
 
 

 

Dynamics and Control of Lattice Boom 

Cranes as Spatial Rigid-Flexible Multibody 

Systems 

Dynamik und Steuerung von Gitterauslegerkranen als 

Räumlich Starr-Flexible Mehrkörpersysteme 

Wissenschaftliche Arbeit zur Erlangung des Grades 

M.Sc. 

an der Fakultät für Maschinenwesen der Technischen Universität München. 

Themenstellende/r     Prof. Dr.-Ing. Johannes Fottner 

 Lehrstuhl für Fördertechnik Materialfluss Logistik 
 
Betreuer/Betreuerin   M.Sc. Lingchong Gao 

 

Eingereicht von Xiaobing Dai  

Tumblingerstraße 56, 315  

80337 München  

+49 15257535182 

Eingereicht am 31, Mai, 2021 in Garching 

 

Inventarnr. fml 2020116 

Wiss. Mitarbeiter XXXXXXXX 
 
  



 



 

 

Anhang I 

Erklärung 

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig verfasst und 

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. 

München, 31, Mai, 2021  

Ort, Datum, Unterschrift 

 

  



 

 

 

  



 

 

Appendix I 

Statement 

I hereby affirm that I wrote the thesis by myself and that I did not use any other sources or aids than 

those in bibliography. 

München, 31, Mai, 2021  

Place, Date, Signature 

 

 

  



 

 

 



Vorwort 

Die vorliegende Arbeit entstand unter der wissenschaftlichen und inhaltlichen 

Anleitung von M.Sc. Lingchong Gao, wissenschaftlicher Mitarbeiter am Lehrstuhl für 

Fördertechnik Materialfluss Logistik (fml) der Technischen Universität München. 

 

Vereinbarung zum Urheberrecht 

Hiermit gestatte ich dem Lehrstuhl für Fördertechnik Materialfluss Logistik diese 

Studienarbeit bzw. Teile davon nach eigenem Ermessen an Dritte weiterzugeben, zu 

veröffentlichen oder anderweitig zu nutzen. Mein persönliches Urheberrecht ist über 

diese Regelung hinaus nicht beeinträchtigt.  

Eventuelle Geheimhaltungsvereinbarungen über den Inhalt der Arbeit zwischen mir 

bzw. dem Lehrstuhl für Fördertechnik Materialfluss Logistik und Dritten bleiben von 

dieser Vereinbarung unberührt. 

31, Mai, 2021 München 

Ort, Datum, Unterschrift 

 

 

 

 

 

 

 

 

 

 

 

 



 

  



Foreword 

The present work was created under the scientific and content-related guidance of 

M.Sc. Lingchong Gao, research assistant at the Chair for Materials Handling, Material 

Flow, Logistics (fml) at the Technical University of Munich. 

 

Copyright Agreement 

I hereby permit the Chair of Materials Handling, Material Flow, Logistics to pass on, 

publish or otherwise use this thesis or parts of it to third parties at its own discretion. 

My personal copyright is not affected beyond this regulation. 

Any non-disclosure agreements between myself or the Chair of Materials Handling, 

Material Flow, Logistics and third parties regarding the content of the work remain 

unaffected by this agreement. 

31, Mai, 2021 München 

Place, Date, Signature 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



I 

Abstract 

A mobile crane equipped with a boom system is widely used to lift the heavy load on 

construction sites. Lattice boom with lower self-mass is designed to lift larger load and 

move. Therefore, the dynamic response of the lattice boom is important but also time-

consuming due to a large number of degrees of freedom.  

In this thesis, several flexible models are established to simulate the beam elements, 

rod elements and rope elements. In addition, a detailed super truss element formula-

tion for nonlinear truss element is proposed to reduce the number of degrees of free-

dom of complex lattice boom.  

According to the control requirements of the lattice boom crane, a quasi-static control 

method is designed to realize the optimal control for specified complex system. This 

method combines the static mapping relationship with the target optimal trajectory to 

generate the optimal control trajectory.  

Several experiments for different beam elements are performed to do the cross verifi-

cation. A dynamic calculation of the lattice boom crane is performed to simulate the 

lifting, luffing and slewing stages. 

Keywords: non-linear dynamics, mobile crane, lattice boom, optimal control 
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Nomenclature 

Symbol Explanation 

∗I
  Variable ∗ in inertial coordinate 

∗B
  Variable ∗ in local body coordinate 

∗i Variable ∗ of body 𝑖 

∗e Variable ∗ for element 

𝑅I
 
B, 𝑅B Rotation matrix from local body coordinate to inertial coordinate 

∗̇= d(∗) d𝑡⁄  First-order total derivative of the variable ∗ to time 

∗̈= d2(∗) d𝑡2⁄  Second-order total derivative of the variable ∗ to time 

∗′= d(∗) d𝑠⁄  First-order total derivative of the variable ∗ to arc coordinate 

∗′′= d2(∗) d𝑠2⁄  Second-order total derivative of the variable ∗ to arc coordinate 

∗T Transpose of a matrix or vector ∗ 

I, 0, 0 Identity matrix, zero matrix and zero vector 

𝜑 Rotation vector 

∗̃= skew(∗) Skew symmetric matrix of vector ∗ 

𝑅𝑥1 , 𝑅𝑥2 , 𝑅𝑥3   or   𝑅x, 𝑅y, 𝑅z elementary rotation matrix 

𝑔𝑥1 , 𝑔𝑥2 , 𝑔𝑥3    or   𝑔x, 𝑔y, 𝑔z base vector of the global coordinate system 

𝑛𝑥1 , 𝑛𝑥2 , 𝑛𝑥3    or   𝑛x, 𝑛y, 𝑛z base vector of the local body coordinate system 

𝜔ij
  angular velocity of body 𝑖 in the coordinate system 𝑗 

𝜅ij
  curvature of body 𝑖 in the coordinate system 𝑗 

𝑇 Transformation matrix 

𝑚, 𝐽, 𝛩 Mass, Moment of inertia, Moment of inertia 

𝜌 Density of body 

𝑉 Volume of body 

𝐿 Length of beam or rod or rope 

𝐴 Area of section 

𝐹,𝑀 Force vector, Moment vector 

𝐾,𝐾ε, 𝐾τ Stiffness or Constitutive matrix, normal stiffness, shear stiffness 

𝜀, 𝜏 (Normal) strain, shear strain 

𝜎 Stress 

δ ∗ Virtual variable ∗ 

𝑔 Gravity vector 

𝑝 Power 

𝑞, 𝑑𝑞 Generalized coordinate and generalized velocity 

𝛷 Constraint vector 

𝜆 Lagrange operator 

𝑢 Deformation vector 
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Symbol Explanation 

𝑁 Shape function or shape matrix 

∇(∗) Nabla operator 

𝐹 Deformation Gradient Tensor 

𝐶 Right Cauchy-Green Tensors 

𝐵 Left Cauchy-Green Tensors 

𝑓 Finger Deformation Tensor 

𝑐 Cauchy Deformation Tensor 

𝜎 Cauchy Stress 

𝜏 1st Piola-Kirchhoff Stress 

𝑆 2nd Piola-Kirchhoff Stress 

𝐽 Cost function 

𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡) Running cost 

𝛷(𝑥e, 𝑡e) Terminal cost 

𝑡0, 𝑡e Start time and end time 

𝑡s, 𝑡f Sampling time and simulation time 

𝑥 State variable 

All units used in this thesis are based on SI (Système International d'Unités). 
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1 Introduction 

1.1 Background of Lattice Boom Crane 

Among the large number of cranes developed for various tasks, mobile cranes are 

particularly flexible in their application possibilities. Truck-mounted cranes, mobile 

cranes, railway cranes, and crawler cranes are different cranes equipped with a boom 

system, which can be designed as telescopic or truss boom. Compared with the con-

tinuous boom structure, the crane with a truss boom has a higher load capacity under 

the same mass due to the optimization of its structure. It is suitable for lifting tasks with 

special requirements of lifting height and radius. It is mainly used for large-scale factory 

construction, steel industry, and building construction [Kle-1996]. 

The form and boom configuration of cranes is diverse and complex. In the design pro-

cess, simulation and proofreading for different types of cranes under different load 

cases are required, which causes many calculations. As a kind of engineering machin-

ery, mobile cranes need to lift a large load and move (crawler crane). Considering the 

mass of the hoisting cargo and the boom structure, dynamics calculations should be 

done, especially for some extreme conditions in the lifting capacity sheet. The dynamic 

modeling of lattice boom becomes difficult due to the unevenness of cross-section and 

a large number of nodes and elements. Previously there are mainly two modeling 

methods: 1. Modeling of each element of the lattice boom [Gün-1997]; 2. Modeling the 

entire lattice boom with a continuous flexible beam element.  

Therefore, a scientific reduction method that accelerates the model calculation and 

makes the number of degrees of freedom small is urgently needed. For truss boom, 

there is a static condensation method, which condenses the stiffness and gravity of the 

truss beam to the nodes on the end section. This method is only suitable for the static 

reduction of linear models [Kle-2006]. For dynamics reduction, the Craig-Bampton 

method is often used. It converts the dynamic equations from the time domain into the 

frequency domain to obtain information such as the natural frequency of the system 

[Kou-2007]. However, for nonlinear models, it is very difficult to convert them to the 

frequency domain [Kam-2015]. 

The vibration of flexible large structures is a severe test for the stability and safety of 

large structures [Arn-2003]. In order to reduce the impact of dynamic loads on the 

crane structure, a controller is needed which can reduce the vibration while meeting 

specific operation objects [Neu-2010]. In addition, the movement of such large 
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machinery is very energy consuming, it is necessary to investigate the optimal trajec-

tory to meet the requirements of moving time, mechanical stability and energy con-

sumption. Currently, general optimal control algorithms are only used for simpler mod-

els. The research on optimal control algorithms for large-scale dynamics models is 

very necessary. 

1.2 Technical Route 

In chapter 1, the research background, research goals and research framework of this 

thesis are clarified. In chapter 2, the modeling methods (kinematics, materials proper-

ties, dynamics modeling methods) and control methods (iterative format, optimal con-

trol algorithm) are introduced.  

In chapter 3, different types of dynamics models are introduced, including rigid body 

model, spatial Timoshenko beam, strut tie model, Cubic Spline Beam and the super 

truss element. And in Chapter 4, through multi-body dynamics, these simple dynamics 

models are connected through constraints to form the final model. In addition, the 

Baumgartner stability method, state space expression, and explicit and implicit Runge-

Kutta integrator are also introduced to solve the dynamic equations. 

In chapter 5, the traditional optimal control algorithm and the optimal control based on 

deep reinforcement learning are introduced. 

In chapter 6, a rigid-flexible hybrid multi-body dynamics program platform based on 

MatLab is introduced. The functions, operation method and basic logics of the program 

are described. And in chapter 7, based on this platform, several commonly used crane 

models are created by defining the composition, connection and driving mode. 

In chapter 8, some experimental results are shown. Firstly cross-validation experi-

ments with different flexible beam models are conducted. Secondly, the vibration tests 

of cantilever truss beam and approximate static deformation calculation for super truss 

element are performed, to get the dynamics and statics response. Finally, the motion 

response of the crane model without control and with optimal control is analyzed. 

Finally, in chapter 9, the main content and the results obtained are summarized. Based 

on the research results and actual engineering application scenarios, the further re-

search direction is proposed. 
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2 State of Technology 

2.1 Spatial Kinematics and Rotations 

2.1.1 Relative Kinematics and Rotation Matrices 

The position vector of a certain point has different representations in different coordi-

nate systems, they can be transformed by the rotation matrix 𝑅I
 
B.  

𝑟I
 = 𝑅B 𝑟B

      with     𝑅I
 
B ≜ 𝑅B (2-1) 

where 𝑟I
  is the position vector in inertial coordinate and 𝑟B

  is the position vector in local 

body coordinate. The absolute speed and absolute acceleration of the point must con-

sider the relative movement in the certain coordinate system as well as the movement 

of the coordinate system, which can be written as 

�̇�I
 = �̇�B 𝑟B

 + 𝑅B �̇�B
  �̈�I

 = �̈�B 𝑟B
 + 2�̇�B �̇�B

 + 𝑅B �̈�B
  (2-2) 

2.1.2 Spatial Angle Representation 

Axis-Angle Representation 

The Cartesian rotation vector is used to describe the rotation vector through the axis 

and angle. The direction of the vector 𝑛 represents the direction of the rotation axis, 

and the norm of the vector 𝜃 represents the angle of rotation along the rotation axis 

[Die-2006]. Since the direction of the rotation vector is consistent with the rotation axis, 

the expression of the vector in the two coordinate systems before and after the rotation 

is the same, which is represented by 𝜑. 

𝜑I
 = 𝜑B

 = 𝜑 𝜃 = ‖𝜑‖ 𝑛 = 𝜑 𝜃⁄  (2-3) 

The rotation matrix under the axis angle representation can be obtained by Rodrigues' 

rotation formula [Kov-2012]. 

𝑅B = I +
sin 𝜃

𝜃
�̃� +

1 − cos 𝜃

𝜃2
�̃��̃� (2-4) 
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The relationship between angular velocity or curvature and the derivative of angle can 

be obtained by 

𝑇 (𝜑) = I +
cos ‖𝜑‖ − 1

‖𝜑‖
2 �̃� +

‖𝜑‖ − sin‖𝜑‖

‖𝜑‖
3 �̃��̃� (2-5) 

Cardan Angles and Euler Angles 

Both the Cardan angle [Tup-1987] and the Euler angle [Pio-1966] are compounded by 

successive elementary rotation around the 𝑥𝑖, 𝑥𝑗 and 𝑥𝑘  axes. The angle vector with 

𝑖 ≠ 𝑗 ≠ 𝑘 is called the Cardan angle; and with 𝑖 = 𝑘 ≠ 𝑗 is called the Euler angle. The 

rotation sequence of the Cardan angle and Euler angle must be defined before use. 

I 

𝑥I
 
i

−→
𝜑i
 1 

𝑥1
 
j

−→
𝜑j
 2 

𝑥2
 
k

−→
𝜑k

 B ⟹ 
𝑅B = 𝑅1I

 𝑅21
 𝑅B2

 

= 𝑅𝑥i(𝜑i)𝑅𝑥j(𝜑j)𝑅𝑥k(𝜑k) 
(2-6) 

The relationship between angular velocity or curvature and the derivative of angle can 

be obtained by 

𝑇 = 𝑔𝑥k𝑔x
T + 𝑅2B

 𝑔𝑥j𝑔y
T + 𝑅2B

 𝑅12
 𝑔𝑥i𝑔𝑧

T     with     𝜑 = [𝜑i 𝜑j 𝜑k]T (2-7) 

2.1.3 Derivative Laws of Rotation Matrix 

Angular velocity is defined as the first derivative of the rotation matrix with time 

�̃�BI
 = �̇�I

 
B 𝑅B
 
I �̃�BB

 = 𝑅B
 
I �̇�I
 
B (2-8) 

where �̃� is the skew symmetric matrix of vector 𝑎. Curvature is defined by the first de-

rivative of the rotation matrix along the 𝑥𝑖 axis 

�̃�BI
 = 𝑅I

 
B
′ 𝑅B
 
I �̃�BB

 = 𝑅B
 
I 𝑅I
 
B
′  (2-9) 

where here ( )′ = 𝜕( ) 𝜕𝑥i⁄ . Normally, the angular velocity and curvature in the local 

body coordinate can be written in the form of the derivative of angle. 
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𝜔BB
 = 𝑇 (𝜑) �̇� 𝜅BB

 = 𝑇 (𝜑)𝜑′ (2-10) 

The specific formular is related to the spatial angle representation method. 

2.2 Dynamics Modeling Method 

2.2.1 Virtual Power Principle 

The description of virtual power principle [Ger-1973] is, that for a balanced system, the 

sum of the virtual power of the internal force between two elements is zero.  

According to D'Alembert's principle [Vuj-1978], a dynamic system can be turned into a 

static system by introducing inertial force. Furthermore, internal forces are introduced 

to transform the flexible dynamics system. 

{
𝐹ine = −𝑚�̈�

𝑀ine = −𝐽�̇�
 {

𝐹int = −𝐾ε𝜀

𝑀int = −𝐾τ𝜏
 (2-11) 

Therefore, the virtual power of the rigid-flexible dynamics system consists of three parts: 

virtual inertial power, virtual internal power and virtual external power [Jon-1990]. The 

virtual power of the element can be written as 

δ𝑝e = δ𝑝int + δ𝑝ine + δ𝑝ext = δ𝑝int + δ𝑝ine + δ𝑝ext,g + δ𝑝ext,N 

(2-12) 

δ𝑝ine,e = −𝜌∭𝛿�̇�𝑇�̈�d𝑉

 

𝑉

 δ𝑝int,e = −∭𝛿𝜀̇𝑇𝜎d𝑉

 

𝑉

 

δ𝑝ext,e,g = 𝜌∭𝛿�̇�𝑇d𝑉

 

𝑉

𝑔 δ𝑝ext,e,N =∑ 𝛿�̇�𝑇𝐹
𝑁

 

According to the virtual power principle, the sum of the virtual power generated by all 

the forces on the element should be zero. Since the sum of the virtual power produced 

by the interaction force (I. F.) between the elements is zero, there is no need to consider 

the interaction force, and the virtual power of the entire system is also zero. 

δ𝑝e = 0   with I. F. δ𝑝 =∑ δ𝑝e
𝑒

= 0   without I. F. (2-13) 
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2.2.2 Minimum DoF Method (Lagrange’s Equation of Second Kind) 

The mechanism is generally composed of multiple elements, and the interconnection 

between the elements is called a constraint. There are generally two methods for dy-

namics modeling with constraints: the minimum degree of freedom method and the 

multi-body dynamics method. 

In the minimum degree of freedom method, the system generalized coordinates are 

the minimum degree of freedom that can describe the state of mechanism. Through 

the constraint, the generalized coordinates of the elements can be expressed by the 

system generalized coordinates. Generally, the generalized coordinates, velocity and 

acceleration of the element can be written as 

𝑞e = 𝑞e (𝑞) 𝑑𝑞e = 𝑇e𝑑𝑞 𝑑�̇�e = 𝑇e𝑑�̇� + �̇�e𝑑𝑞 (2-14) 

The virtual power of the system can be written through the system virtual generalized 

velocity. Since the system virtual generalized velocity can be arbitrary, the dynamics 

equation of the system can be obtained, which is also called the Lagrange’s equation 

of second kind [Hen-2017]. 

δ𝑝 =∑ δ𝑝e
𝑒

= δ𝑑𝑞T∑ 𝑇e
T
∂𝑝e
∂𝑞e𝑒

= 0     ⇒      ∑ 𝑇e
T
∂𝑝e
∂𝑞e𝑒

= 0 (2-15) 

2.2.3 Multibody Dynamics Method (Lagrange’s Equation of First Kind) 

In the multi-body dynamics method, the system generalized coordinates are composed 

by the element generalized coordinates without the consideration of the constraints. 

𝑞 = [𝑞1
T 𝑞2

T ⋯ 𝑞𝑁
T]
T
 𝑇e = [0 ⋯ I ⋯ 0] �̇�e = 0 (2-16) 

Constraints 𝛷 will be written as binding force and introduced into the virtual power of 

the system through Lagrange operator 𝜆 [Bau-2010].  

δ𝑝 =∑ δ𝑝e
𝑒

+ δ�̇�T𝜆 

= δ𝑑𝑞T (∑ 𝑇e
T
∂𝑝e
∂𝑞e𝑒

+
𝜕𝛷

𝜕𝑞
𝜆) = 0 

⇒ {
∑ 𝑇e

T
∂𝑝e
∂𝑞e𝑒

+
𝜕𝛷

𝜕𝑞
𝜆 = 0

𝛷 = 0

 (2-17) 

The resultant dynamics equation is called Lagrange’s equation of first kind [Yus-1998]. 
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2.3 Mechanics of Flexible Element 

2.3.1 Modeling Method based on Co-rotational Coordinate 

The co-rotational coordinate is used to describe the base of deformation, which is con-

sidered as the position and posture of the element in the undeformed state [Elk-1995; 

Cri-1990]. The difference between the actual state and the state in the co-rotational 

coordinate is the deformation of the element. 

𝑟 = 𝑟∗ + 𝑢 = 𝑟B + 𝑟B,∗ + 𝑢     with     𝑟B,∗ = constant (2-18) 

where 𝑟 is the actual state after deformation and 𝑟∗ the state before deformation [Li-

2007]. 𝑟∗ can also be written through the co-rotational coordinate (base coordinate) 𝑟𝐵 

and the undeformed relative position vector to this point 𝑟𝐵,∗. 𝑢 represents the defor-

mation, which can be written through the deformation on the boundary 𝑢𝜕 of the ele-

ment and shape function 𝑁𝑢. 

𝑢 = 𝑁u𝑢𝜕 = 𝑁u(𝑟𝜕 − 𝑟𝜕
∗) = 𝑁u(𝑟𝜕 − 𝑟

B + 𝑟𝜕
B,∗)  with {

𝑟𝜕 boundary condition

𝑟𝜕
B,∗ known, constant

 (2-19) 

The boundary condition can either be constant or relevant to the element coordinate. 

Theoretically, the choice of co-rotational coordinate can be arbitrary. By determination 

of the co-rotational coordinate, the overall small deformation condition and easy calcu-

lation requirement should be considered. Generally, the co-rotational coordinate can 

be written through element coordinate. Therefore, 𝑟 can be written as 

𝑟 = (𝐼− 𝑁u) 𝑟
B + (𝑟B,∗ + 𝑁u𝑟𝜕

B,∗) + 𝑁u𝑟𝜕 = 𝑟 (𝑞e) (2-20) 

The strain will be calculated using the Green-Lagrangian strain tensor. 

2.3.2 Modeling Method based on Absolute Coordinate 

The position vector and angle vector of the point on the element is obtained directly 

through the boundary state and the shape function. 

{
𝑟I
 = 𝑁r( 𝑟B

 ∗) 𝑟I
 
𝜕 = 𝑟I

 (𝑞e)

𝜑 = 𝑁φ( 𝑟B
 ∗)𝜑𝜕 = 𝜑 (𝑞e)

   with   𝑟B
 ∗ = 𝑟B

 B + 𝑟B
 B,∗ = 𝑟B

 B,∗ (2-21) 
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where 𝑟B
 B represents the undeformed position vector of the origin of the rigid body 

base in the local coordinate system, which is generally set to 0; 𝑟B
 B,∗ represents the 

relative displacement in the local coordinate system between the undeformed point of 

the element and the base origin, which is a fixed value. 

For this modeling method, the strain cannot be obtained directly through the difference 

of position before and after the deformation, but is defined according to the spatial 

derivative of the position and posture vector [Gar-2003]. For the one-dimensional beam 

element, the strain tensor is divided into translational and rotational part.  

𝜀B
 = 𝑅T 𝑟I

 ′     and     �̃�B
 B = 𝑅T𝑅′     with     ( )′ = 𝜕( ) 𝜕𝑠⁄  (2-22) 

The translational strain is written as the derivative of position vector along the arc-

length. The rotational strain is expressed by the derivative of rotation matrix along the 

arc-length. 

2.3.3 Deformation and Strain Tensor 

The deformation and strain are defined without the consideration of the large move-

ment and rotation of the element. There are different definition method for the defor-

mation tensor [Bon-2001; Blu-1989; Cia-2003; Hul-1990] 

Table 2-1: Deformation Tensor 

 Formula 

Deformation Gradient Tensor 𝐹 = ∇ 𝑟c∗
 c∗ 𝑟c

 c  

The Right Cauchy-Green Tensors 𝐶 = 𝐹T𝐹 

The Left Cauchy-Green Tensors 𝐵 = 𝐹𝐹T 

The Finger Deformation Tensor 𝑓 = 𝐶−1 = 𝐹−1𝐹−T 

The Cauchy Deformation Tensor 𝑐 = 𝐵−1 = 𝐹−T𝐹−1 

The strain describes the difference of displacement in local coordinate. For large de-

formation the Green-Lagrangian strain tensor (Green-St-Venant strain tensor) is often 

used [Ped-2005; San-2020], which can be written as 

𝜀 =
1

2
(𝐶 − I) =

1

2
(∇𝑟∗

T 𝑟∇𝑟∗𝑟 − I) =
1

2
(∇𝑟∗𝑢 + ∇𝑟∗

T 𝑢 + ∇𝑟∗
T 𝑢∇𝑟∗𝑢) , 𝑟 = 𝑟∗ + 𝑢 

⇔ 𝜀B
 
ij =

1

2
(
∂ 𝑟B
 
k

∂ 𝑟B
 
i
∗

∂ 𝑟B
 
k

∂ 𝑟B
 
j
∗ − δij) =

1

2
(
∂ 𝑢B
 
i

∂ 𝑟B
 
j
∗ +

∂ 𝑢B
 
j

∂ 𝑟B
 
i
∗ +

∂ 𝑢B
 
k

∂ 𝑟B
 
i
∗

∂ 𝑢B
 
k

∂ 𝑟B
 
j
∗) 

(2-23) 
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2.3.4 Stress Tensor 

According to the coordinate system of the stress and its acting surface, the stress ten-

sor has different expression [Cao-2018; Rot-1981; Sur-2016] 

Table 2-2: Stress Tensor 

 Coordinate 
of Stress 

Coordinate 
of Area 

Properties Formula 

Cauchy Stress Current Current symmetric 𝜎 

1st Piola-Kirchhoff Stress Current Reference asymmetric 𝜏 = 𝐽𝜎𝐹−T, 𝐽 = det (𝐹) 

2nd Piola-Kirchhoff Stress Reference Reference symmetric 𝑆 = 𝐽𝐹−1𝜎𝐹−T = 𝐹−1𝜏 

The 2nd Piola–Kirchhoff stress tensor matches the Green–Lagrange finite strain tensor. 

Usually stress-strain laws are given by Cauchy stress and left Cauchy-Green defor-

mation tensor. However, by dynamics calculation the constitutive relationship is often 

established based on Cauchy stress and the Green-Lagrangian strain tensor. The con-

stitutive relationship between the stress tensor and the strain tensor can be expressed 

by a fourth-order tensor. 

𝜎 = 𝐾
(4)

𝜀    ⇔    𝜀B
 
ij
= 𝐾ij

  kl 𝜀B
 
kl

 (2-24) 

2.4 Optimal Control Theory 

2.4.1 Classical Optimal Control Theory 

The purpose of classical optimal control is to make the state of the system change from 

the initial state to the final state while meeting the constraints within a specified time 

[Lew-2012]. The optimal control problem can be written as follows 

min 𝐽 = 𝛷(𝑥e, 𝑡e) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)d𝑡
𝑡e

𝑡0

 

(2-25) s. t.       �̇�(𝑡) = 𝑓𝑡(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

𝑔𝑡(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≤ 0 

𝑥(𝑡0) = 𝑥0   ,   𝑢(𝑡) ∈ 𝒰   ,   𝑥(𝑡) ∈ 𝒳 

Cost functional 𝐽 is usually composed of running cost 𝐿 and terminal cost 𝛷. The dy-

namics state function is considered as the equality constraint of the optimal control 

problem. For special requirements such as obstacle avoidance, some inequality 



2 State of Technology 

10 

constraints will be added. In addition, the control variables and the state variables of 

the system have corresponding limits. Normally the nonlinear optimal control problems 

have no analytical solution. Therefore, many approximate methods are proposed to 

obtain sub-optimal solutions. 

2.4.2 Non-linear Model Predictive Control 

Model predictive control (MPC) is a real-time model-based feedback control method, 

which consists of a sensor system, a model predictor, and a controller. The structure 

of the MPC is shown as follows 

PlantPredictive Model Controller
w xest u y

Filter
xsensorx

 

Figure 2-1: Structure of Model Predictive Control 

The predictive model is a mathematical model, which is used to simulate the different 

states that may be produced by different control variables within a finite step time from 

this moment. The controller will give the suitable control signal at the moment based 

on these predicted states. The control signal will be input into the actual system (plant), 

and through the sensor and filter the obtained state of true mechanism will again go 

into the predictive model for the next predictive control loop. 
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3 Dynamic Models of different Types of Elements 

3.1 Rigid Body Dynamic Model 

3.1.1 Generalized Coordination and Generalized Velocity 

The generalized coordinate of the rigid body can be defined by the position and posture 

of only one point on the body. Therefore, the generalized coordinate and generalized 

velocity can be written as 

𝑞e = [ 𝑟0I
 T

𝜑T]
T

 𝑑𝑞e = [ �̇�0I
 T

𝜔B
 T]

T
 (3-1) 

The chosen point is called origin point of the rigid body. The choice of origin point can 

be arbitrary, and does not even need to be the actual point on the body. 

3.1.2 Kinematics of Points on Rigid Body 

The position, velocity and acceleration of any point on the rigid body can be determined 

through the origin point and the relative position to the origin point. They can be formu-

lated as 

𝑟kI
 = 𝑟0I

 + 𝑅 𝑟0kB
    with  𝑅B = 𝑅 (φ) 

�̇�kI
 = �̇�0I

 − 𝑅 �̃�0kB
 𝜔B

  

�̈�kI
 = �̈�0I

 − 𝑅 �̃�0kB
 �̇�B

 + 𝑅 �̃�B
 �̃�0kB

 𝜔B
  

(3-2) 

where 𝑟0kB
  is the constant relative position to the origin point in body coordinate. 

3.1.3 The Virtual Power of Rigid Body 

The virtual inertial power of the rigid body can be expressed as 

δ𝑝ine = −∫δ �̇�kI
 T

 �̈�kI
 𝜌d𝛺

 

𝛺

= −δ𝑑𝑞e
T (𝑀e𝑑�̇�e + 𝐷e𝑑𝑞e) (3-3) 

where the mass matrix and damping matrix can be formulated as 
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𝑀e = [
𝑚totI −𝑚tot𝑅

T �̃�0CB
 

𝑚tot �̃�
0C

B
 𝑅T 𝛩B

 0 ] 𝐷e = [
0 𝑚tot𝑅 �̃�B

 �̃�0CB
 

0 �̃�B
 𝛩B

 0 ] (3-4) 

The virtual external gravity power can be written as 

δ𝑝ext = ∫ δ �̇�kI
 T

 𝑔I
 𝜌d𝛺

 

𝛺

= −𝑚tot [
I

�̃�0CB
 𝑅T

] 𝑔I
 = −δ𝑑𝑞e

T𝑉ext,g 𝑔I
  (3-5) 

There is no deformation in rigid body, so that the virtual internal power is zero. The 

total virtual power of rigid body only consists of virtual inertial and external power. 

δ𝑝e = δ𝑝ine + δ𝑝int + δ𝑝ext = δ𝑝ine + δ𝑝ext,g

= −δ𝑑𝑞e
T (𝑀e𝑑�̇�e + 𝐷e𝑑𝑞e + 𝑉ext,g 𝑔I

 ) = −δ𝑑𝑞e
T (𝑀e𝑑�̇�e + 𝐹e) 

(3-6) 

3.2 Two Nodes Strut Tie Dynamic Model 

3.2.1 Assumption for Ideal Strut Tie Model 

The strut tie model described in this part is an ideal strut tie model, which satisfies the 

following assumptions: 

1. Only the normal stress from axial tension and compression is considered, and 

other internal forces that may exist in the real rod are ignored; 

2. the normal stress is evenly distributed with the length of the rod; 

3. the cross section of the rod is symmetrical about the y- and z-axis of the sec-

tion local coordinate; 

4. the density and total mass of the rod remain unchanged. 

3.2.2 Generalized Coordinate and Generalized Velocity 

According to the above assumptions, the generalized coordinates and generalized ve-

locity of the two nodes strut tie model can be expressed by the position vectors and 

translational velocity of the two nodes. 
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𝑞e = [ 𝑟1I
 T

𝑟2I
 T

]
T

 𝑑𝑞e = �̇�e = [ �̇�1I
 T

�̇�2I
 T

]
T

 (3-7) 

Since only the x-axis is determined (parallel to the line connected the two end nodes), 

according to the third assumption the posture can be obtained only through the x-axis. 

𝜑B = 𝜑B𝑛φ
B  𝑅B = 𝑅 (𝜑B) (3-8) 

where 

sin𝜑B = ‖�̃�x𝑛x‖ 𝑙φ,B⁄  cos𝜑B = 𝑔x
T𝑛x 𝑙φ,B⁄  

(3-9) 
𝑛φ
B = �̃�x𝑛x ‖�̃�x𝑛x‖⁄  𝑙φ,B = √‖�̃�x𝑛x‖

2

+ (𝑔xT𝑛x)
2

 

According to the relationship between the translational velocities of the two end nodes, 

the angular velocity of the rod and the velocity of the axial deformation can be obtained. 

�̇�12B
 = 𝑔x𝑛x

T[−I I]𝑑𝑞e = 𝑇r𝑑𝑞e 

𝜔BB
 = 1 ‖ 𝑟12I

 ‖⁄ 𝑅x,90° (𝑅B
T − 𝑔x𝑛x

T) [−I I]𝑑𝑞e = 𝑇φ𝑑𝑞e 
(3-10) 

where 

𝑟12I
 = 𝑟2I

 − 𝑟1I
  𝑛x = 𝑛I

 
x = 𝑟12I

 ‖ 𝑟12I
 ‖⁄  𝑅x,90° = 𝑅([π 2⁄ 0 0]T) (3-11) 

The angular acceleration of the rod can be written as 

�̇�BB
 = [𝑅x,90° (

𝑟12I
 T

�̇�12I
 

‖ 𝑟12I
 ‖

2 I − �̃�BB
 ) �̃�x𝑇φ] 𝑑𝑞e + 𝑇φ𝑑�̇�e = �̇�φ𝑑𝑞e + 𝑇φ𝑑�̇�e (3-12) 

where �̇�12I
 = �̇�2I

 − �̇�1I
 . 

3.2.3 Kinematics and Deformation of Points on the Model 

Since for the strut tie model only the axial deformation is considered, there is no relative 

rotation with the local coordinate on any cross section. The position, velocity and ac-

celeration of any point on any section of the rod can be expressed as 
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𝑟I
 = 𝑟cI

 + 𝑅B 𝑡c
  �̇�I

 = �̇�cI
 + 𝑅B �̃�BB

 𝑡c
  

(3-13) 

�̈�I
 = �̈�cI

 + 𝑅B �̇̃�BB
 𝑡c

 + 𝑅B �̃�BB
 �̃�BB

 𝑡c
  

According to the definition of strain in absolute coordinates, the axial strain of the rod 

can be written as 

𝜀I
 = ‖ 𝑟c′I

 ‖ − 1 = 𝑛x
T 𝑟c′I
 − 𝑛x

T𝑛x (3-14) 

The velocity and acceleration of the axial strain can be expressed as 

𝜀̇I
 =

1

‖ 𝑟′I
 ‖

𝑟′I
 T𝑁′𝑑𝑞e =

1

‖ 𝑟′I
 ‖

𝑞e
T𝑁′T 𝑁′𝑑𝑞e ≜ 𝑇ε

T𝑑𝑞e 

𝜀̈I
 =

1

‖ 𝑟′I
 ‖

𝑞e
T𝑁′T 𝑁′𝑑�̇�e + �̇�′I

 T
1

‖ 𝑟′I
 ‖

(I −
𝑟′I
 𝑟′I

 T

‖ 𝑟′I
 ‖

2)𝑁
′𝑑𝑞e ≜ 𝑇ε

T𝑑�̇�e + �̇�ε
T𝑑𝑞e 

(3-15) 

The stress can be obtained from the constitutive relationship with strain. In order to 

avoid the high-frequency oscillation of the rod caused by strain, the average stress is 

used to replace the instantaneous stress by introducing smooth factor ℎ. The average 

stress in inertial coordinate can be expressed as 

𝜎I
 = 𝐸 𝜀̅I

 = 𝐸 ( 𝜀I
 +

ℎ

2
𝜀̇I
 +

ℎ2

6
𝜀̈I
 ) = 𝐸 𝜀I

 + 𝐸 (
ℎ

2
𝑇ε
T +

ℎ2

6
�̇�ε
T)𝑑𝑞e + 𝐸

ℎ2

6
𝑇ε
T𝑑�̇�e (3-16) 

3.2.4 Discretization and Shape Function 

In order to satisfy the second assumption, the first derivative of the position vector of 

the center of any section on the rod should be constant. Therefore, its position vector 

can be expressed by linear interpolation of position vectors of two end section. The 

position, velocity and acceleration of this center point can be expressed as 

𝑟cI
 ≜ 𝑁𝑞e �̇�cI

 = 𝑁𝑑𝑞e �̈�cI
 = 𝑁𝑑�̇�e (3-17) 

Where 𝑁 is the shape function, and its specific expression is 

𝑁 = [(1 − 𝜉)I 𝜉I] 𝑁′ = 1 𝐿⁄ [−I I] (3-18) 
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with 𝜉 = 𝑠 𝐿⁄ . The first derivative of its position and velocity vector with respect to the 

arc length coordinate 𝑠 can be written as 

𝑟c′I
 ≜ 𝑁′𝑞e �̇�c′I

 = 𝑁′�̇�e (3-19) 

3.2.5 The Virtual Power of Strut Tie Model 

The virtual inertial power of strut tie model can be written as 

δ𝑝ine = −∭δ �̇�I
 T �̈�I

 𝜌d𝑉
 

𝑉

= −δ𝑑𝑞e
T (𝑀e,ine𝑑�̇�e + 𝐷e,ine𝑑𝑞e)

= −δ𝑑𝑞e
T (𝑀e,ine𝑑�̇�e + 𝐹ine) 

(3-20) 

The mass matrix and damping matrix generated from the virtual inertial power can be 

expressed as 

𝑀e,ine = 𝜌𝐿 (
𝐴

6
[
2I I

I 2I
] + 𝑇φ

T𝐽𝑇φ) 𝐷e,ine = −𝜌𝐿𝑇φ
T (𝐽�̇�φ + 𝐽�̇�φ) (3-21) 

where 𝐽 is the moment of inertia of section 

𝐽 = diag([𝐼y + 𝐼z 𝐼z 𝐼y]) 𝐽̇ 𝜔BB
 = �̃�BB

 𝐽 𝜔BB
  

(3-22) 

The virtual internal power with the smooth factor can be written as 

δ𝑝int = −∫ δ 𝜀̇I
  �̅�I

 𝐴d𝑠
𝐿

0

= −δ𝑑𝑞e
T (𝑀e,int𝑑�̇�e + 𝐷e,int𝑑𝑞e + 𝐾e𝑞e)

= −δ𝑑𝑞e
T (𝑀e,int𝑑�̇�e + 𝐹int) 

(3-23) 

The mass matrix, the damping matrix and the stiffness matrix obtained through the 

virtual internal power can be expressed as 

𝑀e,int =
ℎ2

6
𝐸𝐴𝐿𝑇ε𝑇ε

T 𝐷e,int = 𝐸𝐴𝐿 (
ℎ

2
𝑇ε 𝑇ε

T +
ℎ2

6
𝑇ε�̇�ε

T) 
(3-24) 

𝐾e = (1 ‖ 𝑟′I
 ‖⁄ )𝑁′T 𝑁′ 𝐸𝐴 𝜀I

 𝐿  
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As the external force here only gravity is considered. The virtual power of gravity can 

be written as 

δ𝑝ext,g =∭ δ �̇�I
 T 𝑔I

 𝜌d𝑉
 

𝑉

= δ𝑑𝑞e
T𝜌𝐴∫ 𝑁T d𝑠

𝐿

0

𝑔I
 = −δ𝑑𝑞e

T𝐹ext,g (3-25) 

The virtual power of strut tie model is 

δ𝑝e = δ𝑝ine + δ𝑝int + δ𝑝ext,g = −δ𝑑𝑞e
T (𝑀e𝑑�̇�e + 𝐹e)

= −δ𝑑𝑞e
T [(𝑀e,ine +𝑀e,int)𝑑�̇�e + (𝐹ine + 𝐹int + 𝐹ext,g)] 

(3-26) 

3.2.6 Body Parameter of Strut Tie Model after Deformation 

According to the fourth assumption, the density 𝜌 and the total mass 𝑚 are assumed 

to be constant under the deformation. When the cross section of the rod is circular with 

outer diameter 𝑟𝑎 and inner diameter 𝑟𝑖, the ratio of outer to inner diameter remains 

unchanged, the section parameters after the deformation can be expressed as 

𝑟a = √
𝑚

𝜌𝜋‖ 𝑟12I
 ‖(𝑟a∗

2 − 𝑟i
∗2)

𝑟a
∗ 𝑟i = √

𝑚

𝜌𝜋‖ 𝑟12I
 ‖(𝑟a∗

2 − 𝑟i
∗2)

𝑟i
∗ (3-27) 

where 𝑟a
∗ and 𝑟i

∗ is the outer diameter and inner diameter before deformation. 

3.3 Spatial Timoshenko Beam Dynamic Model 

3.3.1 Generalized Coordination, Velocity and Co-rotational Coordinate 

The generalized coordinate of the Timoshenko beam is defined by the position and 

posture of the end section. The generalized velocity is defined as the translational ve-

locity and the angular velocity in the local coordinate system of the end section. 

𝑞e = [𝑞1
T 𝑞2

T]
T
= [ 𝑟1I

 T
𝜑1

T
𝑟2I
 T

𝜑2
T
]
T

 

𝑑𝑞e = [𝑑𝑞1
T 𝑑𝑞2

T]
T
= [ �̇�1I

 T
𝜔1
 1T �̇�2I

 T
𝜔2
 2T]

T
 

(3-28) 

The co-rotational coordinate describes the position of the element without deformation, 

which means that, the deformation of any point on the element is based on the co-
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rotational coordinate. The co-rotational coordinate can be defined through the coordi-

nates of the two ends of the beam. 

𝑞B = [ 𝑟
B

I
 T

𝜑B
T
]
T

= 𝑞B (𝑞e) (3-29) 

where 𝑟BI
  is the position vector of the origin point of co-rotational coordinate expressed 

in inertial coordinate, and posture is represented by the Cartesian vector. The relation-

ship between the generalized velocity and acceleration of the co-rotational coordinate 

and the generalized velocity and acceleration of the end-point coordinates can be ex-

pressed as 

𝑑𝑞B = [ �̇�BI
 T

𝜔B
 BT]

T
= 𝑑𝑞B (𝑞e, 𝑑𝑞e) = 𝑇B𝑑𝑞e 

𝑑�̇�B = [ �̈�BI
 T

�̇�B
 BT]

T
= 𝑑�̇�B (𝑞e, 𝑑𝑞e, 𝑑�̇�e) = 𝑇B𝑑�̇�e + �̇�B𝑑𝑞e 

(3-30) 

3.3.2 Assumptions and Formulation of Deformation 

According to the Timoshenko beam assumption, the deformation of any point on the 

section 𝑐 is caused by the centroid translational deformation of the section 𝑢𝑐𝐵
  and the 

section rotational deformation. The actual deformation of this point 𝑢𝐵
  can be obtained 

by the difference between the position vector before deformation 𝑟𝐼
 ∗ and the after de-

formation 𝑟𝐼
 . 

𝑟I
 ∗ = 𝑟cI

 + 𝑅B 𝑡c
 = 𝑟BI

 + 𝑅B( 𝑟
r,c

B
 + 𝑡c

 )   with    𝑅B = 𝑅 (𝜑B) 

𝑟I
 = 𝑟cI

 + 𝑅B𝑅d,c 𝑡c
 = 𝑟BI

 + 𝑅B ( 𝑟
r,c

B
 + 𝑢cB

 + 𝑅d,c 𝑡c
 ) 

(3-31) 

where 𝑟r,cB
  is the relative position of cross-section 𝑐 to the original point of co-rotational 

coordinate, and 𝑡c
 T = [0 𝑦c

 𝑧c
 ] is the relative position of any point on cross-section 

𝑐 to the sectional center. 𝑟r,cB
  and 𝑡c

  are constant for each cross-section. The hypoth-

esis of small rotational deformation is applied, so that the rotation matrix for axis-angle 

rotation vector 𝜓cB
  and the deformation can be written as: 

𝑅d,c = 𝑅 ( 𝜓cB
 ) ≈ I + �̃�cB

  

𝑢B
 = 𝑅B

T( 𝑟I
 − 𝑟I

 ∗) = 𝑢cB
 + (𝑅d,c − I) 𝑡c

 ≈ 𝑢cB
 + �̃�cB

 𝑡c
  

(3-32) 
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The deformation coordinate 𝑞d,c is defined as 

𝑞d,c = [ 𝑢
c

B
 T 𝜓cB

 T
]
T

 (3-33) 

The deformation coordinate at the end point can be expressed by the following formula 

{
𝑢𝑒B
 = 𝑅B

T( 𝑟I
 𝑒 − 𝑟I

 B) − 𝑟r,𝑒B
 

𝜓𝑒B
 = 𝜓𝑒B

 (𝑅B
T𝑅e) = 𝜓eB

 (𝑅d,e)
   ,   𝑒 = 1,2 

𝑞d,end = [ 𝑢
1

B
 T

𝜓1B
 T

𝑢2B
 T

𝜓2B
 T

]
T

 

(3-34) 

The velocity and acceleration of the end deformation coordinate can be expressed as 

𝑑𝑞d,end = [ �̇�1B
 T

𝜛1
1
 T

�̇�2B
 T

𝜛2
2
 T

]
T
= 𝑇d,end𝑑𝑞e 

𝑑�̇�d,end = [ �̈�1B
 T

�̇�1
1
 T

�̈�2B
 T

�̇�2
2
 T

]
T
= 𝑇d,end𝑑�̇�e + �̇�d,end𝑑𝑞e 

(3-35) 

where 𝜛e
e
  represent the angular velocity of the angular deformation 𝜓eB

 . 

3.3.3 Kinematics of Points on Timoshenko Beam 

The velocity and acceleration of the point on the beam after the deformation is depend 

on the generalized velocity and acceleration of co-rotational coordinate and defor-

mation coordinate, which can be formulated as 

�̇�I
 = �̇�cI

 + 𝛺c 𝑡c
 = (𝐻t + 𝐻r,t) [𝑑𝑞B

T 𝑑𝑞d,c
T
]
T
 

�̈�I
 = �̈�cI

 + 𝛢c 𝑡c
 = (𝐻t + 𝐻r,t) [𝑑�̇�B

T 𝑑�̇�d,c
T
]
T
+ (𝐷t + 𝐷r,t) [𝑑𝑞B

T 𝑑𝑞d,c
T
]
T

 
(3-36) 

Where the translational part can be formulated as 

𝐻t = [I −𝑅B ( �̃�
r,c

B
 + �̃�cB

 ) 𝑅B 0] 

𝐷t = [0 −𝑅B �̃�BB
 ( �̃�r,cB

 + �̃�cB
 ) 2𝑅B �̃�BB

 0] 
(3-37) 

And the rotational part around the 𝑡c
 -axis can be written as 
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𝐻r,t = [0 −𝑅c �̃�c
 𝑅d,c

T 0 −𝑅c �̃�c
 
] 

𝐷r,t = [0 −𝑅B �̃�BB
 𝑅d,c �̃�c

 𝑅d,c
T 0 − (2𝑅B �̃�BB

 𝑅d,c + 𝑅c �̃�c
 c) �̃�c

 ] 
(3-38) 

3.3.4 The Formulation of Strain and Stress 

The strain at this point is defined using linear Green-Lagrange strains, which is defined 

as the derivative of the deformation with respect to the coordinate. 

𝜀ij
 

B
 = 𝜀ji

 
B
 =

1

2
(
∂ 𝑢iB
 

∂ 𝑥jB
 +

∂ 𝑢jB
 

∂ 𝑥iB
 ) ≈

1

2
(
∂ 𝑢iB
 

∂ 𝑥jc
 
+
∂ 𝑢jB
 

∂ 𝑥ic
 
) 

⇒

{
 
 

 
 𝜀xx

 
B
 = 𝑢cB

 ′ − 𝜃cB
 ′ 𝑦c

 + 𝜓cB
 ′ 𝑧c

 

𝜀xy
 

B
 = 1 2⁄ ( 𝑣cB

 ′ − 𝜑cB
 ′ 𝑧c

 − 𝜃cB
 )

𝜀xz
 

B
 = 1 2⁄ ( 𝑤c

B
 ′ + 𝜑cB

 ′ 𝑦c
 + 𝜓cB

 )

𝜀yy
 

B
 = 𝜀yz

 
B
 = 𝜀zz

 
B
 = 0

 
(3-39) 

where (∗)′ = 𝜕(∗) 𝜕 𝑥c
 ⁄  and 

𝑢cB
 = [ 𝑢cB

 𝑣cB
 𝑤c

B
 ]T 𝜓cB

 = [ 𝜑cB
 𝜓cB

 𝜃cB
 ]T (3-40) 

Through the constitutive relationship between stress and strain, instantaneous stress 

can be obtained as 

𝜎ij
 

B
 = {

𝐸 𝜀ij
 

B
  , i = j

𝐺 𝜀ij
 

B
  , i ≠ j

 (3-41) 

3.3.5 The Virtual Power of Timoshenko Beam 

The virtual internal power of the element can be expressed as 

δ𝑝int = −∭∑ ∑ δ 𝜀i̇j
 

B
 𝜎ij

 
B
 

ji
d𝑉

 

𝑉

= −∫ ∬ ∑ ∑ δ 𝜀i̇j
 

B
 𝜎ij

 
B
 

ji
d𝐴

 

𝐴(𝑠)

d𝑠
𝐿

0

= −∫ [δ�̇�d,c
′T (𝐻1𝑞d,c

′ + 𝐻2𝑞d,c) − δ�̇�d,c
T (𝐻3𝑞d,c

′ + 𝐻4𝑞d,c)] d𝑠
𝐿

0

 

(3-42) 

where 
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𝐻1 = diag([𝐸𝐴 𝐺𝐴 4⁄ 𝐺𝐴 4⁄ 𝐺(𝐼y + 𝐼z) 4⁄ 𝐸𝐼z 𝐸𝐼y]) 

(3-43) 𝐻2 = 𝐻3
T =

𝐺𝐴

4
[
0 �̃�x

0 0
] 

𝐻4 = diag([0 0 0 0 𝐺𝐴 4⁄ 𝐺𝐴 4⁄ ]) 

The integration by parts is used to deal with the first part of the integration 

δ𝑝int = −δ�̇�d,c
T (𝐻1𝑞d,c

′ + 𝐻2𝑞d,c)|
0

𝐿

+∫ δ�̇�d,c
T [−𝐻1𝑞d,c

′′ + (𝐻3 − 𝐻2) 𝑞d,c
′ + 𝐻4𝑞d,c] d𝑠

𝐿

0

 
(3-44) 

The virtual inertial power of the beam element can be expressed as 

δ𝑝ine = −∭δ �̇�I
 T �̈�I

 𝜌d𝑉
 

𝑉

= −∫ δ [
𝑑𝑞B

𝑑𝑞d,c
]

T

(𝑀B,c [
𝑑�̇�B

𝑑�̇�d,c
] + 𝐷B,c [

𝑑𝑞B

𝑑𝑞d,c
]) d𝑠

𝐿

0

 (3-45) 

The mass matrix and damping matrix regarding to co-rotational coordinate and defor-

mation coordinate of cross-section 𝑐 can be formulated as 

𝑀B,c = 𝜌𝐴𝐻t
T𝐻t + 𝜌𝐼y𝐻r,y

T 𝐻r,y + 𝜌𝐼z𝐻r,z
T 𝐻r,z 

𝐷B,c = 𝜌𝐴𝐻t
T𝐷t + 𝜌𝐼y𝐻r,y

T 𝐷r,y + 𝜌𝐼z𝐻r,z
T 𝐷r,z 

(3-46) 

The virtual external power of the Timoshenko beam caused by gravity 𝒈I
  can be ex-

pressed as 

δ𝑝ext =∭ δ �̇�I
 T 𝑔I

 𝜌d𝑉
 

𝑉

= ∫ δ �̇�cI
 T𝜌𝐴d𝑠

𝐿

0

𝑔I
 = ∫ δ [

𝑑𝑞B

𝑑𝑞d,c
]

T

𝐻t
T 𝑔I
 𝜌𝐴d𝑠

𝐿

0

 (3-47) 

3.3.6 Discretization and Shape Function 

To avid shear lock, one complex shape function is proposed [Baz-2003]. The defor-

mation coordinate of any cross section can be written as 

𝑞d,c = 𝑁c𝑞d,end (3-48) 
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The detailed description of the shape function is in the appendix. With this shape func-

tion, the integration part of internal power become zero [Luo-2008], so that the virtual 

internal power can be written as 

δ𝑝int = −δ�̇�d,c
T (𝐻1𝑞d,c

′ + 𝐻2𝑞d,c)|
0

𝐿

= −δ�̇�d,end
T 𝑁c

T (𝐻1𝑁c
′ + 𝐻2𝑁c)|

0

𝐿

𝑞d,end (3-49) 

Additionally, the relationship between deformation coordinate of end point, co-rota-

tional coordinate and generalized coordinate of the beam can be written as 

[
𝑑𝑞B

𝑑𝑞d,c
] = [

𝑑𝑞B

�̇�d,c
] = [

I 0

0 𝑁c
] [

𝑇B

𝑇d,end
] 𝑑𝑞e = 𝑁B,end𝑇B,end𝑑𝑞e 

[
𝑑�̇�B

𝑑�̇�d,c
] = [

𝑑�̇�B

�̈�d,c
] = [

I 0

0 𝑁c
] [

𝑇B

𝑇d,end
] 𝑑�̇�e + [

I 0

0 𝑁c
] [

�̇�B

�̇�d,end
] 𝑑𝑞e

= 𝑁B,end𝑇B,end𝑑�̇�e + 𝑁B,end�̇�B,end𝑑𝑞e 

(3-50) 

The virtual total power of spatial Timoshenko beam can be written as 

δ𝑝e = δ𝑝ine + δ𝑝int + δ𝑝ext,g = −δ𝑑𝑞e
T (𝑀e𝑑�̇�e + 𝐹e) (3-51) 

The generalized mass and force regarding to generalized coordinate can be written as 

𝑀e = 𝑇B,end
T∫ 𝑁B,end

T𝑀B,c𝑁B,endd𝑠
𝐿

0

𝑇B,end 

𝐹e = 𝐷e𝑑𝑞e + 𝐹int,e + 𝐹ext,e,g 
(3-52) 

where 

𝐷e = 𝑇B,end
T∫ 𝑁B,end

T (𝑀B,c𝑁B,end�̇�B,end + 𝐷B,c𝑁B,end𝑇B,end) d𝑠
𝐿

0

 

𝐹int,e = 𝑇d,end𝑁c
T (𝐻1𝑁c

′ + 𝐻2𝑁c)|
0

𝐿

𝑞d,end 

𝐹ext,g = −𝑇B,end
T∫ 𝑁B,end

T𝐻t
T𝜌𝐴d𝑠

𝐿

0

𝑔I
  

(3-53) 
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3.4 Cubic Spline Beam Dynamic Model 

3.4.1 Assumptions for Cubic Spline Beam 

The cubic spline beam is a kind of exact geometry beam based on absolute coordinate, 

which also satisfies the Euler-Bernoulli beam assumptions. The assumptions are as 

follows: 

1. The axis after deformation is smooth and continuous in the absolute coordi-

nate system, and satisfies the positions and posture of the two end points; 

2. the axial deformation is smaller than the bending deformation, so the parame-

ters of the cross section remain unchanged after the deformation; 

3. only the axial strain at the two ends of the beam is considered. 

3.4.2 Generalized Coordinate and Generalized Velocity 

According to the third assumption, in addition to the position and direction angle of the 

end point, the generalized coordinates also include the norm of the first derivative of 

the position to the arc length coordinate 𝑠  to represent the axial strain of the end point. 

Therefore, the generalized coordinates and generalized velocity of the cubic spline 

beam are defined as follows: 

𝑞e = [𝑞1
T 𝑞2

T]
T
= [ 𝑟1I

 T
𝜑1

T
‖ 𝑟′1I
 ‖ 𝑟2I

 T
𝜑2

T
‖ 𝑟′2I
 ‖]

T

 

𝑑𝑞e = [𝑑𝑞1
T 𝑑𝑞2

T]
T
= [ �̇�1I

 T
𝜔11
 T

‖ �̇�′1I
 ‖ 𝑟2I

 T
𝜑2

T
‖ 𝑟′2I
 ‖]

T

 
(3-54) 

In general, the deformation in a single beam element is not large, so the relative rota-

tion angle between the two end-sections can be represented by the unique cardan 

angle 𝜑121
  through the respective rotation matrix. 

𝑅cardan ( 𝜑121
 ) = 𝑅21

 = 𝑅1
T𝑅2 𝜑121

 = [ 𝜑121
 𝜓121

 𝜃121
 ]T (3-55) 

The order of the cardan angles from end section 1 to any section 𝑐 is defined as follows 

1 

z
−→
𝜃121
 

y
−→
𝜓121
 

x
−→
𝜑121
 

 2 1 

z
−→
𝜃1
 

y
−→
𝜓1
 

x
−→
𝜑1
 
 c (3-56) 

According to the monotonicity of the sin function near 0, the rotation angle along the x-

axis 𝜑121
  can be expressed as [Gao-2020] 
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𝜑121
 = sin−1 (𝑔z

T 𝑅21
 𝑔y cos 𝜓121

 ⁄ )      with     𝜓121
 = −sin−1 𝑔z

T 𝑅21
 𝑔x (3-57) 

Through the angular velocity and angular acceleration of the two end sections, the 

angular velocity and acceleration of the relative rotation angle can be determined 

𝜔22
 = 𝑅2

T
1
 𝜔11

 + 𝑇12
cardan �̇�121

      with     𝑇12
cardan = 𝑇cardan ( 𝜑121

 ) 

�̇�22
 = 𝑅2

T𝑅1 �̇�
1

1
 + 𝑇12

cardan �̈�121
 − �̃�22

 𝑅2
T

1
 𝜔11

 + �̇�12
cardan �̇�121

  

⇓ 

�̇�121
 = 𝑇12

cardan−1 (𝑇ω2 − 𝑅2
T𝑅1𝑇ω1)𝑑𝑞e = 𝑇φ12𝑑𝑞e 

�̈�121
 = 𝑇φ12𝑑�̇�e + �̇�φ12𝑑𝑞e 

(3-58) 

where 

𝑇ω1 = [0 I 0 0 0 0] 𝑇ω2 = [0 0 0 0 I 0] 

(3-59) �̇�12
cardan = �̇�cardan ( 𝜑121

 , �̇�121
 ) 

�̇�φ12 = 𝑇12
cardan−1 ( �̃�22

 𝑅2
T𝑅1𝑇ω1 − �̇�12

cardan𝑇φ12) 

3.4.3 Discretization and Shape Function 

In order to ensure the geometric continuity of the cubic spline beam in the absolute 

coordinate system, Hermite interpolation is used to determine the position of the center 

of the section [Wan-2015]. Therefore, the position vector of section 𝑐 and its derivative 

along the arc length coordinate can be written as 

𝑟(𝑠)cI
 = 𝑁0

1(𝑠) 𝑟1I
 + 𝑁0

2(𝑠) 𝑟2I
 +𝑁1

1(𝑠) 𝑟′1I
 + 𝑁1

2(𝑠) 𝑟′2I
  (3-60) 

where (∗)(𝑠) = d(𝑠)(∗) d𝑠(𝑠)⁄ , 𝑠 = 0,1,2, … and 

𝑟′1I
 = ‖ 𝑟′1I

 ‖ 𝑛x
1

I
 = ‖ 𝑟′1I

 ‖𝑅1𝑔x 𝑟′2I
 = ‖ 𝑟′2I

 ‖ 𝑛x
2

I
 = ‖ 𝑟′2I

 ‖𝑅2𝑔x (3-61) 

Velocity and acceleration can be written as 

�̇�(s)cI
 = 𝑁(s)𝐷𝑑𝑞e �̈�(s)cI

 = 𝑁(s)�̇�𝑑𝑞e + 𝑁
(s)𝐷𝑑�̇�e (3-62) 

where  
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𝑁(𝑠) = [𝑁0
1(𝑠)I 𝑁1

1(𝑠)I 𝑁0
2(𝑠)I 𝑁1

2(𝑠)I] 

𝐷 =

[
 
 
 
 
 
I 0 0 0 0 0

0 − �̃�′1I
 𝑅1 𝑛x

1
I
 0 0 0

0 0 0 I 0 0

0 0 0 0 − �̃�′2I
 𝑅2 𝑛x

2
I
 
]
 
 
 
 
 

 

�̇� =

[
 
 
 
 
 
0 0 0 0 0 0

0 −‖ 𝑟′1I
 ‖𝑅1 �̃�

1
1
 �̃�x −2 �̃�x

1
I
 𝜔1I

 0 0 0

0 0 0 0 0 0

0 0 0 0 −‖ 𝑟′2I
 ‖𝑅2 �̃�

2
2
 �̃�x −2 �̃�x

2
I
 𝜔2I

 

]
 
 
 
 
 

 

(3-63) 

The direction of the tangential vector 𝑟′cI
  reflects the x-axis of the section. In addition, 

the x-axis of the section can also be defined by the rotation matrix of the section 

𝑛xI
 = 1 ‖ 𝑟′cI

 ‖⁄ 𝑟′cI
 = 𝑅1𝑅z( 𝜃1

 )𝑅y( 𝜓1
 )𝑔x (3-64) 

Therefore, the y-axis and z-axis components of the relative rotation angle to the section 

1 can be obtained, which reflect the bending of the beam. 

𝜓1
 = −sin−1 𝑔z

T𝑅1
T 𝑛xI
  𝜃1

 = sin−1 (𝑔y
T𝑅1

T 𝑛xI
 cos 𝜓1

 ⁄ ) (3-65) 

The x-axis component of the relative rotation angle reflects the torsion of the section 

relative to section 1, which can be obtained by linear interpolation 

𝜑1
 = 𝜉 𝜑121

      with     𝜉 = 𝑥 𝐿⁄  (3-66) 

Therefore, the relative rotation cardan angle from section 1 to section 𝑐 can be ex-

pressed as 

𝜑1
 = [ 𝜑1

 𝜓1
 𝜃1

 ]T 𝜑′1
 = [ 𝜑′1

 𝜓′1
 𝜃′1

 ]T (3-67) 

The velocity and acceleration of relative cardan angle and its derivative with respect to 

the arc length can be written as 
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�̇�1
 = 𝑇Angle𝑑𝑞e 

�̈�1
 = 𝑇Angle𝑑�̇�e + �̇�Angle𝑑𝑞e 

�̇�′1
 = 𝑇dAngle𝑑𝑞e 

 
(3-68) 

The detailed expressions are shown in appendix [Fan-2016]. 

3.4.4 Kinematics and Deformation of Points on the Beam 

The angular velocity and angular acceleration of section 𝑐 can be written as 

𝜔cc
 = (𝑅d

T𝑇ω1 + 𝑇d𝑇Angle) 𝑑𝑞e = 𝑇ω𝑑𝑞e 

�̇�cc
 = 𝑇ω𝑑�̇�e + (�̇�d𝑇Angle + 𝑇d�̇�Angle − �̃�d

c
c
 𝑅d

T𝑇ω1)𝑑𝑞e = 𝑇ω𝑑�̇�e + �̇�ω𝑑𝑞e 
(3-69) 

in which 

𝑅d = 𝑅 ( 𝜑1
 ) 𝑇d = 𝑇 ( φ1

 ) �̇�d = �̇� ( φ1
 , φ̇1

 ) 𝜔d
c

c
 = 𝑇 ( 𝜑1

 ) �̇�1
  (3-70) 

According to the Euler Bernoulli beam assumption, the shear strain on the section is 

ignored. The principal strain along the x-axis of section 𝑐 can be written as 

𝜀I
 = 𝜀c

 = ‖ 𝑟′cI
 ‖ − 1 

𝜀̇I
 = 𝜀̇c

 = 1 ‖ 𝑟′cI
 ‖⁄ 𝑟′cI

 T
𝑁′𝐷𝑑𝑞e = 𝑇ε

T𝑑𝑞e (3-71) 

Bending and torsional strains are expressed by the curvature of the section 

𝜅c
 = 𝑇d 𝜑

′
1
  

�̇�c
 = [𝑇d𝑇dAngle + 𝑇

′ ( 𝜑1
 , 𝜑′1

 ) 𝑇Angle − �̃�c
 𝑇ω] 𝑑𝑞e = 𝑇κ𝑑𝑞e (3-72) 

3.4.5 The Virtual Power of Cubic Spline Beam 

The virtual inertial power can be written as the summation of the translational and ro-

tational part. The virtual translational inertial power can be formulated as 

δ𝑝ine,tra = −𝜌𝐴∫ δ �̇�cI
 T �̈�cI

 d𝑠
𝐿

0

= −δ𝑑𝑞e
T (𝑀e,ine,tra𝑑�̇�e + 𝐹e,ine,tra) (3-73) 

where 
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𝑀e,ine,tra = 𝜌𝐴𝐷T∫ 𝑁T𝑁d𝑠
𝐿

0

𝐷 

𝐹e,ine,tra = 𝐷e,ine,tra𝑑𝑞e = 𝜌𝐴𝐷T∫ 𝑁T𝑁d𝑠
𝐿

0

�̇�𝑑𝑞e 
(3-74) 

The virtual rotational inertial power can be formulated as 

δ𝑝ine,rot = −𝜌∫ δ 𝜔cc
 T (𝐽 �̇�cc

 + �̃�cc
 𝐽 𝜔cc

 ) d𝑠
𝐿

0

= −δ𝑑𝑞e
T (𝑀e,ine,rot𝑑�̇�e + 𝐹e,ine,rot) 

(3-75) 

where 

𝑀e,ine,rot = 𝜌∫ 𝑇ω
T𝐽𝑇ωd𝑠

𝐿

0

 

𝐹e,ine,rot = 𝐷e,ine,rot𝑑𝑞e = 𝜌∫ 𝑇ω
T (𝐽�̇�ω + �̃�cc

 𝐽𝑇ω)d𝑠
𝐿

0

𝑑𝑞e 
(3-76) 

The virtual internal power of the cubic spline beam can be expressed as 

δ𝑝int = −∫ δ 𝜀̇c
 T 𝜎c

 d𝑠
𝐿

0

= −δ𝑑𝑞e
T∫ 𝑇Strain

T𝐾ε 𝜀c
 d𝑠

𝐿

0

= −δ𝑑𝑞e
T𝐹e,int 

(3-77) 
𝑇Strain = [𝑇ε 𝑇κ

T
]
T

 𝐾ε = diag([𝐸𝐴 𝐺𝐽 𝐸𝐼y 𝐸𝐼z]) 

The virtual external power of the cubic spline beam caused by gravity 𝑔𝐼
  can be ex-

pressed as 

δ𝑝ext,g = 𝜌𝐴∫ δ �̇�cI
 Td𝑠

𝐿

0

𝑔I
 = δ𝑑𝑞e

T𝜌𝐴𝐷T∫ 𝑁T d𝑠
𝐿

0

𝑔I
 = −δ𝑑𝑞e

T𝑉e 𝑔I
  (3-78) 

3.5 Super Truss Element Dynamic Model 

3.5.1 Assumptions for Super Truss Element 

In order to reduce the number of degrees of freedom of the truss element, three as-

sumptions are proposed, so that each beam in the truss element can be expressed by 
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the coordinates of the two end sections. These assumptions can be acceptable when 

the truss is long and the deformation is uniform and small. 

Assumption 1: Rigid End Section 

When the truss is long, the deformation is mainly along the length of the truss, while 

the deformation of the end section is relatively small. In reality, the truss is often 

strengthened on the end section, making the stiffness of the end section larger, so the 

end section of the truss can be considered as rigid. The rigid end section of the truss 

means the position vector from the section node to any point on the end section in this 

section coordinate is constant. 

Assumption 2: Geometric Continuity of Main Beam 

The position vector of the cross-section center of the main beam is assumed to be 

geometric continuous after the deformation. Moreover, the arc-length derivative of po-

sition vector remains parallel to the normal direction of the cross-section. 

Assumption 3: Rigid Connection 

The rigid connection hypothesis refers to the relative rotation angles of different beam 

elements connected to the same node in the local coordinate, which remain un-

changed before and after deformation. In reality, riveting or welding is often used to 

connect the beam element, and the stiffness of the nodes will be strengthened, so this 

assumption is in line with the actual situation. 

In addition, all truss elements here are regular, which means the shape satisfies the 

following conditions:  

1. The end section of the truss element is a plane, and the two sections are par-

allel to each other and perpendicular to the virtual main axis; 

2. All beam members are straight before the deformation 

3.5.2 Parameterization of Super Truss Element 

Truss Elements and Truss Order 

The configuration of the sub-beams is defined by the connection form and the truss 

order. The sub-beam connection form refers to the position of the internal nodes con-

nected by the sub-beam. Truss order refers to the ratio of the total length of the main 

beam to the minimum element length divided by the sub-beams. 
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Figure 3-1: Definition of truss elements and truss order 

The truss here is defined by nodes (cross section nodes, internal nodes), planes (cross 

section, sub-beam planes) and beam elements (cross section beams, main beams, 

sub-beams). 

Parameters of Cross Section Nodes 

According to the rigid end section assumption, only the position vector from the section 

node to any point on the end section in this section coordinate should be defined. 

Moreover, the posture of the section node can be expressed by the angle of the end 

section.  

Parameters of Cross Section Beams 

The cross section beams in a certain cross section 𝑠 can be defined by the cross-sec-

tion nodes. According to the definition of beam element above, it is required that the x-

axis of the beam must be parallel to the line connecting the two ends of the beam when 

there is no deformation. In addition, the z-axis of cross section beam is defined to be 

perpendicular to the cross section, which is the same as the x-axis of the cross-section 

coordinate. Therefore, the rotation matrix of the nodes at both ends of the end beam 

can be defined as 

𝑅s = [ 𝑛I
 
x
s 𝑛I

 
y
s 𝑛I

 
z
s]     with     𝑅s

i = 𝑅i
T𝑅s = const.   ∀𝑖, 𝑠 (3-79) 

where 

𝑛I
 
x
s = ( 𝑟I

 k − 𝑟I
 l) ‖ 𝑟I

 k − 𝑟I
 l‖⁄  𝑛I

 
z
s = 𝑛I

 
x
i  (3-80) 
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in which 𝑠 ∈ 𝒮𝑖, 𝑘, 𝑙 ∈ 𝒞𝑖, 𝑖 ∈ ℰ. According to assumption of rigid end section or rigid 

connection, the relative rotation matrix between the coordinate system of the nodes at 

both ends of the cross-section beam and the coordinate system of the end section is 

constant under deformation. 

Parameters of Main Beams, Sub-beam Planes and Internal Nodes 

Main beam is defined by the two cross section nodes of different end section. The x-

axis of the main beam is along the length of the main beam. 

𝑛I
 
x
m = ( 𝑟I

 k − 𝑟I
 l) ‖ 𝑟I

 k − 𝑟I
 l‖⁄  (3-81) 

in which 𝑚 ∈ ℳ, 𝑘 ∈ 𝒞𝑖, 𝑙 ∈ 𝒞𝑗. The sub-beams must be located on the surface formed 

by the two main beams. According to the assumptions above, only the situation where 

two main beams form a plane is discussed, which is basically the same in practical 

applications. The direction of the sub-beam plane and the z-axis of the main beam in 

this sub-beam plane is defined by its normal vector. 

𝑛I
 
z
m,g

= 𝑛I
 
z
n,g
= 𝑘I

 g = �̃�I
 
x
m 𝑛I
 
x
n (3-82) 

in which 𝑚, 𝑛 ∈ ℳ𝑔, 𝑔 ∈ 𝒫. The main beams belonging to different sub-beam planes 

will have different directions defined in each sub-beam plane. According to the rigid 

connection assumption, the relative rotation between the end node of the main beam 

and the cross-section node is constant. 

𝑅m,g = [ 𝑛I
 
x
m 𝑛I

 
y
m,g

𝑛I
 
z
m,g
]     with     𝑅m,g

i = 𝑅i
T𝑅m,g = 𝑐𝑜𝑛𝑠𝑡.   ∀𝑖,𝑚, 𝑔 (3-83) 

With the assumption of geometric continuity of the main beam, the direction of the 

internal nodes on the main beam is the same as the direction of the main beam when 

it is not deformed. 

Parameters of Sub-beams 

The sub-beam is defined by the main beam and the location of end nodes on the main 

beam. The x-axis of the sub-beam is defined as the unit vector between the internal 

nodes on two main beams. The z-axis of the sub-beam is defined as the normal direc-

tion of the sub-beam plane. 

𝑛I
 
x
h = ( 𝑟I

 m,p − 𝑟I
 n,q) ‖ 𝑟I

 m,p − 𝑟I
 n,q‖⁄  𝑛I

 
z
h = 𝑘I

 g (3-84) 
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in which ℎ ∈ ℬ𝑔, 𝑝 ∈ ℐ𝑚, 𝑞 ∈ ℐ𝑛. According to the rigid connection assumption, the rela-

tive rotation angle between the end point coordinate of the sub-beam and the corre-

sponding main beam coordinate is constant and must be along the normal direction of 

the sub-beam plane. 

𝑅h = [ 𝑛I
 
x
h 𝑛I

 
y
h 𝑛I

 
z
h]     with     𝑅h

m,g
= 𝑅m,g

T 𝑅h = 𝑐𝑜𝑛𝑠𝑡.   ∀𝑚, 𝑔, ℎ (3-85) 

3.5.3 Dynamics Calculation of Super Truss Element 

The dynamics calculation of the super truss element is composed of the following mod-

ules: cross section node, internal node, cross section beam, main beam and sub-

beam. 

Calculate cross section node coordinate

Mass  = MainBeamMass  + CrossSectionMass  + SubBeamMass

Force = MainBeamForce + CrossSectionForce + SubBeamForce

Mass,Force

Start

Super Truss Element Mass&Force

Calculate Internal Node coordinate

Calculate Main Beam 

Mass&Force

Calculate Sub-Beam 

Mass&Force

Calculate Cross Section Beam 

Mass&Force

End

Super Truss Element Mass&Force

qe,dqe

Cross Section Node

Internal Node

MainBeamMass,

MainBeamForce

SubBeamMass,

SubBeamForce

CrossSectionMass,

CrossSectionForce

Parallel Computing

 

Figure 3-2: Flow chart of dynamic calculation of super truss element 

From the flow chart above, it can be found that the calculations of the cross-section 

beam, the main beam and the sub-beams do not affect each other. Parallel computa-

tion can effectively reduce the single-step calculation time of the super truss element. 

Generalized Coordinate and Generalized Velocity 

According to the above assumptions and parameter definitions, the generalized coor-

dinates and velocity of the super truss element can be defined only by two end sections. 
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𝑞e = [𝑞1
T 𝑞2

T]
T
= [ 𝑟1I

 T
𝜑1

T
𝑟2I
 T

𝜑2
T
]
T

      1,2 ∈ ℰ 

𝑑𝑞e = [𝑑𝑞1
T 𝑑𝑞2

T]
T
= [ �̇�1I

 T
𝜔1
 1T �̇�2I

 T
𝜔2
 2T]

T
 

(3-86) 

Cross Section Nodes 

The position and the posture of the cross-section nodes will be calculated according 

to the assumption of rigid end section.  

𝑟I
 k = 𝑟I

 i + 𝑅i 𝑟i
 i,k 𝑅k = 𝑅i (3-87) 

The generalized velocity and generalized acceleration of the cross-section is com-

posed of translational and angular velocity, which can be written as 

𝑑𝑞k = [ �̇�I
 kT 𝜔k

 kT]
T
= 𝑇k

i𝑇i𝑑𝑞e = 𝑇k𝑑𝑞e 

𝑑�̇�k = [ �̈�I
 kT �̇�k

 kT]
T
= 𝑇k

i𝑇i𝑑�̇�e + �̇�k
i𝑇i𝑑𝑞e = 𝑇k𝑑𝑞e + �̇�k𝑑𝑞e 

(3-88) 

where 

𝑇k
i = [

I −𝑅i �̃�i
 i,k

0 I
] �̇�k

i = [
0 −𝑅i �̃�i

 i �̃�i
 i,k

0 0
] 𝑇i = {

[I 0], i = 1

[0 I], i = 2
 (3-89) 

Internal Nodes 

The internal node is defined by the main beam on the sub-beam plane to which the 

internal node belongs. The coordinates of the end point of the main beam can be ob-

tained by the corresponding cross section node and the relative rotation angle to the 

main beam in a certain sub-beam plane 𝑔. 

𝑟I
 
m,g
k = 𝑟I

 k 𝑅m,g
k = 𝑅i𝑅m,g

i  (3-90) 

The generalized velocity and acceleration of the end point of the main beam is 

𝑑𝑞m,g
k = [ �̇�I

 
m,g
k T

𝜔m,g
k

k
m,gT]

T

= 𝑇m,g
k 𝑇k𝑑𝑞e = 𝑇m,g,k𝑑𝑞e 

𝑑�̇�s
k = [ �̈�I

 
m,g
k T

�̇�m,g
k

k
m,gT]

T

= 𝑇m,g
k (𝑇k𝑑�̇�e + �̇�k𝑑𝑞e) = 𝑇m,g,k𝑑�̇�e + �̇�m,g,k𝑑𝑞e 

(3-91) 

where 𝑇m,g
k = diag ([I 𝑅m,g

i T
]). 
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Here the main deformation of the main beam is considered to be caused by bending. 

Thus, the deformation in axial direction is ignored. The position vector, rotation matrix 

as well as the generalized velocity and generalized acceleration can be obtained by 

using cubic spline beam model, whose axis is also assumed to be geometric continu-

ous. Thus, the generalized velocity and generalized acceleration can be formulated as 

𝑑𝑞g
p
= [ �̇�I

 
g
pT

𝜔g
p

p
gT]

T

= 𝑇p,g
m,g
𝑇m,g𝑑𝑞e = 𝑇p,g𝑑𝑞e 

𝑑�̇�g
p
= [ �̈�I

 
g
pT

�̇�g
p

p
g]
T

= 𝑇p,g
m,g
𝑇m,g𝑑�̇�e + (�̇�p,g

m,g
𝑇m,g + 𝑇p,g

m,g
�̇�m,g)𝑑𝑞e

= 𝑇p,g𝑑�̇�e + �̇�p,g𝑑𝑞e 

(3-92) 

in which 𝑇p,g
m,g

 and �̇�p,g
m,g

 can be obtained through cubic spline beam model.  

The Jacobian matrix between generalized coordinate of super truss element and gen-

eralized coordinate of main beam can be written as 

𝑇m,g = [𝑇m,g,k
T 𝑇m,g,l

T
]
T

 �̇�m,g = [�̇�m,g,k
T �̇�m,g,l

T
]
T

 (3-93) 

Cross Section Beam Elements 

According to the parameters of the definition of cross section nodes, the coordinate of 

the end point of the cross-section beam is depend only on cross section node. 

𝑟I
 
s
k = 𝑟I

 k 𝑅s
k = 𝑅i𝑅s

i  (3-94) 

The generalized velocity and acceleration of the end point can be expressed as 

𝑑𝑞s
k = [

�̇�I
 
s
k

𝜔s
k

k
s] = 𝑇s,k

k 𝑇k𝑑𝑞e = 𝑇s,k𝑑𝑞e     with     𝑇s,k
k = [

I 0

0 𝑅s
iT
] 

𝑑�̇�s
k = [ �̈�I

 
s
kT �̇�s

k
k
sT]

T
= 𝑇s,k

k 𝑇k𝑑�̇�e + 𝑇s,k
k �̇�k𝑑𝑞e = 𝑇s,k𝑑�̇�e + �̇�s,k𝑑𝑞e 

(3-95) 

According to the definition of end beam, the generalized coordinate, velocity and ac-

celeration of end beam can be expressed as 
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𝑟I
 
s
k = 𝑟I

 k 𝑟I
 
s
l = 𝑟I

 l 𝑅s
k = 𝑅i𝑅s

i  𝑅s
l = 𝑅i𝑅l

i 

(3-96) 𝑑𝑞s = [𝑑𝑞s
kT 𝑑𝑞s

l T]
T

= [𝑇s,k
T 𝑇s,l

T
]
T

𝑑𝑞e = 𝑇s𝑑𝑞e 

𝑑�̇�s = [𝑑�̇�s
kT 𝑑�̇�s

l T]
T

= [𝑇s,k
T 𝑇s,l

T
]
T

𝑑�̇�e + [�̇�s,k
T �̇�s,l

T
]
T

𝑑𝑞e = 𝑇s𝑑�̇�e + �̇�s𝑑𝑞e 

The mass matrix and force vector of the cross-section beam need to be calculated 

through the generalized coordinates of the cross-section beam, and then converted to 

the super truss element coordinate. The virtual power of the cross-section beam can 

be written as 

δ𝑝e
s = −δ𝑑𝑞s

T (𝑀s
s𝑑�̇�s + 𝐹s

s) = −δ𝑑𝑞e
T [𝑇s

T𝑀s
s𝑇s𝑑�̇�e + (𝑇s

T𝑀s
s�̇�s𝑑𝑞e + 𝑇s

T𝐹s
s)]

= −δ𝑑𝑞e
T (𝑀e

s𝑑�̇�e + 𝐹e
s) 

(3-97) 

Main Beam Elements 

Considering that internal nodes will transmit force and moment, it is necessary to seg-

ment the main beam according to the position of the internal nodes (sub main beam), 

in order to meet the virtual power principle. The generalized coordinate of sub main 

beam can be obtained directly using the generalized coordinate of internal nodes. 

𝑑𝑞m = [𝑇p
T 𝑇q

T
]
T
𝑑𝑞e = 𝑇m𝑑𝑞e 

𝑑�̇�m = [𝑇p
T 𝑇q

T
]
T
𝑑�̇�e + [�̇�p

T �̇�q
T
]
T
𝑑𝑞e = 𝑇m𝑑�̇�e + �̇�m𝑑𝑞e 

(3-98) 

The virtual power of sub main beam can be written as 

δ𝑝e
m = −δ𝑑𝑞m

T (𝑀m
m𝑑�̇�m + 𝐹m

m) = −δ𝑑𝑞e
T (𝑀e

m𝑑�̇�e + 𝐹e
m)

= −δ𝑑𝑞e
T [𝑇m

T𝑀m
m𝑇m𝑑�̇�e + (𝑇m

T𝑀m
m�̇�m𝑑𝑞e + 𝑇m

T𝐹m
m)] 

(3-99) 

Sub-beam Elements 

According to the internal nodes connected by the sub-beam and the constant relative 

rotation between the end points of the sub-beam and the internal nodes, the general-

ized coordinates of the end points of the sub-beam can be obtained through the inter-

nal nodes. The generalized velocity and acceleration of the sub-beam endpoint can be 

expressed as 
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𝑑𝑞h
p
= [ �̇�I

 
h
pT

𝜔h
p

p
hT]

T

= 𝑇h,p
p
𝑇p𝑑𝑞e = 𝑇h,p𝑑𝑞e     with     𝑇h,p

p
= [

I 0

0 𝑅h
m,gT] 

𝑑�̇�h
p
= [ �̈�I

 
h
pT

�̇�h
p

p
hT]

T

= 𝑇h,p
p
𝑇p𝑑�̇�e + 𝑇h,p

p
�̇�p𝑑𝑞e = 𝑇h,p𝑑�̇�e + �̇�h,p𝑑𝑞e 

(3-100) 

in which 𝑝 ∈ ℳ𝑔. Therefore, the generalized velocity and acceleration of sub-beam can 

be written as 

𝑑𝑞h = [𝑇h,p
T 𝑇h,q

T
]
T

𝑑𝑞e = 𝑇h𝑑𝑞e 

𝑑�̇�h = [𝑇h,p
T 𝑇h,q

T
]
T

𝑑�̇�e + [�̇�h,p
T �̇�h,q

T
]
T

𝑑𝑞e = 𝑇h𝑑�̇�e + �̇�h𝑑𝑞e 
(3-101) 

The virtual power of sub-beam can be written as 

δ𝑝e
h = −δ𝑑𝑞h

T (𝑀h
h𝑑�̇�h + 𝐹h

h) = −δ𝑑𝑞e
T (𝑀e

h𝑑�̇�e + 𝐹e
h)

= −δ𝑑𝑞e
T [𝑇h

T𝑀h
h𝑇h𝑑�̇�e + (𝑇h

T𝑀h
h�̇�h𝑑𝑞e + 𝑇h

T𝐹h
h)] 

(3-102) 
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4 Multi-Body Dynamics Method 

4.1 Multi-Body Dynamics Function 

According to the Lagrangian equation of the first kind, the dynamic equation with con-

straints can be written as follows 

{
𝑀 (𝑞) 𝑑�̇� + 𝐹 (𝑞, 𝑑𝑞) + 𝐵 (𝑞) 𝜆 = 0

𝑑𝑞 = 𝐽 (�̇�)    ,     𝛷 (𝑞) = 0
     with     �̇� = 𝐵𝑇𝑑𝑞 (4-1) 

The mechanism must always satisfy its constraint equation when it is moving, so the 

derivative of the constraint equation with respect to time must always be zero. When 

the mechanism satisfies the constraints in the initial state, according to its constant and 

zero time derivative, it can be ensured that the mechanism still meets the constraints 

in the subsequent movement. 

𝛷 ≡ 0 ⇒ �̇� ≡ 0 ⇒ �̈� ≡ 0 

�̈� ≡ 0 ⇒ �̇� ≡ 0 ⇒ 𝛷 ≡ 0     ,     𝑖𝑓   𝛷(𝑡0) = 0, �̇�(𝑡0) = 0 (4-2) 

According to the above characteristics of the constraint, the multi-body dynamic equa-

tion can be written as 

{

𝑀𝑑�̇� + 𝐹 + 𝐵𝜆 = 0

𝑑𝑞 = 𝐽(�̇�)

𝐵𝑇𝑑�̇� + 𝛤 = 0

⟺

{
 

 [
𝑀 𝐵

𝐵𝑇 0
] [
𝑑�̇�

𝜆
] + [

𝐹

𝛤
] = 0

𝑑𝑞 = 𝐽 (�̇�)

     with     {
�̇� = 𝐵𝑇𝑑𝑞

�̈� = 𝐵𝑇𝑑�̇� + 𝛤
 (4-3) 

The generalized mass matrix and generalized force vector with constraints can be for-

mulated in the following form. 𝜆 represents the magnitude of the generalized constraint 

forces in the certain constraint directions 𝐵. 

{
𝜆 = (𝐵𝑇𝑀−1𝐵)

−1

(−𝐵𝑇𝑀−1𝐹 + 𝛤)

𝑑�̇� = −𝑀∗−1𝐹∗
     with     {

𝑀∗ = 𝑀

𝐹∗ = 𝐹 + 𝐵𝜆
 (4-4) 
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4.2 Joint Configuration 

A joint refers to a point that has a fixed relative position and angle with a certain gen-

eralized coordinate of the body. Joints are used to connect other bodies or bear gen-

eralized external nodal forces. The generalized coordinates of the joint can be repre-

sented by the position vector and the rotation matrix. 

{
𝑟I
 J = 𝑟I

 B + 𝑅B 𝑟B
 BJ

𝑅J = 𝑅B𝑅J
B      with     {

𝑟B
 BJ = const.

𝑅J
B = const.

   ,   𝑅B = 𝑅 (𝜑B) (4-5) 

The generalized velocity and generalized acceleration of a joint can be expressed by 

the generalized coordinate of the body. 

𝑑𝑞J = [ �̇�I
 JT 𝜔J

 JT]
T
= 𝑇J,B𝑑𝑞B 𝑑�̇�J = [ �̈�I

 JT �̇�J
 JT]

T
= 𝑇J,B𝑑�̇�B + �̇�J,B𝑑𝑞B (4-6) 

where 

𝑞B = [ 𝑟I
 BT 𝜑B

T
]
T

 𝑑𝑞B = [ �̇�I
 BT 𝜔B

 BT]
T
 𝑑�̇�B = [ �̈�I

 BT �̇�B
 BT]

T
 

(4-7) 
𝑇J,B = [

I −𝑅B �̃�B
 BJ

0 𝑅B
 
J
T ] �̇�J,B = [

0 −𝑅B �̃�BB
 �̃�B

 BJ

0 0
] 

4.3 System Generalized External Forces 

The virtual external nodal power of generalized external forces applied on the joints 

can be formulated as  

δ𝑝ext =∑ δ𝑑𝑞J
T 𝐹ext,J

J
= δ𝑑𝑞T∑ 𝑇B

T∑ 𝑇J,B
T 𝐹ext,J

J∈BB
 (4-8) 

It should be noted, that the translational velocity is defined in inertial coordinate system, 

while the angular velocity in body local coordinate system. This means the generalized 

external force should be converted to the corresponding coordinate system. 
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𝐹ext,J = [ 𝐹JI
 T

𝑀J
J
 T

]
T
     with     𝐹JI

 = 𝑅J 𝐹
J

J
    and   𝑀J

J
 = 𝑅J

T 𝑀J
I
  (4-9) 

4.4 Formulation of Different Constraints 

The constraint equation is established by the generalized coordinates of the two joints. 

𝛷J1,J2 ( 𝑟I
 J1, 𝑅J1, 𝑟I

 J2, 𝑅J2) = 0 (4-10) 

The first-time derivative of the constraint equation in the joint coordinate system, the 

body coordinate system and the global coordinate system can be written as 

�̇�J1,J2 ≜ 𝐵J1,J2
T 𝑑𝑞J12 = 𝐵B1,B2

T 𝑑𝑞B12 = 𝐵
T𝑑𝑞 = 0 

(4-11) 𝐵B1,B2
T = 𝐵J1,J2

T 𝐵J12,B12
T  𝐵T = 𝐵B1,B2

T 𝑇B12 𝑇J1J2 = 𝐵J12,B12
T 𝑇B12 

where 

𝑑𝑞J12 = [
𝑑𝑞J1

𝑑𝑞J2
] 𝑑𝑞B12 = [

𝑑𝑞B1

𝑑𝑞B2
] 𝑇B12 = [

𝑇B1

𝑇B2
] 𝐵J12,B12

T = [
𝑇J1,B1 0

0 𝑇J2,B2
] (4-12) 

4.4.1 Fixed Constraint 

Fixed constraint means that the positions and rotation angles of the two joints are ex-

actly the same. Therefore, there is no possibility of relative movement between these 

two joints.  

The position constraint and angle constraint can be written as 

𝑟I
 J1 − 𝑟I

 J2 = 0 

𝜑J1 − 𝜑J2 = 0 ⟺ 𝑒i
J1T𝑒j

J2 = 0   with   𝑒I
 
i
J = 𝑅J𝑔i   , ∀𝑖 ≠ 𝑗 ∈ (x, y, z) 

(4-13) 

The constraint equation and its first and second derivatives over time can be formu-

lated as 
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𝛷FIX = [
𝑟I
 J1 − 𝑟I

 J2

𝑅J1
T𝑅J2

] �̇�FIX = 𝐵J1,J2
FIX T

𝑑𝑞J12 �̈�FIX = 𝐵J1,J2
FIX T

𝑑�̇�J12 + 𝛤FIX (4-14) 

where 

𝐵J1,J2
FIX T

=

[
 
 
 
 
 
 
I 0 −I 0

0T −𝑔z
T𝑅J2

T𝑅J1�̃�x 0T −𝑔x
T𝑅J1

T𝑅J2�̃�z

0T −𝑔z
T𝑅J2

T𝑅J1�̃�y 0T −𝑔y
T𝑅J1

T𝑅J2�̃�z

0T −𝑔y
T𝑅J2

T𝑅J1�̃�x 0T −𝑔x
T𝑅J1

T𝑅J2�̃�y]
 
 
 
 
 
 

 

𝛤FIX = �̇�J1,J2
FIX T

𝑑𝑞J12 =

[
 
 
 
 
 
0 0 0 0

0T 𝑔z
T𝐷21�̃�x 0T 𝑔x

T𝐷12�̃�z

0T 𝑔z
T𝐷21�̃�y 0T 𝑔y

T𝐷12�̃�z

0T 𝑔y
T𝐷21�̃�x 0T 𝑔x

T𝐷12�̃�y]
 
 
 
 
 

𝑑𝑞J12 

(4-15) 

𝐷12 = �̃�J1J1
 𝑅J1

T𝑅J2 − 𝑅J1
T 𝑅J2 �̃�J2J2

  𝐷21 = �̃�J2J2
 𝑅J2

T𝑅J1 − 𝑅J2
T 𝑅J1 �̃�J1J1

  

4.4.2 Revolute Constraint 

Revolute constraint means that two joints can only rotate relative to one another around 

a body fixed axis. For the revolute constraint described here, the position vectors of 

the two joints are the same, and the 𝑖-axis of joint 1 and the 𝑗-axis of joint 2 are the 

same. Therefore, the two joints can rotate relatively around this axis. The position and 

angle constraint can be written as 

𝑟I
 J1 = 𝑟I

 J2 

𝑒i
J1 = 𝑒j

J2 ⟺ 𝑒p
J1T𝑒j

J2 = 0   ,   𝑖, 𝑗 ∈  (x, y, z), ∀𝑝 ≠ 𝑖 ∈  (x, y, z) (4-16) 

The constraint equation can be formulated as 

𝛷REV =

[
 
 
 
 
𝑟I
 J1 − 𝑟I

 J2

𝑒I
 
p
J1T 𝑒I

 
j
J2

𝑒I
 
q
J1T 𝑒I

 
j
J2
]
 
 
 
 

=

[
 
 
 
𝑟I
 J1 − 𝑟I

 J2

𝑔p
T𝑅J1

T𝑅J2𝑔j

𝑔p
T𝑅J1

T𝑅J2𝑔j]
 
 
 
, 𝑝 ≠ 𝑞 ∈  (x, y, z), (𝑝, 𝑞) ≠ 𝑖 (4-17) 

The first and second derivatives of the revolute constraint over time can be written as 
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�̇�REV = 𝐵REV
T 𝑑𝑞J12 �̈�REV = 𝐵REV

T 𝑑�̇�J12 + 𝛤REV (4-18) 

where 

𝐵REV
T =

[
 
 
 
 
I 0 −I 0

0T −𝑔j
T𝑅J2

T𝑅J1�̃�p 0T −𝑔p
T𝑅J1

T𝑅J2�̃�j

0T −𝑔j
T𝑅J2

T𝑅J1�̃�q 0T −𝑔q
T𝑅J1

T𝑅J2�̃�j]
 
 
 
 

 

𝛤REV = �̇�REV
T 𝑑𝑞J12 =

[
 
 
 
 
0 0 0 0

0T 𝑔j
T𝐷21�̃�p 0T 𝑔p

T𝐷12�̃�j

0T 𝑔j
T𝐷21�̃�q 0T 𝑔q

T𝐷12�̃�j]
 
 
 
 

𝑑𝑞J12 

(4-19) 

4.4.3 Prismatic Constraint 

Prismatic constraint means that two joints can only slide relative to each other along a 

fixed route. Here it is only considered, that the relative sliding route is a straight line. It 

is also assumed that when the two joints are sliding, their rotation angles remain un-

changed, and the relative sliding direction is along 𝑒𝑖
𝐽1 = 𝑒𝑖

𝐽2, 𝑖 ∈  (𝑥, 𝑦, 𝑧). Therefore, 

the position and angle constraint of the prismatic constraint can be written as 

( 𝑟I
 J1 − 𝑟I

 J2) ∥ 𝑒I
 
i
J2 ⟺∙ ( 𝑟I

 J1 − 𝑟I
 J2)

T
𝑒I
 
p
J1 = 0   ,   ∀𝑝 ≠ 𝑖 ∈  (x, y, z) 

𝜑J1 − 𝜑J2 = 0 (4-20) 

The constraint equation of the prismatic constraint can be written as 

𝛷PRI =

[
 
 
 
 ( 𝑟I
 J1 − 𝑟I

 J2)
T
𝑅J1𝑔p

( 𝑟I
 J1 − 𝑟I

 J2)
T
𝑅J1𝑔q

𝑅J1
T𝑅J2 ]

 
 
 
 

, 𝑝 ≠ 𝑞 ∈  (x, y, z), (𝑝, 𝑞) ≠ 𝑖 (4-21) 

The first and second derivatives of the prismatic constraint over time can be written as 

�̇�PRI = 𝐵PRI
T 𝑑𝑞J12 �̈�PRI = 𝐵PRI

T 𝑑�̇�J12 + 𝛤PRI (4-22) 

where 
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𝐵PRI
T =

[
 
 
 
 
 
 
 
 𝑔p

T𝑅J1
T −( 𝑟I

 J1 − 𝑟I
 J2)

T
𝑅J1�̃�p −𝑔p

T𝑅J1
T 0T

𝑔q
T𝑅J1

T −( 𝑟I
 J1 − 𝑟I

 J2)
T
𝑅J1�̃�q −𝑔q

T𝑅J1
T 0T

0T −𝑔z
T𝑅J2

T𝑅J1�̃�x 0T −𝑔x
T𝑅J1

T𝑅J2�̃�z

0T −𝑔z
T𝑅J2

T𝑅J1�̃�y 0T −𝑔y
T𝑅J1

T𝑅J2�̃�z

0T −𝑔y
T𝑅J2

T𝑅J1�̃�x 0T −𝑔x
T𝑅J1

T𝑅J2�̃�y]
 
 
 
 
 
 
 
 

 

𝛤PRI = �̇�PRI
T 𝑑𝑞J12 =

[
 
 
 
 
 
 
 
 
−𝑔p

T �̃�J1J1
 𝑅J1

T −𝐷r1
T �̃�p 𝑔p

T �̃�J1J1
 𝑅J1

T 0T

−gq
T ω̃J1J1

 RJ1
T −𝐷r1

T �̃�q 𝑔q
T �̃�J1J1

 𝑅J1
T 0T

0T 𝑔z
T𝐷21�̃�x 0T 𝑔x

T𝐷12�̃�z

0T 𝑔z
T𝐷21�̃�y 0T 𝑔y

T𝐷12�̃�z

0T 𝑔y
T𝐷21�̃�x 0T 𝑔x

T𝐷12�̃�y]
 
 
 
 
 
 
 
 

𝑑𝑞J12 

𝐷r1
T = ( �̇�I

 J1 − �̇�I
 J2)

T
𝑅J1 + ( 𝑟I

 J1 − 𝑟I
 J2)

T
𝑅J1 �̃�J1J1

  

(4-23) 

4.4.4 Spherical Constraint 

Spherical constraint means that one joint can rotate at any angle around another joint. 

For spherical constraints, only the position vectors of the two joints are required to be 

same. Therefore, the constraint equation can be written as 

𝛷SPH = 𝑟I
 J1 − 𝑟I

 J2 = 0 (4-24) 

The first and second derivatives of the spherical constraint over time can be written as 

�̇�SPH = 𝐵REV
T 𝑑𝑞J12 �̈�SPH = 𝐵SPH

T 𝑑�̇�J12 + 𝛤SPH (4-25) 

where 

𝐵SPH
T = [I 0 −I 0] 

𝛤SPH = �̇�SPH
T 𝑑𝑞J12 = [0 0 0 0]𝑑𝑞J12 = 0 (4-26) 
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4.5 Solving Multibody Dynamics Equation 

4.5.1 Baumgartner stability method 

According to the above, the constraint equation keeps unchanged by making the sec-

ond derivative of the constraint over time equal to 0. However, due to the cumulative 

error of numerical integration, the constraint equation will gradually deviate from zero. 

In order to maintain the stability of the constraint equation during the integration pro-

cess, the Baumgartner stability method is applied. This method introduces the first de-

rivative of the constraint equation �̇� and the constraint equation 𝛷, so that the cumu-

lative error of the constraint equation is considered in the process of numerical inte-

gration, which keeps the constraint equation always 0 during the integration. Through 

the Baumgartner stability method, the original 𝛤 can be replaced by 𝛤∗. 

�̈� = 0         →         �̈� + 2𝛼𝛽�̇� + 𝛼2𝛷 = 0 

𝐵T𝑑�̇� + 𝛤∗ = 0        with        𝛤∗ = 𝛤 + 2𝛼𝛽�̇� + 𝛼2𝛷 (4-27) 

where 𝛼 and 𝛽 are compensation coefficients, the recommended value of 𝛼 is half of 

the system's natural frequency, and the recommended value of 𝛽 is 1. 

4.5.2 State Space Representation 

The dynamics equation is a second-order differential equation, which needs to be con-

verted into a first-order differential equation (equation of state) for easy calculation. 

The new state variables defined here are as follows 

𝑥 = [𝑞T 𝑑𝑞T]
T
 �̇� = [�̇�T 𝑑�̇�T]

T
 (4-28) 

Therefore, the state space representation of dynamics equation can be formulated as  

�̇� = [
�̇�

𝑑�̇�
] = [

𝐽−1 (𝑞, 𝑑𝑞)

−𝑀∗−1 (𝑞) 𝐹∗ (𝑞, 𝑑𝑞)
] = 𝑓(𝑥) (4-29) 
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4.5.3 Runge-Kutta Integrator 

Runge-Kutta Method is a high-precision single-step algorithm used to solve nonlinear 

ordinary differential equations (ODE). The dynamic equation is generally a nonlinear 

ordinary differential equation, and can be written as the following general formula 

{
�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 = 𝒻(𝑡, 𝑥, 𝑢)

𝑥0 = 𝑥(𝑡 = 0) = known
 (4-30) 

According to Runge-Kutta Method, the solution of the ODE can be obtained by the 

following iterative formula  

{
 

 𝑥𝑘+1 = 𝑥𝑘 + Δ𝑡∑ 𝑏𝑖𝑘𝑖
𝑖

𝑘𝑖 = 𝒻 (𝑡𝑘 + 𝑐𝑖Δ𝑡, 𝑥𝑘 + Δ𝑡∑ 𝑎𝑖,𝑗𝑘𝑗
𝑗

, 𝑢𝑘) , ∀𝑖
 (4-31) 

The parameters 𝑎𝑖,𝑗 , 𝑏𝑖  and 𝑐𝑖  can be obtained from butcher tableau. When 𝑎𝑖,𝑗 =

0 , ∀ 𝑖 < 𝑗, it is the explicit Runge-Kutta Method, when ∃𝑎𝑖,𝑗 ≠ 0 , 𝑖 < 𝑗 is the implicit 

Runge-Kutta Method. 

Fiugre 4-1: Butcher Tableau 

From the butcher tableau and formula, it can be found that 𝑘𝑖 is difficult to be obtained 

directly for the implicit Runge-Kutta Method. Therefore, a first-order Taylor expansion 

of 𝑘𝑖 at (𝑡𝑘, 𝑥𝑘, 𝑢𝑘) is applied. 

𝑘𝑖 = 𝒻𝑘 + 𝑐𝑖Δ𝑡𝒻𝑡 + Δ𝑡∑ 𝑎𝑖,𝑗𝑘𝑗
𝑗

𝒻𝑥 + 𝒪
2 

(4-32) 

𝒻𝑘 = 𝒻(𝑡𝑘, 𝑥𝑘, 𝑢𝑘) 𝒻𝑡 = 𝜕𝒻 𝜕𝑡⁄  𝒻𝑥 = 𝜕𝒻 𝜕𝑥⁄  

Therefore, 𝑘𝑖 can be obtained by solving the following equation 

𝑐1 𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑠 

𝑐2 𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑠 
⋮ ⋮ ⋮ ⋱ ⋮ 
𝑐𝑠 𝑎𝑠,1 𝑎𝑠,2 ⋯ 𝑎𝑠,𝑠 

 𝑏1 𝑏2 ⋯ 𝑏𝑠  

⇒ 
𝑐 𝐴 

 𝑏𝑇 
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𝓀 = 𝒻 + Δ𝑡ℱ𝑡 + Δ𝑡ℱ𝑥𝓀      →      𝓀 = (I − Δ𝑡ℱ𝑥)
−1

(𝒻 + Δ𝑡ℱ𝑡) 

(4-33) 
𝓀 =

[
 
 
 
𝑘1
𝑘2
⋮
𝑘𝑠]
 
 
 
 ℱ𝑡 =

[
 
 
 
 
𝑐1𝒻𝑡

𝑐2𝒻𝑡

⋮
𝑐𝑠𝒻𝑡]

 
 
 
 

 ℱ𝑥 =

[
 
 
 
 
 
𝑎1,1𝒻𝑥 𝑎1,2𝒻𝑥 ⋯ 𝑎1,𝑠𝒻𝑥

𝑎2,1𝒻𝑥 𝑎2,2𝒻𝑥 ⋯ 𝑎2,𝑠𝒻𝑥

⋮ ⋮ ⋱ ⋮
𝑎𝑠,1𝒻𝑥 𝑎𝑠,2𝒻𝑥 ⋯ 𝑎𝑠,𝑠𝒻𝑥]

 
 
 
 
 

 

Therefore, the iterative format of the general implicit Runge-Kutta method can be writ-

ten as  

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑡𝒷 (I − Δ𝑡ℱ𝑥)
−1

𝒻 + Δ𝑡2𝒷 (I − Δ𝑡ℱ𝑥)
−1

ℱ𝑡 

𝒷 = [𝑏1I 𝑏2I ⋯ 𝑏𝑠I] 
(4-34) 

According to different Butcher Tableau, implicit Runge-Kutta can be divided into Lobatto, 

Radau, Gauss, Kutta 4, etc. 

In general, the implicit Runge-Kutta Method is more accurate and stable than the ex-

plicit method, which realize a larger time step. However, the solution is more difficult:  

1. 𝒻𝑡 and 𝒻𝑥 is difficult to obtain for complex models;  

2. The dimension of the above equation is 𝑠 times larger than the dynamic equa-

tion. 
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5 Rigid-Flexible Hybrid Multibody Dynamics 
Program 

5.1 Functions of the Program 

5.1.1 Main Functions 

Jacobian Matrix Calculation 

Jacobian matrix is obtained through the symbolic package CasADi, which is mainly 

used for optimal control and implicit ODE solver. In this program the Jacobian matrix 

of mass matrix to generalized coordinates, the Jacobian matrix of generalized force 

vector to generalized coordinates and generalized velocity can be calculated. In addi-

tion, the symbolic matrix relevant to symplectic solver can also be calculated. 

Static Position Calculation 

In this program two ways to get the equilibrium position are provided: dynamic solution 

under damping and nonlinear equation solution. In the method of dynamics solution 

under damping, a larger damping term is added to the system, so that the system 

gradually approaches the equilibrium position from the initial state. The equilibrium 

state obtained by this method has no initial error in the subsequent dynamics calcula-

tion. 

In the method of solving nonlinear equations, the generalized speed of the mechanism 

is set to 0, and the generalized coordinates will be changed to make the generalized 

force to 0. Due to the differences between the nonlinear equation solver and the dy-

namics solver, it cannot be completely guaranteed that the mechanism will reach the 

equilibrium position in the initial state of the dynamics solving process. However, during 

the method of solving nonlinear equations, the equilibrium position of the mechanism 

can be obtained more quickly. The error in the initial stage of dynamics solution is also 

acceptable. 

Dynamics Calculation 

The calculation method of multibody dynamics has been described above. Here is a 

detailed introduction to the pre-processing of the system, the definition of the inertial 

coordinate system, the introduction method of driving force and the use of Baumgart-

ner stability method. The specific process can be seen as follows 
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Start

Multibody Dynamics

Preprocessing

Set Frame State

Determine Driving Force

For All Bodies

Determine Body State

Get Mass & Force of Body

Convert to Generalized Mass & Force

1
 

Add System Damping

Add Nodal Force including Driving Force

Add Constraints

Baumgartner Stability Method

Get First Order Derivative of state variable 

with respect to time

Start

Multibody Dynamics

1

 

Figure 5-1: Flow Chart of Dynamics Calculation 

5.1.2 Additional Modules and Auxiliary Modules 

Dynamics System with Minimum Degree of Freedom 

In addition to multi-body dynamics modeling for rigid-flexible hybrid models with large 

degrees of freedom, in this program some rigid-body minimum-degree-of-freedom 

models are also established such as folding boom system, multi-degree-of-freedom 

pendulum models, etc. 

 

   

a b c d 

Figure 5-2: Rigid-body Minimum-Degree-of-Freedom Models a) Folding Boom System b) Sin-
gle Jib Pendulum c) Double Jib Pendulum d) Triple Jib Pendulum 
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Hydraulic System Module 

Many mechanism models need to be driven by hydraulic systems. In this program, 

models of hydraulic cylinder, throttle valve, back pressure valve, reversing valve, and 

ideal hydraulic pump with compressible fluid are established, and overall hydraulic sys-

tems with different hydraulic connections is built. The co-simulation logic of hydraulic 

system and mechanism dynamics system is shown as follows 
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Figure 5-3: Co-Simulation Logic of Hydraulic System and Mechanism Dynamics System 

Since the lattice boom crane model does not involve the hydraulic model, the hydraulic 

system is not explained in detail here. 

Deep Reinforcement Learning based Optimal Control Module 

Start

Reinforcement Learning

Read Configuration File

Set Environment

Set Reinforcement Learning Agent
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Simulation
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Reinforcement Learning
 

Set Properties of Observations

Set Step Function

Start

Set Environment

Set Properties of Actions
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End

Set Environment
 

Figure 5-4: Deep Reinforcement Learning Framework for Optimal Control based on the Multi-
body Dynamics Model 



5 Rigid-Flexible Hybrid Multibody Dynamics Program 

48 

In this program a deep reinforcement learning framework for optimal control based on 

the multi-body dynamics model is created. For dynamic systems, the observations are 

generally continuous, and the action can be continuous or discrete according to actual 

needs. The agent of reinforcement learning needs to be selected according to the at-

tributes of the observations and the actions. The reset function will reset the observa-

tions to the initial state or initial equilibrium state of the mechanism, and the step func-

tion will get the observation value at the next sampling time through the ODE solver of 

the dynamic model. 

Nonlinear Model Predictive Control Module 

This program embeds “mpctools” developed by Rawlings Group for nonlinear MPC 

control. The expansion package is based on the CasADi symbolic calculation. The 

research and development of this module is not the focus of this article, so that it will 

not be discussed here. 

Model Recognition Module 

This program also has an interface for model recognition. At present, only sparse iden-

tification of non-linear dynamics model has been established, and other model identi-

fication methods are still under study. 

5.2 Data Input and Parameter Setting 

This program realizes the separation of data and code for basic functions. According 

to the configuration Excel file, the program can perform calculations for different oper-

ations on different models. The current complete parameter modules are divided into 

two categories: dynamics model parameters and solving parameters. 

5.2.1 Parameters for Dynamics Model 

Almost all the rigid-flexible hybrid dynamics models here are created through multi-

body dynamic model, which includes body parameters, joint parameters, constraints, 

and external nodal force parameters. In addition, the initial state of the mechanism and 

plot configuration is defined in the Excel file.  

The minimum degree of freedom model can also call the body parameters, external 

nodal force parameters and display parameters in the configuration file. The parame-

ters are shown as follows 
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Table 5-1: Parameters for Dynamics Model 

Parameter Content 

Body 

Parameter 

Body Type Model Type, Number of Degrees of Freedom, Section Type 

Material Properties Density, Elastic Modulus, Poisson's ratio 

Length of Beam Beam Length 

Section Size 

(Round Tube) Outer Diameter, Inner Diameter 

(Frame) Length, Width, Thickness 

(Customized) Area, Moment of Inertia, Quality, Centroid position 

Joint Con-

figuration 

Joint Quantity Joint Quantity 

Single Joint Joint Position, Joint Posture 

Constraint 
Constraint Quantity Constraint Quantity 

Single Constraint Number of Body 1 and 2, Number of Joint 1 and 2, Constraint Type 

Initial State Position, Posture, Other Initial State 

Nodal 

Force 

Force Quantity Force Quantity 

Single Force Number of Body, Number of Joint, Fx, Fy, Fz, Coordinate 

Single Moment Number of Body, Number of Joint, Mx, My, Mz, Coordinate 

Plot Parameter Joint Sequence, Interpolation Number, Plot Configuration 

5.2.2 Parameters for Solving Route 

The solving route can be set in the configuration file, including global gravity, statics 

and dynamics parameters, result saving and post-processing methods.  

Table 5-2: Parameters for Solving Route 

Parameter Content 

Gravity Direction, Magnitude 

Jacobian Matrix Do Calculation Jacobian Matrix 

Static  

Position 

Manipulate Do Calculation Static Position, Start from Static Position 

Nonlinear solver Algorithm, Step Tolerance, Function Tolerance, Max Iterations 

ODE  

Setting 

ODE Solver Solver Name, Solver Method, Order, Option 

Solving Parameter Start/End Time, Absolute/Relative Tolerance, Max Step 

Display by 

Computing 

Time Display Do Display, Display Interval, Display Start Position 

Mechanism Display Do Display, Display Interval, Display Start Position 

Result Do Save Result, Existence, Saving Dictionary 

Plot Configuration Axes Size, Grid Configuration, Observation View 

Postprocessing Postprocessing Method 

Currently, only the above parameters can be modified through the configuration file. 

The driving function, dynamics preprocessing function, additional system configuration 

and other parameters still need to be modified in the program. 
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5.3 Display and Analysis of Result 

The post-processing of the final results can make it more intuitively to understand the 

entire dynamic process and simply to analyze the results. In this program, there are 

video generation function and general post-processing methods for specified experi-

mental groups. 

5.3.1 Video Generation 

When the mechanism is complicated, generating the state diagram of each time step 

is a relatively time-consuming process, and it is not easy to repeat. Therefore, in this 

program, it can be chosen to save the generated results as a video. The display speed 

of the video can be consistent with the real calculation speed or proportional faster or 

proportional slower, so that the real dynamic response of the mechanism can be di-

rectly observed. 

5.3.2 Specified Analysis Method 

According to commonly used experiments, some general post-processing methods are 

designed. These standard experiments include the vibration of single beam, static 

bending of single beam, etc. The display of strain and stress within the mechanism is 

still under study. 
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6 Optimal Control of Lattice Boom Crane 

6.1 Quasi-Static Optimal Trajectory Tracking Strategy 

The lattice boom crane model is a complex rigid-flexible model with large degrees of 

freedom, which makes it difficult to meet the control requirement through the commonly 

used optimal control methods. However, because the movement of the lattice boom 

crane is realized by changing length of the luffing rope and hoisting rope, quasi-static 

optimal control algorithm can be used. This method combines the optimal trajectory of 

end point with the control variables through the quasi-static mapping relationship. The 

generated control trajectory can track the optimal trajectory of the end point, thereby 

achieving optimal control of complex systems. The specific implementation process is 

shown as follows 

Start

Quasi-Static Optimal Control

Prepare the Mapping Relationship Get Optimal Trajectory of End Point

Get Optimal Trajectory of Control Variables

End

Quasi-Static Optimal Control
 

Figure 6-1: Quasi-Static Optimal Trajectory Tracking Strategy 

The quasi-static optimal control method is mainly divided into three modules: the es-

tablishment of a static mapping relationship, the generation of the optimal trajectory at 

the end point and the generation of the optimal control trajectory. 

6.2 Static State Mapping 

To establish the static mapping relationship, it is required to calculate the relationship 

between the control variable and the control object (position of the end point) under all 

possible static states.  
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Since the dynamics system is continuous, calculating relationship of all possible posi-

tions is not realizable. Here some discrete states are selected and the mapping rela-

tionship is obtained by fitting. The detailed process is shown as follows 

Start

Prepare the Mapping Relationship

For All Possible Initial State

Calculate the 

Control 

Variables

Calculate the 

Equilibrium State

Get State of End Point

Create the Discrete Mapping Relationship between 

Control Variables and State of End Point

End

Prepare the Mapping Relationship

Obtain Smooth Continuous Mapping Relationship 

Through Fitting

 

Figure 6-2: Static State Mapping 

During the movement of the lattice boom crane, only the length of the luffing rope and 

the rope is changed. The change in the length of the luffing rope is reflected in the 

change in the angle of the main boom. In order to simplify the calculation of the state, 

the angle of the main boom and the change in the length of the luffing rope are taken 

as the characteristic state variables of the lattice boom crane.  

Here the main boom angle is taken every 1 degree from 45 degrees to 85 degrees, the 

lifting rope length change is taken every 1m from 0m to 20m. The calculated control 

variables are the length of the luffing rope and the lifting rope in the initial state before 

deformation. The coordinates of the end point in the equilibrium state are calculated 

as the control object. The final experimental results can generate a discrete mapping 

table, which is shown as follows 
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Figure 6-3: Discrete Experimental Data from Statics Calculation 

In order to obtain a continuous mapping relationship, surface fitting needs to be per-

formed on discrete data points. There are two forms of surface fitting: spline surface 

fitting and polynomial surface fitting.  

The advantage of spline surface fitting is that its results are in good agreement with 

experimental data, but it is also very sensitive to experimental errors. Polynomial sur-

face fitting can use different polynomial orders for the independent variables of each 

dimensions. Here only polynomial surfaces below the 5th order are supported. The fit-

ting accuracy of the polynomial surface is not very high, but it can balance the error of 

the experimental data and make the fitted surface smoother and more continuous. Ac-

cording to the static experiment set, a polynomial surface of order 2-2 is sufficient and 

recommended. 

6.3 NMPC for Optimal State Trajectory Generation 

Discrete QR control is a commonly used optimal control method for planning the tra-

jectory to a certain target point [Arn-2005]. QR control takes the time optimization and 

the minimum control cost into account. The cost function is composed of running cost 

and terminal cost [Cow-2006]. 

Terminal cost is a quadratic function of the difference between the state at the last 

moment and the target state. The running cost reflects two aspects, namely the differ-

ence between the current state and target state as well as the energy cost by applying 
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control system. The QR controller requires that all the coefficient matrix must be posi-

tive definite. The discrete QR optimal control problem can be written as 

min 𝐽 (𝑢0, 𝑢1, ⋯ , 𝑢𝑁−2, 𝑢𝑁−1) = (𝑥𝑁 − 𝑥e)
𝑇
𝑃end(𝑥𝑁 − 𝑥e)

= +∑ [(𝑥𝑘 − 𝑥e)
𝑇
𝑄(𝑥𝑘 − 𝑥e) + 𝑢𝑘

𝑇𝑅𝑢𝑘]
𝑁−1

𝑘=0
 

(6-1) s. t.       𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑡𝑘) 

𝑥min ≤ 𝑥𝑘 ≤ 𝑥max   ,   𝑢min ≤ 𝑢𝑘 ≤ 𝑢max 

𝑥0, 𝑥𝑒 𝑘𝑛𝑜𝑤𝑛 

The dynamic equation of discrete QR control requires a discrete iterative format. Here 

4th order Runge-Kutta integrator is used to transfer the continuous state space equa-

tion into discrete state space equation.  

Due to the large number of time steps in the entire simulation time, the calculation will 

consume a large amount of resource when considering all the time steps. Therefore, 

the concept of predictive horizon is proposed to calculate the optimal control variable 

only considering limit amount of time steps. The cost function, which is used to calculat 

the optimal control variable at time step 𝑚 with the consideration of ℎ steps from cur-

rent time can be written as 

min 𝐽𝑚(𝑥𝑚, 𝑢𝑚, 𝑢𝑚+1, ⋯ , 𝑢𝑚+ℎ−2, 𝑢𝑚+ℎ−1) = (𝑥𝑚+ℎ − 𝑥e)
𝑇
𝑃end(𝑥𝑚+ℎ − 𝑥e)

= +∑ [(𝑥𝑘 − 𝑥e)
𝑇
𝑄(𝑥𝑘 − 𝑥e) + 𝑢𝑘

𝑇𝑅𝑢𝑘]
𝑚+ℎ−1

𝑘=𝑚
, ∀𝑚 = 1,⋯ ,𝑁 

(6-2) 

The unconstrained optimal control solution can be obtained by  

𝜕𝐽𝑚
𝜕𝑢𝑘

= 0 → 𝑢𝑘
∗ , ∀𝑘 = 𝑚,⋯ , (𝑚 + ℎ − 1) (6-3) 

When the control variable is constrained, the optimal solution obtained by the above 

formula does not necessarily satisfy the feasible range of the control variable. The 

optimal condition changes from a partial derivative of 0 to taking the minimum value in 

this range. When the cost function has no local minimum relative to the control variable, 

the optimal control variable with constraints can often be obtained on the constraint 

boundary [Lim-1999]. 
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min
𝑢𝑚,𝑢𝑚+1,⋯,𝑢𝑚+ℎ−2,𝑢𝑚+ℎ−1

𝐽𝑚 = 𝐽𝑚(𝑥𝑚, 𝑢𝑚
∗ , 𝑢𝑚+1

∗ , ⋯ , 𝑢𝑚+ℎ−2
∗ , 𝑢𝑚+ℎ−1

∗ ) 

𝑢𝑘,𝑖
∗ = {

𝑢𝑖,min, 𝑥 < 𝑢𝑖,min
𝑢𝑘,𝑖
∗ , 𝑢𝑖,min ≤ 𝑢𝑘,𝑖

∗ ≤ 𝑢𝑖,max
𝑢𝑖,max, 𝑥 > 𝑢𝑖,max

 
(6-4) 

For the above prediction window, only the optimal control variable 𝑢m
∗  at the start time 

of the prediction window is taken as the optimal solution at that moment. 

6.4 Generation of Optimal Control Trajectory 

Through the optimal trajectory of end point and the mapping relationship, the optimal 

control trajectory can be obtained. However, since the optimal trajectory of the end 

obtained from NMPC is discrete, the optimal control trajectory after mapping is also 

discrete. It is necessary to convert the discrete control trajectory into a continuous op-

timal trajectory for dynamics calculation. The specific process is as follows 

Start

Get Optimal Trajectory of Control Variables

Get Discrete Optimal Trajectory and

 Continuous Mapping Relationship

Get Discrete Control Trajectory

Get Continuous Control Trajectory Function through Fitting

End

Get Optimal Trajectory of Control Variables
 

Figure 6-4: Generation of Optimal Control Trajectory  

Because in this model rope length is used as the control variable, it is required that the 

change rate of the control variable with time is 0 in the initial and end stages. In order 

to obtain a continuous function that meets the requirements and reduce the error from 

the discrete data, the generated discrete control trajectory will be resampled, and add 

5 steady-state control points will be added before and after the curve. The spline curve 

will be used for the fitting of the optimal control trajectory. 
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7 Detailed Modeling of Lattice Boom Crane 

This lattice boom crane consists of a main boom, a derrick boom, a luffing cable mod-

ule, a sub-cable, a hoist cable and load. The model is created using rigid-flexible multi-

body dynamics method. 
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Figure 7-1: The Composition, Model Types of Elements and the number of the Elements of the 
Lattice Boom Crane 

7.1 Lattice Boom 

The lattice boom crane described here is composed of two lattice booms: the main 

boom and the derrick boom. 

7.1.1 Main Boom 

The main boom is composed of 227 beam elements. The main boom has 1362 de-

grees of freedom and requires 2724 state variables by using classical multi-body dy-

namics modeling method. Even if the fixed connections between these beam elements 

are considered and part of the redundant degrees of freedom is eliminated, the main 

boom still has 672 degrees of freedom and 1344 state variables, which also needs a 

lot of calculations by solving dynamics equation. In the actual situation, the truss boom 
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will be composed of some standard truss elements, so the super truss elements are 

used to model these standard truss elements. The main boom is divided into 5 super 

truss elements, and in 3 different types. 

After using the super truss element and the elimination of the redundant degrees of 

freedom caused by the fixed constraints, the degree of freedom of the main boom 

becomes 36, and it needs 72 state variables (reduced by 97.4% and 94.6%). However, 

because the super truss element needs to estimate the internal nodes of the truss 

through the assumption of geometric continuity, the amount of calculation in single-

step is increased from 227 to 339 (increased by 49.3%). 

Table 7-1: Properties of different Types of Super Truss Elements 

 Type 1 Type 2 Type 3 

Structure 

   

Type Triangular Prism Rectangle Shrink Rectangle 

    
 Type 4 Type 5 Type 6 

Structure 

   

Type Triangular Prism Rectangle Anti Triangular Prism 

In addition, because the shape of the boom head is complex and the size is smaller 

than other truss elements, the deformation of the boom head is not considered and it 

is treated as a rigid body. 

7.1.2 Derrick Boom 

The derrick boom is composed of 126 beam elements. The derrick boom has 756 de-

grees of freedom and requires 1512 state variables by using classical multi-body dy-

namics modeling method. The degrees of freedom will reduced to 384 and state vari-

ables will be decreased to 768 after eliminating redundant degrees of freedom caused 

by fixed constraints. Here 3 different types of super truss elements are established for 

the derrick boom. 
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The degree of freedom of the derrick boom becomes 24, requiring 48 state variables 

after applying super truss elements (reduced by 96.8% and 93.8%).The amount of 

calculation in single-step is increased from 126 to 190 (increased by 50.8%). 

7.2 Rope and Rope Systems 

7.2.1 Rope Model 

The rope can be regarded as a kind of beam with special stress properties: the bending 

and torsional stiffness are very small and is often ignored. Generally, the rope is not 

subject to pressure, so only the tensile stress is considered. Therefore, the virtual 

power of the internal force can be written as 

δ𝑝int = −∭δ 𝜀ẋx
 

B
 max( 𝜎xx

 
B
 , 0) d𝑉

 

𝑉

 (7-1) 

The rope model can be created through cubic spline beam, strut tie model or Timo-

shenko beam model. In order to meet the geometric continuity and smoothness under 

the absolute coordinate system, the rope model here will be established based on cu-

bic spline beam. 

7.2.2 Rope System 

The lattice boom crane contains 3 rope systems: luffing rope module, hoisting rope 

and sub-rope. According to the actual model, the luffing rope module consists of two 

strut tie models and one rope element. The hoisting rope and the sub-rope each con-

sist of one cubic spline rope model. 

7.3 Pedestal and Load 

Generally, in addition to the plane freedom provided by the hoisting rope and luffing 

rope, the entire boom system can also rotate along the vertical direction. Here the 

boom system is built on a pedestal, and will rotate with the pedestal relative to the 

inertial coordinate system. The rigidity of the pedestal is always relatively large and the 

deformation is relatively stable. Therefore, here a rigid body model is used to simulate 

the pedestal. 

Since the sway of the load is also one of the research directions of lattice boom cranes, 

in this model a small rigid body is added at the end of the hoisting rope to simulate the 
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load. The position and posture of the load during the moving of the lattice boom crane 

will be studied. 

In summary, the entire lattice boom crane has 168 degrees of freedom and 336 state 

variables before simplification through constraints. The detailed parameters of all the 

model can be seen in the appendix. 

7.4 Constraints and Drives 
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Figure 7-2: Locations and Types of Constraints and Drive Configuration displayed on the Cal-
culation Model 

7.4.1 Constraints 

The lattice boom crane has original totally 18 constraints. The locations and types of 

these constraints are shown as follows 

Table 7-2: Locations and Types of Constraints for Lattice Boom Crane 

Type Quantity Redundant DoF Relevant Elements (Elements Nr1/ Elements Nr2) 

Fixed 7(-6) Each 6 2/3, 3/4, 4/5, 5/6, 6/7, 8/9, 9/10 

Revolute-z 1 Each 5 0/1 

Revolute-y 2 Each 5 1/2, 1/8 

Spherical 8(-4) Each 3 7/11, 11/12, 12/13, 13/10, 1/14, 10/14, 7/15, 15/16 

Among them, the 6 fixed constraints connecting the super truss elements can be real-

ized by using public computing nodes, which can reduce the overall degree of freedom 
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by 36. Using same method, the spherical constraints in the rope model can also be 

eliminated, which can reduce the overall degree of freedom by 12. The final lattice 

boom crane model has 120 degrees of freedom, 240 state variables and 8 constraints. 

7.4.2 Drives 

In reality, the lattice boom crane is controlled through the hydraulic motor to change 

the length of hoisting and luffing rope. The overall rotation of the crane is also realized 

by the hydraulic motor. However, due to the complexity of the pulley rope model and 

the hydraulic system, these systems are not considered in this model. Here the angle 

of the pedestal and the length of the hoisting rope and the luffing rope are directly set 

to control variables. 

Table 7-3: Definition of Control Variables for Lattice Crane Model 

Control Variable Unit Description 

𝑢1 𝑟𝑎𝑑 The z-axis relative rotation angle of Pedestal (Element 1) 

𝑢2 𝑚 The length of luffing rope model (Element 13) 

𝑢3 𝑚 The length of hoisting rope model (Element 15) 

Because the change of the rope element length affects the Gaussian integral and the 

calculation of stress and strain, the influence of the control variable on the system is 

very complicated, and it is almost impossible to separate the control variable from the 

state variable. In addition, the model of lattice boom crane is too complicated, and it is 

difficult to implement many controllers that use symbolic calculations, which makes it 

difficult for classical non-linear optimal control methods. Therefore, the quasi-static 

control method is carried out to generate offline optimal control strategy for the lattice 

boom crane. 
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8 Analysis and Evaluation of Simulation Results 

8.1 Cross-validation of Single Flexible Beam Element 

A cross-validation method is used in order to verify the accuracy of the flexible beam 

model. The beams with the same parameters are modeled with multi-segment Timo-

shenko beams and cubic spline beams. A number of experimental scenarios are de-

signed to judge the accuracy of the model through the model response. The parame-

ters of the beams used in the experiment are shown as 

Tabelle 8-1: Parameters of Single Beam 

 Cubic Spline Beam Model Timoshenko Beam Model 

Beam Type 

Model Type Cubic Spline Beam (C-Beam) Timoshenko Beam (T-Beam) 

Segment Quantity 1 3 5 10 1 3 5 10 

Degrees of Freedom 14 12 

Material 

properties 

Density 7800 

Elastic Modulus 206000000000 

Poisson's ratio 0.25 

Length of Beam 15 

Section size 

Section Type Round Tube 

Outer Diameter 0.15 

Inner Diameter 0 

8.1.1 Cantilever Beam Static Bending Test 

The statics tests are set to verify the internal force of the beams. Since the bending 

deformation is the main deformation form of the beam, a moment is added to the non-

fixed end of the cantilever beam. The relationship between the bending curvature of 

the beams and the external moment can be approximated by 

𝑀 = 𝐸𝐼𝜅 = 𝐾𝑀circle 𝑀circle = 2𝜋𝐸𝐼 𝐿⁄  𝐾 = 𝑀max 𝑀circle⁄  (8-1) 

where 𝑀 is the external moment applied to the end of the cantilever beam, 𝑀circle rep-

resents the theoretical moment required to bend the beam into a circle, and 𝐾 ∈ [0,1] 

represents the ratio coefficient between the maximum torque 𝑀max and 𝑀circle. 𝐸𝐼 rep-

resents the bending stiffness of the bar section, 𝐿 represents the length of the bar, and 

𝜅 represents the curvature of the bar. The experimental results are as follows 
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Figure 8-1: Cantilever Beam Static Bending Test 

Due to the assumption of small deformation, the stiffness of the single T-beam will 

become smaller and the geometric continuity of the connection of each section will be 

lost under large deformation. Therefore, it is suggested the deformation of the T-beam 

should not exceed 15 degrees. The deformation of single C-beam can be slightly larger, 

but due to the monotonicity of the cardan angle by small rotation, the deformation can-

not exceed 90 degrees. The C-beam model can maintain the geometric continuity of 

the entire beam. 

8.1.2 Vibration Test of Cantilever Beam under Self-gravity 

The undeformed flexible beam will vibrate under gravity. The amplitude of the vibration 

can be used to verify the gravity effect. The vibration frequency can verify the relation-

ship between the mass matrix and the force vector. 

 

Figure 8-2: Vibration Test of Cantilever Beam under Self-gravity 
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In the above figure, the end displacement perpendicular to the beam axis over time is 

shown. The maximum deformation in z-direction is near to 0.85 meter, and the ampli-

tude of the vibration is almost 0.42 meter. The waveform is basically symmetrical along 

the vertical axis of 0.42 meter. The other experimental results are relatively close ex-

cept the cubic spline beam with one segment. Using the cubic spline beam with one 

segment the effect of gravity decreases and the frequency of vibration increases. 

Therefore, it is generally recommended to use at least 2 segments of cubic spline beam 

under small deformations. 

8.1.3 Fixed Axis Rotation under Torque Control and Angle Control 

Torque Control 

The beams in this experiment are hinged at one end. The revolute constraint allows 

the beam to rotate around a fixed axis (y-axis). A constant torque (106) is applied to 

the free end to accelerated the rotation of the beam. In this experiment, the z-direction 

displacement at the end of the beam is measured, and the motion under different nu-

merical integration accuracy is studied. 

 

 

Figure 8-3: Fixed Axis Rotation under Torque Control 
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The maximum average rotation speed in this experiment reached nearly 120 rounds 

per minute. The flexible deformation is relatively small relative to the rigid rotation. Both 

Timoshenko beam and cubic spline beam can have better accuracy in slow rigid ve-

locity. But the cumulative error becomes large due to calculation accuracy when the 

number of segments is small and the rigid body moves faster. In addition, the Timo-

shenko beam has a slight hysteresis when it rotates at high speed. 

Angle Control 

Angle drive refers to the rotation of the fixed end of the cantilever beam around a cer-

tain axis (y-axis) according to a drive function. In this experiment, a cos-function is 

designed to simulate the situation where the beam rotates to a certain angle and then 

returns to the origin. The expression of the cos-function can be written as 

𝜓 = −
π

4
[1 − cos (

π

5
𝑡)] �̇� = −

π2

20
sin (

π

5
𝑡) (8-2) 

The result is as follows 

 

Figure 8-4: Fixed Axis Rotation under Angle Control 

It can be seen from the results that the beam elements have a flexible vibration part 

on the basis of the original rigid motion, which is caused by the unbalance of the initial 

state and the acceleration step of the driving function. The results of different models 

are very similar except the cubic spline beam with one segment. In addition, there is a 

slight hysteresis in the Timoshenko beam with one segment. 

8.2 Simulation for Single Super Truss Element 

The structure of the truss is diverse, and its dynamic response is also different. Here 

super truss element in type 2 is selected as the research object. 
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8.2.1 Vibration Test of Cantilever Truss Boom under Self-gravity 

The vibration of the super truss element under self-gravity is shown as follows 

 

Figure 8-5: Vibration Test of Cantilever Truss Boom under Self-gravity  

The super truss element under self-gravity has a similar dynamics response to the 

continuous flexible beam. Because the truss has a more optimal structure, the defor-

mation under self-gravity is smaller. 

8.2.2 Fixed Axis Rotation under Torque Control and Angle Control 

Torque Control 

Under the constant end torque (106), the dynamic response of the super truss element 

with revolute constraint is shown as follows 

 

Figure 8-6: Super Truss Element Fixed Axis Rotation under Torque Control 

The experimental result curve is similar to the curve of continuous beam curve, so a 

simplified model can be considered to simulate the rotation of the truss. And because 

the flexible deformation is relatively small compared to this large rotation, it can even 

be replaced by a rigid body model. 

Angle Control 

The cos- function above is used as angle drive function, and its dynamic response is 

shown as follows 

[𝑠] 

[ 𝑚
]  

[ 𝑚
]  

[𝑠] 



8 Analysis and Evaluation of Simulation Results 

68 

 

Figure 8-7: Super Truss Element Fixed Axis Rotation under Angle Control  

Due to the large stiffness of the lattice structure, the deformation caused by gravity and 

inertial force is smaller than the large displacement and large rotation.  

8.2.3 Equivalent Stiffness and Mass 

Equivalent Stiffness Test 

If one end of the super truss element is fixed and apply force or torque is applied on 

the other end, the displacement of the free end can reflect the stiffness of the truss 

beam. 

 

Figure 8-8: Super Truss Element Equivalent Stiffness Test  

It can be seen from the curve that the stresses and strains by axial force and bending 

are linear. The torsion in the x-axis will cause the strain in the axial direction, which is 

caused by the main beam rotating around the axis of super truss element instead of 

its own axis. This also makes the equivalent torsional stiffness in x-axis of the truss not 

constant. The continuous beam model cannot express this phenomenon. 
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Equivalent Mass Test 

 

Figure 8-9: Super Truss Element Equivalent Mass Test 

If the both end of the super truss element are set free and same force or torque is 

added on both ends. The velocity change of the super truss element can be used to 

determine the mass parameter. The angular velocity change can be seen as linear to 

time. However, only the translational velocity change in x-Axis is linear to time. In fact, 

due to the discontinuity and asymmetry of the truss, it is difficult to express the mass 

matrix of the truss through a continuous beam model. Especially for non-rectangular 

trusses, the determination of its equivalent mass will become very difficult. 

8.3 Simulation for Lattice Boom Crane 

8.3.1 Elementary Movement 

In practice, the motions of the mobile cranes in the operation can be specified as three 

kinds, lifting, slewing, and luffing. The slewing means the boom system and the turn-

table (super-structure) rotates along the vertical slewing axis. The luffing means to 

change the distance between the payload and the slewing axis by changing the eleva-

tion angle of the boom. In order to make the movement of the crane relatively stable, 

the crane will start from the equilibrium position. The driven function is a second-order 

smooth continuous function, which can be written as 
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𝑠(𝑡) =

{
  
 

  
 

0, 𝑡 < 0
1

2
𝑎1𝑡

2, 0 ≤ 𝑡 < 𝑡1

𝑠1 + 𝑣max(𝑡 − 𝑡2), 𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2

𝑠1 + 𝑣max(𝑡 − 𝑡1) +
1

2
𝑎3(𝑡 − 𝑡1 − 𝑡2)

2, 𝑡1 ≤ 𝑡 < 𝑡0

𝑠0, 𝑡0 ≤ 𝑡

 

(8-3) 

𝑠1 =
1

2
𝑎1𝑡1

2 𝑡0 = 𝑡1 + 𝑡2 + 𝑡3 

𝑎1 =
2𝑠0

𝑡1(2𝑡0 − 𝑡1 − 𝑡3)
 𝑎3 = −

2𝑠0
𝑡3(2𝑡0 − 𝑡1 − 𝑡3)

 

where 𝑡0 represents the total movement time, 𝑡1 represents the acceleration time, 𝑡2 

represents the time with constant speed, 𝑡3 represents the deceleration time, and 𝑠0 

represents the total displacement.  

The initial equilibrium state of the crane is set with a turning angle of 0 degrees, the 

original length of the luffing rope 7.0608m, and the original length of the hoisting rope 

53.9937m. 

Lifting Stage 

The lifting stage requires the lifting rope to be shortened by 20m within 40s, including 

5s acceleration time and 5s deceleration time. The result is as follows 

 

Figure 8-10: Position and Velocity of the Load by Lifting Stage of the Crane 

It can be seen that the main movement trend is the lifting in the z-axis direction, and 

there is a small vibration of the crane in x-axis. The vibration in the z-axis is quite small, 
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with the vibration amplitude in the velocity curve is less than 0.05 meter per second. 

The vibration is caused by the reduction in the length of the lifting rope, which provides 

same pull force with less deformation. 

The vibration in the x-axis is caused by the reduction in the mass of the lifting rope, 

which change the equilibrium position of the main boom. The main boom will slightly 

lift up and the x-position of the load will then change. The vibration will increase if the 

lifting speed increases. There is no vibration or movement in the y-axis, which means 

the lifting stage has no effect on the direction orthogonal to the crane plane. 

Luffing Stage 

In the luffing stage, the luffing rope extends 10m in 40s, with 5s acceleration time and 

5s deceleration time. 

 

Figure 8-11: Position and Velocity of the Load by Luffing Stage of the Crane 

It can be seen that luffing will cause the vibration, which is mainly caused by the sway 

of the load. The effect of flexible vibration of the crane is relatively small on the motion 

of the load. The small flexible vibration is due to the smoothness of the driving function 

and the large rigidity of the overall crane. In addition, due to the slow overall movement 

speed of the crane and the optimization of the truss boom structure, the inertia of the 

model has little influence.  

However, the flexibility of the model caused the deviation of the mechanism state rel-

ative to the rigid body model. In order to reduce the away of the load, the change of 

the length of the luffing rope should not be too fast. 
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Slewing Stage 

During the slewing stage, the crane will rotate 90 degrees along z-axis within 40s, with 

5s acceleration time and 5s deceleration time. The result is as follows 

 

Figure 8-12: Position and Velocity of the Load by Slewing Stage of the Crane 

From the result, the vibration in the x- and y-axis is most obvious. The vibration fre-

quency in both x- and y-axis is almost 15 seconds, which is the pendulum period with 

the rope length 55 meters and acceleration of gravity 9.8 N/kg. This means the vibra-

tion is mainly caused by the sway of the load, and the flexible vibration from the crane 

itself is not obvious. So the slewing speed of the crane should be limited to reduce the 

centrifugal effect. 

8.3.2 Combined Motion 

In this section, the lifting state under the simultaneous action of multiple drives is de-

signed. The combined motion can be divided into 4 stages: 

1.   0 - 10s: lifting stage 

2. 10 - 20s: lifting + slewing stage 

3. 20 - 30s: lifting + slewing + luffing stage 

4. 30 - 40s: lifting + luffing stage 
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Figure 8-13: Position and Velocity of the Load by Combined Motion of the Crane  

In the only lifting stage, the position of the load changes smoothly, and the speed has 

only a small vibration. The slewing of the crane has little effect on the vertical motion 

of the load. The position of the load changes smoothly in the horizontal direction, but 

speed begins to fluctuate greatly. The luffing motion of the crane has a greater influ-

ence on the vertical direction of the lifting, the fluctuation of the speed in the vertical 

direction becomes larger, and there is a big vibration in the horizontal direction. 

8.4 Quasi-Static Optimal Control of Crane 

8.4.1 Quasi-Static Mapping 

Under different loads, the static mapping relationship between the control variable and 

the end position is different. Here the load with maximum weight of 400t is selected as 

an example. The mapping relationship is shown as follows. 

The solid surface is obtained from experimental data, and the transparent surface is 

obtained through flat quadratic surface fitting. The fitted surface is used as the actual 

mapping relationship to reduce the influence of experimental errors. From the fitted 

surface, it is more intuitively to see the nonlinear relationship between the control var-

iables and the end point output variables 
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Figure 8-14: Experimental Data and Fitted Surface as Actual Mapping Relationship 

8.4.2 Optimal Trajectory of End Point 

When designing the optimal trajectory, the maximum absolute velocity and maximum 

absolute acceleration are considered. In order to make the trajectory more reasonable, 

the possible position of the end point is also limited. The parameters of QR optimal 

control are shown in the following table 

Tabelle 8-2: Beschriftung der Tabelle im Hauptteil 

Parameter Value 

State  

Variables 

Initial Value 𝑥0 = [−10 0 0 0]T 

Number 𝑛x = 4 

Upper Bound 𝑥max = [−5 30 1 1]T 

Lower Bound 𝑥𝑚𝑖𝑛 = [−50 0 −1 −1]T 

Control 

Variables 

Number 𝑛u = 2 

Upper Bound 𝑢max = [0.2 0.2]T 

Lower Bound 𝑢min = [−0.2 −0.2]T 

Cost 

Function 

Q 𝑄 = 100 × diag([1 1 1 1]) 

R 𝑅 = diag([1 1]) 

Pend 𝑃end = 100 × diag([1 1 1 1]) 

Terminal Value 𝑥e = [−35 10 0 0]T 

Optimal 

Control 

Prediction Horizon 𝑁 = 400 

Sampling Time 𝑡s = 0.1 

Simulation Time 𝑡f = 40 

The generated optimal trajectory is as follows 
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Figure 8-15: Optimal Trajectory of End Point from NMPC 

From the curve, it can be seen that the end point initially accelerates to a maximum 

speed of 1 meter per second with a maximum acceleration of 0.2 meter per second 

squared, and then stabilizes at the maximum speed. When the position of the end point 

is close to the target point, it will decelerate with the maximum acceleration. Due to the 

consideration of the optimal time and minimum energy requirements, the deceleration 

process will have a certain fine-tuning on the speed curve, but the amount of fine-

tuning reflected on the position curve is very small. The speed of the end point will 

gradually become 0 and finally reach the target position. 

Since the distances required to move in the x direction and the z direction are different, 

the x axis direction first reaches the target x value, and then the z direction arrives. The 

performance from the path is that the x and z directions move at the same time at the 

beginning, and after reaching a certain point in time, the movement in the z direction 

gradually stops. The second half of the path is the movement along the x direction. 

8.4.3 Optimal Control Trajectory and Verification 

Projection and Control Trajectory 

From the projection of the optimal trajectory on the mapping surface, the quasi-static 

control trajectory can be obtained. The control trajectory is shown as follows. 

In order to reduce the error of the control curve caused by the error of the mapping 

relationship, it is generally required the mapping curve to lie within the experimental 

surface as much as possible. As shown in the left figure, most of the curves are in this 

range, so the accuracy of the mapping relationship is high. 
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Figure 8-16: Projection of Trajectory on Mapping Surface and Optimal Control Trajectory 

Expansion and Fitting of Optimal Control Trajectory 

 

Figure 8-17: Expansion and Fitting of Optimal Control Trajectory 
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The control data generated by the mapping relationship is discrete. In order to be used 

in a solver with an indefinite time step, the generated data will be fitted. In order to 

ensure the stability of the start and end stages of the control trajectory, in addition to 

the 20 interpolation points taken at the same distance in the control data, 5 steady-

state control points are added at each end. Spline curve is used as the fitting method. 

Verification through Experiment 

In order to verify the quasi-static optimal control method, the generated continuous 

control trajectory is applied to the crane model to obtain the dynamic response. The 

results are as follows 

 

Figure 8-18: Theoretical Optimal Trajectory and Experimental Trajectory using Quasi-Static Op-
timal Control 

According to the experimental results, the actual trajectory is basically close to the 

theoretical trajectory with slight vibration. This proves that the quasi-static control 

method can track the optimal path. The vibration is mainly caused by the inertia of the 

crane and the load. To suppress vibration, feedback control of the crane is required, 

such as PID [Kha-2014], real-time MPC etc [Sch-2014]. The feedback controller for 

suppressing flexible vibration is the future research direction. 
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9 Conclusion and Future Development 

9.1 Conclusion 

In this thesis the modeling and control method for lattice boom cranes is studied, and 

some experiments are done for the verification. 

In order to model the lattice boom crane efficiently and accurately, several flexible 

models for dynamic calculation are proposed, such as spatial Timoshenko beam, cubic 

spline beam, strut tie model. Super truss elements based on three assumptions are 

proposed to simulate the lattice boom with the minimum number of degrees of free-

doms. To combine all relevant elements of the crane, the functions for different kinds 

of constraint are established and the multibody dynamics method with Baumgartner 

stability method is applied. In addition, different types of lattice boom, the detailed mod-

eling and driving approach of the lattice boom crane are also described. 

According to the special control variables and control requirements of the lattice boom 

crane, a quasi-static control method is designed. This method combines the static 

mapping relationship with the target optimal trajectory to generate the optimal control 

trajectory. The static mapping relationship is obtained through experiments and data 

post-processing, which can reflect the relationship between the control object and the 

control variable under slow motion. The optimal trajectory of the target is obtained 

through the nonlinear model predictive control (NMPC). Because of the QR control 

method applied in NMPC, the optimal trajectory satisfies the time optimal and minimum 

control cost. 

As the verification, some experiments are designed to verify the modeling accuracy of 

each flexible model, such as static bending, vibration under self-gravity, controlled mo-

tion. Experiments on super truss elements can not only observe the dynamic response 

of the model, but also reflect some characteristics that continuous beams do not have, 

which provides a theoretical basis for further simplification. For the crane model, the 

dynamic response of the crane in the motion of lifting, luffing and slewing is obtained 

through the simulation. In addition, the control effect of the quasi-static optimal control 

algorithm on the control of lattice boom crane is also verified. 

In order to make modeling, control and experiment more convenient, in this thesis a 

rigid-flexible hybrid multibody dynamics platform is established, which can do the stat-

ics and dynamics calculation of the complex mechanism. 
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9.2 Future Development 

Modeling Part 

Although the super truss element can greatly reduce the number of degrees of free-

dom, it is still needed to calculate each member of the truss beam in each time step. 

This makes the single-step calculation time of the ODE solver very large. Parallel com-

puting and other methods of accelerating computing to reduce computing time will be 

studied in the future. 

The parameterization method in this paper is only suitable for general simple truss 

models. At present, in the direction of lighter and miniaturized machinery, more com-

plex truss models are widely used. These trusses may no longer meet the three as-

sumptions in this paper when they are deformed. Therefore, a completer and more 

general truss model is urgently needed. 

Control Part 

The current control method is difficult to control the sway of the load swing during fast 

movement. Therefore, it is necessary to increase the feedback structure into the con-

trol theory and carry out real-time adjustment by using real-time MPC or PID controller. 

For the generation of the optimal trajectory at the end point, only the time and energy 

optimization under barrier-free conditions are currently considered. However, there are 

often many obstacles in actual work scenarios. The identification of obstacles and the 

design of optimal trajectory to avoid obstacles need to be studied. 
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A-1 

 Mathematical Convention 

A.1 Mathematical Convention 

Skew symmetric matrix 

�̃� = 𝑠𝑘𝑒𝑤(𝑎) = 𝑠𝑘𝑒𝑤 ([

𝑎1
𝑎2
𝑎3
]) = [

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] (A-1) 

Properties of cross product 

𝑎 × (𝑏 × 𝑐) = 𝑏(𝑎 ∙ 𝑐) − 𝑐(𝑎 ∙ 𝑏) ⇔ �̃��̃�𝑐 = 𝑏𝑎𝑇𝑐 − 𝑐𝑎𝑇𝑏 = (𝑏𝑐𝑇 − 𝑐𝑏𝑇)𝑎 (A-2) 

𝑎 × (𝑏 × (𝑏 × 𝑎)) = 𝑏 × (𝑎 × (𝑏 × 𝑎)) ⇔ �̃��̃��̃�𝑎 = �̃��̃��̃�𝑎 (A-3) 

𝑎 × 𝑏 = 𝑐 ⇔ 𝑎 = −(𝑏𝑏𝑇 − 𝑏𝑇𝑏𝐼)
−1

�̃�𝑐 (A-4) 

A.2 Gaussian Numerical Integral 

Standard format of Gaussian numerical integral 

∫ 𝑓(𝑡)𝑑𝑡
1

−1

=∑ 𝑤[𝑖]𝑓(𝑥[𝑖])
𝑛

𝑖=1
 (A-5) 

Table A-1: Weight and Integration Point of Standard Format of Gaussian Numerical Integral 

Order Weight Integration Point 

𝒏 = 𝟏 𝑤 = 2 𝑥 = 0 

𝒏 = 𝟐 𝑤 = [
1
1
] 𝑥 =

1

√3
[
−1
1
] 

𝒏 = 𝟑 𝑤 =
1

9
[
5
8
5

] 𝑥 =
√3

√5
[
−1
0
1
] 

 



A Mathematical Convention 

A-2 

Order Weight Integration Point 

𝒏 = 𝟒 𝑤 =
1

36

[
 
 
 
 18 − √30

18 + √30

18 + √30

18 − √30]
 
 
 
 

 𝑥 =
1

35

[
 
 
 
 
 
 
 
 −√525+ 70√30

−√525− 70√30

√525 − 70√30

√525 + 70√30 ]
 
 
 
 
 
 
 
 

 

𝒏 = 𝟓 𝑤 =
1

900

[
 
 
 
 
 322 − 13√70

322 + 13√70
512

322 + 13√70

322 − 13√70]
 
 
 
 
 

 𝑥 =
1

21

[
 
 
 
 
 
 
 
 
 −√245+ 14√70

−√245− 14√70

0

√245 − 14√70

√245 + 14√70 ]
 
 
 
 
 
 
 
 
 

 

𝒏 = 𝟔 𝑤 =
1

10

[
 
 
 
 
 
1.713244923791703
3.607615730481388
4.679139345726909
4.679139345726909
3.607615730481388
1.713244923791703]

 
 
 
 
 

 𝑥 =
1

10

[
 
 
 
 
 
−9.324695142031521
−6.612093864662646
−2.386191860831968
2.386191860831968
6.612093864662646
9.324695142031521 ]

 
 
 
 
 

 

𝒏 = 𝟕 𝑤 =
1

10

[
 
 
 
 
 
 
1.294849661688696
2.797053914892767
3.818300505051183
4.179591836734694
3.818300505051183
2.797053914892767
1.294849661688696]

 
 
 
 
 
 

 𝑥 =
1

10

[
 
 
 
 
 
 
−9.491079123427586
−7.415311855993945
−4.058451513773977

0
4.058451513773977
7.415311855993945
9.491079123427586 ]

 
 
 
 
 
 

 

𝒏 = 𝟖 𝑤 =
1

10

[
 
 
 
 
 
 
 
1.012285362903761
2.223810344533746
3.137066458778871
3.626837833783620
3.626837833783620
3.137066458778871
2.223810344533746
1.012285362903761]

 
 
 
 
 
 
 

 𝑥 =
1

10

[
 
 
 
 
 
 
 
−9.602898564975363
−7.966664774136270
−5.255324099163293
−1.834346424956495
1.834346424956495
5.255324099163293
7.966664774136270
9.602898564975363 ]

 
 
 
 
 
 
 

 

𝒏 = 𝟗 𝑤 =
1

10

[
 
 
 
 
 
 
 
 
0.812743883615745
1.806481606948574
2.606106964029354
3.123470770400029
3.302393550012598
3.123470770400029
2.606106964029354
1.806481606948574
0.812743883615745]

 
 
 
 
 
 
 
 

 𝑥 =
1

10

[
 
 
 
 
 
 
 
 
−9.681602395076261
−8.360311073266357
−6.133714327005904
−3.242534234038089

0
3.242534234038089
6.133714327005904
8.360311073266357
9.681602395076261 ]

 
 
 
 
 
 
 
 

 

 



A Mathematical Convention 

A-3 

Order Weight Integration Point 

𝒏 = 𝟏𝟎 𝑤 =
1

10

[
 
 
 
 
 
 
 
 
 
0.6667134430868785
1.494513491505809
2.190863625159821
2.692667193099963
2.955242247147528
2.955242247147528
2.692667193099963
2.190863625159821
1.494513491505809
0.6667134430868785]

 
 
 
 
 
 
 
 
 

 𝑥 =
1

10

[
 
 
 
 
 
 
 
 
 
−9.739065285171719
−8.650633666889848
−6.794095682990241
−4.333953941292476
−1.488743389816309
1.488743389816309
4.333953941292476
6.794095682990241
8.650633666889848
9.739065285171719 ]

 
 
 
 
 
 
 
 
 

 

𝒏 = 𝟏𝟏 𝑤 =
1

10

[
 
 
 
 
 
 
 
 
 
 
0.5566856711617369
1.255803694649046
1.862902109277342
2.331937645919904
2.628045445102470
2.729250867779006
2.628045445102470
2.331937645919904
1.862902109277342
1.255803694649046
0.5566856711617369]

 
 
 
 
 
 
 
 
 
 

 𝑥 =
1

10

[
 
 
 
 
 
 
 
 
 
 
−9.782286581460570
−8.870625997680953
−7.301520055740494
−5.190961292068118
−2.695431559523450

0
−2.695431559523450
−5.190961292068118
−7.301520055740494
−8.870625997680953
−9.782286581460570]

 
 
 
 
 
 
 
 
 
 

 

For non-standard Gaussian numerical integration 

∫ 𝑓(𝑡)𝑑𝑡
𝑢𝑏

𝑙𝑏

=∑ 𝑤[𝑖]𝑓(�̂�[𝑖])
𝑛

𝑖=1
   𝑤𝑖𝑡ℎ   �̂�[𝑖] =

𝑥[𝑖] + 1

2(𝑢𝑏 − 𝑙𝑏)
+ 𝑙𝑏 (A-6) 

A.3 Cubic Hermite Interpolation 

In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is a spline 

where each piece is a third-degree polynomial specified in Hermite form, that is, by its 

values and first derivatives at the end points of the corresponding domain interval. 

𝑦(𝑥) = 𝑁1
0𝑦(𝑥0) + 𝑁2

0𝑦(𝑥𝑒) + 𝑁1
1𝑦′(𝑥0) + 𝑁2

1𝑦′(𝑥𝑒)   𝑤𝑖𝑡ℎ   𝑦
′ = 𝜕𝑦 𝜕𝑥⁄  

𝑦′(𝑥) = 𝑁′1
0
𝑦(𝑥0) + 𝑁

′
2
0
𝑦(𝑥𝑒) + 𝑁

′
1
1
𝑦′(𝑥0) + 𝑁

′
2
1
𝑦′(𝑥𝑒) 

𝑦′′(𝑥) = 𝑁′′1
0
𝑦(𝑥0) + 𝑁

′′
2
0
𝑦(𝑥𝑒) + 𝑁

′′
1
1
𝑦′(𝑥0) + 𝑁

′′
2
1
𝑦′(𝑥𝑒) 

(A-7) 

which can also be written as 

𝑦(𝑥) = 𝑁𝑦𝜕 𝑦′(𝑥) = 𝑁′𝑦𝜕 𝑦′′(𝑥) = 𝑁′′𝑦𝜕 (A-8) 

where 𝑦𝜕 = [𝑦(𝑥0) 𝑦′(𝑥0) 𝑦(𝑥𝑒) 𝑦′(𝑥𝑒)]
𝑇. 



A Mathematical Convention 

A-4 

The shape function can be written as 

𝑁 = [𝑁1
0𝐼 𝑁1

1𝐼 𝑁2
0𝐼 𝑁2

1𝐼] 

(A-9) 𝑁1
0 = 1 − 3ξ2 + 2ξ3 𝑁2

0 = 3ξ2 − 2ξ3 

𝑁1
1 = 𝐿(ξ − 2ξ2 + ξ3) 𝑁2

1 = 𝐿(ξ3 − ξ2) 

The first derivative of the shape function can be written as 

𝑁′ = [𝑁′1
0𝐼 𝑁′1

1𝐼 𝑁′2
0𝐼 𝑁′2

1𝐼] 

(A-10) 𝑁′1
0 = (−6ξ + 6ξ2)/𝐿 𝑁′2

0 = (6ξ − 6ξ2)/𝐿 

𝑁′1
1 = 1 − 4ξ + 3ξ2 𝑁′2

1 = 3ξ2 − 2ξ 

The second derivative of the shape function can be written as 

𝑁′′ = [𝑁′′1
0𝐼 𝑁′′1

1𝐼 𝑁′′2
0𝐼 𝑁′′2

1𝐼] 

(A-11) 𝑁′′1
0 = (−6 + 12𝜉)/𝐿2 𝑁′′1

1 = (−4 + 6𝜉)/𝐿 

𝑁′′2
0 = (6 − 12𝜉)/𝐿2 𝑁′′2

1 = (6𝜉 − 2)/𝐿 

A.4 Lagrange Polynomial 

Lagrange polynomials are used for polynomial interpolation for a given set of points 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁, 𝑦𝑁), 𝑁 ∈ ℤ+  with 𝑥𝑖 ≠ 𝑥𝑗 , ∀𝑖, 𝑗 ∈ [1, 𝑁] . The interpolation value 

can be written as 

𝑦(𝑥) =∑ 𝑙𝑖(𝑥)𝑦𝑖
𝑁

𝑖=1
   𝑤𝑖𝑡ℎ   𝑙𝑖(𝑥) = ∏

𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

𝑁

𝑗=1,𝑗≠𝑖

 (A-12) 

The first derivative 

𝑦′(𝑥) = ∑ 𝑙𝑖
′(𝑥)𝑦𝑖

𝑁

𝑖=1
   𝑤𝑖𝑡ℎ   𝑙𝑖

′(𝑥) = ∑
1

𝑥𝑖 − 𝑥𝑘
∏

𝑥− 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

𝑁

𝑗=1,𝑗≠𝑖,𝑗≠𝑘

𝑁

𝑘=1,𝑘≠𝑖

 (A-13) 

 



 

B-1 

 Spatial Rotation and Kinematics 

B.1 Derivative of Rotation Matrix 

B.1.1 Angular Velocity 

First derivative of rotation matrix respect to time 

�̇�𝐼
 
𝐵 = �̃�𝐵𝐼

 𝑅𝐼
 
𝐵 = 𝑅𝐼

 
𝐵 �̃�𝐵𝐵
  �̇�𝐵

 
𝐼 = − 𝑅𝐼

 
𝐵
𝑇 �̃�𝐵𝐼
 = − �̃�𝐵𝐵

 𝑅𝐼
 
𝐵
𝑇 (B-1) 

Angular velocity in different coordinate 

�̃�𝐵𝐼
 = �̇�𝐼

 
𝐵 𝑅𝐵
 
𝐼 �̃�𝐵𝐵

 = 𝑅𝐵
 
𝐼 �̇�𝐼
 
𝐵 (B-2) 

Relationship of angular velocity in different coordinate 

𝜔𝐵𝐵
 = 𝑅𝐵

 
𝐼 𝜔

𝐵
𝐼
  

�̃�𝐵𝐵
 = 𝑅𝐵

 
𝐼 �̃�

𝐵
𝐼
 𝑅𝐼

 
𝐵 

𝜔𝐵𝐼
 = 𝑅𝐼

 
𝐵 𝜔𝐵𝐵
  

�̃�𝐵𝐼
 = 𝑅𝐼

 
𝐵 �̃�𝐵𝐵
 𝑅𝐵

 
𝐼  

(B-3) 

B.1.2 Curvature 

First derivative of rotation matrix respect to arc coordinate 

𝑅𝐼
 
𝐵
′ = �̃�𝐵𝐼

 𝑅𝐼
 
𝐵 = 𝑅𝐼

 
𝐵 �̃�𝐵𝐵
  𝑅𝐵

 
𝐼
′ = − 𝑅𝐼

 
𝐵
𝑇 �̃�𝐵𝐼
 = − �̃�𝐵𝐵

 𝑅𝐼
 
𝐵
𝑇 (B-4) 

Curvature in different coordinate 

�̃�𝐵𝐼
 = 𝑅𝐼

 
𝐵
′ 𝑅𝐵
 
𝐼  �̃�𝐵𝐵

 = 𝑅𝐵
 
𝐼 𝑅𝐼
 
𝐵
′  (B-5) 

Relationship of curvature in different coordinate 

𝜅𝐵𝐵
 = 𝑅𝐵

 
𝐼 𝜅

𝐵
𝐼
  

�̃�𝐵𝐵
 = 𝑅𝐵

 
𝐼 �̃�

𝐵
𝐼
 𝑅𝐼

 
𝐵 

𝜅𝐵𝐼
 = 𝑅𝐼

 
𝐵 𝜅𝐵𝐵
  

�̃�𝐵𝐼
 = 𝑅𝐼

 
𝐵 �̃�𝐵𝐵
 𝑅𝐵

 
𝐼  

(B-6) 

 



B Spatial Rotation and Kinematics 

B-2 

B.2 Spatial Angle Representation 

B.2.1 Axis-Angle Representation 

Rotation Matrix and Rodrigues' rotation formula 

𝑅𝐵 = 𝐼 +
𝑠𝑖𝑛 𝜃

𝜃
�̃� +

1 − 𝑐𝑜𝑠 𝜃

𝜃2
�̃��̃�   ,   𝜃 = ‖𝜑‖ (B-7) 

The relationship between first derivative of angle and angular velocity and curvature 

𝜅𝐵𝐵
 = 𝑇𝜑′ 𝜔𝐵𝐵

 = 𝑇�̇� 

(B-8) 
𝑇 (𝜑) = 𝐼 +

𝑐𝑜𝑠 𝜃 − 1

𝜃2
�̃� +

𝜃 − 𝑠𝑖𝑛 𝜃

𝜃3
�̃��̃� 

The second derivative of angle 

�̇�𝐵𝐵
 = 𝑇�̈� + �̇��̇� 

�̇�𝐵𝐵
 = �̃�𝐵𝐵

 𝑇𝜑′ + 𝑇�̇�′ + �̇�𝜑′ 

𝜔′𝐵𝐵
 = �̃�𝐵𝐵

 𝑇�̇� + 𝑇�̇�′ + 𝑇′�̇� 

𝜅′𝐵𝐵
 = 𝑇𝜑′′ + 𝑇′𝜑′ (B-9) 

The derivative of 𝑇 can also be written as 

�̇�𝜑′ = �̂�′�̇� 𝑇′�̇� = �̇̂�𝜑′ (B-10) 

where 

�̇� (𝜑, �̇�) = 𝜑𝑇�̇� [
(1 − 𝑐𝑜𝑠 𝜃)𝜃 − 3(1 − 𝑠𝑖𝑛 𝜃)

𝜃5
�̃� −

𝜃 𝑠𝑖𝑛 𝜃 + 2(𝑐𝑜𝑠 𝜃 − 1)

𝜃4
𝐼] �̃�

+
𝑐𝑜𝑠 𝜃 − 1

𝜃2
�̇̃� +

𝜃 − 𝑠𝑖𝑛 𝜃

𝜃3
(�̇̃��̃� + �̃��̇̃�) 

�̂�′ (𝜑, 𝜑′) =
𝜃 − 𝑠𝑖𝑛 𝜃

𝜃3
(𝜑𝜑′𝑇 − 𝜑′𝜑𝑇 − �̃��̃�′) −

𝑐𝑜𝑠 𝜃 − 1

𝜃2
�̃�′ 

+ [
(1 − 𝑐𝑜𝑠 𝜃)𝜃 − 3(1 − 𝑠𝑖𝑛 𝜃)

𝜃5
�̃� −

𝜃 𝑠𝑖𝑛 𝜃 + 2(𝑐𝑜𝑠 𝜃 − 1)

𝜃4
𝐼] �̃�𝜑′𝜑𝑇 

(B-11) 
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B.2.2 Tait-Bryan (Cardan) Angles 

Sequence of the rotation 

𝐼 
𝑧𝐼
 

−→
𝜃
 1 

𝑦1
 

−→
𝜓
 2 

𝑥2
 

−→
𝜑
 𝐵 (B-12) 

Elementary rotation matrix 

𝑅𝑥(𝜑) = 𝑅𝐵2
 (𝜑) = [

1 0 0
0 𝑐𝑜𝑠 𝜑 − 𝑠𝑖𝑛 𝜑
0 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑

] 

�̇�𝑥(𝜑, �̇�) = �̇�𝐵2
 (𝜑, �̇�) = [

0 0 0
0 − 𝑠𝑖𝑛𝜑 − 𝑐𝑜𝑠𝜑
0 𝑐𝑜𝑠 𝜑 − 𝑠𝑖𝑛 𝜑

] �̇� = 𝑇𝑥(𝜑)�̇� 

(B-13) 

𝑅𝑦(𝜓) = 𝑅21
 (𝜓) = [

𝑐𝑜𝑠𝜓 0 𝑠𝑖𝑛𝜓
0 1 0

− 𝑠𝑖𝑛𝜓 0 𝑐𝑜𝑠𝜓
] 

�̇�𝑦(𝜓, �̇�) = �̇�21
 (𝜓, �̇�) = [

− 𝑠𝑖𝑛𝜓 0 𝑐𝑜𝑠𝜓
0 0 0

− 𝑐𝑜𝑠𝜓 0 − 𝑠𝑖𝑛𝜓
] �̇� = 𝑇𝑦(𝜓)�̇� 

(B-14) 

𝑅𝑧(𝜃) = 𝑅1𝐼
 (𝜃) = [

𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

] 

�̇�𝑧(𝜃, �̇�) = �̇�1𝐼
 (𝜃, �̇�) = [

−𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜃 0
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
0 0 0

] �̇� = 𝑇𝑧(𝜃)�̇� 

(B-15) 

Rotation matrix 

𝑅𝐵 = 𝑅𝐵𝐼
 

= [

𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜃 + 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜃
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛 𝜃 + 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 − 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃
− 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜓

]

= 𝑅1𝐼
 (𝜃) 𝑅21

 (𝜓) 𝑅𝐵2
 (𝜑) 

(B-16) 

Angular velocity and curvature can be written as 
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𝜔𝐵
 = [

�̇�
0
0
] + 𝑅2𝐵

 [
0
�̇�
0

] + 𝑅2𝐵
 𝑅12

 [
0
0
�̇�
] = 𝑇�̇� = [

�̇� − 𝑠𝑖𝑛𝜓 �̇�

𝑐𝑜𝑠𝜑 �̇� + 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜓 �̇�

− 𝑠𝑖𝑛 𝜑 �̇� + 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠 𝜓 �̇�

] 

𝜅𝐵
 = [

𝜑′
0
0

] + 𝑅2𝐵
 [

0
𝜓′
0
] + 𝑅2𝐵

 𝑅12
 [

0
0
𝜃′
] = 𝑇𝜑′ 

(B-17) 

Derivative of angular velocity and curvature 

�̇�𝐵
 = 𝑇�̈� + �̇��̇� 

𝜔′𝐵
 = 𝑇�̇�′ + 𝑇′�̇� = 𝑇�̇�′ + �̇̂�𝜑′ 

�̇�𝐵
 = 𝑇�̇�′ + �̇�𝜑′ (B-18) 

where 

𝑇 (𝜑) = [

1 0 − 𝑠𝑖𝑛𝜓
0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠𝜓
0 − 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠𝜓

] 

�̇� (𝜑, �̇�) = [

0 0 − 𝑐𝑜𝑠𝜓 �̇�

0 − 𝑠𝑖𝑛 𝜑 �̇� 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠 𝜓 �̇� − 𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜓 �̇�

0 − 𝑐𝑜𝑠𝜑 �̇� − 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠 𝜓 �̇� − 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛𝜓 �̇�

] 

𝑇′ (𝜑, 𝜑′) = [

0 0 − 𝑐𝑜𝑠 𝜓𝜓′

0 − 𝑠𝑖𝑛 𝜑 𝜑′ 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠 𝜓𝜑′ − 𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜓𝜓′

0 − 𝑐𝑜𝑠𝜑𝜑′ −𝑠𝑖𝑛𝜑 𝑐𝑜𝑠 𝜓𝜑′ − 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜓𝜓′
] 

�̇̂� = [

0 − 𝑐𝑜𝑠𝜓 �̇� 0

− 𝑠𝑖𝑛𝜑 �̇� + 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠𝜓 �̇� − 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛𝜓 �̇� 0

− 𝑐𝑜𝑠𝜑 �̇� − 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠𝜓 �̇� − 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜓 �̇� 0

] 

(B-19) 

Generally, the rotation matrix corresponds infinite cardan rotation vectors. However, 

for small rotation, the rotation matrix and the cardan rotation vector have a one-to-one 

correspondence. 

The small cardan vector can be written as 

𝜑 = [𝜑 𝜓 𝜃]𝑇 

(B-20) 
𝜑 = 𝑠𝑖𝑛−1

𝑔𝑧
𝑇𝑅𝐵𝑔𝑦

𝑐𝑜𝑠 𝜓
 𝜓 = −𝑠𝑖𝑛−1 𝑔𝑧

𝑇𝑅𝐵𝑔𝑥 𝜃 = 𝑠𝑖𝑛−1
𝑔𝑦
𝑇𝑅𝐵𝑔𝑥

𝑐𝑜𝑠𝜓
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B.3 Kinematics of Co-rotational Coordinate 

B.3.1 Co-rotational Coordinate 

The generalized coordinate of flexible beam can be sometimes written as 

𝑞𝑒 = [
𝑞𝑒,1
𝑞𝑒,2 

] =

[
 
 
 
 
𝑟1𝐼
 

𝜑1

𝑟2𝐼
 

𝜑2 ]
 
 
 
 

 𝑑𝑞𝑒 = [
𝑑𝑞𝑒,1

𝑑𝑞𝑒,2 
] =

[
 
 
 
 
�̇�1𝐼
 

𝜔1
 1

�̇�2𝐼
 

𝜔2
 2]
 
 
 
 

 (B-21) 

The co-rotational coordinate can be written as 

𝑞𝐵 = [
𝑟𝐵𝐼
 

𝜑𝐵
] 𝑑𝑞𝐵 = [

�̇�𝐵𝐼
 

𝜔𝐵
 𝐵] (B-22) 

The generalized velocity and acceleration can be written as 

𝑑𝑞𝐵 = 𝑇𝐵𝑑𝑞𝑒 𝑑�̇�𝐵 = 𝑇𝐵𝑑�̇�𝑒 + �̇�𝐵𝑑𝑞𝑒 (B-23) 

In order to make the calculation much simpler, the co-rotational coordinate is chosen 

as the coordinate at the end point of the beam element. If the first end point is selected, 

the relationship between the generalized coordinate and the co-rotational coordinate 

can be written as 

𝑞𝐵 = 𝑞𝑒,1 𝑑𝑞𝐵 = 𝑑𝑞𝑒,1 

(B-24) 𝑇𝐵 = [
𝐼 0 0 0

0 𝐼 0 0
] �̇�𝐵 = 0 

If the first end point is selected, the relationship between the generalized coordinate 

and the co-rotational coordinate can be written as 

𝑞𝐵 = 𝑞𝑒,2 𝑑𝑞𝐵 = 𝑑𝑞𝑒,2 

(B-25) 𝑇𝐵 = [
0 0 𝐼 0

0 0 0 𝐼
] �̇�𝐵 = 0 
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B.3.2 Deformation Coordinate 

Generalized Coordinate 

Generalized coordinate of any point on the beam element 

{
𝑟𝑐𝐼
 = 𝑟𝐵𝐼

 + 𝑅𝐵( 𝑟
𝑟,𝑐

𝐵
 + 𝑢𝑐𝐵

 )

𝜑𝑐 ← 𝑅𝑐 = 𝑅 (𝜑
𝐵)𝑅 ( 𝜓𝑐𝐵

 ) = 𝑅𝐵𝑅 ( 𝜓𝑐𝐵
 )

   ,   𝑞𝑐 = [
𝑟𝑐𝐼
 

𝜑𝑐 ] (B-26) 

Generalized deformation coordinate of any point on the beam element 

{
𝑢𝑐𝐵
 = 𝑅𝐵

𝑇( 𝑟𝑐𝐼
 − 𝑟𝐵𝐼

 ) − 𝑟𝑟,𝑐𝐵
 

𝜓𝑐𝐵
 ← 𝑅𝑑,𝑐 = 𝑅𝐵

𝑇𝑅𝑐
   ,   𝑞𝑑,𝑐 = [

𝑢𝑐𝐵
 

𝜓𝑐𝐵
 ] (B-27) 

Generalized Velocity 

Generalized velocity of any point on the beam element 

{
�̇�𝑐𝐼
 = �̇�𝐵𝐼

 + 𝑅𝐵 �̃�𝐵𝐵
 ( 𝑟𝑟,𝑐𝐵

 + 𝑢𝑐𝐵
 ) + 𝑅𝐵 �̇�𝑐𝐵

 

𝜔𝑐
 𝑐 = 𝑅𝑑,𝑐

𝑇 𝜔𝐵
 𝐵 + 𝜛𝑐

 𝑐
 (B-28) 

Generalized velocity coordinate of any point on the beam element 

{
�̇�𝑐𝐵
 = 𝑅𝐵

𝑇( �̇�𝑐𝐼
 − �̇�𝐵𝐼

 ) − �̃�𝐵𝐵
 ( 𝑟𝑟,𝑐𝐵

 + 𝑢𝑐𝐵
 )

𝜛𝑐
 𝑐 = 𝜔𝑐

 𝑐 − 𝑅𝑑,𝑐
𝑇 𝜔𝐵

 𝐵
 (B-29) 

Generalized Acceleration 

Generalized acceleration of any point on the beam element 

�̈�𝑐𝐼
 = �̈�𝐵𝐼

 + 𝑅𝐵 �̇̃�𝐵𝐵
 ( 𝑟𝑟,𝑐𝐵

 + 𝑢𝑐𝐵
 ) + 𝑅𝐵 �̈�𝑐𝐵

 + 𝑅𝐵 �̃�𝐵𝐵
 �̃�𝐵𝐵

 ( 𝑟𝑟,𝑐𝐵
 + 𝑢𝑐𝐵

 )

+ 2𝑅𝐵 �̃�𝐵𝐵
 �̇�𝑐𝐵

  

�̇�𝑐
 𝑐 = 𝑅𝑑,𝑐

𝑇 �̇�𝐵
 𝐵 + �̇�𝑐

 𝑐 − �̃�𝑐
 𝑐𝑅𝑑,𝑐

𝑇 𝜔𝐵
 𝐵 

(B-30) 

Generalized acceleration coordinate of any point on the beam element 
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�̈�𝑐𝐵
 = 𝑅𝐵

𝑇( �̈�𝑐𝐼
 − �̈�𝐵𝐼

 ) − �̇̃�𝐵𝐵
 ( 𝑟𝑟,𝑐𝐵

 + 𝑢𝑐𝐵
 ) + �̃�𝐵𝐵

 �̃�𝐵𝐵
 ( 𝑟𝑟,𝑐𝐵

 + 𝑢𝑐𝐵
 )

− 2 �̃�𝐵𝐵
 𝑅𝐵

𝑇( �̇�𝑐𝐼
 − �̇�𝐵𝐼

 ) 

�̇�𝑐
 𝑐 = �̇�𝑐

 𝑐 − 𝑅𝑑,𝑐
𝑇 �̇�𝐵

 𝐵 + �̃�𝑐
 𝑐𝑅𝑑,𝑐

𝑇 𝜔𝐵
 𝐵 

(B-31) 

B.3.3 Relationship between Global Coordinate and Deformation Coordinate 

The deformation velocity can be written through generalized velocity of the beam ele-

ment and point on the beam. 

𝑑𝑞𝑑,𝑐 = [
�̇�𝑐𝐵
 

𝜛𝑐
 𝑐] = [

−𝑅𝐵
𝑇 �̃�𝑟,𝑐𝐵

 + �̃�𝑐𝐵
 𝑅𝐵

𝑇 0

0 −𝑅𝑑,𝑐
𝑇 0 𝐼

] [
𝑑𝑞𝐵

𝑑𝑞𝑐
] = 𝑇𝑑,𝑐 [

𝑑𝑞𝐵

𝑑𝑞𝑐
] (B-32) 

The deformation acceleration can be written through generalized acceleration of the 

beam element and point on the beam. 

𝑑�̇�𝑑,𝑐 = [
�̈�𝑐𝐵
 

�̇�𝑐
 𝑐] = 𝑇𝑑,𝑐 [

𝑑�̇�𝐵

𝑑�̇�𝑐
] + �̇�𝑑,𝑐 [

𝑑𝑞𝐵

𝑑𝑞𝑐
] 

�̇�𝑑,𝑐 = [
2 �̃�𝐵𝐵
 𝑅𝐵

𝑇 − �̃�𝐵𝐵
 ( �̃�𝑟,𝑐𝐵

 + �̃�𝑐𝐵
 ) −2 �̃�𝐵𝐵

 𝑅𝐵
𝑇 0

0 �̃�𝑐
 𝑐𝑅𝑑,𝑐

𝑇 0 0
] 

(B-33) 

The generalized velocity of point on the beam can be written through generalized ve-

locity of the beam element and deformation velocity. 

𝑑𝑞𝑐 = [
�̇�𝑐𝐼
 

𝜔𝑐
 𝑐] = [

𝑇𝑑,𝑟,𝑐
−1

𝑇𝑑,𝜑,𝑐
−1 ] [

𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] = 𝑇𝑑,𝑐

−1 [
𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] 

𝑇𝑑,𝑟,𝑐
−1 = [𝐼 −𝑅𝐵 ( �̃�𝑟,𝑐𝐵

 + �̃�𝑐𝐵
 ) 𝑅𝐵 0] 

𝑇𝑑,𝜑,𝑐
−1 = [0 𝑅𝑑,𝑐

𝑇 0 𝐼] 

(B-34) 

The generalized acceleration of point on the beam can be written through generalized 

acceleration of the beam element and deformation acceleration. 
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𝑑�̇�𝑐 = [
�̈�𝑐𝐼
 

�̇�𝑐
 𝑐] = 𝑇𝑑,𝑐

−1 [
𝑑�̇�𝐵

𝑑�̇�𝑑,𝑐
] + [

�̇�𝑑,𝑟,𝑐
−1

�̇�𝑑,𝜑,𝑐
−1

] [
𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] = 𝑇𝑑,𝑐

−1 [
𝑑�̇�𝐵

𝑑�̇�𝑑,𝑐
] + �̇�𝑑,𝑐

−1 [
𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] 

�̇�𝑑,𝑟,𝑐
−1 = [0 −𝑅𝐵 �̃�𝐵𝐵

 ( �̃�𝑟,𝑐𝐵
 + �̃�𝑐𝐵

 ) 2𝑅𝐵 �̃�𝐵𝐵
 0] 

�̇�𝑑,𝜑,𝑐
−1 = [0 − �̃�𝑐

 𝑐𝑅𝑑,𝑐
𝑇 0 0] 

(B-35) 

B.3.4 Deformation Coordinate at Boundary 

The deformation coordinate of the end point can be written as 

𝑞𝑑,𝑒𝑛𝑑 = [
𝑞𝑑,1
𝑞𝑑,2

] (B-36) 

The deformation velocity of the end point can be written as 

𝑑𝑞𝑑,𝑒𝑛𝑑 = [
𝑑𝑞𝑑,1

𝑑𝑞𝑑,2
] = 𝑇𝑑,𝑒𝑛𝑑

 
𝐵𝑒 [

𝑑𝑞𝐵

𝑑𝑞1

𝑑𝑞2

] = 𝑇𝑑,𝑒𝑛𝑑
 
𝐵𝑒 𝑇𝐵𝑒

 
𝑒𝑑𝑞𝑒 = 𝑇𝑑,𝑒𝑛𝑑𝑑𝑞𝑒 

𝑇𝑑,𝑒𝑛𝑑
 
𝐵𝑒 =

[
 
 
 
 
 
−𝑅𝐵

𝑇 �̃�𝑟,1𝐵
 + �̃�1𝐵

 𝑅𝐵
𝑇 0 0 0

0 −𝑅𝑑,1
𝑇 0 𝐼 0 0

−𝑅𝐵
𝑇 �̃�𝑟,2𝐵

 + �̃�2𝐵
 0 0 𝑅𝐵

𝑇 0

0 −𝑅𝑑,2
𝑇 0 0 0 𝐼]

 
 
 
 
 

   ,   𝑇𝐵𝑒
 
𝑒 = [

𝑇𝐵

𝐼
] 

(B-37) 

The deformation acceleration of the end point can be written as 

𝑑�̇�𝑑,𝑒𝑛𝑑 = [𝑑�̇�𝑑,1
𝑇 𝑑�̇�𝑑,2

𝑇 ]
𝑇
= 𝑇𝑑,𝑒𝑛𝑑𝑑�̇�𝑒 + �̇�𝑑,𝑒𝑛𝑑𝑑𝑞𝑒

= 𝑇𝑑,𝑒𝑛𝑑[𝑑�̇�𝐵
𝑇 𝑑�̇�1

𝑇 𝑑�̇�2
𝑇]
𝑇
+ �̇�𝑑,𝑒𝑛𝑑[𝑑𝑞𝐵

𝑇 𝑑𝑞1
𝑇 𝑑𝑞2

𝑇]
𝑇

= 𝑇𝑑,𝑒𝑛𝑑
 
𝐵𝑒 𝑇𝐵𝑒

 
𝑒𝑑�̇�𝑒 + ( 𝑇𝑑,𝑒𝑛𝑑

 
𝐵𝑒 �̇�𝐵𝑒

 
𝑒 + �̇�𝑑,𝑒𝑛𝑑

 
𝐵𝑒 𝑇𝐵𝑒

 
𝑒) 𝑑𝑞𝑒 

�̇�𝑑,𝑒𝑛𝑑
 
𝐵𝑒 =

[
 
 
 
 
 
 2 �̃�𝐵𝐵

 𝑅𝐵
𝑇 − �̃�𝐵𝐵

 ( �̃�𝑟,1𝐵
 + �̃�1𝐵

 ) −2 �̃�𝐵𝐵
 𝑅𝐵

𝑇 0 0 0

0 �̃�1
 1𝑅𝑑,1

𝑇 0 0 0 0

2 �̃�𝐵𝐵
 𝑅𝐵

𝑇 − �̃�𝐵𝐵
 ( �̃�𝑟,2𝐵

 + �̃�2𝐵
 ) 0 0 −2 �̃�𝐵𝐵

 𝑅𝐵
𝑇 0

0 �̃�2
 2𝑅𝑑,2

𝑇 0 0 0 0]
 
 
 
 
 
 

 

�̇�𝐵𝑒
 
𝑒 = [�̇�𝐵

𝑇 0]
𝑇

 

(B-38) 

 



 

C-1 

 Detailed Dynamics Models of Different 
Types of Elements 

C.1 Rigid Body Dynamic Model 

C.1.1 Generalized Coordination and Generalized Velocity 

𝑞𝑒 = [
𝑟0𝐼
 

𝜑 ] 𝑑𝑞𝑒 = [
�̇�0𝐼
 

𝜔𝐵
 ] = [

�̇�0𝐼
 

𝑇�̇�] (C-1) 

C.1.2 Kinematic 

𝑟𝑘𝐼
 = 𝑟0𝐼

 + 𝑅 𝑟0𝑘𝐵
  

(C-2) 
�̇�𝑘𝐼
 = �̇�0𝐼

 + 𝑅 �̃�𝐵
 𝑟0𝑘𝐵

 = �̇�0𝐼
 − 𝑅 �̃�0𝑘𝐵

 𝜔𝐵
  

�̈�𝑘𝐼
 = �̈�0𝐼

 + (𝑅 �̇̃�𝐵
 + 𝑅 �̃�𝐵

 �̃�𝐵
 ) 𝑟0𝑘𝐵

 = �̈�0𝐼
 − 𝑅 �̃�0𝑘𝐵

 �̇�𝐵
 + 𝑅 �̃�𝐵

 �̃�0𝑘𝐵
 𝜔𝐵

  

C.1.3 Virtual inertial power 

𝛿𝑝𝑖𝑛𝑒 = −∫𝛿 �̇�
𝑘

𝐼
 𝑇

 �̈�𝑘𝐼
 𝜌𝑑𝛺

 

𝛺

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒𝑑�̇�𝑒 + 𝐷𝑒𝑑𝑞𝑒) 

(C-3) 
𝑀𝑒 = [

𝑚𝑡𝑜𝑡𝐼 −𝑚𝑡𝑜𝑡𝑅
𝑇 �̃�0𝐶𝐵
 

𝑚𝑡𝑜𝑡 �̃�
0𝐶

𝐵
 𝑅𝑇 𝛩𝐵

 0 ] 

𝐷𝑒 = [
0 𝑚𝑡𝑜𝑡𝑅 �̃�𝐵

 �̃�0𝐶𝐵
 

0 �̃�𝐵
 𝛩𝐵

 0 ] 𝐹𝑖𝑛𝑒 = 𝐷𝑒𝑑𝑞𝑒 

with 

∫𝜌𝑑𝛺
 

𝛺

= 𝑚𝑡𝑜𝑡 ∫ 𝜌 �̃�0𝑘𝐵
 �̃�0𝑘𝐵

 𝑑𝛺
 

𝛺

= − 𝛩𝐵
 0 

(C-4) 
∫𝜌 𝑟0𝑘𝐵

 𝑑𝛺
 

𝛺

= 𝑚𝑡𝑜𝑡 𝑟
0𝐶

𝐵
  ∫ 𝜌 �̃�0𝑘𝐵

 𝑑𝛺
 

𝛺

= 𝑚𝑡𝑜𝑡 �̃�
0𝐶

𝐵
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C.1.4 Virtual external power 

𝛿𝑝𝑒𝑥𝑡 = ∫ 𝛿 �̇�𝑘𝐼
 𝑇

 𝑔𝐼
 𝜌𝑑𝛺

 

𝛺

= −𝛿𝑑𝑞𝑒
𝑇𝑉𝑒𝑥𝑡,𝑔 𝑔𝐼

  

(C-5) 
𝑉𝑒𝑥𝑡,𝑔 = −𝑚𝑡𝑜𝑡 [

𝐼

�̃�0𝐶𝐵
 𝑅𝑇

] 𝐹𝑒𝑥𝑡,𝑔 = 𝑉𝑒𝑥𝑡,𝑔 𝑔𝐼
  

C.1.5 Virtual power principle for Rigid Body 

𝛿𝑝𝑒 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑒𝑥𝑡,𝑔

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑒 + 𝐹𝑒𝑥𝑡,𝑔) = −𝛿𝑑𝑞𝑒

𝑇 (𝑀𝑒𝑑�̇�𝑒 + 𝐹𝑒) 
(C-6) 

C.2 Spatial Timoshenko Beam Dynamic Model based on Co-
rotational Coordination 

C.2.1 Generalized coordination 

𝑞𝑒 = [
𝑞1
𝑞2
] =

[
 
 
 
 
𝑟1𝐼
 

𝜑1

𝑟2𝐼
 

𝜑2 ]
 
 
 
 

 𝑑𝑞𝑒 = [
𝑑𝑞1

𝑑𝑞2
] =

[
 
 
 
 
�̇�1𝐼
 

𝜔1
 1

�̇�2𝐼
 

𝜔2
 2]
 
 
 
 

 (C-7) 

C.2.2 Co-rotational Coordination 

𝑞𝐵 = [
𝑟𝐵𝐼
 

𝜑𝐵
] 𝑑𝑞𝐵 = [

�̇�𝐵𝐼
 

𝜔𝐵
 𝐵] (C-8) 

Here we choose 

𝑞𝐵 = [
𝑟1𝐼
 

𝜑1
] 𝑑𝑞𝐵 = [

�̇�1𝐼
 

𝜔1
 1] 

(C-9) 
𝑅𝐵 = 𝑅𝐼

 
𝐵 = 𝑅 (𝜑

𝐵) 
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C.2.3 Timoshenko Beam Assumption 

𝑟𝐼
 ∗ = 𝑟𝑐𝐼

 + 𝑅𝐵 𝑡𝑐
 = 𝑟𝐵𝐼

 + 𝑅𝐵( 𝑟
𝑟,𝑐

𝐵
 + 𝑡𝑐

 ) 

𝑟𝐼
 = 𝑟𝑐𝐼

 + 𝑅𝐵𝑅𝑑,𝑐 𝑡𝑐
 = 𝑟𝐵𝐼

 + 𝑅𝐵 ( 𝑟𝑟,𝑐𝐵
 + 𝑢𝑐𝐵

 + 𝑅𝑑,𝑐 𝑡𝑐
 ) 

(C-10) 

𝑢𝐼
 = 𝑟𝐼

 − 𝑟𝐼
 ∗ = 𝑅𝐵 [ 𝑢

𝑐
𝐵
 + (𝑅𝑑,𝑐 − 𝐼) 𝑡𝑐

 ] 

𝑢𝐵
 = 𝑅𝐵

𝑇 𝑢𝐼
 = 𝑢𝑐𝐵

 + (𝑅𝑑,𝑐 − 𝐼) 𝑡𝑐
  

(C-11) 

Small deformation assumption 

𝑅𝑑,𝑐 = 𝑅 ( 𝜓𝑐𝐵
 ) ≈ 𝐼 + �̃�𝑐𝐵

  (C-12) 

𝑢𝐵
 ≈ 𝑢𝑐𝐵

 + �̃�𝑐𝐵
 𝑡𝑐

 = [

𝑢𝑐𝐵
 − 𝜃𝑐𝐵

 𝑦𝑐
 + 𝜓𝑐𝐵

 𝑧𝑐
 

𝑣𝑐𝐵
 − 𝜑𝑐𝐵

 𝑧𝑐
 

𝑤𝑐
𝐵
 + 𝜑𝑐𝐵

 𝑦𝑐
 

] = [

𝑢𝐵
 

𝑣𝐵
 

𝑤𝐵
 
] (C-13) 

C.2.4 Kinematic  

�̇�𝐼
 = �̇�𝑐𝐼

 + 𝛺𝑐 𝑡𝑐
 = (𝐻𝑡 +𝐻𝑟,𝑡) [

𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] 

(C-14) 
𝛺𝑐 = 𝑅𝐵 �̃�𝐵𝐵

 𝑅𝑑,𝑐 + 𝑅𝐵𝑅𝑑,𝑐 �̃�𝑐
 𝑐 

𝐻𝑡 = 𝑇𝑑,𝑟,𝑐
−1 = [𝐼 −𝑅𝐵 ( �̃�𝑟,𝑐𝐵

 + �̃�𝑐𝐵
 ) 𝑅𝐵 0] 

𝐻𝑟,𝑡 = [0 −𝑅𝑐 �̃�𝑐
 𝑅𝑑,𝑐

𝑇 0 −𝑅𝑐 �̃�𝑐
 
] 

�̈�𝐼
 = �̈�𝑐𝐼

 + 𝛢𝑐 𝑡𝑐
 = (𝐻𝑡 +𝐻𝑟,𝑡) [

𝑑�̇�𝐵

𝑑�̇�𝑑,𝑐
] + (𝐷𝑡 + 𝐷𝑟,𝑡) [

𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] 

(C-15) 

𝛢𝑐 = 𝑅𝐵 �̇̃�𝐵𝐵
 𝑅𝑑,𝑐 + 𝑅𝐵𝑅𝑑,𝑐 �̇̃�𝑐

 𝑐 + 𝑅𝐵 �̃�𝐵𝐵
 �̃�𝐵𝐵

 𝑅𝑑,𝑐 + 2𝑅𝐵 �̃�𝐵𝐵
 𝑅𝑑,𝑐 �̃�𝑐

 𝑐

+ 𝑅𝐵𝑅𝑑,𝑐 �̃�𝑐
 𝑐 �̃�𝑐

 𝑐 

𝐷𝑡 = �̇�𝑑,𝑟,𝑐
−1 = [0 −𝑅𝐵 �̃�𝐵𝐵

 ( �̃�𝑟,𝑐𝐵
 + �̃�𝑐𝐵

 ) 2𝑅𝐵 �̃�𝐵𝐵
 0] 

𝐷𝑟,𝑡 = [0 −𝑅𝐵 �̃�𝐵𝐵
 𝑅𝑑,𝑐 �̃�𝑐

 𝑅𝑑,𝑐
𝑇 0 −(2𝑅𝐵 �̃�𝐵𝐵

 𝑅𝑑,𝑐 + 𝑅𝑐 �̃�𝑐
 𝑐) �̃�𝑐

 ] 

C.2.5 Strain 

Because of the small deformation assumption 
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𝜀𝑖𝑗
 

𝐵
 =

1

2
(
𝜕 𝑢𝑖𝐵
 

𝜕 𝑥𝑗𝐵
 +

𝜕 𝑢𝑗𝐵
 

𝜕 𝑥𝑖𝐵
 ) ≈

1

2
(
𝜕 𝑢𝑖𝐵
 

𝜕 𝑥𝑗𝑐
 
+
𝜕 𝑢𝑗𝐵
 

𝜕 𝑥𝑖𝑐
 
) 

(C-16) 

{
 
 
 

 
 
 𝜀𝑥𝑥

 
𝐵
 =

𝜕 𝑢𝐵
 

𝜕 𝑥𝑐 
= 𝑢𝑐𝐵

 ′ − 𝜃𝑐𝐵
 ′ 𝑦𝑐

 + 𝜓𝑐𝐵
 ′ 𝑧𝑐

 

𝜀𝑥𝑦
 

𝐵
 =

1

2
(
𝜕 𝑢𝐵
 

𝜕 𝑦𝑐
 
+
𝜕 𝑣𝐵
 

𝜕 𝑥𝑐
 
) =

1

2
( 𝑣𝑐𝐵
 ′ − 𝜑𝑐𝐵

 ′ 𝑧𝑐
 − 𝜃𝑐𝐵

 )

𝜀𝑥𝑧
 

𝐵
 =

1

2
(
𝜕 𝑢𝐵
 

𝜕 𝑧𝑐 
+
𝜕 𝑤𝐵
 

𝜕 𝑥𝑐 
) =

1

2
( 𝑤𝑐
𝐵
 ′ + 𝜑𝑐𝐵

 ′ 𝑦𝑐
 + 𝜓𝑐𝐵

 )

𝜀𝑦𝑦
 

𝐵
 = 𝜀𝑦𝑧

 
𝐵
 = 𝜀𝑧𝑧

 
𝐵
 = 0

 

C.2.6 Shape function 

𝑞𝑑,𝑐 = 𝑁𝑐𝑞𝑑,𝑒𝑛𝑑 �̇�𝑑,𝑐 = 𝑁𝑐�̇�𝑑,𝑒𝑛𝑑 

(C-17) 
𝑁𝑐 = [𝑁𝑐,1 𝑁𝑐,2] = [

𝑁𝑐,𝑢,𝑢1 𝑁𝑐,𝑢,𝜑1 𝑁𝑐,𝑢,𝑢2 𝑁𝑐,𝑢,𝜑2

𝑁𝑐,𝜑,𝑢1 𝑁𝑐,𝜑,𝜑1 𝑁𝑐,𝜑,𝑢2 𝑁𝑐,𝜑,𝜑2
] 

As it is assumed that no external force is applied on the element, and external virtual 

work only contributes to the inhomogeneous terms, therefore, the homogeneous equa-

tions are obtained as 

−𝐻1𝑞𝑐
′′ + (𝐻3 −𝐻2) 𝑞𝑐

′ +𝐻4𝑞𝑐 = 0 

{
 
 
 
 

 
 
 
 

𝑢′′𝑐𝑘
 = 0

𝑣′′𝑐𝑘
 − 𝜃′ = 0

𝑤′′
𝑐𝑘

 + 𝜓′ = 0

𝜑′′ = 0
4𝐸𝐼𝑧
𝐺𝐴

𝜓′′ − 𝑤′
𝑐𝑘

 − 𝜓 = 𝑘𝑧𝜓
′′ − 𝑤′

𝑐𝑘
 − 𝜓 = 0

4𝐸𝐼𝑦

𝐺𝐴
𝜃′′ + 𝑣′𝑐𝑘

 − 𝜃 = 𝑘𝑦𝜃
′′ + 𝑣′𝑐𝑘

 − 𝜃 = 0

 
(C-18) 

𝑞𝑢𝑐 = 𝑁𝑞𝑢𝑐𝑒 �̇�𝑢𝑐 = 𝑁�̇�𝑢𝑐𝑒 
(C-19) 𝑞𝑢𝑐

′ = 𝑁′𝑞𝑢𝑐𝑒 𝑞𝑢𝑐
′′ = 𝑁′′𝑞𝑢𝑐𝑒 

To simplify the shape function, we define the following parameter 
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𝜉 =
𝑥

𝐿
 𝛼𝑦 =

48𝐸𝐼𝑦

𝐴𝐺𝐿2
 𝛽𝑦 =

1

𝛼𝑦 + 1
 

(C-20) 
 𝛼𝑧 =

48𝐸𝐼𝑧
𝐴𝐺𝐿2

 𝛽𝑧 =
1

𝛼𝑧 + 1
 

𝑢′′𝑐𝑘
 = 0 → 𝑢𝑐𝑘

 = 𝑁𝑢,𝑢 𝑢𝑐𝑒𝑘
 = 𝜉 𝑢𝑐𝑒𝑘

  
(C-21) 𝑁𝑢,𝑢 = 𝜉 𝑁′𝑢,𝑢 = 1 𝑁′′𝑢,𝑢 = 0 

𝜑′′ = 0 → 𝜑 = 𝑁𝜑,𝜑𝜑𝑒 = 𝜉𝜑𝑒 
(C-22) 𝑁𝜑,𝜑 = 𝜉 𝑁𝜑,𝜑 = 1 𝑁𝜑,𝜑 = 0 

{
𝑣′′𝑐𝑘
 − 𝜃′ = 0

𝑘𝑦𝜃
′′ + 𝑣′𝑐𝑘

 − 𝜃 = 0
→ {

𝑣𝑐𝑘
 = 𝑁𝑣,𝑣 𝑣𝑐𝑒𝑘

 +𝑁𝑣,𝜃𝜃𝑒
𝜃 = 𝑁𝜃,𝑣 𝑣𝑐𝑒𝑘

 +𝑁𝜃,𝜃𝜃𝑒
 

(C-23) 

𝑁𝑣,𝑣 = 𝛽𝑦(−2𝜉
3 + 3𝜉2 + 𝛼𝑦𝜉) 𝑁𝑣,𝜃 = 𝛽𝑦𝐿 (𝜉

3 +
𝛼𝑦 − 2

2
𝜉2 −

𝛼𝑦

2
𝜉) 

𝑁′𝑣,𝑣 =
𝛽𝑦

𝐿
(−6𝜉2 + 6𝜉 + 𝛼𝑦) 𝑁′𝑣,𝜃 = 𝛽𝑦 (3𝜉

2 + (𝛼𝑦 − 2)𝜉 −
𝛼𝑦

2
) 

𝑁′′𝑣,𝑣 =
𝛽𝑦

𝐿2
(−12𝜉 + 6) 𝑁′′𝑣,𝜃 =

𝛽𝑦

𝐿
(6𝜉 + (𝛼𝑦 − 2)) 

𝑁𝜃,𝑣 = −
6𝛽𝑦

𝐿
(𝜉2 − 𝜉) 𝑁𝜃,𝜃 = 𝛽𝑦(3𝜉

2 + (𝛼𝑦 − 2)𝜉) 

𝑁′𝜃,𝑣 = −
6𝛽𝑦

𝐿2
(2𝜉 − 1) 𝑁′𝜃,𝜃 =

𝛽𝑦

𝐿
(6𝜉 + (𝛼𝑦 − 2)) 

𝑁′𝜃,𝑣 = −
12𝛽𝑦

𝐿3
 𝑁′𝜃,𝜃 =

6𝛽𝑦

𝐿2
 

{
𝑤′′

𝑐𝑘
 + 𝜓′ = 0

𝑘𝑧𝜓
′′ − 𝑤′

𝑐𝑘
 − 𝜓 = 0

→ {
𝑤𝑐𝑘
 = 𝑁𝑤,𝑤 𝑤𝑐𝑒𝑘

 +𝑁𝑤,𝜓𝜓𝑒
𝑤𝑐𝑘
 = 𝑁𝑤,𝑤 𝑤𝑐𝑒𝑘

 +𝑁𝑤,𝜓𝜓𝑒
 

(C-24) 

𝑁𝑤,𝑤 = 𝛽𝑧(−2𝜉
3 + 3𝜉2 + 𝛼𝑧𝜉) 𝑁𝑤,𝜓 = −𝛽𝑧𝐿 (𝜉

3 +
𝛼𝑧 − 2

2
𝜉2 −

𝛼𝑧
2
𝜉) 

𝑁′𝑤,𝑤 =
𝛽𝑧
𝐿
(−6𝜉2 + 6𝜉 + 𝛼𝑧) 𝑁′𝑤,𝜓 = −𝛽𝑧 (3𝜉

2 + (𝛼𝑧 − 2)𝜉 −
𝛼𝑧
2
) 

𝑁′𝑤,𝑤 =
𝛽𝑧
𝐿2
(−12𝜉 + 6) 𝑁′′𝑤,𝜓 = −

𝛽𝑧
𝐿
(6𝜉 + (𝛼𝑧 − 2)) 

𝑁𝜓,𝑤 =
6𝛽𝑧
𝐿
(𝜉2 − 𝜉) 𝑁𝜓,𝜓 = 𝛽𝑧(3𝜉

2 + (𝛼𝑧 − 2)𝜉) 

𝑁′𝜓,𝑤 =
6𝛽𝑧
𝐿2

(2𝜉 − 1) 𝑁′𝜓,𝜓 =
𝛽𝑧
𝐿
(6𝜉 + (𝛼𝑧 − 2)) 

𝑁′𝜓,𝑤 =
12𝛽𝑧
𝐿3

 𝑁′′𝜓,𝜓 =
6𝛽𝑧
𝐿2
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C-6 

𝑁 =

[
 
 
 
 
 
 
𝑁𝑢,𝑢 0 0 0 0 0

0 𝑁𝑣,𝑣 0 0 0 𝑁𝑣,𝜃
0 0 𝑁𝑤,𝑤 0 𝑁𝑤,𝜓 0

0 0 0 𝑁𝜑,𝜑 0 0

0 0 𝑁𝜓,𝑤 0 𝑁𝜓,𝜓 0

0 𝑁𝜃,𝑣 0 0 0 𝑁𝜃,𝜃]
 
 
 
 
 
 

 

𝑁′ =

[
 
 
 
 
 
 
𝑁′𝑢,𝑢 0 0 0 0 0

0 𝑁′𝑣,𝑣 0 0 0 𝑁′𝑣,𝜃
0 0 𝑁′𝑤,𝑤 0 𝑁′𝑤,𝜓 0

0 0 0 𝑁′𝜑,𝜑 0 0

0 0 𝑁′𝜓,𝑤 0 𝑁′𝜓,𝜓 0

0 𝑁′𝜃,𝑣 0 0 0 𝑁′𝜃,𝜃]
 
 
 
 
 
 

 

𝑁′′ =

[
 
 
 
 
 
 
𝑁′′𝑢,𝑢 0 0 0 0 0

0 𝑁′′𝑣,𝑣 0 0 0 𝑁′′𝑣,𝜃
0 0 𝑁′′𝑤,𝑤 0 𝑁′′𝑤,𝜓 0

0 0 0 𝑁′′𝜑,𝜑 0 0

0 0 𝑁′′𝜓,𝑤 0 𝑁′′𝜓,𝜓 0

0 𝑁′′𝜃,𝑣 0 0 0 𝑁′′𝜃,𝜃]
 
 
 
 
 
 

 

(C-25) 

C.2.7 Internal Node with small deformation assumption 

𝑑𝑞𝑐 = 𝑇𝑑,𝑐
−1 [

𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] = 𝑇𝑑,𝑐

−1 [
𝑇𝐵

𝑁𝑐𝑇𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒 = 𝑇𝑐𝑑𝑞𝑒 (C-26) 

𝑑�̇�𝑐 = 𝑇𝑑,𝑐
−1 [

𝑑�̇�𝐵

𝑑�̇�𝑑,𝑐
] + �̇�𝑑,𝑐

−1 [
𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
]

= 𝑇𝑐𝑑�̇�𝑒 + (𝑇𝑑,𝑐
−1 [

�̇�𝐵

𝑁𝑐�̇�𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒 + �̇�𝑑,𝑐

−1 [
𝑇𝐵

𝑁𝑐𝑇𝑑,𝑒𝑛𝑑
])𝑑𝑞𝑒

= 𝑇𝑐𝑑�̇�𝑒 + �̇�𝑐𝑑𝑞𝑒 

(C-27) 
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C-7 

C.2.8 Virtual internal power 

𝛿𝑝𝑖𝑛𝑡 = −∭∑∑𝛿 𝜀�̇�𝑗
 

𝐵
 𝜎𝑖𝑗

 
𝐵
 

𝑗𝑖

𝑑𝑉

 

𝑉

= −∫ ∬∑∑𝛿 𝜀�̇�𝑗
 

𝐵
 𝜎𝑖𝑗

 
𝐵
 

𝑗𝑖

𝑑𝐴

 

𝐴(𝑠)

𝑑𝑠

𝐿

0

= −∫ ∬(𝛿 𝜀�̇�𝑥
 

𝐵
 𝐸 𝜀𝑥𝑥

 
𝐵
 + 𝛿 𝜀�̇�𝑦

 
𝐵
 𝐺 𝜀𝑥𝑦

 
𝐵
 + 𝛿 𝜀�̇�𝑧

 
𝐵
 𝐺 𝜀𝑥𝑧

 
𝐵
 )𝑑𝐴

 

𝐴(𝑠)

𝑑𝑠

𝐿

0

 

(C-28) 

𝛿𝑝𝑖𝑛𝑡 = −∫𝛿�̇�𝑑,𝑐
′𝑇 (𝐻1𝑞𝑑,𝑐

′ +𝐻2𝑞𝑑,𝑐)𝑑𝑠

𝐿

0

+∫𝛿�̇�𝑑,𝑐
𝑇 (𝐻3𝑞𝑑,𝑐

′ +𝐻4𝑞𝑑,𝑐)𝑑𝑠

𝐿

0

= −𝛿�̇�𝑑,𝑐
𝑇 (𝐻1𝑞𝑑,𝑐

′ + 𝐻2𝑞𝑑,𝑐)|
0

𝐿

+∫𝛿�̇�𝑑,𝑐
𝑇 [−𝐻1𝑞𝑑,𝑐

′′ + (𝐻3 −𝐻2) 𝑞𝑑,𝑐
′ +𝐻4𝑞𝑑,𝑐] 𝑑𝑠

𝐿

0

 

(C-29) 

𝐻1 = 𝑑𝑖𝑎𝑔 ([𝐸𝐴
𝐺𝐴

4

𝐺𝐴

4

𝐺(𝐼𝑦 + 𝐼𝑧)

4
𝐸𝐼𝑧 𝐸𝐼𝑦]) 

(C-30) 
𝐻2 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0

0 0 0 0 0 −
𝐺𝐴

4

0 0 0 0
𝐺𝐴

4
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 
 
 

 𝐻3 = 𝐻2
𝑇 

𝐻4 = 𝑑𝑖𝑎𝑔 ([0 0 0 0
𝐺𝐴

4

𝐺𝐴

4
]) 

𝛿𝑝𝑖𝑛𝑡 = −𝛿�̇�𝑑,𝑐
𝑇 (𝐻1𝑞𝑑,𝑐

′ +𝐻2𝑞𝑑,𝑐)|
0

𝐿

= −𝛿�̇�𝑑,𝑒𝑛𝑑
𝑇 𝑁𝑐

𝑇 (𝐻1𝑁𝑐
′ +𝐻2𝑁𝑐)|

0

𝐿

𝑞𝑑,𝑒𝑛𝑑 (C-31) 

Apply small deformation assumption 

�̇�𝑑,𝑒𝑛𝑑 = 𝑑𝑞𝑑,𝑒𝑛𝑑 = 𝑇𝑑,𝑒𝑛𝑑𝑑𝑞𝑒 (C-32) 

𝛿𝑝𝑖𝑛𝑡 = −𝛿𝑑𝑞𝑒
𝑇𝑇𝑑,𝑒𝑛𝑑

𝑇 𝑁𝑐
𝑇 (𝐻1𝑁𝑐

′ +𝐻2𝑁𝑐)|
0

𝐿

𝑞𝑑,𝑒𝑛𝑑 = −𝛿𝑑𝑞𝑒
𝑇𝐹𝑖𝑛𝑡 

(C-33) 
𝐹𝑖𝑛𝑡 = 𝑇𝑑,𝑒𝑛𝑑

𝑇 𝑁𝑐
𝑇 (𝐻1𝑁𝑐

′ +𝐻2𝑁𝑐)|
0

𝐿

𝑞𝑑,𝑒𝑛𝑑 = 𝑇𝑑,𝑒𝑛𝑑
𝑇 𝐾𝑑,𝑒𝑛𝑑𝑞𝑑,𝑒𝑛𝑑 
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C-8 

C.2.9 Virtual inertial power 

𝛿𝑝𝑖𝑛𝑒 = −∭𝛿 �̇�𝐼
 𝑇 �̈�𝐼

 𝜌𝑑𝑉

 

𝑉

= −∫ ∬𝛿 ( �̇�𝑐𝐼
 + 𝛺𝑐 𝑡𝑐

 )
𝑇

( �̈�𝑐𝐼
 + 𝛢𝑐 𝑡𝑐

 ) 𝜌𝑑𝐴

 

𝐴(𝑠)

𝑑𝑠

𝐿

0

= −∫(𝛿 �̇�𝑐𝐼
 𝑇

�̈�𝑐𝐼
 𝐴 + 𝛿 �̇�𝑐𝐼

 𝑇
𝛢𝑐 ∬ 𝑡𝑐

 𝑑𝐴

 

𝐴(𝑠)

+ ∬ 𝑡𝑐
 𝑇𝑑𝐴

 

𝐴(𝑠)

𝛿𝛺𝑐
𝑇 �̈�𝑐𝐼
 

𝐿

0

+ ∬ 𝑡𝑐
 𝑇𝛿𝛺𝑐

𝑇𝛢𝑐 𝑡𝑐
 𝑑𝐴

 

𝐴(𝑠)

)𝑑𝑠 

(C-34) 

For symmetrical sections 

∬ 𝑡𝑐
 𝑑𝐴

 

𝐴(𝑠)

= (∬ 𝑡𝑐
 𝑇𝑑𝐴

 

𝐴(𝑠)

)

𝑇

= [

0
𝐴𝑐
 
𝑦

𝐴𝑐
 
𝑧

] = 0 (C-35) 

𝛿𝑝𝑖𝑛𝑒 = −∭𝛿 �̇�𝐼
 𝑇 �̈�𝐼

 𝜌𝑑𝑉

 

𝑉

= −∫ ∬𝛿 ( �̇�𝑐𝐼
 + 𝛺𝑐 𝑡𝑐

 )
𝑇

( �̈�𝑐𝐼
 + 𝛢𝑐 𝑡𝑐

 ) 𝜌𝑑𝐴

 

𝐴(𝑠)

𝑑𝑠

𝐿

0

= −∫[𝛿 �̇�𝑐𝐼
 𝑇 �̈�𝑐𝐼

 𝐴 + 𝐼𝑦𝛿 (𝛺𝑐𝑔𝑦)
𝑇

𝛢𝑐𝑔𝑦 + 𝐼𝑧𝛿 (𝛺𝑐𝑔𝑧)
𝑇

𝛢𝑐𝑔𝑧] 𝜌𝑑𝑠

𝐿

0

= −∫𝛿 [
𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
]

𝑇

(𝑀𝐵,𝑐 [
𝑑�̇�𝐵

𝑑�̇�𝑑,𝑐
] + 𝐷𝐵,𝑐 [

𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
]) 𝑑𝑠

𝐿

0

 

(C-36) 

𝑀𝐵,𝑐 = 𝜌𝐴𝐻𝑡
𝑇𝐻𝑡 + 𝜌𝐼𝑦𝐻𝑟,𝑦

𝑇 𝐻𝑟,𝑦 + 𝜌𝐼𝑧𝐻𝑟,𝑧
𝑇 𝐻𝑟,𝑧 

𝐷𝐵,𝑐 = 𝜌𝐴𝐻𝑡
𝑇𝐷𝑡 + 𝜌𝐼𝑦𝐻𝑟,𝑦

𝑇 𝐷𝑟,𝑦 + 𝜌𝐼𝑧𝐻𝑟,𝑧
𝑇 𝐷𝑟,𝑧 

(C-37) 

[
𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
] = [

𝑑𝑞𝐵

�̇�𝑑,𝑐
] = [

𝐼 0

0 𝑁𝑐
] [
𝑑𝑞𝐵

�̇�𝑑,𝑒𝑛𝑑
] = [

𝐼 0

0 𝑁𝑐
] [

𝑑𝑞𝐵

𝑑𝑞𝑑,𝑒𝑛𝑑
]

= [
𝐼 0

0 𝑁𝑐
] [

𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒 = [

𝑇𝐵

𝑁𝑐𝑇𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒 

(C-38) 
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[
𝑑�̇�𝐵

𝑑�̇�𝑑,𝑐
] = [

𝑑�̇�𝐵

�̈�𝑑,𝑐
] = [

𝐼 0

0 𝑁𝑐
] [
𝑑�̇�𝐵

�̈�𝑑,𝑒𝑛𝑑
] = [

𝐼 0

0 𝑁𝑐
] [

𝑑�̇�𝐵

𝑑�̇�𝑑,𝑒𝑛𝑑
]

= [
𝐼 0

0 𝑁𝑐
] [

𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 𝑑�̇�𝑒 + [

𝐼 0

0 𝑁𝑐
] [

�̇�𝐵

�̇�𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒

= [
𝐼 0

0 𝑁𝑐
] [

𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 𝑑�̇�𝑒 + [

�̇�𝐵

𝑁𝑐�̇�𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒 

(C-39) 

𝛿𝑝𝑖𝑛𝑒 = −𝛿𝑑𝑞𝑒
𝑇 [

𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

[∫[
𝐼 0

0 𝑁𝑐
]

𝑇

(𝑀𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
]) 𝑑𝑠

𝐿

0

[
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 𝑑�̇�𝑒

+∫[
𝐼 0

0 𝑁𝑐
]

𝑇

(𝑀𝐵,𝑐 [
�̇�𝐵

𝑁𝑐�̇�𝑑,𝑒𝑛𝑑
] + 𝐷𝐵,𝑐 [

𝑇𝐵

𝑁𝑐𝑇𝑑,𝑒𝑛𝑑
])𝑑𝑠

𝐿

0

𝑑𝑞𝑒] =

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒𝑑�̇�𝑒 + 𝐷𝑒𝑑𝑞𝑒) 

(C-40) 

𝑀𝑒 = [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝑀𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
] 𝑑𝑠

𝐿

0

[
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 

𝐷𝑒 = [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

(𝑀𝐵,𝑐 [
�̇�𝐵

𝑁𝑐�̇�𝑑,𝑒𝑛𝑑
] + 𝐷𝐵,𝑐 [

𝑇𝐵

𝑁𝑐𝑇𝑑,𝑒𝑛𝑑
])𝑑𝑠

𝐿

0

 

(C-41) 

C.2.10Virtual external power 

𝛿𝑝𝑒𝑥𝑡 =∭𝛿 �̇�𝐼
 𝑇 𝑔𝐼

 𝜌𝑑𝑉

 

𝑉

= ∫ ∬𝛿 ( �̇�𝑐𝐼
 + 𝛺𝑐 𝑡𝑐

 )
𝑇

𝜌𝑑𝐴

 

𝐴(𝑠)

𝑑𝑠

𝐿

0

𝑔𝐼
 = ∫𝛿 �̇�𝑐𝐼

 𝑇𝜌𝐴𝑑𝑠

𝐿

0

𝑔𝐼
 

= ∫𝛿 [
𝑑𝑞𝐵

𝑑𝑞𝑑,𝑐
]

𝑇

𝐻𝑡
𝑇 𝑔𝐼
 𝜌𝐴𝑑𝑠

𝐿

0

 

(C-42) 

Apply small deformation assumption 

𝛿𝑝𝑖𝑛𝑒 = 𝛿𝑑𝑞𝑒
𝑇 [

𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝐻𝑡
𝑇𝜌𝐴𝑑𝑠

𝐿

0

𝑔𝐼
 = −𝛿𝑑𝑞𝑒

𝑇𝑉𝑒𝑥𝑡,𝑔 𝑔𝐼
 

= −𝛿𝑑𝑞𝑒
𝑇𝐹𝑒𝑥𝑡,𝑔 

(C-43) 
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𝑉𝑒𝑥𝑡,𝑔 = − [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝐻𝑡
𝑇𝜌𝐴𝑑𝑠

𝐿

0

 
(C-44) 

𝐹𝑒𝑥𝑡,𝑔 = 𝑉𝑒𝑥𝑡,𝑔 𝑔𝐼
  

C.2.11Virtual power principle for Timoshenko Beam 

𝛿𝑝𝑒 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡,𝑔

= −𝛿𝑑𝑞𝑒
𝑇 [𝑀𝑒𝑑�̇�𝑒 + 𝐷𝑒𝑑𝑞𝑒 + 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡,𝑔] 

(C-45) 

C.2.12Small deformation assumption 

𝑢𝑐𝐵
 ≪ 𝑟𝑟,𝑐𝐵

  𝑟𝑟,𝑐𝐵
 + 𝑢𝑐𝐵

 ≈ 𝑟𝑟,𝑐𝐵
  (C-46) 

𝑟𝑟,𝑐𝐵
 = 𝑠𝑔𝑥 (C-47) 

𝜓𝑐𝐵
 → 0 𝑅𝑑,𝑐 ≈ 𝐼 

(C-48) 𝑅𝐵 = 𝑅𝑑,𝑐𝑅𝑐 ≈ 𝑅𝑐 

�̃�𝑐
 𝑐 ≈ �̇�𝑐𝐵

 ≈ [0 𝐼]𝑁𝑐�̇�𝑑,𝑒𝑛𝑑 (C-49) 

Mass Matrix 

𝑀𝐵,𝑐 = 𝜌𝐴𝐻𝑡
𝑇𝐻𝑡 + 𝜌𝐼𝑦𝐻𝑟,𝑦

𝑇 𝐻𝑟,𝑦 + 𝜌𝐼𝑧𝐻𝑟,𝑧
𝑇 𝐻𝑟,𝑧 

𝐷𝐵,𝑐 = 𝜌𝐴𝐻𝑡
𝑇𝐷𝑡 + 𝜌𝐼𝑦𝐻𝑟,𝑦

𝑇 𝐷𝑟,𝑦 + 𝜌𝐼𝑧𝐻𝑟,𝑧
𝑇 𝐷𝑟,𝑧 

(C-50) 

𝑀𝑒 = [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝑀𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
] 𝑑𝑠

𝐿

0

[
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 

𝐷𝑒 = [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

(𝑀𝐵,𝑐 [
�̇�𝐵

𝑁𝑐�̇�𝑑,𝑒𝑛𝑑
] + 𝐷𝐵,𝑐 [

𝑇𝐵

𝑁𝑐𝑇𝑑,𝑒𝑛𝑑
])𝑑𝑠

𝐿

0

 

(C-51) 
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𝐻𝑡 ≈ [𝐼 −𝑅𝐵 �̃�𝑟,𝑐𝐵
 𝑅𝐵 0] 

𝐻𝑡
𝑇𝐻𝑡 =

[
 
 
 
 
 

𝐼 −𝑠𝑅𝐵�̃�𝑥 𝑅𝐵 0

𝑠�̃�𝑥𝑅𝐵
𝑇 −𝑠2�̃�𝑥�̃�𝑥 𝑠�̃�𝑥 0

𝑅𝐵
𝑇 −𝑠�̃�𝑥 𝐼 0

0 0 0 0]
 
 
 
 
 

 
(C-52) 

𝐻𝑟,𝑦 ≈ [
0 −𝑅𝐵�̃�𝑦 0 −𝑅𝐵�̃�𝑦] 

𝐻𝑟,𝑦
𝑇 𝐻𝑟,𝑦 =

[
 
 
 
 
 
0 0 0 0

0 −�̃�𝑦�̃�𝑦 0 −�̃�𝑦�̃�𝑦

0 0 0 0

0 −�̃�𝑦�̃�𝑦 0 −�̃�𝑦�̃�𝑦]
 
 
 
 
 

 
(C-53) 

𝐻𝑟,𝑧 ≈ [
0 −𝑅𝐵�̃�𝑧 0 −𝑅𝐵�̃�𝑧] 

𝐻𝑟,𝑧
𝑇 𝐻𝑟,𝑧 =

[
 
 
 
 
 
0 0 0 0

0 −�̃�𝑧�̃�𝑧 0 −�̃�𝑧�̃�𝑧

0 0 0 0

0 −�̃�𝑧�̃�𝑧 0 −�̃�𝑧�̃�𝑧]
 
 
 
 
 

 
(C-54) 

𝑀𝐵,𝑐 = 𝜌

[
 
 
 
 
 

𝐴𝐼 −𝐴𝑠𝑅𝐵�̃�𝑥 𝐴𝑅𝐵 0

𝐴𝑠�̃�𝑥𝑅𝐵
𝑇 −𝐴𝑠2�̃�𝑥�̃�𝑥 + 𝐽 𝐴𝑠�̃�𝑥 𝐽

𝐴𝑅𝐵
𝑇 −𝐴𝑠�̃�𝑥 𝐴𝐼 0

0 𝐽 0 𝐽
]
 
 
 
 
 

 (C-55) 

𝐽 ≜ −𝐼𝑦�̃�𝑦�̃�𝑦 − 𝐼𝑧�̃�𝑧�̃�𝑧 = [

𝐼𝑦 + 𝐼𝑧 0 0

0 𝐼𝑧 0
0 0 𝐼𝑦

] (C-56) 

𝑀𝑒 = [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0 0

0 𝑁𝑐,1 𝑁𝑐,2
]

𝑇

𝑀𝐵,𝑐 [
𝐼 0 0

0 𝑁𝑐,1 𝑁𝑐,2
] 𝑑𝑠

𝐿

0

[
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

= [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

𝑀𝐵,𝑒𝑛𝑑 [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 

(C-57) 

Inertial Force 
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𝐹𝑖𝑛𝑒 = 𝐷𝑒𝑑𝑞𝑒 = [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

(𝑀𝐵,𝑐 [
�̇�𝐵

𝑁𝑐�̇�𝑑,𝑒𝑛𝑑
]

𝐿

0

+ 𝐷𝐵,𝑐 [
𝑇𝐵

𝑁𝑐𝑇𝑑,𝑒𝑛𝑑
]) 𝑑𝑠 𝑑𝑞𝑒

= [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

(𝑀𝐵,𝑒𝑛𝑑 [
�̇�𝐵

�̇�𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒

+∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝐷𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
] 𝑑𝑠

𝐿

0

[
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
] 𝑑𝑞𝑒) 

(C-58) 

𝐷𝐵,𝑐 = 𝜌𝐴𝐻𝑡
𝑇𝐷𝑡 + 𝜌𝐼𝑦𝐻𝑟,𝑦

𝑇 𝐷𝑟,𝑦 + 𝜌𝐼𝑧𝐻𝑟,𝑧
𝑇 𝐷𝑟,𝑧 (C-59) 

𝐷𝑡 = [0 −𝑠𝑅𝐵 �̃�𝐵𝐵
 �̃�𝑥 2𝑅𝐵 �̃�𝐵𝐵

 0] = 𝑅𝐵 �̃�𝐵𝐵
 [0 −𝑠�̃�𝑥 2𝐼 0] 

(C-60) 
𝐻𝑡
𝑇𝐷𝑡 =

[
 
 
 
 
 
0 −𝑠𝑅𝐵 �̃�𝐵𝐵

 �̃�𝑥 2𝑅𝐵 �̃�𝐵𝐵
 0

0 −𝑠 �̃�𝑟,𝑐𝐵
 �̃�𝐵𝐵

 �̃�𝑥 2 �̃�𝑟,𝑐𝐵
 �̃�𝐵𝐵

 0

0 −𝑠 �̃�𝐵𝐵
 �̃�𝑥 2 �̃�𝐵𝐵

 0

0 0 0 0]
 
 
 
 
 

 

𝐷𝑟,𝑦 = [0 −𝑅𝐵 �̃�𝐵𝐵
 �̃�𝑦 0 −𝑅𝐵 (2 �̃�𝐵𝐵

 + �̃�𝑐
 𝑐) �̃�𝑦]

= 𝑅𝐵 [0 − �̃�𝐵𝐵
 0 −(2 �̃�𝐵𝐵

 + �̃�𝑐
 𝑐)] �̃�𝑦

= 𝑅𝐵 [0 − �̃�𝐵𝐵
 0 −(2 �̃�𝐵𝐵

 + �̇�𝑐𝐵
 )] �̃�𝑦

= 𝑅𝐵 [0 − �̃�𝐵𝐵
 0 −(2 �̃�𝐵𝐵

 + [0 𝐼]𝑁𝑐�̇�𝑑,𝑒𝑛𝑑)] �̃�𝑦 
(C-61) 

𝐻𝑟,𝑦
𝑇 𝐷𝑟,𝑦 =

[
 
 
 
 
 
 
0 0 0 0

0 −�̃�𝑦 �̃�𝐵𝐵
 �̃�𝑦 0 −�̃�𝑦 (2 �̃�𝐵𝐵

 + �̃�𝑐
 𝑐) �̃�𝑦

0 0 0 0

0 −�̃�𝑦 �̃�𝐵𝐵
 �̃�𝑦 0 −�̃�𝑦 (2 �̃�𝐵𝐵

 + �̃�𝑐
 𝑐) �̃�𝑦]

 
 
 
 
 
 

 

 



C Detailed Dynamics Models of Different Types of Elements 

C-13 

𝐷𝑟,𝑧 = [0 −𝑅𝐵 �̃�𝐵𝐵
 �̃�𝑧 0 −𝑅𝐵 (2 �̃�𝐵𝐵

 + �̃�𝑐
 𝑐) �̃�𝑧] 

(C-62) 
𝐻𝑟,𝑧
𝑇 𝐷𝑟,𝑧 =

[
 
 
 
 
 
 
0 0 0 0

0 −�̃�𝑧 �̃�
𝐵

𝐵
 �̃�𝑧 0 −�̃�𝑧 (2 �̃�𝐵𝐵

 + �̃�𝑐
 𝑐) �̃�𝑧

0 0 0 0

0 −�̃�𝑧 �̃�
𝐵

𝐵
 �̃�𝑧 0 −�̃�𝑧 (2 �̃�𝐵𝐵

 + �̃�𝑐
 𝑐) �̃�𝑧]

 
 
 
 
 
 

 

𝐷𝑒 = [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

(𝑀𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
] [

�̇�𝐵

�̇�𝑑,𝑒𝑛𝑑
] + 𝐷𝐵,𝑐 [

𝐼 0

0 𝑁𝑐
] [

𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]) 𝑑𝑠

𝐿

0

= [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

(∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝑀𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
] 𝑑𝑠

𝐿

0

[
�̇�𝐵

�̇�𝑑,𝑒𝑛𝑑
]

+ ∫ [
𝐼 0

0 𝑁𝑐
]

𝑇

𝐷𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
] 𝑑𝑠

𝐿

0

[
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
])

= [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

(𝑀𝐵,𝑒𝑛𝑑 [
�̇�𝐵

�̇�𝑑,𝑒𝑛𝑑
] + 𝐷𝐵,𝑒𝑛𝑑 [

𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]) 

(C-63) 

𝐷𝐵,𝑒𝑛𝑑 = ∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝐷𝐵,𝑐 [
𝐼 0

0 𝑁𝑐
] 𝑑𝑠

𝐿

0

 (C-64) 

Gravity 

𝑉𝑒𝑥𝑡,𝑔 = −𝜌𝐴 [
𝑇𝐵

𝑇𝑑,𝑒𝑛𝑑
]

𝑇

∫[
𝐼 0

0 𝑁𝑐
]

𝑇

𝐻𝑡
𝑇𝑑𝑠

𝐿

0

 (C-65) 

C.3 Two Nodes Strut Tie Dynamic Model based on Absolute 
Coordination 

C.3.1 Ideal Strut Tie Model Assumption 

The strut tie model described in this part is an ideal strut tie model, which satisfies the 

following assumptions: 
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5. Only the normal stress from axial tension and compression is considered, and 

other internal forces that may exist in the real rod are ignored; 

6. the normal stress is evenly distributed with the length of the rod; 

7. the cross section of the rod is symmetrical about the y- and z-axis of the sec-

tion local coordinate; 

8. the density and total mass of the rod remain unchanged. 

C.3.2 Generalized Coordinate and Generalized Velocity 

According to the above assumptions, the generalized coordinates and generalized ve-

locity of the two nodes strut tie model can be expressed by the position vectors and 

translational velocity of the two nodes. 

𝑞𝑒 = [
𝑟1𝐼
 

𝑟2𝐼
 ] 𝑑𝑞𝑒 = �̇�𝑒 = [

�̇�1𝐼
 

�̇�2𝐼
 ] (C-66) 

Since only the x-axis is determined (parallel to the line connected the two end nodes), 

according to the third assumption the posture of the rod can be determined only based 

on the x-axis. 

𝜑𝐵 = 𝜑𝐵𝑛𝜑
𝐵  𝑅𝐵 = 𝑅 (𝜑

𝐵) (C-67) 

where 

𝑠𝑖𝑛 𝜑𝐵 = ‖�̃�𝑥𝑛𝑥‖ 𝑙𝜑,𝐵⁄  𝑐𝑜𝑠𝜑𝐵 = 𝑔𝑥
𝑇𝑛𝑥 𝑙𝜑,𝐵⁄  

(C-68) 
𝑛𝜑
𝐵 = �̃�𝑥𝑛𝑥 ‖�̃�𝑥𝑛𝑥‖⁄  𝑙𝜑,𝐵 = √‖�̃�𝑥𝑛𝑥‖

2

+ (𝑔𝑥𝑇𝑛𝑥)
2

 

According to the relationship between the translational velocities of the two end nodes, 

the angular velocity of the rod and the velocity of the axial deformation can be obtained. 

�̇�12𝐵
 = 𝑔𝑥𝑛𝑥

𝑇[−𝐼 𝐼]𝑑𝑞𝑒 = 𝑇𝑟𝑑𝑞𝑒 

𝜔𝐵𝐵
 =

1

‖ 𝑟12𝐼
 ‖

𝑅𝑥,90° (𝑅𝐵
𝑇 − 𝑔𝑥𝑛𝑥

𝑇) [−𝐼 𝐼]𝑑𝑞𝑒 = 𝑇𝜑𝑑𝑞𝑒 (C-69) 

where 
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𝑟12𝐼
 = 𝑟2𝐼

 − 𝑟1𝐼
  𝑛𝑥 = 𝑅𝐵𝑔𝑥 𝑅𝑥,90° = 𝑅 ([

𝜋

2
0 0]

𝑇

) (C-70) 

The angular acceleration of the rod can be written as 

�̇�𝐵𝐵
 = �̇�𝜑𝑑𝑞𝑒 + 𝑇𝜑𝑑�̇�𝑒 (C-71) 

where 

�̇�𝜑 = 𝑅𝑥,90° [
𝑟12𝐼
 𝑇

�̇�12𝐼
 

‖ 𝑟12𝐼
 ‖

2 𝐼 − �̃�𝐵𝐵
 ] �̃�𝑥𝑇𝜑 �̇�12𝐼

 = �̇�2𝐼
 − �̇�1𝐼

  (C-72) 

C.3.3 Kinematics and Deformation of Points on the Beam 

Since for the strut tie model only the axial deformation is considered, there is no relative 

rotation with the local coordinate on any cross section. The position, velocity and ac-

celeration of any point on any section of the rod can be expressed as 

𝑟𝐼
 = 𝑟𝑐𝐼

 + 𝑅𝐵 𝑡𝑐
  

�̇�𝐼
 = �̇�𝑐𝐼

 + 𝑅𝐵 �̃�𝐵𝐵
 𝑡𝑐

  

�̈�𝐼
 = �̈�𝑐𝐼

 + 𝑅𝐵 �̇̃�𝐵𝐵
 𝑡𝑐

 + 𝑅𝐵 �̃�𝐵𝐵
 �̃�𝐵𝐵

 𝑡𝑐
  

(C-73) 

According to the definition of strain in absolute coordinates, the axial strain of the rod 

can be written as 

𝜀𝐼
 = ‖ 𝑟𝑐′𝐼

 ‖ − 1 (C-74) 

The velocity and acceleration of the axial strain can be expressed as 

𝜀̇𝐼
 =

1

‖ 𝑟′𝐼
 ‖

𝑟′𝐼
 𝑇𝑁′𝑑𝑞𝑒 =

1

‖ 𝑟′𝐼
 ‖

𝑞𝑒
𝑇𝑁′𝑇 𝑁′𝑑𝑞𝑒 ≜ 𝑇𝜀

𝑇𝑑𝑞𝑒 

𝜀̈𝐼
 =

1

‖ 𝑟′𝐼
 ‖

𝑞𝑒
𝑇𝑁′𝑇 𝑁′𝑑�̇�𝑒 + �̇�′𝐼

 𝑇
1

‖ 𝑟′𝐼
 ‖

(𝐼 −
𝑟′𝐼
 𝑟′𝐼

 𝑇

‖ 𝑟′𝐼
 ‖

2)𝑁
′𝑑𝑞𝑒 ≜ 𝑇𝜀

𝑇𝑑�̇�𝑒 + �̇�𝜀
𝑇𝑑𝑞𝑒 

(C-75) 

The stress can be obtained from the constitutive relationship with strain. In order to 

avoid the high-frequency oscillation of the rod caused by strain, the average stress is 
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used to replace the instantaneous stress by introducing smooth factor ℎ. The average 

stress in inertial coordinate can be expressed as 

�̅�𝐼
 = 𝐸 𝜀̅𝐼

 = 𝐸 ( 𝜀𝐼
 +

ℎ

2
𝜀̇𝐼
 +

ℎ2

6
𝜀̈𝐼
 ) = 𝐸 𝜀𝐼

 + 𝐸 (
ℎ

2
𝑇𝜀
𝑇 +

ℎ2

6
�̇�𝜀
𝑇) 𝑑𝑞𝑒 + 𝐸

ℎ2

6
𝑇𝜀
𝑇𝑑�̇�𝑒 (C-76) 

C.3.4 Discretization 

In order to satisfy the second assumption, the first derivative of the position vector of 

the center of any section on the rod should be constant. Therefore, its position vector 

can be expressed by linear interpolation of position vectors of two end section. The 

position, velocity and acceleration of this center point can be expressed as 

𝑟𝑐𝐼
 ≜ 𝑁𝑞𝑒 �̇�𝑐𝐼

 = 𝑁𝑑𝑞𝑒 �̈�𝑐𝐼
 = 𝑁𝑑�̇�𝑒 (C-77) 

Where 𝑁 is the shape function, and its specific expression is 

𝑁 = [(1 − 𝜉)𝐼 𝜉𝐼] (C-78) 

with 𝜉 = 𝑠 𝐿⁄ . The first derivative of its position and velocity vector with respect to the 

arc length coordinate 𝑠 can be written as 

𝑟𝑐′𝐼
 ≜ 𝑁′𝑞𝑒 �̇�𝑐′𝐼

 = 𝑁′�̇�𝑒 (C-79) 

with 

𝑁′ =
1

𝐿
[−𝐼 𝐼] (C-80) 

C.3.5 The Virtual Power of Strut Tie Model 

The inertial virtual power of strut tie model can be written as 
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𝛿𝑝𝑖𝑛𝑒 = −∭𝛿 �̇�𝐼
 𝑇 �̈�𝐼

 𝜌𝑑𝑉

 

𝑉

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑒𝑑�̇�𝑒 + 𝐷𝑒,𝑖𝑛𝑒𝑑𝑞𝑒)

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑒𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑒) 

(C-81) 

The mass matrix and damping matrix generated from the virtual inertial power can be 

expressed as 

𝑀𝑒,𝑖𝑛𝑒 = 𝜌𝐿 (
𝐴

6
[
2𝐼 𝐼

𝐼 2𝐼
] + 𝑇𝜑

𝑇𝐽𝑇𝜑) 𝐷𝑒,𝑖𝑛𝑒 = −𝜌𝐿𝑇𝜑
𝑇 (𝐽�̇�𝜑 + 𝐽̇𝑇𝜑) (C-82) 

where 𝐽 is the moment of inertia of section 

𝐽 = 𝑑𝑖𝑎𝑔([𝐼𝑦 + 𝐼𝑧 𝐼𝑧 𝐼𝑦]) 𝐽̇ 𝜔𝐵𝐵
 = �̃�𝐵𝐵

 𝐽 𝜔𝐵𝐵
  

(C-83) 

The virtual internal power with the smooth factor can be written as 

𝛿𝑝𝑖𝑛𝑡 = −∫ 𝛿 𝜀̇𝐼
  �̅�𝐼

 𝐴𝑑𝑠
𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑡𝑑�̇�𝑒 + 𝐷𝑒,𝑖𝑛𝑡𝑑𝑞𝑒 + 𝐾𝑒𝑞𝑒)

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑡𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑡) 

(C-84) 

The mass matrix, the damping matrix and the stiffness matrix obtained through the 

virtual internal power can be expressed as 

𝑀𝑒,𝑖𝑛𝑡 = 𝐸𝐴𝐿
ℎ2

6
𝑇𝜀𝑇𝜀

𝑇 𝐷𝑒,𝑖𝑛𝑡 = 𝐸𝐴𝐿 (
ℎ

2
𝑇𝜀 𝑇𝜀

𝑇 +
ℎ2

6
𝑇𝜀�̇�𝜀

𝑇) 

(C-85) 
𝐾𝑒 =

1

‖ 𝑟′𝐼
 ‖

𝑁′𝑇 𝑁′ 𝐸𝐴 𝜀𝐼
 𝐿  

As the external force here only gravity is considered. The virtual power of gravity can 

be written as 

𝛿𝑝𝑒𝑥𝑡,𝑔 =∭𝛿 �̇�𝐼
 𝑇 𝑔𝐼

 𝜌𝑑𝑉

 

𝑉

= 𝛿𝑑𝑞𝑒
𝑇𝜌𝐴∫ 𝑁𝑇 𝑑𝑠

𝐿

0

𝑔𝐼
 = −𝛿𝑑𝑞𝑒

𝑇𝐹𝑒𝑥𝑡,𝑔 (C-86) 

The virtual power of strut tie model is 
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𝛿𝑝𝑒 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡,𝑔 = −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒𝑑�̇�𝑒 + 𝐹𝑒) (C-87) 

where the total generalized mass and generalized force can be written as 

𝑀𝑒 = 𝑀𝑒,𝑖𝑛𝑒 +𝑀𝑒,𝑖𝑛𝑡 𝐹𝑒 = 𝐹𝑖𝑛𝑒 + 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡,𝑔 (C-88) 

C.3.6 Body Parameter of Strut Tie Model after Deformation 

According to the forth assumption, we assume the density 𝜌 and the total mass 𝑚 be-

fore and after the deformation remain unchanged. Here we assume the cross section 

of the rod is circular with outer diameter 𝑟𝑎 and inner diameter 𝑟𝑖, the ratio of outer 

diameter to inner diameter remains unchanged. Therefore, the section parameters af-

ter the deformation can be expressed as 

𝑟𝑎 = √
𝑚

𝜌𝜋‖ 𝑟12𝐼
 ‖(𝑟𝑎∗

2 − 𝑟𝑖
∗2)

𝑟𝑎
∗ 𝑟𝑖 = √

𝑚

𝜌𝜋‖ 𝑟12𝐼
 ‖(𝑟𝑎∗

2 − 𝑟𝑖
∗2)

𝑟𝑖
∗ (C-89) 

where 𝑟𝑎
∗ and 𝑟𝑖

∗ is the outer diameter and inner diameter before deformation. 

C.4 Cubic Spline Beam Dynamic Model 

C.4.1 Generalized coordinate 

𝑞𝑒 = [
𝑞1
𝑞2
] =

[
 
 
 
 
 
 
 
𝑟1𝐼
 

𝜑1

‖ 𝑟′1𝐼
 ‖

𝑟2𝐼
 

𝜑2

‖ 𝑟′2𝐼
 ‖]

 
 
 
 
 
 
 

 𝑑𝑞𝑒 = [
𝑑𝑞1

𝑑𝑞2
] =

[
 
 
 
 
 
 
 
�̇�1𝐼
 

𝜔11
 

‖ �̇�′1𝐼
 ‖

�̇�2𝐼
 

𝜔22
 

‖ �̇�′2𝐼
 ‖]

 
 
 
 
 
 
 

 (C-90) 

𝑅2 = 𝑅1 𝑅21
 = 𝑅1𝑅 ( 𝜑

12
1
 ) 𝜑121

 = [ 𝜑121
 𝜓121

 𝜃121
 ]𝑇 

(C-91) 𝜓121
 = −𝑠𝑖𝑛−1 𝑔𝑧

𝑇 𝑅21
 𝑔𝑥 𝜑121

 = 𝑠𝑖𝑛−1
𝑔𝑧
𝑇 𝑅21
 𝑔𝑦

𝑐𝑜𝑠 𝜓121
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𝜔22
 = 𝑅2

𝑇
1
 𝜔11

 + 𝑇 ( 𝜑121
 ) �̇�121

  

(C-92) �̇�121
 = 𝑇−1 ( 𝜑121

 ) ( 𝜔22
 − 𝑅2

𝑇𝑅1 𝜔
1

1
 ) = 𝑇𝜑12𝑑𝑞𝑒 

𝑇𝜑12 = 𝑇−1 ( 𝜑121
 ) (𝑇𝜔2 − 𝑅2

𝑇𝑅1𝑇𝜔1) 

�̇�22
 = 𝑅2

𝑇𝑅1 �̇�
1

1
 + 𝑇 ( 𝜑121

 ) �̈�121
 − �̃�22

 𝑅2
𝑇𝑅1 𝜔

1
1
 + 𝑅2

𝑇𝑅1 �̃�
1

1
 𝜔11

 

+ �̇� ( 𝜑121
 , �̇�121

 ) �̇�121
  

(C-93) 

�̈�121
 = 𝑇−1 ( 𝜑121

 ) ( �̇�22
 − 𝑅2

𝑇𝑅1 �̇�
1

1
 )

+ 𝑇−1 ( 𝜑121
 ) [ �̃�22

 𝑅2
𝑇𝑅1 𝜔

1
1
 − 𝑅2

𝑇𝑅1 �̃�
1

1
 𝜔11

 

− �̇� ( 𝜑121
 , �̇�121

 ) �̇�121
 ]

= 𝑇−1 ( 𝜑121
 ) (𝑇𝜔2 − 𝑅2

𝑇𝑅1𝑇𝜔1)𝑑�̇�𝑒

+ 𝑇−1 ( 𝜑121
 ) [ �̃�22

 𝑅2
𝑇𝑅1𝑇𝜔1 − 𝑅2

𝑇𝑅1 �̃�
1

1
 𝑇𝜔1

− �̇� ( 𝜑121
 , �̇�121

 )𝑇𝜑12] 𝑑𝑞𝑒 = 𝑇𝜑12𝑑�̇�𝑒 + �̇�𝜑12𝑑𝑞𝑒 

�̇�𝜑12 = 𝑇−1 ( 𝜑121
 ) [ �̃�22

 𝑅2
𝑇𝑅1𝑇𝜔1 − 𝑅2

𝑇𝑅1 �̃�
1

1
 𝑇𝜔1 − �̇� ( 𝜑

12
1
 , �̇�121

 )𝑇𝜑12] 

C.4.2 Shape function 

 𝑟𝑐𝐼
 = 𝑁0

1 𝑟1𝐼
 + 𝑁0

2 𝑟2𝐼
 +𝑁1

1 𝑟′1𝐼
 +𝑁1

2 𝑟′2𝐼
 =

= 𝑁0
1 𝑟1𝐼
 +𝑁0

2 𝑟2𝐼
 +𝑁1

1‖ 𝑟′1𝐼
 ‖ 𝑛𝑥

1
𝐼
 +𝑁1

2‖ 𝑟′2𝐼
 ‖ 𝑛𝑥

2
𝐼
  

(C-94) 

�̇�𝑐𝐼
 = 𝑁0

1 �̇�1𝐼
 +𝑁0

2 �̇�2𝐼
 + 𝑁1

1 (‖ �̇�′1𝐼
 ‖ 𝑛𝑥

1
𝐼
 − ‖ 𝑟′1𝐼

 ‖ �̃�𝑥
1

𝐼
 𝑅1 𝜔

1
1
 )

+ 𝑁1
2 (‖ �̇�′2𝐼

 ‖ 𝑛𝑥
2

𝐼
 − ‖ 𝑟′2𝐼

 ‖ �̃�𝑥
2

𝐼
 𝑅2 𝜔

2
2
 ) = 𝑁𝐷𝑑𝑞𝑒 

(C-95) 

𝑁 = [𝑁0
1𝐼 𝑁1

1𝐼 𝑁0
2𝐼 𝑁1

2𝐼] 

𝐷 =

[
 
 
 
 
 
𝐼 0 0 0 0 0

0 −‖ 𝑟′1𝐼
 ‖ �̃�𝑥

1
𝐼
 𝑅1 𝑛𝑥

1
𝐼
 0 0 0

0 0 0 𝐼 0 0

0 0 0 0 −‖ 𝑟′2𝐼
 ‖ �̃�𝑥

2
𝐼
 𝑅2 𝑛𝑥

2
𝐼
 
]
 
 
 
 
 

=

[
 
 
 
 
 
𝐼 0 0 0 0 0

0 − �̃�′1𝐼
 𝑅1 𝑛𝑥

1
𝐼
 0 0 0

0 0 0 𝐼 0 0

0 0 0 0 − �̃�′2𝐼
 𝑅2 𝑛𝑥

2
𝐼
 
]
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�̈�𝑐𝐼
 = 𝑁𝐷𝑑�̇�𝑒 + 𝑁�̇�𝑑𝑞𝑒 

(C-96) 

�̇�

=

[
 
 
 
 
 
0 0 0 0 0 0

0 −‖ 𝑟′1𝐼
 ‖𝑅1 �̃�

1
1
 �̃�𝑥 −2 �̃�𝑥

1
𝐼
 𝑅1 𝜔

1
1
 0 0 0

0 0 0 0 0 0

0 0 0 0 −‖ 𝑟′2𝐼
 ‖𝑅2 �̃�

2
2
 �̃�𝑥 −2 �̃�𝑥

2
𝐼
 𝑅2 𝜔

2
2
 

]
 
 
 
 
 

 

𝑟′𝑐𝐼
 = 𝑁′0

1
𝑟1𝐼
 + 𝑁′

0
2
𝑟2𝐼
 +𝑁′1

1‖ 𝑟′1𝐼
 ‖ 𝑛𝑥

1
𝐼
 +𝑁′1

2‖ 𝑟′2𝐼
 ‖ 𝑛𝑥

2
𝐼
  (C-97) 

�̇�′𝑐𝐼
 = 𝑁′𝐷𝑑𝑞𝑒 

(C-98) 𝑁′ = [𝑁′0
1𝐼 𝑁′1

1𝐼 𝑁′0
2𝐼 𝑁′1

2𝐼] 

�̈�′𝑐𝐼
 = 𝑁′�̇�𝑑𝑞𝑒 +𝑁

′𝐷𝑑�̇�𝑒 (C-99) 

𝑟′′𝑐𝐼
 = 𝑁′′0

1
𝑟1𝐼
 +𝑁′′

0
2
𝑟2𝐼
 + 𝑁′′1

1‖ 𝑟′1𝐼
 ‖ 𝑛𝑥

1
𝐼
 +𝑁′′1

2‖ 𝑟′2𝐼
 ‖ 𝑛𝑥

2
𝐼
  (C-100) 

�̇�′′𝑐𝐼
 = 𝑁′′𝐷𝑑𝑞𝑒 

(C-101) 𝑁′′ = [𝑁′′0
1𝐼 𝑁′′1

1𝐼 𝑁′′0
2𝐼 𝑁′′1

2𝐼] 

C.4.3 X-axis 

𝑛𝑥𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

𝑟′𝑐𝐼
  (C-102) 

𝑛𝑥
′

𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

(𝐼 − 𝑛𝑥𝐼
 𝑛𝑥𝐼

 𝑇) 𝑟′′𝑐𝐼
  (C-103) 

�̇�𝑥𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

(𝐼 − 𝑛𝑥𝐼
 𝑛𝑥𝐼

 𝑇) �̇�′𝑐𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

(𝐼 − 𝑛𝑥𝐼
 𝑛𝑥𝐼

 𝑇)𝑁′𝐷𝑑𝑞𝑒 = 𝑇𝑛𝑥𝑑𝑞𝑒 (C-104) 
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�̇�𝑥
′

𝐼
 = −

1

‖ 𝑟′𝑐𝐼
 ‖

[ 𝑛𝑥
′

𝐼
 𝑛𝑥𝐼

 𝑇 �̇�′𝑐𝐼
 + ( 𝑛𝑥𝐼

 𝑇 𝑟′′𝑐𝐼
 𝐼 + 𝑛𝑥𝐼

 𝑟′′𝑐𝐼
 𝑇

) �̇�𝑥𝐼
 

− (𝐼 − 𝑛𝑥𝐼
 𝑛𝑥𝐼

 𝑇) �̇�′′𝑐𝐼
 ]

= −
1

‖ 𝑟′𝑐𝐼
 ‖

[ 𝑛𝑥
′

𝐼
 𝑛𝑥𝐼

 𝑇𝑁′𝐷 + ( 𝑛𝑥𝐼
 𝑇 𝑟′′𝑐𝐼

 𝐼 + 𝑛𝑥𝐼
 𝑟′′𝑐𝐼

 𝑇
)𝑇𝑛𝑥

− (𝐼 − 𝑛𝑥𝐼
 𝑛𝑥𝐼

 𝑇)𝑁′′𝐷]𝑑𝑞𝑒 = 𝑇𝑑𝑛𝑥𝑑𝑞𝑒 

(C-105) 

�̈�𝑥𝐼
 = −

1

‖ 𝑟′𝑐𝐼
 ‖

[(2 �̇�𝑥𝐼
 𝑛𝑥𝐼

 𝑇 + 𝑛𝑥𝐼
 �̇�𝑥𝐼

 𝑇) �̇�′𝑐𝐼
 − (𝐼 − 𝑛𝑥𝐼

 𝑛𝑥𝐼
 𝑇) �̈�′𝑐𝐼

 ]

= −
1

‖ 𝑟′𝑐𝐼
 ‖

[(2 �̇�𝑥𝐼
 𝑛𝑥𝐼

 𝑇 + 𝑛𝑥𝐼
 �̇�𝑥𝐼

 𝑇)𝑁′𝐷

− (𝐼 − 𝑛𝑥𝐼
 𝑛𝑥𝐼

 𝑇)𝑁′�̇�] 𝑑𝑞𝑒 +
1

‖ 𝑟′𝑐𝐼
 ‖

(𝐼 − 𝑛𝑥𝐼
 𝑛𝑥𝐼

 𝑇)𝑁′𝐷𝑑�̇�𝑒

= �̇�𝑛𝑥𝑑𝑞𝑒 + 𝑇𝑛𝑥𝑑�̇�𝑒 

(C-106) 

C.4.4 Angle 

𝑛𝑥𝐼
 = 𝑅1𝑅𝑧( 𝜃1

 )𝑅𝑦( 𝜓1
 )𝑔𝑥 = 𝑅1 [

𝑐𝑜𝑠 𝜓1
 𝑐𝑜𝑠 𝜃1

 

𝑐𝑜𝑠 𝜓1
 𝑠𝑖𝑛 𝜃1

 

−𝑠𝑖𝑛 𝜓1
 

] (C-107) 

Bending angle 

𝜓1
 = −𝑠𝑖𝑛−1 𝑔𝑧

𝑇𝑅1
𝑇 𝑛𝑥𝐼
  𝜃1

 = 𝑠𝑖𝑛−1
𝑔𝑦
𝑇𝑅1

𝑇 𝑛𝑥𝐼
 

𝑐𝑜𝑠 𝜓1
  (C-108) 

The first derivative of s 

𝜓′1
 = −

𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
𝑛𝑥
′

𝐼
  

(C-109) 

𝜃′1
 =

𝑔𝑦
𝑇𝑅1

𝑇

𝑐𝑜𝑠 𝜓1
 √1 − 𝑠𝑖𝑛2 𝜃1

 
( 𝑛𝑥

′
𝐼
 + 𝑛𝑥𝐼

 𝑡𝑎𝑛 𝜓1
 𝜓′1

 ) 

First derivative with respect to t 
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�̇�1
 = −

𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
( �̇�𝑥𝐼
 + �̃�𝑥𝐼

 𝑅1 𝜔
1

1
 )

= −
𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
(𝑇𝑛𝑥 + �̃�𝑥𝐼

 𝑅1𝑇𝜔1)𝑑𝑞𝑒 = 𝑇𝜓
𝑇𝑑𝑞𝑒 

(C-110) �̇�1
 =

𝑔𝑦
𝑇𝑅1

𝑇

𝑐𝑜𝑠 𝜓1
 √1 − 𝑠𝑖𝑛2 𝜃1

 
( �̃�𝑥𝐼
 𝑅1 𝜔

1
1
 + �̇�𝑥𝐼

 + 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 �̇�1
 )

=
𝑔𝑦
𝑇𝑅1

𝑇

𝑐𝑜𝑠 𝜓1
 √1 − 𝑠𝑖𝑛2 𝜃1

 
( �̃�𝑥𝐼
 𝑅1𝑇𝜔1 + 𝑇𝑛𝑥 + 𝑛𝑥𝐼

 𝑇𝜓
𝑇 𝑡𝑎𝑛 𝜓1

 )𝑑𝑞𝑒

= 𝑇𝜃
𝑇𝑑𝑞𝑒 

Derivative to s, t 

�̇�′1
 = −

𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
[ �̇�𝑥

′
𝐼
 + �̃�𝑥

′
𝐼
 𝑅1 𝜔

1
1
 + 𝑛𝑥

′
𝐼
 𝑡𝑎𝑛 𝜓1

 �̇�1
 ]

= −
𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
[𝑇𝑑𝑛𝑥 + �̃�𝑥

′
𝐼
 𝑅1𝑇𝜔1 + 𝑛𝑥

′
𝐼
 𝑡𝑎𝑛 𝜓1

 𝑇𝜓
𝑇] 𝑑𝑞𝑒

= 𝑇𝑑𝜓
𝑇 𝑑𝑞𝑒 

(C-111) 

�̇�′1
 =

𝑔𝑦
𝑇𝑅1

𝑇

𝑐𝑜𝑠 𝜓1
 √1 − 𝑠𝑖𝑛2 𝜃1

 
[ �̃�𝑥

′
𝐼
 𝑅1 𝜔

1
1
 + �̇�𝑥

′
𝐼
 

+ ( 𝑛𝑥
′

𝐼
 𝑡𝑎𝑛 𝜓1

 + 𝑛𝑥𝐼
 𝑠𝑒𝑐2 𝜓1

 𝜓′1
 ) �̇�1

 + 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 �̇�′1
 

+ (𝑡𝑎𝑛 𝜓1
 𝜓′1

 + 𝑡𝑎𝑛 𝜃1
 𝜃′1

 ) ( �̃�𝑥𝐼
 𝑅1 𝜔

1
1
 + �̇�𝑥𝐼

 + 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 �̇�1
 )]

=
𝑔𝑦
𝑇𝑅1

𝑇

𝑐𝑜𝑠 𝜓1
 √1 − 𝑠𝑖𝑛2 𝜃1

 
[ �̃�𝑥

′
𝐼
 𝑅1𝑇𝜔1 + 𝑇𝑑𝑛𝑥

+ ( 𝑛𝑥
′

𝐼
 𝑡𝑎𝑛 𝜓1

 + 𝑛𝑥𝐼
 𝑠𝑒𝑐2 𝜓1

 𝜓′1
 )𝑇𝜓

𝑇 + 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 𝑇𝑑𝜓
𝑇

+ (𝑡𝑎𝑛 𝜓1
 𝜓′1

 + 𝑡𝑎𝑛 𝜃1
 𝜃′1

 ) ( �̃�𝑥𝐼
 𝑅1𝑇𝜔1 + 𝑇𝑛𝑥

+ 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 𝑇𝜓
𝑇)] 𝑑𝑞𝑒 = 𝑇𝑑𝜃

𝑇 𝑑𝑞𝑒 

Second derivative with respect to t 
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�̈�1
 = −

1

√1 − 𝑠𝑖𝑛2 𝜓1
 
(𝑔𝑧

𝑇𝑅1
𝑇 �̈�𝑥𝐼
 + 𝑔𝑧

𝑇𝑅1
𝑇 �̃�𝑥𝐼
 𝑅1 �̇�

1
1
 )

−
𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
[(2 �̇̃�𝑥𝐼

 − 𝑅1 �̃�
1

1
 𝑅1

𝑇 �̃�𝑥𝐼
 ) 𝑅1 𝜔

1
1
 

+ ( �̇�𝑥𝐼
 + �̃�𝑥𝐼

 𝑅1 𝜔
1

1
 ) 𝑡𝑎𝑛 𝜓1

 �̇�1
 ] =

= −
𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
(𝑇𝑛𝑥 + �̃�𝑥𝐼

 𝑅1𝑇𝜔1) 𝑑�̇�𝑒

−
𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
[�̇�𝑛𝑥 + (2 �̇̃�𝑥𝐼

 − 𝑅1 �̃�
1

1
 𝑅1

𝑇 �̃�𝑥𝐼
 )𝑅1𝑇𝜔1

+ ( �̇�𝑥𝐼
 + �̃�𝑥𝐼

 𝑅1 𝜔
1

1
 ) 𝑡𝑎𝑛 𝜓1

 𝑇𝜓
𝑇] 𝑑𝑞𝑒 = 𝑇𝜓

𝑇𝑑�̇�𝑒 + �̇�𝜓
𝑇𝑑𝑞𝑒 

(C-112) 

�̈�1
 = 𝑇𝜃

𝑇𝑑�̇�𝑒 + �̇�𝜃
𝑇𝑑𝑞𝑒 

�̇�𝜓
𝑇 = −

𝑔𝑧
𝑇𝑅1

𝑇

√1 − 𝑠𝑖𝑛2 𝜓1
 
[�̇�𝑛𝑥 + (2 �̇̃�𝑥𝐼

 − 𝑅1 �̃�
1

1
 𝑅1

𝑇 �̃�𝑥𝐼
 )𝑅1𝑇𝜔1

+ ( �̇�𝑥𝐼
 + �̃�𝑥𝐼

 𝑅1 𝜔
1

1
 ) 𝑡𝑎𝑛 𝜓1

 𝑇𝜓
𝑇] 

(C-113) 

�̇�𝜃
𝑇 =

𝑔𝑦
𝑇

𝑐𝑜𝑠 𝜓1
 √1 − 𝑠𝑖𝑛2 𝜃1

 
[𝑅1

𝑇�̇�𝑛𝑥 + 𝑅1
𝑇 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 �̇�𝜓
𝑇 − �̃�11

 𝑅1
𝑇 �̃�𝑥𝐼
 𝑅1𝑇𝜔1

− 2 �̃�11
 𝑅1

𝑇𝑇𝑛𝑥

+ (2𝑅1
𝑇 �̇�𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 − 2 �̃�11
 𝑅1

𝑇 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 + 𝑅1
𝑇 𝑛𝑥𝐼
 𝑠𝑒𝑐2 𝜓1

 �̇�1
 

+ 𝑅1
𝑇 𝑛𝑥𝐼
 𝑡𝑎𝑛2 𝜓1

 �̇�1
 )𝑇𝜓

𝑇

+ (− �̃�11
 𝑅1

𝑇 𝑛𝑥𝐼
 + 𝑅1

𝑇 �̇�𝑥𝐼
 + 𝑅1

𝑇 𝑛𝑥𝐼
 𝑡𝑎𝑛 𝜓1

 �̇�1
 ) 𝑡𝑎𝑛 𝜃1

 𝑇𝜃
𝑇] 

𝜑1
 = 𝜉 𝜑121

  𝜑′1
 =

1

𝐿
𝜑121
  

(C-114) �̇�1
 = 𝜉 �̇�121

 = 𝜉𝑔𝑥
𝑇𝑇𝜑12𝑑𝑞𝑒 = 𝑇𝜑

𝑇𝑑𝑞𝑒 

�̇�′1
 =

1

𝐿
�̇�121
 =

1

𝐿
𝑔𝑥
𝑇𝑇𝜑12𝑑𝑞𝑒 = 𝑇𝑑𝜑

𝑇 𝑑𝑞𝑒 

�̈�1
 = 𝜉 �̈�121

 = 𝜉𝑔𝑥
𝑇𝑇𝜑12𝑑�̇�𝑒 + 𝜉𝑔𝑥

𝑇�̇�𝜑12𝑑𝑞𝑒 = 𝑇𝜑
𝑇𝑑�̇�𝑒 + �̇�𝜑

𝑇𝑑𝑞𝑒 (C-115) 

𝜑1
 = [ 𝜑1

 𝜓1
 𝜃1

 ]𝑇 𝜑′1
 = [ 𝜑′1

 𝜓′1
 𝜃′1

 ]𝑇 (C-116) 



C Detailed Dynamics Models of Different Types of Elements 

C-24 

�̇�1
 = [

�̇�1
 

�̇�1
 

�̇�1
 

] = [

𝑇𝜑
𝑇

𝑇𝜓
𝑇

𝑇𝜃
𝑇

] 𝑑𝑞𝑒 = 𝑇𝐴𝑛𝑔𝑙𝑒𝑑𝑞𝑒 

(C-117) �̇�′1
 = [

�̇�′1
 

�̇�′1
 

�̇�′1
 

] = [

𝑇𝑑𝜑
𝑇

𝑇𝑑𝜓
𝑇

𝑇𝑑𝜃
𝑇

] 𝑑𝑞𝑒 = 𝑇𝑑𝐴𝑛𝑔𝑙𝑒𝑑𝑞𝑒 

�̈�1
 = [

�̈�1
 

�̈�1
 

�̈�1
 

] = [

𝑇𝜑
𝑇

𝑇𝜓
𝑇

𝑇𝜃
𝑇

] 𝑑�̇�𝑒 + [

�̇�𝜑
𝑇

�̇�𝜓
𝑇

�̇�𝜃
𝑇

] 𝑑𝑞𝑒 = 𝑇𝐴𝑛𝑔𝑙𝑒𝑑�̇�𝑒 + �̇�𝐴𝑛𝑔𝑙𝑒𝑑𝑞𝑒 

C.4.5 Kinematic 

𝑅𝑐1
 = 𝑅𝑑 = 𝑅 ( 𝜑1

 ) 𝜔𝑑
𝑐

𝑐
 = 𝑇 ( 𝜑1

 ) �̇�1
  

(C-118) 
𝑇𝑑 = 𝑇 ( 𝜑1

 ) �̇�𝑑 = �̇� ( 𝜑1
 , �̇�1

 ) 

𝜔𝑐𝑐
 = 𝑅𝑑

𝑇 𝜔11
 + 𝑇𝑑 �̇�1

 = 𝑇𝜔𝑑𝑞𝑒 
(C-119) 𝑇𝜔 = 𝑅𝑑

𝑇𝑇𝜔1 + 𝑇𝑑𝑇𝐴𝑛𝑔𝑙𝑒 

𝜕 𝜔𝑐𝑐
 

𝜕𝑡
= 𝑅𝑑

𝑇 �̇�11
 − �̃�𝑑

𝑐
𝑐
 𝑅𝑑

𝑇 𝜔11
 + �̇�𝑑 �̇�1

 + 𝑇𝑑 �̈�1
 

= (𝑅𝑑
𝑇𝑇𝜔1 + 𝑇𝑑𝑇𝐴𝑛𝑔𝑙𝑒)𝑑�̇�𝑒

+ (�̇�𝑑𝑇𝐴𝑛𝑔𝑙𝑒 + 𝑇𝑑�̇�𝐴𝑛𝑔𝑙𝑒 − �̃�𝑑
𝑐

𝑐
 𝑅𝑑

𝑇𝑇𝜔1)𝑑𝑞𝑒 = 𝑇𝜔𝑑�̇�𝑒 + �̇�𝜔𝑑𝑞𝑒 
(C-120) 

�̇�𝜔 = �̇�𝑑𝑇𝐴𝑛𝑔𝑙𝑒 + 𝑇𝑑�̇�𝐴𝑛𝑔𝑙𝑒 − �̃�𝑑
𝑐

𝑐
 𝑅𝑑

𝑇𝑇𝜔1 

�̇�𝑐𝐼
 = 𝑅𝑐

𝜕 𝜔𝑐𝑐
 

𝜕𝑡
+ 𝑅𝑐 �̃�

𝑐
𝑐
 𝜔𝑐𝑐

  

�̇�𝑐𝑐
 = 𝑅𝑐

𝑇 �̇�𝑐𝐼
 =

𝜕 𝜔𝑐𝑐
 

𝜕𝑡
+ �̃�𝑐𝑐

 𝜔𝑐𝑐
 =

𝜕 𝜔𝑐𝑐
 

𝜕𝑡
 

(C-121) 

C.4.6 Strain 

Axial stress 

𝜀𝐼
 = ‖ 𝑟′𝑐𝐼

 ‖ − 1 = 𝜀𝐵
  (C-122) 
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𝜀̇𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

𝑟′𝑐𝐼
 𝑇

�̇�′𝑐𝐼
 = 𝑅𝑐𝑔𝑥 �̇�

′𝑐
𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

𝑟′𝑐𝐼
 𝑇

𝑁′𝐷𝑑𝑞𝑒 = 𝑇𝜀
𝑇𝑑𝑞𝑒 (C-123) 

Curvature 

𝜅𝐵
 = 𝑇 ( 𝜑1

 ) 𝜑′1
  

(C-124) 
𝜕 𝜅𝐵
 

𝜕𝑡
= 𝑇 ( 𝜑1

 ) �̇�′1
 + �̇� ( 𝜑1

 , �̇�1
 ) 𝜑′1

 = 𝑇 ( 𝜑1
 ) �̇�′1

 + �̂�′ ( 𝜑1
 , 𝜑′1

 ) �̇�1
 

= [𝑇 ( 𝜑1
 )𝑇𝑑𝐴𝑛𝑔𝑙𝑒 + 𝑇

′ ( 𝜑1
 , 𝜑′1

 )𝑇𝐴𝑛𝑔𝑙𝑒] 𝑑𝑞𝑒 = 𝑇𝜅𝑑𝑞𝑒 

�̇�𝐼
 = 𝑅𝑐

𝜕 𝜅𝑐
 

𝜕𝑡
+ 𝑅𝑐 �̃�

𝑐
𝑐
 𝜅𝑐

  

𝑑 𝜅𝑐
 

𝑑𝑡
= 𝑅𝑐

𝑇 �̇�𝐼
 =

𝜕 𝜅𝐵
 

𝜕𝑡
+ �̃�𝑐𝑐

 𝜅𝑐
 =

𝜕 𝜅𝐵
 

𝜕𝑡
− �̃�𝑐

 𝜔𝑐𝑐
  

(C-125) 

C.4.7 Virtual Internal Power 

𝜀 = [
𝜀𝐼
 

𝜅𝐵
 ] (C-126) 

𝜀̇ = [
𝜀̇𝐼
 

�̇�𝐵
 ] = [

𝑇𝜀
𝑇

𝑇𝜅
] 𝑑𝑞𝑒 = 𝑇𝑆𝑡𝑟𝑎𝑖𝑛𝑑𝑞𝑒 (C-127) 

𝜎 = [

𝐸𝐴 0 0 0
0 𝐺𝐽 0 0
0 0 𝐸𝐼𝑦 0

0 0 0 𝐸𝐼𝑧

] [

𝜀𝐼
 

𝜅𝑥𝐵
 

𝜅𝑦𝐵
 

𝜅𝑧𝐵
 

] = 𝐾𝜀𝜀 (C-128) 

𝛿𝑝𝑖𝑛𝑡 = −∫𝛿𝜀̇𝑇𝜎𝑑𝑠

𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇∫𝑇𝑆𝑡𝑟𝑎𝑖𝑛

𝑇𝐾𝜀𝜀𝑑𝑠

𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇𝐹𝑖𝑛𝑡 (C-129) 
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C.4.8 Virtual Inertial Power 

𝛿𝑝𝑖𝑛𝑒,𝑡𝑟𝑎 = −𝜌𝐴∫𝛿 �̇�𝑐𝐼
 𝑇 �̈�𝑐𝐼

 𝑑𝑠

𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑒,𝑡𝑟𝑎𝑑�̇�𝑒 + 𝐷𝑖𝑛𝑒,𝑡𝑟𝑎𝑑𝑞𝑒)

= −𝛿𝑑𝑞𝑒
𝑇 (𝜌𝐴𝐷𝑇∫𝑁𝑇𝑁𝑑𝑠

𝐿

0

𝐷𝑑�̇�𝑒 + 𝜌𝐴𝐷
𝑇∫𝑁𝑇𝑁𝑑𝑠

𝐿

0

�̇�𝑑𝑞𝑒)

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑒,𝑡𝑟𝑎𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑒,𝑡𝑟𝑎) (C-130) 

𝑀𝑒,𝑖𝑛𝑒,𝑡𝑟𝑎 = 𝜌𝐴𝐷
𝑇∫𝑁𝑇𝑁𝑑𝑠

𝐿

0

𝐷 𝐹𝑖𝑛𝑒,𝑡𝑟𝑎 = 𝐷𝑖𝑛𝑒,𝑡𝑟𝑎𝑑𝑞𝑒 

𝐷𝑖𝑛𝑒,𝑡𝑟𝑎 = 𝜌𝐴𝐷𝑇∫𝑁𝑇𝑁𝑑𝑠

𝐿

0

�̇� 

𝛿𝑝𝑖𝑛𝑒,𝑟𝑜𝑡 = −𝜌∫𝛿 𝜔𝑐𝐼
 𝑇 𝐽𝐼

 �̇�𝑐𝐼
 𝑑𝑠

𝐿

0

= −𝜌∫𝛿 𝜔𝑐𝑐
 𝑇𝑅𝑐

𝑇 𝐽𝐼
 𝑅𝑐 ( �̇�

𝑐
𝑐
 + �̃�𝑐𝑐

 𝜔𝑐𝑐
 ) 𝑑𝑠

𝐿

0

= −𝜌∫𝛿 𝜔𝑐𝑐
 𝑇 (𝐽 �̇�𝑐𝑐

 + �̃�𝑐𝑐
 𝐽 𝜔𝑐𝑐

 )𝑑𝑠

𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑒,𝑟𝑜𝑡𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑒,𝑟𝑜𝑡) (C-131) 

𝑀𝑒,𝑖𝑛𝑒,𝑟𝑜𝑡 = 𝜌∫𝑇𝜔
𝑇𝐽𝑇𝜔𝑑𝑠

𝐿

0

 𝐹𝑖𝑛𝑒,𝑟𝑜𝑡 = 𝐷𝑖𝑛𝑒,𝑟𝑜𝑡𝑑𝑞𝑒 

𝐷𝑖𝑛𝑒,𝑟𝑜𝑡 = 𝜌∫𝑇𝜔
𝑇 (𝐽�̇�𝜔 + �̃�𝑐𝑐

 𝐽𝑇𝜔)𝑑𝑠

𝐿

0

 

𝛿𝑝𝑖𝑛𝑒 = 𝛿𝑝𝑖𝑛𝑒,𝑡𝑟𝑎 + 𝛿𝑝𝑖𝑛𝑒,𝑟𝑜𝑡

= −𝛿𝑑𝑞𝑒
𝑇 [(𝑀𝑒,𝑖𝑛𝑒,𝑡𝑟𝑎 +𝑀𝑒,𝑖𝑛𝑒,𝑟𝑜𝑡)𝑑�̇�𝑒 + (𝐹𝑖𝑛𝑒,𝑡𝑟𝑎 + 𝐹𝑖𝑛𝑒,𝑟𝑜𝑡)]

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒,𝑖𝑛𝑒𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑒) 

(C-132) 

C.4.9 Virtual External Power 

𝛿𝑝𝑒𝑥𝑡,𝑔 = 𝜌𝐴∫𝛿 �̇�𝑐𝐼
 𝑇𝑑𝑠

𝐿

0

𝑔𝐼
 = 𝛿𝑑𝑞𝑒

𝑇𝜌𝐴𝐷𝑇∫𝑁𝑇 𝑑𝑠

𝐿

0

𝑔𝐼
 = −𝛿𝑑𝑞𝑒

𝑇𝑉𝑒 𝑔𝐼
  (C-133) 
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𝑉𝑒 = −𝜌𝐴𝐷𝑇∫𝑁𝑇 𝑑𝑠

𝐿

0

 
𝐹𝑒𝑥𝑡,𝑔 = 𝑉𝑒 𝑔𝐼

  (C-134) 

C.4.10Virtual power principle of Cubic Spline Beam 

𝛿𝑝𝑒 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡,𝑔

= −𝛿𝑑𝑞𝑒
𝑇 [(𝑀𝑒,𝑖𝑛𝑒,𝑡𝑟𝑎 +𝑀𝑒,𝑖𝑛𝑒,𝑟𝑜𝑡)𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑒 + 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡,𝑔]

= −𝛿𝑑𝑞𝑒
𝑇 (𝑀𝑒𝑑�̇�𝑒 + 𝐹𝑒) 

(C-135) 

C.4.11Coordinate of Internal Node with no End Axial Strain Assumption 

𝑟𝑐𝐼
 = 𝑁0

1 𝑟1𝐼
 +𝑁0

2 𝑟2𝐼
 + 𝑁1

1 𝑟′1𝐼
 +𝑁1

2 𝑟′2𝐼
 ≈ 𝑁0

1 𝑟1𝐼
 +𝑁0

2 𝑟2𝐼
 +𝑁1

1 𝑛𝑥
1

𝐼
 + 𝑁1

2 𝑛𝑥
2

𝐼
 

= 𝑁0
1 𝑟1𝐼
 +𝑁0

2 𝑟2𝐼
 +𝑁1

1𝑅1𝑔𝑥 + 𝑁1
2𝑅2𝑔𝑥 (C-136) 

�̇�𝑐𝐼
 = 𝑁0

1 �̇�1𝐼
 +𝑁0

2 �̇�2𝐼
 + 𝑁1

1𝑅1 �̃�
1

1
 𝑔𝑥 +𝑁1

2𝑅2 �̃�
2

2
 𝑔𝑥

= 𝑁0
1 �̇�1𝐼
 +𝑁0

2 �̇�2𝐼
 −𝑁1

1 �̃�𝑥
1

𝐼
 𝑅1 𝜔

1
1
 − 𝑁1

2 �̃�𝑥
2

𝐼
 𝑅2 𝜔

2
2
 = 𝑁𝐷𝑑𝑞𝑒 

(C-137) 

𝐷 =

[
 
 
 
 
 
𝐼 0 0 0

0 − �̃�𝑥
1

𝐼
 𝑅1 0 0

0 0 𝐼 0

0 0 0 − �̃�𝑥
2

𝐼
 𝑅2]

 
 
 
 
 

 

�̈�𝑐𝐼
 = 𝑁0

1 �̈�1𝐼
 +𝑁0

2 �̈�2𝐼
 + 𝑁1

1𝑅1 �̇̃�
1

1
 𝑔𝑥 +𝑁1

2𝑅2 �̇̃�
2

2
 𝑔𝑥 + 𝑁1

1𝑅1 �̃�
1

1
 �̃�11

 𝑔𝑥

+𝑁1
2𝑅2 �̃�

2
2
 �̃�22

 𝑔𝑥

= 𝑁0
1 �̇�1𝐼
 +𝑁0

2 �̇�2𝐼
 −𝑁1

1 �̃�𝑥
1

𝐼
 𝑅1 𝜔

1
1
 − 𝑁1

2 �̃�𝑥
2

𝐼
 𝑅2 𝜔

2
2
 = 𝑁𝐷𝑑𝑞𝑒 

(C-138) 

�̇� =

[
 
 
 
 
 
0 0 0 0

0 −𝑅1 �̃�
1

1
 �̃�𝑥 0 0

0 0 0 0

0 0 0 −𝑅2 �̃�
2

2
 �̃�𝑥]
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C.4.12Cubic Spline Body and Section Parameter Recognition 

𝛿𝑝𝑒 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡,𝑔

= −𝛿𝑑𝑞𝑒
𝑇 {∫(𝐷𝑇𝑁𝑇𝜌𝐴𝑁𝐷 + 𝑇𝜔

𝑇𝜌𝐽𝑇𝜔)𝑑𝑠

𝐿

0

𝑑�̇�𝑒

+∫ [𝑇𝑆𝑡𝑟𝑎𝑖𝑛
𝑇𝐾𝜀𝜀 − 𝐷

𝑇𝑁𝑇 𝜌𝐴 𝑔𝐼
 

𝐿

0

+ (𝐷𝑇𝑁𝑇𝜌𝐴𝑁�̇� + 𝑇𝜔
𝑇𝜌𝐽�̇�𝜔 + 𝑇𝜔

𝑇 �̃�𝑐𝑐
 𝜌𝐽𝑇𝜔)𝑑𝑞𝑒] 𝑑𝑠} 

(C-139) 

With Gauss Interpolation 

𝛿𝑝𝑒 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡,𝑔

= −𝛿𝑑𝑞𝑒
𝑇∑𝑤[(𝐷𝑇𝑁𝑇𝜌𝐴𝐼𝑁𝐷 + 𝑇𝜔

𝑇𝜌𝐽𝑇𝜔)|
𝑥

]

𝑛

𝑖=1

𝑑�̇�𝑒

− 𝛿𝑑𝑞𝑒
𝑇∑𝑤{[𝑇𝑆𝑡𝑟𝑎𝑖𝑛

𝑇𝐾𝜀𝜀 − 𝐷
𝑇𝑁𝑇 𝜌𝐴𝐼 𝑔𝐼

 

𝑛

𝑖=1

+ (𝐷𝑇𝑁𝑇𝜌𝐴𝐼𝑁�̇� + 𝑇𝜔
𝑇𝜌𝐽�̇�𝜔 + 𝑇𝜔

𝑇 �̃�𝑐𝑐
 𝜌𝐽𝑇𝜔)𝑑𝑞𝑒]|

𝑥

} (C-140) 

𝑀𝑒 =∑𝑤 [(𝐷𝑇𝑁𝑇𝜌𝐴𝐼𝑁𝐷 + 𝑇𝜔
𝑇𝜌𝐽𝑇𝜔)|

𝑥

]

𝑛

𝑖=1

=∑𝑤 [(𝐷𝑇𝑁𝑇𝔓𝑖𝑛𝑒
𝑡,𝑖 𝑁𝐷 + 𝑇𝜔

𝑇𝔓𝑖𝑛𝑒
𝑟,𝑖 𝑇𝜔)|

𝑥

]

𝑛

𝑖=1

 

C.5 Cubic Spline Rope Dynamic Model 

C.5.1 Generalized coordinate 

𝑞𝑒 = [
𝑞1
𝑞2
] =

[
 
 
 
 
𝑟1𝐼
 

𝑟′1𝐼
 

𝑟2𝐼
 

𝑟′2𝐼
 ]

 
 
 
 

 𝑑𝑞𝑒 = [
𝑑𝑞1

𝑑𝑞2
] =

[
 
 
 
 
�̇�1𝐼
 

�̇�′1𝐼
 

�̇�2𝐼
 

�̇�′2𝐼
 ]

 
 
 
 

 (C-141) 
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C.5.2 Shape function 

 𝑟𝑐𝐼
 = 𝑁0

1 𝑟1𝐼
 +𝑁1

1 𝑟′1𝐼
 + 𝑁0

2 𝑟2𝐼
 +𝑁1

2 𝑟′2𝐼
 = 𝑁𝑞𝑒 

(C-142) 𝑁 = [𝑁0
1𝐼 𝑁1

1𝐼 𝑁0
2𝐼 𝑁1

2𝐼] 

�̇�𝑐𝐼
 = 𝑁0

1 �̇�1𝐼
 +𝑁1

1 �̇�′1𝐼
 + 𝑁0

2 �̇�2𝐼
 +𝑁1

2 �̇�′2𝐼
 = 𝑁𝑑𝑞𝑒 (C-143) 

�̈�𝑐𝐼
 = 𝑁0

1 �̈�1𝐼
 +𝑁1

1 �̈�′1𝐼
 +𝑁0

2 �̈�2𝐼
 +𝑁1

2 �̈�′2𝐼
 = 𝑁𝑑�̇�𝑒 (C-144) 

𝑟′𝑐𝐼
 = 𝑁′0

1
𝑟1𝐼
 +𝑁′1

1
𝑟′1𝐼
 + 𝑁′0

2
𝑟2𝐼
 +𝑁′1

2
𝑟′2𝐼
 = 𝑁′𝑞𝑒 

(C-145) 
𝑁′ = [𝑁′0

1𝐼 𝑁′1
1𝐼 𝑁′0

2𝐼 𝑁′1
2𝐼] 

�̇�′𝑐𝐼
 = 𝑁′0

1
�̇�1𝐼
 +𝑁′1

1
�̇�′1𝐼
 + 𝑁′0

2
�̇�2𝐼
 + 𝑁′1

2
�̇�′2𝐼
 = 𝑁′𝑑𝑞𝑒 (C-146) 

�̈�′𝑐𝐼
 = 𝑁′0

1
�̈�1𝐼
 +𝑁′1

1
�̈�′1𝐼
 +𝑁′0

2
�̈�2𝐼
 + 𝑁′1

2
�̈�′2𝐼
 = 𝑁′𝑑�̇�𝑒 (C-147) 

𝑟′′𝑐𝐼
 = 𝑁′′0

1
𝑟1𝐼
 +𝑁′′1

1
𝑟′1𝐼
 + 𝑁′′0

2
𝑟2𝐼
 +𝑁′′1

2
𝑟′2𝐼
 = 𝑁′′𝑞𝑒 

(C-148) 
𝑁′′ = [𝑁′′0

1𝐼 𝑁′′1
1𝐼 𝑁′′0

2𝐼 𝑁′′1
2𝐼] 

�̇�′′𝑐𝐼
 = 𝑁′′𝑑𝑞𝑒 (C-149) 

C.5.3 Strain 

Axial stress 

𝜀𝐼
 = ‖ 𝑟′𝑐𝐼

 ‖ − 1 (C-150) 

𝜀̇𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

𝑟′𝑐𝐼
 𝑇

�̇�′𝑐𝐼
 =

1

‖ 𝑟′𝑐𝐼
 ‖

𝑟′𝑐𝐼
 𝑇

𝑁′𝑑𝑞𝑒 = 𝑇𝜀
𝑇𝑑𝑞𝑒 (C-151) 

C.5.4 Virtual Internal Power 

𝜎𝐼
 = 𝐸𝐴 𝜀𝐼

  (C-152) 
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𝛿𝑝𝑖𝑛𝑡 = −∫𝛿 𝜀𝐼
 𝑇 𝜎𝐼

 𝑑𝑠

𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇𝐸𝐴∫𝑇𝜀

𝑇 𝜀𝐼
 𝑑𝑠

𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇𝐹𝑖𝑛𝑡 (C-153) 

C.5.5 Virtual Inertial Power 

𝛿𝑝𝑖𝑛𝑒 = −𝛿𝑑𝑞𝑒
𝑇𝑀𝑒,𝑖𝑛𝑒𝑑�̇�𝑒 ≈ 𝛿𝑝𝑖𝑛𝑒,𝑡𝑟𝑎 = −𝜌𝐴∫𝛿 �̇�

𝑐
𝐼
 𝑇 �̈�𝑐𝐼

 𝑑𝑠

𝐿

0

= −𝛿𝑑𝑞𝑒
𝑇𝜌𝐴∫𝑁𝑇𝑁𝑑𝑠

𝐿

0

𝑑�̇�𝑒 = −𝛿𝑑𝑞𝑒
𝑇𝑀𝑒,𝑖𝑛𝑒,𝑡𝑟𝑎𝑑�̇�𝑒 (C-154) 

𝑀𝑒,𝑖𝑛𝑒 ≈ 𝑀𝑒,𝑖𝑛𝑒,𝑡𝑟𝑎 = 𝜌𝐴∫𝑁
𝑇𝑁𝑑𝑠

𝐿

0

 

C.5.6 Virtual External Power 

𝛿𝑝𝑒𝑥𝑡,𝑔 = 𝜌𝐴∫𝛿 �̇�
𝑐

𝐼
 𝑇𝑑𝑠

𝐿

0

𝑔𝐼
 = 𝛿𝑑𝑞𝑒

𝑇𝜌𝐴∫𝑁𝑇 𝑑𝑠

𝐿

0

𝑔𝐼
 = −𝛿𝑑𝑞𝑒

𝑇𝑉𝑒 𝑔𝐼
  

(C-155) 

𝑉𝑒 = −𝜌𝐴∫𝑁
𝑇 𝑑𝑠

𝐿

0

 𝐹𝑒𝑥𝑡,𝑔 = 𝑉𝑒 𝑔𝐼
  

C.5.7 Virtual power principle of Cubic Spline Rope 

𝛿𝑝𝑒 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡 = 𝛿𝑝𝑖𝑛𝑒 + 𝛿𝑝𝑖𝑛𝑡 + 𝛿𝑝𝑒𝑥𝑡,𝑔

= −𝛿𝑑𝑞𝑒
𝑇 [𝑀𝑒,𝑖𝑛𝑒𝑑�̇�𝑒 + 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡,𝑔] = −𝛿𝑑𝑞𝑒

𝑇 (𝑀𝑒𝑑�̇�𝑒 + 𝐹𝑒) (C-156) 
𝑀𝑒 = 𝑀𝑒,𝑖𝑛𝑒 𝐹𝑒 = 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡,𝑔 

 



 

D-1 

 Detailed Modelling Information of 
Lattice Boom Crane 

D.1 Body Element, Joint Configuration and Initial State 

D.1.1 Frame and Pedestal 

Frame is a virtual element and only the joints of the frame should be defined. In addition, 

the initial state of the frame should always be zero. 

Table D-1: Frame Parameter for Lattice Boom Crane Model 

Parameter Frame 

Model Type - 

Element Number 0 

Joints 
Quantity 1 

Joint 1 𝑟𝐵
 
𝑗 = [0 0 0]𝑇, 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Initial State 

State variables 𝑥𝑓 = [𝑞𝑓
𝑇 𝑑𝑞𝑓

𝑇]
𝑇
= [ 𝑟𝐼

 𝑇 𝜑𝐵
 𝑇 𝑑𝑞𝑒

𝑇]
𝑇
   𝑤𝑖𝑡ℎ   𝑑𝑞𝑓 = 0 

Position 𝑟𝐼
 = [0 0 0]𝑇 

Posture 𝜑𝐵
 = [0 0 0]𝑇 

The pedestal is regarded as a rigid body. The parameters of pedestal are shown as 

follows 

Table D-2: Pedestal Parameter for Lattice Boom Crane Model 

Parameter Body 1 

Model Type Rigid Body 

Section Size 

Type Custom defined 

Length 30 

Mass 100 

Moment of inertia 1000 x diag([1,1,1]) 

Centroid position [1;0;0] 

Joints 

Quantity 2 

Joint 1 𝑟𝐵
 
𝑗 = [0 0 0]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 2 𝑟𝐵
 
𝑗 = [11 0 0]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 
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Parameter Type 1 

Initial State 

State variables 𝑥𝑒 = [𝑞𝑒
𝑇 𝑑𝑞𝑒

𝑇]
𝑇
= [ 𝑟𝐼

 𝑇 𝜑𝐵
 𝑇 𝑑𝑞𝑒

𝑇]
𝑇
   𝑤𝑖𝑡ℎ   𝑑𝑞𝑒 = 0 

Position 𝑟𝐼
 = [0 0 0]𝑇 

Posture 𝜑𝐵
 = [0 0 0]𝑇 

D.1.2 Main Boom 

The main boom consists of 5 super truss elements in 3 types. 

Table D-3: Main Boom Parameter for Lattice Boom Crane Model 

Parameter Type 1 Type 2 Type 3 

Structure 

   

Model Type 
Super Truss 

Element 
Super Truss 

Element 
Super Truss 

Element 

Element Number 2 3,4,5 6 

Truss Pa-

rameters 

Truss Order 3 6 3 

Truss Length 5 15 5 

Nodes on 

Cross  

Section 1 

x-Position 0,0 0,0,0,0 0,0,0,0 

y-Position 1.5,-1.5 1.5,-1.5,-1.5,1.5 1.5,-1.5,-1.5,1.5 

z-Position 0,0 1.4,1.4,-1.4,-1.4 1.4,1.4,-1.4,-1.4 

Nodes on 

Cross  

Section 1 

x-Position 0,0,0,0 0,0,0,0 0,0,0,0 

y-Position 1.5,-1.5,-1.5,1.5 1.5,-1.5,-1.5,1.5 1.5,-1.5,-1.5,1.5 

z-Position 1.4,1.4,-1.4,-1.4 1.4,1.4,-1.4,-1.4 1.4,1.4,-1.4,-1.4 

Main Beam 
Nodes Nr. 1 1,2,2,1 1,2,3,4 1,2,3,4 

Nodes Nr. 2 1,2,3,4 1,2,3,4 1,2,3,4 

Cross Sec-

tion Beam 

Nodes Nr. 1 1,2 1,2;2,3;3,4;4,1 1,2;2,3;3,4;4,1 

Nodes Nr. 2 1,2;2,3;3,4;4,1 1,2;2,3;3,4;4,1 1,2;2,3;3,4;4,1 

SB Connection Form TP Type1 Type1 Type1 

Section 

Size 

Main Beam 

Type Round Tube Round Tube Round Tube 

ra 0.1 0.1 0.1 

ri 0.08 0.08 0.08 

Cross Sec-

tion Beam 

Type Round Tube Round Tube Round Tube 

ra 0.1 0.1 0.1 

ri 0.08 0.08 0.08 

Sub-Beam 

Type Round Tube Round Tube Round Tube 

ra 0.05 0.05 0.05 

ri 0.04 0.04 0.04 
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Parameter Type 1 Type 2 Type 3 

Material 

Properties 

Density 7800 7800 7800 

Elastic modulus 206000000000 206000000000 206000000000 

Poisson's ratio 0.25 0.25 0.25 

Only two joints are on the flexible beam, and located at the ends of the beam elements. 

The initial state of the super truss elements consists of generalized coordinate and 

generalized velocity. The generalized velocity at initial state is zero. The generalized 

coordinate is shown as follows 

Table D-4: Main Boom Initial State Parameter for Lattice Boom Crane Model 

Initial State Body 2 Body 3 Body 4 Body 5 Body 6 

Generalized 

Coordinate 

Point 1 

𝑟𝐼
 1 [

0
0
0
] [

−0.43578
0

4.980973

] [
−1.7431

0
19.9239

] [
−3.05045

0
34.86681

] [
−4.35779

0
49.80973

] 

𝜑1 [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] 

Point 2 

𝑟𝐼
 2 [

−0.43578
0

4.980973

] [
−1.74311

0
19.92389

] [
−3.0505

0
34.8668

] [
−4.35779

0
49.80973

] [
−4.79357

0
54.79071

] 

𝜑2 [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] [
0

−𝑟𝑎𝑑(95°)
0

] 

D.1.3 Main Boom Head 

Because of the complexity of the main beam head, it is regarded as a rigid body and 

is configuration is shown as 

Table D-5: Main Boom Head Parameter for Lattice Boom Crane Model 

Parameter Body 7 

Model Type Rigid Body 

Section Size 

Type Custom defined 

Length 2 

Mass 1 

Moment of inertia 1 x diag([1,1,1]) 

Centroid position [0.5;0;0] 
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Parameter Body 7 

Joints 

Quantity 13 

Joint 1 𝑟𝐵
 
𝑗 = [0 0 0]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 2 𝑟𝐵
 
𝑗 = [0 0 −1.2]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 3 𝑟𝐵
 
𝑗 = [1.75 0 −1.4]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 4 𝑟𝐵
 
𝑗 = [2.2 0 1.7]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 5 𝑟𝐵
 
𝑗 = [0 0 1.2]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 6 𝑟𝐵
 
𝑗 = [0 1.3 1.2]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 7 𝑟𝐵
 
𝑗 = [0 −1.3 1.2]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 8 𝑟𝐵
 
𝑗 = [0 1.3 −1.2]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 9 𝑟𝐵
 
𝑗 = [0 −1.3 −1.2]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 10 𝑟𝐵
 
𝑗 = [1.75 1.4 −1.4]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 11 𝑟𝐵
 
𝑗 = [1.75 −1.4 −1.4]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 12 𝑟𝐵
 
𝑗 = [2.2 1.5 1.7]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 13 𝑟𝐵
 
𝑗 = [2.2 −1.5 1.7]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Initial State 

State variables 𝑥𝑒 = [𝑞𝑒
𝑇 𝑑𝑞𝑒

𝑇]
𝑇
= [ 𝑟𝐼

 𝑇 𝜑𝐵
 𝑇 𝑑𝑞𝑒

𝑇]
𝑇
   𝑤𝑖𝑡ℎ   𝑑𝑞𝑒 = 0 

Position 𝑟𝐼
 = [−4.7936 0 54.7907]𝑇 

Posture 𝜑𝐵
 = [0 −𝑟𝑎𝑑(95°) 0]𝑇 

D.1.4 Derrick Boom 

The derrick boom consists of 3 super truss elements in 3 types. 

Table D-6: Derrick Boom Parameter for Lattice Boom Crane Model 

Parameter Type 4 Type 5 Type 6 

Structure 

   

Model Type 
Super Truss 

Element 
Super Truss 

Element 
Super Truss 

Element 

Element Number 8 9 10 

Section 

Size 

Main Beam 

Type Round Tube Round Tube Round Tube 

ra 0.1 0.1 0.1 

ri 0.08 0.08 0.08 

Cross Sec-

tion Beam 

Type Round Tube Round Tube Round Tube 

ra 0.1 0.1 0.1 

ri 0.08 0.08 0.08 

Sub-Beam 

Type Round Tube Round Tube Round Tube 

ra 0.05 0.05 0.05 

ri 0.04 0.04 0.04  
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Parameter Type 4 Type 5 Type 6 

Material 

Properties 

Density 7800 7800 7800 

Elastic modulus 206000000000 206000000000 206000000000 

Poisson's ratio 0.25 0.25 0.25 

Truss Pa-

rameters 

Truss Order 5 6 3 

Truss Length 8 13 5 

Nodes on 

Cross  

Section 1 

x-Position 0,0 0,0,0,0 0,0,0,0 

y-Position 1.3,-1.3 1.3,-1.3,-1.3,1.3 1.3,-1.3,-1.3,1.3 

z-Position 0,0 1.1,1.1,-1.1,-1.1 1.1,1.1,-1.1,-1.1 

Nodes on 

Cross  

Section 1 

x-Position 0,0,0,0 0,0,0,0 0,0 

y-Position 1.3,-1.3,-1.3,1.3 1.3,-1.3,-1.3,1.3 1.3,-1.3 

z-Position 1.1,1.1,-1.1,-1.1 1.1,1.1,-1.1,-1.1 0,0 

Main Beam 
Nodes Nr. 1 1,2,2,1 1,2,3,4 1,2,3,4 

Nodes Nr. 2 1,2,3,4 1,2,3,4 1,2,2,1 

Cross Sec-

tion Beam 

Nodes Nr. 1 1,2 1,2;2,3;3,4;4,1 1,2;2,3;3,4;4,1 

Nodes Nr. 2 1,2;2,3;3,4;4,1 1,2;2,3;3,4;4,1 1,2 

SB Connection Form TP Type1 Type1 TP Anti Type1 

The generalized coordinate in initial state is shown as follows 

Table D-7: Derrick Boom Initial State Parameter for Lattice Boom Crane Model 

Initial State Body 8 Body 9 Body 10 

Generalized 

Coordinate 

Point 1 

𝑟𝐼
 1 [

0
0
0
] [

3.38095
0

7.25046

] [
8.87498

0
19.0325

] 

𝜑1 [
0

−𝑟𝑎𝑑(65°)
0

] [
0

−𝑟𝑎𝑑(65°)
0

] [
0

−𝑟𝑎𝑑(65°)
0

] 

Point 2 

𝑟𝐼
 2 [

3.38095
0

7.25046

] [
8.87498

0
19.0325

] [
10.9881

0
23.564

] 

𝜑2 [
0

−𝑟𝑎𝑑(65°)
0

] [
0

−𝑟𝑎𝑑(65°)
0

] [
0

−𝑟𝑎𝑑(65°)
0

] 

D.1.5 Luffing Cable System 

The luffing cable system consists of 3 elements, namely 2 strut tie models and 1 cubic 

spline rope. The parameters of 2 strut tie models are shown as follows 
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Table D-8: Strut Tie Model Parameter for Lattice Boom Crane Model 

Parameter Type 11 Type 12 

Model Type Strut Tie Model Strut Tie Model 

Section Size 

Type Round Tube Round Tube 

Length 15 15 

Outer Diameter 0.05 0.05 

Inner Diameter 0 0 

Material Properties 

Density 7800 7800 

Elastic modulus 206000000000 206000000000 

Poisson's ratio 0.25 0.25 

Generalized Coordinate 
Point 1 𝑟𝐼

 1 [−3.551 0 56.656]𝑇 [2.482 0 42.923]𝑇 

Point 2 𝑟𝐼
 2 [2.482 0 42.923]𝑇 [8.516 0 29.190]𝑇 

The cubic spline rope is used to adjust the length of luffing cable system. The param-

eters of the cubic spline rope are shown as follows 

Table D-9: Luffing Rope Parameter for Lattice Boom Crane Model 

Parameter Type 13 

Model Type Cubic Spline Rope 

Section Size 

Type Round Tube 

Length 6.1453 

Outer Diameter 0.05 

Inner Diameter 0 

Material Properties 

Density 7800 

Elastic modulus 100000000000 

Poisson's ratio 0.25 

Generalized Coordinate 

Point 1 

𝑟𝐼
 1 [10.988 0 23.564]𝑇 

𝜑1 [0 −1.985 0]𝑇 

‖ 𝑟𝐼
 ′1‖ 1 

Point 2 

𝑟𝐼
 2 [8.516 0 29.190]𝑇 

𝜑2 [0 −1.985 0]𝑇 

‖ 𝑟𝐼
 ′2‖ 1 

D.1.6 Sub-Cable 

The sub-cable is modeled as a cubic spline rope, whose parameter is shown as follows 
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Table D-10: Sub-Cable Parameter for Lattice Boom Crane Model 

Parameter Type 14 

Model Type Cubic Spline Rope 

Section Size 

Type Round Tube 

Length 23.5640 

Outer Diameter 0.05 

Inner Diameter 0 

Material Properties 

Density 7800 

Elastic modulus 100000000000 

Poisson's ratio 0.25 

Generalized Coordinate 

Point 1 

𝑟𝐼
 1 [11 0 0]𝑇 

𝜑1 [0 −𝑟𝑎𝑑(90°) 0]𝑇 

‖ 𝑟𝐼
 ′1‖ 1 

Point 2 

𝑟𝐼
 2 [10.988 0 23.564]𝑇 

𝜑2 [0 −𝑟𝑎𝑑(90°) 0]𝑇 

‖ 𝑟𝐼
 ′2‖ 1 

D.1.7 Lifting Cable 

The lifting cable is modeled as a cubic spline rope, whose parameter is shown as fol-

lows 

Table D-11: Lifting Cable Parameter for Lattice Boom Crane Model 

Parameter Type 15 

Model Type Cubic Spline Rope 

Section Size 

Type Round Tube 

Length 54.8342 

Outer Diameter 0.05 

Inner Diameter 0 

Material Properties 

Density 7800 

Elastic modulus 100000000000 

Poisson's ratio 0.25 

Generalized Coordinate 

Point 1 

𝑟𝐼
 1 [0 0 0]𝑇 

𝜑1 [0 −𝑟𝑎𝑑(95°) 0]𝑇 

‖ 𝑟𝐼
 ′1‖ 1 

Point 2 

𝑟𝐼
 2 [−0.43578 0 4.980973]𝑇 

𝜑2 [0 −𝑟𝑎𝑑(95°) 0]𝑇 

‖ 𝑟𝐼
 ′2‖ 1 
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D.1.8 Load 

The load is basically a rigid body. Simply it is treated a cylinder, whose total mass 

nears to 400 tons. The parameter is shown as follows 

Table D-12: Load Parameter for Lattice Boom Crane Model 

Parameter Body 16 

Model Type Rigid Body 

Section Size 

Type Round Tube 

Length 2 

Outer Diameter 2.82095 

Inner Diameter 0 

Joints 

Quantity 2 

Joint 1 𝑟𝐵
 
𝑗 = [0 0 0]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Joint 2 𝑟𝐵
 
𝑗 = [2 0 0]𝑇 𝜑𝐵

 
𝑗 = [0 0 0]𝑇 

Initial State 

State variables 𝑥𝑒 = [𝑞𝑒
𝑇 𝑑𝑞𝑒

𝑇]
𝑇
= [ 𝑟𝐼

 𝑇 𝜑𝐵
 𝑇 𝑑𝑞𝑒

𝑇]
𝑇
   𝑤𝑖𝑡ℎ   𝑑𝑞𝑒 = 0 

Position 𝑟𝐼
 = [−6.6788 0 2]𝑇 

Posture 𝜑𝐵
 = [0 𝑟𝑎𝑑(90°) 0]𝑇 

D.2 Constraint and Nodal Force 

Constraints Configuration 

There are totally 18 constraints for lattice boom crane. The configuration of constraints 

is shown as follows 

Table D-13: Constraint Parameter for Lattice Boom Crane Model 

Nr. Body Nr. 1 Joint Nr. 1 Body Nr. 2 Joint Nr. 2 Constraint Type Reduced 

1 0 1 1 1 Fixed  

2 1 1 2 1 Revolute_y √ 

3 2 2 3 1 Fixed √ 

4 3 2 4 1 Fixed √ 

5 4 2 5 1 Fixed √ 

6 5 2 6 1 Fixed √ 

7 7 1 6 2 Fixed √ 

8 1 1 8 1 Revolute_y √ 

9 8 2 9 1 Fixed √ 

10 9 2 10 1 Fixed √ 

11 7 3 11 1 Spherical   
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Nr. Body Nr. 1 Joint Nr. 1 Body Nr. 2 Joint Nr. 2 Constraint Type Reduced 

12 11 2 12 1 Spherical  

13 12 2 13 2 Spherical √ 

14 10 2 13 1 Spherical √ 

15 1 2 14 1 Spherical  

16 14 2 10 2 Spherical √ 

17 7 4 15 1 Spherical  

18 16 1 15 2 Spherical  

Among them, the fixed constraints, revolute constraints and the spherical constraints 

can be realized by using public computing nodes, which can reduce the overall degree 

of freedom. The final lattice boom crane model has 8 constraints. 

Nodal Force 

No external nodal force for lattice boom crane model. The structure of the nodal force 

parameter table is shown as follows 

Table D-14: Nodal Force Parameter for Lattice Boom Crane Model 

Nr. 
Body 

Nr. 
Joint 
Nr. 

Force Moment 

Fx Fy Fz F-Coordinate Mx My Mz M-Coordinate 

1           

The coordinate of force and moment can be chosen as “Inertial” or “Body”. 

D.3 Solver Parameter 

The solver parameter consists of several parts, which consider the global parameter, 

solver, solving consequence and postprocessing method. The detailed information is 

shown as follows 

Table D-15: Solver Parameter for Lattice Boom Crane Model 

Parameter Value 

Jacobian Matrix Calculation Jacobian Matrix false 

Gravity Setting 
Direction of gravity 0; 0; -1 

Gravity Magnitude 9.8 
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Parameter Value 

ODE Setting 

ODE Solver ode23tb 

ODE Solver Method - 

ODE Solver Order - 

ODE Solver Option - 

Calculation Time Start 0 

Calculation Time End 100 

Absolute Tolerance 0.01 

Relative Tolerance 0.01 

Max Step 0.01 

ODE Output Function MechanisumPlot 

Static Position 
Calculation Static Position true 

Max Tolerance for Velocity and Acceleration 1e-9 

Display by Computing 

Display Current Time true 

Plot Mechanism by Computing true 

Plot Start Iteration 0 

Plot Iteration Interval 100 

Result 

Save Result true 

Result Existence false 

Result Saving Dictionary [] 

Plot Configuration 

Axes Size -30, 30, -30, 30, 0, 60 

Grid on, MINOR 

Observation x-z 

Post Processing Post Processing Method none 

D.4 Plot Parameter 

The plot parameters of the elements describe the sequence of the joints for drawing 

the elements and the configuration of the printed lines. For the flexible beam, it is also 

needed to set the number of displayed interpolation points, which can more detailed 

show the shape of the elements after the deformation. 

Table D-16: Plot Parameter for Lattice Boom Crane Model 

Parameter Body 1 Body 2 Body 3 Body 4 Body 5 

Sequence 1,2 - - - - 

Interpolation Number - 5 5 5 5 

Configuration k.- b-, c-, g- b-, c-, g- b-, c-, g- b-, c-, g- 
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Parameter Body 6 Body 8 Body 9 Body 10 Body 11 

Sequence - - - - - 

Interpolation Number 5 5 5 5 2 

Configuration b-, c-, g b-, c-, g- b-, c-, g- b-, c-, g- y-  
Parameter Body 12 Body 13 Body 14 Body 15 Body 16 

Sequence - - - - 1,2 

Interpolation Number 2 5 5 5 - 

Configuration y- r- r- r- k-  
Parameter Body 7 

Sequence 6,7,9,8,6,12,13,7,13,11,9,11,10,8,10,12 

Interpolation Number - 

Configuration y- 

Since the flexible beam has only two joints, it is not necessary to define the sequence 

of the flexible beam. 

 

Figure D-1: Display of Lattice Boom Crane 
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 Specified Drive Function 

E.1 Trapezoidal Velocity Three Stage Function 

Acceleration phase 𝑡1 

𝑠1 =
1

2
𝑎1𝑡1

2 𝑣𝑚𝑎𝑥 = 𝑎1𝑡1 (E-1) 

Uniform speed phase 𝑡2 

𝑠2 = 𝑣𝑚𝑎𝑥𝑡2 (E-2) 

Deceleration phase 𝑡3 

𝑠3 = 𝑣𝑚𝑎𝑥𝑡3 +
1

2
𝑎3𝑡3

2 𝑣𝑚𝑎𝑥 + 𝑎3𝑡3 = 0 (E-3) 

Relationship 

𝑡0 = 𝑡1 + 𝑡2 + 𝑡3 

𝑠0 = 𝑠1 + 𝑠2 + 𝑠3 =
1

2
𝑎1𝑡1(2𝑡0 − 𝑡1 − 𝑡3) 

(E-4) 

Assume 𝑠0, 𝑡0, 𝑡1, 𝑡3 are known 

𝑎1 =
2𝑠0

𝑡1(2𝑡0 − 𝑡1 − 𝑡3)
 𝑎3 = −

2𝑠0
𝑡3(2𝑡0 − 𝑡1 − 𝑡3)

 (E-5) 

For example: 𝑠0 = 10𝑚, 𝑡0 = 40𝑠, 𝑡1 = 5𝑠, 𝑡3 = 5𝑠 
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Figure E-1: Trapezoidal Velocity Three Stage Function 

E.2 Trigonometric Cosine Function (cos) 

Trigonometric cosine function is used in the transition section from start value 𝑦𝑠𝑡𝑎𝑟𝑡 to 

end value 𝑦𝑒𝑛𝑑 in the certain time span 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑. The function can be written as 

𝑦ℎ(𝑡) =

{
 

 
𝑦𝑠𝑡𝑎𝑟𝑡, 𝑡 < 𝑡𝑠𝑡𝑎𝑟𝑡

𝑦𝑠𝑡𝑎𝑟𝑡 + 𝑦𝑒𝑛𝑑
2

+
𝑦𝑠𝑡𝑎𝑟𝑡 − 𝑦𝑒𝑛𝑑

2
𝑐𝑜𝑠

(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡)𝜋

𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑒𝑛𝑑
, 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑

𝑦𝑒𝑛𝑑, 𝑡 > 𝑡𝑒𝑛𝑑

 (E-6) 

�̇�ℎ(𝑡) =

{
 

 
0, 𝑡 < 𝑡𝑠𝑡𝑎𝑟𝑡

−
𝜋

2

𝑦𝑠𝑡𝑎𝑟𝑡 − 𝑦𝑒𝑛𝑑
𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑒𝑛𝑑

𝑠𝑖𝑛
(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡)𝜋

𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑒𝑛𝑑
, 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑

0, 𝑡 > 𝑡𝑒𝑛𝑑

 (E-7) 

�̈�ℎ(𝑡) =

{
 

 
0, 𝑡 < 𝑡𝑠𝑡𝑎𝑟𝑡

−
𝜋2

2

𝑦𝑠𝑡𝑎𝑟𝑡 − 𝑦𝑒𝑛𝑑
(𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑒𝑛𝑑)2

𝑐𝑜𝑠
(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡)𝜋

𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑒𝑛𝑑
, 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑

0, 𝑡 > 𝑡𝑒𝑛𝑑

 (E-8) 

For example: 𝑦𝑠𝑡𝑎𝑟𝑡 = 10, 𝑦𝑒𝑛𝑑 = 20, 𝑡𝑠𝑡𝑎𝑟𝑡 = 5, 𝑡𝑒𝑛𝑑 = 15 
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Figure E-2: Trigonometric Cosine Step Function 

Also, the cosine function can be used to generate a smooth transition section from 

value 𝑦1 to value 𝑦2 and then return to value 𝑦1 in the certain time span 𝑡1 to 𝑡2. The 

value 𝑦2 will be reached at (𝑡1 + 𝑡2) 2⁄ .The function can be written as 

𝑦𝑓(𝑡) =

{
 

 
𝑦1, 𝑡 < 𝑡1

𝑦1 + 𝑦2
2

+
𝑦1 − 𝑦2
2

𝑐𝑜𝑠
2𝜋(𝑡 − 𝑡1)

𝑡1 − 𝑡2
, 𝑡1 ≤ 𝑡 ≤ 𝑡2

𝑦1, 𝑡 > 𝑡2

 (E-9) 

�̇�𝑓(𝑡) =

{
 

 
0, 𝑡 < 𝑡1

−𝜋
𝑦1 − 𝑦2
𝑡1 − 𝑡2

𝑠𝑖𝑛
2𝜋(𝑡 − 𝑡1)

𝑡1 − 𝑡2
, 𝑡1 ≤ 𝑡 ≤ 𝑡2

0, 𝑡 > 𝑡2

 (E-10) 

�̈�𝑓(𝑡) =

{
 

 
0, 𝑡 < 𝑡1

−2𝜋2
𝑦1 − 𝑦2
(𝑡1 − 𝑡2)

2
𝑐𝑜𝑠

2𝜋(𝑡 − 𝑡1)

𝑡1 − 𝑡2
, 𝑡1 ≤ 𝑡 ≤ 𝑡2

0, 𝑡 > 𝑡2

 (E-11) 

For example: 𝑦1 = 10, 𝑦2 = 20, 𝑡1 = 5, 𝑡2 = 15 



E Specified Drive Function 

E-4 

 

Figure E-3: Trigonometric Cosine Full Function 

E.3 Hyperbolic Tangent Function (tanh) 

The hyperbolic tangent function (tanh) can be written as 

𝑡𝑎𝑛ℎ 𝑡 =
𝑠𝑖𝑛ℎ 𝑡

𝑐𝑜𝑠ℎ 𝑡
=
𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡
 

(E-12) 
𝑙𝑖𝑚
𝑡→0

𝑡𝑎𝑛ℎ 𝑡 = 0 𝑙𝑖𝑚
𝑡→∞

𝑡𝑎𝑛ℎ 𝑡 = 1 

The hyperbolic tangent function can never reach 0 or 1 in practical situation. According 

to the deviation from the limit value, different confidence interval coefficients and con-

fidence intervals are designed. 

Table E-1: Confidence Coefficient of Hyperbolic Tangent Function 

Nr. Confidence 𝒄 Coefficient 𝝀(𝒄) Variable Interval Value Interval 

1 90.0% 1.4765 [-1.4765; 1.4765] [0.100; 0.900] 

2 95.0% 1.8368 [-1.8368; 1.8368] [0.050; 0.950] 

3 99.0% 2.6476 [-2.6476; 2.6476] [0.010; 0.990] 

4 99.5% 2.9980 [-2.9980; 2.9980] [0.005; 0.995] 

5 99.9% 3.8088 [-3.8088; 3.8088] [0.001; 0.999] 

The transition function from value 𝑦1 to value 𝑦2 in the certain time span 𝑡1 to 𝑡2 with 

the confidence 𝒄 can be written as 
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𝑦(𝑡) =
1

2
(𝑦1 + 𝑦2) +

1

2
(𝑦2 − 𝑦1) 𝑡𝑎𝑛ℎ

𝜆[2𝑡 − (𝑡1 + 𝑡2)]

𝑡2 − 𝑡1
   𝑤𝑖𝑡ℎ   𝜆 = 𝜆(𝑐) (E-13) 

�̇�(𝑡) = 𝜆
𝑦2 − 𝑦1
𝑡2 − 𝑡1

(1 − 𝑡𝑎𝑛ℎ2
𝜆[2𝑡 − (𝑡1 + 𝑡2)]

𝑡2 − 𝑡1
) (E-14) 

�̈�(𝑡) = −4𝜆2
𝑦2 − 𝑦1
(𝑡2 − 𝑡1)2

𝑡𝑎𝑛ℎ
𝜆[2𝑡 − (𝑡1 + 𝑡2)]

𝑡2 − 𝑡1
(1 − 𝑡𝑎𝑛ℎ2

𝜆[2𝑡 − (𝑡1 + 𝑡2)]

𝑡2 − 𝑡1
)

= −4𝜆
1

𝑡2 − 𝑡1
𝑡𝑎𝑛ℎ

𝜆[2𝑡 − (𝑡1 + 𝑡2)]

𝑡2 − 𝑡1
�̇�(𝑡) 

(E-15) 

For example: 𝑦1 = 10, 𝑦2 = 20, 𝑡1 = 5, 𝑡2 = 15 

 

Figure E-4: Hyperbolic Tangent Function 
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