mornings. Diagram b) of Fig. 9 shows the weekly 
mean weighted average price curve of the 15-minute intraday contin
uous prices. In addition, buy and sell times are color-coded. Thereby the 
algorithm uses the spread limit of 10 €/MWh shown in Table 5. Possible 
transactions below this threshold are not executed. Furthermore, Table 5 
numerically shows the assumptions and results of intraday optimization. 
If the revenues per participating EV are optimized in the intraday 
continuous market, the optimization method selects 48 of the 468 
possible EVs. These generate annual profits of 9,748 €, which corre
sponds to 203 € per participating EV. If the aggregator adds 48 random 

Fig. 7. Weekly pool profiles of one random pool of 243 EVs (a) and the opti
mized pool of 243 EVs (b) when providing frequency containment reserve 
(FCR). Since at least an additional 25% of the offered FCR power must be 
provided as buffer, 20% of the minimum pool power capability is blocked (see 
Section 2.1.1). 

Table 4 
Assumptions and results of FCR pool optimization.  

Parameter Value/ Data 

FCR prices Average prices of 4 h-slots between July and 
September 2020 

Minimum bid and increment 1000 kW 

Parameter Optimized pool Mean of 10,000 random pools 

Number of EVs 243 
Power utilization rate (τPUR) 62.2 % 39.3 % 
Annual Pool Revenue 91,854 € 53,367 € 
Annual Revenue per EV 378 € 220 €  
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vehicles to the pool, the total annual revenue would be 3,649 € on 
average, which corresponds to 76 € per participating EV (standard de
viation of 8.1 €/EV). 

Analogous to the FCR case, optimization including finding the 
optimal number was followed by optimization for a fixed number of EVs. 
In contrast to the FCR case, the number was given to the genetic algo
rithm as a constraint instead of developing a linear optimizer due to the 
complexity of the function. The results of the optimized (points) and the 
random pools (boxplots) are depicted in the same way as in the FCR case 
in Fig. 10. 

The intraday case shows that as few as 50 vehicles can already 
provide arbitrage trading. Furthermore, the revenues per EV are rela
tively constant for random pools over all analyzed vehicle numbers 
between 48 € and 103 €. The optimal number of 48 EVs achieves reve
nues of 203 € per vehicle (orange dot). With an increasing number of 
vehicles, the advantage of the optimizer decreases again. For example, 
with 150 vehicles, the optimizer achieves annual revenues of 118 € per 
EV, while the random pools can only generate 77 € on average. 

4.1.3. Day-ahead auction market comparison 
Arbitrage trading can also take place on the day-ahead auction 

market. If optimization is executed for the day-ahead market, the opti
mization method selects 61 EVs that maximize the revenue per EV. The 
resulting free cloud capacity is shown over the course of the week 
together with the virtual cloud SOE in Fig. 11 (a). The lower diagram 
shows the weekly course of the average day-ahead auction prices 
together with color-coded buy and sell times. Table 6 shows the nu
merical assumptions and results. In general, the assumptions in the day- 
ahead optimization were the same as in the intraday optimization. 
Instead of the quarter-hourly intraday continuous prices, the hourly day- 
ahead auction prices were assumed as the average weekly price curve. In 
the day-ahead arbitrage optimization, the profiles introduced in Section 
2.2 were used. 

In the day-ahead auction market, annual revenues for the 10,000 
random pools of 61 EVs amount on average to 11 €, which is about 0.17 
€ per EV. The very low average revenues are because a random pool of 
61 EVs often cannot do any arbitrage trading at all on the day-ahead 
market due to the delivery time of 1 h. Out of the 10,000 random 
pools, 9,413 could not generate any arbitrage revenue on the day-ahead 
market. The average revenue of the pools that could generate any rev
enue at all was 3.50 €/EV. 

The selected 61 EVs of the optimizer reach around 1,700 €, which is 
about 28 € per EV. Due to the longer provision time of the day-ahead 
auction market, the arbitrage algorithm can trade far less in this mar
ket compared to the intraday continuous market and exploit fewer price 
spreads (Fig. 11). 

Analogous to the intraday case, we analyze fixed numbers of vehicles 
in the following. The results of the optimization with a fixed number are 
depicted in Fig. 12. In contrast to the intraday continuous market, 50 
EVs are not sufficient for arbitrage trading on the day-ahead market due 
to the longer delivery time. However, the optimal number of EVs 
selected from the pool is 61 as the orange dot in Fig. 12 shows. As the 
number increases, the revenue per vehicle converges to about 13 € per 
vehicle. The optimizer again has the greatest advantage with small 
pools. Here it can select the best EVs and, for example, reaches 20 € per 
EV with 150A vehicles. In contrast, 10,000 random pools of 150 vehicles 
generate on average only 11.74 € per vehicle. Consequently, the 
advantage of the optimizer over random pool compositions is again 
evident in this case. 

4.1.4. Comparison between the markets 
Following individual considerations of the optimized pools of the 

three markets, the potential revenues between the markets are now 
compared. The increase in annual revenue per EV through optimization 
in the three markets is shown in Fig. 13. The revenue from participation 
in the FCR market can be increased by 72 % from 220 € to 378 € through 
optimized pool composition. The earnings from intraday continuous 
arbitrage trading can be increased by 167 % from 76 € to 203 €. On the 

Fig. 8. FCR optimization: Annual revenue per EV when a fixed number of EVs 
are specified (boxplot: 10,000 random pools, dots: optimized pools). 

Fig. 9. Intraday continuous optimization: Free cloud capacity and virtual cloud 
SOE of the pool (a) and times of sale and purchase including intraday contin
uous prices (b). 

Table 5 
Assumptions and results of intraday continuous arbitrage pool optimization.  

Parameter Value/ Data 

Intraday continuous prices Weighted average prices of 15-minute slots on 
weekly basis of the year 2020 

Minimum bid and increment 0.1 MW 
Assumed efficiency 93 % one-way (86.49 % round-trip) 
Spread limit 10 €/MWh 

Parameter Optimized pool Mean of 10,000 random 
pools 

Number of EVs 48 
Energybought and sold 784 MWh678 MWh 283 MWh244 MWh 
Avg. Price of Energy bought 

and sold 
21.77 €/MWh39.55 
€/MWh 

21.92 €/MWh40.28 
€/MWh 

Annual Pool Revenue 9,748 € 3,649 € 
Annual Revenues per EV 203.1 € 75.9 €  
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day-ahead market, optimization of the pool can yield 28 € per EV instead 
of an average of 3.5 € when only considering random pools of 61 EVs 
that actually generate any revenue. This is an increase in revenue by 
almost 7-fold. 

A comparison of the possible markets shows that participation in the 
FCR market could generate significantly higher revenues than arbitrage 
trading in 2020. Without optimization, it is most economical in all cases 
to include as many EVs as possible in the pool, since revenue per EV 
increases as the number of vehicles increases with random pool 
composition (see Fig. 8, Fig. 10 and Fig. 12). With optimization, the 
revenue on the FCR market is 1.9 (vs. intraday) and 13.5 times (vs. day- 
ahead) higher than the income that can be generated by arbitrage 
trading. 

With respect to pool sizes, however, it is important to note that small 
vehicle pools of<100 EVs do not meet the 1 MW minimum for FCR (see 
Fig. 8). Pools of this size that have already been assembled could 

consequently provide arbitrage trading, whereby the intraday contin
uous market is more flexible and promises higher revenues compared to 
the day-ahead auction market. 

Overall, these analyses demonstrate that the optimal pool composi
tion using the capability profiles can substantially increase the revenues 
an aggregator can generate in the markets. Thus, the optimized profile 
combination is relevant for an aggregator to achieve competitive 
advantages. 

4.2. What is the influence of dual use on battery degradation? 

For an estimation of battery degradation costs, the degradation of a 
vehicle battery in “normal” operation and in dual use operation is 
compared in the following. The log data of vehicles used in this work, 
from which the power capability profiles were determined, do not 
include power profiles for the trips (see Section 2.2). Thus, the estima
tion of the charged and discharged power during a trip is based on the 
data measured by Bremer et al. [71]. This vehicle is part of a geriatric 
care fleet that runs two shifts daily (approximately 6 a.m. to 2p.m. and 
3p.m. to 10:30p.m.). The vehicle model is a Smart fortwo electric drive 
with an energy capacity of 18 kWh [71]. For the following analysis, we 
assumed the vehicle with this driving profile would have been part of 
each pool. To do this, five daily power profiles and corresponding state- 
of-charge (SOC) profiles were formed (Fig. 14 and Appendix Figs. A3- 
A7), representing the following five cases:  

- Uncontrolled charging (UC)  
- Primary use-oriented charging (PUC)  
- Dual use-oriented charging for FCR provision (DUC-FCR)  
- Dual use-oriented charging for intraday continuous arbitrage (DUC- 

ID)  
- Dual use-oriented charging for day-ahead auction arbitrage (DUC- 

DA) 

With UC, the EV battery is immediately recharged to a SOC of 100 % 
upon arrival at the company site, i.e., at the end of the shifts (Fig. A3). 
Between shifts, the SOC is kept constant at 100 %. The PUC strategy, 
however, charges only enough to fulfill the mobility needs (Fig. A4). For 
this purpose, we defined a reserved capacity for the mobility as a 
function of time. The reserved capacity defines the minimum SOC at any 
time during the day. Since shifts occur between 6 a.m. and 10:30p.m., a 
minimum SOC of 60 % was defined for these times. Outside of these 
times, the minimum SOC is 30 %. This way, there is enough energy in 
the vehicle battery for spontaneous trips and the required energy is 
available for typical shifts. This type of charging corresponds to a smart 
charging strategy, since high SOCs over longer periods of time lead to 
accelerated degradation of the battery [20,72,73]. 

In the three dual use strategies, the EV provides FCR (DUC-FCR) or 
trades on the intraday continuous (DUC-ID) or day-ahead auction mar
ket (DUC-DA). A default SOC of 68% was chosen to form the respective 
SOC curves (Figs. A5-A7). This SOC allows cycling for the second use 
during parking times without restricting mobility. For the simulation of 
FCR provision when the EV is parked at the company’s site, a standard 
battery energy storage load profile in FCR operation was used (Fig. A5) 
[74]. For the simulation of intraday continuous and day-ahead trading, 
Wednesday trading from Section 4.1 was used and scaled to one vehicle, 
i.e., divided by the number of vehicles in the optimized pool (Figs. A6- 
A7). 

Since the vehicle under consideration is used as a geriatric care EV, it 
is assumed for this estimation of EV battery degradation that the SOC 
profiles are repeated 365 times per year and over several years. In re
ality, the driving profile and FCR generation or electricity trading will 
vary over the days and years. These profiles are then simulated with the 

Fig. 10. Intraday continuous optimization: Annual revenue per EV when a 
fixed number of EVs is specified (boxplot: 10,000 random pools, blue dot: 
optimized pool). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 11. Day-ahead optimization: Free cloud capacity and virtual cloud SOE of 
the pool (a) and times of sale and purchase including day-ahead auction pri
ces (b). 
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storage simulation tool SimSES2 (Simulation of stationary energy stor
age systems) to determine the degradation [75,76]. Here, a 1-minute 
resolution was chosen to allow an optimum between accuracy and 
computational time. In the simulation, parameters such as the capacity 
of 18 kWh are defined and the specified SOC curve is traced. For this 
purpose, a lithium-ion battery technology NMC (Nickel-Manganese- 

Cobalt) was assumed to be the vehicle battery. The battery and degra
dation model of this cell type are based on a publication from Schmal
stieg et al. [72]. The assumed fixed ambient temperature was 15 ◦C. 
Since vehicles might be parked in garages, this value is above the 
average temperature of 10.6 ◦C in Germany in 2020 [77]. A remaining 
capacity of 80% was selected as the end of life (EOL) of the battery in the 
simulations, analogous to the literature [72]. 

The results of the five simulations are shown in Table 7 and Fig. 15 
(a). The case of uncontrolled charging (UC) leads to an average SOC of 
over 90% and a battery lifetime of about 7.7 years. In contrast, for the 
PUC case with an average SOC of 44.4%, the vehicle battery reaches its 
end of life after 12.8 years. This shows the advantage of a smart charging 
strategy, which in this simulation and with this profile leads to an in
crease in lifetime of 66%. The dual use with the EV leads to a mean SOC 
between 67% and 74% and a lifetime between 7.4 and 11.8 years, 
depending on the case. In this example, dual use in FCR and day-ahead 
case is better than uncontrolled charging (UC) in terms of battery aging, 
but worse than smart charging (PUC). Only intraday continuous arbi
trage trading leads to a slightly lower lifetime than UC. The average 
annual equivalent full cycles (EFC) that the vehicle battery experiences 
without dual use are already relatively large at 160 due to the use of the 
vehicle in two shifts. With dual use, the annual EFCs increase up to 317 
for intraday continuous arbitrage. In contrast, the EFCs for FCR provi
sion and day-ahead trading are only slightly higher than the EFCs 
without dual use. This is because the exemplary supply or exemplary 
trading is very much in the EV’s favor. In Fig. 14, it can be seen that the 
provision of FCR between 2 a.m. and 6 a.m. results in less need to charge 
the vehicle. The same applies to day-ahead trading between 2 a.m. and 4 
a.m. By assuming that this day is repeated 365 times per year for several 
years, this results in only slightly more battery degradation of DUC-FCR 
and DUC-DA compared to PUC. 

Table 7 additionally shows a utilization ratio. This ratio indicates the 
proportion of time the EV is on the road (not at company site) or in V2G 
provision. The value therefore indicates how often the vehicle battery is 
used. Dual use increases this utilization ratio: For example, almost 70% 
for intraday trading and 100% for FCR provision, since the vehicle 
provides FCR or is recharged as soon as it is parked at the company site. 
In addition, the dual use ratio shows the proportion of time the EV is 
parked at the company location that is used for FCR provision or trading. 

After the example aging simulation, the costs for the battery are now 
compared with the possible revenues in the three markets considered 
(Fig. 15 (b)). According to a study, the average lithium-ion battery pack 
prices in 2020 were 137 $/kWh, which is roughly equivalent to 114 
€/kWh [78]. A vehicle battery pack with a capacity of 18 kWh therefore 
cost 2,052 € in 2020. If these costs are evenly distributed over the 
number of lifetime years, the battery costs without dual use range be
tween 160 € (PUC) and 276 € (UC) for the example year 2020. The 

Table 6 
Assumptions and results of day-ahead auction arbitrage pool optimization.  

Parameter Value/ Data 

Day-ahead auction prices Average hourly day-ahead auction prices of the 
year 2020 

Minimum bid 0.1 MW 
Assumed efficiency 93 % one-way (86.49 % round-trip) 
Spread limit 10 €/MWh 

Parameter Optimized 
pool 

Mean of 10,000 random 
pools 

Number of EVs 61 
Energy bought and sold 108 MWh 0.57 MWh 

93 MWh 0.49 MWh 
Avg. Price of Energy bought and 

sold 
19.77 €/MWh 11.70 €/MWh 
41.13 €/MWh 35.03 €/MWh 

Annual Pool Revenue 1,702 € 10.66 € 
Annual Revenues per EV 27.91 € 0.17 €  

Fig. 12. Day-ahead optimization: Annual revenue per EV when a fixed number 
of EVs is specified (boxplot: 10,000 random pools, dots: optimized pools). 

Fig. 13. Comparison of revenues in the three markets between the 10,000 
random pools and the optimized pool (* Mean for random day-ahead pools of 
61 EVs that could generate any revenue; 94% of the 10,000 pools could not 
generate any revenue). 

Fig. 14. Daily SOC-Profiles of the five considered cases.  

2 http://www.simses.org, open-source version 1.0.4 
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battery costs in dual use range between 175 € (DUC-FCR) and 276 € 
(DUC-ID). In Fig. 15 (b), the costs are plotted negatively. The average 
revenues per EV of the optimized pools in 2020 for the dual use cases are 
shown as positive values. Here, it can be seen that the revenues exceed 
the battery costs in the case of FCR supply. For intraday and day-ahead 
arbitrage, the battery costs are higher than the potential revenues. In the 
UC and PUC cases, no revenue is generated. 

The comparison of the cases shows that, in regard to battery costs 
and revenues, all cases are better than the UC case. In the DUC-DA case, 
the difference between revenues and battery costs is slightly less than 
the difference in the PUC case due to low revenues in the day-ahead 
auction market. Smart charging according to PUC therefore seems to 
be more profitable than arbitrage trading on the day-ahead auction 
market. However, for intraday trading and especially for FCR provision, 
the difference is above that of the PUC case. Here, dual use is econom
ically more attractive than smart charging according to PUC, since 
additional costs of the dual use cases, metering point operation, bidi
rectional charging stations, and possible aggregator costs should be 
considered. This means that for the FCR case, for example, these addi
tional costs must not exceed 203 € per EV to generate a profit in 2020. 
These costs should not exceed 363 € to make the DUC-FCR case 
worthwhile compared to the PUC case. 

It should be kept in mind that in this analysis we assumed that the 
revenues of the DUC Cases are equally distributed among all vehicles, 

even though the EV under consideration is on the road 59% of the time. 
The aggregator could also distribute its revenue based on provisioning 
and therefore the simulated EV would likely generate less revenue. In 
addition, battery costs were assumed that do not necessarily correspond 
to the final customer prices due to, e.g., taxes. However, it can also be 
assumed that battery costs will continue to decrease in the future, so that 
a repurchase could possibly be below the assumed 2,052 €. On the other 
hand, FCR revenues could also decline further in the future due to 
market saturation. Moreover, the aging model used in this analysis is 
from the year 2014 and new battery cells are likely to degrade slower. 
This could make the DUC cases even more attractive. Finally, this 
analysis used a vehicle that is frequently on the road a lot with its battery 
already frequently cycled in primary use. This results in little time for 
dual use. An analysis with, for example, private vehicles that are idle 
95% of the time could lead to different results. 

5. Conclusion and outlook 

This section summarizes the main findings of the paper and discusses 
the results. Moreover, it provides an outlook on further developments 
and emerging research questions. 

5.1. Conclusion 

In this work, we show that aggregators of EVs for V2G use can gain 
competitive advantages through optimized vehicle selection. Therefore, 
optimization methods are developed that determine which combina
tions of vehicles would be economically favored based on the power 
capability profiles of the vehicles. The power capability profiles used are 
determined from driving data of 468 commercial vehicles and explicitly 
presented in a previous publication [10]. As potential markets, FCR 
provision in Central Europe as well as arbitrage trading on the EPEX 
intraday continuous and day-ahead auction markets are analyzed. 

The possible yearly revenues in the three markets vary from only 
5–30 € per EV (day-ahead) to 220–380 € per EV (FCR), which answers 
research question 2 (RQ2). In all three markets, optimal pool composi
tion can increase revenue per participating EV compared to random 
pools of the same number of vehicles. In the FCR market, revenue per 
vehicle can be increased by 72% with the optimal number of vehicles 
when using optimization compared to the mean of random pools. If, for 
example, 150 EVs are used to provide FCR, revenue can be doubled to 
tripled compared to a random pool selection. For arbitrage trading in the 
intraday continuous market, optimization achieves a 160% increase in 
revenue. In the day-ahead auction market, the increase in revenue is 
even larger with an almost 7-fold increase compared to random pools of 
the same number that could generate revenue. If, for example, 150 ve
hicles are optimized in intraday or day-ahead trading, revenues increase 
by 66% or 79%, respectively, compared to the average of random pools 
of the same size. In total, we show that aggregators of EV pools gain a 
competitive advantage through smart selection of vehicles (RQ1). This 
higher efficiency can bring a relevant market advantage for aggregators, 
since costs are incurred per connected vehicle (bidirectional charging 
station, metering equipment). Especially with a high penetration of EVs 
in the future and thus a large number of possible EVs for V2G, we expect 
that intelligent pool aggregation will be crucial for profitability. As the 
number of potential vehicles increases beyond the 468 EVs considered, 
the optimal number of EVs in the pool will also increase. 

A direct comparison between the markets reveals that in 2020 the 
FCR provision is the most profitable application (RQ3). Here, revenues 
greater by a factor of 1.9 (vs. intraday) and 13.5 (vs. day-ahead) could 
have been achieved. However, it is worth mentioning that for smaller 
pools of EVs (<100) intraday and day-ahead markets are favorable as 
long as no taxes and fees have to be paid, since the FCR market requires a 
minimal provision of 1 MW. Alternatively, pools could merge to achieve 
the minimum power to provide FCR. In the arbitrage markets, seven 
times the revenue can be generated on the intraday continuous market 

Fig. 15. Comparison of lifetime (a) and costs of battery and avg. revenues (b) 
for the five cases. 

Table 7 
Results of the five simulated cases for analysis of battery degradation with and 
without dual use operation.  

Case Lifetime  
in years 

Mean 
SOC 

EFC 
Total 

Avg. 
EFC  
per year 

Utilization  
ratio 

Dual use 
ratio 

UC 7.71 a 91.6 % 1,261 164 59.2 % 0 % 
PUC 12.82 a 44.4 % 2,117 165 59.2 % 0 % 
DUC-FCR 11.75 a 67.7 % 2,188 186 100 % 100 % 
DUC-ID 7.43 a 69,4 % 2,358 317 69.9 % 26.3 % 
DUC-DA 10.41 a 73,4 % 1,825 175 71.6 % 30.3 %  
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compared to the day-ahead auction market. In addition, the intraday 
market with its 15 min provision time is more flexible than the day- 
ahead auction market with 1 h each. 

While the optimization itself is limited to a revenue analysis, we also 
conducted a degradation study revealing additional costs from battery 
degradation. Here, an example driving profile and a provision of the 
three dual uses is simulated to account for additional battery degrada
tion. Interestingly, dual use showed reduced degradation compared to 
uncontrolled charging in the FCR and the day-ahead case, which is 
attributed to the lower average SOC. For the intraday case, the lifetime is 
slightly reduced compared to uncontrolled charging. A primary use- 
oriented smart charging shows the least degradation (RQ4). After
wards, the revenues on the markets are compared with the costs of 
degradation. The revenues clearly surpass the aging costs, in particular 
for the FCR and intraday cases. The day-ahead case is slightly worse than 
the smart charging case (RQ5). 

5.2. Discussion 

In the following section, we frame and discuss the results. First, it is 
important to explain that in the results presented, we maximize revenues 
(not profit) based on the power capability profiles (for FCR) or free cloud 
energy capacity and available power (for intraday and day-ahead) and 
average prices. Possible costs of the aggregator (e.g., fixed costs or costs 
for bidirectional charging stations) or due to the additional degradation 
of the batteries were neglected in the first analysis (Section 4.1). How
ever, the exemplary simulation of vehicle battery degradation showed 
that market revenues could compensate for the additional degradation 
costs. In this example, we used one daily profile of a vehicle that is on the 
road for 60% of the time and already makes 165 equivalent full cycles 
per year even without V2G. To be able to depict degradation of vehicle 
batteries in particular more accurately, we will develop time series 
simulations in future publications that can simulate the retrieval and 
provision in more detail. In this work, however, the focus is on the 
optimization of EV pools. Regarding the fixed costs of aggregators, if our 
methodology is used, they could add their own costs to be covered by all 
participating EVs, which would create larger EV pools. 

In terms of the markets under consideration, there are also a few 
points to note. On the one hand, the FCR provision neglects a possible 
necessary additional purchase on the spot markets. On the other hand, 
possible degrees of freedom in the provision of FCR are not considered, 
which might increase revenues. Furthermore, the arbitrage algorithm is 
rudimentary without a smart charging strategy. Incoming EVs are not 
discharged when the SOC is still high in order to have a larger free pool 
capacity. Instead, only the free cloud capacity that is available after 
primary use is utilized. This does not limit the EV owners in their 
mobility, but does lead to lower achievable revenues. Furthermore, 
lower purchase prices and higher sell prices than the mean prices could 
be obtained in the spot market by smart trading [70]. In addition, 
analogous to [70], it is assumed that no taxes and fees are incurred on 
the purchase of energy in spot market trading. Adding these taxes, which 
private households usually must pay, would make the arbitrage case 
unprofitable. In addition, differentiation between behind-the-meter 
(BTM) and in front-of-the-meter (FTM) must be taken into account in 
multi-use concepts [79]. This also applies to vehicles that charge energy 
through, e.g., FCR (FTM) and then use this energy for mobility (BTM). 
We address this issue in another recently published [80]. 

To solve the optimization problem, we used a genetic algorithm as 
described. This metaheuristic optimization does not necessarily find the 
global optimum, but, as shown in the results, a very good solution. 
Should aggregators use the method with a very high number of profiles, 

the runtime of the genetic algorithm will increase significantly. The 
runtime for the 468 profiles on one workstation was just under 2 h. 
Alternatively, the linear optimization presented in Section 3.1.3 can be 
performed iteratively for all possible numbers of EVs, which finds the 
global optimum, but leads to an even longer runtime. 

Regarding the revenues that can be generated in the various markets 
in the medium to long term, it should be considered that potential 
revenues in the FCR market could continue to fall due to increasing 
market saturation. In contrast, price spreads on spot markets could 
continue to increase due to a further increase in renewable generators 
with fluctuating electricity generation. Consequently, the achievable 
revenues could converge and arbitrage on the spot markets could 
become economically more interesting. However, we conclude from the 
results presented that optimizing vehicle pools from an aggregator’s 
perspective can be extremely economically rewarding in other markets 
as well. 

5.3. Outlook 

In this work, we presented the benefit of an optimal pool composition 
by means of optimization methods. In this section, possible further de
velopments and emerging research topics are stated: 

The database of the present work is formed by 468 commercial ve
hicles. An application of the methodology to private vehicles could also 
be interesting for aggregators. For implementation, however, these 
would have to be encouraged to participate through clever business 
models [15]. In addition, we expect that the potential of optimized pool 
composition will be even greater in practice with a larger database, if the 
aggregator can select vehicles specifically across the entire market. In 
addition, aggregators could also add stationary energy storage systems 
or renewable energy systems to their pools to exploit other flexibilities. 

The markets analyzed in this paper are the FCR market in Germany 
and the EPEX Spot market. Beyond these markets, further balancing 
power markets such as automatic frequency restoration reserve (aFRR) 
could be analyzed. This market allows the provision of positive or 
negative power separately, which could allow EVs to be charged at low 
cost when negative control power is provided. However, the FTM-BTM 
issue would have to be considered and taxes and fees might have to be 
paid in arrears [80]. In addition, minimum bid sizes of, for example, 1 
MW in the FCR market impose regulatory barriers for new players in the 
V2G field [81]. However, these barriers, especially for pools of EVs, have 
been recognized by the TSOs and could be reduced in the future [55]. 
We will analyze the impact of reduced minimum offer sizes on the FCR 
market in another future paper on the topic. Other interesting markets 
for V2G capable vehicles may be emerging flexibility markets in distri
bution grids. Furthermore, the methodology of the optimization 
methods could be applied to further international markets. 

Regarding the strategy of the aggregator, spot markets are only used 
for arbitrage trading in this work. The vehicles are not discharged in a 
targeted manner, but only free capacities were used. A further devel
opment would be smart charging strategies. Those could first discharge 
the EVs after arrival and then charge them at night at low cost. However, 
power capability profiles are not sufficient for this and are to be further 
developed in the future based on time series simulations. These time 
series simulations could also be used to simulate and optimize the 
retrieval of EVs in a pool. For example, the degradation of the batteries 
could be considered. From the aggregator’s point of view, a dynamic 
pool formation in which the vehicles are not assigned to a fixed market 
but switch variably between the markets could also be interesting. This 
could also be a response to expected market saturation effects at FCR 
[10,82]. 
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Moreover, business models need to be developed that allow EVs to be 
applied in dual use. Here, for example, the aggregator could own the 
vehicle battery and lease it to the owner of the vehicle [83]. In addition, 
an aggregator could offer the vehicle owner discounted charging when 
participating in the pool compared to normal charging. Billing concepts 
could also be developed in which vehicles that contribute more to the 
pool power could generate higher revenues. Moreover, original equip
ment manufacturers could act as aggregators themselves, engaging 
vehicle buyers as long-term, permanent customers rather than just 
selling the vehicle [15]. For them in particular, the dual use of the 
vehicle battery in island grid operation during power outages could 
become a selling point. 

Overall, the concept of dual use, meaning the switch of usage of EVs 
between mobility and V2G in idle times, offers a lot of potential for 
research and development and a potentially very large and lucrative 
market in the future. 
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Appendix 

A.1. Results of manually calculated optimization problems  

A.2. Profiles of degradation analysis  

Fig. A1. Manual calculation of revenue per EV (FCR) and year for all combi
nations of the three EV profiles in Fig. 3. 

Fig. A2. Manual calculation of revenue (intraday continuous) per EV and year 
for all combinations of the three EVs in Fig. 6. 

Fig. A3. Uncontrolled charging (UC) power and SOC.  

Fig. A4. Primary use-oriented charging (PUC) power and SOC.  
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4 Vehicle-to-Grid provision with electric vehicle pools

4.3 Analysis of optimally composed pools regarding battery sizes
and economic sectors

This section introduces the paper named Analysis of Optimally Composed EV Pools for the Aggregated
Provision of Frequency Containment Reserve and Energy Arbitrage Trading [7]. In general, vehicle
batteries have variable capacities. While small e-Cars have capacities of around 20 kWh, larger e-Cars
models have capacities of 100 kWh. Furthermore, commercial e-Cars are used in various economic sec-
tors, which means that driving behaviour and idle times at the company’s location differ greatly. After
optimizing vehicle pools of different commercial e-Cars for various markets in section 4.2, this section
evaluates the optimized pools in terms of EV battery capacity and economic sector of the EV. The
driving style of the vehicle depends on the economic sector, so that the power and energy capability
profiles vary depending on the economic sector. However, the battery capacity also determines what
energy and power can be charged and discharged during idle times. This section evaluates the suitabil-
ity of different battery capacities and economic sectors for the various markets. For this purpose, the
optimized pools of the various markets are compared to the pool of all possible vehicles with regard to
battery capacities and economic sectors.

Furthermore, as described in section 4.1, the Central European FCR market has become increasingly
time flexible in recent years. The length of supply has been reduced from one week to 4 hours, which
creates potential for pools of e-Cars. This section examines a further flexibilization of the FCR market
in terms of minimum bid size and the impact on e-Car pool revenues. The minimum supply on the
FCR market in Central Europe is currently 1 MW. Here, the revenues of optimized and random pools
with reduced minimum FCR bid sizes and increments between 10 kW and 500 kW are examined. The
exploitation of the possible power potential at different increments is also examined by calculating the
power utilization rate.

The research questions answered in this section are:

1. Which EV battery sizes are explicitly suitable for providing balancing power or arbitrage trading
in energy markets?

2. EVs of which economic sectors are to be particularly attractive for the considered markets?
3. How would an increased flexibility in the FCR market in terms of minimum bid size and bid

increments affect EV pool composition and revenues?

One conclusion of this section is that small EV batteries of 20 kWh are less useful for aggregators.
Optimized pools consist mostly of larger batteries of 80 kWh, especially in intraday and day-ahead
trading. As there is a general trend towards larger battery capacities in EVs [27], an increasing
number of vehicles are suitable for V2G provision. Regarding the economic sectors of the vehicles,
the ”human health and social activities” sector is particularly unsuitable for V2G-capable EV pools,
as these vehicles are on the road frequently and for long periods of time. In contrast, vehicles in the
”manufacturing” sector appear to be better suited for V2G use. A further study in this section shows
that if the minimum bids and increments in the FCR market are reduced, revenues can be increased
by 50 to 66 % due to the higher power utilization rate.

The idea of V2G provision with EVs is continued in chapter 5. There, the influence of V2X, including
the BTM application PS, on battery-relevant parameters is investigated. In addition to e-Cars, e-Buses
and e-Boats are also examined there.
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Abstract— Electric vehicles (EVs) can participate in various 
markets through a vehicle-to-grid (V2G) interface. Aggregators 
can combine the individual contributions of EVs to offer them, 
for example, on the frequency containment reserve (FCR) 
market or to use them for arbitrage trading. A simple approach 
is combining EVs in random fashion until the pool is able to 
reach the threshold for a service of choice. Alternatively, 
aggregators can compose their pools in smart fashion and 
include only EVs that contribute significantly to the pool’s 
performance. In a previous publication, we have shown that 
optimizing the aggregated pools of commercial vehicles for the 
provision of FCR or arbitrage trading can increase revenues by 
up to 7-fold.  In this work, we analyze the optimally composed 
pools and show that large vehicle batteries in the order of 
80 kWh are particularly useful for arbitrage trading, while FCR 
provision is also possible with medium-sized EV batteries in the 
range of 30 kWh due to the small cycle depths. The inclusion of 
EVs with very small vehicle batteries around 20 kWh in 
aggregated pools is neither economically optimal for arbitrage 
trading nor for FCR provision. An analysis of the economic 
sectors of the commercial EVs selected for the optimal EV pools 
shows that some economic sectors are more suitable for V2G 
than others: In particular EVs of the sector "human health and 
social work activities" are unsuitable for V2G provision due to 
regular and long travel times during the day. In contrast, EVs 
from the "manufacturing" sector are particularly well 
represented in all applications and the "transportation and 
storage" sector in the arbitrage application. In addition to these 
analyses of the optimized pools, we reveal that a reduction in the 
required minimum power and increments would make the FCR 
market even more attractive to EV pools by increasing revenues 
by 50% to 66%. It would also better exploit the potential of EVs, 
as increments could be better utilized than they are in the 
current 1 MW minimum power requirement in central Europe. 

Keywords - electric vehicles, vehicle-to-grid, optimized profile 

combination, vehicle fleet, dual use, grid services, frequency 

containment reserve, intraday market, day-ahead market 

I. INTRODUCTION

The climate change report of the intergovernmental panel 
on climate change (IPCC) in 2021 confirmed again: Climate 
change is present, man-made and already in 2030 we could 
break the 1.5 degree limit [1]. One possible measure to reduce 
emissions is to switch the energy used for mobility from 
gasoline-based fuels to electricity. This shift to electric 

vehicles (EVs) is currently taking place worldwide [2]. At the 
same time, it is highly relevant to expand renewable energies 
so that no fossil-based electricity is used to charge the 
vehicles. Building on the general electrification of transport, 
the next step is to actively integrate vehicles into the electricity 
grid. In the future, EVs might not only be able to charge 
smartly at times of high renewable generation, but also feed 
electricity back into the grid. Bidirectional charging of EVs 
can generally come in different approaches: In addition to 
vehicle-to-building (V2B) usage in the private and 
commercial sector, EVs will be able to participate in 
electricity, balancing and flexibility markets via V2G [3,4]. 

One concept that is already frequently applied in research 
and industry is the use of vehicle batteries in second life [5]. 
This means that after being used for mobility, EV batteries are 
used in stationary storage systems, for example to provide 
balancing power. In contrast, in our previous work we 
presented the concept of dual use [6]. Here, the vehicle 
batteries are used alternately over periods of minutes and 
hours for mobility and for V2G services. Mobility has the 
highest priority in this concept. The EV is only used to provide 
grid services during the parking times. 

Various markets can be considered for the use of EVs in 
the V2G concept: In V2B application, the EVs can take over 
demand charge reduction or act as an emergency back-up [3]. 
In grid-tied V2G, EVs can participate in frequency regulation, 
spot markets, or emerging flexibility markets at the 
distribution grid level [3,7]. The markets analyzed in this 
paper are the frequency containment reserve (FCR) market in 
the European Network of Transmission System Operators 
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(ENTSO-E) region and the European Power Exchange 
(EPEX) intraday and day-ahead spot market. In these markets, 
individual EVs can only participate via aggregators who 
bundle the capacities of individual vehicles and form virtual 
power plants [8]. 

In principle, aggregators have the ability to add any EV to 
their pool. However, costs are to be considered for every 
individual EV, such as metering equipment and installation of 
bidirectional charging stations. For this reason, aggregators 
can gain competitive advantages if they only include EVs in 
their pool that can also make a significant contribution to the 
pool’s energy capacity and power. To determine optimally 
composed pools, we have presented optimization 
methodologies based on the power and energy capability 
profiles of the EVs in a previous work [9]. The procedure for 
creating the profiles and determining the optimal EV pools is 
explained in more detail in chapter II.  

Fig. 1 shows the general approach of the work and the 
parts created in the previous publications [6,9]. In this paper, 
we aim to answer three research questions: 

RQ 1) Which EV battery sizes are explicitly suitable for 
providing balancing power or arbitrage trading in 
energy markets? (section III.A) 

RQ 2) EVs of which economic sectors are to be 
particularly attractive for the considered markets? 
(section III.B) 

RQ 3) How would an increased flexibility in the FCR 
market in terms of minimum bid size and bid 
increments affect EV pool composition and 
revenues? (section III.C) 

In the literature, the concept of V2G has been discussed 
since the end of the last century [10]. At the beginning of the 
2000s, it was still about the theoretical general concept and 
potential of EVs [11,12]. Later, the focus was increasingly on 
the role of aggregators [8,13] and charging and bidding 
strategies [14,15]. Smart charging strategies can reduce the 
cost of charging EVs, while V2G can even lead to additional 
revenue [15]. Since the use of EVs in V2G concepts results in 
additional cycling, strategies have been developed to 
minimize additional battery degradation costs in addition to 
maximizing revenue [14]. With the global market ramp-up of 
EVs in recent years, an increasing number of projects testing 
V2G on vehicles in the field emerged from 2010 to 2021. 
Notable among these is the Parker project, which was 
conducted between 2016 and 2019 in a consortium of the 
Technical University of Denmark (DTU), Nissan, Nuvve and 
other partners [16]. In this project, the consortium 
demonstrated that EVs are capable of providing ancillary 
services [17]. In 2021, the authors also published an analysis 
of the battery degradation of V2G-providing EVs after 5 years 
in operation [18]. A detailed list of this and other projects on 
field tests can be found in the appendix of our first publication 
[6]. In addition we have published extensive literature reviews 
on FCR provision and arbitrage trading using pools of EVs 
[6,9]. 

Concerning battery sizes for V2G provision (RQ 1), Harris 
et al. showed in 2014 that the influence of available charging 
power on potential V2G capacities is greater than that of 
battery size [19]. However, only battery capacities between 
12 kWh and 36 kWh were considered, while we investigate 
capacities from 19 kWh to 81 kWh in our work. We assume 

11 kW as the maximum charging power, while in the 
aforementioned work, a maximal power range between 
2.2 kW and 10 kW was investigated. Furthermore, we are not 
aware of any work that has used power and energy capability 
profiles to analyze which battery sizes of EVs or EVs of which 
economic sectors are particularly suitable for V2G 
deployment. We would like to address this research gap with 
the first two research questions (section III.A and III.B). 
Regarding the third research question, in the previous work 
[6] we showed that mainly by making the FCR market more 
flexible in provision time from months to weeks to days and 
to 4 hours, the potential revenue of EVs increased in 2020 
although prices generally fell [6]. In this paper, we look at 
flexibilization in terms of minimum bid sizes and its impact 
on potential revenues (section III.C). 

The remainder of the paper is structured as follows: 
Section II briefly presents the database, the previous work and 
related results. Subsequently, Section III presents the 
methodology and results in three subsections. Finally, Section 
IV gives a summary and an outlook. 

II. DATABASE AND PREVIOUS RESULTS 
This section presents the database and results of the 

previous two publications [6,9]. We first discuss the data basis 
(II.A) and the markets considered (II.B). Then we explain in 
subsection II.C how the power and energy capability profiles 
were compiled. Finally, we present the optimized EV pools 
(II.D). 

A. Database 

The data used in our work is based on the REM 2030 
project and data measured at the Institute of Power Generation 
and Storage Systems (PGS) at RWTH Aachen University in 
the project "Commercially operated electric vehicle fleets 
(GO-ELK)" [20,21]. The REM dataset includes driving data 
from 630 commercial combustion vehicles over a period of a 
few days to a few months. We use 468 of these vehicles that 
included at least one week of data and made at least one trip. 
The trip data includes times of trip start and end, as well as 
distance traveled and distance to the company site after each 
trip. Vehicle-specific data such as vehicle size and the 
economic sector of the company were also published. We use 
these data in particular in this paper. A detailed description of 
the data basis including statistical evaluations can be found in 
[6]. 

B. Grid services and markets 

EVs can participate in various markets through V2G. One 
market we analyzed is the Frequency Containment Reserve 
(FCR) market in the Continental European Synchronous Area 
(CESA) with prices from Germany in the second half of 2020. 
This type of balancing power is the fastest type in the German 
market with 30 seconds activation time and must be provided 
simultaneously in both positive and negative directions [22]. 
The market for FCR in the ENTSO-E area has undergone a 
number of changes in recent years [6,23]: Prior to mid-2011, 
FCR was marketed on a monthly basis and the minimum bid 
size was 5 MW. Then the service period was reduced to one 
week and the minimum offer was 1 MW. Since mid-2019, 
FCR became even more flexible in terms of time: First, FCR 
was tendered on a daily basis until mid-2020. Since then, FCR 
has even been marketed in 4h blocks. This higher temporal 
flexibility increases the potential for pools of EVs despite 
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falling FCR prices [6]. To determine the potential revenues in 
this market, we use the average prices of the 42 4-hour-slots 
of a week. For a detailed explanation and discussion of the 
market for FCR, including price analyses, see [6]. 

In addition to the application of balancing power, we also 
simulate arbitrage trading on the EPEX spot markets intraday 
continuous and day-ahead auction (1 hour). On the EPEX 
intraday market, energy is traded with a minimal lead time of 
15 minutes in 15-minute blocks of at least 0.1 MW [24]. This 
market is therefore suitable for short-term trading. On the 
EPEX day-ahead auction market, energy can be traded in 
hourly blocks or more with a minimum of 0.1 MW for the 
following day [24]. In our simulations, we use the mean prices 
of 2020 for both spot markets. For the intraday continuous 
market, we use the weighted average pay-as-bid price of every 
quarter-hour of the week. For the day-ahead auction price, we 
use the mean market-clearing price of every hour of the week. 
Detailed descriptions of the markets and price diagrams can 
be found in [9]. 

C. Capability Profiles 

Using the data presented in subsection II.A, we created 
power and energy capability profiles of the vehicles in our 
initial work [6]. These weekly profiles indicate which power 
or energy a vehicle can absorb or deliver at which time. For 
this purpose, we created a simulation model that uses the start 
probabilities, time-dependent distance and trip duration 
distributions to create driving profiles over arbitrary periods 
of time. In addition, each combustion engine is assigned a 
battery capacity and a consumption per kilometer driven based 
on its size [6].  

The driving profiles and battery data are then used in a 
mobility model. This model checks the status of the vehicle 
(on the road or plugged-in) in each simulation step and 
decides, for example, whether to recharge. In addition, the 
model determines how much energy and power the EV can 
still charge and discharge. For this purpose, we divide the 
battery virtually into one part for the primary use, mobility, 
and one part for the secondary use, V2G provision. At times 
when the vehicle is frequently on the road, a large portion is 
reserved for mobility, since mobility always takes priority 
over V2G provision in our modeling approach. We assume the 
maximum charging power that the charging station can 
provide to be 11 kW. However, the available chargeable and 
dischargeable power of an EV may be lower depending on the 
provision period of the market due to energy limits of the 

battery. For example, if the battery is almost fully charged, 11 
kW can no longer be charged over 15 minutes. 

In our initial work, we subsequently clustered the power 
capability profiles of EVs by economic sectors [6]. An 
example of the "Human Health" cluster is shown in Fig. 2. 
This shows the daily profile of the median of minimum 
bidirectional power of the EVs in the cluster along with 
confidence intervals. At night, the EVs of this cluster can 
charge and discharge about 70% of their maximum aggregated 
power. During the day, the EVs are traveling regularly, so that 
the median of the available power drops to about 25% of the 
maximum aggregated power. Other clusters have quite 
different curves, as we have shown in [6]. 

By using profiles of commercial vehicles, we achieve a 
certain regularity of trips and driving patterns. In addition, as 
described, we keep energy reserved for mobility. 
Nevertheless, in a worst-case scenario, a critical number of 
EVs could drive off contrary to the statistics. In this case, the 
aggregator would have to keep back-up power in stationary 
storage systems, for example. 

D. Optimized Pools 

In our previous work, we used the capability profiles of 
each EV to assemble different pools and perform FCR or 
arbitrage trading with them [9]. Aggregators can compose 
their EV pools in random fashion or alternatively, using the 
capability profiles, include only those vehicles that contribute 
to the pool power. For this purpose, we have developed 
algorithms using genetic optimization that maximize the 
revenue per vehicle participating in the pool. We maximize 
revenue per EV since the aggregator has costs per vehicle for 
metering equipment and bidirectional charging stations. In 
addition, we assume that in the future aggregators will be able 
to choose from an extremely large number of possible EVs 
and then gain competitive advantages through smarter or 
optimized selection.  

The potential annual revenues in the three markets for 
random pools (mean of 10,000 pools) and the optimized pool 
are depicted in Table I. The optimization method chooses 243 
EVs for the FCR market and much smaller pools for the spot 
markets. To compare pools of the same number of vehicles, 
equal numbers were then chosen for 10,000 random pools and 
the revenues were calculated. In general, the FCR market was 
the most attractive for EV pools in 2020, followed by arbitrage 
on the intraday market. Arbitrage trading on the day-ahead 
market can generate the least revenue. Through optimal pool 
composition, revenues can be increased by 72% on the FCR 
market, 168% on the intraday market and almost 700% on the 
day-ahead market. These results suggest how important pool 
composition might become for aggregators in the future. In the 

 
Fig. 2: Median and confidence intervals of the power capability profile of the 
cluster human health for all weekdays [6]. 

TABLE I: COMPARISON OF REVENUES IN THE THREE MARKETS BETWEEN 
THE 10,000 RANDOM POOLS AND THE OPTIMIZED POOL, RESULTS FROM [9].    

Market # EVs 
Annual revenue per EV 

Optimized Pool 
Mean of 10,000 

random pools 

FCR 243 378 € 219.6 € 

Intraday 48 203.1 € 75.9 € 
Day-

Ahead 61 27.9 € 3.5 €a 

a. Mean for random day-ahead pools of 61 EVs that could generate any revenue;  
94% of the 10,000 pools could not generate any revenue 
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following, we analyze the optimized pools in terms of battery 
size and economic sector, and then calculate potential 
revenues in the FCR market if its minimum bid size were 
reduced. 

III. METHODOLOGY AND RESULTS 
The methodology and results of the analyses and 

optimizations are presented in the following. First, the 
composition of the optimized pools in terms of battery size 
and economic sector is discussed. Subsequently, the effects of 
an increased flexibility of the FCR market are presented. 

A. Analysis of optimized EV pools regarding battery sizes 

The determined power capability and available energy 
profiles are based on real driving data of commercial internal 
combustion vehicles [20]. For each profile, data such as the 
economic sector, the size of the company and the size of the 
vehicle exist. In this section, the optimized pools are evaluated 
with respect to their vehicle sizes. It should be noted that 468 
vehicles were used and the optimized pools consist of 48 to 
243 vehicles. The sample size is therefore relatively small and 
especially small deviations from the entire pool could also be 
of random nature. 

In the published database, the internal combustion vehicles 
were classified in terms of their engine displacement. The 
categories are 'small' (<1400 cc), 'medium' (1400 to 2000 cc), 
'large' (>2000 cc), 'transporter' (weight < 3,5t) and 'special 
vehicle' [25]. In our first work, we derived battery sizes for the 
electric vehicles from these vehicle sizes [6]. Different battery 
capacities were assumed for the respective vehicle sizes using 
electric car models (small: 19.1 kWh, medium: 31.4 kWh, 
large: 80.7 kWh, transporter: 27.9 kWh) [6]. In addition to the 
driving profile, the battery capacity is a factor that influences 
how much power a vehicle can still charge or discharge at any 
given time. 

The share of each vehicle size category of the entire and 
the optimized pools are depicted in Fig. 3. The entire pool (468 
EVs) consists of about one quarter small vehicles and one 
third medium vehicles. Transporter also make up a quarter, 
while large vehicles account for 13%. The three pools 
compiled using the optimization methods show a tendency 
towards larger vehicle batteries. None of the optimized pools 
uses small vehicles. The FCR pool, on the one hand, also uses 
only 16% large vehicles and instead more transporter and 
medium sized vehicles. The energy-intensive intraday and 

day-ahead pools, on the other hand, use over 74% large 
vehicles (intraday more than 95%). Here, the benefit of large 
vehicle batteries, with capacities assumed to be 80.7 kWh, 
appears to be the greatest benefit to the pool. Transporters are 
also only marginally represented here, as they only had a 
capacity of 27.9 kWh. 

Overall, the analysis of vehicle sizes shows that vehicles 
with small battery capacities can often contribute less to the 
pool and are therefore filtered out by the optimization 
methods. Furthermore, when FCR is provided with an EV 
pool, it shows that all other vehicle sizes can contribute to the 
pool as the cycle depths in this application are relatively small 
[26]. Regarding the optimization of arbitrage trading at the 
spot markets, the battery capacity of the EVs seems to be 
crucial: Here, due to the larger discharge and charge cycles, 
mainly vehicles with large battery capacities should be used. 

B. Analysis of optimized EV pools regarding economic 

sectors 

For each of the published driving profiles, the economic 
sector was published in addition to the vehicle size and other 
categories [20]. The criteria for the economic sectors 
correspond to the NACE Rev. 2 classification of the EU [27]. 
An extract of NACE sections that exist in the database are 
listed in Table II. The shares of the 14 economic sectors in the 
four EV pools is depicted in Fig. 4 (a). In addition, Fig. 4 (b) 
shows the deviations of the shares in the optimized pools 
compared to the total pool of 468 EVs. An overweight is 
shown as positive and an underweight as negative. 

The optimized FCR pool shows only slight deviations 
from the pool of all vehicles. Sectors G (+2.4 percentage 
points (pp)) and C (+4 pp) are slightly overweighed and 
sectors N (-3 pp) and Q (-6 pp) are slightly underweighted.  

The intraday and day-ahead pools have significantly fewer 
vehicles overall, as fewer EVs are sufficient here to trade on 
the spot markets. The optimization method thus explicitly 
selects the EVs that are most suitable for arbitrage. For the 
spot market trading the optimization methods select 48 

 
Fig. 3 Vehicle size share for all EV and the different optimized pools. 
 

TABLE II: Extract of NACE sections according to [27]. 

Section Description 

C Manufacturing 

D Electricity, gas, steam and air conditioning supply 

E Water supply, sewerage, waste management and 
remediation activities 

F Construction 

G Wholesale and retail trade; repair of motor vehicles 
and motorcycles 

H Transportation and storage 

J Information and communication 

K Financial and insurance activities 

L Real estate activities 

M Professional, scientific and technical activities 

N Administrative and support service activities 

O Public administration and defence; compulsory 
social security 

Q Human health and social work activities 

S Other service activities 
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(intraday) respectively 61 (day-ahead) vehicles. In both 
arbitrage markets, sectors C and H are more represented than 
in the overall pool, each at over 5 pp. In addition, sectors F, G 
and K are overweighed by more than 5 pp in the intraday pool. 
In contrast, sectors O and Q are underrepresented in both 
arbitrage markets, especially in the intraday pool by more than 
10 pp each. 

Consequently, based on the assumption that the driving 
behavior of the vehicles in the database is representative for 
the respective sectors, the sectors C, ”Manufacturing“, and H, 
”Transportation and storage”, appear to be of particular 
interest for arbitrage trading. For the FCR pool, on the other 
hand, no clear tendency is discernible. However, vehicles in 
sector Q, “Human health and social work activities”, appear 
unattractive in all three markets. This is because the relatively 
similar driving 58 EVs in this economic sector are on the road 
a lot, especially during the day (Fig. 2) [6]. In addition, EVs 
of sector O, “Public administration and defense; compulsory 
social security”, are not very suitable for arbitrage trading. 
However, the 72 EVs in this sector are also 35% small 
vehicles, which means that the predominant non-use of this 
sector could be due to vehicle size in addition to the driving 
behavior. 

C. Effects of increasing flexibility of the FCR market 

This section examines the extent to which further 
flexibilization, i.e., downsizing, of the minimum bid size and 
increment in the FCR market affects the potential revenues of 

pools of EVs. For this purpose, the optimization with reduced 
minimum bid sizes was performed. In addition, for each case, 
10,000 random pools were assembled and their potential 
revenues calculated. The minimum bid sizes used were 500 
kW, 200 kW, 100 kW and 10 kW in addition to the standard 
of 1 MW. In the calculation of the revenues, the FCR prices 
for the second half of 2020 were used as in our previous works 
[6,9]. The results of this sensitivity analysis are depicted in 
Fig. 5. 

If the minimum bid size and increment is reduced, pools 
of EVs can generate higher revenues more per vehicle. When 
the minimum and increment power is decreased from 1 MW 
to 10 kW, the revenue of the random pools increase by 66% 
from 220 € per EV to 365 € per EV. For the optimized pool, 
revenues increase by 49% from 378 € per EV to 565 € per EV 
for the same flexibilization. For this, the optimized pools use 
a reduced number of vehicles with decreasing minimum and 
increment power. The comparison between the random pools 
and the optimized pool shows that the advantage of the 
optimization varies between 42% and 72%. Especially with 
the large minimum and increment of 1 MW, the optimized 
pool has an advantage, since it can better utilize the large 
increments here. 

Flexibility utilization can be calculated using the power 
utilization rate (τPUR) introduced in [9]. This rate indicates how 
much of the actual possible power could be marketed as FCR 
power (1). Since a buffer of 25% of the FCR power must be 
kept available when FCR is provided (i.e. 20% of the total 
power is buffer), the maximum value of τPUR is 80% [9,28]. 

τ𝑃𝑈𝑅 = 1 −
1

672
∑

𝑝𝑜𝑤𝑒𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) − 𝐹𝐶𝑅 𝑝𝑜𝑤𝑒𝑟(𝑡) 

𝑝𝑜𝑤𝑒𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡)

672

𝑡=1

 (1) 

 

The better the flexibility is used, the higher τPUR should be. 
The results of τPUR of the entire pool and the optimized pool 
as a function of minimal and increment power are shown in 
Table III. Therein it can be seen that the higher flexibility leads 
to higher τPUR. The optimization leads to slightly higher τPUR 
compared to the random pools of the same number. Overall, 
EV pools providing FCR in the future could benefit from an 
increase in flexibility.  On the one hand, increased flexibility 
makes the market more financially attractive for small pools, 
and on the other hand, less potential power remains unused.  

 

 
Fig. 4: NACE sector share for all EV and for the different optimized pools 
(a) and overweight and underweight of NACE sectors of EVs in the 
optimized pools compared to the entire pool in percentage points (b). 
Overweighting is shown positively, underweighting negatively. 

 
Fig. 5: Annual frequency containment reserve (FCR) revenue when 
decreasing the minimal and increment power for the provision of FCR 
random pools and optimized pools. 
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IV. CONCLUSION AND OUTLOOK 
In this work we analyze the optimized commercial EV 

pools for providing FCR and arbitrage trading, and also 
investigate further flexibilization of the FCR market, building 
on our two previous publications [6] and [9]. The vehicle data 
published with the REM 2030 driving data is used to study the 
optimized pools regarding battery sizes and economic sectors 
[20]. In addition, we use the published optimization methods 
for the optimized EV pool composition in the FCR market to 
analyze a further flexibilization of the FCR market [9]. 

Regarding the EV battery size (RQ 1), we show that 
especially EVs with small vehicle batteries of 19.1 kWh are 
neither well suited for FCR provision nor for arbitrage trading. 
For FCR provision, all battery sizes upwards of 27.9 kWh 
(assumed for the transporter) are well suited, as the required 
depths of discharges and charges are relatively small for FCR 
provision [26]. For arbitrage trading, on the other hand, 
vehicles with large batteries should be used if possible, as the 
cycles are significantly deeper here. The analysis of the 
economic sectors (RQ 2) according to NACE criteria shows 
that in all scenarios considered, EVs in sector C 
("Manufacturing") are well suited for the provision of V2G. 
Especially for arbitrage trading, EVs of sector H 
("Transportation and storage") are also good candidates. 
Vehicles of sector Q ("Human health and social work 
activities") are in all scenarios considered the least suitable for 
V2G provision. This is because EVs of this sector are on the 
road every day and thus can generate less revenue [6]. 

In addition to the vehicle pool analyses, we also calculate 
further increasing flexibility in the FCR market in terms of 
minimum bid size and increments (RQ 3). For this purpose, 
the optimization algorithms from [9] are used to determine the 
optimized pools for the minimum and increment FCR power 
from 1 MW downwards to 10 kW. In addition, 10,000 random 
vehicle pools of the same number were compiled and the 
average revenues were determined. In this analysis, we find 
that increasing flexibility makes the FCR market more 
economically attractive for pools of EVs. Due to better 
utilization of increments, the revenues of optimized and 
random pools increase. Assuming increments of 10 kW 
instead of 1 MW, the revenues of optimized pools increase by 
about 50% per EV and those of random pools of the same 
number by about two thirds. Consequently, with smaller 
minimum FCR power and increment, less power potential of 
the EVs would remain unused. 

Beyond the results presented, some research questions and 
issues arise regarding regulation and legislation. Verification 
of the results presented in this paper using more measured 
vehicle data of commercial (ideally electric) vehicles would 
be desirable. For this purpose, more field tests for V2G 

provision should be conducted in research and industry 
projects. In addition, further analysis would be interesting on 
which parameters such as battery size and economic sector 
aggregators should compose their EV pools for maximum 
revenue. However, for the successful implementation of V2G, 
regulations also need to be simplified and new vehicle models 
need to be upgraded for V2G deployment. In addition, based 
on the revenue generation presented, the question is how much 
of an impact V2G will have on vehicle batteries in terms of 
degradation. We aim to answer these and other research 
questions in our following work. 
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5 Vehicle-to-X provision in various applications using
three modes of e-transportation

This chapter presents the research paper titled Vehicle-to-X Service Provision for various Modes of
e-Transportation with Consideration of the Influence on Lithium-Ion Battery Utilization, which was
presented at the International Conference on Applied Energy in December 2023, peer-reviewed and will
be published in Energy Proceedings [5]. Cars, buses and boats are purchased by private individuals and
companies for the transportation of goods and people. However, the vehicles are only used a fraction
of the time. The increasing electrification of vehicles now offers the potential to also use them for V2X
provision during idle times. In general, vehicles are used for their primary purpose of transport with
varying frequency and regularity, so the predictability of driving patterns is highly relevant for vehicle
pool aggregators. Furthermore, the time availability of vehicles for V2X is essential for an analysis of
potential markets and applications. If the vehicles were used for V2X, the question also arises of the
additional load on the LIBs with regard to battery-relevant parameters and degradation. These are
the issues addressed in this chapter.

The work combines the topics and data from the previous chapters of the thesis. From chapter 3.2, the
driving profiles of e-Cars, e-Buses and e-Boats are used to simulate their driving behavior in SimSES.
In addition, the storage power of stationary BSSs in typical applications is used from chapter 3.1 and
scaled to the individual vehicles for V2X provision during idle times. From chapters 4.1 to 4.3, the
approach of V2X provision is further elaborated and open research questions are answered. Following
on from chapter 3.2, the paused charging strategy in SimSES is extended to a V2X strategy that
simulates the impact on the V2X provision during idle times, i.e. when the e-Car is at home, the
e-Bus is at the depot and the e-Boat is at the dock. The simulation results allow conclusions to be
drawn about the additional impact on the vehicle batteries due to the V2X provision, for example the
increase in EFCs. For the e-Cars, the additional battery capacity loss due to the V2X provision is
also investigated. Moreover, the driving behavior of the vehicles is examined in more detail and, on
the one hand, the predictability is quantified using historical data and, on the other hand, the V2X
availability is determined over the course of the week.

The research questions answered in this chapter are:

1. How regular and predictable is the operation of e-Cars, e-Buses and e-Boat?
2. What is the EVs’ temporal V2X-ready ratio over the week?
3. How do battery-relevant parameters change due to the provision of V2X?
4. What are the effects of V2X provision in terms of battery aging?

The analysis of the predictability of driving behavior in this chapter shows that e-Cars in particular
behave predictably at night. In addition, the V2X availability of e-Cars and e-Bus is highest at night.
The simulation results of V2X usage show, for example, that the EFCs of the e-Cars increase by 42
to 50 % in FCR and intraday trading. Average SoCs and C-rates are also changed by V2X provision.
While the mean SoCs increase only slightly, the mean C-rates decrease significantly, as the power
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during V2X provision with the assumed pool sizes is lower than the usual power during the trips. The
additional capacity loss of the e-Cars batteries due to V2X provision is up to 4.5% after one year of
simulation compared to the paused, unidirectional charging strategy.

Author contribution
Benedikt Tepe was the principle author tasked with coordinating and writing the paper and devel-
oping the methodologies. Sammy Jablonski contributed to the data analysis and assisted with the
result visualization. Holger Hesse reviewed the manuscript and gave valuable input throughout the
manuscript preparation. Andreas Jossen contributed via fruitful scientific discussions and reviewed
the manuscript. All authors discussed the data and commented on the results.
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ABSTRACT 
  The electrification of transportation modes such 

as cars, buses, and boats offers the potential of providing 
vehicle-to-X services during idle times. Pools of vehicles 
can provide balancing power, trade on the electricity 
market, or be used for load peak shaving. In this work, 
the usage patterns of electric cars, electric buses, and 
electric boats are investigated, and the provision of 
vehicle-to-X with these vehicles is simulated using an 
open-source simulation tool. A data analysis and a 
vehicle usage pattern assessment show that especially 
private electric cars behave predictably at night. It also 
reveals that the vehicle-to-X availability varies over the 
week for all vehicle types and is highest at night for cars 
and buses. During the day on weekdays, private cars are 
available for vehicle-to-X 30 to 70% of the time, the 
analyzed buses 5 to 50% of the time, and the availability 
of the boats depends on their primary use as ferries or 
private boats. If the three transportation modes provide 
vehicle-to-X during idle times, the equivalent full cycles 
that the lithium-ion batteries complete increase at 
different rates depending on the vehicle pool size, while 
the mean charging rates decrease. Furthermore, an 
exemplary aging analysis shows that the additional load 
of vehicle-to-X provision slightly increases the capacity 
loss of the car batteries compared to a paused 
unidirectional charging strategy. 
 
Keywords: electric vehicles, vehicle-to-X, vehicle-to-grid, 
lithium-ion batteries, transportation means, battery 
degradation 
 

NOMENCLATURE 

Abbreviations  

BSS Battery storage system 
e-Boat Electric boat 
e-Bus Electric bus 
e-Car Electric car 
EFC Equivalent full cycle 
FCR Frequency containment reserve  
LFP Lithium iron phosphate 
LIB Lithium-ion battery 
PS Peak shaving 
SOC State of charge 
V2B Vehicle-to-building 
V2G Vehicle-to-grid 
V2H Vehicle-to-home 
V2X Vehicle-to-X 

Parameters and Symbols 

b(t) 
Binary value indicating connection to 
electricity grid 

j Current timestep in period 
m Number of periods 
n Number of timesteps in period 
P(t) Power 

Predj 
Predictability score at current 
timestep 

v(t) 
Binary value of current V2X-ready 
ratio 
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1. INTRODUCTION 
The electrification of vehicles plays an essential role 

in decarbonization [1]. This is one of the reasons why the 
number of electric cars (e-Cars), electric buses (e-Buses), 
and electric boats (e-Boats) increase worldwide [1–3]. 
These vehicles introduce relatively large storage 
capacities to the market through their batteries [4]. From 
an economic perspective, it is therefore essential to 
exploit the potential of vehicle batteries during idle 
times. When the vehicles are connected to the electricity 
grid, they can be used for various purposes in the future 
[5]: First, they can contribute behind-the-meter to 
consumption of photovoltaic energy via vehicle-to-home 
(V2H), as is done with stationary home battery storage 
systems (BSS) [6]. Another behind-the-meter application 
is peak-shaving (PS), where pools of vehicles help meet 
peak loads in vehicle-to-building (V2B) [6]. Second, the 
vehicles can participate in electricity trading or provide 
grid services using vehicle-to-grid (V2G), corresponding 
to front-the-meter applications [7,8]. For example, 
arbitrage trading is performed on the intraday market in 
the former. In the latter, pools of vehicles can provide, 
for example, frequency containment reserve (FCR) to 
compensate for frequency fluctuations in the electricity 
grid. Generally, the bidirectional use of electric vehicles 
during idle times is called vehicle-to-x (V2X) [5]. 

Using vehicles in V2X can generate additional 
revenue and bring environmental benefits by increasing 
battery utilization. However, it also leads to a higher load 
on the vehicle batteries. With suboptimal planning, the 
provision of V2G can increase the degradation of vehicle 
batteries [9]. An increased degradation of vehicle 
batteries when providing primary frequency regulation 
was also shown by Thingvad et al. in a field trial in 
Denmark [10]. 

A detailed evaluation of the impact of V2X on various 
battery-related parameters is part of this work. Open-
access data from previous publications is used to 
simulate the provision of V2X in the storage simulation 
tool SimSES [11] (section 2 and section 3). The focus is on 
the applications FCR, intraday arbitrage trading, and PS. 
We use driving profiles of simulated private e-Cars and 
field data of city e-Buses and e-Boats. This way, various 
vehicle types and V2X applications are combined and 
analyzed. The key contributions include an analysis of the 
predictability of the vehicles (section 4.1), an analysis of 
the V2X availability of the vehicle types (section 4.2), an 
evaluation of the influence of V2X provision on battery-
relevant parameters (section 4.3), and an exemplary 
degradation analysis of the e-Car batteries (section 4.4). 

The innovative points of this work are enabling the 
simulation of V2X services in the open-source tool 
SimSES, statements on the V2X capability of various 
vehicle types, and the impact of V2X deployment on 
battery-relevant parameters.  

2. DATABASE 

2.1 Data of mobile BSS applications 

Due to the growing electrification of vehicles, such as 
buses, cars, and boats, lithium-ion batteries (LIBs) are 
increasingly being installed in these means of transport 
as traction batteries. For the simulation of the three 
means of transportation, we rely on data published as 
open data in a previous work [12,13]. Based on this work, 
load profiles of 60 e-Cars and six e-Boats and state-of-
charge (SOC) profiles of 52 e-Buses are available (see 
Table 1). The profiles have varying lengths, and the 
simulations in this work are always performed over the 
entire length of a vehicle profile. 

2.2 Data of stationary BSS applications 

Stationary BSSs are used in various applications. For 
example, they can perform arbitrage trading on the 
electricity market or provide grid services like FCR. 
Parked electric vehicles can also participate in these 
markets if they are connected to the electricity grid and 

 
 

Fig. 1. Graphical overview. Three vehicle types and four 
charging strategies are simulated with SimSES to generate 

results on driving behavior and battery-relevant 
parameters.  
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combined in pools. In the following sections these 
applications are called V2X applications. To simulate the 
V2X applications in SimSES, we use storage load profiles 
that we defined in a previous work as representative load 
profiles for the PS and FCR applications [14]. Since the PS 
profile was developed with a storage system with a 
maximum power of 40 kW and the vehicles' charging and 
discharging power range from 11 to 150 kW, the PS 
profile was scaled up by a factor of 10 so that its 
maximum power now corresponds to 400 kW. For the 
arbitrage application, we use a load profile determined 
in a research work by Collath et al., who optimized 
arbitrage trading with a stationary BSS considering 
calendar and cyclic degradation [15]. 

3. METHODOLOGY AND SIMULATION 
FRAMEWORK 

3.1 SimSES: Simulation of EVs and V2X provision 

The open-access storage system simulation tool 
SimSES was developed at the Technical University of 
Munich and has been presented in detail in a previous 
publication [17]. In our work on e-transportation and 
their utilization of batteries, the extension of SimSES to 
mobile applications was explained [12]. The publication 
compared charging strategies such as uncontrolled 
charging versus paused charging, where charging was 
performed after arrival to a minimum SOC and paused 
until just before departure. This paused strategy was 
extended for this work to allow vehicles to provide V2X 
during the paused period. This is done by superposing a 
V2X load profile of one of the stationary applications FCR, 
PS, or arbitrage over to the load (e-Cars, e-Boats) or SOC 
(e-Buses) profile. As soon as the respective vehicle is at 
home (e-Car), in the depot (e-Bus) or at the dock (e-
Boat), it is charged to a minimum SOC of 50%. 
Subsequently, the provision of V2X is simulated until the 
time when charging is required again for the vehicle to 

be fully charged at departure. The e-Buses are charged 
to the departure SOCs logged in real operation, as 
described in a previous publication [12]. Alternative 
approaches of charging strategies, for example charging 
only the amount of energy needed for the next trip, are 
not part of this work. For the estimation of the departure 
time, perfect foresight is assumed. To calculate the 
required V2X power at every point in time, the power of 
the V2X profile is divided by the number of currently 
existing vehicles in the pool and assumed to be the 
power to be provided by the vehicle. This means each 
vehicle in the pool must provide the same fraction of the 
total pool power. The estimation of the available number 
of vehicles is explained in section 4.3, as this is based on 
results from section 4.2. During V2X operation, the SOC 
of the vehicle can drop below 30%. If this is the case, the 
V2X operation is paused, and the vehicle is recharged to 
50% so that at least 30% is always available for 
spontaneous trips. In a field test, users have reported an 
average of 34% as the minimum desired available SOC 
[18]. 

This work uses batch simulations to simulate the 60 
e-Cars, 52 e-Buses, and six e-Boats in the three V2X 
markets FCR, arbitrage trading, and PS. SimSES then 
determines a variety of metrics that are calculated for 
each vehicle with each V2X market. One metric of SimSES 
is the binary quantification of whether the vehicle can be 
used for V2X at a point in time. The calculation of this 
value is shown in equation (1). This is the case when the 
e-Car is at home, the e-Bus at the depot, and the e-Boat 
at the dock (𝑏(𝑡) = 1) and not being charged (𝑃(𝑡) = 0). 
If the condition is met, the plugged-and-idle value 𝑣(𝑡) 
is 1. In contrast, if the vehicle is on the road or currently 
charging the plugged-and-idle value is 0. The proportion 
of the total time the vehicle can be used for V2G was 
referred to as the temporal V2G-ready ratio in [12]. 
Analogously, the value in this work is called V2X-ready 
ratio to imply that V2H and V2B could also be provided. 

 

𝑣(𝑡) = {
1,      𝑃(𝑡) = 0 𝑎𝑛𝑑 𝑏(𝑡) = 1  
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

 (1) 

 

3.2 Quantification of driving behavior predictability 

The suitability of vehicles for V2X depends on various 
factors. These are, for example, the driving behavior, the 
grid connection times, and the predictability of 
departures and arrivals. For electric vehicle aggregators, 
it is relevant to be able to predict or estimate the 
available pool size at any given time. Supposing that the 
vehicle owner does not provide the next departure or 
arrival time, or it cannot be determined from bus 

Table 1: Data on the transportation means and the 
stationary BSSs used for V2X provision. 

D    
#    

         
D           R         

                   
          . [13]       
         M          

  . [1 ] 

        5  3    14                  . [13] 

          3    9                  . [13] 

F R 1          K            . [14] 

P  1          K            . [14] 

          1                       . [15] 
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schedules, historical data can be used to estimate when 
the vehicle will depart. However, for historical data, 
estimating the extent to which the vehicle is used 
according to repetitive behavior, such as a daily 
commute or a trip to a weekly recreational activity, is 
crucial. The predictability is to be quantified as explained 
in the next paragraph.  

For the investigation of the weekly periodicity, the 
respective 𝑣(𝑡) vector is first decomposed into weekly 
segments. Figure 2 a) shows 𝑣(𝑡) for an exemplary e-
Car for each hour of the week over the year. The hourly 
resolution is chosen here for a better visualization and 
results from the mean value of the 60 one-minute values. 
This results in values between 0 and 1 in addition to the 
binary values. Moreover, Figure 2 b) indicates the 
probability that the value for 𝑣(𝑡) is 1 at a certain time 
during the week. At times when the probability is close 

to 100%, the vehicle can be used frequently for V2X. The 
diagrams show that there are phases during the week 
when the vehicle could provide V2X relatively 
consistently, such as Wednesday nights. Likewise, there 
are phases when the vehicle is often not available for 
V2X, such as Monday afternoons. For aggregators, these 
consistent phases are desirable because the vehicle is 
predictable. Less desirable are phases in which the 
vehicle is sometimes available and sometimes on the 
road. The worst case from the aggregator's point of view 
is when the vehicle is, on average, 50% available at one 
point in time. On the other hand, average values of 0 and 
100% are desirable because the vehicle is fully 
predictable during these times. We now determine a 
predictability score at each point of time of the week 
using equation (2). Therefore, we subtract 0.5 from the 
mean value of the values at one point in the week and 
multiply the absolute value by two. If the mean value is 
0.1, for example, this results in a predictability score 
(𝑃𝑟𝑒𝑑 ) of 0.8. The same 𝑃𝑟𝑒𝑑  results from a mean 
value of 0.9. In contrast, the worst case mean value of 
0.5 leads to a 𝑃𝑟𝑒𝑑 of 0.  

In addition to the weekly period shown here, periods 
of 24 hours or 30 days, for example, can also be used. No 
distinction would be made between working days and 
weekend days in the case of daily periods. If monthly 
periods were used, events occurring monthly could be 
better captured and predicted. 

  

𝑃𝑟𝑒𝑑𝑗 =  |
∑ 𝑣𝑗

𝑘𝑚
𝑘=1

𝑚
− 0.5| × 2 (2) 

 

With:  

      𝒗 =  

[
 
 
 
𝑣1

1 𝑣1
2 … 𝑣1

𝑚

𝑣2
1 𝑣2

2 ⋯ 𝑣2
𝑚

⋮ ⋮ ⋱ ⋮
𝑣𝑛

1 𝑣𝑛
2 ⋯ 𝑣𝑛

𝑚]
 
 
 
  

      𝑚:𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 
      𝑛:𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 
 

 

𝑃𝑟𝑒𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  [

𝑃𝑟𝑒𝑑1

𝑃𝑟𝑒𝑑2

⋮
𝑃𝑟𝑒𝑑𝑛

]     

𝑃𝑟𝑒𝑑𝑗 ∈ {0; 1}      𝑗 = 1…𝑛 

 

 

3.3 Lithium-ion battery relevant KPIs and effects on 
battery degradation 

LiBs are subject to degradation effects, which can be 
separated into calendar and cyclic aging [19]. While the 
former occurs permanently over time, the latter depends 
on the cyclization of the battery. Various parameters 

 
Fig. 2. Hourly plugged-and-idle values of one exemplary e-
Car over the year segmented in weeks (a), probability of 
plugged-and-idle values of one over the week (b), and 

predictability score over the week (c). 
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influence the degradation of LIBs so that the utilization 
of LIBs can be quantified with respect to those 
parameters [12]. For example, the equivalent full cycles 
(EFCs) can be measured and compared with each other 
in various applications. For this purpose, the energy 
throughput is divided by the nominal energy of the 
battery. In general, higher cyclization, an increase in 
EFCs, leads to accelerated cyclic degradation. However, 
the extent of the increased degradation differs for 
different cell chemistries, as there exist more cycle-
stable and less cycle-stable chemistries [20]. Another 
relevant parameter is the average SOC experienced by 
the LIB. For example, if private e-Cars are charged 
immediately after arriving at home, the mean SOC is 
relatively high because the vehicles are parked for a long 
time at high SOCs [12]. If, in contrast, charging takes 
place later or with a pause, the mean SOC of the battery 
can be reduced [12]. The mean SOC also influences the 
degradation of LIBs [19]. For most LIBs, high mean SOCs 
should be avoided because an accelerated solid 
electrolyte interphase growth occurs in those SOC ranges 
[20]. This effect amplifies the calendar degradation of 
the LIB. The last parameter calculated in this work is the 
charging rate (C-rate), which describes the current at 
which a battery is charged or discharged in relation to the 
nominal capacity of the battery [12]. The C-rate also 
influences cyclic degradation. If LIBs are exposed to 
comparatively high C-rates, cyclic degradation increases 
[19]. In addition, other factors play a role in degradation, 
such as temperature and depth of discharge [20]. The 
decrease of remaining capacity and the increase in 
resistance of a LIB then result from an interplay of the 
various influencing factors. In SimSES, for example, semi-
empirical aging models are implemented for a Sony 
lithium iron phosphate (LFP) cell, published by Naumann 
et al. [21,22], and a nickel manganese cobalt (NMC) cell, 
published by Schmalstieg et al. [23]. Since many e-Buses 
and an increasing number of e-Cars have LFP batteries 
installed [1,24], we use the LFP model in section 4.4, 
which relies on a half-cycle counter. 

4. RESULTS 

This section presents the results of the work. First, 
the vehicle-specific predictability is analyzed in 
section 4.1. Afterwards, the V2X-ready ratio of the three 
vehicle types is illustrated in detail in section 4.2. Then, 
in section 4.3, battery-relevant parameters for V2X-
providing vehicles are compared with those of 
unidirectional charged vehicles. Finally, in section 4.4, 
the influence of V2X provision on battery aging is shown 
using an exemplary LFP cell for the e-Cars. 

4.1 Assessment of vehicle-specific predictability 

The following section quantifies the driving behavior 
predictability of the vehicles according to the calculation 
from section 3.2. The presented analysis was performed 
for each vehicle to determine the course of the 
predictability score. The mean predictability scores for all 
vehicles are shown as boxplots in Figure 3. The periods 
used for the predictability scores are 24 hours (a) and 
seven days (b), as shown in Figure 2. Due to the 
significant differences in predictability scores between 
daytime and nighttime, Figureshows the results for 
daytime (left) and for nighttime (right). The results for 
the three vehicle types are displayed and derived from 
the mean predictability scores of the 60 e-Cars, 52 e-
Buses, and six e-Boats.  

For the e-Cars, high predictability scores of 0.66 to 
0.82 are achieved at night. Here, the simulated e-Cars 
behave relatively predictably. The e-Buses show smaller 
differences among themselves at night than during the 
day, where the scores are between 0.27 and 0.7 for the 
weekly pattern, for example (Figure 3 b)). At the same 
time, however, the median score of the buses at night is 
lower than the median score of the daytime. This can be 
explained by the fact that the required charging energy 
at night depends on the driving distance during the prior 
day, and thus the e-Buses are irregularly available for 
V2X at night while they are mostly on the road during the 
day. The e-Boats show large scatter in their predictability 
scores both during the day and at night. For example, 

 
Fig. 3. Average predictability score of every vehicle during 

daytime (left) and during nighttime (right) using the 
predictability forecast for daily pattern (a) and weekly 

pattern (b). 
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there is one boat that achieves scores above 0.8. At the 
same time, there is another boat whose scores are below 
0.2. Depending on the use of the boats as a ferry or 
pleasure vessel, the predictability therefore differs. 
Lastly, the usage of the daily pattern (Figure 3 a)) can be 
compared to that of the weekly pattern (Figure 3 b)). 
Especially for the e-Cars with their varying driving 
behavior between weekdays and weekends, the 
predictability scores increase when using a weekly 
pattern especially during the day. Moreover, the range 
of the results decreases for the e-Cars using the weekly 
pattern. The e-Buses also show slight improvements in 
predictability scores for daytime hours when changing 
from daily to weekly pattern and no changes at night. In 
contrast, no differences are observed for the e-Boats. 

4.2 Temporal V2X availability of vehicle types 

The V2X-ready ratio indicates the proportion of the 
time a vehicle can be used for V2X, as explained in 
section 3.1. For the e-Cars, for example, we found mean 
temporal V2X-ready ratios (respectively V2G-ready 
ratios) of 70 to 80% in a previous work [12]. At this point, 
the V2X-ready ratios are analyzed in more detail. Figure 4 
shows the V2X-ready ratio of the three modes of 
transportation over a week. The dark line shows the 
median and the shading indicates the distributions with 
50%, 75%, and 100% of all values. A value of 33% on 
Monday at noon means that the vehicle would be 
available for V2X on average every third Monday at 
noon. A value of 67% indicates that the vehicle would be 
available two out of three Monday noon times.  

The private e-Cars show high temporal V2X-ready 
ratios of 90 to 100% at night (Figure 3 a)). On weekdays, 
the ratio drops to 30 to 70%, depending on the 
commuting behavior of the vehicle. On weekends, the 
ratio is also higher during the day, with 50 to 80%. E-
Buses also have the highest V2X-ready ratio at night, with 
50 to 100% (Figure 3 b)), although this is below the ratio 
of the e-Cars. During the day, the ratio drops to 5 to 50%, 
as the e-Buses are mostly on the road. The daytime 
behavior does not change much on weekends compared 
to weekdays. The e-Boat results are divided into two 
groups (Figure 4 c)): High-utilization e-Boats and low-
utilization e-Boats. The high-utilization e-Boats have 
temporal V2X-ready ratios of mostly below 40%. The 
low-utilization e-Boats, in contrast, have ratios between 
30 and 90%. Therefore, the e-Boats' potential differs 
greatly depending on how they are used. Moreover, the 
e-Boats do not show a typical daily pattern compared to 
the e-Cars and e-Buses. This is because the e-Boats are 
often charged at low power in the dock. In addition, low-

utilization e-Boats, for example, usually remain unused 
in the dock during the day as well as at night, resulting in 
no day-night rhythm as with the e-Buses and e-Cars. 
Overall, the evaluation shows that the temporal V2X 
potential of the vehicles varies over a week. Especially at 
night, e-Cars and e-Buses can be used for V2X. For e-
Boats, the potential depends on the use of the boats. 

4.3 Lithium-ion battery parameters with and without 
V2X 

The provision of V2X changes the load on vehicle 
batteries. The extent of this change is examined in this 
section. Battery-relevant parameters considered in this 
work are the number of EFCs, the mean SOC, and the 
mean C-rates. The simulations are performed with 
SimSES, as described in section 3.1. Since the stationary 
applications FCR, PS, and arbitrage were generated for 
one large stationary BSS, the individual vehicles in the 

 
Fig. 4. Temporal V2X-ready ratio over the week using an 
uncontrolled charging strategy for the e-Cars (a), e-Buses 

(b), and e-Boats (c). 
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pool of vehicles only need to provide a fraction of the 
power of the original stationary storage. In general, the 
respective fractions depend on the current pool size. In 
previous works, we determined economically optimal 
pool sizes for commercial e-Cars to generate as much 
revenue as possible with as few vehicles as possible 
[7,25]. 

In this work, we estimate the total pool sizes based 
on the temporal V2X-ready ratio and the maximum 
power of the vehicle batteries and charging stations (see 
Table 2). For example, for the provision of FCR, a pool of 
80 e-Buses is required to be able to deliver the 1.2 MW 
of maximum power at a minimal temporal V2X-ready 
ratio of 10%. The worst-case temporal V2X-ready ratio of 
the buses is 3% (Tuesday afternoon), according to 
Figure 4 b). Dimensioning the pool to this availability 
would significantly oversize the pool. Aggregators would 
likely switch to stationary backup BSS rather than sizing 
the pool for the annual minimum. As shown in 
Figure 4 b), the assumed 80 buses are not permanently 
available. The median temporal V2X-ready ratio 
fluctuates between 17% and 89% over the week. For this 
reason, the available number of vehicles is determined 
from the median temporal V2X-ready ratio at each point 
in time of the simulation, depending on the time of the 
current week. If the ratio is 17%, only 14 buses are 
available for FCR. If, on the other hand, the ratio is 89%, 
71 buses are available. The V2X power to be provided at 
any given time is then divided among the currently 
available vehicles. 

The simulation results for the three parameters daily 
EFCs, mean SOC and mean C-rate are shown in Figure 5. 
The subfigures are divided into e-Cars (left), e-Buses 
(center), and e-Boats (right). For each vehicle category, 
the boxplots of the three V2X markets are compared to 
the unidirectional paused charging strategy without V2X. 
Likewise, a comparison with an uncontrolled strategy 
would be possible [12]. At this point, however, we want 

to compare paused charging with the V2X-providing 
charging strategies. 

Figure 5 a) shows the daily EFCs of the 60 e-Cars as 
boxplots once for the paused charging strategy and once 
for the three V2X markets. The e-Cars encounter 0.07 to 
0.18 EFCs per day in the paused charging strategy. In 
contrast, in the FCR and intraday arbitrage applications, 
the number of daily EFCs increases to a range of 0.1 to 
0.23. For the median values, this corresponds to an 
increase of 42 to 50%. The provision of PS increases the 
median daily EFCs by only 8%. With unidirectional 
charging, the e-Buses encounter more cycles than the e-
Cars due to the longer driving distances (see Figure 5 b)). 
As a result, the e-Buses are available for V2X less often 
than the e-Cars (see Figure 3). Consequently, the daily 
EFCs of the e-Buses increase only slightly with the 
additional provision of V2X. The median FCR and intraday 
EFCs are 7 to 13% higher than those of paused charging 
strategy. If PS is provided, the median daily EFCs increase 
by only 1%. This is because in PS operation, the BSS 
capacity is rarely used. The stationary BSS used to 
generate the PS profile performed 21 EFCs over one year, 
while the FCR providing BSS completed 270 EFCs [14]. 
The e-Boats perform 0.026 to 0.277 EFCs daily with 
paused charging (see Figure 5 c). This means that the 
least used boat makes one EFC every month, and the 
most used boat makes one EFC every 3.6 days. If the e-
Boats are now used for FCR during idle periods, the daily 
EFCs increase by 1% to 40%. Similar values result in 
intraday trading. Accordingly, EFCs increase when e-
Boats are frequently used for V2X. However, if a boat is 
rarely available, the number of EFCs increases only 
slightly. The results for PS are similar to those for e-Cars 
and e-Buses. 

The mean SOCs of vehicle batteries are also affected 
by the provision of V2X (Figure 5 d) - f)). Compared to the 
paused unidirectional charging strategy, the mean SOCs 
change slightly as the V2X provision charges and 
discharges the batteries. The median mean SOC of the e-

Table 2: Pool size calculations. For determining the pool size, the maximum power required for V2X is divided by the maximum 
charging power (which equals the maximum discharging power) of the vehicles and by the assumed minimal temporal V2X-

ready ratio. 

T                     C                

M  .                     
               

4 % 4 % 4 % 1 % 1 % 1 % 1 % 1 % 1 % 

M  .                11 kW 11 kW 11 kW 15  kW 15  kW 15  kW 11 kW 11 kW 11 kW 

       k   F R          P  F R          P  F R          P  

M  .           1.  MW 1 MW 4   kW 1.  MW 1 MW 4   kW 1.  MW 1 MW 4   kW 

R q                   73     91     7  7 1 91 91  3 4 
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Cars increases by 0.6 to 1.4 percentage points when FCR 
or intraday trading is performed (Figure 5 d)). For the e-
Buses, the increase is 0.3 to 0.8 percentage points 
(Figure 5 e)). Most e-Boats also show only low rates of 
increase in mean SOC. Deviating from this, the mean SOC 
of one e-Boat (downward-pointing triangle) increases by 
4 percentage points in FCR to 9 percentage points in 
arbitrage. This e-Boat has a mean plugged and idle time 
of 74.8% and can therefore often be used for V2X. 

Figure 5 g) – i) present the mean C-rate of the 
vehicles in the paused charging and V2X strategies. In 
particular, the provision of FCR strongly reduces the 
mean C-rate experienced by the vehicle batteries. For 
example, the mean C-rate of the median e-Car decreases 
by 90% and of the median e-Bus by 46%. Providing 
intraday trading or PS also reduces the mean C-rates, but 
not as much as FCR. This is because FCR often demands 
low power values relative to the marketed power. In 
contrast, the power values provided in intraday trading 
and PS are higher. The fact that mean C-rates are 
reduced in all V2X markets shows that for the simulated 
pool sizes, the loads that vehicle batteries experience 
during V2X provision are often lower than the loads 
during typical driving and charging. 
 
 

4.4 Exemplary degradation analysis of e-Car battery 
with and without V2X 

In addition to quantifying parameters such as mean 
SOC or number of EFCs, SimSES can also be used to 
simulate the aging of vehicle batteries. As described in 
section 3.3, an LFP cell was simulated for this purpose 
over one year. The capacity losses of the e-Car batteries 
after one year range from 6.2% to 7.1% for all four 
strategies, mainly due to the calendric degradation 
caused by the high SOCs. Figure 6 shows the change in 
the capacity loss of the e-Car batteries when providing 
V2X services relative to the paused, unidirectional 
strategy over each e-Car's mean V2X-ready ratio. For 
example, if an e-Car has lost 500 Wh of its nominal 
capacity in a year in the paused strategy and 505 Wh in a 
V2X strategy, the relative change in capacity loss 
corresponds to 1%. 

In general, the V2X provision increases the capacity 
loss for the simulated cell. PS has the least influence on 
aging due to only slightly higher cyclization at 
comparatively low powers (see Figure 5). In a few cases, 
such as one e-Car with a mean V2X-ready ratio of 77.3%, 
the utilization for PS seems to reduce aging compared to 
the paused charging strategy (-0.15%). In these cases, the 
vehicle encounters only slightly more EFCs when 
providing PS compared to the paused charging strategy, 

 
 

Fig. 5. Battery-related parameters of the e-Cars, e-Buses, and e-Boats. (a) EFCs per day, (b) mean SOC, and (c) mean C-rate. 
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which slightly increases cyclic battery aging. For the 
exemplary e-Car, the increase is 2.2 EFCs in the one-year 
simulation period. At the same time, providing PS 
decreases the mean SOC, reducing calendar aging 
(exemplary e-Car from 90.59% to 90.34%). The two 
effects subsequently overlap, which can reduce the total 
capacity loss of the battery despite the provision of PS in 
a few cases. 

Providing FCR with the e-Cars results in a more 
significant loss of capacity in the simulations than 
providing PS. The aging is most severe if arbitrage trading 
is performed with the e-Cars. But even here, the 
maximum capacity loss increase compared to the paused 
charging strategy is 4.5%. This is because the LFP cell 
used is considered relatively cycle stable and can thus 
tolerate the increase in EFCs well.  

Figure 6 also shows that e-Cars with higher mean 
V2X-ready ratios also lead to larger capacity loss 
increases due to V2X provision (dashed lines). This trend 
holds true for all three V2X applications. However, when 
individual cars are examined, it can be observed that a 
higher V2X-ready ratio does not always lead to a higher 
increase in capacity loss. This is because the mean value 
of the V2X-ready ratio is not the only factor of relevance, 
but also the times at which the car is available and the 
times of V2X demand. Whether the increase in capacity 
loss can be compensated by generated revenues on the 
electricity (arbitrage) and power (FCR) markets or by 
avoided grid charges (PS) depends on the current prices 
or costs of the respective location. 

5. CONCLUSION AND OUTLOOK 
In the present work, the V2X deployment of three 

means of transport was simulated and investigated. For 
this purpose, a dataset of 60 simulated e-Cars, 52 field-
data e-Buses, and six field-data e-Boats was used on the 
one hand, and data from stationary BSS applications on 
the other. First, the vehicles were examined in terms of 
their predictability. It was found that in particular private 
e-Cars behave predictably at night. Furthermore, an 
analysis of idle times showed that V2X availability varies 
over the week, with e-Cars and e-Buses being mostly 
available at night. Another focus was the simulation of 
V2X provision in the simulation tool SimSES. This allowed 
battery-relevant parameters and the aging of the LIBs to 
be quantified. For example, the former showed that, 
compared to a paused charging strategy, the number of 
EFCs increases by 42% to 50% with FCR or intraday 
arbitrage for e-Cars and by 7% to 13% for e-Buses due to 
V2X deployment. The example aging simulation of the e-
Car LIBs showed an increased capacity loss, especially for 
intraday arbitrage trading and FCR provision. 

Building on the present work, further research areas 
can be identified. The results of section 4.3 and 
section 4.4 depend strongly on the pool composition and 
power allocation among the vehicles. Thus, pools could 
be formed from varying numbers of vehicles and from 
different vehicle types, such as a combination of e-Cars 
and e-Buses. Furthermore, in addition to the equal 
distribution of the required power to all available 
vehicles, a cascaded distribution or a distribution 
according to the remaining capacity of the batteries 
could also be implemented. Moreover, if the vehicles 
were actively discharged to 50% SOC, for example, the 
potential for V2X provision would increase, but the load 
on vehicle batteries would also rise. Additionally, more 
detailed analyses of battery aging could be made with 
further aging models and driving data over longer 
periods. Finally, the methodology and the results could 
also be used to evaluate the suitability of different 
battery cells for vehicles with and without V2X. 
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Fig. 1. Change in capacity loss of the e-Car batteries for the 
V2X strategies compared to the paused charging strategy 

without V2X over each e-Car's mean V2X-ready ratio. Each 
of the 60 e-Cars appears once in the diagram for each V2X 

strategy. The dashed lines show a linear fit for each V2X 
application across all cars. In the 1-year SimSES simulation, a 
Sony LFP battery with a degradation model from Naumann 

et al. is used [21,22]. 
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6.1 Conclusion

The focus of this work is the systematic characterization of stationary and mobile BSS usage profiles
and the evaluation of the possibility of using e-Cars, e-Bus and e-Boats for the provision of V2X. For
this purpose, stationary and mobile applications are simulated in the SimSES simulation tool and
the battery impact is examined. The simulations are extended to include V2X-providing charging
strategies and the influence on battery-relevant parameters is investigated. In addition, aggregator
concepts are created to optimize the composition of V2G capable EV pools. Furthermore, a method is
developed to gradually anonymize load profiles in order to enable an open-source publication despite
non-disclosure agreements.

First, in chapter 3.1, the stationary applications SCI, PS and FCR are examined and representative
power profiles of BSSs in these applications are identified and published. For this purpose, the ap-
plications are simulated using various input profiles and system designs in SimSES. A methodology
is then developed to determine representative profiles from the sets of storage profiles. Based on six
key characteristics, such as the number of EFCs and efficiency, the methodology determines the BSS
profile that deviates least from the median value in all characteristics. The evaluation of the three
applications shows major differences in the EFCs, for example. While HSSs make around 260 EFCs
per year, PS BSS make fewer than 30, depending on the industrial load profile. The identified reference
profiles are published open access as part of the publication together with all other storage power and
SoC profiles.

Second, in chapter 3.2, the mobile BSS applications e-Car, e-Bus and e-Boat are simulated and ex-
amined in SimSES based on simulated data (e-Car) and field data from industrial partners (e-Bus,
e-Boat). For this purpose, SimSES is extended to be able to simulate not only stationary BSSs but
also temporarily unavailable BSSs including various charging strategies. In addition to the extended
methodology, various battery-relevant parameters that were caused by the driving behavior of the
means of transport are investigated. The results show, for example, that e-Buses perform 0.4 to
1 EFCs per day, while e-Cars make less than 0.18 EFCs per day. A comparison with the stationary
applications from chapter 3.1 shows that e-Buses and stationary BSSs in SCI and FCR applications
are similar regarding some parameters such as EFCs. Similar to chapter 3.1, the generated data from
this chapter is published open-access to enable its use in industry and research.

Following the requirement for real load profiles in chapters 3.1 and 3.2, a methodology is developed
in chapter 3.3 to anonymize electrical load profiles. The methodology, which is being developed in
the open-access python tool LoadPAT, segregates the load profiles into base and peak load sequences.
Users of the tool can then select the desired level of anonymization. As a result, the load profile can
be solely normalized or reproduced on the basis of features of the original profile. At higher levels of
anonymization, the order of the base and/or peak sequences is randomly permuted. The anonymization
is demonstrated using two different example load profiles. The original and synthetic load profiles are
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then compared. In addition, the load profiles are used as input profiles for the simulation of two BSS
applications in SimSES to investigate the effects on battery-relevant parameters. The results show
that time-invariant indicators are preserved during anonymization. However, the random permutation
of the order of the sequences means that in time-dependent applications such as SCI, anonymization
at higher levels lead to a greater variation in battery-relevant parameters, for example, the SCR and
the SSR.

Chapter 4.1 of the thesis examines the V2G use of commercial EVs in the FCR market. For this
purpose, driving data from real commercial internal combustion vehicles is evaluated and EV driving
profiles are created using a developed electromobility simulator. The simulator uses time-dependent
probability distributions for trip start, trip duration and trip distance to determine the driving profiles.
The output of the simulator are power and energy capability profiles, which indicate for each vehicle the
power or energy it could charge and discharge at any time. These profiles are then used to determine
the power pools of EVs could offer on the German FCR market at every time of a week. The economic
attractiveness of providing FCR using EVs has increased due to the shortening of the market’s service
periods between 2019 and 2020. Potential annual revenues were between 450 € and 750 € per vehicle
in Germany for the considered time period of July 2020 to March 2022.

The developed power and energy capability profiles of the commercial EVs are then used in chapter 4.2
to compile optimized vehicle pools. For this purpose, an optimization algorithm based on genetic
algorithms is developed to maximize the revenue per EV on the FCR market and in the arbitrage
application on the spot markets. Maximizing the revenue per vehicle results in only including vehicles
in the pool that add value to the pool and thus increase pool revenue. The results show that by
optimizing the pool composition, the revenue per EV can be multiplied in all markets by up to a factor
of seven. In the FCR market, the potential annual revenue of the optimized pool in 2020 was around
380 € per EV, while randomly composed pools only achieved an average of 220 €. In 2020, the FCR
market would have been more attractive than arbitrage trading on the intraday or day-ahead market.

Building on the results from chapter 4.2, the optimized vehicle pools are evaluated in chapter 4.3 with
regard to battery capacity and economic sector. This analysis shows that small vehicle batteries of
less than 20 kWh are not used in optimized pools and that large vehicle batteries of around 80 kWh
are selected, especially in intraday and day-ahead trading. This is due to the fact that larger energy
volumes are traded in arbitrage trading in particular, while smaller cycle depths are made in FCR
provision. Accordingly, aggregators should give preference to larger vehicle battery capacities. With
regard to the economic sectors, it is found that the ”human health and social work activities” sector
is underrepresented in the optimized pools, as the vehicles in this sector are often on the road for long
periods of time and are not available for V2G. Vehicles from the ”manufacturing” sector, on the other
hand, appear to be particularly suitable for V2G, although this may also be due to larger battery
capacities. In addition, a further study in the paper finds that a reduction in the minimum bid size
and increments in the FCR market could increase the revenue of EVs by 50 to 66 % due to the higher
power utilization rate.

Lastly, chapter 5 brings together data and approaches from the previous chapters. This involves
simulating the provision of the typical stationary applications SCI, PS and FCR with the three means
of transportation e-Cars, e-Buses and e-Boats. An analysis of the predictability of driving behavior
shows that e-Cars in particular behave predictably at night. The investigated V2X availability varies
for all vehicle types over the course of the week and is particularly high for e-Cars and e-Buses at night.
The simulation results of the V2X provision show, for example, that the EFCs of e-Cars increase on
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average by 42 to 50 % in FCR and intraday arbitrage trading respectively. Using an LFP battery
degradation model, it is possible to show that the capacity loss of e-Car batteries increases by up to
4.5 % as a result of the V2X provision.

In summary, the thesis shows how differently BSSs are stressed in various stationary and mobile
storage applications. However, there are also similarities, for example in the number of EFCs between
e-Buses and stationary BSSs in SCI and FCR applications. Due to their idle times, e-Cars, e-Buses
and e-Boats are able to provide V2X services. The V2X potential of commuting e-Cars and e-Buses is
particularly high at night. The e-Boats investigated behave very differently, meaning that leisure boats
have greater V2X potential than frequently operating ferries. The impact on the batteries increases
with V2X provision compared to unidirectional charging strategies. The simulation of e-Cars shows an
increased capacity loss of up to 4.5 % with intraday arbitrage trading within one year compared to the
paused unidirectional strategy. Furthermore, by optimizing the composition of their pools, aggregators
can gain competitive advantages if they can estimate the driving behavior of potential vehicles or select
vehicles from certain economic sectors and with relatively large battery capacity. As the EVs are often
idle, especially at night, they can and should make a significant contribution to the flexibility required
in the electricity grid for the energy transition through V2X. In the future, V2X will play a major
role in the energy system if existing regulatory barriers are removed and technologies such as LIBs,
charging infrastructure and forecasting algorithms continue to improve.

6.2 Potential future research

While this thesis addressed a number of research issues related to stationary and mobile BSS applica-
tions and V2X, a number of subsequent research questions arise. These cover the topics of batteries,
mobile applications, energy management, load profiles, V2X in general, V2X market related and V2X
grid related.

After initial evaluations of the additional degradation of the LIBs due to V2X provision were carried
out in this study, these could be expanded using SimSES with the aid of more up-to-date battery
degradation models of different cell types. The question also arises as to which battery cell type would
be particularly suitable for which V2X application. For example, a cycle-stable LFP cell could be better
suited to the high cycling numbers in arbitrage than a NMC cell. New technologies like sodium-ion
batteries could also be compared here. In addition, battery cells could be designed specifically for the
mobile applications analyzed in this work with and without V2X provision. Furthermore, the second-
life suitability of batteries used in mobile applications for stationary BSSs could also be investigated
as an additional route to the V2X service provision.

With regard to mobile applications of LIBs, the evaluations of this thesis could be extended to a
broader data basis. For example, only six e-Boats of different sizes were evaluated. Moreover, the e-Car
database could be extended to field data. Other vehicle types, such as e-Trucks or electric vertical
take-off and landing aircrafts, could be examined with regard to usage behavior and investigated for
V2X provision. In addition to using existing open-access databases, new data could be collected and
evaluated via industry partners. Furthermore, the driving and charging behavior of vehicles could be
recorded using sensors, evaluated and published.

In terms of energy management strategies and fleet management, e-Bus and e-Truck fleet
strategies could be developed and the provision of V2X with these could be investigated. Due to
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the relatively large vehicle battery capacities, the predictable driving patterns and the common grid
connection of those fleets, V2X use of these vehicle types is particularly interesting. These vehicle
pools could also be combined with other vehicle types or stationary BSSs to compensate for periods
of unavailability and reduce the uncertainty in the available power. The pool management strategies
presented in this thesis could also be extended to include sub-pool formation for parallel participation
in different markets.

After the anonymization of electrical load profiles in this thesis, the methodology of anonymization
could be extended to storage power profiles that charge and discharge. In addition, the LoadPAT
anonymization tool could be expanded to include further functionalities. For example, a new method-
ology could enable the extraction or creation of a representative daily load profile from a monthly or
annual load profile. Moreover, an open-access database of anonymized load profiles could be developed
that would make the profiles immediately available to a wide range of users.

On the subject of V2X in general, there are a number of other points of contact for research. V2X
could be investigated with other vehicles in addition to the three vehicle types in the thesis. Moreover,
the Energy System Network tool currently under development at the Technical University of Munich
could be used to simulate a large number of vehicles with one SimSES instance per vehicle with a
higher-level aggregator. This aggregator could simulate the applications and allocate the power to the
vehicles. With regard to power allocation, further questions arise as to whether the power should be
better distributed evenly or cascaded or distributed to the vehicles according to other aspects such as
the batteries’ SoH. Other simulation options would be agent-based simulations in which each vehicle
acts independently and V2X power is gathered by an aggregator. Further work could examine the
extent to which location changes need to be taken into account if a bidirectional charging station is
not available at every location. There are also questions regarding DC versus AC V2X participation, as
the grid codes must be in the charging station for DC charging and in the vehicle for AC charging. The
regulatory requirements for V2X also differ depending on the region and country. These requirements
could be collected for various countries and necessary changes could be identified. Furthermore, it
would also be interesting to develop a platform that makes it possible to continuously calculate the
economic V2G potential for different countries. This platform would have to take into account current
prices, for example for FCR in the respective country, and include other adjustable parameters, such
as commuter driving behavior versus second car driving behavior.

Regarding possible V2X markets, other markets in various countries could be investigated in addition
to those examined in this thesis. Furthermore, markets could be designed specifically for flexible
resources such as EVs in order to exploit the full power potential of the vehicles. Another interesting
question would be what consequences it would have for batteries and user comfort if FCR provision
with EVs was mandatory.

Following on from the thesis, there are also grid-related V2X research questions. One possible
question would be the financial potential of enabling V2X charging in addition to smart charging
and thus reducing or preventing grid expansion. In addition, the extent to which the integration
of renewable energies can be improved by V2X is a relevant research topic. Finally, the risks and
opportunities of V2X-enabled vehicles could be examined from the perspective of grid operators. This
raises questions as to how conflicts between TSOs and DSOs can be resolved in the provision of
V2X. For example, if vehicles provide FCR for the TSO level, this could lead to local congestion and
curtailments at DSO level.
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