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Abstract. Data Science plays a crucial role in driving new approaches to process 

optimization. With the increasing complexity of internal logistics systems, data-

oriented methods have become essential in addressing the challenges that arise. 

However, standardized process analytics frameworks are lacking due to the het-

erogeneity of the underlying processes and the resulting data. This article aims to 

address this complexity by presenting a categorization of internal logistics data, 

consolidating the current state of the art. The categorization takes into account 

both real-world and scientifically proposed data architectures, providing a com-

prehensive overview. It includes a classification of comparative data fields based 

on their importance, the associated internal logistics processes, and potential us-

age scenarios. This classification is designed to cater to different use cases, such 

as diagnostics or prescriptive analytics. By presenting this categorization, the ar-

ticle enables practitioners to effectively leverage generated process data in a more 

goal-oriented manner. It empowers them to conduct suitable analyses tailored to 

their specific needs and objectives, based on the provided data architectures. In 

summary, this article offers valuable insights into internal logistics data catego-

rization, providing a framework for practitioners to make informed decisions and 

optimize processes using data-driven approaches. 

Keywords: Data Analytics, Internal Logistics, Process Analysis. 

1 Introduction 

1.1 Initial situation and motivation of the topic 

Internal logistics systems (ILS) are subject to an increasing level of digitization [1]. 

Processes are controlled by information technology (IT) systems such as enterprise re-

source planning (ERP) or warehouse management systems (WMS). The processes, on 

the other hand, generate data which is subsequently stored and further transferred by 

these systems [2]. During recent years, a wide range of process types has been adapted 

to this digital connection, often referred to as Industry 4.0 [3]. This development yields 

the potential for new types of process analysis, which are the result of recent advances 

in the field of data science. One example of this analysis is process mining, a method 

in which data is analyzed from an event-driven perspective, with the goal of obtaining 
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insights and finding process improvement potentials [4]. To that end, the right choice 

of application is referred to as context-aware process mining [5]. However, in order for 

analyses to be beneficial from a practitioner’s perspective, they rely largely on the data 

architecture, i.e., in terms of data maturity, but also in terms of the right choice of ana-

lyzed data fields and a wise choice of data science applications [6, 7]. The main chal-

lenges faced when analyzing process data using digital methods is the heterogeneity of 

this data, and its high specification with regard to the respective process [8]. Depending 

on the IT system recording the data, and on the process type, different data structures 

can be generated in terms of data fields and data types. This issue becomes even more 

challenging given the inherent complexity and heterogeneity of ILS. Consistent docu-

mentation of the ILS process landscape, combined with involved IT systems, the gen-

erated data fields, and how they can be brought together with the objective of effective 

data science applications in mind [9] are all lacking. An interesting scenario from a 

practitioner’s perspective is when a certain dataset is present regardless of any data 

analysis approaches yet implemented. To that end, the objective is often rather to ex-

tract as much value from the given data, instead of acquiring additional data sources. 

1.2 Objective 

Several recent research contributions have addressed the issue of data science in the 

field of ILS [2, 10–13]. However, given their focus on certain individual aspects of this 

ample domain, the applied data structures are highly problem-specific and thus unable 

to consider all facets of this field. A domain-overarching data architecture is necessary 

in order to ensure the broader applicability of future research [14]. A link between data 

creation in different IT systems and data science application with its various goals still 

needs to be established. To enable this link, all relevant ILS data fields must be classi-

fied according to several characteristics, including potential use cases (see Figure 1). 

Therefore, this article aims to reach the following two objectives: 

• Classification of ILS data which considers various IT systems and process 

types 

• Association of relevant data structures with their potential use cases 

By fulfilling these objectives, practitioners cannot just decide which data is neces-

sary in order to execute a desired analysis type. They can also deal with the situation 

that a certain data structure is already given, and that as much value as possible shall 

be derived from it without additional data gathering effort. 
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Fig. 1. Procedure for obtaining, classifying, and applying the datasets in this research. 

2 State of the art 

2.1 Internal logistics process landscape 

ILS processes consist of several elementary activities: conveying, storing, sorting, and 

picking. Conveying covers all transportation processes of goods or persons within a 

locally limited area by technical means. Whenever goods intentionally remain in a cer-

tain position, it is considered to be a storage activity [15]. Sorting describes a diverging 

flow of materials so that transportation units (TU) having certain properties can be sep-

arated from others. Apart from diverging material flows, sorting also covers converging 

ones. All of these processes can be executed with or without the assistance of technical 

devices that are either human-controlled, mechanized, or self-controlled (automated) 

[16]. 

2.2 Process control 

In this article, ILS cover all enterprise activities related to conveying, storage, picking, 

unloading, and loading of goods, including additional processes like packaging. These 

activities can be executed in a manual, a partly assisted, or an autonomous manner. 

However, in order to enable the application of data science, each activity must leave a 

digital footprint. In the case of partly assisted processes, this can be achieved by, e.g., 

using handheld terminals or barcode scanners that allow workers to confirm executed 

process steps and thereby generate timestamps, locations, or order information. The 

generated data is then further transferred and stored, for instance in a WMS or an ERP 

system. 

The various types of IT systems are structured based on the layer-based architecture 

of the automation pyramid (see Figure 2) [17]. The pyramid contains five layers of 

abstraction, leading from basic sensor and actuator data up to enterprise-overarching 

ERP systems.  
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Fig. 2. Automation pyramid, adapted from [17]. 

The data flow in the automation pyramid is as follows: The highest layer generates a 

task and sends it to the lower layers, where it becomes more and more detailed. On the 

lowest layer, the system interacts with the physical environment. After that, the process 

data is in turn recorded and sent to the higher layers again. The transferred information 

becomes increasingly abstracted during this procedure (see Figure 3).  

 

 

Fig. 3. Cascading data transfer between the layers of the automation pyramid. 

The command chain of the automation pyramid is distributed within the following lay-

ers: on the lowest layer, the sensors and actuators of the ILS directly interact with their 

environment [17]. The processing of sensor inputs and generation of actuator outputs 

is organized on the second layer, mostly by programmable logic controllers (PLC) [17]. 

The latter fulfill specific material flow operations, which are generated by material flow 

computers (MFC) on the third layer of the pyramid. MFC decide upon the specific order 

in which tasks are accomplished and serve as the interface between real-time system 

components (PLC) and non-real-time system components (higher layers) [17]. Systems 

on the fourth layer (WMS and MES) are responsible for all operations in a certain sub-

domain of the overall enterprise process [17]. They thereby offer the possibility for data 

consolidation, which is necessary for the aggregation of substantial Key Performance 

Indicators (KPI). Above that, the ERP system is responsible for the long-time planning 

of enterprise processes and the coordination of all necessary subprocesses [17]. It 

should be noted that, when a sub-process contains manual activities instead of being 

fully automated, the human operator takes the role of the two lower layers, i.e., taking 
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commands from a terminal linked to an MFC-equivalent control system and giving 

confirmations to this terminal. 

2.3 Data analysis 

The data being generated by these systems can contain various types of information, 

which is usually represented by the choice of appropriate data types. Numeric infor-

mation on an ordinal scale can be covered as integers, whereas interval scale values 

need single or double precision float data fields for their representation. Timestamps 

can be recorded either as integers when a suitable conversion is available, or as datetime 

data. String data fields are able to cover the broadest range of information, but, since 

they are unstructured, their subsequent data analysis is most complicated.  

Most research publications in the field of ILS processes have considered only a cer-

tain subdomain of the entire process and system landscape. For instance, machine learn-

ing is used to predict the behavior of inbound unloading processes based on historic 

data [13]. In a specific application of conveying operations, which are examined on the 

fifth layer of the automation pyramid (the ERP layer), analyses like Sankey diagrams 

can be deduced [2]. Another approach combines data from the fifth and fourth (MES) 

layer in order to set up a simulation model which can be used for process optimization 

[11]. Furthermore, the consolidation of process data can lead to the application of pro-

cess mining. However, the underlying data structure is limited to one certain type of 

subprocess [12]. Also, there is one approach in which data sources from more different 

layers is considered: in addition to the fourth and fifth, also the second layer (PLC) is 

taken into account for the prediction of KPI of the ILS [10]. However, this approach 

only addresses the particularities of process simulation models. Finally, there is the op-

tion of deriving process optimization potentials from a combination of business process 

modeling and simulation models [18]. One main challenge when following this ap-

proach is the need for manual parametrization of the models, which could be automated 

using data science. 

2.4 Summary 

Condensing the findings from the state of the art leads to the following conclusion: the 

ILS process landscape is usually vertically structured, following the principle of the 

automation pyramid. Assuming a sufficient level of automation (and thus digitization) 

of the subprocesses involved, the generated data can be analyzed starting from a mere 

description of the database, up to the automated generation of recommendations for 

process optimization. However, existing research either only deals with isolated con-

siderations of individual subprocesses, or is limited to a specific application scenario 

for the data, e.g., process simulation parametrization or process mining. As a result, the 

overarching consolidation of ILS process data aiming for a generalized data analysis 

application can be identified as a research gap being addressed by this article. 
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3 Sample datasets from ILS processes 

In this article, several ILS were considered in order to obtain a fundamental database 

able to cover the potentially broad variety of this process landscape. These datasets 

were extracted both from applications within industrial companies and research pro-

jects. They have been pseudonymized and condensed for this research work. All in all, 

the following processes were covered (for an overview, see Table 1): 

1. Automated storage system: high rack with stacker cranes (Elementary ILS process: 

Storage; Data transfer: between PLC and MFC layer) 

2. Automated transportation process: conveying of TU in load units, several units be-

ing attributed to single tasks, executed by an automated small-parts warehouse (El-

ementary ILS process: Storage; Data transfer: between WMS and ERP layer) 

3. Data field structure for the information interchange between MFC and WMS (Ele-

mentary ILS process: Storage; Data transfer: between MFC and WMS layer) 

4. Inbound logistics: forklift trucks for the transportation from goods receipt to the 

storage (Elementary ILS process: Conveying; Data transfer: between WMS and 

ERP layer) 

5. Manual picking process: picking of various articles in a shelving rack according to 

pick lists (Elementary ILS process: Picking; Data transfer: between MFC and WMS 

layer) 

6. Multi-process ILS: combination of automated small-parts warehouse and stacker 

crane-operated high rack storage system for various articles, synchronized with 

transfer vehicles (Elementary ILS process: Storage, Conveying, Sorting; Data 

transfer: between MFC and WMS layer) 

7. Standardized data transfer protocol for the operation of automated guided vehicles 

(AGV): communication of AGV with the overarching process control (Elementary 

ILS process: Conveying; Data transfer: between PLC and MFC layer) [19] 

8. String-based data protocol for the information interchange between MFC and PLC 

(Elementary ILS process: Storage; Data transfer: between PLC and MFC layer) 

9. Transportation process executed by tugger trains: data regarding the trips on differ-

ent transportation routes within a production material replenishment process (Ele-

mentary ILS process: Conveying; Data transfer: between WMS and ERP layer) 

10. Transportation tasks: data from conveying systems (Elementary ILS process: Con-

veying; Data transfer: between WMS and ERP layer) 
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Table 1. Overview of the considered ILS sample datasets. 
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The processes considered in this paper cover all of the elementary ILS processes. Figure 

4 arranges the available datasets in the automation pyramid. Consolidation of the exist-

ing data fields within these datasets thus represents a broad overview of the ILS land-

scape. From this point, a framework for the classification of ILS data and an assignment 

to potential use cases can then be developed. 

 

Fig. 4. Sample datasets assigned to the layer transitions of the automation pyramid. 

3.1 Classification of data structures 

As explained in the previous section, the various elementary processes of ILS are often 

embedded in different IT landscapes. The generated data is consolidated on several 

layers of the automation pyramid. In addition, the ILS processes usually differ by var-

ious characteristics. From the perspective of a practitioner, a classification of data ac-

cording to a maturity model must be executed individually for each subprocess. If the 

data is inconsistent with its description (i.e., existing metadata), its meaningfulness is 

diminished [20]. The analysis of data can be grouped into three levels (see Figure 4). 

Descriptive analytics cover the consolidation and preprocessing (e.g., outlier elimi-

nation) of data fields with the objective of identifying and visualizing patterns and 

anomalies in the data [21]. Obtaining and consolidating the data is covered by the ex-

tract-transform-load (ETL) process [2]. More sophisticated yet, predictive analytics en-

able the diagnosis and monitoring of the system, thereby explaining certain phenomena 

in the ILS behavior [21]. 

As Figure 5 shows, such objectives can still be achieved by applying data mining 

scenarios. Further on, a prediction model can be set up that uses algorithms to predict 

future behavior and the development of relevant KPI based on historic values. The key 

to this approach is a model using optimization metrics such that the algorithm can iter-

atively improve the accuracy of the prediction. [22]. Therefore, machine learning ap-

proaches are necessary [23]. The mightiest and most complex level of data science, 

prescriptive analytics often incorporates simulation to deduce suggestions for system 

optimization [21]. If the model is able to identify and apply optimizations on its own, 
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it can execute tasks similar to those of a human operations manager. The behavior of 

this highest level of data science can thus be classified as deep learning [22]. 

 

Fig. 5. Evolutionary steps of data science, adapted from [21]. 

3.2 Application on the sample data 

The consolidation of all data fields from the ten ILS process datasets introduced in the 

previous section leads to the classification shown in Table 2, Table 3, and Table 4. 

Table 2. Data classification (Part I: core data). 

No. Name of information Exemplary 

data type 

Process types 

1 Task number String Storage, Picking, Conveying, Sorting 

2 Protocol time Datetime Storage, Picking, Conveying, Sorting 

3 Source position String Storage, Picking, Conveying, Sorting 

4 Target position String Storage, Picking, Conveying, Sorting 

 

The tables are sorted (column: No.) by decreasing frequency of the respective data field, 

No. 1 appearing in 9/10 and 26-33 in only 1. The name of information is a generaliza-

tion of the (mostly different) names the respective type of process information is given 

in the datasets. The exemplary data type column shows how the information is repre-

sented. If different types were used among the datasets, the most general one was con-

sidered in the table (integer – float – datetime – string, with ascending generalization). 

The process types are created as a reference between the elementary processes covered 

by a certain dataset, and the datasets that cover a certain data field. Again, if several 

process types apply, then all are mentioned in the table. 
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Table 3. Data classification (Part II: extended selection No. 1). 

No. Name of information Exemplary 

data type 

Process types 

5 Protocol number String Storage, Conveying, Sorting 

6 Number of position in task String Storage, Conveying, Sorting 

7 Current position Integer Storage, Conveying, Sorting 

8 Type of target position String Storage, Conveying, Sorting 

9 Loading equipment type String Storage, Conveying 

10 Material number String Storage, Conveying, Sorting 

11 Quantity Integer Storage, Conveying, Sorting 

12 Weight Integer Storage, Conveying, Sorting 

13 Status Float Storage, Conveying, Sorting 

14 User String Storage, Conveying, Sorting 

15 Next position String Storage, Conveying, Sorting 

 

As the separation of data fields into three different tables (the latter ones being called 

extended selection) indicates, not all types of process information share the same rele-

vance for applications of data science. The information represented in Table 2 should 

always be present when examining the respective subprocess on any particular layer of 

the automation pyramid, even if the methods applied only cover elementary data mining 

scenarios (i.e., descriptive analytics or diagnostics). The data covered by this table de-

scribes atomic material movements within ILS processes. Albeit being rudimentary, 

insights can be gathered for example by creating a histogram that depicts the time spent 

by TU between certain positions over a list of tasks. Data from Table 3 becomes more 

relevant when addressing more sophisticated process analytics approaches, i.e., it is 

necessary to apply approaches like machine learning models in predictive analytics sce-

narios to turn data into insights. Therefore, data fields in this table cover information 

that can be used to interpret the overall process rather than individual movements. For 

the creation of predictive analytics models, there is a need for data fields which describe 

more than just the output behavior to be predicted (e.g., the time spent within the sys-

tem). Information such as material number or weight allow the prediction model to 

deduce an output parameter behavior that depends on those process information inputs. 

The information covered in this table is also typically collected by a conventional, an-

alog value stream analysis [24]. Finally, Table 4 contains supplementary information. 

It is not compulsory for initial data exploration or description, and various analysis 

types can be used without having access to it. However, with the most complex and 

mighty data science applications (such as artificial intelligence as an enabler for pre-

scriptive analytics), additional insights can be generated by considering this data. A 

prescriptive analytics model will usually not rely on all those fields to deduce an opti-

mization potential, but it cannot be determined in advance which information is actually 

required. Just like a human process optimization expert, improvements can often only 

be reached when all information is made available. 
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Table 4. Data classification (Part III: extended selection No. 2). 

No. Name of information Exemplary 

data type 

Process types 

16 Time of task creation Datetime Storage, Picking, Conveying, 

Sorting 

17 Priority Integer Storage, Conveying, Sorting 

18 Type of source position String Storage 

19 Quantity before task fulfillment Integer Storage 

20 Type of task String Storage, Conveying 

21 Previous position String Storage, Conveying, Sorting 

22 Type of current position String Storage, Conveying, Sorting 

23 Type of next position String Storage, Conveying, Sorting 

24 Loading equipment ID String Storage, Conveying, Sorting 

25 Quantity after task fulfillment Integer Storage 

26 Length Integer Storage, Conveying, Sorting 

27 Width Integer Storage, Conveying, Sorting 

28 Height Integer Storage, Conveying, Sorting 

29 Volume String Conveying 

30 Target system of data transfer String Conveying 

31 User person Integer Conveying 

32 Assignment of user and person Datetime Conveying 

33 Route Datetime Conveying 

34 Tour String Conveying 

35 Duration of tour String Conveying 

36 Due date String Conveying 

37 Starting time String Conveying 

3.3 Results of the application 

A summarizing association of these data structures with appropriate application scenar-

ios can be derived on the basis of the consolidation and classification of various data 

fields. Therefore, the user must follow several steps when implementing data science-

based process analyses building on an existing database: First of all – for all existing 

ILS subprocesses – the existing data transfer interfaces need to be merged according to 

the respective layer of the automation pyramid. The data maturity must then be assessed 

[7]. One can then determine which subprocesses should be considered for data-based 

process analytics. After that, the user must check which data fields are available on the 

different layer transitions for each subprocess being analyzed. The potential scope of 

data science applications can be determined based on the importance of the data fields 

indicated by Table 2, Table 3, and Table 4. Finally, a suitable set of process analytics 

algorithms can be selected. In this context, core data must be available for the most 

basic descriptive and diagnostic data mining scenarios. For more sophisticated predic-

tive analytics use cases, the more important fields from the extended data selection must 

be available so that machine learning algorithms can be trained and thus generate 
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meaningful insights. If all of the extended data fields are available, artificial intelligence 

is then able to determine prescriptive analytics in the form of improvement suggestions. 

4 Conclusion 

4.1 Interpretation 

The preceding section of this article developed a classification of process data and the 

association of suitable data science applications for process analytics. Intended for prac-

titioners in the domain of process analysis and optimization, this article contributes to 

a systematic assessment of the existing database and supports in selecting suitable al-

gorithms able to fulfill their purpose. In an early phase of the process analysis, it can 

already be determined which subprocesses can be analyzed in a reasonable way, and 

what degree of data analysis is appropriate. Reciprocally, it can be deduced which ad-

ditional data would be necessary so that a desired stage of data analysis could be exe-

cuted. This means it is not necessary for practitioners to integrate specific data sources 

to obtain a highly specific set of analyses, but instead, the optimum of potential insights 

from a given data base can be drawn. 

The consolidation of various sets generated by several industrial enterprises and re-

search projects ensures the necessary generalizability of the findings. The gap in exist-

ing data science publications within the ILS domain was able to be addressed. 

However, in order for data science projects to be successful, the need for process 

experts with a reasonable amount of implicit process knowledge still exists. That is, 

without this expert knowledge, an appropriate assessment of the database is not possi-

ble, and the conclusions drawn by the application of the presented findings could be 

misleading. This means that this research cannot fully substitute humans in ILS process 

analysis and optimization, but rather play an important role in supporting humans and 

reducing work effort, while at the same time ensuring a timely estimation of target at-

tainment. 

4.2 Limitations 

The findings presented herein allow for a classification of process data enabling the 

reasonable selection of applications scenarios. However, target-oriented data science 

frameworks for all of these application scenarios are not fully present. In other words, 

further data science methods should be developed in addition to the research works 

discussed in the state of the art. Furthermore, the classification presented in this article 

must be tested – using various datasets and data science applications – in order to de-

termine whether it is fully applicable in every possible scenario. Specifically, the tran-

sition between the three data tables presented is not sharp and clear. Depending on the 

individual circumstances, data science models to be applied might differ from the clas-

sification provided in this article. This situation leads to research tasks that need to be 

covered by future works. 

Furthermore, the availability of data fields alone is necessary, but it is not sufficient 

for the application of certain data science methods. As indicated in data maturity 
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models, the columns must be consistently filled with entries, and these entries must be 

meaningful with respect to the definition of the data architecture. Especially when ap-

plying methods with optimization metrics, e.g., machine learning or artificial intelli-

gence, the generated results can only be as good as the input data. 

4.3 Conclusion and outlook 

Given the data classification presented herein for optimization scenarios in the domain 

of internal logistics, a reasonable tool for practitioners in the operations management 

can be provided. Deduced from a broad set of data sources, the findings can help to 

successfully implement data science projects given that the knowledge of process ex-

perts is present as well. Thereby, the first research objective has been addressed. The 

classification allows a differentiation between descriptive analytics, predictive analyt-

ics, and prescriptive analytics approaches. Sensible analysis methods can thus be de-

duced following this classification. At the same time, the different types of process in 

the ILS domain are considered. With that in mind, also the second research objective 

can be considered as achieved. Industrial application projects can be set up with no 

need for an objective-specific integration of additional data sources in advance. 

In the future, a further detailing of the entire framework by developing target-ori-

ented process analytics applications could help to enhance the generalizability and ap-

plicability of the findings presented. Furthermore, by applying the framework to differ-

ent industrial use cases, the validity of the approach could be examined with the per-

spective of discovering potential issues for improvement. 
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