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Abstract—Guaranteeing safety for humans in shared
workspaces is not trivial. Not only must all possible situations
be provably safe, but the human must feel safe as well. While
robots are gradually leaving their cages, due to strict safety
requirements, engineers often only replace physical cages with
static safety zones—when the safety zone is entered, the robot
is forced to stop. This can lead to excessive robot downtime.

We present a concept for guaranteeing non-collision between
humans and robots whilst maximising robot uptime and staying
on-path. We evaluate how users react to this approach, in a trial
over three non-consecutive days, compared to a control approach
of static safety zones. We measure working efficiency as well as
human factors such as trust, understanding of the robot, and
perceived safety. Using our approach, the robot is indeed more
efficient compared to static safety zones and the effect persists
over multiple trials on separate days. We also observed that
understanding of the robot’s movement increased for our method
over the course of trials, and the perceived safety of the robot
increased for both our method and the control.

Note to Practitioners—We describe an ISO-standard-compliant
approach for allowing robots to operate safely in areas where
human workers frequently enter. Instead of the robot having to
stop when the worker enters the workspace, the robot can slow
such that it is always able to stop before the worker comes into
contact. This safety control can be implemented in parallel to
existing control and trajectory planning. We conducted tests over
multiple days, so that users had a chance to get used to the robot.
We found that our approach allowed the robot to work with 36%
less stoppage time. We also saw that the workers felt safer after
multiple trials with the robot, and also (for our method) gained a
better understanding of the robots movement. Any sensor, such
as a camera, can be used to track the position of the worker, but
for these tests we used a motion-capture system.

Index Terms—Safe Human-Robot Coexistence, Human Fac-
tors, Formal Verification

I. INTRODUCTION

A
S use cases for robots working in human workspaces

increase, not only on the production line but in ware-

houses, the service industry and elsewhere, humans may often

need to safely enter the robot’s workspace to grab a tool, to

complete a task near the robot (where space is restricted),

or may simply enter by accident. Guaranteeing their safety—

while allowing the robot to work efficiently—is a key concern

for those wishing to introduce robots to their enterprises [1].

Following ISO 10218-1 [2], four modes for robot control

in shared workspaces are allowed:
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1) Safety-rated monitored stop (SRMS)—Robot performs

a controlled stop when a human enters the (collaborative)

workspace, resuming when the human leaves.

2) Hand guiding—A hand-held and hand-operated device

is used to transmit motion commands to the robot.

3) Speed and separation monitoring (SSM)—Humans are

allowed in the robot’s workspace, but the robot limits its

speed and its distance to them.

4) Power and force limiting—The robot’s power and po-

tential impact force are limited to ameliorate severity in

case of impact.

Where robots operate autonomously (i.e. not hand-guided)

and should not permit collisions while in motion (due to e.g.

a risk of clamping, high inertia robots which cannot stop

fast enough, or lack of collision-sensing), two options remain:

SRMS and SSM. The latter is expected to be more efficient,

since robots can work despite humans in the workspace.

A. Safe trajectory planning in human-robot co-existence

Robots in shared workspaces must account for nearby

humans and their immediate motion, but predicting this motion

is a challenge. Predictor models such as Gaussian mixture

models [3], hidden Markov models [4], or other learning

algorithms [5], [6] have been used to estimate most likely

motion from initial movement. To be fully safe, however, we

must account for all possible movement. In previous work

[7] we proposed a method for formally-verified speed and

separation monitoring (VSSM), based on the framework of

partial motion planning [8], using a set-based prediction of

human motion. The robot continually verifies each increment

of motion against safety criteria before executing it, and

accordingly updates its trajectory, without deviating from the

predefined path of the original trajectory. We expect this

method to be more efficient than SRMS, but this must be tested

experimentally. Furthermore, purely mathematical arguments

will not convince those who work with the robot. Do workers

understand how the robot reacts to them? Do they work faster

or slower with VSSM or SRMS? Do they feel safe? We are

therefore also interested in the human reaction—especially

after the novelty of the first encounter has worn off.

B. Trust and perceived safety

A well-engaged workforce comfortable working alongside

robots is not only beneficial for reasons of productivity, but

also on ethical grounds. This is referred to in [9] as psycho-

logical safety. Akalin et al. [10] found that perceived safety in
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human-robot interaction (HRI) correlates with users’ comfort,

sense of control, and trust, when working with a robot that

was sometimes faulty, but that personality (e.g. neuroticism)

played a role. Trust of the developers alone may not be enough

to inspire trust in its systems, since Jensen et al. [11] found

that the system and its developers are perceived as distinct

when assigning blame related to trust of the system. You et

al. [12] found that perceived safety increases users’ intention

to work with the robot in virtual reality (VR). Users wore a

head-mounted display and their movements were tracked and

mapped to an avatar in VR. They also found that separating

working areas with a fence increases perceived safety.

A number of factors affect how much humans trust robots.

Hancock et al. [13] divide these into factors related to the

human (learned abilities and personality), to the robot (its

performance, anthropomorphism, proximity) and to the en-

vironment. The robot’s performance was found to have a

large effect on trust; human-related factors had a smaller

effect. Rossi et al. [14] found that the loss of trust caused

by system errors depends on timing and magnitude of these

errors. Attempts have been made to model (experiential) trust

[15]. Trust could thus be built into algorithms for robot control,

e.g. in [16], where a optimal trajectory planner uses a measure

of trust in its cost function, or in [17], where the control regime

of the robot is switched depending on the level of trust.

C. User studies of adaptation to robots

In industrial human-robot coexistence or in service robotics,

workers may not have prior experience with robots—their first

impressions towards their robotic co-workers may change as

they grow accustomed to them. However, the sheer novelty of

HRI experiments can often lead to unrepresentative responses

from participants in terms of trust and reported safety [18].

Longer-term studies of HRI have focussed on service

robotics [19]–[21], rehabilitation [22], or automated driving

and teleoperation of unmanned vehicles [23], [24]. Industrial

human-robot coexistence suffers from an absence of such

research [25]. In most studies subjects encounter the robot

physically only once (e.g. [26], [27]) or not at all. In the

latter cases, the subject only observes recorded behaviour of

the robot (e.g. [28], [29]). The less contact with the robot,

the less the study can reveal about co-working after the initial

encounter, making it less relevant to real co-working situations.

In [30], habituation to robots’ approach distances and di-

rections was observed after the second independent encounter.

In our own previous experiments [31], users commented that

their perceptions towards the robot changed after a few trials

with the robot. In [32], 60 trials were distributed over three

days and even in the first few trials improvement in operator

performance and trust was found. Based on this precedent, we

also spread the trials over three (non-consecutive) days.

D. Paper Structure and Contributions

This paper presents and evaluates an approach to formally-

verified speed and separation monitoring (VSSM). The ap-

proach is an interplay of trajectory planning and set-based

prediction. The following two sections describe in detail how

the robot plans and verifies its path subject to constraints

on joint acceleration and jerk, and accounting for sensor and

system latency, such that it guarantees safety to surrounding

humans. A version of this planning was presented in [7]; in

Sec. II we generalise the approach, discuss shortcomings of the

method, and how to deal with these shortcomings. In Sec. III,

we describe how sets of human and robot future occupancy

are predicted efficiently to feed into the trajectory planning.

We conducted a multi-day user study—to the authors’

knowledge, the first detailed user study of a formally cor-

rect SSM approach accounting for system latency. We tested

whether VSSM is indeed more efficient than SRMS (result

first reported in [33]) but crucially, how both approaches are

experienced by the human co-worker, and how this changes

with experience with the robot. Specifically, we see how their

understanding of the robot’s motion, attitude towards the de-

velopers and perception of safety change with experience with

the robot. We also show that after experience with the robot,

differences in perceived safety can be observed which cannot

be observed after only one interaction. This lends weight to

the postulation that observations from initial interaction with a

robot cannot give a reliable image of continued interaction. We

present the investigation in Sec. IV, evaluate our hypotheses

in Sec. VI, discuss findings in Sec. VI, and present our

conclusions in Sec. VII.

II. FORMALLY-VERIFIED SPEED AND SEPARATION

MONITORING (VSSM)

Our approach is based on the principle that no action is

carried out, until it is verified safe. While following a desired

trajectory1 in joint space, the robot has at all times a failsafe

manoeuvre at its disposal that will bring it to a safe state before

the human can reach it. The concept is shown in Fig. 1; t0, t1
and t2 are successive time points one cycle-time apart. Prior

to time t0, the robot has verified that it can execute its desired

trajectory from t0 to t1, followed by a failsafe manoeuvre until

te,1, without coming into contact with any human. We call this

piece of trajectory plus failsafe manoeuvre the short-term plan.

While executing the desired trajectory from t0 to t1, the

robot verifies the next short-term plan (from t1 to t2 followed

by a failsafe manoeuvre until te,2) in the same way. If the

potential future spatial occupancies (reachable occupancies)

of the robot and surrounding humans intersect, as is the case

in Fig. 1, the robot might not be able to reach a safe state

before the human reaches it, if it would continue on the desired

trajectory after time t1. Hence, the robot takes the failsafe

manoeuvre verified prior to t0 at time t1 instead. This would

also happen in case a sensor malfunction is detected, or the

perception module is not certain that all surrounding humans

are detected. While executing the failsafe manoeuvre, the robot

plans a recovery manoeuvre back to the desired trajectory, and

verifies this in the same way as it would the desired trajectory.

We now show how to plan the short-term plan in more detail.

1A joint space trajectory is formally defined below in Def. 1.
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Fig. 1. Above: current short-term plan consisting of desired trajectory until
t1 followed by a failsafe manoeuvre, verified safe prior to t0. Below: desired
trajectory is unsafe after time t1, since the robot’s occupancy during the next
short-term plan (green) would intersect the potential future occupancy of the
human (red). Failsafe manoeuvres are shown as dashed lines.

A. Planning the Short-Term Plan

The failsafe and recovery manoeuvres are chosen to be path-

consistent—only scaling the speed along the desired trajectory

subject to limits on joint acceleration and jerk. Trajectory

scaling has been used to ensure trajectories conform to limits

on torque (e.g. [34], [35]) or estimated impact energy [36].

By scaling the speed of the trajectory along the desired

path, we allow adaptation in dynamic environments without

costly spatial replanning; this may be more predictable for

human operators in the sense that they know where the robot

is going to move. Joint jerk limits prevent damage to drives

and vibrations in the robot structure which reduce tracking

accuracy, and result in smooth movement despite the verifier

signal constantly changing between safe and unsafe. Negative

speed, i.e. moving backward along the path, is not allowed.

We define the desired trajectory ξ as a trajectory parame-

trised by a time parameter s (vectors are always in bold type)

and thrice differentiable in s:

Definition 1 (Trajectory). In this work, a trajectory is a

continuous mapping from a time parameter s ∈ [s0, sf ] to

a joint position q ∈ Q (where Q ⊆ Rm is the joint space of

a robot with m joints):

ξ : [s0, sf ]→ Q

By varying ṡ = ds
dt

, we can modulate motion on the spatial

path of ξ to be as fast or slow as necessary (motion on the

desired trajectory has ṡ = 1). The short-term plan therefore

only needs to be described in terms of the time parameter s.
We define the short-term plan starting at tk as a mapping from

time t to the time parameter s, i.e. Ψ : [tk,∞] → [sk,∞] .

Thus, the joint position at time t is ξ(Ψ(t)). Let us formally

define a time-scaling manoeuvre:

Definition 2 (Time-scaling manoeuvre). Let sa, ṡa and s̈a be

the values of s, ṡ and s̈ at time ta, and η ∈ [0, 1]. Then a

time-scaling manoeuvre starting at ta is a monotone function

ψη : [ta,∞]→ [sa,∞] where ψη(ta) = sa, ψ̇η(ta) = ṡa and

ψ̈η(ta) = s̈a, and for all t ≥ tb, ψ̇η(t) = η, for some finite

tb ≥ ta. We call ta the start and tb the end of the time-scaling

manoeuvre. �

In short, a time-scaling manoeuvre brings the robot to follow

its desired trajectory at a fraction η of the speed. The failsafe

manoeuvre is a time-scaling manoeuvre with η = 0, and a

recovery manoeuvre is one with 0 < η ≤ 1.

Overviews of the formally-verified speed and separation

monitoring (VSSM) and the verification algorithm are shown

in Alg. 1 and Alg. 2 respectively. RRO and HRO stand for

the robot and human reachable occupancies respectively. In

Alg. 1, the variables are initialised in lines 1–3. The current

value of s, ṡ and s̈ (represented for legibility in the algorithm

as the vector “state”, see line 7 ), together with the desired

trajectory ξ and the current timestep k, are required for

planning a time-scaling manoeuvre. The VSSM algorithm

starts when the robot is stationary, and the first failsafe plan

in line 3 does not cause the robot to move.

During subsequent timesteps, we execute the control com-

mand from the previously verified short-term plan Ψcurrent

(in line 5), and plan and verify the next short term plan. For

reasons explained in Sec. II-B, we can try several recovery

manoeuvres: in line 8 we loop over a range of η in descending

order, starting from 1 (i.e., trying to recover to the original

trajectory), but no less than the current value of ṡ. The number

of values of η depends on the application and the amount of

computing power available, but at least η = 1 must be tried.

If η is the same as that used in the previous step’s short-

term plan (if it was verified safe in the last timestep), there

is no need to plan a new recovery manoeuvre, since the

robot is already on this manoeuvre. Otherwise, we plan a

recovery manoeuvre ψη (line 10). One step along this recovery

manoeuvre, we plan a failsafe manoeuvre ψ0 (line 12). This

forms the new short-term plan Ψproposed. Note that, if a human

is too far away to be verified unsafe and the robot is moving

at ṡ = 1, the recovery manoeuvre is trivial, i.e. in Def. 2,

tb = ta, η = 1 and ψ̇η(t) = 1 for the entire trajectory. Fig. 2

is a sketch-plot of a short-term plan, showing ṡ versus time t.

We then verify the short-term plan as in Alg. 2. We may use

one safety criterion (e.g. the robot must be stationary when the

human impacts it) or a set of criteria C. Note that the time te,Cκ

after which the robot is safe, which is used as the prediction

horizon, may vary for different criteria—see [7] for an example

of different safety criteria in use. If it is safe under all criteria,

we update the current short-term plan (line 16). Otherwise, if

no value of η yields a safe short-term plan, the robot carries

on executing the previous short-term plan, eventually bringing

it to a stop.

Next, we show in Alg. 3 how to generate failsafe and recov-

ery manoeuvres subject to limited joint jerk and acceleration.

In the following analysis, we denote the Euclidean norm of

a vector z as ‖z‖ and |z| returns elementwise the vector of

absolute values.
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Algorithm 1 Formally Verified Trajectory Planning

Input: desired trajectory ξ, safety criteria C, human sensor

data including timestamp Hth

Output: Safe trajectory

1: k ← 0
2: ηk ← 0
3: Ψcurrent ← stay in safe state

4: while not at goal state do

5: execute control on robot(Ψcurrent, k)

6: ηk+1 ← 0
7: state ← [Ψcurrent(tk), Ψ̇current(tk), Ψ̈current(tk)]

⊤

8: for η ∈ {1, η1, η2, ...} do

9: if η 6= ηk then

10: ψη ← manoeuvre(state, tk, ξ, η)

11: state ← [ψη(tk+1), ψ̇
η(tk+1), ψ̈

η(tk+1)]
⊤

12: ψ0 ← manoeuvre(state, tk+1, ξ, 0)

13: Ψproposed ←

{

ψη(t) tk ≤ t < tk+1

ψ0(t) t ≥ tk+1

14: safek+1 ← verify(k, C,Ψproposed,Hth , ξ)

15: if safek+1 then

16: Ψcurrent ← Ψproposed

17: ηk+1 ← η
18: break

19: k ← k + 1

Algorithm 2 verify

Input: k, safety criteria C = {C1, . . . CK}, short-term plan Ψ,

timestamped human sensor data Hth , desired trajectory ξ

Output: is safe ∈ {0, 1}
1: for κ = 1 : K do

2: Find time te,Cκ
after which robot is safe according

to Cκ, while following Ψ
3: if te,Cκ

> tk then // If robot is not already safe

4: RRO ← find robot reach occ(Ψ, tk, te,Cκ
, ξ)

5: HRO ← find human reach occ(Hth , tk, te,Cκ
)

6: if RRO ∩ HRO 6= ∅ then

7: return FALSE

8: return TRUE

Algorithm 3 manoeuvre

Input: Trajectory parameters, i.e. [sa, ṡa, s̈a]
⊤, current time

ta, desired trajectory ξ, desired end η
Output: time-scaling manoeuvre ψη

1: ∆t← controller timestep

2: iter← 0
3: s′b ← sa + duration heuristic(sa, ṡa, s̈a, ξ)
4: while iter < maximum number of iterations do

5: s̈m,
...
sm ← find limits(sa, s

′
b, ξ, η) // as in eq. 3–

6

6: ψη ← plan traj(s̈m,
...
sm, ṡa, s̈a, η, ta,∆t)

7: if sa + length(ψη) < s′b then

8: return

9: iter← iter + 1
10: s′b ← max(sa + length(ψη), s′b) + ∆t

return

tk

tk+1

tk+2

end of recovery

manoeuvre tb,r

te,k+1
end of failsafe
manoeuvre te,k+2

recovery manoeuvre ψη

starting at tk+1

verified short-
term plan Ψcurrent,

in this case starting

at tk until te,k+1

failsafe manoeuvre ψ0

on the short-term
plan being verified,

starting at tk+2

ṡ

1

0
t

Fig. 2. Short-term plan: During execution of the verified short-term plan from
time tk to tk+1 (bold line), we plan the subsequent short-term plan (dashed
bold line), which comprises one step on a recovery manoeuvre (thin line)
until tk+2, followed by a new failsafe manoeuvre starting at tk+2.

B. Planning time-scaling manoeuvres with limited accelera-

tion and jerk

To plan the time-scaling manoeuvres (failsafe and recovery),

we adapt a method from [37] which finds time-optimal trajec-

tories of joint values q in time, given q and its derivatives at

the beginning and end of the trajectory, and subject to limits

on derivatives of q. Our adaptation uses ṡ instead of q, and

compared to [37], we do not know all parameters a priori:

we must first calculate the maximum values of s̈ and
...
s such

that the required maximum joint accelerations and jerks are

respected. Thus we require:

max
s∈ [sa,sb]

(|ξ̈(s)|) ≤ amax, (1)

max
s∈ [sa,sb]

(|
...
ξ (s)|) ≤ jmax, (2)

for certain maximum joint accelerations and jerks amax and

jmax whose values depend on the robot design. Recall from

Def. 2 that sa and sb are the values of s at the beginning and

end of the time-scaling manoeuvre.

1) Case for η = 1: In [7], we demonstrated that the

conditions in (1) and (2) can be satisfied by bounding s̈ and
...
s

over the length of the manoeuvre as follows. Let us introduce

the vectors θ and λ, which are the (elementwise) maximum

magnitudes of d2ξ
ds2

and d3ξ
ds3

over the portion of the desired

trajectory between sa and sb. I.e, for each joint i, where ξi,
θi and λi are the ith element of ξ, θ and λ respectively, then

θi = maxs∈ [sa,sb]

(∣

∣

d2ξi
ds2

∣

∣

)

and λi = maxs∈ [sa,sb]

(∣

∣

d3ξi
ds3

∣

∣

)

.

It holds [7, Lemma 1] that ξ̈(s) ≤ amax and
...
ξ (s) ≤ jmax

over a scaling manoeuvre starting at sa and ending before

sb, as long as |s̈| ≤ s̈m and |
...
s | ≤

...
sm over the manoeuvre,

where:

s̈m = max(min(c), 0), c =
amax − θ

∣

∣

dξ
ds
|sa

∣

∣+ θ(sb − sa)
, (3)

...
sm = max(min(d), 0), d =

jmax − λ− 3θs̈m
∣

∣

dξ
ds
|sa

∣

∣+ θ(sb − sa)
, (4)

and the min operator takes the minimum element of the

vectors c and d. We do not know sb a priori, hence we use

a conservative estimate s′b that we obtain heuristically (line

3 of Alg. 3; if sb > s′b after planning the manoeuvre, we
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can recalculate with a more conservative estimate of sb, until

s′b ≥ sb.
The manoeuvre is planned in line 6. It is a Type I trajectory

from [37], albeit in ṡ rather than in q. Note—since the

trajectory is in ṡ, “velocity” and “acceleration” in [37] refer

to s̈ and
...
s . If no manoeuvre is found in time, the control

defaults to the previous failsafe trajectory. This is lines 7-10.

2) Case for η < 1: If θ and λ + 3θs̈m are close in value

to amax and jmax respectively, the time scaling manoeuvre

may be long, and calculating s′b would need many iterations,

or may even be impossible (e.g. if s̈m = 0 or
...
sm = 0).

This may present problems in industrial scenarios, where

the joint accelerations and torques on the desired trajectory

may be close to the maximum allowed. Instead, if we plan a

recovery manoeuvre to a final value of η < 1, and enforce

ṡ ≤ η throughout this manoeuvre, c and d in equations (3)

and (4) become:

c =
jmax − η

2θ
∣

∣

dξ
ds
|sa

∣

∣+ θ(sb − sa)
, (5)

d =
jmax − η

3λ− 3ηθs̈m
∣

∣

dξ
ds
|sa

∣

∣+ θ(sb − sa)
. (6)

The derivation of the more general case follows straight-

forwardly from the proof of [7, Thm. 1], when substituting

|ṡ| ≤ η. Hence planning a recovery manoeuvre to a smaller η
may work where planning to recover to η = 1 may fail.

If the extrema of d2ξ
ds2

and d3ξ
ds3

can be analytically calcu-

lated (e.g. as in a joint-space point-to-point trajectory where

position is a polynomial function of the s), finding λ or θ is

straightforward. Otherwise, the extrema can be calculated over

the entire desired trajectory after it is planned (as we did in

Sec. IV).

With these bounds on |
...
s | and |s̈|, it remains to apply the

method from [37] to generate a failsafe or recovery manoeuvre

in ṡ subject to the constraints that s̈ = 0 and ṡ = η (η > 0
for recovery, η = 0 for failsafe) at the end of the manoeuvre,

that 0 ≤ ṡ ≤ η during the manoeuvre, and that the second and

third derivatives of the trajectory parameter s are bounded, i.e.

|s̈| ≤ s̈m and |
...
s | ≤

...
sm.

C. Observed behaviour of the robot

The robot moderates its speed to the maximum allowable to

allow it to reach a safe state in time. When the human is far

away, it works at full speed; when very close, it stops outright.

When fairly close, the robot works at a reduced speed, as it

alternately verifies the recovery trajectory safe and unsafe. The

lower the maximum allowed joint accelerations a and jerks j,

the smoother the robot’s movement, but the more conservative

the robot (since time-scaling manoeuvres are longer).

III. OVERAPPROXIMATIVE OCCUPANCY PREDICTION

The predicted occupancy of the human and the future occu-

pancy of the robot, which are required for VSSM behaviour,

must be overapproximative. That is, they enclose the entire

possible spatial occupancy of the human or the robot during

the given time interval: only then can the guarantees of non-

collision hold, as described in Sec. II. Both occupancies are

determined as sets of capsules (defined formally below), for

which collision checks are fast and deterministic in time

(compared to, e.g. collision checks between polyhedra). Hard

real time is therefore possible with a fast cycle time. The

method to determine robot occupancy is first described in [7].

We recapitulate it here both for completeness, and in order

to give the proof of minimal enclosure of two spheres by

another sphere or a capsule. It has linear complexity in degrees

of freedom (DoFs) of the robot and is a good compromise

of computation time and accuracy, compared to, e.g., more

complex sphere-swept volumes [38].

A. Ball and Capsule Enclosure

We introduce first some operators and terminology. All

norms are Euclidean.

Definition 3 (Closed Euclidean ball (ball)). Define the Eu-

clidean ball centred at p ∈ R3 with radius r (henceforth just

“ball”, for brevity) as:

B(p ; r) = {x | ‖x− p‖ ≤ r}

Let pa,pb denote the line segment between (and including)

pa and pb. We also define the Minkowski sum of two sets:

Definition 4 (Minkowski Sum). The Minkowski sum (⊕) of

set A and set B is defined as:

A⊕B = {a+ b|a ∈ A, b ∈ B}

We can now formally define a capsule:

Definition 5 (Capsule). A capsule C with defining points pa

and pb, and radius r, is defined as:

C = pa,pb ⊕ B(0 ; r)

We now introduce two operators, CE and BE, which enclose

two balls in a minimum-volume capsule, and in a minimum-

volume ball, respectively. Consider the balls B(p1; r1) and

B(p2; r2). Let us define:

ι = indmax(r1, r2), κ = indmin(r1, r2)

x = pι − pκ, α = max(rι − rκ, ‖x‖)

β = min(rι − rκ, ‖x‖) p3 = pκ +
βx

‖x‖

(7)

The operators indmin and indmax give the indices of the

minimum and maximum of their arguments. Let 0 ∈ R3 be

the vector of zeros. We can then define the operators:

CE(B(p1; r1),B(p2; r2)) := pι,p3 ⊕ B(0; rι),

BE(B(p1; r1),B(p2; r2)) := B
(pι + p3

2
;
rι + rκ + α

2

)

.
(8)

The operators BE and CE give the enclosing ball and capsule

with minimal volume; this is shown in Appendix A.

B. Robot Occupancy

We enclose the robot’s geometry in a set of capsules U , see

Fig. 3(a). Recall the definition of a trajectory in Def. 1 as a

function in joint space parameterised by a time parameter s.
Our algorithm yields capsules Ci, which enclose the robot’s
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C1

C2

C3

U1

U3

U2

p1,i(sa)

p1,i(sb)
S1,i

Ci

S2,i

p2,i(sb)

p2,i(sa)

(a) (b)

Fig. 3. (a) the geometry of the robot’s ith link enclosed in a capsule Ui (b)
each link’s occupancy over the short-term plan enclosed in a capsule Ci.

geometry over the section of path from the start sa to the end

sb of the short-term plan; these are the black outlined capsules

in Fig. 3. Fig. 3(a) shows how the robot reachable occupancy

(RRO) is the union of these capsules; Fig. 3(b) shows how

each capsule Ci is calculated.

We perform the computation link by link. Let the Cartesian

positions of the defining points of the ith capsule Ui in the

global frame be p1,i and p2,i. These can be found from

forward kinematics, i.e. p1,i and p2,i are functions of joint

position. Since joint position is in turn a function of path

parameter s, we express the Cartesian positions of the defining

points of capsule i as p1,i(s) and p2,i(s). To obtain the capsule

Ci enclosing the capsule Ui as it moves from sa to sb, we

calculate first the balls S1,i and S2,i, which enclose the path

in space of defining points p1,i(s) and p2,i(s) of Ui as they

move from sa to sb, and enlarge this by the radius of Ui, rUi
:

S1,i ⊇ {p1,i(s)|s ∈ [sa, sb]} ⊕ B(0; rUi
),

S2,i ⊇ {p2,i(s)|s ∈ [sa, sb]} ⊕ B(0; rUi
).

Enclosing the paths from p1,i(sa) to p1,i(sb) and from

p2,i(sa) to p2,i(sb) is not trivial. However, we can approxi-

mate the paths as straight lines and upper bound the deviation

from the lines. Let the upper bounds of

∥

∥

∥

d2p
1,i(s)

ds2

∥

∥

∥
and

∥

∥

∥

d2p
2,i(s)

ds2

∥

∥

∥
for s ∈ [sa, sb] be called α1,i and α2,i respectively.

Since the nominal trajectory is always known prior to the com-

putation of the short-term plan, the values α1,i and α2,i can

be computed in advance. From [7, Thm. 2], these deviations

of p1,i and p2,i are maximally α1,i
(sa−sb)

2

8 and α2,i
(sa−sb)

2

8
respectively. Hence:

r1,i = α1,i
(sa − sb)

2

8
+ rUi

, r2,i = α2,i
(sa − sb)

2

8
+ rUi

,

S1,i = BE(B(p1,i(sa); r1,i) , B(p1,i(sb); r1,i))

S2,i = BE(B(p2,i(sa); r2,i) , B(p2,i(sb); r2,i))
(9)

Balls S1,i and S2,i are enclosed in a capsule to obtain Ci:

Ci = CE(S1,i,S2,i)

If the short-term plan is long, the overapproximation may

be large. In this case, we may subdivide the section of path

occupancy at time t = 0

occupancy at time t = tf

vhuman · tf

Fig. 4. The occupancy of the human, at the time of sensing (t = 0) and at
future time tf . The positions of the spheres and capsules used for defining
the occupancy are determined from the positions of markers on the hands,
elbows, shoulders, and the neck (the marker on the back is not used).

from sa to sb, and take the occupancy as the union of the

volumes calculated for each subdivision.

C. Human Occupancy

In previous work, we showed how the human occupancy

could be determined as a union of sphere-swept volumes,

based on maximum acceleration and speeds determined from

motion capture of extreme movements [39]. However, for a

fair comparison with the SRMS method, we assume only a

maximum speed for the human of vhuman = 2.0m
s

, as used in

Sec. IV-B, eq. (10), and no further assumptions.

The instantaneous occupancy of the human is modelled as

two spheres enclosing the hands, and five capsules enclosing

the two lower arms, two upper arms, and the torso and head

together. These are defined using the positions of retroreflec-

tive markers on the hands, elbows, shoulders, and neck as seen

in Fig. 4, tracked by a 6-camera Vicon Vero 1.3 system, and

include position uncertainty.

The occupancy at a future point in time t = tf from an

observation at time t = 0 is simply the occupancy at t = 0
with the radii of the capsules increased by vhuman ·tf , as shown

in Fig. 4. Consequently, the occupancy during the time interval

[ti, tf ] is equivalent to the occupancy at tf only. The value of

tf is the stopping time of the robot (i.e. the end time of the

short-term plan it is on). Note that t=0 is prior to the time of

verification due to sensor, transmission, and software latency.

In our setup, transmission latency was taken as 1ms, control

cycle time (of robot control including the safety layer) was

2ms and the sensor latency was 4ms (from the camera frame-

rate of 250Hz) plus software latency. The product website2

gives a latency of 2.8ms for 10 objects. We had 7 objects, and

we took the software latency conservatively to be 5ms. This

results in 12ms, meaning the prediction horizon is the length

of the short-term plan plus 12ms.

IV. USER STUDY

As mentioned in the introduction, we compare two operation

modes permitted in ISO 10218-1 [2]: safety-rated monitored

stop (SRMS) and formally-verified speed and separation mon-

itoring (VSSM) using our novel approach, both implemented

2www.vicon.com/products/software/tracker, retrieved:
26.12.2017

https://www.vicon.com/products/software/tracker
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template movement #3

template movement #2

template movement #1

x

y

Fig. 5. Desired trajectory: away from the base in the y-direction for 1.7s,
back for 1.7s. The robot moves randomly between three different starting
positions.

in accordance with ISO 10218-1 [2] and ISO 13855 [40].

We only planned recovery manoeuvres to η = 1 in this

implementation of VSSM.

Below, we present the desired trajectory of the robot used

in our experiments, followed by our implementation of the

control condition, SRMS. We then describe the experimental

procedure, the questionnaires used, and finally our hypotheses.

A. Robot nominal trajectory

The robot’s desired trajectory is a series of predefined

motions in randomised order. We chose these motions since

they did not represent a task that the user could associate

with any level of danger (or safety), were randomised so that

the user could not predict a pattern and use that pattern to

avoid the robot, and there was no possibility of clamping. The

robot first moves to a start position, moves outward (10cm
in the y-direction) for 1.7s, and 15cm inward again for 1.7s.
It then either moves to a new location on the x-axis or stays

in the same location (a movement of between 5 and 60cm).

Afterwards, the robot repeats the outward-inward movement.

There are 3 different x-axis locations, shown in Fig. 5, and

the robot chooses the location for its next outward-inward

movement at random and with equal probability. It does this

continually until the human finishes their task. The maximum

velocity of the tool centre point is 0.43m
s

. The maximum

allowed joint accelerations am and jerk jm were 10rad/s2

and 200rad/s3 for all joints.

The movements of the tool centre point are piecewise

straight-line and limited-jerk in the Cartesian space (i.e., nomi-

nal distance along each straight-line piece of the trajectory is a

quintic polynomial in time). In [41], it is observed that straight-

line movements are better for human performance and well-

being, possibly due to their better predictability. Huber et al.

[42] observed that straight lines with minimum-jerk velocity

profiles led to more fluent handovers, compared to joint space

point-to-point motions with trapezoidal, i.e. non-jerk-limited,

velocity profiles.

B. Safety-rated monitored stop

The SRMS was implemented as a virtual cage: The

workspace of the robot was enclosed in an axis-aligned

bounding box as shown in Fig. 6. This was extended by the

safety distance S as defined in [40, eq. 2], calculated as:

S = (K · T ) + C, (10)

Fig. 6. Workspace simulation with human, robot, workbench, and virtual cage
(red) enclosing the robot workspace.

where the terms are defined as follows:

1) S: the safety distance.

2) K: the maximum speed of the human, vhuman = 2.0m
s

.

3) T : the lag of the entire sensing loop, i.e. the sensor and

transmission latency, control cycle time and robot stop-

ping time. The stopping time was taken as the maximum

over the trajectory: 174ms. The rest was taken as 12ms
as in Sec. III-C. Together, this gave T = 186ms.

4) C: penetration distance: the amount that the human can

penetrate the co-working area without being detected,

relevant for light curtains with a beam resolution. For us,

this is irrelevant, since we use infrared motion capture.

This yields S = 0.372m. If any marker on the human enters

the cage, the robot performs a stop identical to the failsafe

manoeuvre of the VSSM approach described previously.

C. Experimental Procedure

Subjects were healthy, aged between 22 and 30 years old, 13

male and 15 female. Each experiment had two experimenters:

one to interact with the subject, the other to operate the robot.

Subjects were assigned at random to VSSM or SRMS, and

the first experimenter was not made aware of which condition

was assigned. Subjects did not see or interact with any other

subjects in the lab. We had 15 subjects in the VSSM group and

13 subjects in the SRMS group. The robot used for this study

was a 6-degree-of-freedom Schunk LWA 4P with a Schunk

2-finger parallel gripper, running in position control at 500Hz.

Subjects were first informed about the purpose and pro-

cedure of the study, signed a declaration of consent, and

completed questionnaires F0 and F1. They then watched an

instruction video of their task, and the instructor answered

questions pertaining to this (but not the robot or its task), and

attached tracking markers to the subject. The subject’s task

was to assemble a children’s jigsaw puzzle (Fig. 7(a)) on a

table outside the robot’s workspace. The pieces for the puzzle

were in the robot workspace, arranged as shown in Fig. 7(b)

at the robot base. To complete the puzzle, the subject had to

enter the workspace of the robot and pick one piece at a time,

return to the table, and fit the piece in the puzzle, see Fig. 8.

Subjects practiced the puzzle task once without the robot

moving; this was not timed. They then performed their task
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(a) (b)

Fig. 7. (a) The pieces in position at the robot base, (b) the completed puzzle.

Fig. 8. The human’s task: starting at their workbench (top left), the human
approaches (top right) to pick a puzzle piece from the robot base (bottom
right), and place it in the puzzle at their workbench (bottom left). They repeat
this piece-by-piece until the puzzle is completed.

simultaneously with the robot performing its task. Following

this first trial, they completed questionnaire F2, then performed

another 3 trials with the same setup. At the second and third

appointments, 4 trials were conducted. After the last trial,

questionnaires F3 and F4 were completed.

D. Hypotheses

Hypotheses 1-4 pertained to efficiency and were tested by

timing the activity. Human time to completion (TTC) was

measured with a stopwatch; robot idle time was defined as

the nominal planned time of completed robot movements (i.e.

if there had been no slowing/stopping due to humans in the

workspace) subtracted from the actual time the robot took.

Hypotheses 5-12 pertained to human factors, and were tested

via the questionnaires described in Appendix B.

Efficiency hypotheses

H1 VSSM leads to less robot idle time than SRMS;

H2 VSSM leads to different human TTC than SRMS;

H3 Robot idle time decreases with number of trials, for (a)

VSSM and (b) SRMS;

H4 Human TTC decreases with number of trials, for (a)

VSSM and (b) SRMS.

Human factors hypotheses

For VSSM (a) and SRMS (b), subjects:

SRMS VSSM

30
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80

ti
m

e
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)
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80
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(a) (b)

Fig. 9. Box-and-whisker plots showing average robot idle times in (a) the
first 4 trials, (b) the last 4 trials.

H5 have different propensity to trust the system after multiple

trials;

H6 feel different satisfaction with the robot as a co-worker

after multiple trials;

H7 feel different comfort after multiple trials;

H8 have different impressions of the intention of the devel-

opers after multiple trials;

H9 have different understanding of the robot’s movement

after multiple trials;

H10 have different perception of safety of the robot after

multiple trials.

After one trial (a) / after 12 trials (b) with the robot, subjects:

H11 have different perception of safety with SRMS than

VSSM;

H12 have different understanding of the robot’s movement

with SRMS than VSSM.

V. EXPERIMENTAL RESULTS

Robot idle time was 36% less in VSSM than in SRMS,

averaged over all trials. With increasing numbers of trials,

both human TTC and robot idle time decreased. Of the human

factors hypotheses, only perception of safety was seen to

improve in both groups after 12 trials, though understanding

improved in the VSSM group. We describe the results in detail.

A. Efficiency hypotheses

For each subject, we found the mean human TTC and robot

idle time over a) the four trials on the first day, b) the four

trials on the last day, and c) all trials. We tested this data for

normality using the Shapiro-Wilk test [43]. In the SRMS group

the robot idle times on the first day and the human TTC on

the last day were significantly non-normally distributed (p <
0.05 when data is normally distributed), so to test hypotheses

H1 and H2 we used the Kruskal-Wallis H-test [44] 3 and the

median instead of the mean as an average.

H1: The median4 robot idle time in the VSSM group is 38%

lower than that of the SRMS group (p < 10−5) over the first 4

trials and 37% (p < 10−5) over the last 4 trials, showing that

3Kruskal-Wallis H-test does not require normally distributed data; it is the
non-parametric equivalent to the more usual analysis of variance (ANOVA).

4We use the median since the tests were non-parametric. For each person,
their mean TTC and robot idle time was found for each day of trials; for both
groups, the median of these mean times was used to compare.
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Fig. 10. How (a) median robot idle time, (b) the median human TTC
developed over the trials.

TABLE I
IDLE TIME FOR ROBOT AND TTC FOR HUMAN SUBJECT (SECONDS),

MEDIAN AND INTERQUARTILE RANGE

Robot idle time Human TTC

VSSM SRMS VSSM SRMS

Trial med IQR med IQR med IQR med IQR

1–4
avg. 37.1 7.2 59.5 9.4 146.6 31.4 148.1 35.5

5–8
avg. 36.6 8.6 55.0 10.6 137.0 32.5 123.1 26.8

9–12
avg. 35.1 8.5 55.5 8.6 124.2 43.6 117.0 21.0

avg. all

trials 36.2 8.4 56.6 10.3 137.4 36.8 128.5 27.1

the efficiency advantage of VSSM persists even after training.

The median value of each subjects time for all trials was 36%

lower in VSSM than SRMS (p < 10−5). The times are shown

in Tab. I and in box plots in Fig. 9.

H2: no significant difference was found in human TTC, neither

on the first day, nor the last day, nor over all trials.

H3 and H4 test the accustomisation of the human to the

robot. The distribution of the mean TTC and robot idle time

for each subject were not significantly different to normal,

hence repeated measures ANOVA were applied to the data.

H3: a decrease in robot idle time was observed in a) the VSSM

group of 14% (p < 10−4), and b) the SRMS group of 11%

(p < 10−4); see Fig. 10(a).

H4: a decrease in human TTC was observed in a) the VSSM

group of 22% (p < 10−6), and b) the SRMS group of 25%

(p < 10−6); see Fig. 10(b).

B. Human factors hypotheses

The human factors hypotheses are summarised in Tab. II.

For hypotheses H5, H6 and H7, the scales used to measure

propensity to trust, satisfaction and comfort were not internally

consistent when tested using Cronbach’s alpha [45].

For the remaining hypotheses, we checked whether the data

was significantly different from normal using the Shapiro-Wilk

test, using the non-parametric Kruskal-Wallis test between

groups (or Friedman test [46] for repeated measures) if so

and ANOVA (or repeated-measures ANOVA) if not.

TABLE II
SUMMARY OF RESULTS FOR HYPOTHESES

Hypo-

thesis

Shapiro-

Wilk p
Cronbach

α Test p Result

H5, H6,
H7 - < 0.6 - -

not
internally

consistent

H8 (a) - 0.69 - -
insufficient

data

H8 (b) < 0.05 0.69 Friedman 0.0027 accept

H9 (a) > 0.05 0.82* ANOVA 0.0207 accept

H9 (b) < 0.05 0.82* Friedman 0.0833 reject

H10 (a) > 0.05 0.75 ANOVA 0.0128 accept

H10 (b) < 0.05 0.75 Friedman 0.0082 accept

H11 (a) > 0.05 0.75 ANOVA 0.2778 reject

H11 (b) < 0.05 0.75
Kruskal-
Wallis 0.0100 accept

H12 (a) > 0.05 0.82* ANOVA 0.3358 reject

H12 (b) < 0.05 0.82*
Kruskal-
Wallis 0.1832 reject

* omitting item 19 “I was distracted by the robots movement.”

For H6(a), 6 out of 15 answers were “no response pre-

ferred”, so we did not evaluate this hypothesis due to missing

data. H6(b) showed a clear improvement in the trust in the

intention of the developers after trials. H7 showed a significant

improvement in understanding in VSSM; the improvement

was not significant in SRMS (p = 0.0833), however, this

may have been due to a small effect size. If more subjects

had been used, perhaps significance at the 5% level may have

been observed. H10(a) and (b) could be accepted: perception

of safety improves in both the VSSM and SRMS groups after

12 trials compared to after 1 trial.

No significant difference in understanding was found be-

tween the groups (H12) either at the beginning nor at the end

of the experiment. A difference in perceived safety (H11) was,

however: subjects in the SRMS group had higher perceived

safety after all trials than the VSSM group; no significant

difference was found after only one trial.

The last four questions of F4, concerning the attitude of the

subject towards the robot waiting and their self-assessment of

how they adapted to the robot, are shown in Fig. 11.

VI. DISCUSSION

The increased efficiency in VSSM can be explained since

the robot must only alter its behaviour if the human is in

danger of collision, while in SRMS the robot stops as soon as

the human enters its workspace. A subject (from the VSSM

group) also commented that if they saw the robot moving to

one side they would try to take puzzle pieces from the other

side. This adaptation to the robot’s behaviour would improve

efficiency in VSSM, but not in SRMS, where the robot would

stop regardless of where the human is in its workspace. Since
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Fig. 11. Box plots of responses to questions of F4: (a) “I understand how the
robot works better than at the start.”; (b) “I feel safer, when the robot waits
for me.”; (c) “I need more time to adapt to the behaviour of the robot.”; (d)
“It is annoying when the robot waits for me. ” for SRMS (left) and VSSM
(right). 1 is “strongly disagree” and 5 is “strongly agree”.

subjects get faster at the task with practice, both human TTC

and robot idle time decrease over time.

A. Perceived safety

In the first appointment (after the first trial) there was no

significant difference in perceived safety, however, after 12

trials, perceived safety in the SRMS group was significantly

higher than VSSM. This seems to justify the use of longer

trials since distinct effects can be observed after the novelty of

a system has worn off. It also appears to back up the findings

of [12], where separate workspaces increased perceived safety

during tests in VR.

An explanation could be that in SRMS, the robot stopped

earlier and further away from the human than VSSM. In [47]

it is observed that keeping distance even beyond the necessary

safe distance increases subjects’ safety and comfort. However,

several factors, including personality, determine how close the

robot can come for the user’s comfort [48], [49].

Important to note is that perceived safety is significantly

higher after exposure to the robot with both approaches. In

the VSSM group, 6 out of 15 agreed that they need more

time to adapt to the behaviour of the robot, compared to 1

out of 13 in the SRMS group, though most still agreed that

they understood how the robot works better than at the start

(see Fig. 11). It could therefore be the case that subjects just

require more training to feel completely safe with VSSM.

B. Attitudes towards the robot

Only one subject in each group “rather agreed” with the

statement “It is annoying when the robot waits for me”, and

only three subjects in the whole study disagreed with “I feel

safer, when the robot waits for me”. The majority in both

groups felt safer, and not annoyed, when the robot waited

for them. In [26], the human could either go first or yield to

the robot, when workspace conflicts prevented simultaneous

working. The authors concluded that subjects prefer to make

the robot wait for them, on the basis that the robot was idle

for longer than the human. Among other reasons, humans may

prefer to be the dominant partner in the interaction and make

the robot wait: humans have been found to have greater trust

in a less dominant robot [50].

C. Understanding of the robot

Understanding of the robot’s movement increased between

the first and the last trial for our method (i.e. VSSM). This is

shown in Tab. II (hypothesis H9(b)), and also in Fig. 11(a).

There was no significant increase of understanding in the con-

trol method (i.e. SRMS), however, as mentioned in Sec. V-B, if

more subjects had been used, significance at the p < 0.05 level

might have been observed. Furthermore, both at the start and

at the end, there was no significant difference in understanding

between the methods (Tab. II, hypothesis H12). Thus, we

cannot comment on the differences between the methods.

Most subjects began to understand that the robot reacted to

their proximity. One subject (from the VSSM group) believed

that the robot, when recovering back to its original trajectory,

would go faster to try to make up lost time; another believed

that the robot adapted to them over time, and was surprised

to hear this was not the case. A further subject noted that the

robot could improve its efficiency by learning and recognising

the human’s movements so as to avoid them.

D. Elements differing from a factory environment

Differences between this setup and a factory environment

may affect perceived safety and trust in the developers.

1) Differences in setup: Firstly, the harmonic drives on the

robot were loud. On one hand, an advantage of experiments

with a physical robot (as opposed to with video recordings) is

that the robot’s noise and vibrations are impossible to ignore.

On the other hand, one subject said they used the noise to tell

when the robot was moving without looking; this would be

impossible wearing ear defenders on a noisy factory floor.

A retroreflective marker-based system that the user must

wear is also not representative of sensing used in a factory

environment. Camera-based systems may be used, e.g. the Pilz

SafetyEYE5; these are less intrusive, but also less visible to

the user. A visual or audible signal when tracking is on, or a

screen displaying the tracked representation of the user, could

be reassuring and make the user feel safer.

2) Robot Physiognomy: Secondly, the robot is fairly small

(though typical for a co-bot) and has 6 DOFs. The movement

of a redundant (>6-DOF) robot—even in straight lines—may

be more difficult to predict and thus unsettling for the user. The

use of a larger, high-inertia robot may also affect perception

of safety. One subject observed that they would have taken

more care had the robot been faster or the end-effector sharp,

hazardous or undesirable to touch, like a marker pen.

5pilz.com/de-DE/eshop/00106002207042/SafetyEYE-Sicheres-
Kamerasystem, retrieved 11.12.20
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3) Robot Movement: The robot’s task was a set of straight-

line movements. In a factory, workers’ training would include

information on what nearby robots are doing, to various

levels of detail. The amount and depth of training is another

factor that will affect the workers’ understanding, and hence

perception of safety, of the robot. The presence of pinch-points

or clamping hazards, which might occur in a real setting,

would make the robot more hazardous.

Early on in the trials, the low-level control of the robot

stopped working due to a mechanical fault (not during any

trials used in this study). While correcting this problem, we

had to reschedule appointments; though we did not tell the

affected subjects why their appointment was rescheduled, this

could have nevertheless impacted their trust in the system.

The instruction video told subjects to work quickly but

without rushing. There seemed to be a difference in how this

was interpreted, however, the investigators did not interfere

to hurry up slow workers, so as not to influence natural

behaviour when interacting with the robot. In a time-bound

production environment, this would not be the case. Finally,

choosing lower allowable maximum accelerations/jerks for the

failsafe manoeuvre would make 1) the failsafe manoeuvre

longer and cause the robot to start slowing earlier when the

human approaches and 2) the movement smoother during a

failsafe manoeuvre. This may seem less threatening to the user.

E. Attitudes towards the developers and sympathy/antipathy

towards automation

The more positive attitude towards the developers and their

intentions observed at the end of trials for the control method

(i.e. SRMS, hypothesis H8(b)) could be because subjects

associated the developers with those carrying out the user

study; as they got to know them over the course of the trials,

they got to trust them. This would not be the case in a factory

environment, where those working with the robot might never

associate the responsibility for the robot’s operation with a

human being they can trust. A crucial difference to studies

with factory workers is the robot has no impact in the lives

of user-study participants, but may be perceived to impact the

job and employment prospects of factory workers, affecting

workers’ acceptance and therefore trust in the technology [51].

F. Limitations of VSSM

Our tests were with accurate, low-latency sensing. Where

sensor latency is higher (over tens of milliseconds), the reach-

able occupancy of the human must be enlarged by the amount

of latency and the movement of the robot is more conservative.

This is a generic limitation of SSM; where sensor latency is

too high, other modes of co-working, e.g. power and force

limiting, should be considered.

The current method neither learns from human motion, nor

replans the desired trajectory—both useful if the robot is con-

tinually blocked by repetitive, easily predictable movements of

the human. Learning methods can be integrated into VSSM by

modifying the desired trajectory of the robot, as in e.g. [52].

Finally, the human co-worker did not have much insight

into the robot motion. If coupled with visual cues (e.g.

B1B1 B2
B2

p1
p2

p′
2

p′
1

L

(a) (b)

Fig. 12. Cases (a) and (b) in Thm. 1. Note: in (b), spheres might not overlap.

lights/display showing when the robot is slowing its motion

in response to the worker) understanding could be improved.

VII. CONCLUSION AND FURTHER WORK

This paper presents an approach to formally-verified speed

and separation monitoring in human-robot co-working, and

compares it in a user study with an approach based on static

safety zones. Not only the efficiency of the approaches is

compared, but we examine, compare and discuss the human

factors aspects of the approaches. Our study sheds light on

what humans perceive as safe in human-robot co-working and

should pave the way for more in-depth comparative studies

into operating modalities for human-robot coexistence.

Above all, this study does not only report subject’s first

impressions of the robot but also their impressions after

working for some time. This provides a more balanced picture

of human-robot coexistence, since humans in a factory setting

will work with robots over longer periods of time.

A drawback of studies at research institutions is that subjects

are often drawn from institution staff and students, whose

attitudes towards technology may be different to production

line workers, despite the fact we recruited only subjects with

little or no experience of robots. One promising research trend

(e.g. [53]–[55]) is human-robot coexistence studies in factory

environments with a more representative demographic.

APPENDIX A

PROOFS OF MINIMAL VOLUME ENCLOSURE

Theorem 1. The operator BE yields a ball of least volume

that encloses B1 = B(p1; r1) and B2 = B(p2; r2).

Proof. Let r1 ≥ r2, without loss of generality. Consider cases

(a) B2 ⊆ B1 and (b) B2 * B1, shown in Fig. 12. For case

(a), BE(B1,B2) = B1. For case (b), we have from (7) that

α = ‖x‖ = ‖p1 − p2‖. Let L be the line defined by p1 and

p2, and points p′
1 and p′

2 be the intersection of L and the

boundaries of B1 and of B2, as in Fig. 12. Since the enclosing

ball must contain both p′
1 and p′

2, its diameter is at least ‖p′
1−

p′
2‖ = r1 + r2 + ‖p1− p2‖, which is the diameter of the ball

given by BE(B1,B2) in (8) using α = ‖x‖ = ‖p1 − p2‖.

Lemma 1. A sphere S of radius ρs can be fully enclosed in

a capsule C of radius ρc if and only if ρc ≥ ρs.

Proof. Let the defining points of C be pa and pb, and the

centre of S be ps. Sufficiency is easily demonstrated by

choosing ps ∈ pa,pb. Necessity is shown by defining the

intersection points p̂1 and p̂2 of the sphere with a line which
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2r + a ≥ ‖p
1 − p

2 ‖+ r1 + r2

r ≥ r1

a
≥

0
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r
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g
V

decreasing V
decreasing V

Fig. 13. Constrained optimisation problem from proof of Thm. 2. V has
no minimum in the open upper-right quadrant; along the boundaries the V
increases or decreases strictly monotonically, as long as r ≥ r1.

goes through its center and is perpendicular to pa pb. Since the

maximum distance of a point in the capsule to the line pa pb

is ρc, the points p̂1 and p̂2 can only be enclosed if ρc ≥ ρs.

Lemma 2. Consider a capsule C with defining points pa and

pb, and radius r, and arbitrary points px,py ∈ C. Then ‖px−
py‖ ≤ 2r + ‖pa − pb‖

Proof. The distance of the point furthest away from the center

is r + 0.5‖px − py‖. Thus, the maximum distance between

two points in a capsule is at most twice that distance.

Theorem 2. The operator CE yields a capsule of least volume

which encloses B1 = B(p1; r1) and B2 = B(p2; r2).

Proof. Let r1 ≥ r2, without loss of generality. Consider cases

(a) B2 ⊆ B1 and (b) B2 * B1. For case (a), from the

definitions in (7) and (8), CE(B1,B2) = B1.

For case (b), we require to enclose B1 and B2 while min-

imising 4
3πr

3 + aπr2. Lem. 1 means the enclosing capsule’s

radius is r ≥ r1. Let the points p′
1 and p′

2 be defined as in

the proof of Thm. 1 (see Fig. 12(b)). The magnitude of the

distance between the defining points of the enclosing capsule

is denoted by a. Both p′
1 and p′

2 must be contained in the

enclosing capsule, so by Lem. 2, ‖p′
1−p

′
2‖ = ‖p1−p2‖+r1+

r2 ≤ 2r + a. We now have a bounded optimisation problem:

minimise: V =
4

3
πr3 + aπr2

subject to: r ≥ r1, a ≥ 0, 2r+a ≥ ‖p1 − p2‖+r1+r2

The partial derivatives of V are:

∂V

∂r
= 4πr2 + 2aπr,

∂V

∂a
= πr2 (11)

In the open subspace a, r > 0, ∂V
∂r
, ∂V
∂a

> 0, so the

minimum is on the boundaries. On these boundaries, V is

monotonic as can be determined by (11) (see Fig. 13), except

if r1 = 0, in which case B1, B2 and the enclosing capsule

have zero volume. Hence, the minimum is where lines r = r1
and 2r+a = ‖p1−p2‖+r1+r2 intersect. One can verify that

these r and a are those given by the algorithm of CE(B1,B2)
as defined in (7) and (8) in Sec. III-A.

APPENDIX B

QUESTIONNAIRES

The subjects completed 5 questionnaires during the exper-

iment, F0-F4 (labelled in the order the subject takes them).

F0 collected age, gender, and experience with robots. Only

subjects with little or no experience with robots were used.

F1 and F4 measured trust in the robot and feeling of safety,

before and after trials. We used subquestionnaires Propensity

to Trust (PT) and Intentions of the Developers (ID) from the

questionnaire Trust in Automation in [56], where subjects rated

their agreement with statements on a 5-point Likert scale. In

F1 the questions referred to automated systems in general, and

in F4, about our system in particular:

1 One should be careful with {unfamiliar automated systems

/ this system}, (PT)

2 I trust {a system/this system} more than I distrust it, (PT)

3 {Automated systems generally work/This system generally

works} well, (PT)

4 The developers are trustworthy, (ID)

5 The developers take my well-being seriously, (ID)

In F4 we also added the questions 6-7 to gauge the subject’s

self-evaluation of their adaptation to the robot, and 8-9 to

measure how the human feels about the robot waiting for them:

6 I understand how the robot works better than at the start,

7 I need more time to adapt to the behaviour of the robot,

8 I feel safer, when the robot waits for me,

9 It is annoying when the robot waits for me.

Questionnaires F2 and F3 had identical content (statements

10-20) and were administered after the first and the last

trial, respectively. Statements 10-16 were taken from [26].

The authors of [26] classified items 10–12 as pertaining to

the “satisfaction with the robot as a team-mate (TM)”, and

items 13–17 as pertaining to “perceived safety (PS) and

comfort (C)”. We also noticed that item 10 was also related

to perceived safety in a human-robot coexistence scenario. We

omitted their item: “The robot and I worked well together”:

the robot and human did not collaborate, so this question was

irrelevant. We added statements 17-20, concerning how the

subject was able to understand (U) how the robot moved.

10 I trusted the robot to do the right thing at the right time,

(TM/PS)

11 The robot did not understand how I wanted to do the task,

(TM)

12 The robot kept getting in my way, (TM)

13 I felt safe when working with the robot, (PS)

14 The robot moved too fast for my comfort, (C)

15 The robot came too close to me for my comfort, (C)

16 I trusted the robot would not harm me, (PS)

17 The reaction of the robot to me was easy to comprehend,

(U)

18 The robots movement in my presence was confusing, (U)

19 I was distracted by the robots movement, (U)

20 The robots movement surprised me. (U)
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