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Safe Reinforcement Learning for Automated
Vehicles via Online Reachability Analysis

Xiao Wang and Matthias Althoff, Member, IEEE

Abstract—Ensuring safe and capable motion planning is
paramount for automated vehicles. Traditional methods are
limited in their ability to handle complex and unpredictable
traffic situations. Model-free reinforcement learning (RL) ad-
dresses this challenge by generalizing across different traffic
situations without requiring explicit knowledge of all possible
outcomes. However, it also poses challenges due to its inherent
lack of safety guarantees. To bridge this gap, we integrate
online reachability analysis into model-free RL to provide real-
time safety guarantees. Reachability analysis helps to identify
unsafe states and actions, enabling provably safe decision-making
in automated vehicles. We evaluate the effectiveness of our
approach through extensive numerical experiments. Our results
demonstrate that we can efficiently provide safety guarantees
without impairing the performance of the learned agent.

Index Terms—Automated vehicles, motion planning, reinforce-
ment learning, reachability analysis, safety verification, and
formal methods.

I. INTRODUCTION

AUTOMATED vehicles provide a promising solution to
improve safety and traffic efficiency while reducing

energy consumption [1]. Various motion planning techniques
have been developed for automated vehicles in the last
decades [2]. Among these approaches, data-driven methods
have shown great potential to handle complex traffic scenarios
with much less required expert knowledge compared to rule-
based methods [3], [4]. Motion planning can be modeled as
sequential decision-making problems, for which reinforcement
learning (RL) techniques have achieved enormous advances in
recent years [5]–[7]. However, due to its trial-and-error nature,
RL methods lack safety guarantees, which prevents them from
being applied to real-world safety-critical systems, such as
automated vehicles.

Safe RL has thus become a very active research area aiming
to improve or guarantee the safety of RL-based controllers and
motion planners during training and/or deployment. Gu et al.
have reviewed recent advances in safe RL methods for motion
planners of automated vehicles in [8, Sec. 5.1]. However,
to the best knowledge of the authors, none of the existing
works offers a hard safety guarantee for RL-based planners
with continuous action spaces for an infinite time horizon,
nor do they compare safety verification techniques for safe
RL. In this article, we propose a safe RL framework based on
online reachability analysis [9], [10] and compare the proposed
method with another safe RL approach using control barrier
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Fig. 1: Overview of the proposed approach. The RL agent returns an action
that generates an intended trajectory. Based on reachability analysis, the safety
layer predicts the occupancies of other traffic participants and changes the
intended trajectory to the closest safe trajectory. The RL agent receives a
reward, replans from a new safe state, and eventually reaches a desired goal
area.

functions [11]. The proposed framework is shown in Fig. 1 and
explained in more detail in Sec. III. We demonstrate through
our numerical experiments that reachability-based methods
are more suitable for longer planning horizons compared to
approaches using control barrier functions. In addition, control
barrier functions are designed for specific cases, e.g., highway
scenarios [11], while reachability analysis works for arbitrary
traffic situations [9].

A. Literature Review

Subsequently, we summarize related surveys on safe RL
methods and their applications to autonomous driving. A
detailed review of safety verification methods for automated
vehicles is provided in [12, Sec. 3] and thus omitted in this
article. In conclusion of [12], reachability analysis is the
most common and popular method for online verification for
arbitrary traffic situations and is thus utilized in this article.

a) Surveys on Safe RL: In recent years, many surveys
on safe RL algorithms emerged. For instance, Garcı́a et al.
[13] categorize safe RL approaches into two groups: those
that modify the optimality criterion and those that modify
the exploration process. Similarly, Brunke et al. [14] review
safe learning control methods, examining the level of safety
guarantees provided as well as the reliance on prior knowledge
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TABLE I: Literature on safe RL for automated vehicles organized by action space and used safety methods. Abbreviations used here are listed in Table II.
.

Action
Space

Safety/
Shielding
Method

RL Method Applied
Scenario

Type of Guarantee Explicit Prediction of Other Traffic Par-
ticipants

Ref.

DQN highway guarantee for an infinite time based on physical limits and traffic rules [17]
Q-learning ACC guarantee when model is accurate no [18]
Double DQN highway no formal proof of safety no [19]
DQN intersection guarantee with a certain probability most likely behavior [20]
DQN intersection guarantee with a certain probability no [21]

action DQN intersection guarantee with a certain probability no [22]
masking PPO highway guarantee for an infinite time set-based reachability analysis [23]

PPO
highway,
roundabout,
intersection

formally proved safety for linearized
system dynamics no [24]

DQN intersection no: prediction might be inaccurate a collision predictor based on LSTM [25]
Inverse RL highway guarantee for an infinite time based on physical limits and traffic rules [26]
PPO intersection guarantee for an infinite time set-based reachability analysis [27]

discrete IQN intersection no: constant safety gap is not for-
mally correct worst-case assumption [28]

action Double DQN highway no: considered safe distance assumes
constant velocity constant turn rate and acceleration [29]

replacement
Double DQN highway no: prediction might be inaccurate regret theory to predict lane changes [30]

DQN intersection no: assumes braking is always safe
for intersections RSS [31]

constrained parallel CPO intersection guarantee for the considered horizon N/A: centralized policy for all vehicles [32]
RL Q learning highway guarantee for the considered horizon N/A: consider static obstacles only [33]

policy gradi-
ent

double
merge no1 N/A [34]

reward PPO urban no1 a simple prediction model assuming ac-
celerations follow a uniform distribution [35]

shaping MCTS highway no1 no [36]

DQN merging no guarantee for maneuvers that use
reward shaping1 worst-case assumption [37]

risk-aware QRDQN intersection no1 no [38]
RL DQN intersection no1 worst-case assumption [39]

DDPG racing no: generate artificial potential field
based on current states, no prediction no [40]

action DDPG ACC no: constant distance and time head-
way no [41]

projection PPO highway guarantee for one time step worst-case assumption [11]
continuous PPO highway guarantee for the considered horizon set-based reachability analysis [42]

action TD3 highway guarantee for the considered horizon N/A: consider static obstacles only [43]

replacement attention PPO highway guarantee for one time step reachable velocity set given acceleration
and steering angle bounds [44]

1 By nature, reward shaping and risk-aware RL can only improve safety instead of guaranteeing safety.

and data. Krasowski et al. [15] focus on provably safe RL
methods that use an external layer to mask or correct potential
unsafe actions from an RL agent. Gu et al. [8] provide a
theoretical and practical overview of safe RL techniques,
encompassing model-based and model-free approaches. Lastly,
Zhao et al. [16] distinguish state-wise safe RL algorithms,
where the problem is modeled as a state-wise constrained
Markov decision process, based on whether safety is ensured
after convergence or during training. State-wise RL focuses on
individual states instead of the average rewards or costs over
all states.

b) Safe RL for Autonomous Driving: Based on the previ-
ously mentioned surveys, we categorize literature on safe RL
for automated vehicles in Table I according to the adopted
safety/shielding methods and the considered action space.
Furthermore, we comprehensively list the utilized RL method,

TABLE II: Abbreviation used in this article.

Abbr. Meaning Ref.

ACC Adaptive Cruise Control N/A
CPO Constrained Policy Optimization [45]
DDPG Deep Deterministic Policy Gradient [46]
DQN Deep Q-Network [5]
IQN Implicit Quantile Networks [47]
LSTM Long Short-Term Memory [48]
MCTS Monte Carlo Tree Search N/A
MLP Multi-Layer Perceptron [49]
PPO Proximal Policy Optimization [50]
QRDQN Quantile Regression DQN [51]
RSS Responsibility-Sensitive Safety [52]
TD3 Twin Delayed DDPG [53]

the specific traffic scenario in which it was applied, the types of
safety guarantees obtained, and whether an explicit prediction
of other traffic participants was incorporated. From Table I,
we can conclude that most works focus on discrete and finite
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action spaces. However, in such cases, a low-level trajectory
planner is often required, and the RL agent might converge
to a suboptimal performance due to discretization effects.
Approaches for continuous action spaces are comparatively
less studied. In addition, methods that modify the optimiza-
tion objective, such as reward shaping, constrained RL, and
risk-aware RL, lack robust safety guarantees when dynamic
obstacles are present, because safety is only considered a
soft constraint in such cases. Lastly, safety guarantees of
methods that rely on external safety shields [15], i.e., action
masking, action replacement, and action projection, highly
depend on the predictions of other traffic participants. Many
works assume fixed behavior patterns for simplicity [29] or
predict the most likely behavior [20], [30]. Obviously, the
actual behavior might substantially deviate from particular
predictions. Consequently, safety cannot be guaranteed in
such cases. Alternatively, some methods assume worst-case
behaviors within a lane, which are more suitable for short
time horizons but are impractical for longer time horizons, as
later shown in Fig. 9a. In addition, worst-case assumptions
only work for monotonic systems and do not work for the
non-monotone lateral dynamics of a vehicle, as shown in
[10, Fig. 10]. On the contrary, set-based predictions using
reachability analysis [54] provide an over-approximation of
all feasible future movements of other traffic participants that
adhere to traffic rules; thus, safety can be guaranteed.

Among all previous works, the closest to ours are [11],
[42]. Kochdumper et al. [42] propose a reachability-based
safety shield for RL controllers for general nonlinear systems.
However, for the case study of automated vehicles, [42] only
ensures collision avoidance during the planning horizon. Fur-
thermore, the set representations used in [42] are suitable for
general systems but are less efficient for our application; thus,
the safety shield is only applied during deployment for the
autonomous driving use case. Compared to [42], our approach
performs online reachability analysis and thus can be applied
during training as well. Wang [11] proposed a safety shield
using control barrier functions to ensure safety. However,
the control barrier functions proposed in [11] only focus on
highway scenarios and rely on the worst-case assumption of
other traffic participants, which is more suitable for short
planning horizons, as we show empirically in Sec. IV.

B. Contributions

We propose a method to safeguard RL-based motion plan-
ners with a continuous action space. Compared to our previous
methods [11], [42], this approach works for arbitrary planning
horizons, does not require offline reachable set computation,
and can guarantee safety for infinite time. To demonstrate
the effectiveness of our method, we perform an extensive
numerical evaluation using real-world datasets. Furthermore,
we provide the first comparison of reachability analysis with
control barrier functions for safe reinforcement learning.

C. Outline

The remainder of this paper is structured as follows: In
Sec. II, we introduce the notation used, the vehicle dynamics,
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Fig. 2: Kinematic single-track model in a curvilinear coordinate system, where
Γ corresponds to a given drivable reference path, e.g., the centerline of a lane
occupied by the ego vehicle. The reference point of the vehicle is the center
of the rear axle.

basic concepts in RL, and our problem statement. We present
our solution concept based on the online verification frame-
work in Sec. III, which is evaluated using real-world highway
scenarios in Sec. IV. Finally, we draw conclusions in Sec. V.

II. PRELIMINARIES

A. Notation

This work uses discrete time tk = k∆t with a constant time
step size ∆t ∈ R+, where k is the time step. We use �k to
denote the value of variable � at time tk. Note that � serves as
a placeholder for variables in this article. Similarly, �[k,k+f ]

denotes the discrete-time trajectory of a variable for the time
interval [tk, tk+f ], i.e., �[k,k+f ] = [�k,�k+1, · · · ,�k+f ]. Let
x ∈ X ⊂ Rn denote the set of admissible states and u ∈ U ⊂
Rm the set of admissible inputs. We consider a dynamical
system of the form

xk+1 = f(xk, uk). (1)

The notation xk(x0, u[0,k]) represents the state of system (1) at
time tk when starting from an initial state x0 subject to the in-
put trajectory u[0,k]. The superscript x(i), i ∈ N+ describes the
i-th entry of the state variable x, whereas the subscripts �lon

and �lat respectively describe a variable in the longitudinal
and lateral direction of a curvilinear coordinate system for a
given reference path Γ illustrated in Fig. 2. We assume that Γ is
always drivable. Note that we denote the control input as u and
the actions of the RL agent as aRL, which encodes trajectories
of control inputs in our setting, as detailed later in (22). We
use the projection operator proj�(x) to map a state x ∈ X
to its elements specified by �. The projection of a set is then
represented as proj�(X ) := {proj�(x)|x ∈ X}. The operator
occ(x) : Rn → R2 relates the state x of the ego vehicle to
its occupancy. In addition, we define the occupancy Ok of
all relevant traffic participants and the one-step reachable set
Rk+1 as well as the drivable area Dk of the ego vehicle:

Definition 1 (Occupancy Ok)
The occupancy Oi,k ⊆ R2 represents the set of positions that
an obstacle i could potentially occupy at time step k. Let
B ⊂ N denote the set of all relevant traffic participants in the
considered traffic scenario. We define Ok =

⋃
i∈B Oi,k.

Note that we model the road boundaries as static obstacles in
a traffic scenario, see Fig. 3b. Therefore, avoiding collision
with Ok also ensures driving within the road boundaries.
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Definition 2 (One-Step Reachable Set Rk+1)
The reachable set Rk+1 is the set of states reachable from
Rk within one step without its occupancy intersecting the
occupancy of obstacles Ok+1:

Rk+1 :=
{
xk+1 ∈ X

∣∣∃xk ∈ Rk, ∃uk ∈ U :

xk+1 = f(xk, uk), occ(xk+1) ∩ Ok+1 = ∅
}
.

Definition 3 (Drivable Area Dk)
The drivable area Dk of the ego vehicle is the projection
of its reachable set Rk onto the position domain: Dk :=
projs,d(Rk), where s and d denote the longitudinal and lateral
positions, respectively.

Before introducing invariably safe sets, we define the set of
collision-free states Fk as:

Definition 4 (Collision-free Set Fk)
The set of collision-free states Fk ⊆ X describes the largest
possible set of states of (1) whose associated occupancy does
not collide with the occupancy of any obstacles at time step
k: occ

(
Fk
)
∩ Ok = ∅.

When only ensuring collision avoidance during the planning
horizon, the ego vehicle might end up in a situation where a
collision is inevitable, e.g., when the ego vehicle is too close
to a static obstacle with a high velocity. To circumvent this
issue, we utilize invariably safe sets proposed in [55], which
we shortly recap: A state xk is invariably safe if a collision-
free input trajectory u[k,k+τ ] exists which leads to another
invariably safe state xτ . We use the shorthand u[k,τ ] ∈ U for
∀i ∈ [k, τ ] : ui ∈ U . The invariably safe set Sk is formally
defined as follows:

Definition 5 (Invariably Safe Set Sk)
The invariably safe set Sk at time step k is the maximal set of
states, which allows (1) to be safe for an infinite time horizon:

Sk :=
{
xk ∈ Fk

∣∣∀τ > k, ∃u[k,τ ] ∈ U : xτ
(
xk, u[k,τ ]

)
∈ Fτ

}
.

We use polytopes to under-approximate invariably safe sets.

Definition 6 (Polytope)
Given a matrix of normal vectors A ∈ Rp×n and the offset
b ∈ Rp, the halfspace representation of a polytope P ⊆ Rn is
P :=

{
x ∈ Rn

∣∣ Ax ≤ b}. We use the notation P = 〈A, b〉P .

B. Vehicle Dynamics in a Curvilinear Coordinate System

To capture the non-holonomic behavior of a vehicle, we
choose the widely-used kinematic single-track model for plan-
ning input trajectories, which combines the front and rear
axle wheels of a vehicle into a single wheel at the center of
each axle. We linearize the vehicle dynamics by separating the
longitudinal and lateral dynamics of the vehicle, as proposed
in [56, Sec. V], which enables us to formulate a convex
optimization problem. We formulate the vehicle dynamics in
a curvilinear coordinate system, illustrated in Fig. 2. Note
that this model only provides kinematic constraints when
optimizing an input trajectory, while the safety constraints are
generated later using an abstract model. Therefore, our safety
concept also works with other vehicle models.

1) Longitudinal Dynamics: The longitudinal state of the
vehicle is xlon = [s, v, a, j]T , where s is the longitudinal
position, v is the velocity, a is the acceleration, and j is the jerk
of the vehicle. To obtain comfortable longitudinal motions, we
use ulon = ä as the input and thus obtain

xlon,k+1 =


1 ∆t 1

2 ∆t2 1
6 ∆t3

0 1 ∆t 1
2 ∆t2

0 0 1 ∆t

0 0 0 1


︸ ︷︷ ︸

Alon

xlon,k +


1
24 ∆t4

1
6 ∆t3

1
2 ∆t2

∆t


︸ ︷︷ ︸

blon

ulon,k.

(2)
In addition, we consider the subsequent time-invariant con-
straints for the state and input:

Xlon,ti := R×

vmin, vmax

amin, amax

jmin, jmax

 , (3)

Ulon,ti :=
[
ämin, ämax

]
. (4)

2) Lateral Dynamics: The lateral state of the vehicle is
described by xlat = [d, eθ, κ, κ̇]T , where d is the lateral
position, eθ is the relative orientation θ−θΓ, κ is the curvature,
and κ̇ is the derivative of the curvature. Similarly to the
longitudinal motion, we use ulat = κ̈ as the input to obtain a
smooth lateral behavior:

xlat,k+1 =


0 vk 0 0
0 0 vk 0
0 0 0 1
0 0 0


︸ ︷︷ ︸

Alat,k

xlat,k +


0
0
0
1


︸︷︷︸
blat

ulat,k. (5)

Note that in contrast to [56, Sec. V], we add a constraint
for the ego vehicle to approximately follow the pre-defined
reference path Γ, i.e., eθ is negligibly small, which enables
us to utilize the small-angle assumptions sin(eθ) ≈ eθ and
cos(eθ) ≈ 1. Furthermore, we take into account the physical
limits of the steering system of a vehicle by including the
following constraints:

Xlat,ti,k := R×

 eθ,min, eθ,max

κlim,min, κlim,max

κ̇min, κ̇max

 , (6)

Ulat,ti :=
[
κ̈min, κ̈max

]
, (7)

where the value of eθ,min and eθ,max are determined such that
the small-angle assumptions have less than 1% relative error.
In addition, we derive the constraints for the curvature based
on the friction circle (aka Kamm’s circle):

κlim,min = max

(
κmin,−

√
a2

max − a2
k

vk

)
, (8)

κlim,max = min

(
κmax,

√
a2

max − a2
k

vk

)
.

Note that since we decouple the longitudinal and lateral
planning, i.e., vk and ak are known after we plan a trajectory
for the longitudinal direction, constraint (6) remains linear. We
list all parameters used in this article in Table VI.
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3) Abstract Model for Reachability Analysis: To reduce
computational cost when computing the reachable set of the
ego vehicle and other traffic participants, we use the following
abstract model:

xk+1 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

xk +


1
2 ∆t2 0
∆t 0
0 1

2 ∆t2

0 ∆t

uk, (9)

the reachable sets of which are over-approximative; the state
is x = [s, vlon, d, vlat]

T and the input is u = [alon, alat]
T . To

ensure that the abstract model enclose all possible behaviors of
a real vehicle, conformance checking using the data recorded
from the real vehicle should be performed [57].

C. RL Algorithm

Reinforcement learning is performed based on a Markov
decision process (MDP), formalized by a tuple (S,A, p, r, γ).
Here, the state space S comprises continuous states sRL, and
the action space A consists of continuous actions aRL. The
transition function p(s′RL|sRL, aRL) represents the probability
distribution of arriving at state s′RL from state sRL by perform-
ing action aRL. In addition, r denotes the immediate reward
signal, and γ ∈ [0, 1] represents the discount factor.

RL focuses on training agents to make decisions through
interaction with an environment. An agent learns to perform
actions that maximize cumulative rewards over time based
on feedback from the environment. A mapping from states
to actions describing the behavior of the agents is called a
policy, denoted by πφ(aRL|sRL) and parameterized by φ. For
brevity, we just write π and π′ to denote policies parameterized
by φ and φ′ respectively throughout this article. We focus
on stochastic policies in this work, which returns probability
distributions for the action given the state.

Policy gradient methods are a class of RL algorithms
that optimize the policy directly by repeatedly estimating the
gradient of the expected reward with respect to the policy
parameters φ. The policy gradient theorem states that the
gradient of the expected reward J(φ) is [58, Chapter 13.2]:

∇φJ(φ) = Eτ∼π

[
T∑
t=0

∇φ log π

T∑
t′=t

γt
′−trt′︸ ︷︷ ︸

Ψt

]
, (10)

where Eτ∼π[�] denotes the expected value of � over a
trajectory τ when following policy π and T is the time horizon
of τ . Furthermore, J(φ) denotes the optimization objective of
the policy, which is the expected reward in (10) and can be
chosen differently depending on the used algorithm to tradeoff
between bias and variance, resulting in a different form of Ψt,
as shown in [59, Eq. 1].

In this work, we use the popular policy gradient algorithm
Proximal Policy Optimization (PPO) [50] since it has demon-
strated superior performance in continuous control problems
compared to other state-of-the-art approaches [50]. Note that
our safety layer also works with other RL methods for
continuous action spaces. To improve training stability, one
has to ensure that the policy is updated in a manner that it

does not deviate too far from the previous policy π′. This is
achieved in [60] by using a surrogate objective function that
incorporates a trust-region constraint:

J(φ) = Eτ∼π
[
η(φ)Âπ

′
(sRL, aRL)

]
(11)

with η(φ) =
π(aRL|sRL)

π′(aRL|sRL)
,

where Â(·) is the estimation of the true advantage function
A(·), defined in [59, Eq. 3]. Although the update of policies is
constrained, the training could still become unstable when the
distance between the updated parameters φ and the previous
parameters φ′ is large. PPO solves this by forcing η(φ) to
remain within a narrow range:

J(φ) = Eτ∼π
[
min(η(φ)Âπ

′
(sRL, aRL),

clip(η(φ), ε)Âπ
′
(sRL, aRL))

]
, (12)

where clip(�, ε) is an operator for constraining the operand
� in the range [1− ε, 1 + ε].

We obtain Â(·) using the generalized advantage estimation
proposed by Schulman et al. in [59], which combines multiple
advantage estimators with different levels of bias and variance,
resulting in a more robust estimator, thus providing more
accurate and stable policy updates. The generalized advantage
estimator is defined as:

Ât =

T−t−1∑
i=0

(γλ)iδt+i, (13)

with δt = rt + γV̂ (sRL,t+1)− V̂ (sRL,t),

where λ is a hyperparameter that controls the tradeoff between
bias and variance, and V̂ (·) is the estimation of the true value
function V (·). In this work, we use an actor-critic structure
[61] to approximate both the policy and value function with
a shared neural network, which reduces variance of the esti-
mated gradient of the expected reward and improves learning
efficiency.

D. Problem Formulation

We consider the problem of computing a safe input trajec-
tory for consecutive planning cycles. Without loss of gener-
ality, we set the initial time step of each planning cycle as
k = 0. For each planning cycle, the problem is solved by
projecting the actions proposed by the RL agent uRL,[0,f ] to the
closest safe actions u[0,f ], such that the resulting trajectories
are collision-free during the planning horizon [t0, tf ] and
end within an invariably safe set at tf . Note that we focus
on ensuring legal safety in this paper, i.e., safety under the
assumption that other traffic participants adhere to traffic laws.
Given a collision-free initial state x0 of the ego vehicle, we
formulate our problem in a quadratic programming form [62,
Ch. 4.4] for the longitudinal and lateral directions:

u[0,f−1] = arg min
∑

k∈[0,f−1]

‖uk − uRL,k‖2 , (14)
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subject to 
∀k ∈ [0, f − 1] : xk+1 = Akxk + bkuk,

(see II-B)xk+1 ∈ Xti,k+1,

uk ∈ Uti,

xk+1 ∈ Xtv,k+1, (see III-B)

for k = f : xk ∈ Xiss,k, (see III-C)

where Xti and Uti are the intervals originating from the linear
constraints of the states and control inputs resulting from the
system dynamics (2)-(8), Xtv is the interval originating from
the linear time-variant constraints obtained using reachability
analysis, and Xiss is the convexified under-approximation of
the invariably safe set.

III. SOLUTION CONCEPT

For each planning cycle, we derive the safety constraints
for (14) using the online verification framework illustrated
in Fig. 3. Initially, we utilize reachability analysis based on
physical constraints and traffic rules (implemented in [63])
to compute forbidden sets over time, i.e., the sets of all
future motions of other traffic participants, see Fig. 3b-1).
To ensure safety beyond the planning horizon, we compute
an invariably safe set considering the forbidden sets and
convexify the obtained set using polytopes, see Fig. 3b-2).
Simultaneously, we compute the reachable sets of the ego
vehicle by propagating its dynamics from a given initial set,
remove the forbidden sets from the propagated reachable sets,
and project them onto the position domain. This step allows
us to obtain the collision-free drivable area for the ego vehicle,
see Fig. 3b-3), which serves as the basis for extracting driving
corridors (implemented in [64]). The longitudinal trajectory is
then obtained by solving (14), utilizing the vehicle dynam-
ics, the collision-free longitudinal driving corridors, and the
convexified invariably safe sets as constraints. Subsequently,
we extract the lateral driving corridors based on the optimized
longitudinal trajectory. The difference between the longitudi-
nal and lateral driving corridors is explained in Sec. III-B2.
These lateral driving corridors are subsequently employed as
time-variant constraints to solve equation (14) for determining
the lateral trajectory, see Fig. 3b-4).

Because all our solutions are verified as legally safe, the
automated vehicle never causes an accident. However, when
the optimization problem (14) becomes infeasible, e.g., due to
an illegal behavior of another vehicle, one could execute an
emergency planner, which realizes collision mitigation.

A. Set-Based Prediction for Other Traffic Participants

To predict the future motion of other traffic participants,
we use the set-based prediction methods introduced in [54],
[65], which account for uncertainties and offer tight over-
approximations by considering traffic rules. Notably, compared
to the worst-case predictions used in [11], [52], this approach
uses consecutive time intervals instead of points in time,
ensuring that no collisions occur between points in time.

Reachable Set of Ego Vehicle
Sec. III-B
Fig. 3b-3)

RL Trajectory
Sec. II-C

Drivable Area
Sec. III-B
Fig. 3b-3)

Set-Based Prediction
Sec. III-A
Fig. 3b-1)

Longitudinal Driving Corridors
Sec. III-B
Fig. 3b-3)

Invariably Safe Set
Sec. III-C
Fig. 3b-2)

Convexification
Sec. III-C
Fig. 3b-2)

Optimization of Longitudinal Fail-Safe Trajectory (14)
Fig. 3b-4)

Lateral Driving Corridors
Sec. III-B
Fig. 3b-3)

Optimization of Lateral Fail-Safe Trajectory (14)
Fig. 3b-4)

(a) Flowchart of our online verification framework for one planning cycle.
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1) predict occupancies of other traffic participants for [0, 2]s
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(b) Exemplary computation steps for a simple scenario with a dynamic obstacle.

Fig. 3: Illustration of our online verification framework.

To reduce the computational complexity involved in com-
puting the reachable set of an exact model, abstractions are
used. An abstraction is a simplified model, whose reachable
set encloses the reachable set of the exact model. We list
three abstractions used in this work in Table III, including the
constraints they account for and reference proofs showing that
their reachable sets are over-approximative. The final predicted
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TABLE III: Abstractions used in set-based predictions.

Abstraction Considered Constraints Proof

acceleration-bounded abstraction limits the absolute acceleration of a vehicle using a point-mass model [65, Theorem 1]
lane-following abstraction constrains the longitudinal motion: speed limit, forbidden reverse driving, limited engine power,

allowed lanes
[65, Theorem 2]

safe-distance abstraction certain vehicles have to maintain a safe distance to the ego vehicle [54, Prop. 4]

ego state target vehicle Oacc,k Olane,k Osafe,k

Fig. 4: An exemplary scenario showing the occupancies of three used
abstractions, predicted for time 0.4s. The final predicted occupancy set Ok is
marked with thick solid lines.

occupancy set of a dynamic obstacle is:

Ok = Oacc,k ∩ Olane,k ∩ O{safe,k, (15)

where Oacc,k denotes the occupancy of the acceleration
and velocity-bounded abstraction, Olane,k denotes the lane-
following occupancy, and O{safe,k denotes the complement of
the safe distance occupancy Osafe,k, as depicted in Fig. 4.
The intersected occupancies of all abstractions remain an
over-approximation of the occupancy of the real model [65,
Proposition 1]. We list all used parameters in Table VI. Note
that the assumptions used in the abstractions are updated by
updating the parameters (for Oacc and Olane) or deactivating
the computation (for Osafe) as long as a violation is detected.
The computational time of the set-based prediction method
is linear in the number of traffic participants and prediction
intervals [54, Sec. III].

B. Computation of Reachable Sets for the Ego Vehicle

After predicting traffic-rule-compliant future occupancies of
other traffic participants, we need to determine the collision-
free solution space to project the actions of the RL agent
onto a safe area (14). It has been shown that using the
reachable set of the ego vehicle to obtain constraints for an
optimization-based motion planner [66] as well as to adjust the
sampling intervals for a sampling-based motion planner [67]
can effectively reduce computation time for complex traffic
scenarios.

1) Procedure: To compute the reachable set of the ego
vehicle, we adopt the polytopic set propagation method pro-
posed in [66], [68] and implemented in the open-source
toolbox CommonRoad-Reach [64]. As a set representation,
this method uses Cartesian products of two polytopes as base
sets R(i)

k to represent the reachable positions and velocities, in
contrast to another method using polynomial zonotopes [42].
The advantage is that polytopes are closed under intersections
and linear maps [69, Table 1], whereas the computational
complexity raised by high-dimensional systems is irrelevant
for our two-dimensional system. The computation of the
reachable set involves the following steps [66, Sec. IV-C,
Fig. 4]:

(i) Forward Propagation: The base sets R(i)
k at time step k

are propagated forward in time for the longitudinal and
lateral direction using a double integrator vehicle model
[66, Eq. 6] considering all admissible inputs. Note that
this model over-approximates the friction circle, thus it

is an abstract model. The resulting sets are denoted by
Rprop
k+1 . The initial base sets are created by enclosing the

set of initial states X0 considering measurement errors,
listed in Table VI.

(ii) Collision Detection: To remove colliding states from
Rprop
k+1 , the set of forbidden occupancies Ok+1 is first

created using the union of the predicted occupancies
obtained in Sec. III-A and road boundaries constructed
using oriented rectangles [70, Sec. IV-B]. Next, we over-
approximate Ok+1 by the set of axis-aligned rectangles
Õk+1 to realize efficient set difference and union. The
collision-free reachable set Rk+1 is obtained by com-
puting the difference between the union of the drivable
area Dprop

k+1 and the union of Õk+1, re-partitioning the
resulting set into axis-aligned rectangles, and computing
the reachable velocities for each collision-free drivable
area. We over-approximate the shape of the ego vehicle
using the three-circle approach proposed in [71] (see
Fig. 2) and enlarge the drivable area accordingly when
checking collisions as introduced in [66, Sec. IV-D,
Appendix B].

(iii) Update of Reachability Graph: A directed graph GR is
created for later extraction of driving corridors, where a
node stores a base set R(i)

k as well as its projection D(i)
k

and an edge (R(i)
k ,R(j)

k+1) stores the relation that R(j)
k+1

is reachable from R(i)
k in one time step. The set of all

edges are denoted by E .

2) Driving Corridor and Constraint Extraction: After com-
puting the drivable areas and the reachability graph, we need
to extract the temporal sequence of the connected drivable
areas, called driving corridors (denoted by Clon and Clat),
from which we derive the spatiotemporal constraints for our
optimization problem (14). We extract the longitudinal driving
corridors that intersect with an invariably safe set S introduced
in Sec. III-C to ensure safety beyond the planning horizon:

Clon :=
{

(D(i0)
0 ,D(i1)

1 , ...,D(if )
f )|

(R(ik)
k ,R(ik+1)

k+1 ) ∈ E ,D(if )
f ∩ Sf 6= ∅

}
. (16)

Let [dmin, dmax] denote the lateral bounds of the invariably
safe set that the driving corridors intersect with and ddes denote
the desired final lateral position resulting from the RL actions.
We sort the extracted driving corridors by the distance between
ddes and the closest lateral bound of the driving corridors,
i.e., max(0, |ddes − dmin| − |ddes − dmax| − |dmax − dmin|).
Note that we use zero when ddes is inside the driving corridor.
Subsequently, we iterate over each longitudinal driving corri-
dor, solve (14) for the longitudinal direction, and extract the
lateral driving corridors according to the planned longitudinal
positions, as visualized in Fig. 5c. The lateral driving corridors
Clat are obtained similarly as (16) except that sets D(i)

k are
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projs(Clon,k)

(a) Identification of the longitudinal driving corridors.

d

s

projs(xlon,0) projs(xlon,k) projs(xlon,kf )

projs(Clon,k)

(b) Optimization of the longitudinal trajectory subject to the longitudinal position
constraints obtained from the longitudinal driving corridor.

Clat,k projd(Clat,k)

projs(xlon,k)

(c) Identification of the lateral driving corridors based on longitudinal planned positions.

Fig. 5: Illustration of extraction of driving corridors, adapted from [66, Fig. 3]

removed if they are not part of Clon or do not enclose the
planned longitudinal positions, see [66, Sec. V-C].

For each time step k, given the extracted longitudinal
driving corridors, the longitudinal constraints are the interval
between the lower and upper boundaries of the drivable areas:

Xlon,tv,k := projs(Clon,k)× R3. (17)

Let di,min,k, di,max,k, i ∈ {1, 2, 3} denote the admissible
lateral deviation of the centers of three circles that approximate
the vehicle shape (see Fig. 2), where indices {1, 2, 3} indicate
the rear, center, and front circle, respectively; the lateral
constraint for the rear circle is derived similarly using upper
and lower boundaries of the drivable areas of the lateral driving
corridors, i.e,:

[d1,min,k, d1,max,k] = projd(Clat,k). (18)

For the derivation of the admissible lateral intervals of the
center and front circles di,min,k, di,max,k, i ∈ {2, 3}, see [66,
Sec. VI-B2)]. Note that when the drivable areas are enlarged
considering the vehicle shape during collision checks, the
assumption of eθ = 0 is used, which is enforced by the way the
admissible intervals are derived. Therefore, the enlargement
of reachable sets considering the vehicle shape and extraction
of lateral constraints have to be utilized together to ensure
collision avoidance [66, Sec. VI-B2)]. Let lwb denote the
wheelbase of the vehicle. The lateral constraints are:

Xlat,tv,k :=
{
xlat,k

∣∣∣d1,min,k

d2,min,k

d3,min,k

 ≤
1 0

1 1
2 lwb

1 lwb

[x(1)
lat,k

x
(2)
lat,k

]
≤

d1,max,k

d2,max,k

d3,max,k

}. (19)

C. Invariably Safe Sets

So far, the constraints in (17) and (19) ensure collision
avoidance during the planning horizon. We compute invariably
safe sets to ensure legal safety beyond the planning horizon,
see Def. 5. To reduce the computational cost of obtaining the
invariably safe set Sk, Pek et al. [55] proposed an efficient
way to compute a tight under-approximation of Sk using a

safe distance set Ssafe,k
1. The safe distance set considers a

braking maneuver of the ego vehicle to avoid colliding with
its preceding vehicle in case the preceding vehicle performs
emergency braking.

1) Safe Distance Set: Before presenting our algorithm,
we first introduce the used notation: The vector of pa-
rameters of the ego vehicle is denoted by ρego :=
[alat,max, alon,max, vmax, w, lfront, lrear, δreact], where alat,max

and alon,max are the maximal accelerations in the lateral
and longitudinal direction, respectively; vmax is the maximal
velocity; w is the width; lfront and lrear are the distances
between the rear axle center and the front and rear edge of
the ego vehicle, respectively; and δreact is the reaction time of
the ego vehicle. The set of all reachable lanes that lead to the
goal region of the ego vehicle is represented by L. We assume
that the curvature κ(s) as well as the lateral position of the
left and right boundaries dlb,left(s), dlb,right(s) for position s
is accessible from L. Let Ci,j denote a collision-free section
(see Fig. 6) on a lane of a pair of vehicles (bi, bj), where
i and j are indices of the succeeding and preceding vehicle,
respectively; we compute the safe distance set for a collision
free section SCi,jsafe,k, as shown in Algorithm 1 (see Appendix B
for the difference to [55, Alg. 1]).

Algorithm 1 safeDistanceSetForSection(), modified from [55]

Input: k, ρego, Ci,j ,Oi,k, vi,k,Oj,k, vj,k, κ, dlb,left, dlb,right

Output: Safe distance set of a section SCi,jsafe,k

# Acceleration constraints [72, Eq. 2-4]
1: rmin = min(1/|κ(Ci,j)|)
2: vcrit =

√
rminalat,max,ego

3: alon(v) = alon,max,ego

√
1− (v

2
/v2crit)2

# Safe distance to preceding vehicle bj [73, Eq. 17]
4: ζ(v, bj) = v2/2|alon(v)|−v2j/2|alon,max,j |+δreactv
5: ∆k

safe(v, bj) = max
(
ζ(v, bj), 0

)
# Safe distance to succeeding vehicle bi [73, Eq. 17]

6: ζ(v, bi) = v2i/2|alon,max,i|−v2/2|alon(v)|+δreactvi
7: ∆k

safe(v, bi) = max
(
ζ(v, bi), 0

)
# Lateral constraint:

8: dlim(Ci,j) = rmin −
√
r2
min − l2front + 0.5w, see Fig. 6

9: dmin = max(dlb,right(Ci,j)) + dlim(Ci,j)
10: dmax = min(dlb,left(Ci,j))− dlim(Ci,j)

# Safe distance set of a section Ci,j:
11: SCi,jsafe,k ← {(s, v, d)T ∈X | dmin ≤ d ≤ dmax

∧v ≤ min
(
vcrit, vmax

)
∧ s ∈ Ci,j

∧s ≥ max(projs(Oi,k))+∆k
safe(v, bi)

∧s ≤ min(projs(Oj,k))−∆k
safe(v, bj)}

12: return SCi,jsafe,k

Given L, ρego, the set of predicted occupancies and
velocity intervals of all safety-relevant traffic participants
{(Ob,k, vb,min,k, vb,max,k)| b ∈ B}, and the longitudinal po-
sition of the ego vehicle at the current time step sego,0, the
safe distance set Ssafe,k at time step k is computed as in
Algorithm 2. In Line 1-16, we iterate over each lane and

1The work in [55] also considered a set of safe evasive maneuvers. To keep
the presentation simple, we intentionally do not consider this set, as its effect
was limited in the considered scenarios, see Appendix A.
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Fig. 6: Limit of lateral position of the reference point dlim before the vehicle
starts to intersect with another lane.

compute the safe distance set between each vehicle pair in
this lane accordingly. Furthermore, when the occupancy of
the ego vehicle intersects with two adjacent lanes, the ego
vehicle needs to consider safe distances to vehicles in both
lanes, thus in Line 17-24, we compute the set of (s, v) as
the intersection between the safe distance set and the lateral
constraints considering the limits when the ego vehicle starts
to intersect with both lanes. We show an example of the
computed safe distance sets of two lanes and the intersections
of projected sets in the s− v domain in Fig. 7.

Algorithm 2 safeDistanceSet()

Input: k, ρego, sego,0, {(Ob,k, vb,min,k, vb,max,k)| b ∈ B},L
Output: Safe distance set Ssafe,k

1: Initialize Ssafe,k ← ∅, C ← ∅
# Compute safe distance set for each lane

2: for lane ∈ L do
3: Initialize Slanesafe,k ← ∅
4: Blane ← [ b ∈ B |Ob,k ∩ lane 6= ∅ ]
5: Blane ← Blane sorted by inf{projs(Ob,k)}
6: for i = 1, 2, ..., |Blane| − 1 do
7: bi ← Blane[i], bj ← Blane[i+ 1]
8: Ci,j ← [max(projs(Oi)) + lfront,

min(projs(Oj))− lrear], C ← C ∪ Ci,j
9: if sego,0 ∈ Ci,j then

10: bi ← null,Oi,k ← ∅, vi,max,k ← null
11: end if
12: SCi,jsafe,k ← safeDistanceSetForSection(

k, ρego, Ci,j ,Oi,k, vi,max,k,Oj,k, vj,min,k,
κ, dlb,left, dlb,right)

13: Slanesafe,k ← Slanesafe,k ∪ S
Ci,j
safe,k

14: end for
15: Ssafe,k ← Ssafe,k ∪Slanesafe,k

16: end for
# Intersect safe distance sets of each pair of adjacent lanes

17: for Ci,j ∈ C do
18: for Cm,n ∈ leftAdjacentSections(Ci,j) do
19: dmin ← min(dlb,left(Ci,j))− dlim(Ci,j)
20: dmax ← max(dlb,left(Ci,j)) + dlim(Ci,j)
21: Sintsafe,k ← projs,v(S

Ci,j
safe,k) ∩ projs,v(S

Cm,n

safe,k)
×[dmin, dmax]

22: Ssafe,k ← Ssafe,k ∪Sintsafe,k

23: end for
24: end for
25: return Ssafe,k

2) Convexification of Safe Distance Set: As depicted in
Fig. 7, the obtained projs,v(Ssafe,k) might be non-convex

when a succeeding vehicle is present. In order to utilize
convex optimization to solve (14), it is necessary to convexify
projs,v(Ssafe,k). Since projs,v(Ssafe,k) is computed using the
safe distances (see Line 4 and Line 6 of Alg. 1), only the
curved part of the lower bound could cause non-convexity of
projs,v(Ssafe,k). Therefore, we develop a simple method to
determine a convex under-approximation of projs,v(Ssafe,k).
As shown in Fig. 7, we find the curved part of the lower bound
which causes the non-convexity, obtain a straight line (see
dashed line in Fig. 7) passing through the first point (s0, v0)
and last point (sn, vn) of the curved part, and shift the straight
line until it does not intersect with the curved part. A detailed
implementation of this method is given in Appendix C.

An example of the convexified sets is illustrated in Fig. 7.
Note that our method only works for convexifing the safe
distance set. If the evasive set is used as a constraint, one could
deploy a more general method such as iterative regional infla-
tion by semidefinite programming (iris) [74], which iteratively
inflates regions within a non-convex area until a sufficiently
large polytope is obtained. We compare the conservativeness
of iris and our method for the safe distance set empirically in
Table IV and conclude that our method is less conservative
and 85 times faster.

We use the halfspace representation 〈Aiss, biss〉P̃ for the
approximated polytope P̃ , then the longitudinal constraint
derived from the safe distance set for time step k is

Xlon,iss,k := 〈Aiss, biss〉P̃ × R2 (20)

and the lateral constraint from the lateral limits dmin and dmax

of Ssafe,k is:

Xlat,iss,k := [dmin, dmax]× [0, 0, 0]T . (21)

Note that constraints (20) and (21) are used for the last time
step of the planning horizon, as shown in (14).

IV. NUMERICAL EXPERIMENTS

A. Setting

1) General Setting: We train and evaluate all agents in the
open-source environment CommonRoad-RL [75]. All training
uses the RL algorithm PPO [50] detailed in Sec. II-C. We
adopt the implementation of PPO from Stable Baselines2 and
list the hyperparameters of the policy and value networks in
Table VI. For all experiments, we split the available traffic
scenarios into 70% training scenarios and 30% test scenarios:
for each group of experiments, we show the learning curves
for the training scenarios and evaluate the trained agents using
the test scenarios. We first compare different vehicle models
without the safety layer in Sec. IV-B. Next, we evaluate the
effectiveness of the proposed safety layer in Sec. IV-D for
randomly sampled actions and for training an RL agent. All
experiments are carried out on a server with an AMD EPYC
7742 2.2 GHz processor.

2github.com/hill-a/stable-baselines

https://github.com/hill-a/stable-baselines
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Fig. 7: An example of safe distance sets of two lanes and their intersections projected in s− v domain. Note that we only predict occupancies of the dynamic
obstacles in their current lanes for illustration purposes.

2) Dataset: We evaluate the proposed approach using the
highD dataset [76], which consists of real-world highway
drone data capturing naturalistic vehicle trajectories. The
dataset was collected at six locations on German highways
featuring two-lane and three-lane roads. Spanning over 16.5
hours and covering a distance of more than 45,000 kilometers,
the highD dataset provides vehicle trajectories with a time
resolution of ∆t = 0.04 s. To facilitate the evaluation process,
we transform the dataset into 2816 individual CommonRoad
scenarios [77] using an open-source converter3, each lasting
40 seconds. We randomly select a vehicle for each scenario
and formulate a planning problem based on its initial and final
states. Subsequently, we remove the selected vehicle from the
scenario to simulate its absence during planning and analysis.

3) Observations: We use the observations defined in [75,
Tab. II], including the states of the ego vehicle, topological
information of the road network, information of the goal
region, and states of the surrounding traffic participants using
the lane-based surrounding detection. We attach the used
observations in Appendix D for reachability.

4) Actions: RL often works as a step-by-step decision
maker, i.e., the policy network receives the observations from
the environment every time step and only outputs the control
input of the system for one time step. However, motion
planners of automated vehicles need to plan a trajectory for a
time horizon to account for processing and computation times.
Furthermore, to use our online verification framework as the
safety layer, we need to generate an intended trajectory of
actions. Therefore, we let the policy network output the actions
at time step k for the control inputs for time horizon [k, k+f ]:

aRL,k :=

[
ulon,[k,k+f ]

ulat,[k,k+f ]

]
. (22)

5) Reward Functions: For the reward function, we chose
the sparse reward and dense reward proposed by [75, Sec. III-
D]. Before defining the rewards, we first introduce the follow-
ing binary variables:
• 1reach goal = 1 if the ego vehicle reaches the goal area.
• 1collision = 1 if the ego vehicle collides with others.
• 1off road = 1 if the ego vehicle drives off-road.
• 1time out = 1 if the time limit of the scenario is reached.

3commonroad.in.tum.de

• 1safe dist = 1 if the safe distance between the ego vehicle
and its leading vehicle is violated.

The sparse reward is defined as:

rsparse = rreach goal + rcollision + roff road + rtime out, (23)

where r� = c�1� and c� denotes coefficients for each partial
reward. In addition, the dense reward is defined as:

rdense = rsparse + rcloser + rsafe dist + rroad center, (24)

where
rcloser = ccloser long [dlong(k − 1)− dlong(k)]

+ ccloser lat [dlat(k − 1)− dlat(k)],

rsafe dist = − exp

(
csafe

dlead

dsafe

)
1safe dist,

rroad center = ccenter|dlat offset|,

where dlong(k) and dlat(k) denote the longitudinal and lateral
distance between the ego vehicle and the goal region at time
step k, respectively. Furthermore, dlead and dsafe denote the
current distance and safe distance [78] between the ego vehicle
and its leading vehicle, respectively, and dlat offset denotes the
lateral offset of the ego vehicle to the center line of its current
lane.

We compared both rewards for all our numerical experi-
ments, and they did not show a significant difference regarding
the convergence. Therefore, we only show the results of the
agents using the sparse reward subsequently.

B. Evaluation of Unsafe Agents

We compare different vehicle models available in [75] when
using input trajectories as actions. In addition, the states of
each vehicle model are added in the observation space. We
introduce the following abbreviations for the vehicle models:
• PM: denotes the point-mass model, which ignores the

non-holonomic behavior of the vehicle [77, Sec. III-A];
• KS-SteeringAngle: denotes the kinematic single-track

model, which uses the acceleration and normalized steer-
ing angle as inputs [79, Sec. VII];

• KS-SteeringVelocity: denotes the kinematic single-track
model, which uses the acceleration and steering velocity
as inputs [77, Sec. III-B];

https://commonroad.in.tum.de/
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(a) Learning curves of different vehicle models returning a trajectory of actions. Note
that the result of PM overlaps with the curves of KS-YawRate.
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(b) Learning curves of the unsafe agent and safe agent.

Fig. 8: Learning curves for highD training scenarios.

• KS-YawRate: denotes the kinematic single-track model
which uses the acceleration and yaw rate as inputs [11,
Sec. II-A];

• KS-Linear: the linearized kinematic single-track model
used in this paper, as introduced in Sec. II-B. Note that
this model has the highest order among all used models,
thus is the closest to a high-fidelity model and has been
applied in real test drives in [56, Sec. VI].

We show the learning curves of different vehicle models for
the training scenarios in Fig. 8a, from which we can conclude
that KS-Linear needs the most training steps to converge due
to its more complicated dynamics, which requires more inter-
action with the environment to implicitly learn the dynamics.
During the first one-third of the training, KS-Linear almost
always crashed or drove offroad due to random exploration,
thus constantly receiving negative rewards. This motivates
the use of our safety layer since it prevents the agent from
colliding with other obstacles or driving offroad.
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Fig. 9: a) An exemplary scenario comparing the set-based predictions using
reachability analysis [54] and the lane-based worst-case assumption in [11]
that all preceding vehicles brake with maximal deceleration. b) Evaluation of
the control barrier function method [11] for multiple planning horizons.

C. Comparison with Related Work

1) Comparison of Set-Based Prediction and Worst-Case
Assumption: We compare our set-based prediction and the
lane-based worst-case assumption used in [11] that the pre-
ceding vehicles of the ego vehicle brake with the maximal
deceleration at different times for an exemplary highway
scenario in Fig. 9a. Both predictions are safe regarding the ego
vehicle when the prediction horizon is short (0.4s). However,
for a longer prediction horizon (1s), the lane-based worst-
case assumption does not account for the lane change of the
red vehicle, while the set-based prediction contains its actual
occupancy, which maintains a safe distance to the ego vehicle,
and thus still complies with traffic rules.

2) Evaluation of the Control Barrier Function Method:
As the accuracy of the prediction used in [11] decreases with
increasing prediction horizons, safety could also be compro-
mised when the planning horizon increases. To validate this
conjecture, we evaluate the control barrier function method
used in [11] using randomly sampled actions for multiple
planning horizons. Note that in the optimization problem [11,
Eq. 11], the constraints of u depend on the state of the
system x, thus only when solving for one time step, [11,
Eq. 11] is a convex problem by assuming x to be constant
within one time step. To increase the planning horizon while
keeping the optimization convex, we solve [11, Eq. 11] in
a model predictive fashion, i.e., by estimating x using the
dynamics of the system. We summarize reasons that a scenario
is terminated in Fig. 9b, where safe means if the agent reaches
the goal or times out, unsafe means when the agent causes
a collision with other obstacles or goes offroad, infeasible
represents the cases that the relaxed optimization problem is
still infeasible. As shown in Fig. 9b, the unsafe rate increases
with increasing planning horizon. In addition, we evaluate our
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TABLE IV: Evaluation of convexified safe distance set using highD scenarios.

Method δiss mean ± std.. Avg. Comput. Time

iris [74] 0.907± 0.059 185.59 ms
ours 0.916± 0.069 2.17 ms

TABLE V: Evaluation of safety layer using randomly sampled actions.

Termination Reason Rate

infeasible initial state - longitudinal 16.48%
infeasible initial state - lateral 1.13%
collision caused by other vehicles 11.51%
goal area reached 23.79%
time out 47.09%

Module Avg. Comput. Time [ms]

safety layer - total 473.25
set-based prediction 184.77
invariably safe set 42.53
longitudinal driving corridor 107.37
lateral driving corridor 4.10
longitudinal optimization 43.95
lateral optimization 67.67

method using randomly sampled actions for multiple planning
horizons as well, where the unsafe rate is always zero.

D. Evaluation of the Safety Layer

In our evaluation, when the optimization problem (14)
becomes infeasible, e.g., due to an illegal behavior of another
vehicle, we continue following the previous solution. When
we reach the end of the previous solution and still cannot
find a feasible trajectory, we switch to an emergency planner.
Note that due to convexification of the invariably safe set, a
safe emergency behavior could still exist even when (14) is
infeasible. To ease the reproduction of our method, we use a
simple method as the emergency planner. Since the invariably
safe set is determined by considering the safe distance to both
the preceding and succeeding vehicles, the appropriate safe
action should be either full braking to avoid collision with the
preceding vehicle or full acceleration to avoid collision with
the succeeding vehicle. Therefore, when the safe distance to
the ego vehicle is violated, full braking will be performed;
otherwise, full acceleration will be performed.

1) Evaluation of Convexified Safe Distance Set: We eval-
uate the convexified set projs,v(Ssafe,k) using our method
introduced in Sec. III-C2 and iris [74] for the highD dataset.
As an evaluation metric for the conservativeness, we utilize the
ratio of the area of the approximated polytope P̃ and original
polygon projs,v(Ssafe,k):

δiss =
area of P̃

area of projs,v(Ssafe,k)
. (25)

In addition, we show the average computation time for both
methods in Table IV, from which we can conclude that our
method is less conservative and 85 times faster.

2) Random Actions: To ensure that all scenarios used
during training and evaluation are feasible, we first evaluate
all scenarios using the safety layer by simulating the ego
vehicle using randomly sampled actions. We summarize the
termination reasons of all scenarios and the average com-
putation time of each safety module in Table V. Since our
software is modularized for quick prototyping, the runtime of

the implementation could be further improved by eliminating
the Python interfaces and using only the core C++ code for all
computations. We remove the scenarios for which the initial
states are infeasible. Note that since the lateral optimization
problem depends on the solution of the longitudinal opti-
mization problem, an infeasible lateral initial state could still
become feasible if a different longitudinal trajectory is used.
Thus only the scenarios with initial states that are infeasible
in the longitudinal direction are removed, resulting in 2352
scenarios.

3) Safe RL Agents: We train an agent with the safety layer
using the initially feasible scenarios and compare the learning
curve with the unsafe agent in Fig. 8b. During training, the
safe agent has never caused a collision with other obstacles
or gone offroad. In addition, with the help of the safety layer,
the safe agent converged much faster than the unsafe agent,
demonstrating the effectiveness of our method.

V. CONCLUSIONS

This article presents an approach to provide safety guaran-
tees for model-free RL motion planners in real-time for infinite
planning horizons. Our proposed integration of online reacha-
bility analysis with model-free RL can handle arbitrary traffic
situations and outperforms another safety method based on
control barrier functions for longer planning horizons. Numer-
ical experiments using real-world traffic data demonstrate the
effectiveness of our framework in complex and unpredictable
traffic situations without compromising the performance. Our
work thus sets a foundation for future explorations and im-
provements in the area of safe reinforcement learning.

APPENDIX

A. Evaluation of Safe Distance Set and Evasive Distance Set

An evasive distance set Seva,k considers the evasive maneu-
ver that the ego vehicle swerves to an adjacent lane to avoid a
collision [55]. In this work, we only consider the safe distance
set Ssafe,k and omit the computation of Seva,k for the following
reasons:
• Computing Seva,k requires us to additionally predict

the occupancy set of the obstacles for a time horizon
[k, k + teva], where teva denotes the time steps required
for the evasive maneuver. Because the ego vehicle has to
maintain a safe distance from the obstacles on the target
lane after the evasive maneuver, see St+r1 in [55, Alg.1
Line 11]. This adds computational burden of O(|B|teva);

• As our evaluation in Table VII shows, computing Seva,k

does not provide a sufficiently larger solution space
compared to Ssafe,k;

• The safe distance set Ssafe,k is still an under-
approximation of Sk, i.e., Ssafe,k ⊂ Sk. This is because
Ssafe,k ⊆ Ssafe,k ∪Seva,k and Ssafe,k ∪Seva,k ⊂ Sk [55,
Proposition 1].

Since computation of the evasive distance set adds computa-
tional costs, we aim to evaluate the necessity of computing the
evasive distance set by comparing the resulting size of the safe
distance set and the evasive distance set. We compute the areas
of projs,v(Ssafe,k) and projs,v(Seva,k) for all highD Scenarios
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TABLE VI: Parameters used in the numerical experiments.

Notation Meaning Value

Planning Parameters

∆t time step size 0.04 s
tplan replanning frequency 0.4 s
tf planning horizon 2 s

Vehicle Parameters

amax maximal absolute acceleration 11.5 m/s2

alon,max maximal longitudinal acceleration 11.5 m/s2

alat,max maximal lateral acceleration 11.5 m/s2

aego
comfort acceleration of ego vehicle when com-

puting safe distance in SPOT
4 m/s2

vmin minimal longitudinal velocity 0 m/s
vmax maximal absolute velocity 65 m/s
vS switching velocity 5 m/s
jmin, jmax minimal/maximal jerk ±10 m/s3

ämin, ämax minimal/maximal jounce ±103 m/s4

eθ,min, eθ,max minimal/maximal relative orientation ±0.1408
κmin, κmax minimal/maximal curvature ±0.2 /m
κ̇min, κ̇max minimal/maximal derivative of curva-

ture
±0.2 /m s

κ̈min, κ̈max minimal/maximal second derivative of
curvature

±0.4 /m s2

fspeed speeding factor 1.2
δreact reaction delay of ego vehicle when com-

puting safe distance
0.3 s

w width of ego vehicle 1.61 m
lwb wheelbase of ego vehicle 2.579 m
lfront distance between rear axle center and

front edge of ego vehicle
3.543 m

lrear distance between rear axle center and
rear edge of ego vehicle

0.965 m

Reachable Set Parameters

∆s0 uncertainty initial longitudinal position 0.1 m
∆d0 uncertainty initial lateral position 0.1 m
∆vlon,0 uncertainty initial longitudinal velocity 0.1 m/s
∆vlat,0 uncertainty initial lateral velocity 0.1 m/s

Hyperparameters and Neural Network Structure of PPO

λ tradeoff factor between bias and vari-
ance in (13)

0.95

γ discount factor 0.99
ε clip range in (12) 0.2
- number of epochs 10
- minibatch size 32
- learning rate 0.0005
- actor-critic architecture shared networks
- policy/value network type MLP
- network structure [64, 64]
- activation function tanh

TABLE VII: Comparison of safe distance set and evasive distance set.

Description Area projs,v(Ssafe, k) Area projs,v(Seva, k)

mean 58870.00 51064.26
std. 6734.57 6333.84

by simulating the ego vehicle using randomly sampled actions
and list the results in Table VII. Since the safe distance set is
larger than the safe evasive set on average, we can conclude
that computing projs,v(Seva,k) does not provide a much larger
solution space. Thus we omit its computation during training.

B. Modification of Safe Distance Sets for Sections
Algorithm 1 adds the following modifications to [55,

Alg. 1]:
• For each Ci,j , [55, Algorithm 1] only computes the safe

distance to the preceding vehicle bj , whereas we also take

into account the succeeding vehicle in Line 5-7, except
for the section where the ego vehicle is currently located
in.

• We compute Ssafe,k for the rear axle center of the vehicle,
instead of the geometric center of the vehicle used in
[55], because we use the rear axle center of the vehicle
as the reference point. Therefore, we enlarge projs(Oj)
by lfront and projs(Oi) by lrear, see Line 8.

• We add the lateral constraints considering the lateral
dimension of the ego vehicle in Line 7-10. Note that
when computing the safe distance [73, Eq. 17], it is
assumed that the ego vehicle can brake with the maximal
available acceleration along a reference path. In other
words, the safe distance set is only valid if the ego vehicle
aligns with the reference path. Therefore, we enforce this
assumption by using eθ,f = κf = κ̇f = 0, see (21).
Consequently, the limit of d before the ego vehicle starts
to intersect with another lane can be computed as Line 8,
as shown in Fig. 6. Note that the minimum turning radius
of passenger cars is 7.3 m4,thus we assume rmin > lfront

to ensure validity of
√
r2
min − l2front in Line 8.

C. Algorithm of Convexification of Safe Distance Set

Algorithm 3 convexSafeDistanceSet()

Input: projs,v(Ssafe,k)
Output: 〈Aiss, biss〉P̃

# Find upper bound and the curved part of lower bound
1: [vmin, vmax] := projv(Ssafe,k)
2: smin := min(projs(Ssafe,k))
3: curvedLowerBound← ∅, upperBound← ∅
4: for vi ∈ [vmin, vmax] do
5: [si, si′ ] := projs,v(Ssafe,k)(v = vi)
6: Add (si′ , vi) to upperBound.
7: if si 6= smin then
8: Add (si, vi) to curvedLowerBound.
9: end if

10: end for
11: Sort points in curvedLowerBound according to v.

# Convexify the curved part of lower bound, see Fig. 7
12: (s0, v0)← first point of curvedLowerBound
13: (sn, vn)← first point of curvedLowerBound
14: line1 ← computeStraightLine((s0, v0), (sn, vn))
15: pt← findFurthestPoint(curvedLowerBound,line1)
16: 〈Aiss, biss〉P̃ ← computeParallelLine(line1,pt)

# Add constraints for upper bound, left, and right edge
17: Add upperBound to 〈Aiss, biss〉P̃ .
18: Add v ≥ vmin and v ≤ vmax to 〈Aiss, biss〉P̃ .
19: return 〈Aiss, biss〉P̃

A detailed implementation of convexifying the safe distance
set is given in Algorithm 3. In Line 1-11, we extract the
waypoints of the upper bound and the curved part of the
lower bound. Next, we compute a straight line to inner-
approximate the curved part of the lower bound in Line 12-
16, where computeStraightLine() computes a straight line

4https://sjnavarro.files.wordpress.com/2011/08/aashto-2001.pdf, Exhibit 2-2

https://sjnavarro.files.wordpress.com/2011/08/aashto-2001.pdf


IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 14

TABLE VIII: Observation space definition, taken from [75, Tab. II].

Ego-Vehicle-Related Surrounding-Traffic-Participants-
Related

velocity [m/s] is collision [-]
acceleration [m/s2] Lane-based surrounding detection
jerk [m/s3] distance to surrounding participants [m]
curvature [/m]
derivative of curvature [/m · s]

relative velocity to surrounding partici-
pants [m/s]

Goal-Related Road-Network-Related

Euclidean goal distance [m] relative offset to center [m]
longitudinal goal distance [m] left marker distance [m]
lateral goal distance [m] right marker distance [m]
remaining time steps [-] left road edge distance [m]
is goal reached [-] right road edge distance [m]
is time out [-] is offroad [-]

passing through two points, findFurthestPoint() returns a
point of a given curve that is furtherst to a given straight line,
and computeParallelLine() returns a line that is parallel to a
given line and passing through a given point.

D. Observations

We list the used observations in Table VIII, which are
adapted from [75, Tab. II].
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