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Abstract

The set-based estimation has gained a lot of attention due to its ability to guarantee state enclosures for safety-critical systems.
However, collecting measurements from distributed sensors often requires outsourcing the set-based operations to an aggregator
node, raising many privacy concerns. To address this problem, we present set-based estimation protocols using partially homomor-
phic encryption that preserve the privacy of the measurements and sets bounding the estimates. We consider a linear discrete-time
dynamical system with bounded modeling and measurement uncertainties. Sets are represented by zonotopes and constrained
zonotopes as they can compactly represent high-dimensional sets and are closed under linear maps and Minkowski addition. By
selectively encrypting parameters of the set representations, we establish the notion of encrypted sets and intersect sets in the en-
crypted domain, which enables guaranteed state estimation while ensuring privacy. In particular, we show that our protocols achieve
computational privacy using the cryptographic notion of computational indistinguishability. We demonstrate the efficiency of our
approach by localizing a real mobile quadcopter using ultra-wideband wireless devices.

Keywords: Set-based estimation, homomorphic encryption, zonotopes, constrained zonotopes.

1. Introduction

State estimation from noisy measurements is of great im-
portance in many areas, such as navigation, communication,
and remote sensing. Many of these applications are based on
prior knowledge of noise distributions. However, assumed noise
distributions are not always sufficiently accurate or even un-
known. Furthermore, safety-critical applications require guar-
anteed state inclusion in a bounded set to provably avoid unsafe
sets. This motivates the need for set-based estimation, which
estimates the set of all possible system states when input distur-
bances and observation errors are unknown but belong to given
bounded sets [1]. Set-based estimators are used in many appli-
cations, such as underwater robotics [2], fault detection [3, 4],
leader-follower problems [5], and localization [6]. We refer the
reader to [7] and references therein for more related work on
set-based estimation.

Some state estimation algorithms require measurements ma-
de by a set of spatially distributed sensors. For instance, cel-
lular signals from distributed mobile devices can be measured
by base stations to estimate the targeted device location [8].
Situational awareness in safe autonomous driving requires col-
lecting measurements from distributed vehicles and infrastruc-
ture nodes [9]. These computations require cloud-based ser-
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vices that aggregate and process gathered information to pro-
vide estimates with guarantees. However, this often requires
that clients disclose sensitive information to the cloud to receive
appropriate control decisions. This causes security vulnerabili-
ties [10, 11], especially when sensors do not belong to the same
trust zone in which members of the same organization trust each
other. For this reason, we focus on set-based estimation in the
cloud with estimation and privacy guarantees.

1.1. Related Work
There exist three types of set-based observers: strip-based

observers, set-propagation observers, and interval observers [7].
Since we will use strip-based observers in this work, we focus
our literature review on this observer type and refer the inter-
ested reader to [7] for the other observer types. Strip-based
observers intersect the propagated set of states with the set of
states consistent with the next measurement to obtain the next
set of possible states. The set representation is essential to ob-
tain a good computational complexity ratio and the estimated
sets’ achieved tightness. Ellipsoids are explored in [1, 12, 13],
where the computations are generally efficient but not exact for
the Minkowski sums. A new geometric method based on the
Minkowski sum is proposed in [14] to produce a distributed el-
lipsoidal estimation. Zonotopes [15] are a special class of poly-
topes for which one can efficiently compute linear maps and
Minkowski sums – both are important operations for set-based
observers. Set-membership using zonotopes is explored in [16].
A novel zonotope intersection method and a new distributed set-
based estimator were proposed in [17]. A distributed zonotopic
and Gaussian Kalman filter is proposed in [18], where each
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network node implements a local state estimator using zono-
topes and Gaussian noise mergers. Polytopes [19] and ortho-
topes [20, 21] were explored as well.

Related work on set-based estimation does not provide pri-
vacy guarantees. Homomorphic encryption allows processing
over encrypted data and has been used as a countermeasure for
cloud-side information leakage, enabling useful tasks to be ac-
complished while keeping the data confidential from untrusted
parties. Over the past few years, a significant effort in the form
of a homomorphic library [22] has been made to make fully
homomorphic encryption practical. Homomorphic encryption
has been used for computationally expensive tasks over genome
data [23] and classification over encrypted data [24]. However,
fully homomorphic encryption remains impractical for real-time
estimation [25, Section 2.10.1]. That said, partial homomorphic
encryption methods are more promising and have been used for
encrypted control [26, 27], image processing [28], estimation
[8, 29], deep learning [30], optimization [31], and ride-sharing
[32].

A related technique to our work is differential privacy [33,
34], which relies on the addition of structured noise to the data
before sharing it, which preserves privacy. Variants of this sche-
me, such as local differential privacy [35, 36] and geo-indisting-
uishability [37], have been designed to ensure differential pri-
vacy for location data. However, the privacy guarantees of these
methods are often achieved at the expense of accuracy [38]. In
other words, the added structured noise results in a loss of esti-
mation accuracy, making it unsuitable for use in safety-critical
systems. To overcome the addition of excessive noise, a com-
bination of homomorphic encryption with distributed noise has
been proposed in [39], where each estimator generated its share
of the aggregated noise required for differential privacy [40] and
sent encrypted and obfuscated data to the aggregator.

1.2. Contributions

To the best of our knowledge, for the first time, we leverage
a partially homomorphic cryptosystem to calculate encrypted
sets that enclose states based on encrypted measurements and
estimates from sensors or sensor groups. This work introduces
two protocols providing state inclusion and privacy guarantees.
In particular, we show that our protocols achieve computational
privacy using computational indistinguishability against differ-
ent coalitions of participated entities. We leverage state-of-art
state estimation techniques in combination with homomorphic
encryption to provide privacy-preserving set-based estimation
protocols with security guarantees. Our entire code and data
are available online1.

More specifically, we make the following contributions:

• We encrypt a set of states using a partially homomorphic
cryptosystem with different levels of privacy based on se-
lective encryption and geometric features of the chosen
set representation.

1https://github.com/aalanwar/Encrypted-set-based-estimation

• We present two set-based estimation protocols which pre-
serve privacy between sensor and sensor groups.

• We prove security guarantees of the two protocols against
different coalitions, using formal cryptographic defini-
tions of computational indistinguishability for protecting
the estimated set position (Theorems 1 and 3) and pro-
tecting the estimated set position and shape (Theorems 2
and 4).

1.3. Outline
The paper is organized as follows: In Section 2, we provide

the necessary preliminaries. We formulate the problem and set
our privacy goals in Section 3. After proposing the notion of
encrypted sets in Section 4, we introduce protocols to privately
bound the state among distributed sensors in Section 5 and then
among sensor groups in Section 6. Finally, we evaluate the
proposed protocols in Section 7 and conclude this paper with
Section 8.

1.4. Notation
Vectors and scalars are denoted by lowercase letters, matri-

ces are denoted by uppercase letters, the real and natural num-
bers are denoted by R and N. We denote the set of positive
real and positive natural numbers by R+ and N+, respectively,
and all other continuous sets are denoted by calligraphic let-
ters. For a given matrix M ∈ Ro×k, its Frobenius norm is
given by ∥M∥F =

√
tr
(
MT M

)
. For two sets M1 ⊆ Rq, and

M2 ⊆ Rq, the Minkowski sum and the intersection are denoted
by M1 ⊞M2 and M1 ∩M2, respectively. For a set M ⊆ Rq,
its linear map is denoted by LM, where L ∈ Rv×q. For a given
matrix M (can also be a vector or scalar), we denote with JMK
the encrypted value of M. For given vectors a1 and a2 of same
dimension, we denote with Ja1K ⊕ Ja2K and Ja1K ⊖ Ja2K the sum
and difference over the encrypted values of a1 and a2, respec-
tively. For two real scalars a and b, we denote with a ⊗ JbK the
multiplication of the encrypted scalar b with the unencrypted
scalar a. We denote probability of an event E by Pr[E]. The
cardinality of a set M is denoted by |M|. For a given vec-
tor x ∈ Rp, the i-th component of x is denoted by x[i] ∈ R.
We denote the reduce operator returning an over-approximative
zonotope with q generators by ↓q.

2. Preliminaries

In this section, we review the required preliminaries.

2.1. Set Representations and Set-Based Estimation
We define the following set representations:

Definition 1. (Zonotope) ([15]) An n-dimensional zonotope Z
is defined as

Z =
{
x ∈ Rn

∣∣∣∣ x = c +Gβ, ∥β∥∞ ≤ 1
}
, (1)

where c ∈ Rn is the center, G ∈ Rn×e is the generator matrix
of the zonotope, and β ∈ Re is the vector of zonotope factors.

2
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(a) c ⊞ l1 (b) c ⊞ l1 ⊞ l2 (c) c ⊞ l1 ⊞ l2 ⊞ l3

Figure 1: Construction of a zonotope.

For later use, we represent the zonotope by Z = ⟨c,G⟩. Note
that G consists of e generators g(i) ∈ Rn, i = 1, .., e, such that
G = [g(1), ..., g(e)].

This definition can be interpreted as the Minkowski sum

of a finite set of line segments li =
{
g(i)βi ∈ Rn

∣∣∣∣ |βi| ≤ 1
}
,

where i ∈ {1, ..., e} (see Figure 1). For a zonotope Z = ⟨c,G⟩,
we denote its F-radius as ∥G∥F . Given two zonotopes Z1 =

⟨c1,G1⟩ and Z2 = ⟨c2,G2⟩, the Minkowski sum is computed
as Z1 ⊞ Z2 = ⟨c1 + c2, [G1,G2]⟩, whereas the linear map is
computed as LZ1 = ⟨Lc1, LG1⟩ [41].

Definition 2. (Constrained Zonotope) ([42, Prop. 1]) An n-
dimensional constrained zonotope is defined as

C =
{
x ∈ Rn

∣∣∣∣ x = c +Gβ, Aβ = b, ∥β∥∞ ≤ 1
}
, (2)

where c ∈ Rn is the center, G ∈ Rn×ng is the generator matrix,
β ∈ Rng , and A ∈ Rnc×ng and b ∈ Rnc constitute the constraints.
In short, we write C = ⟨c,G, A, b⟩.

2.2. Paillier Homomorphic Cryptosystem and Privacy Defini-
tions

A homomorphic cryptosystem supports computation over
encrypted data. Our protocols heavily rely on Paillier additive
homomorphic cryptosystems [43], which is a probabilistic pub-
lic key cryptography scheme. The Paillier cryptosystem sup-
ports

Decryptsk(JaK ⊕ JbK) = a + b, (3)
Decryptsk(a ⊗ JbK) = a · b, (4)

where sk is the private key associated with the public key pk
used for encryption. We will omit the symbol ⊗ when the type
of multiplication can be inferred from the context. Our pro-
posed protocols can utilize different homomorphic encryption
schemes instead of the Paillier cryptosystem as long as it sup-
ports the same functionality.

Homomorphic encryption does not support float numbers.
The naive solution is multiplying the float number by 10 f where
f is the number of floating digits [44, 45, 46]. However, the
recursive execution of the estimator or the controller generally
requires recursive multiplication with fractional numbers. This
approach requires truncating the significance of the state from
time to time to avoid overflow. Such truncation might lead to
computation errors and fast overflow. We can not use a solution

that introduces computation errors because we provide safety
and set containment guarantees. To overcome this limitation,
we represent float numbers by a positive integer exponent and
an integer mantissa, as we did in our previous work [28]. This
representation provides exact computations. However, it still
suffers from overflows after some iterations.

We define {0, 1}⋆ as a sequence of bits of unspecified length.
An ensemble X = {Xo}o∈N is a sequence of random variables Xo

ranging over strings of bits of polynomial length in o. We need
the following definitions in our privacy proofs.

Definition 3. (Computationally Indistinguishable) ([47, p.105])
The ensembles X = {Xo}o∈N and Y = {Yo}o∈N are computa-
tionally indistinguishable, denoted X

c
≡ Y , if for every prob-

abilistic polynomial-time algorithm D, every positive polyno-
mial p : N+ 7→ R+, and all sufficiently large o, it holds that∣∣∣∣Pr[D(Xo) = 1] − Pr[D(Yo) = 1]

∣∣∣∣ < 1
p(o)
. (5)

In other words, given an algorithm D, we consider the prob-
ability that D outputs 1 given an ensemble taken from the two
random variables Xo and Yo as input. Then, we say X

c
≡ Y if no

efficient algorithm can tell the difference between them except
with small probability 1

p(o) .

Definition 4. (Execution View) Let f : Ro 7→ Ro be a deter-
ministic polynomial-time function and Π a multi-party protocol
computing f (x̄), where x̄ ∈ Ro. The view of the ith party during
an execution of Π on x̄, denoted by VΠi , is (xi, coins,Mi), where
coins represents the outcome of the ith party’s internal coin toss,
and Mi represents the set of messages it has received. For coali-
tion I = {i1, . . . , it} ⊆ {1, . . . , o} of parties, the view VΠI (x̄) of the
coalition during an execution of Π is defined as

VΠI (x̄) =
(
I,VΠi1 (x̄), . . . ,VΠit (x̄)

)
. (6)

This means that the view of the party is all its accessible
information and the view VΠI (x̄) of the coalition I is the union
of all the views of coalition parties.

Definition 5. (Multi-party Privacy w.r.t. Semi-honest Behav-
ior) Let f : Ro 7→ Ro be a deterministic polynomial-time
function and Π a multi-party protocol computing f (x̄), where
x̄ ∈ Ro. For a coalition I = {i1, . . . , it} ⊆ {1, . . . , o} of parties,
we have x̄I = (xi1 , . . . , xit ) and fI(x̄) =

(
fi1 (x̄), . . . , fit (x̄)

)
. We

say that Π computes f (x̄) privately if

• there exists a probabilistic polynomial time algorithm,
denoted by simulator S , such that for every I ⊆ {1, . . . , o}
[47, p.696]

S
(
x̄I , fI(x̄)

) c
≡ VΠI (x̄), (7)
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Plant T

Sensor S1

Sensor Sm

Sensor S2
Aggregator A Query Node Q...

not encrypted
encrypted
coalition

Figure 2: Diagram for the considered setup in Problem 1.

Plant T
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Sensor S(1)m1
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... Manager M(1)

...

Sensor Group G(1)

Sensor S(d)1

Sensor S(d)md

Manager M(d)

Sensor Group G(d)

...

not encrypted
encrypted
coalition

Figure 3: Diagram for the considered setup in Problem 2.

• the input and output of the coalition cannot be used to
infer extra private information.

Put differently, a protocol privately computes f (x̄) if what-
ever can be obtained from a party’s view of a (semi-honest)
execution could be essentially obtained from the input and out-
put available to that party [47, p. 620]. Also, the inputs and
outputs of the coalition cannot be used to infer extra private in-
formation. Thus, our privacy proofs will always consist of the
two parts of Definition 5.

3. Problem Setup

Next, let us introduce some entities for our problem setups
visualized in Figures 2 and 3.

• Plant T: A passive entity whose set of possible states
needs to be estimated. We consider discrete-time linear
systems with bounded noise, specifically

xk+1 = Fxk + nk

yi,k = Hi,k xk + vi,k,
(8)

where xk ∈ Rn is the state at time k ∈ N, yi,k ∈ Rp

denotes the measurement observed at sensor i, F is the
process matrix, Hi,k stands for the measurement matrix,
nk ∈ Qk is the process noise bounded by process noise
zonotope Qk = ⟨0,Qk⟩, and vi,k ∈ Rk is the measurement
noise bounded by measurement noise zonotope Rk =

⟨0, diag([r1,k, . . . , rm,k])⟩. All vectors and matrices are real-
valued and have proper dimensions.

• Sensor Si: Entity with index i that provides private mea-
surements. Its owner does not trust other active entities.

• Aggregator A (or Cloud): An untrusted party which
has reasonable computational power. It executes the pro-
posed private set-based estimation protocols over encrypted
sensor information.

• Query Node Q: An untrusted party that has a known
public key pk and a hidden private key sk. The query
node is the only node that is entitled to know the set of
states of the plant T. It might be the plant T, but can also
be any other entity other than the aggregator A (in order
to preserve privacy).

• Manager M( j): Entity with index j which estimates the
state for a group of sensors and handles communication
with other entities.

• Sensor Group G( j): Entity with index j which consists
of m j sensors S( j)

i , i ∈ {1, ...,m j}, and one manager M( j)

owned by one organization. All sensors within a group
trust each other and do not trust other entities. Each sen-
sor group aims to keep its measurements and estimates
private from other groups and parties.

We provide the following definitions which are essential for
set-based estimation:

Definition 6. (Set-based Estimator) Given system (8) with ini-
tial state x0 ∈ ⟨c0,G0⟩, the set-based estimator aims to find the
corrected state set S̄i,k with state containment guarantees at each
time step k, i.e., ∀k : xk ∈ S̄i,k.

With x0 ∈ ⟨c0,G0⟩, the predicted state set Ŝi,k, i.e., the set of
all possible state values, is, according to (8), given by

Ŝi,k = FS̄i,k−1 ⊞Qi. (9)
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For a given measurement yi,k, the measurement state set Pi,k is
the set of all possible state values satisfying the strip equation,
i.e.,

Pi,k =

{
x
∣∣∣∣ |Hi,k x − yi,k | ≤ ri,k

}
. (10)

Where convenient, we will use the shorthand Pi,k = ⟨yi,k,Hi,k, ri,k⟩

for a strip. The corrected state set S̄i,k is then the over-approxima-
tion of the intersection between Ŝi,k and Pi,k, specifically

S̄i,k ⊇
(Ŝi,k ∩ Pi,k

)
. (11)

We aim to find solutions for the following two problems:

Problem 1. We want to estimate the set of possible state val-
ues of plant T while ensuring that measurements are private to
the sensor nodes S1, . . . ,Sm, m ∈ N+, and the estimated set is
private to the query node Q.

Problem 2. We want to estimate a set of all possible state values
of the plant T while ensuring that measurements and internally
estimated sets are private to the sensor groups G1, . . . ,Gd, d ∈
N+, and the estimated set is private to the query node Q.

To illustrate the practical relevance of Problems 1 and 2,
consider the following scenario:

Example 1. To avoid collisions between traffic participants in a
typical highway scenario (see Figure 4), each participant aims
to perceive and comprehend a traffic situation by predicting the
intent of vehicles and road users. This can be done by com-
puting and sharing the reachable sets of all other traffic partici-
pants, known as shared situation awareness [9]. However, com-
puting these sets is not always possible due to computational
constraints or having a participant in an occluded area from the
perspective of others (see the pedestrian in Figure 4). The dif-
ferent entities are the following: The plant is the combination
of different car dynamics communicated in an initial phase, the
sensors measure the distance between the traffic participants,
the cloud is the aggregator, and the street management unit that
guarantees participants’ safety is the query node, which aims to
compute the estimated set of the position of each participant.
A possible solution hereby is to let the cloud compute reach-
able sets (and possible intersections thereof) while preserving
the privacy of each participant (Problem 1). Specific future sce-
narios may contain a car platoon trusting its participants but not
other platoons (Problem 2).

For both problems it is required to guarantee computational
security during the estimation process. The query node Q is
interested in finding the set of all possible state values of plant
T in both problems. We should note that the group manager
locally estimates over unencrypted data in Problem 2, which is
not the case for Problem 1 (no group manager). If we consider
the group of one sensor, there is still a need for a group manager
to perform the local estimation over unencrypted data, so that
Problem 1 is not a special case of Problem 2.

To set our privacy goals, we must first define the following
coalitions that the attacker can perform for Problem 1:

Definition 7. (Sensor Coalition) A sensor colludes with up to
t−1 other sensors in Problem 1 by exchanging their private mea-
surements and cryptographic private keys, constituting a sensor
coalition. The coalition aims to retrieve the private information
of the non-participating sensors and the query node.

Definition 8. (Cloud Coalition) The aggregator A colludes with
up to t sensors in Problem 1 by exchanging their private values,
cryptographic private keys, and intermediate results, constitut-
ing the aggregator coalition. The coalition aims to retrieve the
private information of the non-participating sensors and query
node.

Definition 9. (Query Coalition) The query node Q colludes
with up to t sensors in Problem 1 by exchanging their private
values, cryptographic private keys, and the final decrypted out-
come of the estimation protocol, constituting the query coali-
tion. The coalition aims to retrieve the private information of
the non-participating sensors.

The same definitions hold for Problem 2 by considering
sensor groups instead of sensors. We consider semi-honest par-
ties [8] following the protocol properly, with the exception that
they keep a record of all its intermediate computations to in-
fer extra information. This paper aims to solve Problems 1 and
2 by proposing multiple secure multi-party computation pro-
tocols. These protocols should guarantee computational pri-
vacy against the aforementioned coalitions. The privacy goals
are based on the concept of computational indistinguishabil-
ity, which is presented next, along with the formal definition of
multi-party privacy with respect to semi-honest behavior while
considering coalitions.

We state and summarize the assumptions of this work sub-
sequently:

Assumption 1. We assume that both process noise nk and mea-
surement noise vi,k are bounded by a zonotope, i.e., nk ∈ Qk =

⟨0,Qk⟩, and vi,k ∈ Rk = ⟨0, diag([r1,k, . . . , rm,k])⟩.

Furthermore, we make the following assumption for the at-
tacker’s ability:

Assumption 2. The attacker can form sensor, aggregator, or
query coalitions (see Definitions 7, 8 and 9).

It is worth mentioning that we exclude an aggregator-query
coalition, which is a common assumption in homomorphic en-
cryption; see [44].

4. Encrypted Set of States

The aforementioned set representations are deliberately cho-
sen such that they can be used with the Paillier cryptosystem
and do not reveal critical information about the measurements
and estimates. More specifically, we propose using zonotopes,
constrained zonotopes, and strips as set representations in privacy-
preserving set-based estimation:
1. Zonotopes: We homomorphically encrypt the center and re-

veal the generator matrix, thus hiding the position of the
zonotope and only revealing the estimation uncertainty (zono-
tope shape) described by the generator matrix.
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Figure 4: Highway scenario with construction work as possible application for Problems 1 and 2. Reachable sets for each car are shown in their respective,
transparent color [48, adapted].
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Figure 5: Changing the effective parameter of constrained zonotope and strips.

2. Constrained zonotopes: To protect the estimation uncertainty
(more privacy) while introducing extra computation over-
head, we use constrained zonotopes instead of zonotopes.
Changing b of a constrained zonotope ⟨c,G, A, b⟩ (see Def-
inition 2) changes both its position and shape as shown in
Figure 5a. We propose to encrypt the vectors c and b and
thus encrypt both position and shape of the set.

3. Strips: For a strip given by (10), we encrypt yi,k, and reveal
Hi,k and ri,k. Encrypting yi,k preserves the privacy of the strip
position as shown in Figure 5b for two strips with Hi,k =

[−1.25, 1], ri,k = 1, and yi,k ∈ {3.5, 9.5}.
The chosen selective encryption will allow us to decouple

the computation of public information from private informa-
tion, as we will show later. We propose two protocols to solve
Problems 1 and 2 while preserving the mentioned privacy goals.
Two variants of the proposed protocols solve the problems us-
ing zonotopes while revealing the estimation uncertainty. The
other two variants solve the problems using constrained zono-
topes while preserving the uncertainty around the estimates. We
start by discussing the protocol solving Problem 1.

5. Private Estimation Using Distributed Sensors

In this section, we introduce a protocol for estimating the set
of possible states using zonotopes and constrained zonotopes
while achieving our privacy goals. We first describe both pro-

tocols using a general set representation and then specify the
required operations for zonotopes and constrained zonotopes.
The query node Q generates the Paillier public key pk and pri-
vate key sk and shares the public key with other parties. It then
chooses a large enough initial set of possible states, enclosing
the true state according to the public information. The initial
set Ŝ q,0 is encrypted by the query node. We add the subscript q
to the set notation to indicate that the set computation is done
at the query node. The initial encrypted set JŜ q,0K is sent to the
aggregator.

Our proposed privacy-preserving approach consists of three
steps: the measurement update, the time update, and sharing
of the results in a continuous loop, as presented in Protocol 1.
More specifically, during the measurement update, the aggre-
gator collects an encrypted strip JPi,kK from each sensor node i
at step k, as shown in Figure 6. The family of encrypted strips
(measurements) is intersected in the encrypted domain with the
predicted reachable set at the aggregator (indicated by subscript
a) – initially, it is the initial encrypted set JŜ q,0K sent by the
query node – to obtain the encrypted corrected set JS̄a,kK, shown
in Figure 6. Finally, the aggregator performs the time update
and sends the encrypted corrected set JŜa,kK, after decreasing
its order, to the query node, which decrypts the result for each
time step k.

We start by describing the required operations for the zono-
topic case. The intersection between zonotopes and a family of
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Protocol 1 Private Estimation using Distributed Sensors

The query node Q encrypts the initial set JŜq,0K and sends
it to the aggregator node to have JŜa,0K = JŜq,0K. At every
time instant k, every sensor node shares an encrypted strip
JPi,kK = ⟨Jyi,kK,Hk, ri,k⟩ with the aggregator which executes
the following steps:
Step 1: Measurement update at the aggregator:

JS̄a,kK = JŜa,k−1K ∩ JP1,kK ∩ · · · ∩ JPm,kK (12)

Step 2: Time update at the aggregator:

JS̃a,kK =FJS̄a,kK ⊞Qk (13)

JŜa,kK = ↓q JS̃a,kK (14)

Step 3: The aggregator sends the encrypted set JŜa,kK to the
query node which decrypts the result for each time step k.

strips can be performed according to [49] and is summarized in
the following lemma:

Lemma 1. ([49, Prop.1]) The intersection Ẑk−1∩P1,k∩· · ·∩Pm,k

of a zonotope Ẑk−1 = ⟨ĉk−1, Ĝk−1⟩ and the family of m strips
P j,k = ⟨y j,k,H j,k, r j,k⟩ in (10), ∀ j ∈ N , |N | = m, is overapprox-
imated by a zonotope Z̄k = ⟨c̄k, Ḡk⟩, where λ j,k ∈ Rn×p is the
design parameter, and

c̄k = ĉk−1 +
∑
j∈N
λ j,k(y j,k − H j,kĉk−1), (15)

Ḡk =
[
(I −
∑
j∈N
λ j,kH j,k)Ĝk−1, λ1,kr1,k, . . . , λm,krm,k

]
. (16)

The factor λ j,k ∈ Rn×p is a degree of freedom in Lemma 1
which we use to maximize the tightness of the intersection over-
approximation. Thus, we want to find Λk =

[
λ1,k, . . . , λm,k

]
that

decreases the uncertainty around the estimates. We achieve this
by computing the Λk that decreases the Frobenius norm of the
generator matrix Ḡk in (16) [50].

During the time update step, the aggregator computes the
time evolution of the estimated encrypted zonotope according
to (13) and (14), i.e.,

ĉa,k =Fc̄a,k, (17)

G̃a,k =[FḠa,k,Qk], Ĝa,k =↓q G̃a,k. (18)

Decreasing the order of the generator matrix, denoted by ↓q,
is done according to [51], which can be done over encrypted set
as the generator matrix is revealed.

The generators do not participate in determining the posi-
tion of the zonotope. Thus, it is sufficient to process over en-
crypted zonotope centers, as clarified in Section 4. Given the
nature of the intersection between the strips and a zonotope in
Lemma 1, the operations in the encrypted domain are decoupled
from the plaintext domain computations. Note that the Paillier
properties in (3) and (4) allow one to process (15) over the en-
crypted center Jc̄kK and measurement Jy j,kK in Protocol 1. This

Sensor Node S1 Sensor Node S2

Aggregator A

Intersection

Strips

Strips

Figure 6: Overview of Protocol (1) where every sensor shares an encrypted
strip with the aggregator, which then privately intersects these encrypted strips
with an encrypted zonotope.

protocol computes (15) in the encrypted domain and (16) in the
unencrypted domain, where we also compute Λk. More specif-
ically, we operate over encrypted centers and measurements as
follows:

Jc̄kK =Jĉk−1K ⊕
∑
j∈N
λ j,k(Jy j,kK ⊖ H j,kJĉk−1K), (19)

Jĉa,kK =FJc̄a,kK. (20)

The generators are in the unencrypted domain in all our algo-
rithms. The Minkowski sum in (13) is computed over encrypted
centers and unencrypted generators.

The next theorem summarizes the privacy of Protocol 1
against different coalitions in Definitions 7, 9, and 8 when we
use zonotopes and strips as sets.

Theorem 1. Protocol 1 solves Problem 1 using encrypted zono-
topes while revealing the shape of the estimated zonotope and
achieving privacy against

• sensor coalitions,

• cloud coalitions,

• query coalitions if mr p > n, where mr is the number of
non-colluding sensors, p the measurement size, n the size
of the state.

The proof is detailed in the Appendix. To overcome the in-
formation leakage in case of query coalitions when mr p ≤ n,
we propose a slight modification by keeping the strip parameter
ri,k private to the sensor and aggregator. Then, the aggregator
swaps the columns of the generator matrix Ĝa,k before sending
it to the query node. Swapping the generator columns produces
the same estimated zonotope, but preserves privacy by prevent-
ing the coalition from computing Λk and thus also prevents the
extraction of the center Jĉa,kK.

Next, we present the required operations using constrained
zonotopes. The following theorem shows the intersection in the
unencrypted domain.
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Lemma 2. The intersection Ĉk ∩ P1,k ∩ · · · ∩ Pm,k of a con-
strained zonotope Ĉk = ⟨ĉk, Ĝk, Âk, b̂k⟩ and the family of m
strips P j,k = ⟨yi,k,Hi,k, ri,k⟩ in (10), ∀ j ∈ N , |N | = m, is a
constrained zonotope C̄k = ⟨c̄k, Ḡk, Āk, b̄k⟩ where λ j,k ∈ Rn×p is
a degree of freedom and

c̄k = ĉk +
∑
j∈N
λ j,k(y j,k − H j,kĉk), (21)

Ḡk =
[
(I −
∑
j∈N
λ j,kH j,k)Ĝk, λ1,kr1,k, . . . , λm,krm,k

]
, (22)

Āk =



Âk 0 0 . . . 0
H1,kĜk −r1,k 0 . . . 0
H2,kĜk 0 −r2,k . . . 0
...

...
. . .

Hm,kĜk 0 0 . . . −rm,k


, (23)

b̄k =



b̂k

y1,k − H1,kĉk

y2,k − H2ĉk
...

ym,k − Hm,kĉk


. (24)

Proof. The results can be obtained by applying an intersection
from [42, Prop. 1] and then adding a degree of freedom from
[42, Prop. 5].

During the measurement update in Protocol 1 when using
constrained zonotopes, the aggregator performs the proposed
intersection over the encrypted center Jĉa,k−1K and the encrypted
constraint shift Jb̂a,k−1K. Note that various combinations of zono-
topes and constraints can represent the same constrained zono-
tope. Here, we exploit the additional degree of freedom in Λk

and choose it at random in our protocol, which improves pri-
vacy, as discussed in the Appendix. Next, the aggregator propa-
gates the sets forward in time according to (8), and then reduces
the order of the given set [42], i.e.,

ĉa,k = Fc̄a,k, G̃a,k = [FḠa,k,Qk], b̂a,k = b̄a,k, (25)

{Ĝa,k, Âa,k} =↓q {G̃a,k, Āa,k}. (26)

The privacy of Protocol 1 against different coalitions in Def-
initions 7, 8, and 9 is summarized in the following theorem.

Theorem 2. Protocol 1 solves Problem 1 using encrypted con-
strained zonotopes while protecting the shape of the estimated
set and achieves privacy against

• sensor coalitions,

• cloud coalitions,

• query coalitions.

The proof is detailed in the Appendix. After presenting our
constrained zonotopic privacy-preserving protocol for Problem 1,
we move on to the privacy-preserving protocol for Problem 2.

Sensor Group G1 Sensor Group G2

Diffusion

Aggregator A

Z1 Z2

Z1

Z2

Z1 ∩ Z2

Figure 7: Overview of Protocol 2 where every sensor group computes the in-
tersection between a zonotope and its strips. The aggregator then computes the
intersection over the encrypted zonotopes.

6. Private Estimation Using Sensor Groups

We provide a privacy-preserving protocol for Problem 2 in
Protocol 2, which is represented graphically in Figure 7 for the
zonotopic case. Each sensor j within group i is participating
with a strip (measurement) set P (i)

j,k at each time step k. All strips
are collected within the group i and are then intersected with
the previously estimated set Ŝa,k−1 in (29) in the unencrypted
domain, as the group participants trust each other and the plain-
text execution is faster than the encrypted domain execution.
The owner of each sensor group encrypts the resulting set S̄ (i)

k
and sends it to the aggregator, which in turn computes the inter-
section of all received encrypted sets in the encrypted domain
in (30). Next, the aggregator performs the time update. Finally,
the aggregator submits JŜa,kK to the query node, which decrypts
the result and sends it to each sensor group.

We first describe the required operations for zonotopes and
then proceed with constrained zonotopes. In the measurement
update step, the intersection between a zonotope and a family
of strips is performed as described in Lemma 1. Unlike Pro-
tocol 1, where we perform the aforementioned intersection at
the aggregator in the encrypted domain, we now intersect at the
sensor group level in the unencrypted domain since each sensor
trusts all other sensors from the same group. Different meth-
ods exist in the literature for the zonotope intersection required
during the diffusion update. Here, we picked our previously
proposed intersection method described in [17], which fits the
homomorphic computations, as summarized in the following
lemma.

Lemma 3. ([17, Th.2]) The intersection Z̄1,k ∩ · · · ∩ Z̄d,k be-
tween d zonotopes Z̄i,k = ⟨c̄i,k, Ḡi,k⟩, i ∈ {1, . . . , d}, can be over-
approximated using the zonotope Z̀k = ⟨c̀k, G̀k⟩ given by

c̀k =
1

d∑
i=1

wi,k

d∑
i=1

wi,kc̄i,k, (27)
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Protocol 2 Private Estimation using Sensor Groups

The query node Q sends the initial set to each sensor group
i ∈ {1, ..., d}, and the aggregator node A. For each sensor

group i, mi strips JP (i)
j,kK = ⟨Jy(i)

j,kK,Hk, r
(i)
j,k⟩, j ∈

{
1, ...,mi

}
,

are available. At every time instant k, the following steps are
executed:
Step 1: Measurement update at each sensor group i:

S̄ (i)
k = Ŝa,k−1 ∩ P (i)

1,k ∩ · · · ∩ P (i)
mi,k

(29)

Step 2: Diffusion update at the aggregator:

JS̀a,kK = JS̄ (1)
k K ∩ · · · ∩ JS̄ (d)

k K (30)

Step 3: Time update at the aggregator:

JS̃a,kK =FJS̀a,kK ⊞Qk (31)

JŜa,kK = ↓q JS̃a,kK (32)

Step 4: The aggregator sends the encrypted set JŜa,kK to the
query node which decrypts and sends the results to the sensor
groups.

G̀k =
1

d∑
i=1

wi,k

[w1,kḠ1,k, ...,wd,kḠd,k], (28)

where the weights wi,k are chosen such that
d∑

i=1
wi,k , 0.

Let wk = [w1,k, . . . ,wd,k], where d is the number of sensor
groups. Ideally, wk is chosen such that the size of the zonotope
Z̀k = ⟨c̀k, G̀k⟩ is minimized. The size of the zonotope appears
in the unencrypted generator matrix due to the selective encryp-
tion, and can be replaced by the Frobenius norm of the genera-
tor matrix. The next theorem summarizes the privacy features
of the protocol against different coalitions in Definitions 7, 9,
and 8.

Theorem 3. Protocol 2 solves Problem 2 using encrypted zono-
topes while revealing the shape of the estimated set and achiev-
ing privacy against

• sensor coalitions,

• cloud coalitions,

• query coalitions if (dr > 1), where dr is the number of
non-colluding sensor groups.

The proof is detailed in the Appendix. In order to solve
Problem 2 without revealing the shape of the estimated set as
in Theorem 3, we again use constrained zonotopes. The in-
tersection between the constrained zonotopes and strips dur-
ing the measurement update of Protocol 1 is done according
to Lemma 2 in the unencrypted domain. Then, the intersection
between the constrained zonotopes is performed, which we de-
scribe next.

Lemma 4. The intersection C̄1,k ∩ · · · ∩ C̄d,k between d con-
strained zonotopes C̄ j,k =

〈
c̄ j,k, Ḡ j,k, Ā j,k, b̄ j,k

〉
is a constrained

zonotope Z̀k = ⟨c̀k, G̀k, Àk, b̀k⟩, where

c̀k = c̄1,k, G̀k =
[
Ḡ1,k, 0, . . . , 0

]
, (33)

Àk =



Ā1,k 0 . . . 0
0 Ā2,k . . . 0
...

...
. . .

...
0 0 . . . Ād,k

Ḡ1,k −Ḡ2,k . . . 0
...

...
. . .

...
Ḡ1,k 0 . . . −Ḡd,k


, b̀k =



b̄1,k
b̄2,k
...

b̄d,k

c̄2,k − c̄1,k
...

c̄d,k − c̄1,k


. (34)

Proof. The lemma is the multi-strip intersection of [42, Prop.
1].

Unlike for zonotopes, Lemma 4 computes the intersection
exactly. Then, the time update is done according to (25) and
(26). The privacy of the protocol against different coalitions in
Definitions 7, 9, and 8 is summarized in the following theorem.

Theorem 4. Protocol 2 solves Problem 2 using encrypted con-
strained zonotopes while protecting the shape of the estimated
set and achieves privacy against

• sensor coalitions,

• cloud coalitions,

• query coalitions.

The proof is detailed in the Appendix. In the next section,
we will evaluate the presented protocols.

7. Evaluation

In this section, we evaluate the proposed protocols using
data from a real-world testbed. We first describe our testbed in
detail and then evaluate the proposed protocols. The protocols
are evaluated on a custom ultra-wideband (UWB) RF testbed
based on the DecaWave DW1000 IR-UWB radio2. The over-
all setup is the same as in [52]. The main components of the
considered testbed can be summarized as follows:

1. The motion capture system consists of eight cameras ca-
pable of performing 3D rigid body position measurements
with an accuracy of less than 0.5 mm.

2. The fixed nodes each consist of a custom-built circuit
board equipped with a ARM Cortex M4 processor with
196 MHz (Figure 8), powered over Ethernet and commu-
nicating via a Decawave DW1000 ultra-wideband radio
(Figure 9).

3. The battery-powered mobile node is a modified CrazyFlie
2.0 helicopter3 (Figure 10) and is equipped with the same
DW1000 radio and ARM Cortex M4 processor.
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Figure 8: Custom anchor with ARM Cortex
M4 processor and UWB slot.

Figure 9: Ceiling-mounted anchor with UWB
radio in 3D-printed enclosure.

Figure 10: CrazyFlie 2.0 quadrotor helicopter
with UWB expansion.

For the sake of a fair evaluation between the four variants of
our two protocols, we used a collected data from the testbed and
ran the four variants on the same set of measurements. We aim
to estimate the set that encloses the location of the quadrotor
while preserving our aforementioned privacy goals. We start
with an initial set of size (8 × 8 m2) covering the whole lo-
calization area at the initial point (time step k = 0). This set
is then iteratively shrunk by using the received measurements
and performing geometric intersections to correct the estimated
set. Figure 11 shows the true values, upper bounds, and lower
bounds of the three-dimensional estimated location of the four
variants of Protocol 1. We omit the results of Protocol 2 as
they are close to the results of Protocol 1. The upper bounds
and lower bounds are obtained by converting the zonotopes and
constrained zonotopes to intervals. It is worth mentioning that
the result using the zonotopic case of Protocol 1 is tighter than
the result using the zonotopic case of Protocol 2. This is be-
cause Protocol 2 requires two over-approximations, namely, the
intersection between every zonotope and the family of strips
and the intersection of the family of zonotopes.

We consider the center of the estimated set to be the single-
point estimate in the zonotopic case. Thus, we report the lo-
calization error with respect to the center of the zonotope. For
constrained zonotopes, the reported center in the representation
is the center of the original zonotope without constraints and
hence can be outside of the constrained zonotope. Therefore,
we compute the Chebychev center of the polytope in the con-
strained zonotope factor space [53]. The estimation error of the
four variants is presented in Figure 12.

There is a trade-off between the provided privacy, the com-
putation overhead, and the exactness of set operations. Con-
strained zonotopes provide more privacy, more computation over-
head, and less conservatism due to the exact set operations. On
the other hand, zonotopes provide less privacy due to revealing
the shape of the sets, less computation overhead, and more con-
servative sets. The trade-off between the provided privacy and
the execution time is presented in Table 1. Keeping the shape of
the estimated set private by using constrained zonotopes instead
of zonotopes increases the required execution time. All compu-
tations were run on a single thread of an Intel(R) Core(TM)
i7-8750 with 16 GB RAM with 1024 key size. The comparison
between the size of the reachable sets appears in Figure 11.

2Decawave DW1000: http://www.decawave.com/products/dw1000
3Bitcraze CrazyFlie 2.0: https://www.bitcraze.io/

8. Conclusions

We proposed the first privacy-preserving, set-based observers
using homomorphic encryption. We considered both a tradi-
tional sensor setup as well as a scenario where trusting sensors
are grouped into sensor groups. We showed that by choosing
zonotopes and constrained zonotopes to represent our sets, it
is possible to selectively encrypt only the critical set parame-
ters while achieving the desired level of privacy. To prove that
privacy for each protocol, the concept of computational indis-
tinguishability was used. Finally, we evaluated our algorithms
on real data from a physical test bed, which showed that the pro-
posed protocols achieve satisfactory results while guaranteeing
privacy.

One main drawback of guaranteeing privacy using homo-
morphic encryption is the overflow problem after a sequence
of operations in the encrypted domain. To overcome the over-
flow limitation, we send the encrypted set to the query node
each time, which decrypts the estimated set and sends the re-
encrypted set back to the aggregator. This solves the overflow
problem at the cost of computation and communication over-
head. However, after the encrypted estimated set is sent from
the aggregator to the query node, decrypting said set is not re-
garded as overhead since the query node is interested in the
estimated set after each time step by assumption, and thus de-
cryption is required anyway. That said, solving the overflow
problem in a more efficient way is an open research problem
that we leave for future work.
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Appendix A. Theorems’ Proofs

We need to show in the following proofs that the views and
simulators of the coalitions are computationally indistinguish-
able and that the input and output of the coalition do not leak
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Figure 12: Estimation error for Protocol 1 using zonotopes and constrained zonotopes.

extra private information according to Definition 5. This will
be done for each type of coalition. Showing the computational
indistinguishability is done by building the views of each coali-
tion then proving that there is an equivalent simulator that could
be obtained from the input and output available to the coalition.

Remark 1. The view V and simulator S are computationally
indistinguishable V

c
≡ S , if they have the same list of values or

have values that are generated according to the same distribu-
tion and independent from other parameters [44].

We denote the quantities obtained by the simulator by (̃),
which follow the same distribution but are otherwise different
from the quantities of the views. We may omit the time in-
dex k from the views and simulators for simplicity. Here, the
coins are random numbers that are used for the encryption pro-
cess and key generation. Further information that is exchanged
between other parties over an encrypted channel is denoted by
JΓXK for coalition X. Note that the encrypted channel uses extra
keys different from the homomorphic encryption keys and uses
double encryption to protect privacy.

Appendix A.1. Proof of Theorem 1
The proof consists of three types of coalitions as described bel-
low.

Appendix A.1.1. Coalition of sensors s
The strip information is considered as the input to the sen-

sor and appears as part of the view and the simulator of the
coalition. We denote the view of coalition s consisting of the
set of sensors s = {s1, . . . , st} by VΠs , which is defined as the
combination of every sensor view and given by

VΠs =
(
VΠs1
, . . . ,VΠst

)

=
(
Hs,k, ys,k, rs,k, Jys,kK, coinss, pk, JΓsK

)
, (A.1)

where the subscript s on Hs,k, ys,k, rs,k denotes an array of strip
information of the coalition. The sensors only submit their en-
crypted data to the aggregator. Hence, a simulator, denoted by
S s, consists of the input and output and by generating J̃ΓsK, J̃ys,kK
and c̃oinss, i.e.

S s =
(
pk,Hs,k, ys,k, rs,k, J̃ys,kK, c̃oinss, J̃ΓsK

)
. (A.2)

The c̃oinss are generated according to the same distribution of
coinss and are independent from other parameters, where the
same is true for J̃ΓsK and JΓsK as well as J̃ys,kK and Jys,kK. There-
fore, we conclude that S s

c
≡ VΠs .

Moreover, the information contained in each strip is inde-
pendent from all others. Thus, the coalition strips cannot be
used to infer new information about other strips. The informa-
tion in each iteration is different from other iterations. That is
why we considered only a single step in the previous proof. In
the following two subsections, we will prove that the view of
each coalition after K ∈ N+ iterations of the protocol is com-
putationally indistinguishable from the view of a simulator that
executes K iterations.

Appendix A.1.2. Coalition of sensors s and aggregator
The view of the aggregator is denoted by VΠa . We denote

the view of a coalition consisting of a set of sensors by s =
{s1, . . . , st} and the aggregator by VΠsa which is defined by

VΠsa =
(
VΠs ,V

Π
a
)
=
(
VΠ,Ks ,VΠ,Ka

)
, (A.3)

where VΠ,Ks and VΠ,Ka are the views of the aggregator and coali-
tion of sensors, after executing K iterations, respectively, and
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Table 1: Execution Time in ms.

Entities

Sensor/Sensor group Aggregator Query

Protocol 1 using zonotopes 2.371 3.195 0.550
Protocol 1 using constrained zonotopes 2.371 6.632 14.529

Protocol 2 using zonotopes 8.389 5.968 0.550
Protocol 2 using constrained zonotopes 81.426 9.787 14.529

are given by

VΠ,k+1
s = (VΠ,ks , I

k+1
s ), VΠ,k+1

a = (VΠ,ka , I
k+1
a ) (A.4)

∀k = 0, 1, . . . ,K − 1, where Ik
s and Ik

a are the newly added data
points at the k-th iteration for the coalition of sensors VΠ,0s = I0

s
and aggregator VΠ,0a = I0

a . The view of the aggregator con-
tains encrypted strips ⟨Hs,k, Jys,kK, rs,k⟩ from the sensors, ini-
tial set ⟨Jĉq,0K, Ĝq,0⟩ from the query node, and the estimated
set ⟨Jĉa,kK, Ĝa,k⟩ at k-th iteration. Let us denote the strip in-
formation of the sensors at the k-th iteration, which are not
part of the coalition by subscript r, i.e., ⟨Hr,k, Jyr,kK, rr,k⟩, k =
0, 1, . . . ,K − 1. Then, Ik

a and Ik
s are

Ik
a =
(
Hs,k, Jys,kK, rs,k,Hr,k, Jyr,kK, rr,k, Jĉq,0K,

Ĝq,0, Jĉa,kK, Ĝa,k, coinsa, pk, q, F,Qk
)
, (A.5)

Ik
s =
(
Hs,k, ys,k, rs,k, Jys,kK, coinss, pk, JΓsK

)
, (A.6)

where Zq,0 = ⟨ĉq,0, Ĝq,0⟩ is the initial zonotope at the query
node and Za,k = ⟨ĉa,k, Ĝa,k⟩ is the estimated zonotope on the
aggregator side at time step k. The view of the coalition VΠsa is
constructed from (A.3)–(A.6). Let the simulator of the coali-
tion be denoted by S sa = S K

sa, where S K
sa is the simulator af-

ter executing K iterations. The simulator S sa can be iteratively
constructed by combining the values obtained at each time step
k as follows:

S k+1
sa = (S k

sa, I
S ,k+1
sa ), k = 0, 1, . . . ,K − 1, (A.7)

where IS ,k+1 is the portion of the simulator generated at iteration
k + 1, which is given by

IS ,k
sa =

(
Hs,k, J̃ys,kK, rs,k,Hr,k, J̃yr,kK, rr,k, J̃ĉq,0K, Ĝq,0,

J̃ĉa,kK, Ĝa,k, c̃oinssa, q, F,Qk, ys,k, pk, J̃ΓsK
)

and where the values are computed or generated as follows:

1. Generate J̃ΓsK, J̃c̄q,0K,J̃ĉa,kK, J̃yr,kK, and J̃ys,kK according to
the same distribution of JΓsK, Jc̄q,0K, Jĉa,kK, Jyr,kK and Jys,kK,
respectively.

2. Compute Ĝa,k according to (16).

3. Let the combination of all coins of the parties be coinssa =

(coinsa, coinss). Generate c̃oinssa according to the distri-
bution of coinssa.

Based on this generation scheme, the values J̃K and JK are
indistinguishable and all remaining variables in IS ,k+1

sa are either
public or feasible through the protocol steps. After all iteration
steps, we end up with a simulator that satisfies S sa

c
≡ VΠsa.

The second part of the proof is about inferring extra private
information from the input and output. The coalition’s target is
to determine the private measurement of the remaining sensors
yr,k. Note that the relation between Jys,kK and Jyr,kK is character-
ized by (A.8).∑

j∈Nr

λ j,kJy j,kK =
∑
j∈N

(λ j,kH j,k − 1)Jĉa,k−1K ⊕ Jc̄a,kK

⊖
∑

j∈N /r
λ j,kJy j,kK︸           ︷︷           ︸

known to the coalition in plaintext

, (A.8)

where Nr is the set of the remaining sensors. Since the coalition
does not have the private key and the query node sends the ini-
tial encrypted center Jĉa,0K, we end up with an underdetermined
system in (A.8).

Appendix A.1.3. Coalition of sensors s and query node
We denote the view of a coalition consisting of a set of sen-

sors by s = {s1, . . . , st} and define the query as

VΠsq =
(
VΠs ,V

Π
q
)
=
(
VΠ,Ks ,VΠ,Kq

)
, (A.9)

where

VΠ,k+1
s = (VΠ,ks , I

k+1
s ), VΠ,k+1

q = (VΠ,kq , I
k+1
q ), (A.10)

∀k = 0, 1, . . . ,K − 1, where Ik
s is given in (A.6), and Ik

q are the
newly added data points from the k-th iteration for the query
node with VΠ,0q = I0

q such that

Ik
q =
(
ĉq,0, Ĝq,0, ĉa,k, Ĝa,k, Jĉa,kK, coinsq, JΓsqK, pk, sk

)
. (A.11)

The view of the coalition VΠsq is constructed from (A.6),
(A.10) and (A.11). The construction of the simulator is sim-
ilar to Section Appendix A.1.2. Thus, we focus on the val-
ues added in the k-th iteration to the simulator. Let the com-
bination of all coins of the parties be denoted by coinssq =

(coinsq, coinss). The inputs and outputs to the coalition are(
pk, sk,Hs,k, ys,k, rs,k, ĉa,k, Ĝa,k, ĉq,0, Ĝq,0

)
. Thus, the simulator

S k
sq can be easily generated by

S k
sq =
(
pk, sk,Hs,k, ys,k, rs,k, ĉq,0, Ĝq,0, ĉa,k, Ĝa,k, J̃ĉa,kK,
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c̃oinssq, J̃ΓsqK, S k−1
sq
)
. (A.12)

The tuples
(
Jĉa,kK, coinssq, JΓsqK

)
and
(
J̃ĉa,kK, c̃oinssq, J̃ΓsqK

)
are generated according to the same distribution and are inde-
pendent from other parameters. Therefore, S k

sq
c
≡ (Ik

s , I
k
q),which

leads to
S sq

c
≡ VΠsq. (A.13)

In case of a coalition between s sensors and the query node,
the aim would be to find the measurements of the remaining
group, denoted by Nr with size mr. Rewriting (A.8) after de-
cryption – as the query has the Paillier private key sk – results
in

Λr,kYr,k = zs,k, (A.14)

where

zs,k =
∑
j∈N

(λ j,kH j,k)ĉa,k−1 + c̄a,k −
∑

j∈N /r
λ j,ky j,k,

Λr,k = [λ j1,k, λ j2,k, . . . , λ jmr ,k] ∈ Rn×pmr ,

Yr,k = [yT
j1,k, y

T
j2,k, . . . , y

T
jmr ,k

]T ∈ Rpmr ,

where zs,k is known to the coalition given that λ j,k is computed
based on the generator matrix. To find the conditions at which
the privacy of Yr,k is ensured, we show that there is no unique
retrieval for Yr,k. This non-unique retrieval requires that (A.14)
has multiple solutions. According to [54, Theorem 6.4], Ỹr,k is
a solution of (A.14) for any Xr ∈ Rpmr with

Ỹr,k = Λ
−
r,kzs,k + (Ipmr − Λ

−
r,kΛr,k)Xr, (A.15)

where Λ−r,k is any generalized inverse of Λr,k. For every solution
Ỹr,k of (A.14) there is an Xr. For Ipmr−Λ

−
r,kΛr,k = 0, the system is

consistent and thus has one solution [54, Theorem 6.1]. There-
fore, we aim to find conditions at which Ipmr−Λ

−
r,kΛr,k , 0 to en-

sure privacy. We have rank(Λ−r,kΛr,k) ≤ min{pmr, n} according
to [54, Theorem 2.8]. Thus, under the condition pmr > n, we
have Ipmr − Λ

−
r,kΛr,k , 0 which ensures the privacy of Yr,k.

Appendix A.2. Proof of Theorem 2

In the following proof, we consider the view and simulation for
one step (i.e., k-th step) for notational convenience. The proof
for K ∈ N+ steps is similar to the proof of Theorem 1. We
are going to prove the privacy against the three coalitions as
follows:

Appendix A.2.1. Coalition of sensors s
The strips information is considered to be an input to the

sensor and appears as part of the view and the simulator of
the coalition. The strips information is exactly the same as for
zonotopes. Thus, the proof is similar to section Appendix A.1.1
and is therefore omitted.

Appendix A.2.2. Coalition of sensors s and aggregator
The aggregator has encrypted strips (Hs,k, Jys,kK,Rs,k,Hr,k,

Jyr,kK,Rr,k) from the sensors, the initial constrained zonotope
⟨Jĉq,0K, Ĝq,0, Jb̂q,0K, Âq,0⟩ from the query node, and estimated con-
strained zonotope ⟨Jĉg,kK, Ĝg,k, Jb̂g,kK, Âg,k⟩ at each k-iteration.
The view of the coalition is defined as

VΠsa =
(
VΠs ,V

Π
a
)

=
(
VΠs ,Hs,k, Jys,kK,Rs,k,Hr,k, Jyr,kK,Rr,k, Jĉq,0K, Ĝq,0, Jb̂q,0K,

Âq,0, Jĉg,kK, Ĝg,k, Jb̂g,kK, Âg,k, coinssa, pk, q, F,Qk
)

(A.1)
=
(
Hs,k, ys,k,Rs,k, Jys,kK,Hr,k, Jyr,kK,Rr,k, Jĉq,0K, Ĝq,0, Jb̂q,0K,

Âq,0, Jĉg,kK, Ĝg,k, Jb̂g,kK, Âg,k, coinssa, pk, q, F,Qk
)
.
(A.16)

The simulation is the same as in Section Appendix A.1.2,
except for the additional information contained in a constrained
zonotope, i.e., the constraints. This results in

S sa =
(
Hs,k, ys,k,Rs,k, J̃ys,kK,Hr,k, J̃yr,kK,Rr,k, J̃ĉq,0K, Ĝq,0,

J̃b̂q,0K, Âq,0, J̃ĉg,kK, Ĝg,k, J̃b̂g,kK, Âg,k, c̃oinssa, pk, q, F

,Qk
)
. (A.17)

We arrive at a simulator that satisfies S sa
c
≡ VΠsa. Thus, similarly

to Section Appendix A.1.2, the coalition cannot infer extra in-
formation from the input and the output.

Appendix A.2.3. Coalition of sensors s and query node
The view of the coalition consists of the view of the sensors

VΠs and the view of the query node VΠq which consist of the
initial estimated constrained zonotope ⟨ĉq,0, Ĝq,0, Âq,0, b̂q,0⟩ and
resultant estimated set ⟨ĉa,k, Ĝa,k, Âa,k, b̂a,k⟩ at each k-iteration as
follows:

VΠsq =
(
VΠs ,V

Π
q
)

=
(
VΠs , ĉq,0, Ĝq,0, Âq,0, b̂q,0, ĉa,k, Ĝa,k, Âa,k, b̂a,k, coinss, JΓsK,
pk, sk

)
(A.1)
=
(
Hs,k, ys,k,Rs,k, Jys,kK,Hr,k, Jyr,kK,Rr,k, ĉq,0, Ĝq,0, Âq,0, b̂q,0,

ĉa,k, Ĝa,k, Âa,k, b̂a,k, coinssq, JΓsqK, pk, sk
)
. (A.18)

The simulator will be again similar to Section Appendix
A.1.3 after adding and generating the constrained zonotope in-
formation, specifically

S sq =
(
Hs,k, ys,k,Rs,k, J̃ys,kK,Hr,k, J̃yr,kK,Rr,k, ĉq,0, Ĝq,0, Âq,0, b̂q,0,

ĉa,k, Ĝa,k, Âa,k, b̂a,k, c̃oinssq, J̃ΓsqK, pk, sk
)
. (A.19)

As before, the generated values J̃ys,kK, J̃yr,kK, c̃oinssq and J̃ΓsqK
are generated according to the distribution of the original values
and are independent from other parameters. Therefore S sq

c
≡

VΠsq.
The coalition aims to find the measurements of the remain-

ing group, denoted by Nr with size mr. Note that Λa,k is chosen
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by the aggregator and not known to the query; additionally, it
is also chosen at random and not dependant on publicly shared
generator matrix. Thus, computing the measurement yr,k ac-
cording to (A.14) is not valid anymore. In contrast to Theo-
rem 1, privacy can be guaranteed in all cases.

Appendix A.3. Proof of Theorem 3

In the following proof, we consider the view and simulation
for one step (i.e., k-th step) for notational convenience. The
proof for K ∈ N+ steps is similar to the proof of Theorem 1. We
prove again the privacy against the following three coalitions:

Appendix A.3.1. Coalition of sensors groups g:
We define the view of a coalition consisting of a of set of

sensor groups g = {g1, . . . , gt} by VΠg by

VΠg =
(
VΠg1
, . . . ,VΠgt

)
=
(
pk,Hg,k, yg,k,Rg,k, Ḡg,k, c̄g,k, Jc̄g,kK, JΓgK, coing

)
, (A.20)

where the subscript g denotes the variables owned by the coali-
tion. The sensor groups only submit their encrypted data to the
aggregator. Hence, a simulator S g, defined by

S g =
(
pk,Hg,k, yg,k,Rg,k, Ḡg,k, c̄g,k, J̃c̄g,kK, J̃ΓgK, c̃oing

)
, (A.21)

is obtained by generating J̃c̄g,kK, J̃ΓgK and c̃oinsg according to
the distribution of (Jc̄g,kK, JΓgK, coing) and are independent from
other parameters. Therefore, we conclude that S g

c
≡ VΠg .

Moreover, the resulting zonotopes from the sensor groups
are independent. As a result, the coalition zonotopes cannot be
used to infer new information about other zonotopes.

Appendix A.3.2. Coalition of sensor groups g and the aggre-
gator:

The view of the coalition is defined by

VΠga =
(
VΠg ,V

Π
a
)

(A.22)

with

VΠa =
(
Jc̄g,kK, Ḡg,k, Jc̄r,kK, Ḡr,k, Jĉa,kK, Ĝa,k, q, F,Qk, coinsa, pk

)
(A.23)

where Jc̄r,kK and Ḡr,k represents the encrypted center and the
generators of the remaining sensor groups which are not part
of the coalition. The simulator, denoted by S ga, can be con-
structed from the input and output (Hg,k,Rg,k, F, pk, q,Qk, yg,k).
Specifically:

1. Add Hr,k and Rr,k as they are public information.

2. Compute Ḡg,k and Ḡr,k according to (16).

3. Compute Ĝa,k according to (18).

4. Generate J̃c̄g,kK, J̃c̄r,kK, J̃ΓgK, and J̃ĉa,kK according to the
distributions of the original values.

5. Let the combination of coins of all parties be coinsga =

(coinsa, coinsg). Generate c̃oinsga according to the distri-
bution of coinsga.

6. Compute c̄g,k according to (15).

We end up with the simulator

S ga =
(
pk,Hr,k,Rr,k,Hg,k, yg,k,Rg,k, Ḡg,k, c̄g,k, J̃c̄g,kK, J̃c̄r,kK, J̃ΓgK,

Ḡr,k, J̃ĉa,kK, Ĝa,k, q, F,Qk, c̃oinsga, pk
)
. (A.24)

Thus, we find that S ga
c
≡ VΠga. The target of this coalition

is to get the zonotopes of the remaining groups, denoted by Nr

with size dr. The centers of the zonotopes are related by∑
j∈Nr

w j
a,kJc̄g j,kK ⊕ Jc̀a,kK

∑
j∈N

w j
a,k =

∑
j∈N /r

w j
a,kJc̄g j,kK. (A.25)

The right hand side of (A.25) is known to the coalition.
However, since the coalition does not have the private key, the
privacy of the centers of the remaining group can be guaranteed.

Appendix A.3.3. Coalition of sensor groups g and the query:
The view of the coalition is defined as VΠgq where VΠgq =(

VΠg ,V
Π
q
)

with VΠq given by

VΠq =
(
Jĉa,kK, ĉa,k, Ĝa,k, q, F,Qk, coinsq, pk, sk, JΓqK

)
. (A.26)

Constructing the simulator S gq from the inputs and outputs
of the coalition as done before results in

S gq =
(
pk, sk,Hg,k, yg,k,Rg,k, Ḡg,k, c̄g,k, J̃ΓqKJ̃ĉa,kK, ĉa,k, Ĝa,k,

c̃oinsgq
)
, (A.27)

which implies that S gq
c
≡ VΠgq. The target of this coalition is

to get the zonotopes of the remaining group, denoted as before
by Nr with size dr. Rewriting (A.25) after decryption – as the
query has the Paillier private key sk – results in

Wr,kCr,k = zg,k, (A.28)

with

zg,k =
∑

j∈N /r
w j

a,kc̄g j,k − c̀a,k

∑
j∈N

w j
a,k, (A.29)

Wr,k = [w j1
a,kIn,w

j2
a,kIn, . . . ,w

jdr
a,kIn] ∈ Rn×ndr , (A.30)

Cr,k = [cT
j1,k, c

T
j2,k, . . . , c

T
jdr ,k

]T ∈ Rndr , (A.31)

where zg,k is known to the coalition. Similarly to the proof of
Theorem 1 and according to [54, Theorem 6.4], C̃r,k is a solu-
tion of (A.28) for any Xr ∈ Rndr where

C̃r,k = W−r,kzg,k + (Indr −W−r,kWr,k)Xr, (A.32)

and where W−r,k is any generalized inverse of Wr,k. For every
solution C̃r,k of (A.14) there is a Xr. If Indr −W−r,kWr,k = 0, we
end up with a consistent system with one solution [54, Theorem
6.1]. Thus, we aim to find conditions at which Indr−W−r,kWr,k , 0
to ensure privacy. We have rank(W−r,kWr,k) ≤ min{ndr, n} ac-
cording to [54, Theorem 2.8]. Thus, under the condition dr > 1,
it follows that Ipdr −W−r,kWr,k , 0 which ensures privacy of Cr,k.
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Appendix A.4. Proof of Theorem 4

In the following proof, we consider the view and simulation
for one step (i.e., k-th step) for notational convenience. The
proof for K ∈ N+ steps is similar to the proof of Theorem 1.
We are going to prove the privacy against the three coalitions as
follows:

Appendix A.4.1. Coalition of sensor groups g :
The view of the coalition can be defined by

VΠg =
(
VΠg1
, . . . ,VΠgt

)
=
(
pk,Hg,k, yg,k,Rg,k, Ḡg,k, c̄g,k, Jc̄g,kK,

Āg,k, b̄g,k, Jb̄g,kK, JΓgK, coing
)
. (A.33)

Again, sensors only submit their encrypted data to the aggrega-
tor. Hence, a simulator S s given by

S g =
(
pk,Hg,k, yg,k,Rg,k, Ḡg,k, c̄g,k, J̃c̄g,kK, Āg,k, b̄g,k, J̃b̄g,kK, J̃ΓgK,

c̃oing
)
, (A.34)

is obtained by generating J̃c̄g,kK, J̃ΓgK, J̃b̄g,kK and c̃oinsg. The
generated and the original values are generated according to the
same distribution and are independent from other parameters.
Therefore, we conclude that S g

c
≡ VΠg .

Moreover, the resulting constrained zonotopes from the sen-
sor groups are independent. Thus, the coalition zonotopes can-
not be used to infer new information about other zonotopes.

Appendix A.4.2. Coalition of sensor groups g and the aggre-
gator:

The view of the coalition, denoted by VΠga, is

VΠga =
(
VΠg ,V

Π
a
)

=
(
VΠg , Jc̄g,kK, Ḡg,k, Āg,k, Jb̄g,kK, Jc̄r,kK, Ḡr,k, Ār,k, Jb̄r,kK, Jĉa,kK,

Ĝa,k, Âa,k, Jb̂a,kK, q, F,Qk, coinsa, pk
)

(A.33)
=
(
Hr,k,Rr,k,Hg,k, yg,k,Rg,k, c̄g,k, Ḡg,k, Jc̄g,kK, Āg,k, b̄g,k, Jb̄g,kK,

Jc̄r,kK, Ḡr,k, Ār,k, Jb̄r,kK, Jĉa,kK, Ĝa,k, Âa,k, Jb̂a,kK, q, F,Qk,

coinsga, pk
)

(A.35)

where ⟨Jc̄r,kK, Ḡr,k, Ār,k, Jb̄r,kK⟩, represents the encrypted con-
strained zonotopes of the sensor groups which are not part of the
coalition. The simulator, denoted by S ga, can be constructed
given the input and output (Hg,k,Rg,k, F, pk, q,Qk, yg,k, b̄g,k, c̄g,k)
as follows:

1. Add Hr,k, Rr,k as they are public information.

2. Compute Ḡg,k and Ḡr,k according to (22).

3. Compute Āg,k and Ār,k according to (23).

4. Compute Ĝa,k according to (28) and reduction operation
similar to (26).

5. Compute Âa,k according to (34) and reduction operation
similar to (26).

6. Generate J̃c̄g,kK, J̃c̄r,kK, and J̃ĉa,kK according to the distri-
butions of the original values.

7. Generate J̃b̄g,kK, J̃b̄r,kK, and J̃b̂a,kK according to the distri-
butions of the original values.

8. Let the combination of the coins of all parties be coinsga =

(coinsa, coinsg1 , . . . , coinsgt ). Generate c̃oinsga according
to the distribution and of coinsga.

We end up with the following simulator

S ga =
(
Hr,k,Rr,k,Hg,k, yg,k,Rg,k, c̄g,k, Ḡg,k, J̃c̄g,kK, Āg,k, b̄g,k, J̃b̄g,kK,

J̃c̄r,kK, Ḡr,k, Ār,k, J̃b̄r,kK, J̃ĉa,kK, Ĝa,k, Âa,k, J̃b̂a,kK, q, F,Qk,

c̃oinsga, pk
)
. (A.36)

Thus, we find that S ga
c
≡ VΠga. Similarly to Section Ap-

pendix A.3.2, the coalition is not be able to infer information
about the constrained zonotopes of the remaining group.

Appendix A.4.3. Coalition of sensor groups g and the query:
The view of the coalition is defined by

VΠgq =
(
VΠg ,V

Π
q
)
=
(
VΠg , Jĉa,kK, Jb̂a,kK, ĉa,k, Ĝa,k, Âa,k, b̂a,k, q, F,

Qk, coinsq, pk, sk, JΓqK
)

(A.33)
=
(
Hr,k,Rr,k,Hg,k, yg,k,Rg,k, c̄g,k, Ḡg,k, Jc̄g,kK, Āg,k, b̄g,k, Jb̄g,kK,

Jĉa,kK, Jb̂a,kK, ĉa,k, Ĝa,k, Âa,k, b̂a,k, q, F,Qk, coinsgq, pk, sk,
JΓgqK

)
. (A.37)

Constructing the simulator S gq from the inputs and outputs
of the coalition is done as before

S gq =
(
Hr,k,Rr,k,Hg,k, yg,k,Rg,k, c̄g,k, Ḡg,k, J̃c̄g,kK, Āg,k, b̄g,k, J̃b̄g,kK,

J̃ĉa,kK, J̃b̂a,kK,˜̂ca,k, Ĝa,k, Âa,k, b̂a,k, q, F,Qk, coinsgq, pk, sk,

J̃ΓgqK
)
, (A.38)

which in turn implies that S gq
c
≡ VΠgq. The target of this coalition

is to get the constrained zonotopes of the remaining groups. As
shown in (33), any center and generator of the coalition can de-
termine the containing zonotope of the constrained zonotope.
However, the remaining rows of the Jb̀a,kK in (34), which be-
longs to the non-colluding sensor group, can not be inferred
from the coalition.
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