
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 1

Generation of Tailored and Confined Datasets
for IDS Evaluation in Cyber-Physical Systems

Thomas Hutzelmann, Dominik Mauksch, Ana Petrovska, and Alexander Pretschner

Abstract—The state-of-the-art evaluation of an Intrusion Detection System (IDS) relies on benchmark datasets composed of the regular

system’s and potential attackers’ behavior. The datasets are collected once and independently of the IDS under analysis. This paper

questions this practice by introducing a methodology to elicit particularly challenging samples to benchmark a given IDS. In detail, we

propose (1) six fitness functions quantifying the suitability of individual samples, particularly tailored for safety-critical cyber-physical

systems, (2) a scenario-based methodology for attacks on networks to systematically deduce optimal samples in addition to previous

datasets, and (3) a respective extension of the standard IDS evaluation methodology. We applied our methodology to two network-based

IDSs defending an advanced driver assistance system. Our results indicate that different IDSs show strongly differing characteristics in

their edge case classifications and that the original datasets used for evaluation do not include such challenging behavior. In the worst

case, this causes a critical undetected attack, as we document for one IDS. Our findings highlight the need to tailor benchmark datasets

to the individual IDS in a final evaluation step. Especially the manual investigation of selected samples from edge case classifications by

domain experts is vital for assessing the IDSs.

Index Terms—Intrusion Detection Evaluation Problem, Benchmark Dataset, Methodology, Scenario-Based Optimization, Advanced

Driver Assistance System, openpilot, Controller Area Network, Hardware in the Loop Simulation

✦

1 INTRODUCTION

A SSURING a high level of security in modern applica-
tions requires complementing measures during system

design and operation. The last line of defense is intrusion
detection, potentially mitigating previously unknown attacks.
An intrusion detection system (IDS) is an additional security
component that monitors a system during its runtime and
yields an alarm once it observes suspicious behavior [1]. The
plethora of detection approaches proposed and developed
within the last decades [2] raises the need to compare the
candidate IDSs and identify the most suitable approaches for
a given use case and the available resources. This challenge
is called the Intrusion Detection Evaluation Problem [3].
In general, all approaches to the evaluation of potential
IDSs follow the same standard evaluation schema: All
candidate IDSs analyze the same labeled dataset containing
malicious and benign behavior recorded from the system.
The performance of the IDS and all raised or missing alarms
are recorded and summarized in metrics [4] to convey trade-
offs and advantages of the determined winning candidate.

An essential requirement in the evaluation is having
a dataset representative of the use case, which is also
challenging for the analyzed IDSs. Especially for comparing
various approaches in science, reusing such a dataset as a
benchmark and baseline for future research makes creating
sound datasets mandatory. Following the standard evalua-
tion schema, domain experts collect the dataset first without
considering the IDS they will evaluate later. This separation
fosters a realistic evaluation and prevents biases. In science,

• All authors are in the Chair of Software and Systems Engineering, Technical
University of Munich, 85748 Garching b. München, Germany
E-mail: {t.hutzelmann, d.mauksch, ana.petrovska,
alexander.pretschner}@tum.de

Manuscript received April 19, 2005; revised August 26, 2015.

researchers publish their dataset in a final and invariant
form once they consider the collected traces sufficient. Other
researchers then choose one or multiple of these datasets
to showcase the performance of their newly proposed IDS
relative to other competitors. However, this setup does not
assess how suitable the chosen dataset is for evaluating the
proposed IDS. Using an inadequate dataset endangers the
validity of the obtained results.

In this paper, we work with the hypothesis that the quality
of a benchmark dataset needs to be measured relative to
the IDS under evaluation. In other words, the IDS under
analysis determines the properties and samples constituting
a “good” dataset for its evaluation. This hypothesis questions
whether the standard evaluation schema to using a constant
dataset is a sensible approach—or if a fair assessment of the
IDS requires tailored and confined datasets that incorporate
characteristics of the IDS and detection model itself. This new
view requires a link between the IDS’s classifications and
the suitability of dataset samples for evaluation. If suitable
data points are absent in current datasets, a sound evaluation
requires a new methodology that fosters the inclusion of the
most suitable samples for a given IDS.

To establish this missing link between the IDS and
the dataset, we propose fitness functions that quantify
the suitability of individual dataset samples regarding six
different qualities for evaluating a given IDS. Furthermore,
we propose a methodology based on scenario-based opti-
mization to systematically deduce data points for the given
IDS with the best rating according to our fitness function.
This methodology extends the state-of-the-art evaluation
with a final step, generating new sample points for the last
assessment before deploying an IDS. In a case study, we
investigated two state-of-the-art IDSs defending the same
attack and analyzed the datasets used for their evaluation.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 2

With our methodology, we found, in one case, valid attacker
behavior that circumvents the IDS and causes critical damage
to the system. The finding that both original evaluations do
not consider behavior similar to the points we deduced
supports our hypothesis. We suppose that the transition
from signature-based detection to machine learning-based
approaches and the increasing complexity in the detection
models further impede the manual deduction of challenging
data points. The small size of our investigated datasets might
have contributed to their lack of critical points. But even
massive datasets might only include such data points by
chance and currently do not guarantee their inclusion. In the
worst case, the dataset includes these critical points, but they
get lost in the enormous number of other classifications of
the IDS summarized in percentage scores. Hence, domain
experts might not become aware of this critical behavior
during the evaluation of the IDS.

Although we believe our hypothesis generalizes to the
evaluation of all IDSs, this paper focuses on Intrusion
detection on the Controller Area Network (CAN) bus in the
automotive domain. There has been extensive research about
the CAN bus in previous years, and various publications
propose potential IDSs [5], [6]. Our deductions use concepts
from the network domain and modify an attack by manipula-
tions of the communication on the network. This choice of an
attacker makes our methodology more intuitive for network-
based-IDS. However, the evaluation of a host-based IDS
that, for example, validates and monitors the internal models
during computation does look identical as long as it mitigates
the same type of attacker. Our fitness functions require a
direct measure of the success of an attack or its attempt.
While we also refer to approaches to generalize this concept,
we tailored our methodology, for now, to safety-critical cyber-
physical systems, as safety distances and violations provide
this measure with high precision.

We use the following definitions and terminology to talk
about datasets. A trace is a finite observation of the system’s
behavior during operation, potentially under the influence
of an attacker, i.e., a time series of events recorded from
the system. Together with a label about the nature of the
recorded behavior, benign or malicious, a trace serves as a
data point to benchmark the correct classification by a given
IDS. A (benchmark) dataset is a fixed collection of various
and diverse data points proposed by researchers or domain
experts. Please note that other literature uses terms like
sample, record, observation, item, or instance to describe
elements of a dataset. Other terms in the literature reflect
the concrete representation of a data point, e.g., log files,
NetFlows, event streams, or raw package dumps. However,
the standard evaluation schema and our methodology are
agnostic to the nature of a data point as long as they provide
the features for the IDS and sufficient description for the
domain experts. We introduce the term dataset space to refer
to the set containing all possible datasets.

To summarize, this paper makes the following contribu-
tions: (1) We propose an ensemble of six distinct fitness
functions quantifying the suitability of data points in a
dataset for evaluating a given IDS. We intentionally limit
ourselves to safety-critical cyber-physical systems but sketch
possible extension points for future work. (2) We propose a
scenario-based optimization to systematically elicit edge case

Enrich Analyze Rate

Dataset Reports

Attacker 
Behavior ΣMetrics

Traces
IDSIDSIDS

Candidate 
IDSs

Best IDS

Fig. 1. Abstract schema of the three steps in the standard evaluation

behavior of the system and network attacker to highlight
strengths and weaknesses relative to the particular IDS under
analysis. (3) We exemplify this methodology for a detailed
security analysis of an open-source advanced driver assis-
tance systems (ADAS) on automation level two (Adaptive
Cruise Control and Lane Keeping Assist) [7] and two state-
of-the-art IDSs. We provide a deduction of various realistic
attack samples on an automated car usable as a benchmark
for any CAN bus IDS. Overall, the divergence between the
optimized data points and the previous benchmark dataset
and between both IDSs leads us to conclude that optimal
benchmark datasets must reflect the IDSs under evaluation.
Therefore, (4) we elaborate on possibilities to establish our
methodology within the development and evaluation process
for IDSs in general and propose an adaptation in future
benchmark datasets to ensure such critical data points.

The rest of this paper is structured as follows: Section 2
introduces related work. Section 3 elaborates our proposed
methodology to generate optimized samples forming mini-
mal benchmark datasets. Section 4 applies this methodology
to a selected use case and lays the foundation for the
experiments in Section 5, in which we investigate the selected
scenarios in depth. Section 6 discusses the generated datasets
and reflects on the impact of our work on future approaches
for IDS evaluation. Finally, Section 7 concludes our work.

2 RELATED WORK

2.1 Intrusion Detection Evaluation Problem

The commonly agreed way to evaluate potential IDSs for
a concrete use case consists of three steps: Enrich, Analyze,
and Rate, as depicted in Fig. 1. In the first step, domain
experts gather a dataset from the protected system with
representative normal behavior and attack samples. To
generate malicious data points for the dataset, they either
1) include previously known attack samples, if available, or
2) simulate suspected attack effects. In the second step, they
feed this labeled dataset into all candidate IDSs and record
their performance and outputs. Finally, in the third step, they
compare the yielded alarms of all IDS with the dataset labels.
To handle numerous data points, they choose a metric [4] and
accumulate the counts of correctly and wrongly classified
data points to obtain a final ranking of the best candidates.

Classical metrics like Detection Rate or False Positive
Rate combine four different counters during evaluation: false
positives (FP), true negatives (TN), false negatives (FN),
and true positives (TP). These counters are combinations of
two properties: (1) the data point showing peaceful system
behavior or system behavior under the manipulation of
the attacker and (2) the IDS yielding an alarm or staying

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 3

IDSIDSIDS

Candidate
IDSs

Optimize

Enrich Analyze Rate

Dataset Reports

Attacker
Behavior

Traces

Best IDS

Fig. 2. Abstract Schema of our extension of the standard evaluation.

silent while analyzing this data point. We followed the same
categories in defining our optimization criteria for deducing
our fitness functions. In a classical evaluation, however,
these metrics approximate the actual detection capabilities
of the IDS that highly depend on the quality, quantity, and
diversity of the analyzed data points. Our methodology aims
to showcase the IDS’s capabilities by focusing on particular
data points for each category instead of an unprioritized
accumulation of large datasets.

Noteworthy, the standard evaluation schema focuses
only on the evaluation phase and assumes the existence
of fully configured and executable candidate IDSs. Engineers
generally differentiate between two datasets, one used for
development (e.g., to train the detection algorithm) and one
for evaluation to avoid overfitting and biases [8]. Although
anomaly-based IDSs, unlike signature-based IDSs, do not
require knowledge about the attacker and are trained on
purely peaceful system behavior, the evaluation always
requires realistic and diverse attack samples. Without attack
samples in the dataset, it is impossible to determine the
number of true positives (attacks spotted by the IDS) and
false negatives (attacks remaining unnoticed by the IDS),
and the evaluation remains partial. Since the first step in
the standard evaluation schema relies on manual effort to
collect and label the dataset, it might unnoticeably invalidate
the evaluation. Wrong-labeled, oversimplified, incomplete,
monotone, biased, or undersized datasets may result in good
evaluation results in step three, even when the IDSs, in reality,
do not provide sufficient protection against actual attackers.
Therefore, collecting more advanced and subtle samples of
attacker behavior from diverse attacks is vital for a sound
evaluation and a core part of our methodology.

Our work addresses these limitations by extending the
evaluation schema as follows (cf. Fig. 2): We introduce a
feedback loop from the observed detection abilities on an
initial dataset of the candidate IDS in the Rating step to the
Enrich step to generate new, labeled data points. The essential
artifact of this loop is the systematically spanned space of
all potential datasets. To automate this process, we propose
optimization using fitness functions to guide the generation
of data points toward system behavior that showcases
behavior specific to the IDS under analysis. These data
points represent edge case behavior and are complementary
to existing metrics for the detection rate and false positive
rate of a candidate IDS and, in theory, make an evaluation
without these metrics feasible. The methodology proposed
in our work reduces the manual effort needed to create a
challenging dataset. It supports the quality assessment with
the worst edge case data point for each candidate IDSs.

2.2 Attack Generation

On an abstract level, we leverage automatic attack gener-
ation to improve the evaluation methodology. Szegedy et
al. [9] first introduced the idea of automatically generating
adversarial examples resulting in wrong classifications on a
given deep neural network classifier. This idea transfers to
IDS that internally use neural networks [10] or other machine
learning classifiers [11], [12]. This technique can also analyze
the classifiers in generic IDS without restrictions on their
internal implementations [13]. These approaches follow a
general pattern: The analyzed classifier processes a feature
matrix of given or random points. In multiple iterations, the
adversarial sample generator computes modifications of a
selected entry in the feature matrix. The classifier repeats the
analysis of this new point, hopefully resulting in a change in
the certainty of the classification or the assigned class. Guided
by this change, the generator mutates the modifications until
a generated sample results in a wrong classification.

Compared to our work, these approaches focus only
on the internal classifier and the feature representation
but ignore the surrounding system and potential attacker
behaviors. A generated modification of the feature matrix
is artificial data and not actually behavior observable in the
system or by an actually performed attack. This indirection
questions the practical significance of the generated samples
as they might constitute impossible behavior. Our optimiza-
tion of data points focuses on the entire space of potential
system behavior with gradual impacts of the attacks on the
system’s operation. In comparison, adversarial learning aims
to tamper with an individual classification or flip a single
decision. Overall, we investigate a broader system scope with
comprehensible parametrizations ensuring realistic samples.
Furthermore, this broader scope includes diverse sources of
side effects for a wrong classification. Our fitness functions
also provide a means to rank and prioritize all generated
attacks to focus on the most critical oversights. Finally, our
evasions equally analyze machine learning models, anomaly
detection, or any black box intrusion detection method.

2.3 On Benchmark Datasets

Our efforts to identify challenging data points align with
the general creation of benchmark datasets for IDSs. Some
intuitive factors imply an update of a dataset, e.g., the
emergence of new attacks or major changes in the protected
system. However, these factors are not the main reason for
creating new datasets. We found two repeating patterns:
On the one hand, high-impact datasets as the most utilized
and investigated dataset for IDS evaluation originated from
the DARPA Intrusion Detection Evaluation [14]. After closer
investigation, researchers spotted various flaws [15] and
proposed improved variants [16] and re-recordings of the
dataset in similar ways [17], [18], [19], [20], [21]. On the other
hand, in domain-specific networks, like the CAN bus in
our case study, the datasets are either 1) data traces directly
published aside a security analysis as a documentation of the
conducted attack (e.g., [22]), or 2) are collected from papers
proposing new detection approaches (e.g., [23], [24]).

Despite all efforts to fix the spotted weaknesses, the
successor dataset might still contain other or newly created
flaws and biases. Without an objective metric or generation

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 4

methodology, only further deep analysis will identify them
and propose a better future dataset. This problem applies
more to domain-specific datasets since they are relatively
small and, in the beginning, contain merely a few variants of
the same attack. Most importantly, no follow-up analysis has
investigated their suitability for evaluation as profoundly
as shown to be required by the experience from previous
datasets. In our work, we investigate a methodology that
actively tailors the term of a “good” dataset relative to
the concrete protected system, the attacker behavior, and—
crucially—to the IDSs under analysis. Thus, we aim to
automate the dataset generation, focusing on objectivity and
excluding implicit biases.

A general issue in the datasets used for IDS evaluation is
a high imbalance among the types of data points represented
in the dataset [25]. Benign behavior is more dominant than
malicious data points, and datasets do not represent each
type of attack with the same amount of data points. These
imbalances impact the obtainable scores in the evaluation.
Large datasets especially underrepresent critical attacks that
remain unnoticed in the scores. Machine-learning algorithms,
therefore, might tend to ignore these attacks completely [26].
Our methodology focuses the evaluation on a few data points
that showcase the edge cases in classification. Each logical
scenario (see Sect. 3.4) always results only in three benign
and three malicious data points. The attacks always focus
on the most impactful attack among the modeled attacks.
Therefore, balance is no problem in our methodology.

In this context, Apruzzese et al. [27] promote the cross-
evaluation of an IDS with data points from multiple datasets.
While such evaluation provides additional insights compared
to the individual dataset alone, our methodology fosters
the challenge in the evaluation even more. First, only data
points in the original datasets are in any combination. The
combination compensates for oversights in a few datasets
but does not improve on behavior that none of the datasets
included. Considering our evaluation, this particularly ap-
plies to the edge case behavior we pinpoint with our
methodology that was not present in the original dataset.
Furthermore, the unfiltered combination of datasets further
increases the number of classifications in the evaluation,
increasing the problems of imbalance and oversights our
methodology aims to mitigate. The systematic deduction
of datasets offers a different perspective to the conceptual
model for cross-evaluation. Datasets are samples from a
spanned dataset space. Hence, instead of merging the sample
sets, we hold combining the spanned spaces and selecting
samples anew to be more beneficial. Our stepwise process
can combine two sets of artifacts as a direct union before
using the optimizer. Despite the larger space, the optimizer
still converges towards the most relevant data points for
domain experts and neglects irrelevant areas in the dataset
space without further adjustments.

2.4 Scenario-Based Testing

Scenario-based testing is a methodology to systematically
choose test cases that stress and verify the behavior of a
system under test. On a high level, a structured set of
scenarios describes all potential behavior of the system
as a whole. As defined by Ulbrich et al. [28], a scenario
is a temporal development between several scenes that

0 1 2 3

Fig. 3. Schematic models (from left to right): (0) the space of all datasets,
(1) partitioned with functional scenarios, (2) further refined with logical
scenarios, and (3) the concrete data points elicited through optimization.

describe a snapshot of the environment, including scenery,
dynamic objects, and all actors’ and observers’ behavior.
Menzel et al. [29] propose three different levels of abstraction
for scenarios during the development and verification of a
system: functional, logical, and concrete scenarios. Functional
scenarios describe the relevant entities of a domain on a
semantic level and their relationship using a consistent and
domain-specific vocabulary. Logical scenarios refine entities
and relations of the functional scenarios into parameter
ranges within a state space. Finally, concrete scenarios depict
the behavior through concrete values for each parameter
within the state space. Each scenario type can be consistently
refined or abstracted into the other types, thereby grouping
a theoretically infinite amount of concrete scenarios.

Each concrete scenario can form test cases if the expected
behavior is encoded and checked during the execution. In
our work, we utilize this idea to describe undesired behavior
with the notion of a safety envelope [30] that enables the
overall system to still react in time to prevent safety violations
in the future. We used scenario-based optimization [31] to
choose meaningful parameters for refining logical scenarios
into concrete scenarios. This approach mutates the parameter
set and automatically optimizes towards the Pareto Front
according to a given fitness function. In the automotive
domain, the fitness functions mainly encode safety envelopes
and safety-critical edge case behavior, among other desired
properties of the scenario, as a single objective. Our method-
ology follows the general concepts and the three abstraction
levels known and approved for scenario-based testing. We
put our focus on extending them to include attacker and
system behavior in parallel and propose fitness functions
similar to existing fitness function templates [32] that stress
the advantages and disadvantages of a specific IDS under
analysis. To our knowledge, we are the first to combine
scenario-based optimization with IDS evaluation.

3 METHODOLOGY

This section presents our methodology at a high level and
discusses the concepts without implementation details. To
make these abstract ideas more tangible, Section 4 follows
the same three steps to present an in-depth case study.
Please note that the fitness functions are an independent
contribution usable without the rest of our methodology.
Nevertheless, for the text flow, we decided to introduce them
in Section 3.5 within the scoping of the methodology.

3.1 General Overview

Our methodology provides a final validation before deciding
whether to deploy an IDS implementation within the system.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 5

In theory, any concrete system implementation and an
attacker model define the set containing all possible system
behavior and all possible interference of the attacker. We refer
to this set as dataset space as it is a superset of all potential
benchmark datasets. In other words, any benchmark dataset
is a diverse and broad selection of data points from this
dataset space. Due to the nature of the system environment
and partial knowledge during engineering, this space is only
a theoretical concept. Vague textual formulations without
details describe this space, e.g., “an attacker inserts new
messages into the system’s network communication”.

As depicted in Fig. 3, the first two steps systematically
span and refine the dataset space. In the final third step, an
optimizer elicits critical data points that particularly chal-
lenge the IDS in this system. In step 1, the deduced functional
scenarios partition the dataset space into subspaces, each
spanning a particular functionality of the system and a
particular type of manipulation by the attacker, e.g., the
attacker manipulating specific information on the network
while the system is in a specific state. Depending on the
use case, these subspaces might unavoidably overlap, but
our methodology aims for broad coverage by systematically
creating numerous partitions. In step 2, introducing param-
eters and their domains concretizes each subspace to form
logical scenarios, e.g., the attack begins between n and m
seconds after a specific event. With broad domains, these
parameters may include the entire unrestricted subspace.
Still, for more efficient evaluation, we recommend reducing
the spaces to reasonable system operations, e.g., to conditions
with guaranteed safety or expected system operation. Finally,
in step 3, optimizations with specific fitness functions iden-
tify concrete scenarios from each spanned subspace. Each
concrete scenario specifies a data point for the evaluation, e.g.,
the system’s operation in a specific setup and situation with
a concrete step-wise manipulation of the attacker. They show
particularly relevant behavior within the subspace as they are
optimized to stress the classification of the IDS towards edge
cases. This results in a benchmark dataset containing only
a few but particularly critical points. If needed, the fitness
functions can further compare and rank points of different
subspaces to a single data point for each fitness function.
This dataset is too small to replace a traditional benchmark
dataset but small enough to be analyzed in detail by domain
experts. Their investigation might result in new insights and
provide final confidence in deploying the IDS under analysis.

Please note that none of these steps depends on explicit
modeling or knowledge of the IDS under analysis. The
dataset space is spanned relative to the system and con-
sidered attackers but is invariant for any IDS mitigating
these threats. In other words, domain experts never explicitly
name edge cases in the IDSs’ classifications. Only the opti-
mization in step 3 investigates the IDS and its peculiarities.
However, the fitness functions as objective measures ensure
the optimizer converges to critical behavior without biases.
Furthermore, the optimizer automatically identifies irrele-
vant parameters and focuses on the remaining relevant for
the fitness of the concrete scenarios. Therefore, the generated
data points are specific to one IDS, but the methodology
presents equal challenges for analyzing competing IDSs.

We intend the steps of this methodology not as a one-time
effort but as an iterative process that increases the quality

and understanding of the IDS under analysis. The identified
weaknesses and highlighted behavior of the IDS to the
specific system and attacker behavior require investigation
by domain experts who decide on the respective actions. If
the identified weaknesses are critical for the use case, the
detection mechanism within the IDS needs to be adjusted
(e.g., retraining the model or adding a filter). This results in
a new IDS prototype that must pass another evaluation,
including our methodology. If the spotted points show
irrelevant samples of behavior, i.e., should not be part of
the dataset space, adjusting the parameter space in step 2 or
fitness functions in step 3 can exclude or avoid this behavior
in the analysis. Both outcomes and their corresponding
changes imply a reiteration of the methodology, yielding
different data points and a follow-up investigation.

3.2 Preparation: Find System and Attacker Models

Our methodology spans the space of all datasets using
models of the system and the potential attacker. There is
no requirement for a specific model notation or level of
formalization in these models. A sound engineering process
of the system or IDS under analysis should already provide
this information and models. Every model is suitable as long
as it answers these questions: • What states of operation
can the system go through? • What information does the
system process in what value ranges? • Which properties
of the system need protection against an attacker? • What
manipulations can the attacker conduct within the system
and its data? • When can an attacker’s influence on the
system be tolerated, and when can it no longer be ignored?

3.3 Step 1: Partition the Dataset Space

Functional scenarios are the first fixation and partition within
the dataset space. Each functional scenario defines the scope
for potential system and attacker behaviors and focuses
on one particular action within the system and by the
attacker. They differ in the system’s context, the set of signals
processed by the system, or the different strategies of the
attacker. We use the term signal to refer to the smallest logical
unit of information packed into a message transmitted on
the network, e.g., a Boolean flag, a counter, or value, but not
individual bits representing them in parts.

A set of functional scenarios ideally covers the system
and attacker behavior as extensively as possible and in all
relevant aspects. Broad coverage is desirable, as it increases
the chances of discovering unanticipated system and attacker
behavior later during optimization. We recommend using
many smaller subspaces, as they are easier to deduce,
analyze, and optimize than a single abstract description of
complex behaviors. Combining scenarios and optimizing for
the best fitness values over multiple scenarios is possible. For
example, our later experiments merge two logical scenarios
that only differ in the sign of a single parameter. However, in
general, we consider merging scenarios problematic as it may
unintentionally add meaningless data points and complicates
the exploration task for the optimizer. Only domain experts
should explicitly decide after careful consideration about any
reduction of the scenario space.

For our methodology, functional scenarios need to com-
pose system and attacker behavior. We propose to indepen-
dently define the behavior of the system and the attacker

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 6

and combine them as a cross-product. The deduction of
scenarios for the regular system behavior does not differ
from the process of scenario-based system testing. Any
requirements specification or existing test suites can be used
as a foundation to deduce these scenarios.

We propose starting with a broad framing refined later
to deduce the attacker behavior as functional scenarios. We
recommend analyzing different sets of capabilities, locations,
or goals of the attackers and combining them in different
functional scenarios as reasonable in the use case under
analysis. To refine and translate the attacker behavior into
complete descriptions of actual attacks, we suggest using the
notion of data or signal changes that cause reactions by the
system or change the system state. Any signal, interpreted
as binary or scalar, at any interface within the system can
change in two directions: (1) increase or (2) decrease in its
value. An attacker can use both of these signal changes in
two ways: (A) suppressing the propagation of a legitimate
change. Hence, the system’s state remains and does not
adjust to the changing environment. (B) faking a change that
factually has not happened. Hence, the system transitions to
a new state and does not behave according to the unchanged
environment. Therefore, it is sufficient to enumerate all
relevant signals in the system and analyze them for all four
manipulations of an attacker.

Following these steps results in many functional scenar-
ios, while not all are equally important. Methodologically, it is
the best choice to further investigate all functional scenarios
in step 2 and 3. Nevertheless, this might not be feasible
within the available resources. In that case, we recommend
conducting a risk analysis of all these functional scenarios
and only continuing our methodology with the most critical
scenarios. However, this reduces the size of the resulting
benchmark data and threatens the completeness of the
analysis. This reduction inhibits the risk of the generated data
points barely identifying critical behavior. Hence, adjusting
this risk analysis to be more inclusive within the following
iteration might be necessary.

3.4 Step 2: Introduce Parameters

Logical scenarios formalize relevant parameters within each
functional scenario and define domains for them. These
parameters can parameterize the physical properties of the
environment or the system, high-level goals, environment
behavior, or timings of events. A standard optimizer supports
integer and floating-point parameters. For our methodology,
these parameters must cover the relevant system parts and
variations of the attacker’s behavior to enable a diverse
dataset. We recommend modeling the attacker behavior as
an addition to the system behavior and describing both in
isolation. The best method for deducing system parameters
depends on the concrete domain. In our view, the first three
steps of the well-known category partition method [33]
for test suite generation are the most generic approach for
ensuring the quality of the coverage. Describing the system’s
behavior is a well-studied problem, and methodologies and
templates exist in various domains, for example, for our use
case from the automotive domain [34].

As a starting point for attacker parametrization, we
suggest minimal proof-of-concept implementations of the
attacks on the system and extending them with parameters

on suitable positions. On a high level for attacks, we propose
three different categories of parameters: Timing, Payload,
and Volume. The timing of events, e.g., the time of the
first modification of an attacker or the duration of the
manipulation. This category aims to identify the most critical
point in time for the attack relative to a specific manipulation.
Also, the faking and suppression of signals happen related
to different events and hence different parameters. Complex
interferences require a global timer and might need to
encode a temporal order for introducing multiple time
parameters depending on each other. Overall, we found
it sufficient to specify the absolute time since the beginning
of the concrete scenario as a parameter. The used payload for
the manipulation, e.g., the aberration from the manipulated
signal to its original value. This category balances the trade-
off between attacks with big and small aberrations. The
latter have a smaller but potentially still critical impact
and are more challenging to detect by an IDS. The attack
volume, e.g., the number of manipulated messages per time
or the pattern of the manipulation. This category encodes
modifications that indirectly make the attack less intrusive in
potentially monitored information. These parameters are the
most individual to the used attacks and subsume everything
that changes the shape of the attack within the observable
features. In our case study, we inject or overwrite messages
and use parameters to select parameterize patterns.

Like a broad scenario space, broad parameters potentially
include more challenges for the analyzed IDS. Higher confi-
dence in the evaluation requires such wide space, especially
when it does not yield a critical attack or circumvent the IDS.
Nevertheless, the investigated space grows exponentially
with the number of parameters, so we again recommend
prioritization.

3.5 Step 3: Optimize with Fitness Functions

Any choice of concrete values for the parameters in a
logical scenario forms a concrete scenario. It describes a data
point in the dataset space that can assess the performance
of an IDS. An optimizer with fitness functions enables
automatic identification of the most relevant data points
in the following way: The fitness function rates the suitability
of a data point for a specific purpose and compares it with
other data points. The optimizer iteratively samples the
parameter space and compares the fitness values of the
selected data points for choosing the following candidates.
This process repeats until it converges toward the example
with the highest rating.

The core of such optimizations is the fitness function, i.e.,
a measure of the suitability of a concrete scenario for the
intended purpose. To create benchmarks for IDS evaluation,
we propose six different fitness functions covering six distinct
traits of data points: Two fitness functions, fR (regular)
and fA (attack), measure the functionality of the overall
setup. They establish a baseline for reference in the later
investigation by domain experts. Four fitness functions,
fFP , fTN , fFN , and fTP , reassemble the four classifications
of data points in the confusion matrix during evaluation.
Instead of approximating each class with percentage scores
or accumulating metrics, the optimization yields concrete
examples of extreme representatives in each classification.
These samples are condensed descriptions of the worst and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 7

best performance of the analyzed IDS. Their small number
makes a manual assessment by domain experts feasible.

The Optimization Problem: Formally, the optimizer’s
task is to solve the following problem:

X = P ×A, sim : X → S

F = {fR, fA, fFP , fTN , fFN , fTP}

∀f ∈ F : min f(sim(x))

s.t. x ∈ X,

where X is the previously deduced parameters space com-
posed of parameters P , denoting the peaceful system be-
havior, and parameters A, denoting the attacker behavior.
sim describes the execution of the system or a simulation
with the given parameters, returning a trace of a concrete
scenario s from the corresponding space S. F is the set of
our six fitness functions. Please note that this optimization
problem includes no explicit constraints except for each
parameter being an element of the corresponding domain.
Properties observable at runtime (e.g., if the attack was
successful) do not exist before the simulation sim. Hence,
the fitness functions model these constraints on the observed
concrete scenario, and the optimizer considers the constraints
implicitly through the fitness value before choosing the
subsequent parameters.

Instantiation: Our methodology relies on two functions
to be defined individually for each domain and IDS under
evaluation: the success of the attack sam(t) and the detailed
assessment of the IDS(t).

For the attack’s success, we use impacted safety distances
as continuous quantification after the attack has started.
Observed time spans or distances are suitable candidates
for such direct measures. Outside the safety context, as we
discuss in detail in Sect. 6.2, alternatives like damage or costs
of the attack are promising. sam(t) = 0 denotes a successful
attack—the beginning of an enforced safety violation. Posi-
tive values describe the proximity to a successful attack—a
higher safety margin. In other words, the smaller the number,
the more significant the impact by the attacker.

The IDS analyses all data within a trace and continuously
calculates a suspiciousness score IDS(t) based on the current
observations. If desired, IDS(t) can consider a delay for
including computational performance and overhead in the
analysis. For the analysis, we norm this score such that a
value ≥1 indicates a yield alarm and 0 denotes behavior that
fully complies with the internal model. The range between
0 and 1 denotes more anomalous behavior that is still below
the threshold of raising an alarm. If the internal model of
the IDS provides higher certainty in an attack beyond the
threshold, the score should also exceed 1 correspondingly.
Although alarms are binary, it is critical to map the internal
model of the IDS to this continuous anomaly score for
guiding the optimization.

Building Blocks: Both custom functions describe prop-
erties at a given point in time. To describe a data point, we
aggregate the entire timespan within the trace and quantify
attack success, assessment of the IDS, and timings. Namely,
to describe the system behavior, we measure the minimal
observed safety margin sam in a concrete scenario s with

saf (s). Thus, saf (s) ≤ 0 denotes a documented safety
property violation in the scenario s.

saf (s) = min
t

(sam(t))

To compare successful attacks, att(s) describes the time
passing from the start of an attack to a safety violation in a
concrete scenario s, where tattack denotes the point in time
of the first manipulation by the attacker.

att(s) = argmin
t

(sam(t) = 0)− tattack

To describe the classification of the IDS in more detail, we
generalize the IDS assessment IDS(t) such that sus(s) de-
scribes the maximum suspiciousness score observed within a
concrete scenario s. Complementary to enable minimization
by the optimizer, san(s) denotes the sanguineness of the
behavior observed in the concrete scenario.

sus(s) = max
t

(IDS(t))

san(s) = 1− sus(s)

Finally, rea(s) quantifies the reaction time after the IDS
raises an alarm and before the attack results in a safety
violation. We logically define a successful attack without an
alarm as a reaction time 0.

rea(s) = argmin
t

(IDS(t) ≥ 1)− argmin
t

(sam(t) = 0)

Fitness Functions: As proposed by Hauer et al. [32], we
build fitness functions following a template of 1) starting
with form criteria that assure a desired behavior is part of
the concrete scenario and 2) quality criteria that quantify the
suitability for the desired purpose of this fitness function.
The template manifests in one nested case statement for each
criterion in our functions. We intentionally skip domain- and
scenario-dependent outer criteria ensuring compliance to
form constraints on the scenario first. All σn are suitably
big constant integers (e.g., σ1 = 102, σ2 = 104 in our
experiments) to nest the fitness criteria without overlaps
from the value ranges of each basic block.

The fitness functions fR and fA for establishing the
reference baseline are defined as follows:

fR optimizes for attack impact in the running system
without active attack or considering the IDS. This function
is identical to classic scenario-based testing and ensures that
the system, without interference from the attacker, does not
violate the security properties. In our case, fR determines
the minimal safety margin in the logical scenario.

fR(s) = saf(s)

fA optimizes for security violations with an active attacker
but without IDS monitoring. It confirms that the attacker’s
behavior successfully manipulates the system, in our case,
violates the safety properties. A successful attacker should
significantly reduce the minimal margin measured by op-
timizing fR. When the optimized attack does not violate
the security properties or is not considered relevant by the
domain experts, the attack needs manual refinements in the
previous steps of our methodology before continuing.

fA(s) =

{

saf(s) + σ1 if saf(s) > 0

att(s) else

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 8

The fitness functions fFP , fTN , fFN and fTP describe
different classifications by the IDS and are defined as follows:
fFP and fTN optimize the sanguineness and suspiciousness
of the observed system behavior. Most critically, the attack is
disabled and not part of the concrete scenario.

fFP (s) = san(s)

fTN (s) = sus(s)

The requirement of a successful attack for fFN and fTP

is accommodated in the nesting of multiple optimization
criteria. First, both functions optimize and ensure a successful
attack via saf(s), then their structure differs. To model a
critical attack that the IDS does not notice, fFN in the second
step optimizes for less suspicious attacker behavior until no
alarm is triggered. Finally, it optimizes for the attack with
the most immediate success.

fFN (s) =











saf(s) + σ2 if saf(s) > 0
{

sus(s) + σ1 if sus(s) ≥ 1

att(s) else

To model a critical attack that showcases the detection
abilities of the IDS, fTP in the second step optimizes for
a more suspicious attack. Finally, it optimizes for an attack
that is ideally immediately detected.

fTP (s) =











saf(s) + σ2 if saf(s) > 0
{

san(s) + σ1 if san(s) > 0

att(s)− rea(s) else

With these fitness functions, an optimizer automati-
cally navigates the generation of concrete scenarios toward
particularly relevant data points. However, each elicited
point requires a manual investigation in detail, as there
are multiple possible outcomes: A) The concrete scenario
reveals an undesired behavior of the IDS. The domain experts
should report this wrong classification to the IDS developer
to improve IDS. B) The observed behavior represents the
desired purpose but is neglectable during operation. In this
case, each step of our methodology requires adjustments to
exclude such scenarios, e.g., by spanning the parameter space
differently or adding a form criterion to the fitness function.
C) The optimizer has not identified relevant behavior despite
exhaustive iterations. This observation indicates that the
IDS successfully operates correctly in the modeled context.
Nevertheless, the certainty of this conclusion drastically
depends on the overall coverage of the dataset space by
the investigated scenarios. The first two outcomes result in
another iteration of evaluation with a refined setup, and the
third outcome results in the deployment of the IDS.

4 EXEMPLARY APPLICATION

This section presents a case study analyzing two different
IDSs for the CAN bus. It follows the same structure and
enumerations as Sect. 3 introducing our methodology.

4.1 Intrusion Detection on the Automotive CAN bus

Building cars underlies high cost-pressure and strict safety
requirements. The Controller Area Network (CAN) bus [35]
is a cheap, reliable communication medium within cars
developed in the early 90s. It is still broadly used in today’s

cars on the street, although the protocol has no authentica-
tion or tamper protection integrated. This lack of security
measures opens an attack vector, and potential attacks have
been demonstrated and documented in detail [36], [37], [38].
Furthermore, there is competition within academia [39] to
identify an approach that increases the security level of
existing cars without cryptography but minimal interference,
implying an ideal but ambitious challenge for IDSs. Overall
this network is well understood and enables our experiments
with various existing tools and affordable hardware. In
addition, the costs and impacts of attacks and missing
or delayed alarms of an IDS are tangible and directly
quantifiable due to the safety properties within the system.
These properties make the CAN and its potential IDSs an
ideal candidate for following our evaluation methodology.

4.2 Preparation: Manipulation of Bus Communication

Our methodology’s foundation is eliciting models for the
defended system and the attacker. For our exemplary analy-
sis, we focus on aspects that describe manipulations of the
CAN bus. Thus, the communication on this bus is the only
information utilized by the IDSs within our analysis. We
also assume that a vector for the attacker to access the bus
exists without further discussion. As this network is not
directly accessible from outside a vehicle, this assumption
skips other required exploits for a multistep attack to finally
gain access to the internal car network, e.g., through the car’s
infotainment system.

Our case study analyzes the security of openpilot1, an
open source level two [7] advanced driver-assistance system
(ADAS), which is our concrete system under consideration.
This platform is an upgrade kit for over 150 car models
and runs on a smartphone, the EON, mounted under the
windshield with an adapter to the internal communication
bus of the vehicle. Openpilot provides 1) adaptive cruise
control (ACC), keeping the car at a specific speed while
slowing down in front of obstacles or vehicles in front, and
2) lane-keeping assistance (LKAS) holding the vehicle in
the middle of the lane. To enable further developments and
research, all relevant messages from the internal network
of supported cars are published and available online2.
All assistance systems comply with the same high-level
architecture of a control loop depicted in Fig. 4. The ADAS
receives information about the environment from sensors
inside the car and calculates desired maneuvers accordingly.
The ADAS transmits these maneuvers as control commands
into the network of the car, which realizes the desired steering
movements. The new movements result in differing sensor
readings, which closes the control loop.

Our attacks on the ADAS tamper with this control loop
in the following way: The attacker has gained access to
the CAN bus and manipulates the channel transmitting
information from the sensors to the ADAS. Thereby, the
ADAS receives false signals that deviate from the actual
sensing of reality. This wrong information results in a wrong
internal model aberrating from reality. Based on this wrong
model, the ADAS deduces steering commands and sends
them to various actuators via the network. However, due to

1. Available at: https://github.com/commaai/openpilot
2. Available at: https://github.com/commaai/opendbc

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 9

Adv. Driver-Assist. Sys. (ADAS)

Car

Environment (incl. Driver)

ControlsSensors

PerceptionMovement

Fig. 4. Control Loop of Advanced Driver-Assistance Systems

the enforced aberrations of model and reality, these steering
commands only constitute safe driving maneuvers relative
to the internal model but no longer to reality. Ultimately, this
enables the attacker to craft a manipulated model that causes
the ADAS to actively violate its safety properties.

To mitigate such attacks, the IDS is attached to the
network and monitors the communication. The IDS should
raise an alarm for each manipulation by an attacker. As we
will discuss in Sect. 5, the time frame to react to these alarms
is tight and only within a few seconds. We see two potential
reactions: 1) immediately warn the driver to take over the
steering while the ADAS turns off gracefully or 2) try to
suppress manipulated signals with the car falling back to a
fail-safe state. Nevertheless, the elicitation and evaluation of
an appropriate reaction is out of the scope of this work.

4.3 Step 1: Deduction of Functional Scenarios

For the scenarios without attack, we use existing work about
the test-suite generation for testing the regular behavior of
autonomous vehicles [34]. According to the functionality
of the ADAS under analysis, the functional scenarios are
driving on a track without traffic, a vehicle appearing in
front of the ego vehicle, and the user changing the operation
mode of the ADAS. In each scenario, the ADAS is engaged.
Thus, the ACC keeps a specific speed, and the LKAS keeps
the car on the lane. This selection of scenarios is simplified for
our case study but could be further refined and extended. For
the attacks, we use the attacker model also used to develop
the IDS in our case study. An attacker has gained access to
the internal CAN bus through an additional device attached
to the bus (e.g., via the OBD connection) or hijacking an ECU
(e.g., via a bug in the infotainment system). Manipulation
is possible by injecting new messages or as a man-in-the-
middle overriding existing information. In the system model,
the attacker manipulates the signals sent from the sensors
to the ADAS. In our methodology, we consider each signal
twice: 1) with the suppression of legitimate changes and
2) with the injection of fake changes. Figure 5 depicts the
entire data flow of our exemplary ADAS, and we selected the
three sensor inputs realized on the CAN bus for our further
analyses. The lane detection uses a separate camera.

Following our deduction of attack scenarios, an attacker
can manipulate each signal in four different ways. These
ports transmitting six signals results in 24 different attacker
scenarios depicted in Tab. 1. Each field of the table names the
direct impact of the manipulation and classifies its overall
consequence in isolation. For example, the ADAS driving
at a higher speed than desired might confuse the driver.
However, the operation at this higher speed is still within

Adv. Driver-Assist. Sys. (ADAS)

Environ. Simulation

Car Simulation

Movement

Perception

Simulation

la
te

ra
l c

on
tro

l

lo
ng

itu
di

na
l c

on
tro

l

dr
iv

er
 in

pu
t

dr
iv

in
g 

la
ne

s

le
ad

 c
ar

eg
o 

ca
r s

ta
te

Fig. 5. Detailed Control Loop with the Data Flow of the ADAS plus
complementary inputs from the closed loop simulation.

the operational safety of the ADAS. An ADAS not engaging
or turning off might irritate and annoy the driver. However,
it is not a safety problem on autonomous driving level two,
as in this level, the driver still needs to keep his hand at the
steering wheel and monitor the driving all the time. Hence,
these attacks have lower priority than others, which might
lead to collisions or the car leaving the lane.

Finally, our methodology forms a catalog of all scenarios
as the cross-product of (1) all scenarios of regular system
operation and (2) all manipulations of an attacker. To
showcase regular system behavior, we considered a simplistic
set of variations of a) straight or single curve tracks and b) a
car in front or behind—resulting in four distinct functional
scenarios without attack. Overall this yields 24 times 4 equals
96 functional scenarios to analyze further in the following
step. Comprehensively analyzing all these scenarios requires
years of total system runtime in the optimizer and is, there-
fore, not feasible for automotive manufacturers and is out of
this paper’s scope. We needed detailed domain knowledge
about each scenario to prioritize them by the relevance for
the IDS usage. Therefore, we conducted experiments about
the functional scenarios marked with α and β in Tab. 1. We
used a real car and documented our setup in Appendix B.

4.4 Step 2: Logical Scenarios and Parameterizing

In the following steps, we only focus on and discuss the
manipulation of the steering angle (the scenarios marked
with α in Tab. 1). We found this manipulation to be gradual
and the least noticeable by a human driver, i.e., to have the
highest need for an alarm by an IDS. The driver or ADAS
moving the steering wheel to the left or right results in an
increased or decreased angle broadcasted by the steering
wheel sensors. The ADAS uses this signal in a feedback
loop: For keeping the lane or driving a curve, it calculates
a suitable angle and triggers motors to apply slight torque
on the wheel for turning it. If the sensor messages report
the approximation of the desired angle, the ADAS lowers
this torque; if the divergence does not shrink, the torque is
increased based on an internal model. The corresponding
attack is the following: An attacker fakes the sensor signal,
reporting that the steering wheel is off to the left of its actual
angle. This results in the ADAS requesting a movement of
the steering wheel to the opposite, right side, supposedly to
keep the car on the track. In reality, this movement pushes the
steering wheel to the left and out of the angle that matches the
desired trajectory. Consequently, this manipulation causes
the car to unintentionally leave the lane on the left. An
identical manipulation to the right causes mirrored behavior.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 10

TABLE 1
Each cell denotes a functional attack scenario that is the result of a manipulation of the signal (row) in the given way (column) and holding all other

factors fixed. Information in brackets refers to the potential consequences of this attack.

suppress legitimate changes inject faked changes
increase decrease increase decrease

ego car state current speed car drives too fast
(confusion)

car stops (rear
collision)

car stops (rear collision) car drives too fast
(confusion)

steering angle increased steering
angle (leave lane)α

counter-steering
(leave lane)α

counter-steering (leave

lane)α
′

increased steering angle

(leave lane)α
′

lead car
information

relative
velocity

car stops (rear
collision)

crash into slower car
(frontal collision)β

crash into slower car
(frontal collision)β

car stops (rear collision)

distance to
lead car

car stops or drives too
slow (rear collision)

crash into slower car
(frontal collision)β

crash into slower car
(frontal collision)β

car stops or drives too
slow (rear collision)

user input engaged ADAS stays inactive
(irritation)

ADAS stays active
(confusion)

ADAS activates
unexpectedly (confusion)

ADAS deactivates unno-
ticed (confus., leave lan.)

target speed car will not accelerate
(irritation)

car will not decelerate
(confusion)

car suddenly accelerates
(confusion)

car suddenly decelerates
(rear collision)

We elicited reasonable variables and domains based
on our experiments within the real car. For this attack,
we describe the logical scenario with the parameter space
X = P ×A as follows:

P =[32, 33, . . . , 96] km/h× {straight} ∪

[32, 33, . . . , 72] km/h× {curve}

A =[0, 30] s × [0, 1, . . . , 2095] · 0.0573◦ ×

[0, 1, . . . , 5]messages × ({0} × {replace} ∪

[1, 2, . . . , 19] · 0.05 T × {inject})

Set P describes the peaceful operation of the car. The param-
eters are used the same as for testing of the ADAS: the target
driving speed as an integer of km/h (transmitted over the bus)
and the curvature of the street (set in the simulation software).
For simplicity, we chose two setups: driving autonomously,
with speeds from 32 km/h to 96 km/h on a straight street
and speeds from 32 km/h to 72 km/h in a slight curve. Set
A is the parametrization of the attacker and follows our
methodology on timing, payload, and volume. The time
is a rational number in seconds after the concrete scenario
starts denoting the point when the attacker manipulates the first
message. This single time generically specifies the attack’s
timing without considering any system behavior within the
scenario. However, during space exploration, the optimizer
will adjust this parameter without manual modeling to the
most critical point, e.g., when the car reaches the curve for all
driving speeds and road setups. The payload for this attack is
the aberration from the actual steering signal from 0◦ to 120◦ in
steps of 0.0573◦. This step size is the equivalent of changing
one bit in the fixed-point representation of the steering angle
signal. The attack volume is represented by one parameter
for replacement attacks and an additional parameter for
injection attacks. The first and common parameter is an
integer that denotes the manipulation of only every n-th original
message. The additional parameter is the time as a floating-
point number denoting the delay of the injected message from the
original message transmitting the signal. Such manipulation
results in an alternating sequence of values, mixing actual
and manipulated signals. For injections, any fake message
received after an actual message overrides the internal
state until the next actual message is received. We split the
regular time interval T between two messages into 20 spans,
and the parameter selects a multiple. A short delay causes

the fake information to be dominant most of the time for
decisions of the ADAS. In particular, this dominance unfolds
if the attacker injects directly after consecutive messages.
Nevertheless, this type of manipulation is more obvious to
detect by potential IDSs.

4.5 Step 3: Instantiating the Fitness Functions

In the final step, we need concrete implementations for
sam(t) for each logical scenario and IDS(t) for each IDS
under analysis. Please note that this is the only time our
methodology considers the IDSs under analysis. In our use
case, sam(t) is defined via the physical properties of the car
and corresponding safety margins. In scenarios with the risk
of front and rear collisions, we define sam(t) as the distance
to the safety margin where a human driver can still avoid a
collision. In scenarios with the risk of leaving the lane, we
define sam(t) either as (1) the distance of the lane marking
to the wheels to include weaker attacks or (2) the distance
of the lane marking to the center of the car to narrow the
analysis to critical attacks. Scenarios involving the attacker’s
impact on the driver are out of the scope of this paper, but,
for example, approximations of human reaction times and
awareness levels are promising definitions of sam(t).

For our experiments we analyzed two state-of-the-art
IDSs, IDST proposed by Taylor et al. [40] and an IDSM

by Marchetti et al. [41]. IDST uses Long Short-Term Mem-
ory (LSTM) networks processing blocks of 20 consecutive
messages on the network of the same signal to predict the
following message to be transmitted. It calculates a loss and
anomaly signal based on the difference to the actual message
received next. An anomaly signal equal to 0 denotes a total
match with the prediction and, thereby, normal behavior.
In contrast, higher numbers denote more unanticipated,
anomalous behavior and, thereby, a higher likelihood of
an ongoing attack. For IDST , we normalized the anomaly
signal’s value at the threshold for an alarm. IDSM monitors
the header entropy yielded from all arbitration IDs within
non-overlapping time windows. The model describes an
attack with the observed entropy being outside an interval of
plus/minus a fixed number of standard deviations around
the mean observed entropy in the training set. For IDSM ,
we normalized this interval through the distance from the
middle of the interval and the closest side.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 11

5 EXPERIMENTS AND ANALYSIS

5.1 Setup and Implementation

Enumeration of Concrete Scenarios: For our experiments,
we modeled the two similar logical scenarios (see Tab. 1
marked with α′) about fake changes in the steering angle
with parameters elaborated in Sect. 4.4. For a more com-
prehensive discussion, we optimized both tracks (straight
and curve) and attackers (replace and inject) individually.
Combining both tracks and attackers in a single optimization
would be possible and would quarter the execution time
and manual analyses. However, a combined analysis would
conclude only in the single data point with the highest fitness
value that is challenging to comprehend in isolation and
without considering other scenarios.

In total, we ran the following optimizations: FR only
depends on the system and is optimized twice - once for
both tracks. FA depends on the system and attacker but
not on the IDS. Therefore, we optimized it four times -
once for both attacks on both tracks. The other four fitness
functions depend on the IDS. Consequently, we optimized
once on both tracks and with the attack corresponding to
the IDS. This setup totals 22 optimizations. To conduct
the experiments, we built a Hardware-In-The-Loop (HIL)
simulator (see Appendix A). While aiming for approximately
a day of execution time per optimization, we iterated over
1000 concrete scenarios in each optimization. Each concrete
scenario, on average, constitutes 30 seconds of driving.
This schedule roughly accumulates to eight days of specific
driving behavior and requires a month of execution time.

Prepartion of the IDSs: The IDS configurations and
internal models are constant in all optimizations. We trained
both candidate IDSs with the same traces of regular behavior
recorded from our HIL. We collected them manually and
separately from all optimization. The training dataset con-
tains traces from various speeds and six hours of driving on
both tracks in our setup. We followed the instructions for
parameter-tuning and optimization listed in the publication
introducing these IDSs.

Optimizer: The optimizer chooses and schedules the
next concrete scenario automatically based on ratings of
the fitness function of previous populations and an initial
population obtained with randomly selected parameters. Our
implementation is based on the Optuna optimizer frame-
work [42] and used the Tree-structured Parzen Estimator
algorithm in combination with a median pruning algorithm
[43], [44]. The optimizer grows an independent population
for each logical scenario, each IDS, and each fitness function
without considering the other optimizations. The optimizer
internally calculates the correlation of each parameter with
the obtained fitness values. After each optimization, we
manually investigate the traces with the highest fitness value
and elaborate our findings in the following.

5.2 Experimental Results

Since the system’s behavior and the IDS’s classifications are
highly multidimensional, we could not find any beneficial
way to visualize them to comprehend the manual interpreta-
tion of individual data points. Concretely, each parameter in
each scenario forms one dimension, and multiple parameters
might correlate with specific classifications of the IDS and

particular events within the scenarios. We directly tailored
our methodology for deducing scenarios and optimization
with different fitness functions to a small set of data points
that can be manually investigated and interpreted at low
costs to approach this complexity. Therefore, in the following,
we analyze the recordings of the concrete scenarios with
domain knowledge.

Baseline: fR: All trials confirm that the operation of the
ADAS on our tracks within our chosen parameters is safe.
The car does not leave the lane, and the car’s center stays
at least 1.6 meters away from the lane marking. fA: The
optimization yielded numerous traces with safety violations
forced by the attacker. Every angle above 46.0° malicious
aberration leads to the fastest discovered attacks, needing
around 4.0 seconds and 79 manipulated messages before
forcing leaving the lane. The most important hyperparameter
is the manipulated angle, and the parameters driving speed
and timing of the attack are only of minor importance.
Injection attacks are the more effective, the shorter after
the original the attacker injects the manipulated message.
With minimal delays, the manipulated information stays
dominant most of the time.

IDST : Regular system behavior is classified correctly.
However, the value of fFP drops by 0.2 points in the
classification certainty when the car drives below 44 km/h.
We see a link to some minor swinging within the lane in our
simulation at these lower speeds. Optimizing fTN confirms
this since an operation with higher speeds leads to more
certain classification, at best at the top speed of 96 km/h.
The analysis with fTP shows that the classification of IDST

depends on the steering aberration, and an angle between
97.0° and 106.8° has the fastest reaction time of 0.36 seconds.
Nevertheless, fFN reveals undetected attacks with smaller
aberrations, the worst attack with an angle of 69.0°.

IDSM : Regular system behavior is classified correctly.
fFP and fTN show no impact between any of the available
parameters changing the system behavior and the detection
ability of IDSM . All generated scenarios were equally not
considered suspicious, with an almost identical rating. An
optimization of fFN does not identify an undetected attack,
although the optimizer tried various injection timings and
patterns. The optimized fTP converges closely to 0.5 sec-
onds and documents that the window size (configured to
0.5 seconds) is a lower boundary for the detection.

5.3 Into the Next Iteration

After the domain experts have analyzed the optimized
traces, our methodology supports the deployment decision
or guides the next iteration in the development process. In
general and as discussed in Sect. 3.5, there are three possible
outcomes (we identify them as A, B, and C):

IDST is an example of outcome A, an IDS suffering
from a critical and relevant vulnerability revealed by the
optimization. Depending on the internal detection model and
the determined threshold, manipulations with a particular
steering angle exist that do not yield an alarm but cause
a safety violation. The optimization with fFN extends
towards that edge point and converges at this particular
angle. However, a different configuration of IDST classifies
this particular generated data point correctly. Yet, a new
optimization of fFN for this IDS configuration results in

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 12

a different data point that documents this weakness again
with a different steering angle. In addition, the optimization
with fFP guided the optimization to a set of parameters
that correlate with stronger steering actions by the ADAS,
most likely caused by a small aberration from the internal car
model and the actual steering behavior. Although none of
the generated samples results in a false positive classification,
we see them as an indicator for another problem with an
adjusted IDS model or in further experiments in different
scenarios. Our simple track is insufficient to challenge correct
IDS classifications during more complex steering maneuvers
potentially described by refinements of the parametrization.
These findings indicate that IDST needs adjustments or
extensions to fully protect an autonomous car.

IDSM is an example of outcome C, an IDS passing all
tests generated by the optimization in our parameter space.
However, this finding alone is no proof for the security of
the IDS and the absence of any false classification, but only
relative to the spanned and examined parameter space. The
comparison of the four IDS-specific fitness functions with the
baseline reveals little impact of all parameters provided to the
optimizer despite a broad probing of various combinations.
Such evaluation yields two questions for the domain experts:
(1) Is this entire space parameter space realistic and represen-
tative, and (2) is the gained safety through the IDS sufficient?
A real-world setup would require extending the parameter
space and analyzing more functional scenarios. Different
parametrizations describe more complex patterns of attacker
timing, and the regular system behavior in our scenarios
always has a perfectly deterministic communication pattern
with a constant busload. Nevertheless, our optimizations
already provide an approximation for the remaining safety
margin. Especially, fTP showed that the window size within
the detection model of IDSM is the minimal delay of a
potential alarm. Hence, small window sizes are preferable if
the detection abilities remain high. Suppose domain experts
consider both properties in question as sufficiently fulfilled.
In that case, our evaluation provides a witness in support of
the deployment decision of an IDS configuration.

The deductions only give the idea of further steps, but
we see investigating them more closely out of the scope of
this publication. Refining or extending IDST , suggesting a
new idea with an evaluation showing the improved security,
is a new distinct paper. In the case of IDSM , we expect such
deeper analysis to overall support the functionality of the
IDS. But more importantly, such investigation would produce
valuable insights about handling the dataset space in our
evaluation framework. We elaborate on possible aspects to
investigate the dataset space more deeply in Sect. 6.2.

5.4 Comparison with Benchmark Datasets

The datasets generated using our methodology drastically
differ from those used for the original IDS validation. Our
insights are not elaborated nor mentioned in the original
papers. Similar data points were not present or not noticed
in the dataset. All our optimized data points are not edge
cases within our parameter space that could be determined
or anticipated upfront, especially if the traits and quality of
the evaluated IDS are not known upfront. All this combined
showcases the need for an additional evaluation considering
the concrete IDSs under analysis.

Moreover, our generated datasets document that a dataset
optimized for challenging an IDS cannot evaluate other IDSs
than that for which it has been generated. In particular, on
the one hand, the dataset generated for IDSM does contain a
broad set, probing all parameter combinations. Nevertheless,
the critical points for the classification behavior for IDST

were omitted in all explored concrete scenarios. Thus, an
evaluation of IDST with the dataset of IDSM results in a
wrong evaluation that misses the false negatives completely.
On the other hand, the dataset optimized for IDST only
depicts focused behavior, mostly varying the payload of
the attack. Furthermore, the data points with the strongest
misclassification depend on the concrete internal detection
model. Moreover, various other parameter combinations doc-
umenting an accurate functionality of a different detection
feature, e.g., different timings as for IDSM , are not provided
by a dataset generated with a specific set of attacks in mind.
Thus, an evaluation of IDSM with the dataset optimized for
IDST results in an evaluation with neither false negatives
nor false positives but with much less actual confidence as
desirable in this assessment.

5.5 Threats on Implementation

We require executable and functional implementations of the
IDS under analysis for our optimizations. As the original
authors did not publish their code or models, we reimple-
mented their algorithms and trained them on data collected
from our setup. We cannot verify if and how much our
IDSs differ from the original publications. As our research
focuses on a methodology for the IDS evaluation in general,
using slightly diverging implementations of the IDS is not
problematic. However, we want to point out that a different
implementation or training might not result in the identical
weaknesses of the IDSs we documented.

In addition, using a HIL for our simulation reduces the
realism of the observable traces. However, due to safety
and monetary restrictions, repeatedly attacking a real car
during operations at high speed is not feasible. Therefore,
we conducted selected concrete scenarios at low speed
in a real car, validated our attacks and simulation, and
compared the collected traces to ensure high similarity
(see Appendix B). Another factor is the imperfect deter-
minism of our simulation. Although the car operates in an
identical environment among different runs, the network
communication differs in timing and, thereby, in minorly
different payloads. We believe hitting identical timings is
impossible without a full simulation of all hardware, and we
intentionally decided against that. Nevertheless, in multiple
executions with the same parameters, we observed only
differences within milliseconds of the otherwise identical
behavior. We use an optimizer that can work with noisy
fitness values and repeats identical parameters if they seem
promising to show the optimal behavior.

6 DISCUSSION

6.1 Implications on IDS Evaluation

The evaluation of IDSs requires the analysis of an exemplary
dataset as a benchmark for their performance. However,
our results indicate that upfront generated datasets do
not contain the data points that especially showcase all

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 13

strengths and weaknesses of all IDSs they will evaluate. This
shortcoming emerges from two aspects inherently missing
in these datasets: (1) normal behavior of the system that is
not edge case behavior for the system itself but might still
be misleading for the classification by the specific detection
model in the IDS, resulting in undocumented false positives,
and (2) attacks with modifications within the attacker’s
abilities actively trying to avoid and hide from the concrete
detection model in IDS while an unaltered attack is detected,
resulting in undocumented false negatives. Both aspects
are relative to the IDSs under analysis and, in our view,
must be reflected in the evaluation. Massively increasing
the size and diversity of a fixed dataset reduces the risk of
missing these critical points, as they might be part of the
dataset by chance. But most severely, even if the meaningful
traces would all exist within a large benchmark dataset,
domain experts might not notice them in the multitude of
investigated classifications and the finally summed scores.
Considering the exponential growth of the dataset space
with the number of parameters, universal, fixed datasets are
not feasible and waste resources by evaluating data points
without particular meaning for the IDS under analysis.

Therefore, we argue for a cultural change in creating,
publishing, and sharing benchmark datasets. A good bench-
mark dataset must provide means to adjust directly to the
IDS under evaluation and structured information to further
extend them with data points after publication. For our
methodology, this information is the deduction that spans
the dataset space corresponding to the dataset, including the
parameter domains and a simulation environment. Ideally,
a standardized and reusable format or universal catalog of
guided generation methods scope these confinements .

Finally, we highlight that domain experts are central
to the evaluation process. In our experiments, we spotted
attacks not detected by both IDSs under evaluation and
still cause safety-relevant effects on the overall system. An
example of such an attack is a MitM-attacker transmitting the
messages regularly but freezing the current steering angle.
In sophisticated evaluations covering large dataset spaces,
ideally fulfilling some completeness criteria, undesired be-
havior might always exist. Nevertheless, not the entire space
or shown edge case behavior is critical for the system’s daily
operation and requires a correct classification by an IDS.
After a deeper analysis of the generated system data points,
domain experts might conclude that all these remaining flaws
in the IDS are acceptable and form a reasonable trade-off
between security and efforts for mitigation. Our optimization-
based methodology, or more specifically, the fitness functions,
can be adjusted to exclude data points that are not considered
relevant and explore the remaining parameter space for
other critical behavior. In our view, it is impossible to fully
investigate the whole dataset space and demonstrate an IDS
is secure. Hence, the goal should be to support the trade-
off for a reasonably secure system with sufficient evidence.
With our methodology, we aim to focus the attention of the
domain experts on the most relevant data points.

6.2 Future Work

We see a direct potential to extend our methodology by
including the reaction to alarms. Our evaluation approach
analyses the functionality of the system and IDS as a whole

and could cover automatic reactions to all alarms seamlessly.
Suitable reactions, especially in safety-critical environments,
are a different field of research and, therefore, out of the
scope of this work.

As an important next step, we consider extending our
methodology for space exploration of potential datasets
beyond network IDSs and the domain of safety-critical
cyber-physical systems. Namely, two core points need to
be adjusted to generalize our methodology: (1) The schema
we used for scenario deduction needs to be transferred to
other domains, and (2) The building block sam(t) needs to
be generalized. About (1): For deducing our methodology,
we followed the steps of scenario-based testing, which has
been developed for the automotive domain and adopted for
other use cases of cyber-physical systems. However, scenario-
based testing is a specific functional testing strategy and
a refinement of the equivalence class testing concept. The
choice of the optimal test strategy depends on the system
under analysis. Especially, concrete attack implementations
are domain-specific and thus require further analysis and
other technical implementations that we see out of scope
from this paper. The scope of penetration testing approaches
and tools is broad [45], and we see potential instrumentation
in all of them. About (2): We use sam(t) to quantify the
impact and success of an attack. We rely on quantifying
safety violations as they are measurable directly and provide
a fine-grained differentiation between each manipulation.
Although this, for the moment, is restricting the number of
use cases for IDSs, we are confident that an adaption of the
fitness functions for general application is possible in the
future. Estimating costs caused by a successful attack or a
false positive has been proposed for evaluating IDS for over
two decades [46]. Replacing the safety margin with costs
in our fitness function seems the most promising. Still, it
requires an additional step of indirection to estimate the
costs and should be evaluated further on another use case.

Furthermore, we see the need to broaden the knowledge
of the space of potential benchmark datasets. With the setup
of our experiments, we focused on maximal realism and
validity using the realistic simulation setup and the confirma-
tions from inside the car. Future research can implement our
methodology with less realistic but faster simulation tools.
Such faster tools enable more iterations and a deeper dataset
space analysis than we have done.

We focused solely on the generation and augmentation
of datasets to evaluate IDSs and separated these efforts
strictly from IDS development and tuning. However, these
two activities cannot be separated, as the wrong-classified
samples yielded by our methodology are valuable inputs
for refining IDSs. Future work can explore these research
challenges. For example, the IDS developers could simply
add these data points to their training dataset for a machine
learning-based IDS.

6.3 Threats to Validity

The main threat to the validity of our methodology and,
overall, the generated data points lies within the dependency
on the appropriate deduction and modeling of the dataset
space. Describing and parameterizing the regular system
operation in isolation is as challenging as deducing complete
test suites for the system. In addition, identifying and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 14

describing potential attacks on this system behavior is the
core of penetration testing. After documenting such an attack,
additional parametrization of the attacker’s behavior is
necessary. Too complex attacks or attacks without functional
variations will result in much longer optimization times
and the optimizer only spotting exactly the prepared attack.
Conversely, too simplified scenario spaces will not contain
exploits to an IDS and result in wrong confidence. Despite
the weaknesses we spotted, we know little about the relation
between our data points and the overall dataset space.

In our analysis, we chose a scenario space that, based on
our experience, is around the ideal area between simple and
complex. Our methodology can encode more complex attacks
and combinations than we did, but our scenarios already
discovered successful attacks. Furthermore, the sophisticated
generation of attacker behavior is not the focal point of this
paper. Choosing a more straightforward attacker behavior
simplifies the optimization and reduces the required runtime.
Hence, future research should investigate more sophisticated
attack generation approaches while spanning the dataset
space and repeat our dataset comparison on the new attack
samples. However, we expect these data points to show more
extreme behavior and support our findings even more.

Finally, we only conducted the experiments within a
single use case related to network intrusions. However, there
are generally various use cases and approaches for IDSs. We
expect the evaluation of host-based IDSs to show the most
extensive divergence from our findings. Although we aim to
better understand the ground nature of evaluating all IDSs,
all experiments can only consider specific IDSs for specific
use cases. Therefore, our findings yield the necessity of
further investigations. Nonetheless, it will remain impossible
to generally prove the properties of all the potential spaces
for datasets for all IDSs universally.

7 CONCLUSION

This paper critically reflects the process of creating bench-
mark datasets independent of the IDSs in the evaluation. We
chose a previously well-studied use case for intrusion detec-
tion on automotive networks for our investigation. Based on
successful attacks against an open-source ADAS, we used
scenario-based optimization to systematically explore the
space of all possible data points in benchmark datasets.
Using six fitness functions that quantify the suitability of
a data point for the evaluation, we generated system and
attacker behavior that especially showcase edge cases for the
classifications of the IDS under analysis.

Analyzing the so-generated confined dataset, we found
that only a tiny part of the edge case classifications are cov-
ered when the system and attacker are considered in isolation
of the IDS while collecting a benchmark dataset. Utilizing
our methodology, we identified scenarios demonstrating
classification behavior for each IDS that previous datasets
have not shown and that the original evaluations of the two
IDSs have not touched. Most importantly, these data samples
are specific for each IDS and show almost no intersection.
In other words, a dataset suitable for a sound benchmark of
one of the IDSs is not beneficial for analyzing another.

Our finding questions the practice of using static, univer-
sal benchmark datasets for evaluating an IDS suggested after-
ward. Even in identical systems and attacker models, all IDSs

need to be evaluated with data points specifically reflecting
the properties of the IDS’ detection model. Only these specific
data points can emphasize edge case behavior and unique
strengths of each candidate IDS under analysis missing in
static datasets generated upfront. Consequently, invariant
benchmark datasets are not sufficient to compare IDSs.
Instead, the evaluation should follow a fixed methodology,
considering each IDS individually to create tailored dataset
points. Our blueprint for scenario-based dataset generation
is a step toward a new culture for benchmark datasets
and a well-founded evaluation methodology providing final
confidence in deploying an IDS.

REFERENCES

[1] K. Scarfone and P. Mell, “Guide to Intrusion Detection and
Prevention Systems (IDPS),” NIST special publication, 2007.

[2] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion
detection system: A comprehensive review,” Journal of Network and
Computer Applications, 2013.

[3] A. Cárdenas, J. Baras, and K. Seamon, “A framework for the
evaluation of intrusion detection systems,” in IEEE Symposium
on Security and Privacy, 2006.

[4] N. Stakhanova and A. A. Cardenas, “Analysis of Metrics for Classi-
fication Accuracy in Intrusion Detection,” in Empirical Research for
Software Security: Foundations and Experience, 2017.

[5] E. Aliwa, O. Rana, C. Perera, and P. Burnap, “Cyberattacks and
countermeasures for in-vehicle networks,” ACM Comput. Surv.,
2021.

[6] O. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, and A. Mouzakitis,
“Intrusion detection systems for intra-vehicle networks: A review,”
IEEE Access, 2019.

[7] SAE International, “Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles,” 2021.

[8] M. Kuhn and K. Johnson, Applied predictive modeling. Springer
New York, 2013.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
International Conference on Learning Representations, 2014.

[10] A. Warzyński and G. Kołaczek, “Intrusion detection systems
vulnerability on adversarial examples,” in Innovations in Intelligent
Systems and Applications, 2018.

[11] M. Pujari, Y. Pacheco, B. Cherukuri, and W. Sun, “A comparative
study on the impact of adversarial machine learning attacks on
contemporary intrusion detection datasets,” SN Computer Science,
2022.

[12] H. Qiu, T. Dong, T. Zhang, J. Lu, G. Memmi, and M. Qiu,
“Adversarial attacks against network intrusion detection in iot
systems,” IEEE Internet of Things Journal, 2021.

[13] M. J. Hashemi, G. Cusack, and E. Keller, “Towards evaluation of
NIDSs in adversarial setting,” in CoNEXT Workshop on Big DAta,
Machine Learning and Artificial Intelligence for Data Communication
Networks, 2019.

[14] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R.
Kendall, S. E. Webster, and M. A. Zissman, “Results of the DARPA
1998 offline intrusion detection evaluation,” in Recent Advances in
Intrusion Detection, 1999.

[15] J. McHugh, “Testing intrusion detection systems: A critique of the
1998 and 1999 darpa intrusion detection system evaluations as
performed by lincoln laboratory,” ACM Trans. Inf. Syst. Secur., 2000.

[16] M. V. Mahoney and P. K. Chan, “An analysis of the 1999
DARPA/Lincoln Laboratory Evaluation Data for network anomaly
detection,” in Recent Advances in Intrusion Detection, 2003.

[17] R. Singh, H. Kumar, and R. Singla, “A reference dataset for network
traffic activity based intrusion detection system,” International
Journal Of Computer Communications & Control, 2015.

[18] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set
for network intrusion detection systems (UNSW-NB15 network
data set),” in Military Communications and Information Systems
Conference, 2015.

[19] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garcı́a-
Teodoro, and R. Therón, “UGR‘16: A new dataset for the evaluation
of cyclostationarity-based network idss,” Computers & Security,
2018.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 42, NO. 42, JANUARY 1970 15

[20] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-
based benchmark data sets for intrusion detection,” in European
Conference on Cyber Warfare and Security, 2017.

[21] I. Sharafaldin, A. Habibi Lashkari., and A. A. Ghorbani., “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization,” in International Conference on Information Systems
Security and Privacy, 2018.

[22] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Def Con, 2013.

[23] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion
detection system for in-vehicle network by using remote frame,” in
Privacy, Security and Trust, 2017.

[24] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet:
An unsupervised intrusion detection system for high dimensional
CAN bus data,” IEEE Access, 2020.

[25] S. S. Gopalan, D. Ravikumar, D. Linekar, A. Raza, and M. Hasib,
“Balancing approaches towards ml for ids: A survey for the cse-cic
ids dataset,” in International Conference on Communications, Signal
Processing, and their Applications, 2021.

[26] S. Sapre, K. Islam, and P. Ahmadi, “A comprehensive data sampling
analysis applied to the classification of rare iot network intrusion
types,” in IEEE 18th Annual Consumer Communications & Networking
Conference, 2021.

[27] G. Apruzzese, L. Pajola, and M. Conti, “The cross-evaluation
of machine learning-based network intrusion detection systems,”
IEEE Transactions on Network and Service Management, 2022.

[28] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer,
“Defining and substantiating the terms scene, situation, and scenario
for automated driving,” in IEEE 18th International Conference on
Intelligent Transportation Systems, 2015.

[29] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development,
test and validation of automated vehicles,” in IEEE Intelligent
Vehicles Symposium, 2018.

[30] P. Koopman and M. Wagner, “Challenges in autonomous vehicle
testing and validation,” SAE International Journal of Transportation
Safety, 2016.

[31] G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated
generation of diverse and challenging scenarios for test and
evaluation of autonomous vehicles,” in IEEE International Conference
on Robotics and Automation, 2017.

[32] F. Hauer, A. Pretschner, and B. Holzmüller, “Fitness functions for
testing automated and autonomous driving systems,” in Computer
Safety, Reliability, and Security, 2019.

[33] T. J. Ostrand and M. J. Balcer, “The category-partition method for
specifying and generating fuctional tests,” Commun. ACM, 1988.

[34] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on scenario-based safety assessment of automated vehicles,”
IEEE Access, 2020.

[35] Robert Bosch GmbH, “CAN specification,” 1991.
[36] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,

D. McCoy, B. Kantor, D. Anderson, H. Snachám, and S. Savage,
“Experimental security analysis of a modern automobile,” in IEEE
Symposium on Security and Privacy, 2010.

[37] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Com-
prehensive experimental analyses of automotive attack surfaces,”
in USENIX Conference on Security, 2011.

[38] C. Miller and C. Valasek, “Remote exploitation of an unaltered
passenger vehicle,” Black Hat USA, 2015.

[39] M. Bozdal, M. Samie, S. Aslam, and I. Jennions, “Evaluation of can
bus security challenges,” Sensors, 2020.

[40] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in
automobile control network data with long short-term memory
networks,” in IEEE International Conference on Data Science and
Advanced Analytics, 2016.

[41] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, “Evaluation
of anomaly detection for in-vehicle networks through information-
theoretic algorithms,” in IEEE International Forum on Research and
Technologies for Society and Industry Leveraging a better tomorrow,
2016.

[42] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,” in
International Conference on Knowledge Discovery and Data Mining,
2019.

[43] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in International Conference on Neural
Information Processing Systems, 2011.

[44] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions
for vision architectures,” in International Conference on International
Conference on Machine Learning, 2013.

[45] D. D. Bertoglio and A. F. Zorzo, “Overview and open issues on
penetration test,” Journal of the Brazilian Computer Society, 2017.

[46] J. Gaffney and J. Ulvila, “Evaluation of intrusion detectors: a
decision theory approach,” in IEEE Symposium on Security and
Privacy, 2001.

[47] T. Hutzelmann, D. Mauksch, and A. Pretschner, “How to conduct
experiments with a real car? experiences and practical guidelines,”
in Communications in Computer and Information Science, 2020.

Thomas Hutzelmann is currently a research associate at the Chair
of Software and Systems Engineering at the Technical University of
Munich at the School of Computation, Information and Technology. His
current research focuses on making security properties quantifiable and
measurable, especially for intrusion detection systems.

Dominik Mauksch is currently working as a penetration tester and
security engineer in the automotive industry. This work was done during
his stay at the Technical University of Munich, where he received the
M.Sc. degree in Automotive Software Engineering. His research interests
include the security testing of embedded, safety-critical systems and test
automation techniques for CPSs.

Ana Petrovska is a research associate at the Chair of Software and
Systems Engineering at the Technical University of Munich at the School
of Computation, Information and Technology. Her research focuses on
the foundations of system adaptation and self-adaptive systems, and
knowledge representation and reasoning under uncertainties in CPSs.

Alexander Pretschner is head of the Chair of Software and Systems
Engineering at the School of Computation, Information and Technology
at the Technical University Munich; the scientific director of fortiss, the
research institute of the Free State of Bavaria for Software-Intensive
Systems; and the speaker of the board of directors of bidt, the Bavarian
Research Institute for Digital Transformation.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3341211

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


