
Power-Switch Routing for Coarse-Grain MTCMOS
Technologies

Tsun-Ming Tseng, Mango C.-T. Chao

Dept. of EE, National Chiao-Tung University
Hsinchu, Taiwan

strayleaf.ee95@nctu.edu.tw
mango@faculty.nctu.edu.tw

Chien-Pang Lu, Chen-Hsing Lo

Mstar Semiconductor
ChuPei, Taiwan

knuth.lu@mstarsemi.com
jack.lo@mstarsemi.com

ABSTRACT

Multi-threshold CMOS (MTCMOS) is an effective power-
gating technique to reduce IC’s leakage power consumption
by turning off idle devices with MTCMOS switches. How-
ever, few existing literatures have discussed the algorithms
required in MTCMOS’s back-end tools. In this paper, we
propose a switch-routing framework which serially connects
the MTCMOS switches without violating the Manhattan-
distance constraint. The proposed switch-routing framework
can simultaneously maximize the number of MTCMOS switches
covered by its trunk path and minimize the total path length.
The experimental result based on four industrial MTCMOS
designs demonstrates the effectiveness and efficiency of the
proposed framework compared to a solution provided by an
EDA vendor and an advanced TSP solver.

1. INTRODUCTION
By using both high-Vt and low-Vt transistors, Multi-threshold

CMOS (MTCMOS) emerges to be an effective power-gating
technique which can simultaneously reduce leakage power
and maintain circuit performance. For an MTCMOS design,
the header/footer switches and retention flip-flips are imple-
mented in high-Vt transistors, such that their leakage current
can be lowered during the sleep mode. On the other hand,
the power-gated logics are implemented in low-Vt transis-
tors, such that their performance can be increased during
the active mode. The MTCMOS designs can be classified
into two categories by its granularity: (1) fine-grain MTC-
MOS, in which one switch is built into each cell, and (2)
coarse-grain MTCMOS, in which one switch is built to turn
off a block of cells. In this paper, we only focus on the
discussion of the coarse-grain MTCMOS.

A lot research effort has been put into the area of MTC-
MOS technologies during the past decade. One group of
the research works focus on the MTCMOS power-gating
structures, such as (1) the charge-recycling technique [1] [2],
which can reduce the power consumption produced during

the sleep-to-active mode transition, (2) the intermediate-
mode switches [3], which can cover various demands of the
power-performance trade-off, and (3) the distributed sleep-
transistor network [4], which can effectively reduce the area
overhead of sleep transistors. Another research aspect is
to optimize different parameters under different constraints,
such as circuit performance, mode-transition power consump-
tion, power-supply noise, area overhead, and wake-up time,
by using the sleep-transistor sizing [5] [6], circuit cluster-
ing [7], wake-up scheduling [8] [9], or simultaneous cluster-
ing and scheduling [10]. However, by our best knowledge,
no previous work has discussed the required back-end algo-
rithms supporting MTCMOS technologies.

A back-end tool for coarse-grain MTCMOS technologies
should provide the following two functionalities: the switch
allocation and the switch routing. In the MTCMOS de-
sign flow, designers first determine the area ratio of MTC-
MOS switches over the total cells based on the worst IR
drop which can be tolerated on the power rails. A higher
MTCMOS-switch ratio leads to a lower IR drop but, at the
same time, a higher area overhead. Next, the switch alloca-
tion can determine the placement pattern and the spacing
between adjacent MTCMOS switches based on the above
area ratio of MTCMOS switches. Using the obtained place-
ment pattern and spacing, the switch allocation then evenly
distributes the MTCMOS switches over the entire IC ex-
cept its hard macros, where no MTCMOS switches can be
inserted. Thus, IC’s floorplan should be finalized before
distributing MTCMOS switches, but the placement of the
gated low-Vt cells is not done yet.

After the location of each MTCMOS switch is determined,
the switch routing will serially connect the sleep/wake-up
signal of MTCMOS switches one by one. This serial con-
nection can be viewed as a Hamiltonian path of MTCMOS
switches. The main reason of using serial connection of
MTCMOS switches instead of parallel connection is to re-
duce the rush current produced during sleep/active mode
transition. Also, the signal at the end of the Hamiltonian
path can be used as an acknowledgement signal, showing
that all the MTCMOS switches are successfully turned on.
Besides finding a feasible Hamiltonian path of MTCMOS
switches, the switch routing also attempts to minimize the
length of the Hamiltonian path so that more routing re-
sources can be left for the routing of low-Vt cells. However,
not any pair of switches can be connected to each other. The
Manhattan distance between two connected switches has to
be under a limit. Otherwise the loading of a switch may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

39

ICCAD 2009, DOI: 10.1145/1687399.1687408
http://ieeexplore.ieee.org/document/5361318/
http://dl.acm.org/citation.cfm?id=1687408

violate its loading constraint defined in the timing library,
resulting in an unpredictably long signal delay. In addition,
the hard macros in the floorplan may break the regularity
of switches’ placement, which further increases the difficulty
of finding a feasible Hamiltonian path of switches.

In this paper, we propose a switch-routing framework for
coarse-grain MTCMOS technologies, which first attempts
to find a feasible Hamiltonian path covering all MTCMOS
switches under the Manhattan-distance constraint and also
minimize the length of the Hamiltonian path. If a feasi-
ble Hamiltonian path cannot be obtained, an acyclic trunk
path covering a maximal number of switches will be reported
along with branches covering the rest switches. The pro-
posed switch-routing framework can not only take advan-
tage of the location regularity of most switches, such that
the path length can be minimized, but also provide the flex-
ibility to handle the location irregularity of some switches
caused by hard macros, such that the resulting trunk path
can cover maximal switches. The proposed switch-routing
framework is embedded in a design flow of the MTCMOS
technology provided by an IC foundry [11]. Our experimen-
tal result on four industrial MTCMOS designs first shows
that the proposed framework can effectively find a feasible
Hamiltonian path with shorter length and shorter turn-on
time compared to a rough solution provided by an EDA ven-
dor. The experimental result also demonstrates that such a
feasible Hamiltonian path is difficult to be obtained by a
TSP solver. The reported runtime further demonstrates the
scalability of the proposed switch-routing framework for in-
dustrial MTCMOS designs.

2. BACKGROUND
In this section, we introduce the MTCMOS technology

and some related background information used in the pro-
posed switch-routing framework. We focus on the discuss of
MTCMOS designs using header switches. But the proposed
framework can be easily applied to footer-switch MTCMOS
designs in a similar manner.

2.1 Architecture of MTCMOS Designs
Figure 1 first illustrates the overview of an MTCMOS de-

sign using header switches. The power-gated low-Vt cells are
connected to the virtual VDD, whose power supply is con-
trolled by the MTCMOS switches placed between the virtual
VDD and true VDD. When the system turns on the wake-
up-request signal, the header switches are turned on in order
so that the virtual VDD can obtain the power from the true
VDD. After the system receives the wake-up-acknowledge
signal, the system starts to send jobs to the gated logics.
When the system turns off the wake-up-request signal, the
switches are turned off and the virtual VDD cannot provide
any power to the gated cells, meaning that no leakage cur-
rent can be generated on the gated cells.

header
switch

true VDD

virtual VDD

header
switchwake_up_req. wake_up_ack.•• •

VSS

power-gated low-Vt cells

header
switch

Figure 1: MTCMOS power-supply architecture using

header switches

Figure 2 shows the physical layout of this power-supply
architecture. On the vertical power meshes, the true VDD

and VSS are alternatively provided. On the horizontal power
rails, the virtual VDD and VSS are alternately provided,
where an MTCMOS switch is placed to control the con-
nection between a true-VDD mesh and a virtual-VDD rail. A
VSS rail is directly connected to a VSS mesh through a via.
Therefore, the location of an MTCMOS switch must be on
the intersection of a vertical power mesh and a horizontal
power rail. The spacing between two power rails depends on
a standard cell’s height and the spacing between two power
mesh depends on the whole chip’s power planning.

true VDD true VDDVSS

virtual
VDD

VSS

virtual
VDD

VSS

via

virtual VDD pin

true VDD pin

VSS pin

VSS

power mesh

power
rail

power mesh
true VDD

cross-section view

virtual VDD pinVSS

Figure 2: Physical layout of the MTCMOS power-

supply architecture using header switches.

2.2 Switch Allocation
The area ratio of the MTCMOS switches over the total

cells determines the IR drop on the power rails as well as
the placement pattern for the switch allocation. The switch-
placement pattern used in our MTCMOS designs is similar
to Figure 3.

power mesh
spacing

power rail
spacing

: switch

Figure 3: Placement pattern of MTCMOS switches.

According to the switch-placement pattern, the switch al-
location then evenly places the MTCMOS switches over the
IC except the hard macros, where no switch can be inserted.
If the encountered hard macro is an SRAM core or any hard
IP using the same power domain as the standard cells, ex-
tra switches are placed along the boundaries of the hard
macro to strengthen its power supply. If the encountered
hard macro is an analog IP, which has its own power do-
main, the switch-placement pattern around the boundaries
remains the same. Figure 4 shows an exemplary switch al-
location with hard macros. As a result, the regularity of the
switch-placement pattern is broken by the hard macros.

sram

sram
sram

analog macro
(different power domain)

: switch

Figure 4: Switch allocation with hard macros.

40 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

2.3 MTCMOS Switches and Switch Routing
The coarse-grain library [11] provides two types of header

switches: the single-input switches and double-input switches
as showed in Figure 5(a) and 5(b), respectively, where all the
inverters in Figure 5 are always-on and get their power di-
rectly from the true VDD. If the single-input switches are
used, the switches are serially connected as Figure 6(a),
where the NSIn signal of the first routed switch is con-
nected to system’s wake-up-request signal and the NSOut
of the last routed switch is connected to the system’s wake-
up-acknowledge signal. Since the pins of wake-up-request
and wake-up-acknowledge signals usually locate next to each
other, the routed path of single-input switches looks like a
Hamiltonian cycle.

true VDD

vritual VDD

true VDD

virtual VDD

(a) single input header switch (b) double input header switch

NSIn1

NSIn2

daughter header transistor

mother header transistor

NSIn NSOut NSOut1

NSOut2

Figure 5: Types of MTCMOS header switches.

If the double-input switches are used, the switches are
connected as Figure 6(b), where the wake-up-request and
wake-up-acknowledge signals are connected to the NSIn2
and NSOut1 signals of the first routed switch, respectively.
Also, the NSOut2 signal of last routed switch is connected
to the NSIn1 signal of itself. Therefore, the routed path of
double-input switches looks like a Hamiltonian path. The
routed path can end at any switch in the design.

NSIn2 NSOut2

NSOut1 NSIn1
switch

•• •

NSIn

NSOut
switch

wake_up_req.

wake_up_ack.

(b)

•• •

•• •

(a)

NSIn

NSOut
switch

NSIn

NSOut
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

wake_up_req.

wake_up_ack.

first routed last routed

first routed last routed

Figure 6: Switch routing for (a) single-input and (b)

double-input switches.

The double-input switches can reduce the power-up glitch
current by first turning on a daughter header transistor with
smaller driving capability and strengthen the power supply
to the virtual VDD by then turning on a mother header tran-
sistor with larger driving capability. In our MTCMOS de-
signs, we use double-input switches as recommended by [11].

2.4 Manhattan-Distance Constraint
When connecting the next routed switch, designers have

to make sure that the output loading of the current switch
(or the input slew of the next routed switch) cannot exceed
the upper bound of the timing library. Otherwise, the sig-
nal delay between two switches may be unpredictably long.
One practical solution is to set a constraint on the Man-
hattan distance between two connected switches based on
metal’s unit-length loading and switch’s intrinsic loading.
This Manhattan-distance constraint has to be conservative
since the detail routing path between two switches may de-
tour due to routing congestion. In fact, this constraint is
usually an empirical value and may vary from different de-
signs and adopted APR tools.

3. PROBLEM FORMULATION OF MTCMOS
SWITCH ROUTING

3.1 Problem Formulation
Given the result of the switch allocation, the switch rout-

ing is performed to find a routing path which can serially
connect all the MTCMOS switches and satisfy the Manhattan-
distance constraint. However, such a Hamiltonian path cov-
ering all switches may not always exist in the given switch
allocation or require prohibitively high computational com-
plexity to obtain. Therefore, the first objective of the switch
routing is to maximize the number of switches covered by
the resulting routing path. For the uncovered switches, we
add branches to the resulting path (also called trunk path in
later discussion) to propagate the wake-up-request signal to
them. However, the switches on the branches cannot send
back a signal back to the wake-up-acknowledge signal. Fig-
ure 7 shows an example of adding a branch to the trunk
path. As a result, when testing this MTCMOS IC, we can-
not ensure whether the MTCMOS switches on the branch
can be successfully turned on. This disadvantage on testing
is the most important reason why the switch routing avoids
the usage of branches and attempts to maximize the number
of switches covered the trunk path.

floating

trunk path

branch

•• •

wake_up_req.
wake_up_ack.

•• •NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

NSIn2 NSOut2

NSOut1 NSIn1
switch

Figure 7: Trunk path and branch for switch routing.

The second objective of the switch routing is to minimize
the total length of the trunk path in terms of Manhattan
distance. A shorter trunk path can leave more routing re-
sources for the routing of the gated low-Vt cells. Also, a
shorter routing path can result in a shorter response time of
the wake-up-acknowledge signal.

The problem formulation of the proposed switch-routing
framework is summarized as follows.

Input:

• The location of each switch after switch allocation.

• The Manhattan-distance constraint between two con-
nected switches.

• The starting location (the wake-up-req. signal).

Output:

• A trunk path which visits each switch at most once.

• Branches which cover the switches not visited by the
trunk path.

Objective:

• First priority: maximize the number of switches cov-
ered by the trunk path.

• Second priority: minimize the total length of the trunk
path and branches in terms of Manhattan distance.

3.2 MTCMOS Switch Routing Using TSP Solver
Several TSP solvers have been developed in the past to

find a Hamiltonian path with minimal length. However,
current public TSP solvers (such as Concorde [13], GOB-
LIN [14], or LKH [15]) are all performed based on a complete

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 41

graph, where any two nodes are connected to each other
and a Hamiltonian path can always be easily found. Due
to the Manhattan-distance constraint, the connection graph
of MTCMOS switch routing is not complete and hence the
existing TSP solver cannot be directly applied to solve the
MTCMOS switch routing.

In order to do so, we try the following method based on
a modified complete graph. First, we assign each edge’s
weight as the distance between the two switches of the edge
if this distance is smaller than the given Manhattan-distance
constraint. Then, to further lead the TSP result to satisfy
the Manhattan-distance constraint, we assign an excessively
large weight to each edge whose distance between its two
switches exceeds the constraint. In our experiment, this ex-
cessively large weight is set to the summation of the distance
between any two switches. In other words, as long as any
of those constraint-violated edges is included in the result-
ing Hamiltonian path, the length of the Hamiltonian path
is guaranteed to be larger than that of a path including no
constraint-violated edge. Therefore, while a TSP solver tries
to minimize the path length, those constraint-violated edges
should be avoided if the TSP algorithm is optimal enough.

Unfortunately, the TSP solvers we tried cannot lead to
a Hamiltonian path without going through a constraint-
violated edge. We will show the experimental results later in
the paper. This inefficiency of using an existing TSP solver
to solve MTCMOS routing is actually one of our motivations
to develop a new framework for MTCMOS switch routing.

4. PROPOSED FRAMEWORK
Basically, our switch-routing framework applies a greedy-

based algorithm to find a minimal Hamiltonian trunk path of
switches. The algorithm begins with a given starting point
(the wake-up-req. signal) and each time selects the unvis-
ited switch closest to the current switch as the next routed
switch. Also, we utilize the following three techniques, the
bridge creation (Section 4.2), the switch absorption (Sec-
tion 4.3), and the rectangle routing (Section 4.4), to enhance
algorithm’s flexibility of finding a feasible Hamiltonian path
and reduce total path length. The data structure represent-
ing switch’s location is shown in Section 4.1. The overall flow
of the proposed switch-routing framework is summarized in
Section 4.5.

4.1 Data Structure for Switch’s Location
In our switch-routing framework, we use a two-dimensional

position matrix to record the location of switches. The el-
ements on the same row (column) have the same coordi-
nate in the X (Y) axis. If the value of an element is 1, a
switch is located at the element’s location. Otherwise, no
switch exists on that location. The distance between each
pair of adjacent rows (or columns) may not be the same and
hence is recorded in another matrix, called distance matrix.
The search for switches discussed in later subsections is per-
formed based on the position and distance matrices. Note
that we do not record the distance between each two switches
to speed up the search of the closest switch. This is because
the total number of switches in our MTCMOS design may
be larger than 100K and the size of a N2 edge matrix may
exceed our system’s limitation.

4.2 Bridge Creation
Since a greedy algorithm is applied to select the next

routed switch of the trunk path, it is quite often that the re-
sulting path goes to a dead end, from where the distance to
the closest unvisited switch exceeds the Manhattan-distance
constraint. In such cases, a bridge is created to connect the
last routed switch SC to the next routed switch SN by re-
moving some routed switches and using them as the inter-
mediate switches between SC and SN . However, not every
routed switch is removable. A routed switch SR is remov-
able if MD(SR−1, SR+1) satisfies the Manhattan-distance
constraint, where MD(SR−1, SR+1) denotes the Manhattan
distance between SR’s ancestor switch SR−1 and descendant
switch SR+1.

In the bridge creation, we choose the next intermediate
switch SR as the removable switch satisfying the following
two conditions: (1) MD(SR, SC) is under the Manhattan-
distance constraint, and (2) MD(SR, SN) is as short as pos-
sible. Then we remove the intermediate switch SR from
the trunk path, connect SC to SR, and connect SR’s an-
cestor switch SR−1 to its descendant switch SR+1. After
such a modification, each connection in the trunk path still
can satisfy the Manhattan-distance constraint and the last
routed switch becomes SR, which locates much closer to SN

than the original SC . If the distance between SR and SN

still exceeds the constraint, we repeat the above actions to
find another proper intermediate switch closer to SN .

Figure 8 shows an example of creating a bridge from S24

to SN , where the sequence of the routed switches is S1, S2,
..., S24, and MD(S24, SN) exceeds the constraint. In Fig-
ure 8(a), we select the intermediate switch S15 following the
above two conditions. Then we remove S15, connect S24

to S15, and connect S14 to S16 in Figure 8(b). After that,
the last routed switch becomes S15 but MD(S15, SN) still
exceeds the constraint. So, we select anther intermediate
switch S6 in Figure 8(c). Next, we remove S6, connect S15

to S6, and connect S5 to S7 in Figure 8(d). Now, the dis-
tance between the last routed switch S6 and SN can satisfy
the constraint, and hence we can directly connect S6 to SN .

SN

The list of routed switches

S24

MD
constraint

… S14 S15 S16 … S24 SN

next routed

S4

S3

S2

S1

S5

S6

S7

S8

S12

S11

S10

S9

S13

S14

S15

S16 S17

S19

S18

S20 S21

S22

S23

S1 …

SN

The list of routed switches

S24

… S14 S15S16 … S24 SN

S4

S3

S2

S1

S5

S6

S7

S8

S12

S11

S10

S9

S13

S14

S15

S16 S17

S19

S18

S20 S21

S22

S23

S1 …

SN

The list of routed switches

S24

… S6 S15S7 … S24 SN

S4

S3

S2

S1

S5

S6

S7

S8

S12

S11

S10

S9

S13

S14

S15

S16 S17

S19

S18

S20 S21

S22

S23

S1 S5

SC = S15 , choose SR = S6

SN

The list of routed switches

S24

… S6S15S7 … S24 SN

S4

S3

S2

S1

S5

S6

S7

S8

S12

S11

S10

S9

S13

S14

S15

S16 S17

S19

S18

S20 S21

S22

S23

S1 S5

last routed

(a)

(c) (d)

(b)
connect S24 to S15 , S14 to S16

connect S15 to S6 , S5 to S7 , S6 to SN

remove S6

SC = S24 , choose SR = S15
remove S15

next routed

last routed

next routed

last routed

next routed

last routed

Figure 8: An example of bridge creation.

If the closest unvisited switch SN to the current switch SC

is on the opposite side of a large hard macro such as Figure 9,
then the above process of bridge creation may fail because
it tends to select the intermediate switches locating between

42 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

SC and SN . In this situation, we have to detour the way
of selecting the intermediate switches along the boundary of
the hard macro, such as Figure 9. Therefore, we select few
removable routed switches at the rectangle’s corners as tem-
porary target switches, such as ST1 and ST2 in Figure 9. By
creating bridges to temporary target switches, we can suc-
cessfully connect to the real target switch SN . Note that, in
this detour situation, the estimated distance from SC to SN

should be the summation of MD(SC , ST1), MD(ST1, ST2),
and MD(ST2, SN), instead of MD(SC , SN). Thus, before
really creating a bridge to SN , we check whether the distance
from SC to its second closest unvisited switch is shorter than
this estimated distance to SN . If yes, we change the next
routed switch to the second closest one. In addition, to com-
plete the above detour, the location and the dimensions of
each hard macro need to be recorded in advance so that we
can efficiently check their existence before bridge creation.

SN

SC

ST1

ST1, ST2 : temporary target

H > constraint

A hard macro (no MTCMOS switches inside)

ST2

Can’t find intermediate switch here

create bridge
(1) from SC to ST1,
(2) from ST1 to ST2,
(3) from ST2 to SN

Figure 9: Detour in bridge creation.

4.3 Switch Absorption
At the late phase of the switch routing, some unvisited

switches may scatter over the IC, such as SN in Figure 10(a).
If we use bridge creation to connect it, the total path length
may increase a lot, such as Figure 10(b). To economically
connect a dangling unvisited switch SN , we can break an
existing edge from S1 to S2 and then add another two edges
from S1 to SN and from SN to S2, as shown in Figure 10(c).
This operation looks like to absorb an unvisited switch into
the routed trunk path and hence is called switch absorption.
The premise to perform this switch absorption is that both
MD(S1, SN) and MD(SN , S2) are under the Manhattan-
distance constraint.

SC

SNSNSN

S1

S2

SC SC

Figure 10: Difference between bridge creation and

switch absorption for routing a dangling switch.

To maximize the benefit of using switch absorption, two
key problems remain to be solved : (1) when to apply switch
absorption instead of bridge creation; (2) which switch to
be absorbed first. To solve the first problem, we need to
estimate the cost of performing each of switch absorption
and bridge creation. The path length increased by creating
a bridge to a target switch is usually higher than absorbing
one switch. However, after the bridge is created, we may be
able to route a group of unvisited switches close to the target
switch with short edges, which can compensate the cost of
creating the bridge. Therefore, the cost of creating a bridge

should be the average edge length added before the next
bridge creation (including the length of the current bridge).

In fact, at the early phase of switch routing, a lot unvisited
switches can be routed after a bridge is created. Thus, we
will not consider the use of switch absorption at all until a
high percentage of switches are already routed (more specif-
ically, 98% in our experiment), which can save the compu-
tational overhead of comparing the costs of bridge creation
and switch absorption. Once using switch absorption, we
stop using bridge creation and absorb all the remaining un-
visited switches. Therefore, we compare the cost of creating
a bridge with the average added length of absorbing each of
the remaining switches.

The most possible way to absorb an unvisited switch is
to break the edge either coming to or starting from its clos-
est routed switch. Thus, the cost of absorbing the unvis-
ited switch can be approximately estimated by the shorter
added length of choosing either of the above two edges for
absorption. To collect this absorption cost for all unvisited
switches from scratch is expensive. Hence, for each unvis-
ited switch, we record its closest routed switch, its distance
to the closest routed switch, and its absorption cost. Each
time a new switch is routed, we check whether its distance
to each unvisited switch is smaller than its recorded closest
distance. If yes, we update the closest-routed-switch infor-
mation for the unvisited switch. If no, no change is made.
Note that we start to record the above closest-routed-switch
information when 98% of the switches are already routed.
Its computational overhead is limited.

As to the second problem, the ordering of absorbed switches
may affect its total added path length since the new ab-
sorbed switch may form a better edge to break for the later
absorbed switches. Thus, we always absorb the switch with
the shortest distance to its closest routed switch, leaving the
other switches a chance of shortening their distance to their
closest routed switch. Also, we maintain the same closest-
routed-switch information as above to determine the next
absorbed switch.

4.4 Rectangle Routing
For a MTCMOS design, majority of the switches are placed

regularly based on a placement pattern as shown in Sec-
tion 2.2. To take advantage of this regularity, we first iden-
tify several maximal-size rectangles in which the switches are
all regularly placed, meaning that the X-axis (or Y-axis) dis-
tance between any two adjacent switches is the same. Then
we route all the switches inside a rectangle at once. In fact,
the ”rectangle” defined in our framework does not have a
real rectangular shape physically due to the placement pat-
terns, but we conceptually view it as a rectangle as shown
in Figure 11. For such rectangles, a minimum Hamiltonian
path covering all rectangle’s switches can always be found
efficiently.

(a) (b)

Figure 11: (a) A conceptual rectangle used in our rect-

angle routing, and (b) the real location of the switches

inside the rectangle.

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 43

In our framework, we use only the following three types
of Hamiltonian-path routing to route the switches within a
rectangle. Because the X-axis unit length (X-axis distance
between two adjacent switches) is much longer than the Y-
axis unit length in the used placement pattern, we try to
avoid the traverse in X-axis as much as possible. With these
three types of Hamiltonian-path routing, we can guarantee
that the resulting Hamiltonian path within the rectangle has
the shortest length given the input switch (the first routed
switch). Once the routing type and the input switch is de-
termined, its output switch (the last routed switch in the
rectangle) is determined as well.

Figure 12 shows the three types of Hamiltonian-path rout-
ing and their corresponding path length on a MxN rectan-
gle. When the input switch is on the top (or bottom) side
of the rectangle, we apply the Type-1 routing. To use the
Type-1 routing, P has to be odd, where P means that the
input switch is the P th switch on the top side counting from
the closer right or left side. Therefore, an input switch with
an even P will not be considered when the routing starts
from the top side.

X-axis unit length : x
Y-axis unit length : y

of rows : M
of columns : N

N = P + Q , P<=Q

M = G + H , G<=H

Input

Type2 :

total length:
[2*(N-1)]*x

+) {M*N-1-[2*(N-1)]}*y_______________________
[2*(N-1)]*x+[(M-2)*N+1]*y

N has to be even

N

G

M

……

H

NInput
Type1:P has to be odd

total length:
[(P-1)+(N-1)]*x

+) {M*N-1-[(P-1)+(N-1)]}*y_______________________
(P+N-2)*x+[(M-1)*N-P+1]*y

M

QP

…
…

Input

Type3 : G has to be odd

total length:
[(G-1)+(N-1)]*x

+) {M*N-1-[(G-1)+(N-1)]}*y_______________________
(G+N-2)*x+[(M-1)*N-G+1]*y

G

M

N

…
…H

Figure 12: Rules for routing a single rectangle.

When the input switch is on the left (or right) side, we
choose the proper routing between type-2 and type-3 rout-
ing. To apply type-2 routing, N has to be even, where N
is number of rows. To apply type-3 routing, G has to be
odd, where G means that the input switch is the Gth switch
on the left side counting from the closer top or bottom side.
If both type-2 and type-3 routing cannot be applied to an
input switch, then that input switch will not be considered
when the routing starts from the left side. If both type-2 and
type-3 routing can be applied to an input switch, then both
types will be considered for that input switch. Note that the
total length for each type routing listed in Figure 12 is only
an approximation (lower bound actually). The sawtooth-
like top and bottom sides requires a little extra length in Y
axis, which can be computed by a slightly more complicated
equation. We omit this equation due to the page limitation.

In our switch-routing framework, the rectangle routing is
performed before the switch absorption. Also, the rectan-
gle routing is performed after (1) most switches outside the
rectangles are routed and (2) the creation bridge requires a
higher cost than the average cost of switch absorption. The
rectangle routing first determines the ordering of rectangles
to be routed using a greedy algorithm. This greedy algo-
rithm starts from the last routed switch SC , and each time
selects the next routed rectangle whose center is closest to
the center of the current rectangle (or SC at the first time).
We route one rectangle at a time based on this rectangle

ordering.
For each rectangle to be routed, we choose the best input

switch along with a proper type of Hamiltonian-path routing
which can minimize the summation of the following three
distances: (1) the distance from the last routed switch SC

to the rectangle’s input switch, (2) the total path length
within the rectangle according to the adopted routing type,
and (3) the distance from the output switch of the current
rectangle to the center of the next routed rectangle (as shown
in Figure 13).

SC

center

total length using Type 3

output switch

Next routed rectangle

input switch

Cost of using the input switch
= (1) + (2) + (3)

(1)
(2)

(3)

Figure 13: Choose the best input switch for a rectangle.

Note that the rectangles are viewed as hard macros before
the rectangle routing. Thus, we need to determine which
maximal-size rectangles are preserved for the rectangle rout-
ing at the beginning of the switch routing. More rectan-
gles preserved for switch routing imply that more regularly
placed switches can be routed in a local minimal way. How-
ever, at the same time, more obstacles exist when routing the
switches outside the rectangles. So far we have not found an
effective method to estimate which group of preserved rect-
angles can result in a minimal total length. Therefore, we
first start from using no rectangle, and then each time add
the rectangle covering most switches until adding the rectan-
gle cannot further reduce the total length. Our experimental
result will show that the proposed switch-routing framework
is efficient enough to afford the iterative trials. In addition,
when we estimate the average cost of switch absorption, the
switches within the rectangles are considered routed since
the switch absorption is performed after the rectangle rout-
ing.

4.5 Overall Flow
Figure 14 summarizes the overall flow of the proposed

switch-routing framework. In fact, our algorithm cannot
guarantee that a feasible Hamiltonian trunk path can be
always found for a given switch allocation. The switches
that cannot be absorbed are connected by using branches.
Fortunately, no branch is required in our experiments so far.

5. EXPERIMENTAL RESULT
5.1 Results of Proposed Framework

In this subsection, we first perform the proposed switch-
routing frameworks on four industrial MTCMOS designs
based on a 65nm coarse-grain MTCMOS technology [11]
with 6 metal layers. Among those designs, Case 1 is already
in production, containing 320 hard macros (including both
power-gated and always-on macros) and more than 1-million
instances (around 600K power-gated instances). The switch
allocation is done semi-automatically with the back-end tool,
Blast Fusion [12]. The Manhattan-distance constraint is set
to 150μm.

Table 1 first shows the result of the proposed switch-
routing framework using different numbers of rectangles. In

44 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

Algorithm: SwitchRouting
define
MD(s1, s2): Manhattan distance between s1 and s2
Nearby(s): the switch closest to s
MD constrain: Manhattan distance constraint

unvisit ratio: the ratio of unvisited switches no in rectangles

threshold: user-specified ratio determining when to consider

switch absorption

cost bc(Sc, Sn): cost of creating a bridge from Sc to Sn

cost sa avg(): cost of absorbing Sn

Plist: List of path switches
1 begin
2 Build position matrix and matrix for all switches

3 Build hard macro records

4 Sc = starting switch;

5 Append Sc to Plist;

6 while (any unvisited switch exists) {
7 Sn = Nearby(Sc)

8 if (MD(Sc, Sn) < MD constrain) {
9 append Sn to Plist; Sc = Sn;

10 }
11 else if (unvisit ratio > threshold ||
12 cost bc(Sc, Sn) < cost sa avg() {
13 create a bridge from Sc to Sn;

14 append Sn to Plist; Sc = Sn;

15 }
16 else if (rectangles not routed yet) {
17 route rectangles from Sc;

18 Sc becomes the last routed switch in rectangles;

19 }
20 else

21 break

22 }
23 try to absorb remaining switches into Plist if possible;

24 create branches to connect remaining switches;

25 end

Figure 14: The overall algorithm of the proposed

switch-routing framework.

Table 1, Column 2 and 3 list the total chip size and total
number of MTCMOS switches, respectively. Column 4, 5,
and 6 list the number of rectangles in use, the percentage
of switches inside the rectangles, and the total Manhattan
distance of the trunk path, respectively. A shadowed slot in-
dicates the shortest path length of using different numbers
of rectangles. Column 7 lists the percentage of switches cov-
ered by the trunk path. Column 8 lists the total runtime in
seconds.

As the result shows, the proposed switch-routing frame-
work can always find a feasible trunk path covering all the
switches. Also, using only the largest one or two rectan-
gles can already result in the shortest trunk path. It is
because majority of the switches are regularly placed in real
designs so that the largest two rectangles can cover around
50% of the total switches. In addition, the reported runtime
demonstrates that the complexity of the proposed frame-
work is scalable to large industrial designs, where the longest
runtime is around 1.15 hours for routing 173K MTCMOS
switches. Even we try the number of used rectangles from
0 to 3 respectively, the total runtime for the largest case is
around 2.4 hours.

5.2 Compared with Vendor Solution
In this subsection, we compare the proposed framework

with a rough solution provided by an EDA vendor, which
is a script file operating on the design database used in a
back-end tool, not a tool’s standard built-in function. Also,
this solution does not consider the Manhattan-distance con-
straint. However, it is the only switch-routing solution we

design chip size # of # of switch % total MD trunk path runtime

(mm2) switches rect. in rect. (μm) coverage (sec)

0 0 257385 100% 107
Case 1 13.595 17523 1 40.10 256425 100% 90

2 53.03 256349 100% 71
3 55.41 257042 100% 73

0 0 325196 100% 102

Case 2 13.552 20593 1 39.14 323945 100% 102
2 50.17 327959 100% 112
3 51.27 326792 100% 80

0 0 853093 100% 373
Case 3 29.426 57035 1 40.16 852055 100% 181

2 58.09 850614 100% 111
3 72.31 854374 100% 150

0 0 2570350 100% 4139

Case 4 66.234 173420 1 39.04 2545080 100% 1512
2 46.06 2548310 100% 1589
3 52.14 2550770 100% 1374

Table 1: Results of the proposed switch-routing frame-

work on 4 industrial MTCMOS designs.

can get from our EDA vendor. Actually, one of our motiva-
tions to start developing the proposed switch-routing frame-
work is from seeing the inefficiency of this rough vendor so-
lution. The comparison results are reported in Table 2.

In Table 2, Column 3 and 4 list the total Manhattan dis-
tance of the trunk path and its number of violations against
the Manhattan-distance constraint, respectively. Column 5
and 6 list the total wire length and the number of vias in
use after detail route, respectively. Column 7 lists the path’s
response time from the wake-up-request signal to the wake-
up-acknowledge signal. As the result shows, the proposed
switch-routing framework performs better than the vendor’s
solution at every reported item. Note that the switch de-
lay with an oversized output loading is estimated by using
the linear extrapolation. The actual response time for the
vendor’s solution might be larger than the reported number
shows.

design method total MD # of MD wire length # of response
(μm) violation (μm) via time (μ s.)

Case 1 vendor 922,634 382 1,907,690 142,625 7.87
proposed 256,349 0 573,513 142,119 6.62

Case 2 vendor 908,123 317 1,892,643 168,948 8.53
proposed 323,945 0 720,615 167,933 7.67

Case 3 vendor 1,991,841 429 4,193,585 475,952 21.85
proposed 850,614 0 1,904,906 464,989 19.79

Case 4 vendor 5,356,878 580 11,346,593 1,438,786 63.28
proposed 2,545,080 0 5,715,291 1,416,614 58.50

Table 2: Comparison between the propose framework

and a vendor solution.

5.3 Compared with TSP Solver
In this subsection, we attempt to solve the switch-routing

problem by applying a TSP solver based on a modified com-
plete graph as described in Section 3.2. Since we set an
excessively large weight to each edge whose distance be-
tween its two switches exceeds the constraint, the TSP solver
should avoid passing through such a constraint-violated edge
while minimizing the total path length. If the TSP solver is
optimal enough, no constraint-violated edge will be visited
and hence a feasible Hamiltonian path can be found.

We first implement a simple greedy TSP algorithm, de-
noted as TSP1, which selects the unvisited switch closest
to the current switch as its next ordered switch each time.
Also, TSP1 will try several different initial switches indi-

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 45

vidually. Among those trails, TSP1 reports the Hamilto-
nian path covering the least number of constraint-violated
edges. The number of trials used in TSP1 is 0.1% of the
total switches. Note that the search of the closest unvisited
switch is done based on the same data structure as the pro-
posed method (Section 4.1), such that we can avoid the use
of a huge N2 matrix for storing all edge’s weight, where N is
the total number of switches. Thus, the search of the closest
unvisited switch in TSP1 may be relatively slow compared
to the use of a N2 edge matrix.

Table 3 compares the total Manhattan distance of the re-
sulting Hamiltonian path, the number of constraint-violated
edges, and the runtime between TSP1 and the proposed
framework. As the result shows, the listed total Manhat-
tan distance between TSP1 and the proposed framework
is close. However, the path reported by TSP1 contains at
least 24 more constraint-violated edges for each benchmark
design. To eliminate all the constraint-violated edges from
the reported path, a significant amount of Manhattan dis-
tance is needs be added to form a feasible Hamiltonian path.
Also, the runtime of TSP1 is much longer than that of the
proposed framework, especially for the largest design.

design method total MD # of MD runtime
(μm) violation (sec)

Case 1 TSP1 259,218 24 1008
proposed 256,349 0 71

Case 2 TSP1 321,048 28 1087
proposed 323,945 0 102

Case 3 TSP1 857,110 26 10298
proposed 850,614 0 111

Case 4 TSP1 2,550,120 32 193379
proposed 2,545,080 0 1512

Table 3: Comparison between the propose framework

and a greedy-based TSP solver.

Next, we try to apply a state-of-the-art TSP solver [13]
to solve the switch-routing problem and check whether this
advanced TSP solver can generate a feasible Hamiltonian
path without going through any constraint-violated edge.
The TSP solver [13] can be obtained from public domain
and has been applied to solve several optimization prob-
lems [16] [17] [18]. Also, this TSP solver [13] can always
iteratively fine-tune an existing solution to obtain a bet-
ter solution. However, this TSP solver [13] requires a two-
dimensional matrix to store all edges’ weight of the complete
graph.

Table 4 first lists the size of the edge matrix. For Case 3
and 4, the size of their edge matrices exceeds the limitation
of the TSP solver [13] (as well as the main-memory size of
our system) and hence no result can be obtained. For Case
1 and 2, the resulting path reported by the TSP solver [13]
still contains few edges violating the constraint after running
for more than 24 hours. This result demonstrates that a fea-
sible short Hamiltonian path, which can be efficiently and
effectively obtained by the proposed switch-routing frame-
work, is not easy to be obtained by using a general TSP
solver. It also shows the advantage of developing a heuristic
algorithm which is specialized for solving MTCMOS switch
routing and can utilize the physical-layout information of
the MTCMOS switches.

6. CONCLUSION
In this paper, we proposed a switch-routing framework,

design Case 1 Case 2 Case 3 Case 4

required edge-matrix size 1.3GB 1.9GB 14.3GB 141.0GB

of left MD violations 2 2 N.A. N.A.

Table 4: Required matrix size and the number of left vi-

olations against the Manhattan-distance constraint after

running 24 hours for [13].

which utilizes the techniques of the bridge creation, the
switch absorption, and the rectangle routing to simultane-
ously minimize the trunk-path length and satisfy the Manhattan-
distance constraint. The experimental result demonstrates
its efficiency and effectiveness by comparing to a vendor so-
lution and TSP solvers based on four industrial MTCMOS
designs. This framework is currently applied in an industrial
design house.

7. REFERENCES
[1] Z. Liu and V. Kursun, Charge Recycling Between Virtual

Power and Ground Lines for Low Energy MTCMOS,
IEEE/ACM International Symposium on Quality Electronic
Design, pp.239-244, March 2007.

[2] E. Pakbaznia, F. Fallah, and M. Pedram, Charge Recycling in
MTCMOS Circuits: Concept and Analysis, Design
Automation Conference, pp.97-102, July 2006.

[3] S. Kim, S. V. Kosonocky, D. R. Knebel, and K. Stawiasz,
Experimental Measurement of a Novel Power Gating Structure
with Intermediate Power Saving Mode, International
Symposium on Low Power Electronics and Design, pp.20-25,
Aug. 2004.

[4] C. Long and L. He, Distributed Sleep Transistors Network for
Power Reduction, Design Automation Conference, pp.181-186,
July 2003.

[5] J. Kao, S. Narendra, and A. Chandrakasan, MTCMOS
Hierarchical Sizing based on Mutual Exclusive Discharge
Patterns, Design Automation Conference, pp.495-500, June
1997.

[6] C. Hwang, C. Kang, and M. Pedram, Gate Sizing and
Replication to Minimize the Effects of Virtual Ground Parasitic
Resistances in MTCMOS Designs, IEEE/ACM International
Symposium on Quality Electronic Design, March 2006.

[7] M. Anis, S. Areibi, and M Elmasry, Design and Optimization
of Multithreshold CMOS (MTCMOS) Circuits, IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, pp.1324-1342, Volume 22, Issue 10, Oct. 2003.

[8] A. Ramalingam, A. Devgan, and D. Z. Pan, Wakeup
Scheduling in MTCMOS Circuits Using Successive Relaxation
to Minimize Ground Bounce, Journal of Low Power
Electronics, pp.1-8, Vol.3, No.1, 2007.

[9] H. Jiang and M. Marek-Sadowska, Power Gating Scheduling
for Power/Ground Noise Reduction, Design Automation
Conference, pp.980-985, June 2008.

[10] A. Abdollahi, F. Fallah, and M. Pedram, A Robust Power
Gating Structure and Power Mode Transition Strategy for
MTCMOS Design, IEEE Trans. on Very Large Scale
Integration Systems, pp.80-89, Volume 15, Issue 1, Jan. 2007.

[11] Taiwan Semiconductor Manufacturing Company, Ltd., TSMC
Reference Flow 7.0, 2007.

[12] Magma Design Automation, Blast Fusion User Guide
Version:2005.03, June 2007.

[13] D. Applegate, R. Bixby, V. Chvatal, and W. Cook Concorde
TSP Solver, http://www.tsp.gatech.edu/concorde/index.html.

[14] C. Fremuth-Paeger, B. Schmidt, and B. Eisermann, GOBLIN:
A Graph Object Library for Network Programming Problems,
http://www.math.uni-augsburg.de/ fremuth/goblin.html.

[15] K. Helsgaun, LKH: An Effective Implementation of the
Lin-Kernighan Heuristic for solving TSP,
http://akira.ruc.dk/ keld/research/LKH/.

[16] D. Aldous and A. G. Percus, Scaling and Universality in
Continuous Length Combinatorial Optimization, PROC. Nat.
Acad. Sci. USA 100 (20), pp.11211-11215, 2003.

[17] D. Applegate, W. Cook, S. Dash, and A. Rohe, Solution of a
Min-Max Vehicle Routing Problem, INFORMS Journal on
Computing 14 (2), pp.132-143, 2002.

[18] G. Gutin, H. Jakubowicz, S. Ronen, and A. Zverovitch, Seismic
Vessel Problem, Communications in DQM 8, pp.13-20, 2005.

46 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Times-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

