
DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Front-End Web Development of an Interactive
Design Platform for Microfluidic IP Modules

Xianer Chen

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Front-End Web Development of an Interactive
Design Platform for Microfluidic IP Modules

Front-End-Webentwicklung einer interaktiven
Designplattform für mikrofluidische

IP-Module

Author: Xianer Chen

Supervisor: Prof. Dr.-Ing. Ulf Schlichtmann

Advisor: M.Sc Yushen Zhang

Submission Date: 15. July 2022

I confirm that this bachelor’s thesis in informatics is my own work and I have documented

all sources and material used.

Munich, 15. July 2022 Xianer Chen

Acknowledgments

Many thanks go to Chair of Electronic Design Automation (EDA) of the Technical University

of Munich (TUM) for hosting this thesis, especially to Prof. Dr.-Ing. Ulf Schlichtmann as

the supervisor. Special thanks go to team Columba from TUM, whose research inspired this

thesis.

Most of all, I want to thank M.Sc Yushen Zhang for offering me the opportunity to work

on an inspiring practical front-end project and for guiding me throughout the work. Without

his support this thesis would not have been possible, and I cannot be more grateful for it.

I would also like to thank my family and friends for their support throughout my under-

graduate studies, especially during the difficult times of the pandemic.

Abstract

With the rise of microfluidic chips in the field of biotechnology over the past decade, the

functionality and structure of the microfluidic chips are gaining increasing complexity, which

complicates the process of designing them. In recent years, researchers have aimed to replace

the manual design process with an automated design process for complicated microfluidic

devices and proposed promising solutions. However, the applicable scope of such design

automation software is highly dependent on the variety of microfluidic modules it can provide.

As new types of microfluidic components have been continuously developed nowadays, the

module library of the design automation software needs to be constantly updated. With

conventional design software like AutoCAD, module developers need to manually describe

layer interactions within the module, making the design process very inefficient.

This thesis will introduce Module Sketch, an interactive web-based design platform for

microfluidic components. Module Sketch provides a comprehensive solution to simplify

the work of designing new components and an easily accessible platform to support the

development of microfluidic intellectual property (IP) modules.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 4

2.1 Fluid Control of Continuous Microfluidics . 4

2.2 Front-End Techniques . 5

2.2.1 Scalable Vector Graphics . 6

2.2.2 JavaScript . 6

2.2.3 Front-End Frameworks . 7

2.3 Design Tools of mLSI . 9

2.3.1 Cloud Columba . 9

2.3.2 3DµF . 9

2.3.3 AutoCAD . 11

3 Functional Requirements Analysis 12

3.1 Drafting . 13

3.2 Control Bindings . 14

3.3 Relative Coordinate & Output Generation . 16

4 Design & Implementation 18

4.1 User Interface . 18

4.2 Code Structure . 19

4.3 Content Rendering . 20

4.4 Drafting Implementation . 23

4.4.1 Shape Drawing . 23

v

Contents

4.4.2 Shape Selecting & Editing . 25

4.4.3 Grid Size & Zooming . 26

4.5 Binding Options . 28

4.5.1 Union-Find Algorithm . 29

4.5.2 Valve Group Modification . 30

4.5.3 Link Modification . 30

4.6 Design Interpretation . 31

5 Conclusion 34

6 Future Work 35

6.1 Load Existing Designs . 35

6.2 Netlist Recognition . 35

6.3 State Management Migration . 35

6.4 Drafting Feature Extension . 36

List of Figures 37

List of Tables 38

Listings 39

Bibliography 40

vi

1 Introduction

Continuous-flow microfluidic large-scale integration (mLSI) [1] has been a rapidly growing

field over the past decade and is widely used in biomedicine and biochemistry. Composed of

various microfluidic components and interconnected microchannels, microfluidic biochips in-

tegrate the laboratory experiments of chemical synthesis and biological analysis [2], including

sampling, dilution, reaction, separation, etc. Thus, it is also known as Lab-on-a-chip (LoC)

[3]. Through precise manipulation of small fluids, especially on the sub-millimeter scale [2],

LoC can greatly shorten the sample processing time and achieve the maximum utilization

efficiency of reaction samples and reagents, which provides extremely broad prospects in

biological and medical fields.

As the potential of mLSI biochips is being exploited, they are gaining increasing com-

plexity in structure and features. However, similar to the early development of integrated

circuits, the disadvantages of manual design—time-consuming and error-prone—became

more obvious, which is inevitable for the manual design of highly complex mLSI chips. In

recent years, researchers of design automation for mLSI have been making attempts to replace

the conventional AutoCAD manual design process [4], and now a promising solution has

emerged.

Cloud Columba1, developed by Tseng and colleagues from the Technical University of

Munich (TUM), can interpret users’ input of device specifications and generate optimized

designs of the chip layouts automatically [5]. As shown in Figure 1.1, Columba provides a

user interface where users can specify the type, quantity, and some specific properties of the

required components. These components are defined in Columba’s module library, module

models [6, 4]. For now, Columba has two different modules available for the user: ring mixer

and chamber container, but these can only provide the most basic features of mLSI. Columba’s

researchers believe that it is necessary to expand the module library by introducing more

1https://cloud-columba.org/

1

1 Introduction

module model categories [7]. However, they are facing the same problem as described earlier

in the mLSI chip design. At the moment, in order to design a new component, designers have

to draw the design first on AutoCAD and then interpret it into a .JSON file that conforms

to the format of the module models. On the one hand, components are very likely to have

two layers interacting with each other, and designers cannot define the layer interaction on

AutoCAD. On the other hand, the design drawings cannot be processed into the required

format automatically. Manual interpretation is tedious and will only add to the time and

personal costs. Thus, it goes against the initial intention of design automation.

Figure 1.1: UI of Cloud Columba.

Nonetheless, Columba’s concept still holds great potential, as it is able to perform the

optimization of the mLSI layout on its own without human intervention. But in order to

expand its module library, Columba’s researchers need a dedicated module design tool that

can solve the problems discussed above.

In this project, we propose Module Sketch, a web-based interactive design platform for

2

1 Introduction

mLSI components. It is convenient to operate and provides comprehensive drafting features

similar to AutoCAD-like applications. As a highly targeted module design application for

Columba, it allows users to describe how the component could be integrated into microfluidic

chips, and generate a design output as a .JSON file which is guaranteed to meet the rules and

standards of Columba’s module models.

3

2 Background

In this chapter, we will take a closer look at the fluid control mechanism of mLSI, and then

we will provide a general introduction to front-end technology. At last, we will have a review

of the computer-aided design (CAD) for mLSI [5] currently in use.

2.1 Fluid Control of Continuous Microfluidics

As mentioned before, the most remarkable feature of mLSI is its precise fluid control, which is

supported by the interaction of microfluidic layers. Although the fluid control mechanism in

single-layered microfluidic chips has recently begun to be explored [8], interactions between

the microfluidic flow layer and control layer are still the mainstream way to fulfill this

feature. The reaction samples and reagents are located in the flow layer, flowing along the

channels within [9]. Made from polydimethylsiloxane (PDMS), microchannels have an elastic

mechanical property and can therefore deform when pressure is applied. The control layer

lies above the flow layer and consists of control channels and pneumatic valves, which are

placed on top of the flow channels. When activated by air pressure, the valve squeezes the

flow channel and blocks the fluid within. Correspondingly, when the air pressure is released,

the blockage will be lifted, which will allow the fluid to be transported further [9].

As part of the continuous microfluidic chip, a microfluidic module also contains the

aforementioned layer-to-layer interactions. Figure 2.1 [4] shows an example of a continuous

microfluidic chip design, where the flow channels are denoted by red color, and the control

channels and the valves are denoted by green color. (a) and (b) are two different components

that involve the interaction between layers.

4

2 Background

Figure 2.1: A design generated by Columba 2.0 [4]. (a) A switch. (b) A rotary mixer.

2.2 Front-End Techniques

The development of the front-end is a reflection of the development of the Internet itself.

Since the inception of the Internet, front-end developers have been working on enriching the

content and the interactivity of web pages in pursuit of the best user experience.

Hyper Text Markup Language (HTML) [10], Cascading Style Sheets (CSS), and JavaScript

have been the core of front-end development since the very early days of the Internet. At

present, HTML6 is on the horizon, but we can still recall the revolution that HTML5 started in

October 2014 through a variety of new features, including: the multimedia elements <audio>

and <video> and the graphic elements <svg> and <canvas>. JavaScript was standardized

by European Computer Manufacturers Association (ECMA) since 1997 under the alias

ECMAScript [11]. It can dynamically modify the Document Object Model (DOM) structure in

response to user events on the browser. In the mid-2000s, the Internet entered the era of Web

2.0, where the concept of Asynchronous JavaScript and XML (AJAX) [12] played an important

role. AJAX made it possible to update the web content without reloading the whole page and

is widely used by popular applications, such as Google Maps and Gmail.

For a large-scale front-end project, complex interactions and massive logic processing can

5

2 Background

result in a huge amount of JavaScript code, which increases the difficulty of development

and maintenance. Hence the Model View Control (MVC) framework is proposed to simplify

the front-end development. Through reasonable organization and layering, the front-end

code becomes cleaner and logically clearer, making the functionality enhancements and

testing much more convenient. Currently, React.js, Angular.js, and Vue.js are the three most

commonly used front-end MVC frameworks.

2.2.1 Scalable Vector Graphics

Among the features of HTML, Scalable Vector Graphics (SVG) plays the most important part

in our application.

SVG is an Extensible Markup Language (XML). It has been developed by the World Wide

Web Consortium (W3C) since 1999 [13]. An SVG document, which consists of only the <svg>

root element and shape elements inside of it, can be inserted almost anywhere in the HTML

body. The user can not only easily scale, rotate or translate SVG but also apply filters on it or

use SVG for animation.

As the name suggests, SVG is used to represent vector graphics. Unlike bitmaps, which

are a bunch of pixels, vector graphics are independent of resolution and, therefore, can be

rendered at any size without any loss of quality. This feature is critical for our design tool. In

order to draft a precise design, users need to constantly zoom in and out on the parts they

are working on. Design in the work area should always be clearly presented to the users and

SVG has an absolute advantage in this regard.

Another benefit of the <svg> element is that it has a DOM interface, and therefore we can

attach JavaScript event handlers to <svg> elements or the elements inside the <svg><\svg>

tags, which makes them more convenient to modify.

2.2.2 JavaScript

JavaScript is a scripting language that is also one of the three core technologies of the World

Wide Web (WWW). It was invented by Brendan Eich in 1995 [14] to add interactivities to

websites. JavaScript allows developers to capture users’ activities on the browser, such as

6

2 Background

mouse, keyboard, and wheel activities, and bind customized event handlers to them. It

provides local storage to store data and methods to modify the content or the style of the

website. Since 2009, with the release of Node.js [15], JavaScript has transformed from a

language that ran purely on the client-side to one that is equally useful on the server.

According to a recent survey published by SlashData [16], JavaScript remains the most

popular programming language for the tenth survey in a row, with close to 17.5M developers

worldwide using it. GitHub’s 2021 Octoverse Report [17] showed similar results (Figure 2.2).

Figure 2.2: "Top languages over the years" from Octoverse Report 2021 [17].

2.2.3 Front-End Frameworks

After JavaScript laid a path for the dynamic interaction of web pages, in order to establish the

user interface of the websites quickly and simplify the development, front-end frameworks

emerged, which are usually based on JavaScript or TypeScript. According to the survey result

of State of JS 2021 (Figure 2.3) [18], the mainstream frameworks and libraries in the front-end

field are still React, Vue and Angular, while some new frameworks like Svelte also have

increasing competitiveness.

React was created and maintained by Meta (formerly Facebook) [19]. It was first used

for establishing Facebook’s internal products like Instagram and then released to the public

in 2013. It supports component reuse and is attracting the attention of more and more

developers.

Angular [20] is the successor of AngularJS (both owned by Google). With Angular, devel-

7

2 Background

Satisfaction
 Usage

Figure 2.3: Rankings of front-end frameworks from State of JS 2021 [18].

opers can easily build complex websites with user-defined components. Angular is equipped

with a large ecosystem, and it supports two-way data binding, which means that if the value

of a variable in the model changes, the DOM tree (view) will be modified accordingly, and

vice versa.

Vue’s creator Evan You used to work at Google using AngularJS [21]. Hence Vue inherited

the advantages of the powerful AngularJS, including the component-based pattern and two-

way data binding [22]. Another benefit of Vue is that it is more simplified and lightweight,

which is the reason why we use Vue as the framework in this project. Meanwhile, Vue is also

perfectly capable of supporting complex single-page application (SPA) development when

used with related tools and libraries, such as Vuex, a state management1 pattern for Vue

applications.

1Pinia has recently replaced Vuex as the official state management library for Vue. For more information see:
https://vuex.vuejs.org/
https://pinia.vuejs.org/introduction.html

8

2 Background

2.3 Design Tools of mLSI

2.3.1 Cloud Columba

In the last chapter, we briefly discussed Cloud Columba, the design automation software for

continuous microfluidics developed by Tseng’s team from TUM. For now, three versions have

been successively released: Columba, Columba 2.0, and Columba S [6, 4, 23]. Each version

has a significant improvement over the previous one, which shows great potential in mLSI

manufacture.

As mLSI is the integration of microfluidic modules, the usability of design automation is

highly dependent on the variety of its module library, which is the module models in the

scope of Columba.

Each module model has well-defined flow and control channels within a rectangle-shaped

boundary. All the junctions, where channels can be connected to external devices, lie on the

boundary [4]. What Columba does is decide how the module is geometrically integrated onto

the chip, and which junctions are used as connections to other devices.

Figure 2.4 (a) shows the schematic of the module model for a ring mixer. Flow channels are

denoted by blue color. The left and right sides are connected to the external of the module.

Control channels are denoted by light green color and valves by orange, pink, or dark green

color. Each valve could be bound to one or several control pins and have different binding

options. For example, (b)(c)(d) are the three binding options for the same valve, which is

bound to the sixth and seventh control pin. Binding options will be further discussed in

section 3.2.

2.3.2 3DµF

3DµF2 is a web-based open-source interactive microfluidic system designer developed by

CIDAR lab3. On 3DµF, users can modify continuous microfluidic designs easily with drag-

and-drop. 3DµF provides a library of useful microfluidic components with modifiable

properties, as well as the option to import user-defined components from external .DXF files

2https://3duf.org/
3https://www.cidarlab.org/

9

2 Background

Figure 2.4: Module model for a ring container.

10

2 Background

[24].

2.3.3 AutoCAD

AutoCAD is a fully equipped design tool widely applied in various industries. From

machinery manufacturing to architectural design, AutoCAD is the universal solution for

design drafting. The same goes for continuous microfluidics chips, and attempts have been

made to make AutoCAD more applicable. For instance, in 2009, Amin’s team from the

Massachusetts Institute of Technology (MIT) proposed an AutoCAD-plugin named Micado

[25], which supports automatic valve placement and routing for the control layer of simple

continuous microfluidic chips.

However, our goal is to develop a module design platform for Columba. Although with

AutoCAD alone, users can perfectly present the structure of the components to be designed,

they cannot describe control bindings or generate output in the format that Columba desires.

On the other hand, compared to web applications, AutoCAD requires an installation, which

makes it less convenient to access. Despite these flaws, AutoCAD still provides comprehensive

drafting functionalities and a user-friendly interface, which is worth for reference.

11

3 Functional Requirements Analysis

In this chapter, we will analyze the functional requirements of this project, from the basic

features of general drafting software to the ones that are particularly required for microfluidic

components design. First of all, we would like to briefly introduce the workflow of our

application through a simple activity diagram (Figure 3.1). In subsections, we will be

discussing each activity in detail.

Draft

Add Binding
Options

Add Relative
Coordinates

Generate Output

Figure 3.1: A simple activity diagram of Module Sketch

Note that the sequence of activities in the diagram is desired but not strictly specified in

practice, as the user may need to adjust the previous steps at any time. However, it should be

clarified that each activity in the diagram has a certain degree of dependence on the previous

ones. For example, in the activity Add Binding Options, the user needs to select figures that

have been drafted. In the meantime, the user can still step back and delete a shape that has

been added to a binding option, but our application will then modify the binding options

accordingly, since it cannot allow an undefined figure to remain in the system.

12

3 Functional Requirements Analysis

3.1 Drafting

As discussed before, a continuous microfluidic component usually consists of two layers: a

flow layer and a control layer. For both layers, drafting is an essential functionality, where

users draw up the designs from scratch by adding and editing entities that represent chambers,

channels, and valves.

In order to optimize our user experience in drafting, we need to clarify a lot of details,

although many of them may seem intuitive to users nowadays. As we are building our App

from scratch, every detail that may influence user experience matters and is worth our extra

thoughts and attention. The central idea is that a good application should act the same way

as the user would expect.

Shape Drawing: We simplify the entity design process to shape drawing since the compo-

nent parts like chambers and channels can be represented by shapes like solid rectangles

and polylines, respectively. Users should be able to draw basic solid and hollow fig-

ures, such as rectangles, rounded rectangles, ellipses, polygons, and polylines, and by

combining these basic shapes, they can create complex figures.

Shape Selecting & Editing: The shapes in the work area should be flexible. The selected

shapes will be highlighted, and have assisting points around them, which users can

drag and drop for editing operations, such as moving and resizing.

Group Selecting: If multiple shapes are supposed to be edited in the same way, like moved

by the same offsets or copied, we should not ask the user to repeat the same operation

for each shape. The user may need to select a group of shapes and move or copy them.

Switching between layers: As stated before, if a component has two layers, the user may

need to design them separately. When the user is operating on one layer, the other layer

should be automatically set as inactive, meaning that it cannot be accessed, but it is still

visible with less opacity so that the user can have an overall observation.

Zooming and Panning: Zooming and panning can either be achieved with the mouse

wheel (like AutoCAD) or by clicking buttons or with hotkeys (like Adobe Photoshop

or Illustrator). Experienced users would prefer the mouse wheel or hotkeys, but for

inexperienced users, buttons are the most straightforward solution. Both are worth

13

3 Functional Requirements Analysis

taking into account.

Pins: Users may need to mark some points with notations, such as inlets or outlets of the

fluids. Pins are only visible during the designing process and will be ignored in output

generation.

Copy and Paste: For the shapes that may appear multiple times or in a pattern, copy and

paste will save the repetitive work.

Redo and Undo: It is necessary for a design tool to enable users to discard and resume

previous operations.

Snap: The vertices of shapes or midpoints of line segments are often critical points that

users may want to reuse. Making them snap points will help the user to find the exact

position for drawing and editing.

Ctrl and Shift key: Ctrl and Shift keys are assigned various functions and are widely used

on all kinds of user interfaces. Besides hotkeys like Copy (Ctrl+C) and Paste (Ctrl+V), a

combination of Ctrl or Shift and mouse click can also modify the selection by adding

or removing the item from the selected group. In addition, on design tools like Adobe

Illustrator, pressing the Shift key while drawing may add constraints to the shape and

force users to draw only horizontal or vertical lines, perfect circles, squares, etc.

3.2 Control Bindings

So far, we have covered almost all the features of the flow layer, but in the control layer, users

will additionally describe the behavior of valves and control channels.

Cloud Columba treats every component as a rectangular block with control pins on the

boundary. Every control channel is connected to its unique control pin and the valves that it

controls. In most cases, a valve can be controlled by multiple pins. For this concept, we use the

term binding options for the valve, and we call the task of choosing one viable binding option

for a valve or valve group (some valves only exist in groups) a control task. An important part

of the work of Cloud Columba is to complete each control task for all the components on

the mLSI. In short, we must design a way to describe the control tasks for the component to

14

3 Functional Requirements Analysis

make sure that Columba knows everything needed for this process.

It is straightforward to add binding options for a single independent valve by following

the steps shown below:

1. Select a valve.

2. Start adding a new binding option.

3. Select channels.

4. Finish adding the binding option (or discard selection).

We specify single and independent because the complexity of adding binding options will

greatly increase in other cases. Currently, there are two typical situations:

• Pumps

As mentioned above, some valves do not exist alone but are only concatenated together

into a group by control channels. Such a valve group is usually called a pump. Users

can form a pump by selecting the valves from the work area, and then the pump can be

treated like a single independent valve, meaning that users can add binding options for

it through the process given above.

• Linked valves

In contrast to independent valves, if two valves are linked together, their binding options

will be treated as one control task, meaning that only one of them can exist in the final

design. This procedure works differently from creating a group: when the user forms a

group, the chosen valves can still be added to other groups. However, a valve or a valve

group can only be linked once.

Note that both situations above may occur simultaneously, that is, users may need to link

valve groups. Take Columba’s mixer as an example (Figure 2.4), (e), (f) and (g) are three

possible implementations of the mixer in the final layout. We can see in (f) and (g) that both

implementations have the pump in the middle of the bottom of the mixer. The pump supports

two different physical structures to enable flexible pin access. Namely, it is composed of

either three or four valves. In this case, the user needs to form two groups, namely one group

of three valves and one of four, to represent this pump. This raises a problem since the two

groups are not independent of each other because we cannot choose one binding option for

15

3 Functional Requirements Analysis

each of them. In other words, the two groups must be linked together so that they belong to

the same control task.

3.3 Relative Coordinate & Output Generation

On the microfluidic chip design software, components are mostly variable in size, and some

channels can be extended to make the component scalable. Thus, in our application, the

figures displayed in the work area do not necessarily match the corresponding shapes in

the final microfluidic chip design. To support the extensible channels, we have to introduce

the concept of relative coordinate (denoted by xRel, yRel) and, accordingly, absolute coordinate

(xAbs, yAbs).

In the representation of a component, every point has its unique absolute and relative

coordinates. The relative coordinate indicates the position of a reference point with respect to

the whole design layout. Both xRel and yRel have the value of a rational number between 0

and 1. Take xRel as an example, the value 0 represents the leftmost end of the design, and

value 1 is the rightmost end. The absolute coordinate represents the distance between the

point and its reference point.

Given the position—the top left corner—of a component on an LoC (X, Y), the size of the

component (width × height) and a point P on the component with relative coordinate (xRel,

yRel) and absolute coordinate (xAbs, yAbs), then the coordinate of P on the LoC (P.x, P.y) can

be calculated as follows:

(
P.x

P.y

)
:=

(
X + xRel ∗ width + xAbs

Y + yRel ∗ height + yAbs

)
(3.1)

After the user defines relative coordinates for every point in the component design, the

entire design process is complete. Then a .JSON file can be exported, which contains all the

information of the design. Listing 3.1 shows the structure of the .JSON output.

Listing 3.1: The structure of the output

node := {"xAbs": double, "yAbs": double, "xRel": double, "yRel": double}

valve := {...node, "ori": string-orientation}

16

3 Functional Requirements Analysis

arc := {"type": "arc", ...node, "angle1": double, "angle2": double}
line := {"type": "line", "point": [...node...]}
area := {

"type": "solid",
"start": node,
"end": node,
"path": [...(arc|line)...]

}

controlOption := {
"control_pin_id": [...int...],
"channel": [...line...],
"valve": [...valve...]

}

controlTask := {"option": [...controlOption...], "id": int}

module := {
"name": string-title,
"control_element": [...controlTask...],
"flow_layer": {"shape": [...(arc|line|area)...]}

}

17

4 Design & Implementation

In this chapter, we will discuss the specific design and implementation of Module Sketch and

how it works behind the scenes.

4.1 User Interface

To start with this chapter, first, we would like to introduce our user interface (Figure 4.1).

Side Panels

Work Area

Toolbar

Header

Footer

Figure 4.1: The user interface of Module Sketch.

Header - The header consists of (from left to right) a text field to set the title and three

buttons, respectively: one for switching between layers, one for toggling layer settings,

and another to start output generation.

18

4 Design & Implementation

Footer - The footer has some checkboxes for settings on the left side, and presents (rounded)

cursor coordinate on the right side.

Toolbars - The main toolbar shows the modes of our application, which are (in top-down

order) select, polyline/polygon, rectangle, ellipse, pin, pan, and two additional modes

only available for the control layer: valve and bind. The top toolbar has three buttons.

With the first one, user can toggle between area mode and channel mode, which can

affect the selected shapes or new shapes to be drawn. Redo/undo can be triggered by

the next two buttons, as well as by hotkey Ctrl+Y and Ctrl+Z.

Work Area - The work area occupies almost the entire page and is where all SVG elements

are rendered. Thus, most event listeners are assigned to the work area. It consists of

multiple layers of SVG, including SVG of snap points and assisting points for editing.

Snap points and assisting points must be rendered above the content. Otherwise, they

might be blocked by other shapes and cannot catch any user events. On the bottom is

the background grid, which assists the user in aligning.

Side Panels - The panels on the right side imply the current status. On the layer settings

panel, users can adjust color, channel width, and the size of valves. Panels for modifi-

cation of control bindings and relative coordinates will also be mounted here. In the

lower right corner, there is an area for the presentation of the zooming status with the

current grid size and buttons for zooming-in, -out, and resetting the view.

4.2 Code Structure

The code of Module Sketch follows the default Vue3 project structure and the official style

guide1, namely, we keep our project directory flat and avoid reduplicative nesting (Figure 4.2).

As we are building a SPA, index.html is the start site and also the only .html file in

the directory. Its body contains one single element <div id="app"></div>, where the root

component App.vue will be mounted. Figure 4.3 shows the Vue component tree of App.vue.

For a large-scaled SPA with nested components that share the same states, we need to pass

the states from the parent components to the children as properties, and when a child wants

1https://v2.vuejs.org/v2/style-guide/

19

4 Design & Implementation

Figure 4.2: The code structure of Module Sketch.

to modify a property, it has to emit the request back to its parent. For a complex system,

this may lead to problems for maintenance, as it is hard to track which component did the

modification. In this case, centralized state management will greatly simplify the task. Instead

of passing the states down layer by layer, all components can get direct access to the states, as

well as the mutations and actions to modify them. Thus, any state modification can be easily

tracked. We use Vuex as our state management solution. More information about Vuex can

be found in its documentation2.

The structure of our centralized store is shown in Figure 4.4. In index.js we store the root

states, which include the highly coupled states relevant to drafting features. Other states and

their modification methods are extracted into modules.

4.3 Content Rendering

The entities in the work area are rendered from the objects in the local storage. An object

contains all the information of the corresponding shape, such as its id, type, translation, and

the coordinates of its vertices.

Rendering order is an important concept for a design tool. Imagine the user switches to

select mode and clicks on a point where multiple shapes overlap. Intuitively the shape on the

top, namely the latest drawn shape, would be selected. Thus, the content of the work area

should be rendered by creating order (unless modified). So, we could assume that in the local

storage, a list should exist to represent this order. On the other hand, as the user may need to

2https://vuex.vuejs.org/

20

4 Design & Implementation

App

AppHeader AppHeaderModuleName

AppFooter

AppSide

AppSideControl AppSideControlTask

AppSideRelCoords

AppSideZoomAppOutput

Toolbar

ToolbarTop

ToolbarBu�on

PinTextField

SvgAllPins SvgPin

SvgCanvas

SvgShape SvgValve

DrawingCursor

SvgElementDraw

SvgElementEdit

SvgGroupEdit SvgShapeHighlight

SnapPoints

SvgControl

SvgControlValve

SvgControlChannel

SvgControlValveHighlight

SvgControlChannelHighlight

SvgControlTags

SvgControlValveTag

SvgControlChannelTag

SvgRela�veCoords

RulerX

RulerY

Figure 4.3: The component tree of Module Sketch.

21

4 Design & Implementation

Figure 4.4: The structure of Module Sketch’s centralized store.

select different shapes in the work area constantly, we should not iterate through the entire

content list to find the correct shape every time, as it requires the time complexity of O(n)

and may result in deficient performance if the list is too long.

As shown in Listing 4.1, we use a Map (contentObj) to store all the objects of shapes in

the work area. For each key-value pair, the key is the unique id of the shape, and all other

information is stored in the value object. Although in JavaScript, the keys of a Map are

ordered by insertion, we still need a separate list (content) to store the ids in rendering order

because, in some cases, the user might modify the rendering order. For example, if one shape

is entirely covered by another, the user may send the second shape to the bottom to make the

first shape accessible.

Listing 4.1: Root states in index.js

// index.js
const state = () => ({

crtLayer: 0, //0: flow, 1: control
contentObj: new Map(), // map (id -> shape object)
content: [[], []], // only store ids
pins: [[], []], // only store ids
...

})

22

4 Design & Implementation

4.4 Drafting Implementation

As discussed in section 3.1, drafting is a complicated feature, and due to space constraints,

we will selectively introduce its implementation.

4.4.1 Shape Drawing

We provide three drawing modes: (rounded) rectangle, ellipse, and polygon/polyline. Pin

mode works in the same way as drawing a line section with an extra text entering step. After

selecting the drawing mode, the user can add points to the work area to define a new shape.

Any shape will be defined by a certain number of points. For instance, each rectangle

is defined by two points on one of its diagonals and each rounded rectangle needs one

additional point to define the corner radius. A polyline can be defined by points of any

number greater than one.

Mistakes are likely to occur during the drawing process, so the user should be able to

execute the step out command at any time. It is, in our case, a right-click. After issuing this

command, the program will check whether the currently drawn graphic is valid. Namely, if

the graphic has a qualified number of points, it will stay in the work area. Otherwise, it will

be discarded. The same applies to the polyline drawing process because it will not terminate

automatically before the next right-click, as there is no upper limit on the number of points

for polylines. In addition, users can close a polygon by moving the cursor close to the starting

point, and clicking when the end point is snapped to it.

We depict the drawing process of Module Sketch in a state diagram (Figure 4.5). Listing 4.2

shows the pseudocode of the corresponding event handlers.

Listing 4.2: The pseudocode of the event handlers for the drawing process

handleMouseDownLeft():
if not isAddingNewElm then

isAddingNewElm <- True
crtElm <- newElement()

end if

handleMouseDownRight():
if isAddingNewElm then

23

4 Design & Implementation

Drawing

Idle

Adjusting the
current point

mouse down

Settle the
current point

mouse up

more points available
upper limit reached

Adding a new
point

mouse move

Stepping outSaving

r ight click

valid

Discarding

invalid

Figure 4.5: The state diagram for the drawing modes.

if crtElm.points.length >= pointsLowerLimit[mode] then
finishAddingElm()

else
discardCrtElm()

end if
end if

handleMouseUpLeft():
if isAddingNewElm then

crtElm.points.push(mousePosition)
if crtElm.points.length == pointsUpperLimit[mode] then

finishAddingElm()
end if

end if

handleMouseMove():
if isAddingNewElm then

crtElm.points[-1] <- mousePosition
end if

24

4 Design & Implementation

4.4.2 Shape Selecting & Editing

In the select mode, the user can select shapes from the work area and edit them. In Figure 4.6

we introduce the selection process through a state diagram. The group selection can be

achieved by a rectangle selection or clicking on multiple shapes with the Ctrl or Shift key

down. The latter is represented by the transitions marked with * in the figure. Listing 4.3

shows the pseudocode of the event handlers for the rectangle selection.

Rectangle Selection

Idle

Setting select
rectangle

mouse move

Getting
intersected
elements

Editing Group
group.length>1

group.length==0

Initializing
select rectangle

mouse down

mouse move
click on figure

Editing Single
Element

mouse up

group.length==1

Saving finish

finish

add selected
*

add/remove selected
*

remove selected
*

Figure 4.6: The state diagram for the select mode.

Listing 4.3: The pseudocode of the event handlers for the rectangle selection

initiallize selecting rectangle at mouse position
handleMouseDownLeft(): initSelectRect()
set the width and height of selecting rectangle
handleMouseMove(): setSelectRect()
handleMouseUpLeft():

crtGroup <- []
for each shape in current layer do

if hasIntersection(shape, selectRect) then

25

4 Design & Implementation

crtGroup.push(shape)
end for
if crtGroup.length == 0 then

dicard()
else if crtGroup.length == 1

selectedShape <- crtGroup[0]
startEditingElement()

else
selectedGroup <- crtGroup
startEditingGroup()

end if

After a valid selection, a SvgElementEdit or ScgGroupEdit component will be rendered

accordingly. It will mount above the other shapes so they will not interfere with the editing

process. Available editing options depend on the shape type, as shown in Table 4.1.

Table 4.1: Editing options for different shape categories.

Editing Option Rectangle/Ellipse Rounded Rectangle Polyline Polygon Group

move
√ √ √ √ √

resize
√ √

set fill
√ √ √ √

move vertex
√ √

set corner radius
√

4.4.3 Grid Size & Zooming

• Grid and Flexible Precision

The workspace provides users with a background grid to aid in alignment. The grid size

matches the smallest possible distance between two different points in the work area. It

is dependent on the scaling with a range of 5µm-100µm. In other words, the further

users zoom in, the more delicate shapes they can draw. While drawing or editing, the

coordinate of the current point, which is being added or moved, is always rounded to

the closest grid point.

• Zoom-in/out and Panning

Zoom-in and zoom-out can be triggered by either the mouse wheel or clicking buttons.

This feature is implemented in zoom.js and is achieved by adjusting the size of SVG

26

4 Design & Implementation

elements with the viewbox attribute fixed. The height and width of the <svg> are

bound to canvasSide. Our zooming feature is animated using GSAP3.

In zoom.js we provide a hard-coded list of doubles, which represents the number of

pixels that ten µm is displayed on the work area (initialized with 4), and an integer

that represents the index of the current value. The available scale range can be easily

changed by modifying the list.

Listing 4.4: The module zoom.js

const state = () => ({
// initially 1px represents 2.5 um
globalTranslateX: window.innerWidth / 2 * 2.5, // value for gsap
globalTranslateY: window.innerHeight / 2 * 2.5, // value for gsap
globalTranslateXFinal: window.innerWidth / 2 * 2.5, // store end value
globalTranslateYFinal: window.innerHeight / 2 * 2.5,// store end value
zoomIdx: 8,
gridSizeList: [1, 1.25, 1.5, 1.75, 2, 2.5,...],// 10 um displayed in px
gridSize: 4, // value for gsap, end value = gridSizeList[zoomIdx]
tenthViewBoxSize: 10000, // hard coded

})

const getters = {
canvasSide(state) { return state.gridSize * state.tenthViewBoxSize }
...

}
const mutations = {

// zoom-in with mouse wheel
zoomInAtMouse(state, mousePosition) {

if (state.zoomIdx + 1 < state.gridSizeList.length) {
const [x, y] = zoomInTranslate(state, mousePosition)
state.globalTranslateXFinal = x
state.globalTranslateYFinal = y
state.zoomIdx++
gsap.to(state, { globalTranslateX: x, globalTranslateY: y,

gridSize: state.gridSizeList[state.zoomIdx], duration: 0.25 })
}

},
...

}

3GSAP is a dependency used for JavaScript animation. For more information see: https://greensock.com/gsap/

27

4 Design & Implementation

4.5 Binding Options

Adding binding options is an independent functionality implemented in controlBindings.js.

As stated in section 3.2, users can add binding options to single valves, as well as valve groups.

Moreover, the valves and valve groups can be linked together as one binding-option-selection

task (control task).

To start, the user needs to set the current layer to Control and switch to bind mode. Then

the system will run an automatic check-up program to see if the existing valve groups and

binding options are still well-defined. Undefined valves, which may occur, for example, when

the user deletes the valve after assigning binding options to it, and channels will be removed.

After that, users can add bindings, form groups, link existing groups, as well as edit and

delete the bindings, groups, or links. Figure 4.7 shows the user interface while editing binding

options.

Figure 4.7: UI for editing binding options.

Now, the question is: how can we optimize this feature? We may notice that the collection

of the valve set of each control task conforms to the disjoint-set data structure. To modify

disjoint sets, we can use union-find algorithm.

28

4 Design & Implementation

4.5.1 Union-Find Algorithm

Union-find algorithm is an efficient approach to maintaining a partition of a set. In our case,

the set is the union of all the valves and valve groups, and the partition stands for the disjoint

valve sets of the control tasks.

Union-find algorithm has two core operations:

• find(a): Find the root of the element a, namely the representative of the set (the

predecessor of each element is initialized with itself).

• union(a, b): Merge the set containing the element a with the set containing b.

Theoretically, the optimized operation of find or union on disjoint sets with n nodes takes

time complexity O(α(n)), where α(n) is the Inverse Ackermann function4 .

Listing 4.5: Our implementation of the union-find algorithm

// initialize: foreach v in {valves and valve groups} do parent.set(v, v)
function find(v, parent) {

// find the root of v
let root = v
while (root !== parent.get(root)) {

root = parent.get(root)
}
// compress the path
let tmp = v
while (tmp !== root) {

const nxt = parent.get(tmp)
parent.set(tmp, root)
tmp = nxt

}
return root

}
// merge the control tasks containing v1 or v2
function union(v1, v2, parent) {

const [r1, r2] = [find(v1, parent), find(v2, parent)]
if (r1 !== r2) parent.set(r2, r1)

}

4It grows extremly slowly and is very close to constant.

29

4 Design & Implementation

4.5.2 Valve Group Modification

When we form a new valve group, theoretically, the group and the single valves it contains

should belong to the same control task, since one valve cannot be assigned to multiple control

tasks. Thus, to form a new valve group through the selection, we need to merge all control

tasks that contain at least one of the selected valves. The same goes for the editing of a valve

group, and control tasks with newly added valves will be merged.

Listing 4.6: Confirm a valve group modification

// confirm adding or editing a valve group
function confirmModifyGroup(group_id, parent) {

// initialize the predecessor if the group is new
if (parent.get(group_id) === undefined) parent.set(group_id, group_id)
// merge control tasks
valveGroups.get(group_id).forEach(v => { union(group_id, v, parent) })

}

As long as the valve group exists, it maintains the dependencies on the valves it contains.

When we delete a group, we will simply remove it without modifying the corresponding

control task. However, if users want to release the old dependencies and split the control task,

they can use the unlink operation specified in subsection 4.5.3.

Listing 4.7: Delete a valve group

function deleteGroup(group_id) {
valveGroups.delete(group_id)

}

4.5.3 Link Modification

The link operation enables users to add additional dependencies between control tasks. These

dependencies can be lifted if not bound by a valve group. Users can merge multiple control

tasks together after selecting an arbitrary item from each control task.

Listing 4.8: Link the selected valves and valve groups

// confirm merging control tasks
function confirmLinking(selectedItems, parent) {

if (selectedItems.length > 1) {

30

4 Design & Implementation

selectedItems.forEach(i => { union(selectedItems[0], i, parent) })
}

}

The unlink operation on a control task will break the dependencies that are not bound by

an internal valve group through the crushing-and-reconstituting technique.

Listing 4.9: The unlink operation

const actions = {
unlinkGroup({ commit, getters, state }, linkId) {

const groups = [] //collect the ids of the valve groups in the task
// crushing: reset the parent of each element to itself
getters.linkedGroup.get(linkId).forEach(

id => {
if (id.includes(’g’)) groups.push(id)
commit(’resetParent’, id)

}
)
// reconstituting: rebuild valve groups in the task
groups.forEach(gid => {

state.valveGroups.get(gid).forEach(v => {
// calls union(v1, v2, parent)
commit(’unionMutation’, { v1: gid, v2: v })

})
})

},
...

}

4.6 Design Interpretation

Before we get the final result, the design must be preprocessed by setting relative coordinates.

It can be done through two simple steps shown in Figure 4.8.

First, we need to enter all the relative values in a form (4.8a). By default, three values

will be given for both the x-axis and the y-axis, namely 0, 0.5, and 1. Users can also delete

unnecessary values, as well as add new ones, then fill out the form with absolute values (as

suggested by the rulers). To avoid potential mistakes, we recommend users to use the get

31

4 Design & Implementation

(a) (b)

Figure 4.8: UI for assigning relative coordinates.

initial values function, which will iterate over the content and assign the absolute thresholds

to relative values 0 and 1 (even if they are deleted). Intermediate values are then assigned

by proportion. Before proceeding to the next step, the user can choose the algorithm for

calculating the default relative coordinates, which gives either the closest or a fixed relative

point.

In the second step(4.8b), the user can modify the default settings computed in the previous

step. When all is settled, the user can click the finish button. It will tell the system to create

and mount the Vue component AppOutput, where the result will be displayed (Figure 4.9). The

functions of interpreting the design to the JSON format are implemented in AppOutput.vue,

as they are not shared by other Vue components.

32

4 Design & Implementation

Figure 4.9: An example of the output.

33

5 Conclusion

In summary, we achieved our goal of developing a user-friendly design platform for microflu-

idic components. Module Sketch can simplify the design process of microfluidic IP modules,

and support the module library expansion for design automation software.

Although, in practice, the roles of UI/UX designers and developers are usually separated,

we put a lot of thought into analysing, designing, and optimizing the interactivities between

the user and our application. This process provides us with the foundation and framework

for our implementation, upon which the comprehensive and flexible features of drafting,

describing binding options, and design interpretation are implemented.

In addition, Module Sketch is a pure front-end application with no back-end implementa-

tion involved, which means that once the page is loaded, there will be no more interactions

between the server and the browser. Everything will be handled locally on the client-side.

As for the compatibility, we developed Module Sketch on Google Chrome and tested it on

Firefox and Microsoft Edge, making it fully supported by the mainstream browsers.

34

6 Future Work

In this chapter, we will discuss the vision for potential future work from our own view.

6.1 Load Existing Designs

Module Sketch currently only allows users to design mLSI components from scratch, namely,

users cannot load existing designs and edit them. In the future, we might enable the user to

continue the previous work by uploading the existing design of .JSON and parsing it into the

work area.

6.2 Netlist Recognition

The idea is to bind some figures or some vertices in the work area together so that the user

can edit the whole group conveniently and avoid misediting on figures that are dependent on

the group. However, what we expect is not simply to form groups by selecting figures, but

the automatic recognition of the netlist. It could be an extension of snapping: when the user

operates with the snap point, the relevant figures will be bound, and if one of the figures is

moved, the position of the others will be modified accordingly. This is only an idea at present,

and the specific mechanism has yet to be designed, but it may be useful in some scenarios.

6.3 State Management Migration

During the developing process, we used Vuex 4 as the solution for our centralized store,

but recently the official state management library for Vue projects was changed to Pinia.

35

6 Future Work

Although Vuex 4 is still maintained, new features may not be added to it. Thus, migrating to

Pinia might be an appropriate choice.

6.4 Drafting Feature Extension

As Columba is still in the development stage, it is likely that there will be new requirements

that Columba needs to meet. For example, the channel width for Columba is currently fixed,

but it may need to support customized channel width in the future. In such cases, Module

Sketch needs to make corresponding adjustments. Another potential reinforcement is the

function of drawing arcs. Although we have implemented the triangle circumscribed circle

algorithm to define the arc with three points, this function was eventually deprecated due to

a lack of flexibility. There is a possibility that this feature will be achieved by other means

in the future. For instance, a function of adding rounded corners to polylines would be an

option to consider.

36

List of Figures

1.1 UI of Cloud Columba. 2

2.1 A design generated by Columba 2.0 [4]. (a) A switch. (b) A rotary mixer. . . . 5

2.2 "Top languages over the years" from Octoverse Report 2021 [17]. 7

2.3 Rankings of front-end frameworks from State of JS 2021 [18]. 8

2.4 Module model for a ring container. 10

3.1 A simple activity diagram of Module Sketch . 12

4.1 The user interface of Module Sketch. 18

4.2 The code structure of Module Sketch. 20

4.3 The component tree of Module Sketch. 21

4.4 The structure of Module Sketch’s centralized store. 22

4.5 The state diagram for the drawing modes. 24

4.6 The state diagram for the select mode. 25

4.7 UI for editing binding options. 28

4.8 UI for assigning relative coordinates. 32

4.9 An example of the output. 33

37

List of Tables

4.1 Editing options for different shape categories. 26

38

Listings

3.1 The structure of the output . 16

4.1 Root states in index.js . 22

4.2 The pseudocode of the event handlers for the drawing process 23

4.3 The pseudocode of the event handlers for the rectangle selection 25

4.4 The module zoom.js . 27

4.5 Our implementation of the union-find algorithm 29

4.6 Confirm a valve group modification . 30

4.7 Delete a valve group . 30

4.8 Link the selected valves and valve groups . 30

4.9 The unlink operation . 31

39

Bibliography

[1] T. Thorsen, S. J. Maerkl, and S. R. Quake. “Microfluidic Large-Scale Integration”. In:

Science 298.5593 (2002), pp. 580–584. doi: 10.1126/science.1076996. eprint: https:

//www.science.org/doi/pdf/10.1126/science.1076996. url: https://www.science.

org/doi/abs/10.1126/science.1076996.

[2] G. M. Whitesides. “The origins and the future of microfluidics”. In: Nature 442 (2006),

pp. 368–373. doi: 10.1038/nature05058.

[3] R. Daw and J. Finkelstein. “Lab on a chip”. In: Nature 442 (2006), pp. 367–367. doi:

10.1038/442367a.

[4] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E. Araci, and U. Schlicht-

mann. “Columba 2.0: A Co-Layout Synthesis Tool for Continuous-Flow Microfluidic

Biochips”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 37.8 (2018), pp. 1588–1601. doi: 10.1109/TCAD.2017.2760628.

[5] E. E. Tsur. “Computer-Aided Design of Microfluidic Circuits”. In: Annual Review of

Biomedical Engineering 22.1 (2020). PMID: 32343907, pp. 285–307. doi: 10.1146/annurev-

bioeng-082219-033358. eprint: https://doi.org/10.1146/annurev-bioeng-082219-

033358. url: https://doi.org/10.1146/annurev-bioeng-082219-033358.

[6] T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann. “Columba: Co-layout synthesis

for continuous-flow microfluidic biochips”. In: 2016 53nd ACM/EDAC/IEEE Design

Automation Conference (DAC). 2016, pp. 1–6. doi: 10.1145/2897937.2897997.

[7] T.-M. Tseng, M. Li, Y. Zhang, T.-Y. Ho, and U. Schlichtmann. “Cloud Columba: Ac-

cessible Design Automation Platform for Production and Inspiration: Invited Paper”.

In: 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2019,

pp. 1–6. doi: 10.1109/ICCAD45719.2019.8942104.

40

https://doi.org/10.1126/science.1076996
https://www.science.org/doi/pdf/10.1126/science.1076996
https://www.science.org/doi/pdf/10.1126/science.1076996
https://www.science.org/doi/abs/10.1126/science.1076996
https://www.science.org/doi/abs/10.1126/science.1076996
https://doi.org/10.1038/nature05058
https://doi.org/10.1038/442367a
https://doi.org/10.1109/TCAD.2017.2760628
https://doi.org/10.1146/annurev-bioeng-082219-033358
https://doi.org/10.1146/annurev-bioeng-082219-033358
https://doi.org/10.1146/annurev-bioeng-082219-033358
https://doi.org/10.1146/annurev-bioeng-082219-033358
https://doi.org/10.1146/annurev-bioeng-082219-033358
https://doi.org/10.1145/2897937.2897997
https://doi.org/10.1109/ICCAD45719.2019.8942104

Bibliography

[8] Y. Zhang, T.-M. Tseng, and U. Schlichtmann. “Portable all-in-one automated microfluidic

system (PAMICON) with 3D-printed chip using novel fluid control mechanism”. In:

Scientific Reports 11 (2021), pp. 1–10. doi: 10.1038/s41598-021-98655-9.

[9] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho. “Storage and Caching: Synthesis of

Flow-Based Microfluidic Biochips”. In: IEEE Design & Test 32.6 (2015), pp. 69–75. doi:

10.1109/MDAT.2015.2492473.

[10] WHATWG. HTML Standard. Last accessed 26 June 2022. 2022. url: https://html.spec.

whatwg.org/multipage/.

[11] T. J. DeGroat. The History of JavaScript: Everything You Need to Know. Last accessed 26

June 2022. 2019. url: https://www.springboard.com/blog/data-science/history-

of-javascript/.

[12] J. J. Garrett et al. “Ajax: A new approach to web applications”. In: (2005). Last accessed

26 June 2022. url: https://www.scriptol.fr/ajax/ajax_adaptive_path.pdf.

[13] MDN. SVG: Scalable Vector Graphics. Last accessed 26 June 2022. 2022. url: https:

//developer.mozilla.org/en-US/docs/Web/SVG.

[14] MDN. A re-introduction to JavaScript. Last accessed 26 June 2022. 2022. url: https:

//developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_

JavaScript.

[15] Node.js. A brief history of Node.js. Last accessed 26 June 2022. 2022. url: https://nodejs.

dev/learn/a-brief-history-of-nodejs.

[16] SlashData. State of the Developer Nation 22nd Edition. Last accessed 26 June 2022. 2022. url:

https://www.developernation.net/resources/reports/state-of-the-developer-

nation-q1-2022.

[17] GitHub. The 2021 State of the Octoverse. Last accessed 26 June 2022. 2022. url: https:

//octoverse.github.com/.

[18] S. Greif et al. The 2021 State of JS. Last accessed 26 June 2022. 2022. url: https :

//2021.stateofjs.com/en-US/.

[19] F. Hámori. The History of React.js on a Timeline. Last accessed 26 June 2022. 2022. url:

https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/.

[20] Angular Docs. Last accessed 26 June 2022. 2022. url: https://angular.io/docs.

41

https://doi.org/10.1038/s41598-021-98655-9
https://doi.org/10.1109/MDAT.2015.2492473
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://www.springboard.com/blog/data-science/history-of-javascript/
https://www.springboard.com/blog/data-science/history-of-javascript/
https://www.scriptol.fr/ajax/ajax_adaptive_path.pdf
https://developer.mozilla.org/en-US/docs/Web/SVG
https://developer.mozilla.org/en-US/docs/Web/SVG
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://nodejs.dev/learn/a-brief-history-of-nodejs
https://nodejs.dev/learn/a-brief-history-of-nodejs
https://www.developernation.net/resources/reports/state-of-the-developer-nation-q1-2022
https://www.developernation.net/resources/reports/state-of-the-developer-nation-q1-2022
https://octoverse.github.com/
https://octoverse.github.com/
https://2021.stateofjs.com/en-US/
https://2021.stateofjs.com/en-US/
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://angular.io/docs

Bibliography

[21] V. Cromwell. Evan You. Archived from betweenthewires.org on June 3, 2017. Last

accessed 26 June 2022. 2016. url: https://web.archive.org/web/20170603052649/

https://betweenthewires.org/2016/11/03/evan-you/.

[22] Vue.js Docs. Last accessed 26 June 2022. 2022. url: https : / / vuejs . org / guide /

introduction.html.

[23] T.-M. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T.-Y. Ho, and U. Schlicht-

mann. “Columba S: A Scalable Co-Layout Design Automation Tool for Microfluidic

Large-Scale Integration”. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference

(DAC). 2018, pp. 1–6. doi: 10.1109/DAC.2018.8465905.

[24] R. Sanka, J. Lippai, D. Samarasekera, S. Nemsick, and D. Densmore. “3DµF - Interactive

Design Environment for Continuous Flow Microfluidic Devices”. In: Scientific Reports 9

(2019), pp. 1–10. doi: 10.1038/s41598-019-45623-z.

[25] N. Amin, W. Thies, and S. Amarasinghe. “Computer-aided design for microfluidic

chips based on multilayer soft lithography”. In: Proceedings of the 2009 IEEE International

Conference on Computer design (2009), pp. 2–9.

42

https://web.archive.org/web/20170603052649/https://betweenthewires.org/2016/11/03/evan-you/
https://web.archive.org/web/20170603052649/https://betweenthewires.org/2016/11/03/evan-you/
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
https://doi.org/10.1109/DAC.2018.8465905
https://doi.org/10.1038/s41598-019-45623-z

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Fluid Control of Continuous Microfluidics
	Front-End Techniques
	Scalable Vector Graphics
	JavaScript
	Front-End Frameworks

	Design Tools of mLSI
	Cloud Columba
	3DµF
	AutoCAD

	Functional Requirements Analysis
	Drafting
	Control Bindings
	Relative Coordinate & Output Generation

	Design & Implementation
	User Interface
	Code Structure
	Content Rendering
	Drafting Implementation
	Shape Drawing
	Shape Selecting & Editing
	Grid Size & Zooming

	Binding Options
	Union-Find Algorithm
	Valve Group Modification
	Link Modification

	Design Interpretation

	Conclusion
	Future Work
	Load Existing Designs
	Netlist Recognition
	State Management Migration
	Drafting Feature Extension

	List of Figures
	List of Tables
	Listings
	Bibliography

