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Abstract

This thesis theoretically characterizes how to exploit the information from unlabelled data

points either to obtain better representations of the data or to improve a downstream task

directly. We provide theoretical guarantees for kernel methods and neural networks in

different settings, from semi- and self-supervised learning over unsupervised learning to

ordinal data.

Übersicht

In dieser Arbeit wird theoretisch beschrieben, wie die Informationen aus unmarkierten

Datenpunkten genutzt werden können, um entweder bessere Darstellungen der Daten zu

erhalten oder um eine nachgelagerte Aufgabe direkt zu verbessern. Wir bieten theoretische

Garantien für Kernel-Methoden und neuronale Netze in verschiedenen Umgebungen, vom

halb- und selbstüberwachten Lernen über unüberwachtes Lernen bis hin zu ordinalen Daten.
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Extended Abstract

Learning from unlabelled data is a central paradigm in machine learning — from traditional

machine learning models for representation learning to Self-Supervised learning methods,

that build the backbone for the most advanced large language models. Those recent advances

are however mostly engineering-driven and generally lack theoretical foundations. However,

such foundations are crucial as machine learning applications are increasingly used in system-

critical applications where guarantees are essential. In addition theoretical insights allow for

the systematic and energy-efficient development of new models.

Throughout the thesis, the main goal is to theoretically characterize how to use information

about the unlabelled data points either to obtain better representations of the data or

to improve a downstream task such as clustering directly. To approach this question we

consider a combination of data settings with corresponding learning objectives. Borrowing

tools from mathematics and statistics we aim to precisely characterize a range of algorithms

with a special focus on the influence of unlabelled data.

More specifically we analyze several data settings with gradually less information on the

unlabelled data. We start by analyzing trends in Graph neural networks for the trans-

ductive node classification settings using learning theoretical measures. Secondly, removing

all label information we focus on the self-supervised learning setting using (non)contrastive

loss functions where we derive and analyze learning dynamics under orthogonal constraints

on the parameters as well as new Kernel methods, which together build the foundation

for a comprehensive analysis of such models. From there moving to the traditional unsu-

pervised learning setups, where only features are given, we propose and analyze learning

cluster-specific representations using Autoencoders as well as a new reconstruction-based

Kernel method. Finally, we derive a clustering algorithm for ordinal data that is provable

near-optimal in the number of required comparisons.
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3.2 SSL with (Orthogonality) Constraints . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Learning Dynamics of Linear SSL Models . . . . . . . . . . . . . . . . . . . . 45

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Kernel Self-Supervised Learning 51

4.1 Representer Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Representation Learning with Kernels . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Generalisation Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Representation Learning using Kernel Autoencoders 61

5.1 Define Kernel Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



6 Unsupervised Cluster Specific Representation Learning 70

6.1 Analysis of Tensorized Linear AE with K-Means Penalty . . . . . . . . . . . . 74

6.2 Experiments with Non-Linear and Convolutional Networks . . . . . . . . . . 78

6.3 Connection to Expectation Maximization . . . . . . . . . . . . . . . . . . . . 81

6.4 Related Work and Future Applications . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Comparison Based Clustering 85

7.1 Background and Theoretical Framework . . . . . . . . . . . . . . . . . . . . . 87

7.2 A Theoretical Analysis of Similarity Based Clustering . . . . . . . . . . . . . 89

7.3 Similarities from Passive Comparisons . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Existing Comparison Based Similarities and Kernel Functions . . . . . . . . . 93

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Outlook 106

8.1 From Learning Theoretical Bounds to and Infinite Width Analysis . . . . . . 106

8.2 Algorithmic Advances and Extensions . . . . . . . . . . . . . . . . . . . . . . 110

A Proofs 112

A.1 Proofs for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.2 Proofs for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.3 Proofs for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.4 Proofs for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.5 Proofs for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B Additional Experimental Details 164

B.1 Experimental Details for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 164

B.2 Algorithmic Details for Ordinal Clustering Algorithm . . . . . . . . . . . . . 169

List of Figures 171



Chapter 1

Introduction

Machine learning is the process of establishing a general set of rules from a given set of data

points. This ‘process’ can vary greatly depending on the given data, their representation,

and type of rule we aim to obtain but the most common setup that comes to mind is known

as supervised learning : learn a mapping from object descriptors, or features, to the labels of

the objects as shown in Figure 1.1 (left). How well the mapping has been learned can then

be tested by evaluating predicted labels for unseen data points. While the data setup and

the overall goal is straightforward a wide range of algorithm has been developed often with

the aim to optimize the prediction with regards to data-specific properties. This setting is

highly relevant in real-world applications such as image- and object-recognition, customer

sentiment analysis or spam detection [MMF21] and might be the most common and studied

data setting in machine learning due to the wide range of applications but also due to its

very precise characterization of the problem in terms of the data setting. However while it

is a central focus in real-world applications it does not cover the whole range of learning

problems.

On a high level, in learning one can ask the previous question more generally and aim to

partition the space of objects into sets of objects that ‘belong together’. However, without

going into further detail it becomes immediately clear, that ‘belong together’ or ‘similar’

are ill-defined terms without further context. In a supervised framework the objective is

straightforward and intuitive: assuming X being the domain or feature space and Y the

label set, the goal is to find a predictor f : X → Y based on n training samples S ⊂ X × Y
and a loss function ℓ : Y × Y → [0,∞). Therefore in this setting the notion of objects

belonging together is very clearly defined through the access to the labels but what happens

if we no longer have access to labels? For example, assume given just a set of images

of a product from an assembly line, the goal is to find manufacturing mistakes, however,

there are no labelled examples for such mistakes. How can we solve this problem without

labels? What are we ‘mapping to’? Taking steps towards this direction we note that just

because we do not have access to labels, does not mean that there is no underlying structure

corresponding to it. In this case, we now reach the overall setup, that we will focus on in

1
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Supervised Setting Direct Task on Unlabelled Data Representation Learning

Figure 1.1: Let us consider sampled from the famous MNIST dataset [LC10b], containing
images of handwritten digests from zero to nine, each having 28x28 pixels, together with
the number as a label. From there we can define the following Learning objectives: (left)
In the supervised setting we learn a mapping from the feature space X to the label space
Y. (middle) Solving the task of clustering directly on the unlabelled data: Assume a set of
objects given, the goal is to group them into ‘similar’ clusters. (right) We learn a mapping
from X to a lower dimensional representation Z. In this setting, we do not optimize the
mapping directly with regard to a downstream task.

this thesis — the setting of learning from unlabelled data. In general, this setting comes

into play either if labels can not be obtained or in the large data setting where it might be

possible to obtain labels, however, it is practically not feasible or too expensive.

In this thesis, we focus on this setting on a foundational level through a theoretical viewpoint

and highlight how crucial a thorough understanding of the unlabelled data setting is. On a

higher level we can therefore first ask:

Question 1. What problems can we solve from unlabelled data?

To better outline the possible tasks, which we will formalize later, let us consider the su-

pervised setting as a starting point. From there moving towards the unlabelled setting we

start by removing only some of the labels with the goal to recover them. While in those

settings partial labels are present, the unlabelled objects are also considered during training

and therefore differ from the supervised setting. This is often formulated in a transductive

learning setting on graphs, where given a graph with partially labelled nodes the goal is to

label the unlabelled nodes.

From there further moving away from the supervised learning we can consider settings

without any labels1. While we no longer have access to the labels we might still end up with

somewhat similar high-level ideas such as grouping similar objects together. Of course, since

we do not have any labels we can only hope to recover the classes up to permutations of the

1To show how crucial this setting is in real-world applications let us outline two examples. Firstly anomaly
detection is the task of finding extreme outliers in a dataset and is a central application in areas such as
fraud detection and quality control in production [CBK09]. Since it is often not known beforehand how an
out-layer can look like and therefore there do not exist any labelled examples of it, unsupervised methods
allow to detect if a new example significantly differs from the reference product. Secondly we can consider
clustering of genotypes [Ran+01] or clustering of different tissue types in three dimensional image data from
Positron Emission Tomography (PET) scans [FRD10]. While in this thesis we do not focus on such specific
applications, but more on theoretical foundations, it outlines how crucial the unlabelled data setting is in
real-world applications.
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labels2 as illustrated in Figure 1.1 (middle). Here the most common objective is clustering

where the main goal is to group similar objects into the same class in an unsupervised

setting. While this problem has been extensively studied in traditional3 machine learning

and include famous algorithms such as k-means clustering [AV07], their time complexity

significantly increases with high dimensional data, and therefore several methods have been

developed that use deep unsupervised models to learn cluster assignments using deep neural

networks [XGF16; Diz+17; Wan+16; XX15; Wan+15].

Until now we assumed that all the above tasks — supervised, unsupervised, or transductive

— were performed directly on the given objects (such as clustering or labeling). In the

case of MNIST, this would mean using 28x28 pixels per object (See Figure 1.1). Staying in

the image setting this however, brings up the question if a pixel representation is the most

optimal way to represent the objects. Could it be more beneficial to only consider a subset

of the pixels or simply the mean of all pixels to reduce the noise in the data? Abstracting

from the image setting this becomes the question:

Question 2. What is a good representation of a given set of data points?

Representation learning builds on the idea that for most data, there exists a lower dimen-

sional embedding that still retains most of the information useful for a downstream task

[BCV13]. This is intuitive by observing that one can delete a few pixels in a set of images

without changing how one would group the images. While early works relied on pre-defined

representations, including image descriptors such as SURF [BTVG06] or SIFT [Low99] as

well as bag-of-words approaches in natural language processing, over the past decade the

focus has moved to representations learned from data itself [BCV13] and proven to be more

powerful than the use of hand-crafted descriptors. Therefore assuming we use a function

fΘ(·) for learning the representation we perform the clustering (or any other downstream

task) on fΘ (X) instead of X [RL03; Tia+14; Wan+16]. While some properties of improved

representations, such as reducing the noise in the features are intuitive, more generally it is

important to note that there is no unique measure of ’goodness’ of a representation without

taking a downstream task into consideration [BCV13].

To summarize we will consider two main directions of tasks on the unlabelled data: either

tasks directly on the unlabeled data as shown in Figure 1.1 (middle), such as clustering or

learning improved representations of the data as shown in Figure 1.1 (right). We will refer

to the former as ‘downstream tasks’ and as ‘representation learning’ to the latter.

2Assume the MNIST setting: If we tell an algorithm to group the digits, it might be able to do so but
does not have any inherent idea of what e.g. a ‘one’ is. Therefore it can only assign labels up to permutation
between the obtained clusters.

3Throughout the thesis we will often refer to ‘traditional’ machine learning algorithms or traditional tools
for theoretical analysis. While there is not a clear differentiation we will use this term to generally refer to
settings that were developed before or independent of deep learning approaches.

3
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(a) (e)(d)(c)(b)

Figure 1.2: Illustration of different data settings. (a) There exists a set of n objects, with
features {xi}ni=1, relations between objects {ζi,j}ni,j=1 and labels {yi}ni=1. In the following
setting, only some of the additional information are given. (b) Features are given as well
as relations {ζi,j} in the form of a graph structure where each node is given by one of the
objects. In addition from some objects, labels are given. (c) Features are given as well as
semantic similarities between at least some of the objects. Framed in the Self-Supervised
Learning setting this becomes a triplet setting such that objects oj , oi and or are represented
by xi, x

+
j and x−r . (d) Only features {xi} are given. (e) Only ordinal comparisons between

objects are given. Similarities between i, j given by ζi,j and between j, r given by ζr,j exist,
however only ζi,j ≶ ζr,j is observed.

Now in the previous discussion, we omitted one crucial aspect: we assumed that the unla-

belled data is given in the form of only features or descriptors of the objects (e.g. pixels for

an image). While this is a common setting, one might have access to different amounts of

information on the unlabelled data points. Throughout the thesis, we explore a wider range

of data settings by asking:

Question 3. What information about the unlabelled data can we exploit?

To better understand what information can be available let us start by outlining the unla-

belled data setting more formally. As illustrated in Figure 1.2 (a), we assume there exist

n objects {oi}ni=1 with corresponding labels {yi}ni=1 and d dimensional features {xi}ni=1. In

addition, we assume the existence of some type of object relation between oi and oj which

we denote by ζi,j . Throughout this work, we will consider several forms of relations such as

semantic similarities, graph structures, or ordinal relations. From there, we consider several

options of which of the above information on the objects is given and more specifically we

investigate the following four settings.

Transductive Setting. The first setting we consider is transductive learning on graphs — a

setting where we have a lot of information on the unlabelled data. As illustrated in Figure 1.2

(b) we observe a small number of the labels with the goal to predict the unlabelled ones.

In addition, the relation between objects is given by a graph structure which allows us to

model a set of objects and their relationships. This setting can be found in a wide range of

real-world applications such as modeling social networks [Wu+18; Fan+19], particle systems

[Hos17; Kip+18], knowledgeable graphs [Ham+17] or traffic networks [Cui+19]. [Zho+20]

provides an extensive list of applications.

Self-Supervised Learning (SSL). Let us now assume that we have no longer access to a full

4



underlying graph structure4 but we observe features of the unlabelled objects as well as have

access to semantic similarities between objects as shown in Figure 1.2 (c). In this context

the goal is to learn better representations of the objects which improve downstream tasks

and the knowledge of semantic similarities is used to determine which objects should be

mapped close to each other in a learned representation. This idea is not new [Bro+93] but

recently has shown great empirical success in computer vision [Che+20b; Car+21; JT19],

video data [Fer+17; Ser+18], natural language tasks [MM20; Dev+19] and speech [Ste+19;

Moh+22].

Unsupervised learning. While the SSL setting has become central to several state of the art

models [Rad+18; Dev+19] a notion of similarity is not always available and we have to rely

on approaches that only work on the features as illustrated in Figure 1.2 (d). This setting

— often referred to as unsupervised learning — is popular as it includes applications such

as anomaly detection [Iiv22; Sch+17; BHK23], medical imaging [RS18; Aga+18; CF20] or

recommender systems [YMA21; BHK23].

Ordinal Data. In our final setup we do not have access to either explicit similarities or fea-

tures labels but only ordinal comparisons of the form oi is more similar to oj than to or as

shown in Figure 1.2 (e). This setup mainly stems from the psychometric and crowdsourcing

literature [She62; You87; SBC05] where the importance and robustness of collecting ordinal

information from human subjects have been widely discussed. In recent years, this frame-

work has attracted an increasing amount of attention in the machine learning community

and several learning paradigms have emerged. In this work, we focus on the idea of learning

a similarity function and from there solve clustering objectives [KL17].

Having outlined the main tasks we are interested in solving and under what data setting we

can now ask:

Question 4. What machine learning models can we use to solve learning prob-

lems in the above data settings?

While in practice there is a large number of possible models, in this thesis we will generally

rely on and analyze the following approaches.

Neural Network Approaches. Driven by rapid empirical development and practical suc-

cesses, neural network-based models have become the default choice in a wide range of tasks

however their development is mainly driven by engineering advances. In general a neu-

ral network can be considered as a function Rd → Rh, comprised of learnable parameters,

that perform linear transformations and fixed point-wise non-linear transformations. The

4For clarification we note that we can always construct a graph from given features by using some
similarity metric and threshold. The distinction we consider here is that in the transduction setting a graph
is given explicitly as part of the data.

5



parameters are then updated using backpropagation5 of the loss. For specific settings, we

will adapt this formulation to the given data setting in Chapter 2 - 6 and analyze several

neural network-based approaches throughout the thesis and work towards a more complete

theoretical understanding beyond the supervised setting.

Kernel Methods. In spite of the widespread use of deep learning, other models are still ubiq-

uitous in data science. Especially Kernel methods [SSM97] are a well-established approach

that relies on the pairwise similarities between datapoints, denoted by a Kernel k(x, x′).

When the map k is positive definite, k(x, x′) corresponds to the inner product between (po-

tentially infinite-dimensional) nonlinear transformations of the data and implicitly maps the

data to a reproducing Kernel Hilbert space (RKHS) H through a feature map ϕ : X → H
that satisfies k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. Kernel methods are among the most successful models

in machine learning, particularly due to their inherently non-linear and non-parametric na-

ture, which nonetheless allows for a sound theoretical analysis. We take advantage of those

properties mainly in Chapter 4 & 5.

Traditional Clustering Methods. Traditional clustering methods like k-means [Mac67], density-

based spatial clustering of applications with noise (DBSCAN) [HPD19] or spectral clustering

[NJW01] have been highly successful in practice and have been studied theoretically. In this

work, we do not focus directly on the analysis of such algorithms however we consider them

as a central downstream task on learned embedding in Chapter 4 - 6 to analyze and develop

new models.

In recent years, due to its practical success, machine learning has been evolving at a fast

pace and is mainly based on empirical improvements and heuristics but its theoretical un-

derstanding is lacking significantly behind. With this empirical success the question arises:

Question 5. If machine learning models work so well in practice, why do we

need to theoretically study them?

We argue that a theoretical study is especially important because of the empirical success

of the machine learning models.

Development of new algorithms. Modern machine learning models are becoming increasingly

more complex, deep learning models have billions of parameters and a complex combination

of building blocks and while by empirical exploration advances can be achieved it is very

costly in time and energy. In addition, any such analysis is often dependent on initializa-

tion and hyperparameter tuning and therefore a complete picture is hard to obtain. By

theoretical analysis, we can aim to explain the influence of different components of the ma-

chine learning model and by using those insights improve the existing approaches. Examples

5While alternative approaches to optimize the network exist such as evolutionary algorithms (e.g. [ASP94;
Din+13]), gradient based methods have become the standard approach in practice and also have shown to
be the most promising direction with regards to theoretical characterizations.

6



for such results include neural network architecture search [CGW21] or determining if more

data should be added to the algorithm [LZ14; Nak+21]. In this thesis we extend this general

line of work by developing new Autoencoder architectures (Chapter 6 & 5), Kernel methods

(Chapter 4 & 5) and clustering approaches (Chapter 7) which we all discuss in more detail

later in the introduction.

Guarantees for existing algorithms. With machine learning models being applied in system-

critical applications such as thread assessment in autonomous driving [Chi+22; Li+21a],

medical image processing [RS18; Aga+18; CF20], or data with privacy concerns [Liu+21;

RG23; JLE14] it becomes increasingly important to provide guarantees and exact charac-

terizations of the potential and limitations of the considered machine learning models. Such

an analysis can be performed in a limited capacity by empirical means however such results

always depend on the specific training setting, initialization, and dataset and can not ac-

count for outliers that are not presented in the dataset. However such worst-case guarantees

can be provided by theoretical means. In this thesis we provide such worst-case guarantees

in Chapter 2, exact characterizations of obtained embeddings in Chapter 3, 4 & 6 and fi-

nally exactly characterize how many samples are necessary for cluster recovery for a specific

clustering method in Chapter 7.

While the above answers why theoretical foundations are essential, answering how to obtain

such results is more complex and nuanced. Borrowing from a broad range of tools from

mathematics, statistics, and physics, in recent years a significant effort has been made to

bridge this gap between empirical advances and theory. However, it is important to note

that the main focus in this direction has been in the supervised setting and only very few

results exist in the unlabelled data setting. We aim to work towards closing this gap by

asking:

Question 6. What theoretical analysis is feasible and provides insights in the

unlabelled data setting?

While in some traditional machine learning setting approaches for a theoretical analysis are

established overall there is no unified theoretical framework to characterize and analyze ma-

chine learning models. Therefore carefully choosing theoretical tools is especially important

and one has to balance the expressiveness and complexity of a given measure. In this thesis,

we will mainly rely on the following two directions of analysis together with technical tools

such as concentration bounds for providing theoretical insights.

Traditional machine learning theory. We can illustrate approaches for traditional machine

learning models well on how the question on generalization of an algorithm is approached

through worst-case guarantees. A fundamental problem in any learning task is to quantify

how well an algorithm, trained on a given set of data points performs on unseen data.

7



1.1. GOAL OF THIS THESIS

Assume there are m labelled objects, the goal is to find a predictor f : X → Y, that

minimizes the generalization error (error on the unlabelled data) Lu(f) with a loss function

ℓ : Y ×Y → [0,∞). In addition we define the empirical error (error on labelled data points)

of f to be L̂m(f) and we aim to obtain a bound of the form

Lu(f) ≤ L̂m(f) + complexity term (1.1)

where the complexity term is typically characterised using learning-theoretic terms such as

Vapnik–Chervonenkis (VC) Dimension [Vap82; Vap98] or Rademacher complexity [TLP16;

EYP09]. While this setup has been mainly developed in the supervised setting we show that

it can also be applied to the unlabelled setup. This idea provides a general framework to

analyze a given algorithm and has been shown to be to be useful in contexts such as Kernel

methods [SSM97]. In addition to such general approaches for analysis, we often consider

specific setups such as exact recovery of clusters under planted data setting [Abb17].

Learning dynamics and loss landscape of deep learning models. Due to the complexity

of neural networks worst case measures like the one outlined above have shown to be of

limited use [Zha+17; Ney+17] and therefore new tools have emerged. Central concepts

here include the characterization of learning dynamics where we model how the network

outputs change during training with gradient descent and to what outputs they converge

to. While in traditional machine learning we are often interested in the worst-case analysis,

this line of work shifts the focus more towards an analysis of the expected or a highly

probable outcome. Those quantities provide a more tractable expression of the problem

and in the supervised setting have been shown to be an essential tool to understand the

loss behavior and convergence [Fuk98; SMG14; PKK18], early stopping [Li+21b], linearised

(Kernel) approximations [JGH18a; Du+19b] and, mostly importantly, generalization and

inductive biases [Sou+18; Luo+19; HY21].

Overall in this thesis, we show that general ideas, developed in the supervised setup, such

as the analysis of learning dynamics, can be also employed in the unlabelled data setup.

1.1 Goal of this Thesis

From the above outline it is clear that while a thorough theoretical analysis of machine

learning algorithms on unlabelled data is essential, there is a vast number of settings and

no unifying analysis. Each of the questions posed so far is too general to answer in a

vacuum without considering the interplay with the other questions. Therefore to work

towards a more complete picture of learning from unlabelled data by perusing the following

approach: starting from a given data setting as outline for Q.3 we consider either a particular

downstream task directly (Q.1) or learn a better representation (Q.2). Depending on the

existing state of the art and the possibility of theoretical analysis we pick an appropriate
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1.2. TRANSDUCTIVE LEARNING

machine learning model (Q.4) to achieve this goal. This combination of Q.1 to Q.4 then

presents the setup to answer Q.6 and perform a thorough theoretical analysis.

Under this setup we are able to theoretically analyze several important machine

learning algorithms which gives insight into the behavior and limitations with

a focus on the effect of unlabelled data as well as develop several new machine

learning models with sound theoretical foundations.

With the goal outlined we now discuss the main data settings we consider in the thesis in

more detail together with the main questions we aim to answer and our contributions. We

keep the setup high level and formalize it more in the later chapters of the thesis.

1.2 Transductive Learning

Let us start with outlining our first data setting of transductive learning. We assume access

to a graph with n vertices, corresponding to the respective feature vectors x1, . . . , xn, and

edge ζi,j denoting similarity of vertices i and j. The graph structure is represented by an

adjacency matrix A ∈ Rn×n. The data structure is illustrated in Figure 1.2 (b). Without

loss of generality, one may assume that the labels y1, . . . , ym ∈ {±1} are known, and the

goal is to predict ym+1, . . . yn.

Graph Neural Network (GNN). While transductive graph learning problems have been

studied in traditional machine learning for example through message passing algorithms

[Bis06] in recent years graph-based neural network-based approaches have become the state

of the art [GMS05; Sca+09; KW17]. In practice, the exact form of aggregation and combina-

tion steps vary across architectures to solve domain-specific tasks [KW17; Bru+14; DBV16;

Vel+18; Xu+19]. In a standard feed-forward neural network each layer is defined by a

learned linear transformation through the weights and a non-linear transformation. This

is extended in the GNN setting by adding a graph convolution6 for example through the

adjacency matrix A, such that each layer is now given by

Hj := ψ (AHj−1Wj)

where Hj−1 is the output of the previous layer, Wj the trainable weight matrix and ψ

denote the point-wise activation function. The weights are optimized by minimizing the loss

between the predictions on the labelled nodes, ŷi, and labelled nodes.

While the understanding of GNNs is limited, there are empirical approaches to study GNNs

in the transductive [Boj+18] and supervised setting [Zha+18; Yin+18]. For an extensive

survey on the state of the art of GNNs see for example [Wu+20]. While empirical studies

provide some insights into the behavior of machine learning models, rigorous theoretical

6We will later extend this to more commonly used diffusion operators [KW17; Wu+20] in Chapter 2.

9



1.2. TRANSDUCTIVE LEARNING

analysis is the key to deep insights into a model. The focus of this part is to provide a

learning-theoretic analysis of the generalization of GNNs in the transductive setting.

Generalization Error Bounds. As stated previously in the introduction, the study of

generalization is a central question in machine learning tasks. The problem in the trans-

ductive setting can be formulated in the statistical learning framework which allows us to

derive generalization error bounds GNNs. It differs slightly from the standard setting as in

the transductive setting the features of the test points are also present during the training.

Nevertheless, again a bound of the form as stated in (1.1) can be studied and we ask:

Question 7. Can we use traditional learning theoretical measures to gain in-

sights into the generalization properties of graph neural networks in the trans-

ductive setting?

Contributions in this thesis (based on [EVG21]). We show that, under careful con-

struction of the complexity measure and distributional assumptions on the graph data,

learning theory can provide insights into the behavior of GNNs, specifically focused on ex-

plicitly characterizing the influence of the graph information and the network architecture.

The main contributions are the following: We introduce a formal setup for graph-based

transductive inference, and we use this framework to show that VC Dimension [Vap82;

Vap98] based generalization error bounds are typically loose, except for a few trivial cases.

This observation is along the lines of existing evidence for standard supervised feed for-

ward neural networks [Zha+17; Ney+17]. From there we extend the analysis by deriving

generalization bounds based on the transductive Rademacher complexity [TLP16; EYP09].

Our results show that these bounds are more informative, suggesting that the correct choice

of complexity measure is important. While some previous works on the generalization of

GNNs exist [VZ19; STH18; GJJ20; LUZ21; OS20b; OS20a] (See Chapter 2 for more detailed

discussion) our analysis provides more expressive and tighter bounds. We further refine the

generalization error bounds under a planted model for the graph and features. Such an anal-

ysis, under random graphs, has been rarely studied in the GNN literature before [EVG21].

Our results suggest that, under distributional assumptions, learning-theoretic bounds can

explain the behavior of GNNs — while not completely — significantly better. We consider

GNNs with residual connections and demonstrate how the above analysis can be extended to

other network architectures. We prove that residual connections have a smaller generaliza-

tion gap in comparison with vanilla GNN. Finally we numerically illustrate that the trends

in the derived bounds coinside with trends observed empirically and discuss limitations of

the proposed approach.

The findings renewed7 the interest in studying generalisation in neural networks in terms

7Follow up works to [EVG21], which builds the foundation of this chapter, considered planted models to
provide further refined bounds. Examples include [Ju+23; Shi+23] and we discuss this aspect in more detail
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of learning-theoretic measures however also outline that limitations of this approach prevail

even under careful analysis under distributional assumptions highlighting that for a com-

prehensive analysis of deep learning models alternative approaches have to be considered as

well.

1.3 Self-Supervised Learning (SSL)

Let us now assume that we no longer have access to partial labels and explicit underlying

similarity structures such as a graph but still a notion of what makes objects similar to each

other as is illustrated in Figure 1.2 (c). In this setting the main goal is generally to learn

better representations of the objects, that improve downstream predictions.

(Non)Contrastive SSL Models. While there is a range of models [Gui+23] that can

take advantage of this setting, (non)contrastive models have become the foundation of most

state-of-the-art models [Dev+19; Rad+18]. Such models build on the idea that we only

have access to features and implicit knowledge of what makes samples semantically close

to others. Starting from X using this implicit knowledge of similarities is used to create

inter-sample relations
(
X,X

)
. Here X is often constructed through data augmentations of

X known to preserve input semantics such as additive noise, rotations or horizontal flip for

an image [KJC16]. This setting of learning from
(
X,X

)
is referred to as Self-Supervised

representation learning and has been established in recent years as an important method

between supervised and unsupervised learning. In this thesis we work towards strengthen it’s

theoretical foundations. Before going into the exact questions we analyze, let us formalize

the (non)contrastive learning setup.

In the contrastive learning setting, we define the training samples through triplets8 of the

form {(xi, x+i , x−i )}ni=1 where the idea is to consider an anchor object xi, a positive sample x+i

generated using data augmentation techniques, as well as an independent negative sample

x−i . We illustrate this setting in Figure 1.2 (c). The goal is to align the anchor more with the

positive sample than with the independent negative sample. This idea can be implemented

by learning a representation of the form fΘ(x) : Rd → Rh through optimizing specific loss

functions. For a better intuition consider the simple contrastive loss [Aro+19c]

min
Θ

n∑
i=1

fΘ(xi)
⊤fΘ(x

−
i )︸ ︷︷ ︸

Term I

− fΘ(xi)
⊤fΘ(x

+
i )︸ ︷︷ ︸

Term II

. (1.2)

where we aim to minimize Term I, which give the alignment between the embeddings of

x and x− and maximizes Term II, which give the alignment between the embeddings of x

and x+. Similarly, a non-contrastive model can be formalized by only considering Term II

[Che+20b].

in Chapter 8.
8For now we consider the setting of triplets however the idea can simply be extended to e.g. multiple

negative samples.
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1.3. SELF-SUPERVISED LEARNING (SSL)

For this general setup, we investigate two parallel questions: first, we analyze the learning

dynamics of neural network-based (non)contrastive SSL models, and secondly propose and

analyze Kernel versions of the considered loss model.

1.3.1 Analysis of Learning Dynamics

The main focus of the theory literature on SSL has been either on providing generaliza-

tion error bounds for downstream tasks on embeddings obtained by SSL [Aro+19c; Ge+23;

BKB21; Lee+21; SMA21; TKH21; WXM21; BNN22; Che+22], or analysing the spectral

and isoperimetric properties of data augmentation [BL22; HYZ23; Zhu+23]. While gener-

alization theory as studied in the previous chapter remains one of the fundamental tools to

characterize the statistical performance of a model, they do not provide a complete theoret-

ical understanding. Therefore a key focus in modern deep learning theory is to understand

the learning dynamics of models. The main idea is here to study how the network output or

parameters evolve during training under gradient descent. This provides a more tractable

expression of the problem, than traditional learning theoretical bounds.

Question 8. Can we perform an analysis of learning dynamics in the self-

supervised setting to analyze the obtained embeddings?

Contributions in this thesis (based on [EFG23]). While we show that it is possible to

analyze the learning dynamics of SSL models under contrastive and non-contrastive losses

[Aro+19c; Che+20b] we also show them to be significantly different from the dynamics of

supervised models. This gives a simple and precise characterization of the dynamics that

can provide the foundation for future theoretical analysis of SSL models.

Constraint Neural Network Embedding Function. While the loss functions (1.2) hold for

general encoding functions fΘ we define the mapping of the data x ∈ Rd to an embedding

z ∈ Rh by a one hidden layer neural network for our analysis. Consider the setting presented

in Figure 1.3 where we analyze the dynamics with fΘ(x) being a one hidden layer neural

network optimized over (1.2). We can observe that without orthogonal constraints on the

weights, Figure 1.3 (c), the learned representations collapse9, whereas under orthogonal

constraints in Figure 1.3 (d) we observe the learning of a meaningful representation (in the

sense of no collapse). This indicates that adequate constraints or regularization is especially

important in the (non)contrastive loss setup. We can therefore summarize the analyzed

setup by the following embedding function:

fΘ :=W⊤
2 ψ(W1x) (1.3)

s.t. W⊤
2 W2 = Ih, W⊤

1 W1 = Id

9We consider a collapse here to be that the function output for the first dimension is equivalent to the
second dimension. Therefore the second dimension does not provide any additional information.
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Data (red) with test point (blue cross) Test point for random initalization DNN without constraints DNN with orthogonal constraints

(a) (b) (c) (d)

Figure 1.3: Dimension collapse without orthogonal constraints in contrastive loss. Consider
the dataset as shown in (a) in R3 that is embedded into R2 using fΘ := W⊤

2 ψ(W1x)
with ψ(·) = tanh(·). Under several random initializations of the weights, the embedding in
(b) is observed. When optimized using (1.2) without constraints we observe a dimension
collapse as illustrated in (c), however when considering the orthogonal constraints (W⊤

2 W2 =
Ih, W⊤

1 W1 = Id) no collapse is observed in (d).

where W⊤
2 W2 = Ih and W⊤

1 W1 = Id are orthogonal constraints, that must be ensured

during training to avoid dimension collapse.

Analysis. Under this simple neural network model we express the learning dynamics for both

contrastive and non-contrastive learning without constraints and show that the evolution

dynamics are the same across dimensions. This explains why SSL is naturally prone to

dimension collapse. Assuming a 2-layer linear network ((1.3) with ψ(x) := x), we show that

dimension collapse cannot be avoided by adding standard Frobenius norm regularisation

or constraint, but by adding orthogonality or L2 norm constraints. We further show that

at initialization, the dynamics of a 2-layer network with nonlinear activation are close to

their linear, width-independent counterparts. We also provide empirical evidence that the

evolution of the infinite width non-linear networks is close to their linear counterparts, under

certain conditions on the nonlinearity. We derive the learning dynamics of SSL for linear

networks, under orthogonality constraints. We further show the convergence of the learning

dynamics for the one-dimensional embeddings. We numerically show, that our derived SSL

learning dynamics can be solved significantly faster than training nonlinear networks, and

yet provide comparable accuracy on downstream tasks.

1.3.2 Kernel Self Supervised Learning

In spite of the widespread use of deep learning — such as introduced in the last section —

other models are still ubiquitous in data science however contrastive learning models, not

based on neural network approaches are not common. Kernel methods are among the most

successful models in machine learning, particularly due to their inherently non-linear and

non-parametric nature, which nonetheless allows for a sound theoretical analysis. Kernels

have been used extensively in regression [KW71; Wah90] and classification [CV95; Mik+99]

but are surprisingly unexplored in the self-supervised setting. Therefore we ask:

13



1.3. SELF-SUPERVISED LEARNING (SSL)

Question 9. Can we construct non-parametric representation learning models,

based on contrastive losses?

Contributions in this thesis (based on [EFG23]) We argue that the classical represen-

ter theorems for supervised Kernel machines are not always applicable for (self-supervised)

representation learning due to the difference in regularization, and present a new representer

theorem, which show that the representations learned by our Kernel models can be expressed

in terms of Kernel matrices.

Kernel Embedding function. We Kernelize a single hidden layer network, mapping data

x ∈ Rd to an embedding z ∈ Rh:

x ∈ Rd ϕ(·)−−→ H W−→ z ∈ Rh.

Therefore we learn a representation of the form fΘ(x) =W⊤ϕ(x) by optimizing the objective

functions defined in [Aro+19c; Che+20b]. Our work takes a significant step by decoupling

the representation learning paradigm from deep learning. To this end, Kernel methods are

an ideal alternative since to neural networks (i) Kernel methods are suitable for small data

problems that are prevalent in many scientific fields [Xu+23; TBH23; CT21]; (ii) Kernels

are non-parametric, and yet considered to be quite interpretable [PM17; HH14]; and (iii) as

we show, there is a natural translation from deep SSL to Kernel SSL, without compromising

performance.

Analysis. The main focus is the development and analysis of Kernel methods for contrastive

SSL models. More specifically: We present Kernel variants of a single hidden layer network

that minimizes two popular contrastive losses. For a simple contrastive loss [Aro+19c],

the optimization is closely related to a Kernel eigenvalue problem, while we show that the

minimization of spectral contrastive loss [Che+20b] in the Kernel setting can be rephrased

as a Kernel matrix based optimization. Moreover, the presented approaches do not reduce

to traditional (unsupervised) Kernel methods.

Furthermore, we derive generalization error bounds for the proposed Kernel models which

show that the prediction of the model improves with an increased number of unlabelled data.

While in the neural network setting such bounds often become trivial [Zha+17; Ney+17] in

the Kernel setting they are well established and considered a reliable tool. We empirically

demonstrate that the proposed Kernel methods perform on par or outperform classifica-

tion on the original features as well as Kernel PCA and compare them to neural network

representation learning models.

Since representation learning, or finding suitable features, is a key challenge in many scien-

tific fields, we believe there is considerable scope for developing such models in these fields

building on this work.
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1.4 Unsupervised Learning

While the previous SSL setup has been shown to be very successful in state-of-the-art appli-

cations, the semantic information that is needed to create meaningful augmentations is not

always available. For example, a meaningful similarity is simple to construct in an image

setting [BL22; HYZ23; Zhu+23] but requires significantly more insight in a categorical data

setting. Therefore it is important to study approaches that only rely on given features. In

this setting, unsupervised representation learning through reconstruction has been estab-

lished as a central concept. Relying only on a set of features X, the high-level idea is to map

the data to a lower dimensional latent space, and then back to the features. The model is

then optimized by minimizing the difference between the input data and the reconstruction.

While a few famous approaches exist in traditional machine learning such as (Kernel) Prin-

cipal component analysis (PCA) [Pea01; SSM98], the paradigm of representation through

reconstruction has built the foundation of a large number of deep learning methods.

Autoencoder (AE). Autoencoders [Kra91] use a neural network fΘ(·) for the encoding

into the latent space as well as a neural network gΨ(·) for the reconstruction which results

in the following mapping

x ∈ Rd fΘ(·)−−−→ z ∈ Rh gΨ(·)−−−→ x̂ ∈ Rd

which is then optimized over Θ,Ψ through minimizing the reconstruction error ∥x− x̂∥22.

The empirical success of autoencoders has given rise to a large body of work for a wide range

of applications such as image denoising [BCM05], clustering [Yan+17] or natural language

processing [Zha+22a]. However, their theoretical understanding is still limited to analyzing

critical points and dynamics in shallow linear networks [Kun+19; RG22].

1.4.1 Kernel Autoencoder

AEs provide a practically well-working algorithm a theoretical analysis beyond the linear

setting is complex [Kun+19]. In the previous section we outlined how Kernelized versions

neural network model can provide a theoretically sound model that allow for sound theoret-

ical analysis. Therefore:

Question 10. Can we extend the idea of Autoencoders to Kernel methods?

Contribution in this thesis (based on [EFG23]). We show starting from AEs, the

idea can be extended to Kernel methods by replacing the encoder and decoder with Kernel

machines, resulting in the mapping

x ∈ Rd ϕ1(·)−−−→ H1
W1−−→ z ∈ Rh ϕ2(·)−−−→ H2

W2−−→ x̂ ∈ Rd

15



1.4. UNSUPERVISED LEARNING

0.6 0.7 0.8 0.9 1.0
normalized culmen depth

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
ize

d 
cu

lm
en

 le
ng

th

Adelie
Chinstrap
Gentoo

Figure 1.4: Illustration simpson’s paradox in the ‘penguin dataset’ [GWF14]. The three
clusters and their first principal component are plotted in red, blue, and green respectively,
and the principal direction for the full dataset is in black.

where typically h < d under careful regularization on z and optimizing over reducing the

reconstruction error. While this model is interesting in and of itself for learning on small

data, it can also build the foundation for a more thorough theoretical analysis of standard

non-linear AEs.

Analysis. The main contributions of this part are the development and analysis of a new

Kernel method for reconstruction models. We present a Kernel AE where the encoder

learns a low-dimensional representation. We show that a Kernel AE can be learned by

solving a Kernel matrix-based optimization problem. Furthermore, we derive generalization

error bounds for the proposed Kernel models which show that the prediction of the model

improves with an increased number of unlabelled data. We empirically demonstrate that

Kernel AE performs on par or outperforms classification on the original features as well as

Kernel PCA and compare them to neural network representation learning models.

1.4.2 Learning Cluster Specific Representations

Our proposed Kernel AE takes a step towards better understanding the representations

obtained by AEs, however, it does not provide a full picture of the embeddings obtained

in the non-linear setting yet. Therefore we take a step back and reconsider the question of

defining a good embedding on a higher level. As previously stated in Q.2 there is not a unique

‘good’ representation of data. However we argue that if we consider data with inherent

cluster structures, those structures should be represented in the embedding as well. While

Autoencoders are widely used in practice, they do not necessarily fulfill the above condition

on the embedding as they obtain a single representation of the data. Formally it has been

shown that in the linear setting, the encoder recovers the principal components of the full

dataset [Kun+19]. A classical example where such a representation would not capture the

data structure well is the so-called simpson’s paradox [Sim51], a known phenomenon in

statistics where the trend in clusters does not align with the trend that appears in the

full dataset, often observed in social-science and medical-science statistics [Wag82; Hol16].
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Figure 1.4 illustrates this by showing that one representation through the principal direction,

shown as the black arrow, for all the data points does not capture the structures of individual

clusters well as shown by the colored arrows.

Question 11. Is it beneficial to learn cluster-specific representations in Autoen-

coders and if so how can we modify a standard Autoencoder to obtain this result?

Contributions in this thesis (based on [Ess+23]). To be able to model such structures

we introduce a modified AE architecture we term Tensorized Autoencoders (TAE) that, in

the linear setting, provably recovers the principal directions of each cluster while jointly

learning the cluster assignment. This new AE architecture considers a single AE for each

cluster allowing us to learn distinct cluster representations.

We prove that this architecture with linear encoder and decoder recovers the h leading

eigenvectors of the different clusters instead of the eigenvectors of the whole data set as

done by standard linear AEs. Empirically we demonstrate that the general concept can be

extended efficiently to the non-linear setting as well and TAE performs well in clustering

and de-noising tasks on real data. Finally, we show how TAE is connected to Expectation

maximization.

1.5 Learning from Ordinal Data

In our final setup we consider data where we do not have access to either explicit similarities

or feature labels but only ordinal comparisons of the form object oi is more similar to object

oj than to object or with the goal to recover underlying cluster structures. We propose a

new similarity based on triplet comparisons to solve this problem.

Passive Comparisons. The key bottleneck in comparison-based learning is the overall

number of available comparisons: given n examples, there exist O(n3) different triplets. In
practice, it means that, in most applications, obtaining all the comparisons is not realistic.

Instead, most approaches try to use as few comparisons as possible. This problem is rel-

atively easy when the comparisons can be actively queried and it is known that Ω(n lnn)

[HGL17; EZK18] adaptively selected comparisons are sufficient. On the other hand, this

problem becomes harder when the comparisons are passively obtained. The general conclu-

sion in most theoretical results on learning from passive ordinal comparisons is that, in the

worst case, almost all the O(n3) comparisons should be observed [JN11; EZK18].

Question 12. How many passive comparisons do we need to recover planted

clusters exactly and what algorithm can we use to achieve this?

While these new similarities can be used to solve any machine learning problem, we show
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that it is probably good for clustering under a well-known planted partitioning framework

[Abb17; YSC18; XJL20]. [PEG20] shows that, when the number of clusters is constant,

Ω(n(lnn)2) passive triplets are sufficient for exact recovery. Indeed, to cluster an example,

it is necessary to observe it in a comparison at least once as, otherwise, it can only be

assigned to a random cluster. Therefore this result is near-optimal as to cluster n objects,

it is necessary to have access to at least Ω(n) comparisons.

Contributions in this thesis (based on [PEG20]). To obtain these results, we study

an Semidefinite programming (SDP) based clustering method. We empirically validate the

proposed approach and present a strategy to tune hyperparameters in the SDP; empiri-

cally validate our theoretical findings; and demonstrate the performance of the proposed

approaches on real datasets. In addition, we present results for a Quadruplet setting of the

form objects oi and oj are more similar to each other than objects ok and ol in Chapter 7

which we do not include here in the introduction of brevity.

1.6 Thesis Structure

The overall structure of the thesis follows the outline presentation previously in the intro-

duction in section 1.2 — 1.5. We start in Chapter 2 with the transductive setting where

we consider a graph with features and partial labels with the goal to label the unlabelled

nodes using graph neural networks. We analyze the generalization properties under planted

model assumptions. From there we assume we no longer have access to any labels or the

underlying similarity structure but instead, we have access to features and inter-sample

relations through semantic similarities. In this setting, we first analyze the learning dynam-

ics of (non)contrastive SSL models in Chapter 3 as well as propose Kernel SSL models in

Chapter 4. Further decreasing the amount of available information we reach the classical

unsupervised learning setting where only features for each object are available. In Chapter 5

we propose and analyze a Kernel-based AE model and in Chapter 6 we propose and analyze

a modified AE architecture, that allows for learning cluster-specific representations. Finally

in Chapter 7 we consider a data setting where we only have access to ordinal relations be-

tween data. We propose a clustering approach, that relies only on a near-optimal number

of passive comparisons.
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1.6.1 Included works

The following papers (sorted by the order they are included in the thesis) build the founda-

tion of this thesis. Equal contributions to the paper are marked by ∗.

[EVG21] Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Net-

works. Pascal M. Esser, Leena C. Vankadara, Debarghya Ghoshdastidar. In Conference

on Neural Information Processing Systems (NeurIPS), 2021.

This work is included as Chapter 2. PME derived or contributed to all theoretical results, de-

veloped and performed the experiments, drafted the initial version of the paper and actively

contributed to writing and editing.

[EMG23] Representation Learning Dynamics of Self-Supervised Models. Pascal M. Esser∗,

Satyaki Mukherjee∗, Debarghya Ghoshdastidar. Transactions on Machine Learning Re-

search (TMLR), 2024

This work is included as Chapter 3. PME derived or contributed to all theoretical results, de-

veloped and performed the experiments, drafted the initial version of the paper and actively

contributed to writing and editing.

[EFG23] Non-Parametric Representation Learning with Kernels Pascal M. Esser∗, Max-

imilian Fleissner∗, Debarghya Ghoshdastidar. Accepted to AAAI Conference on Artificial

Intelligence (AAAI-24), 2024.

This work is included as Chapter 4 and Chapter 5. PME derived or contributed to all the-

oretical results, developed and performed the experiments, drafted the initial version of the

paper and actively contributed to writing and editing.

[Ess+23] Improved Representation Learning Through Tensorized Autoencoders. Pascal M.

Esser∗, Satyaki Mukherjee∗, Mahalakshmi Sabanayagam∗, Debarghya Ghoshdastidar. In

International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.

This work is included as Chapter 6. PME derived or contributed to the theoretical re-

sults, contributed to the experiments, drafted the initial version of the paper and actively

contributed to writing and editing.

[PEG20] Near-Optimal Comparison Based Clustering. Michaël Perrot∗, Pascal M. Esser∗,

Debarghya Ghoshdastidar∗. In Conference on Neural Information Processing Systems

(NeurIPS), 2020.

This work is included as Chapter 7. PME contributed to the algorithmic part of the paper

by developing the initial version of the experiments, contributed to the experiments and
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1.6. THESIS STRUCTURE

1.6.2 Notation

Data. Given data x1, . . . , xn in Rd we collect then into a matrix X ∈ Rd×n. Corresponding

labels are denoted by y1, . . . yn. If the data has a cluster structure, let κ be the true number

of clusters. If we assume access to a graph G with n vertices, corresponding to the respective

feature vectors x1, . . . , xn, the edge (i, j) denotes the similarity of vertices i and j. The graph

structure is represented by an adjacency matrix A ∈ Rn×n.

Machine Learning / Neural Network Models. We denote an encoding function, parameter-

ized by Θ as fΘ(xi), mapping the data to a representation zi ∈ Rh and decoders as gΨ(zi)

We denote trainable weights by for layer j, of width hj as Wj . The number or layers is

defined as J . ψ is used to denote our non-linear activation function and we abuse notation

to also denote its co-ordinate-wise application on a vector by ψ(·).

Dynamics. Let the machine output is denoted by f(·). While f is time dependent and

should be more accurately denoted as ft we suppress the subscript where obvious. For any

time dependent function, for instance f , denote f̊ to be its time derivative i.e. dft
dt .

General. Let I{·} be the indicator function. Let [n] := 1, . . . n.

Matrix Calculus. Let In be an n×n identity matrix and 1 the all ones vector. For a matrix B

let ∥B∥F and ∥B∥2 be the standard frobenious norm and the L2-operator norm respectively.

⟨·, ·⟩ is used to denote the standard dot product. Let Tr(B) be the trace of matrix B.

Kernel Methods. For a given Kernel k : Rd×Rd → R, we denote ϕ : Rd → H for its canonical

feature map into the associated RKHS H. We write Φ := (ϕ(x1), . . . , ϕ(xn)) and define HX
as the finite-dimensional subspace spanned by Φ. Recall that H can be decomposed as

HX ⊕ H⊥
X . We denote by K = Φ⊤Φ ∈ Rn×n the Kernel matrix, and define k(x′, X) =

Φ⊤ϕ(x′). On a formal level, the problem could be stated within the generalised framework

of matrix-valued Kernels K : Rd × Rd → Rh×h, because the vector-valued RKHS H(K)

associated with a matrix-valued Kernel K naturally contains functions W that map from

Rd to Rh. For the scope of this paper however, it is sufficient to assume K(x, y) = Ih ·k(x, y)
for some scalar Kernel k(x, y) with real-valued RKHS H. Then, the norm of anyW ∈ H(K)

is simply the Hilbert-Schmidt norm that we denote as ∥W∥ = ∥W∥H (for finite-dimensional

matrices, the Frobenius norm), and learning the embedding from Rd to Rh reduces to

learning h individual vectors w1, . . . , wh ∈ H. In other words, we can interpret W ∈ H(K)

as a (potentially infinite-dimensional) matrix with columns w1, . . . , wh ∈ H, sometimes

writing W = (w1, . . . , wh) for notational convenience. To underline the similarity with the

deep learning framework, we denote W⊤ϕ(x) = (⟨wt, ϕ(x)⟩)ht=1 = (w1(x), . . . , wh(x)) ∈ Rh,

where we invoke the reproducing property of the RKHSH in the last step. We denote byW ∗

the adjoint operator ofW (in a finite-dimensional setting,W ∗ simply becomes the transpose

W⊤). The constraint W ∗W = Ih enforces orthonormality between all pairs (wi, wj)i,j≤h.

Any additional, Chapter specific variables are introduced throughout the thesis.
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Chapter 2

Learning Transductive Problems using Graph Neural Networks

Ordinal DataFeaturesFeature and SimilarityFeature, Graph and Partial LabelsGround Truth

(a) (e)(d)(c)(b)

Figure 2.1: Transductive Learning. Features are given as well as {ζi,j} in form of a graph
structure where each node is give by one of the objects. In addition from some objects labels
are given.

When discussing ‘learning from unlabelled data’ the first notion that comes to mind is

that of learning only from unlabelled data (e.g. in the context of clustering) or in the

context of using them for pre-training. However, the setting of this chapter investigates

the intriguing setting where we learn from labelled and unlabelled data, connected through

a graph structure at the same time with the goal to recover the labels of the unlabelled

objects as shown in Figure 2.1. Therefore compared to the settings we explore in the later

sections of the thesis this setting contains a lot of information in relation to the unlabelled

data points.

This setting can be found in a wide range of real-world applications and in recent years the

main approach for solving this problem has been neural network-based [Wu+18; Fan+19;

Hos17; Kip+18; Ham+17; Cui+19; Zho+20]. The rapid gain in popularity has, however,

come at the cost of interpretability and reliability of complex neural network architectures.

Hence, there has been an increasing interest in understanding generalization and other the-

oretical properties of neural networks in the theoretical machine learning community [Fel20;

Aro+19a; MB17; NK19; TKM20; Gho+20]. Most of the existing theory literature focuses

on the supervised learning problem, or more precisely, the setting of inductive inference.

In contrast, there is a general lack of understanding of transductive problems, in particular

the role of unlabeled data in training. Consequently, there has also been little progress in

rigorously understanding one of the widely used tools for transductive inference — Graph

neural networks (GNN).

GNNs were introduced by [GMS05; Sca+09], who used recurrent neural network architec-
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2.1. STATISTICAL FRAMEWORK FOR TRANSDUCTIVE LEARNING ON GNN

tures, for the purpose of transductive inference on graphs, that is, the task of labelling all

the nodes of a graph given the graph structure, all node features and labels for few nodes.

Broadly, GNNs use a combination of local aggregation of node features and non-linear trans-

formations to predict on unlabelled nodes. In practice, the exact form of aggregation and

combination steps varies across architectures to solve domain specific tasks [KW17; Bru+14;

DBV16; Vel+18; Xu+19]. While some GNNs focus on the transductive setting, sometimes

referred to as semi-supervised node classification,1 GNNs have also found success in super-

vised learning, where the task is to label entire graphs, in contrast to labelling nodes in

a graph. While the understanding of GNNs is limited, there are empirical approaches to

study GNNs in the transductive [Boj+18] and supervised setting [Zha+18; Yin+18]. For an

extensive survey on the state of the art of GNNs see for example [Wu+20].

2.1 Statistical Framework for Transductive Learning on GNN

For a rigorous analysis, we introduce a statistical learning framework for graph based trans-

ductive inference in Section 2.1.1. Based on this, we derive generalisation error bounds based

on VC Dimension in Section 2.1.2 and demonstrate that the bounds have limited expresi-

tivity even under strong assumptions. To overcome this problem we consider transductive

Rademacher complexity in Section 2.1.3. While without further assumptions this bound

also gives limited insight, the bound is more expressive and, in Section 2.2, we show that it

can provide meaningful bounds under certain distributional assumptions.

2.1.1 Framework for Transductive Learning

We briefly recall the framework for supervised binary classification. Let X = Rd be the

domain or feature space and Y = {±1} be the label set. The goal is to find a predictor

f : X → Y based on m training samples S := {(xi, yi)}mi=1 ⊂ X × Y and a loss function

ℓ : Y × Y → [0,∞). In a statistical framework, we assume that S consists independent

labelled samples from a distribution D = DX × η, that is, xi ∼ DX and yi ∼ η(xi), where

η(·) governs the label probability for each feature. The goal of learning is to find h that

minimises the risk / generalisation error LD(f) := E(x,y)∼D[ℓ(f(x), y)]. Since, LD(f) cannot

be computed without the knowledge of D, one minimises the empirical risk over the training

sample S as LS(f) := 1
m

∑m
i=1 ℓ (f (xi) , yi) .

Transductive learning. In transductive inference, one restricts the domain to be X :=

{xi}ni=1, a finite set of features xi ∈ Rd. Without loss of generality, one may assume that the

labels y1, . . . , ym ∈ {±1} are known, and the goal is to predict ym+1, . . . yn. The problem

can be reformulated in the statistical learning framework as follows. We define the feature

1In semi-supervised learning, the learner is given a training set of labeled and unlabeled examples and
the goal is to generate a hypothesis that generates predictions on the unseen examples. In transductive
learning all features are available to the learner, and the goal is to transfer knowledge from the labeled to
the unlabeled data points. The focus of graph-based semi-supervised learning aligns more with the latter
setting.
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distribution DX to be uniform over the n features, whereas yi ∼ η(xi) for some unknown

distribution η. Hence D := Unif([n]) × η is the joint distribution on X × Y, and the

goal is to find a predictor h : X → Y that minimises the generalisation error Lu(f) :=

1
n−m

∑n
i=m+1 ℓ (f(xi), yi). In addition we define the empirical error of h to be L̂m(f) :=

1
m

∑m
i=1 ℓ (f(xi), yi) and the full sample error of f to be Ln(f) := 1

n

∑n
i=1 ℓ (f(xi), yi), where

the latter is defined over both labelled and unlabelled instances. The purpose of this section

is to derive generalisation error bound for graph based transduction of the form

Lu(f) ≤ L̂m(f) + complexity term. (2.1)

The complexity term is typically characterised using learning-theoretic terms such as VC

Dimension and Rademacher complexity. For the transductive setting see [TLP16; EYP09;

TBK14].

Graph-based transductive learning. A typical view of graph information in transductive

inference is as a form of a regularisation [BMN04]. In contrast, we view the graph as part of

the hypothesis class and derive the impact of the graph information on the complexity term.

We assume access to a graph G with n vertices, corresponding to the respective feature vec-

tors x1, . . . , xn, and edge (i, j) denoting similarity of vertices i and j. For ease of exposition,

we define the matrix X ∈ Rn×d as the feature matrix2 with rows being the n feature vectors

of dimension d. We also abuse notation to write a predictor as h : Rn×d → {±1}n. Further-
more, typically neural networks output a soft predictor in R, that is further transformed into

labels through sign or softmax functions. Hence, much of our analysis focuses on predictors

h : Rn×d → Rn, and corresponding hypothesis class

FG =
{
f : Rn×d → Rn : f is parametrized by G

}
⊂ R[n].

When applicable, we denote the hypothesis class of binary predictors obtained through sign

function as sign ◦FG = {sign(h) | h ∈ FG}. Note that sign ◦FG ⊂ FG , and hence, VC

Dimension or Rademacher complexity bounds for the latter also hold for the hypothesis

class of binary predictors. We also note that the presented analysis holds for both sign and

sigmoid function for binarisation.

Formal setup of GNNs. We next characterise the hypothesis class for graph neural

networks. Consider graph-based neural network model with the propagation rule for layer

j denoted by fj(H) : Rhj−1 → Rhj with layer wise input matrix H ∈ Rn×hj−1 . Consider a

class of GNNs defined over J layers, with dimension of layer j ∈ [J ] being hj and S ∈ Rn×n

the graph diffusion operator. Let ψ denote the point-wise activation function of the network,

2Remark on the notation: In the introduction and also in some of the consecutive chapters we define the
features as an d× n matrix where we here define it as a n× d matrix. This is due to different convention in
the areas of application. The former is commonly used in the transductive setting where as the letter is the
convention in the (deep) representation learning setup.
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which we assume to be a Lipschitz function with Lipschitz constant Lψ. We assume ψ to be

the same throughout the network. We define the hypothesis class over all J-layer GNNs as:

FψG :=
{
fψG (X) = gJ ◦ · · · ◦ f0 : Rn×d → {±1}n

}
(2.2)

with fj := ψ (bj + Sfj−1 (H)Wj) , j ∈ [J ], f0 := X. (2.3)

where (2.3) defines the layer wise transformation withWj ∈ Rhj−1×hj as the trainable weight

matrix and bj ∈ Rhj the bias term. Here, the graph is treated as part of the hypothesis

class, as indicated by the subscript in FψG . For ease of notation we drop the superscript for

non-linearity where it is unambiguous. For the diffusion operator S, we consider two main

formulations during discussions:

Sloop := A+ I self loop

Snor := (D + I)−
1
2 (A+ I)(D + I)−

1
2 , degree normalized [KW17]

where A denotes the graph adjacency matrix and D is the degree matrix. However, most

results are stated for general S.

2.1.2 Generalisation Error-bound using VC Dimension

The main focus of this section is the notion of generalisation, that is, understanding how

well a GNN can predict the classes of an unlabelled set given the training data. We start

with one of the most fundamental learning-theoretical concepts in this context which is the

Vapnik–Chervonenkis (VC) dimension of a hypothesis class, a measure of the complexity or

expressive power of a space of functions learned by a binary classification algorithm. The

following result bounds the VC Dimension for the hypothesis class FψG , and use it to derive

a generalisation error bound with respect to the full sample error Ln, which is close to the

generalisation error for unlabelled examples Lu when m≪ n.

Definition 1 (VC-Dimension). Following [VC71]. Let F ⊆ {±1}X be a binary function

class and f ∈ F a function in this class. We define C = (x1, · · ·xm) ∈ Xm and say that C is

shattered by f if for all assignments of labels to points in C there exists a parameterization

of f such that f predicts all points in C without error. From there we define the VC-

dimension of a non-empty hypothesis class F as the cardinality of the largest possible

subset of X that can be shattered by F . If F can shatter arbitrarily large sets, then

VCdim(F) =∞.

Proposition 1 (Generalisation error bound for GNNs using VC Dimension). For the hy-

pothesis class over all linear GNNs, that is ψ(x) := x, with binary outputs, the VC Di-
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mension is given by

VCdim
(
sign ◦F linear

G
)
= min

{
d, rank

(
S
)
, min
j∈[J−1]

{hj}
}
.

Similarly, the VC Dimension for the hypothesis class of GNNs with ReLU non-linearities

and binary outputs, can be bounded as

VCdim
(
sign ◦FReLU

G
)
≤ min {rank(S), hJ−1} .

Using the above bounds, it follows that, for any δ ∈ (0, 1), the generalisation error for any

f ∈ sign ◦FG satisfies, with probability 1− δ,

Ln(h)− L̂m(h) ≤
√

8

m

(
min {rank(S), hJ−1} · ln(em) + ln

(
4

δ

))
. (2.4)

In the same line we can additionally note that we get similar results (of the form that in

expectation rank(A) = n) for more complex models like stochastic block models which we

will discuss in further detail later, as for any matrix A ∈ Rn×n there are invertible matrices

arbitrarily close to A, under any norm for the n×nmatrices. Motivated by those first findings

we consider a different complexity measure, less reliant on combinatorial arguments, to get

more insight into the role of graph information.

To interpret Proposition 1, we note that, by introducing the non-linearity, we lose the

information about the hidden layers, except the last one and therefore also on the feature

dimension. Nevertheless, the information on the graph information (that we are primarily

interested in) is preserved. There are two situations that arise. If hJ−1 ≤ rank(S), then,

from Proposition 1, the graph information is redundant and one could essentially train a

fully connected network without diffusion on the labelled features, and use it to predict on

unlabelled features. The graph information has an influence for rank(S) < hJ−1. While

general statements on the influence of the graph information are difficult, by considering

specific assumptions on the graph we can characterise the generalisation error further.

For linear GNN on graph G, one can bound the VC Dimension between those for empty and

complete graphs, that is,

VCdim
(
sign ◦F linear

complete

)
≤ VCdim

(
sign ◦F linear

G
)
≤ VCdim

(
sign ◦F linear

empty

)
.

Moreover, for disconnected graphs, rank(S) is related to the number of connected compo-

nents. Similar observations hold for upper bounds on VC Dimension for ReLU GNNs. Based

on this observation for simple settings, it holds that considering graph information in com-

parison to a fully connected feed forward neural network leads to a decrease in the complexity

of the class, and therefore also in the generalisation error. However, the graph G is connected
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in most practical scenarios, and even under strong assumptions on the graph, for example

under consideration of Erdös-Rényi graphs3 or stochastic block models, rank(S) = O(n)

[CV08]. Therefore, for the case hJ−1 > rank(S) = O(n), Proposition 1 provides a generali-

sation error bound of O

(√
n·lnm
m

)
, which holds trivially for 0-1 loss as n > m. Furthermore,

rank(S) is often similar for both self-loop Sloop and degree-normalised diffusion Snor, and

hence, the VC Dimension based error bound does not reflect the positive influence of degree

normalisation—a fact that can be explained through stability based analysis [VZ19].

2.1.3 Generalisation Error-bound using Transductive Rademacher Complexity

Due to the triviality of VC Dimension based error bounds, we consider generalization error

bounds based on transductive Rademacher complexity (TRC). We start by defining TRC

that differs from inductive Rademacher complexity by taking the unobserved instances into

consideration.

Definition 2 (Transductive Rademacher complexity [EYP09]). Let V ⊆ Rn, p ∈ [0, 0.5]

and m the number of labeled points. Let σ = (σ1, . . . , σn)
T

be a vector of independent

and identically distributed random variables, where σi takes value +1 or −1, each with

probability p, and 0 with probability 1 − 2p. The transductive Rademacher complexity

(TRC) of V is defined as

Rm,n(V) :=
(

1

m
+

1

n−m

)
· E
σ

[
sup
v∈V

σ⊤v

]
.

The following result derives a bound for the TRC of GNNs, defined in (2.2)–(2.3), and states

the corresponding generalization error bound. The bound involves standard matrix norms,

such as ∥ · ∥∞ (maximum absolute row sum) and the ‘entrywise’ norm, ∥·∥2→∞ (maximum

2-norm of any column).

Theorem 1 (Generalization error bound for GNNs using TRC). Consider Fψ,β,ωG ⊆ FψG
such that the trainable parameters satisfy ∥bj∥1 ≤ β and ∥Wj∥∞ ≤ ω for every j ∈ [J ]. The

transductive Rademacher complexity (TRC) of the restricted hypothesis class is bounded as

Rm,n(Fψ,β,ωG ) ≤ c1n
2

m(n−m)

J−1∑
j=0

cj2 ∥S∥j∞

+ c3c
J
2 ∥S∥J∞ ∥SX∥2→∞

√
log(n) , (2.5)

where c1 := 2Lψβ, c2 := 2Lψω, c3 := Lψω
√
2/d and Lψ is Lipschitz constant for activation

ψ.

The bound on TRC leads to a generalisation error bound following [EYP09]. For any δ ∈
3From [CV08] we know the following result: Let c be a constant larger then 1

2
, then for any c lnn

n
≤

p ≤ 1
2

for a random G graph sampled from a Erdös-Rényi graph has rank(A) ≤ n − i(G) with probability

1−O
(
(ln lnn)−

1
4
)
, where i(G) denotes the number of isolated vertices in G.
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(0, 1), the generalisation error for any h ∈ Fψ,β,ωG satisfies

Lu(h)− L̂m(h) ≤ Rm,n(Fψ,β,ωG ) + c4
n
√

min{m,n−m}
m(n−m)

+ c5

√
n

m(n−m)
ln

(
1

δ

)
(2.6)

with probability 1− δ, where c4, c5 are absolute constants such that c4 < 5.05 and c5 < 0.8.

The additional terms in (2.6) are O
(
max

{
1√
m
, 1√

n−m

})
, and hence, we may focus on

the upper bound on TRC (2.5) to understand the influence of the graph diffusion S as

well as its interaction with the feature matrix X. The bound depends on the choice of ω,

and it suggests a natural choice of ω = O(1/∥S∥∞) such that the bound does not grow

exponentially with network depth. The subsequent discussions focus on the dependence on

∥S∥∞ and ∥SX∥2→∞, ignoring the role of ω. Few observations are evident from (2.5), which

are also interesting in comparison to existing works.

Role of normalisation. In the case of self-loop, it is easy to see that ∥Sloop∥∞ = 1+hmax,

where hmax denotes the maximum degree, and hence, for fixed ω, the bound grows as

O(hJmax). In contrast, for degree normalisation, ∥Snor∥∞ = O
(√

hmax

hmin

)
, and hence, the

growth is much smaller (in fact, ∥Snor∥∞ = 1 on regular graphs). It is worth noting that, in

the supervised setting, [LUZ21] derived PAC-Bayes for GNN with diffusion Snor, where the

bound varies as O(hJmax). Theorem 1 is tighter in the sense that, for Snor, the error bound

has weaker dependence on hmax, mainly through ∥SX∥2→∞.

From spectral radius to ∥SX∥2→∞. Previous analyses of GNNs in transductive setting

rely on the spectral properties of S. For instance, the stability based generalisation error

bound for 1-layer GNN in [VZ19] is O(∥S∥22), where ∥S∥2 is the spectral norm. In contrast,

Theorem 1 shows TRC = O(∥S∥∞ ∥SX∥2→∞). This is the first result that explicitly uses the

relation between the graph-information and the feature information explicitly via ∥SX∥2→∞.

One may note that without node features, that is X = I, we have ∥S∥2→∞ ≤ ∥S∥2 ≤ ∥S∥∞
and hence, a direct comparison between (2.6) and O(∥S∥22) bound of [VZ19] is inconclusive.

However, in presence of features X, Theorem 1 shows that the bound depends on the

alignment between the feature and graph information.

In the presence of graph information we can still express Theorem 1 in terms of spectral com-

ponents by considering ∥SX∥2→∞ = maxr ∥(SX)·r∥2 ≤ maxr ∥S∥2 ∥X.r∥2 ≤ ∥S∥2∥X∥2→∞

and ∥SX∥2→∞ which can be bound as 1√
n
∥S∥∞ ≤ ∥S∥2.

Oversmoothing. While the above bound provides a weaker result than (2.5) it allows to

directly connect to the oversmoothing [LHW18] effect as the diffusion operator in now only

included as ∥S∥j2 , j ∈ [J ]. Therefore with an increasing number of layers (and especially in

the setting considered in [OS20a] where the number of layers goes to infinity), the informa-

tion provided by the graph gets oversmoothed and therefore, a loss of information can be

observed.
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Before going in a refined analysis of the bound under graph assumptions let us consider

three specific graph settings.

Influence of the graph information: Empty and fully-connected graph. To be

able to analyse the influence of the graph information we can note that the graph informa-

tion comes into play through ∥SX∥2→∞. We can rewrite this expression as ∥SX∥2→∞ =

maxr

√∑
i (SX)

2
ir and then by replacing S with the empty (A = KG) and the complete

graph (A = I) gives: ∥KGX∥2→∞ = maxr
1√
n

√(∑
j Xjr

)2
, and ∥IX∥2→∞ = maxj

√∑
j X

2
jr

and since
(∑

j Xjr

)2
≤ n ∥X·j∥22 it follows that R(FψKG

) ≤ R(FψI ) which is consistent with

the observation obtained from the VC-Dimension bound. In both cases the complexity

measure of the fully connected graph is lower then the if we would not consider graph

information.

Influence of the graph information: b-regular graph. Now consider a setup that

incorporates a larger number of graphs. Assume S := D− 1
2 (A + I)D− 1

2 and that we only

consider the graph information (e.g. X = I), then for a b-regular graph (a graph where

every vertex has degree b) we can write ∥SI∥2→∞ = maxj ∥S·r∥2 =
√∑

i∼r
1

DiDr
= 1√

b
< 1.

Therefore adding graph information results inR(FψG ) ≤ R(FψI ) and therefore the complexity

resulting in not using graph information upper bounds the complexity that results if we

consider graph information.

2.2 Generalization using TRC under Planted Models

The discussion in previous section shows that TRC based generalisation error bound provides

some insights into the behaviour of GNNs (example, Snor is preferred over Sloop), but the

bound is too general to give insights into the influence of the graph information on the

generalisation error. The key quantity of interest is ∥SX∥2→∞, which characterises how the

graph and feature information interact. To understand this interaction, we make specific

distributional assumptions on both graph and node features. We assume that node features

are sampled from a mixture of two d-dimensional isotropic Gaussians [Das99], and graph

is independently generated from a two-community stochastic block model [Abb17]. Both

models have been extensively studied in the context of recovering the latent classes from

random observations of features matrix X or adjacency matrix A, respectively. Our interest,

however, is to quantitatively analyse the influence of graph information when the latent

classes in features X and graph A do not align completely. In Section 2.2.1, we present

the model and derive bounds on expected TRC, where the expectation is with respect to

random features and graph. We then experimentally illustrate the bounds in Section 2.4,

and demonstrate that the corresponding generalisation error bounds indeed capture the

trends in performance of GNN.
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2.2.1 Model and Bounds on TRC

We assume that the node features are sampled latent true classes, given a v = (z1, . . . , zn) ∈
{±1}n. The node features are sampled from a Gaussian mixture model (GMM), that is,

feature for node-i is sampled as xi ∼ N (ziµ, σ
2I) for some µ ∈ Rd and σ ∈ (0,∞). We

express this in terms of X as

X = X + ϵ ∈ Rn×d, where X = vµ⊤ and ϵ = (ϵir)i∈[n],r∈[d]
i.i.d.∼ N (0, σ2). (2.7)

We refer to above as X ∼ 2GMM. On the other hand, we assume that graph has two latent

communities, characterised by y ∈ {±1}n. The graph is generated from a stochastic block

model with two classes (2SBM), where edges (i, r) are added independently with probability

p ∈ (0, 1] if yi = yr, and with probability q < [0, p) if yi ̸= yr. In other words, we define

the random adjacency A ∼ 2SBM as a symmetric binary matrix with Aii = 0, and (Air)i<r

indenpendent such that

Air ∼ Bernoulli(Air), where A =
p+ q

2
11⊤ +

p− q
2

yy⊤ − pI. (2.8)

The choice of two different latent classes v, y ∈ {±1}n allows study of the case where the

graph and feature information of do not align completely. We use Γ = |y⊤v| ∈ [0, n] to

quantify this alignment. Assuming y, v are both balanced, that is,
∑
i yi =

∑
i zi = 0, one

can verify that

∥(A+ I)X∥2→∞ = ∥µ∥∞
(
n(1− p)2 + 1

4n(p− q)2Γ2 − (p− q)(1− p)Γ2
)1/2

, (2.9)

which indicates that, for dense graphs (p, q ≫ 1
n ), the quantity ∥SX∥2→∞ should typically

increase if the latent structure of graph and features are more aligned. This intuition is made

precise in the following result that bounds the TRC, in expectation, assuming X ∼ 2GMM

and A ∼ 2SBM.

Theorem 2 (Expected TRC for GNNs under SBM). Let c1, c2 and c3 as defined in Theo-

rem 1 and Γ := |y⊤v|. Let c6 := (1 + o(1)), c7 := (1 + jo(1)), c8 := (1 + Jo(1)). Assuming

p, q ≫ (lnn)2

n we can bound the expected TRC for A as defined in (2.8) and X as defined in

(2.7) as follows:

Case 1, Degree normalized: S = Snor

E
X,A

[
Rm,n(Fψ,β,ωG )

]
≤ c1n

2

m(n−m)

J−1∑
j=0

c7c
j
2

(
p

q

) j
2

+ c8c3c
J
2

(
p

q

) J
2 √

ln(n) ×

(
c6 ∥µ∥∞

1 +
(
p−q
2

)2
Γ2(

p+q
2

)2 + c6

√
ln(n)

q
∥µ∥∞ + c6

√
σ(1 + 2 ln(d))

q

)
(2.10)
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Case 2, Self Loop: S = Sloop

E
X,A

[
Rm,n(Fψ,β,ωG )

]
≤ c1n

2

m(n−m)

J−1∑
j=0

c7c
j
2(np)

j

+ c8c3c
J
2 (np)

J
√
ln(n) ×

(
c6 ∥µ∥∞ n

(
1 +

(
p− q
2

)2

Γ2

)
+ n

√
p+ q

2
∥µ∥∞ + c6n

√
pσ
√

1 + 2 ln(d)

)
(2.11)

We note that although the above bounds are stated in expectation, they can be translated

into high probability bounds. Furthermore the non-triviality of the proof of Theorem 2

stems from bounds on the expectations of matrix norms, which is more complex than the

computation in (2.9). Theorem 2 can be also translated into bounds on the generalisation gap

Lu(f)−L̂m(f). By considering a planted model we can now further extend the observations

of Section 2.1.2 and 2.1.3.

Role of normalisation. In the following, we can show that by normalising, the generalisa-

tion gap grows slower with increasing graph size. First we compare E
[
∥Sloop∥j∞

]
= c7(np)

j

with E
[
∥Snor∥j∞

]
= c7 (p/q)

j/2
and observe that by normalising we lose the n term. In

addition we can consider E [∥SX∥2→∞] which is bound by the second line in (2.10)–(2.11).

Again in the first, deterministic, term we observe that the self loop version contains an

additional dependency on n. For the two noise terms we can characterize the behaviour in

terms of the density of the graph. Let ρ = O(p),O(q) and ρ≫ 1
n then we can characterise

the dense setting as ρ ≍ Ω(1) and the sparse setting as ρ ≍ O
(

ln(n)
n

)
and observe that in

both case the normalised case grows slower with n:

Dense: E
[
∥SloopX∥2→∞

]
= O(n), E [∥SnorX∥2→∞] = O

(√
ln(n)

)
(2.12)

Sparse: E
[
∥SloopX∥2→∞

]
= O

(√
n ln(n)

)
, E [∥SnorX∥2→∞] = O

(√
n
)

(2.13)

Influence of the graph information. We consider the idea from Section 2.1.2, to analyse

the influence of graph information by comparing the TRC between the case where no graph

information is considered, S = I and Snor. We define the corresponding hypothesis classes

as Fψ,β,ωI and Fψ,β,ωnor . Considering the deterministic case (S = S, X = X ) we can observe

Rm,n(Fψ,β,ωI ) > Rm,n(Fψ,β,ωnor ) if Γ > O
(

n√
nρ+n

)
. Therefore the random graph setting

allows us to more precisely characterize under what conditions adding graph information

helps.

2.3 Influence of Depth and Residual Connections on the Generalisation Error

While for standard neural networks increasing the depth is a common approach for increasing

the performance, this idea becomes more complex in the context of GNNs as each layer

contains a left multiplication of the diffusion operator and we can therefore observe an over-
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smoothing effect [LHW18] — the repeated multiplication of the diffusion operator in each

layer spreads the feature information such that it converges to be constant over all nodes.

To overcome this problem, empirical works suggest the use of residual connections [KW17;

Che+20a], such that by adding connections from previous layers the network retains some

feature information. In this section we investigate this approach in the TRC setting. In

Section 2.3.1 we provide the TRC bound for GNN with skip connections and show that it

improves the generalisation error compared to vanilla GNNs.

2.3.1 Model and Bounds on TRC for GNN with Residual Connections

While there is a wide range of residual connections, introduced in recent years we follow the

idea presented in [Che+20a] where a GNN as defined in (2.3) is extended by an interpolation

over parameter α with the features. This setup is especially interesting as it captures the

idea of preserving the influence of the feature information more than residual definition that

only connect to the previous layer. Formally we can now write the layer wise propagation

rule as

fj+1 := ψ ((1− α) (bj + Sfj (H)Wj) + αf0 (H)) , with α ∈ (0, 1). (2.14)

We can now derive a generalization error bound similar to Theorem 1 for the Residual

network.

Theorem 3 (TRC for Residual GNNs). Consider a Residual network as defined in (2.14)

and Fψ,β,ωG ⊂ FψG such that the trainable parameters satisfy ∥bj∥1 ≤ β and ∥Wj∥∞ ≤ ω for

every j ∈ [K]. Then with α ∈ (0, 1) and c1 := 2Lψβ, c2 := 2Lψω, c3 := Lψω
√
2/d the TRC

of the restricted class or Residual GNNs is bounded as

Rm,n(Fψ,β,ωG ) ≤ ((1− α)c1 + α2Lψ ∥X∥∞)n2

m(n−m)

J−1∑
j=0

(1− α)cj2 ∥S∥j∞


+ α2Lψ ∥X∥∞ + (1− α)c3cJ2 ∥S∥J∞ ∥SX∥2→∞

√
log(n) (2.15)

However observing the bound isolated does not provide new insights beyond Theorem 2 into

the behaviour of the generalisation error and therefore we focus on the comparison between

GNNs with and without residual connections.

For readability assume β = ∥X∥∞. Under this setup we can note that the generalisation

error-bound increases with decreased alpha and in extension it follows that the generalisation

error-bound for a GNN with skip connection is lower then the one without. This implication

is in line with the general notion that residual connections improve the performance of net-

works [Che+20a; KW17]. Our general intuition behind this behavior is that with increasing

α, the network architecture is closer to the one of an one hidden layer network. Having good
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performance in shallow networks is something that is observed in our experiments as well

as in previous work (e.g., [KW17]). Therefore it appears that using the skip connection to

obtain a deep network that resembles a shallow one leads to the performance increase.

We conclude this chapter with first discussing how derived bounds correspond to empirical

observations and then outline the limitations from the considered approach in more detail.

2.4 Comparison of Theoretical Bounds and Empirical Observations

While we focus on the theoretical analysis of GNNs, in this section we illustrate that the

bounds described in Theorem 2 follow the trends observed for the empirical generalization

error. The bounds in Section 2.2.1 are derived for binary SBMs so we, therefore, focus on

this setting but in addition also show that those observations extend to real-world, multi-

class data on the example of the Cora dataset [RA15] and Citeseer [GBL98]. The results

are presented in Figure 2.2.

Setup. For the SBM we consider a graph with n = 500,m = 100, p = 0.1, q = 0.01 as

default. We plot the mean over 10 random initialization. When comparing the empirical

performance to the derived theoretical bounds it is important to note that learning theo-

retical bounds of the form (2.1) can be loose in the context of deep learning models as the

absolute value is out of the (0, 1) range4. While this does not allow us to numerically show

how tight the bound is in practice, we can still make statements about the influence of the

change of parameters by analyzing trends, where the experiments validate the correlation

between theory and empirical observations. Therefore we plot the bounds in Figure 2.2

normalized on the empirical generalization error for the lowest parameter in the analyzed

range5. Let us now consider several settings with regards to the influence of data-set param-

eterizations, network changes, and real world data.

Data-set parameterization. First, we can analyze how changes in the data, especially

with regard to the graph influence the generalization. This allows us to model how the

information, provided in addition to the unlabelled objects can help in learning.

Number of observed points. Let us consider the number of observed points in Figure 2.2a

(left) and a realistic setting of m ≪ n −m where we see a sharp decline in the setting of

few observed points but then the generalization error converges which corresponds to the

influence of m as described in (2.10). We see a similar trend for real data in Figure 2.2c

4Generalisation error bounds, even for simple machine learning models, can exceed 1 due to absolute
constants that cannot be precisely estimated. Hence, the point of interest is the dependence of key param-
eters; for instance, in a supervised setting, the bounds are O(1/

√
m) and typically exceed 1 for moderate

m. This problem is inherent to the bound given in [EYP09] that we base our TRC bounds on, as the slack
terms can already exceed 1, and therefore further research on general TRC generalization gaps is necessary
to characterize the absolute gap between theory and experiments.

5More precisely assume we analyze the change of generalization over a parameter {a0, . . . , ai} and let

∆LEmp
aj

be the empirical generalization error for parameterization aj . We then plot the TRC based bound

as ∆LEmp
a0

∆LTRC
aj

∆LTRC
a0

∀j ∈ [i] and analogous for the VC based bound.
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(a) Numerical evaluation of the derived bounds in the context of changes in the data set. (left)
change of the number of observed points m in relation to the full graph size (n). (middle) Change
of the connection probability in and between classes. Fix pin and vary pout relatively to pin .
(right) Change of the graph and feature allignment Γ.
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(b) Numerical evaluation of the derived bounds in the context of changes in the model. (left)
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(c) Real data illustration. Note that the range for Cora exceeds (0, 1) as the dataset is multi-class
and we consider a negative log-likelihood loss. (left) Change in number of observed data points on
citeseer dataset [GBL98] (right) Change of depth (J) for different α in the skip-connection model
on the cora dataset [RA15].

Figure 2.2: Numerical illustration of the derived bounds in the SBM Setting. Plotted is
the average empirical performance over 10 runs as well as the corresponding TRC-based
generalization error bound (Theorem 1) and VC-based bound (Proposition 1). (a) shows
the change in generalization error with the change in properties of the data set. (b) shows
the change in generalization error with changes in the model architecture. (c) gives an
example of how the observations from the SBM setting also translate to real-world data-
sets.
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(left). Practically such an observation can be useful as labeling data can be expensive and

such results could be useful to determine a necessary and sufficient number of labeled data

to obtain a given level of accuracy.

While the above setting can be modeled with the simple VC-based bound as well as with

the TRC bound without the assumption of graph models, let us now assume two settings

where the change in parameters can be precisely modeled by the TRC bound under the

SBM setting.

Graph-Connectivity. Firstly we can analyze how well the graph is connected within and

between communities. Intuitively we would assume that if the difference between the in and

in-between cluster connectivity is high, it is easier for the network to predict the unknown

nodes. This is also reflected in the TRC-based bound as shown in Figure 2.2a (middle).

Feature and graph alignment. Finally, we look at the feature and graph alignment as charac-

terized through Γ2 in the TRC-based bound (2.9)–(2.10) and observe in Figure 2.2a (right)

that with an increase in the latent structure the generalization error increases. While this

seems to be counterintuitive a possible explanation could be that reduced alignment helps

to prevent overfitting and we observe that the slope matches the empirical results. Again

we note that the VC dimension bound (2.4) does not allow us to model this dependency.

Changes in the Network. The second main aspect that is modeled in the derived gener-

alization error bounds is with regard to the considered network architecture.

Depth and oversmoothing. As noted in the previous section the TRC bound predicts an

exponential dependency on network depth J which can only partially be observed empiri-

cally for the first three layers as shown in Figure 2.2b (left) while for deeper networks the

generalization error does no longer change. We observe a similar picture for real data in

Figure 2.2c (right). Therefore a study without relying on a recursive proof6 structure will

be necessary to refine and more accurately this dependency on J .

Skip-connections. The observation in Section 2.3 suggests that including residual connections

is beneficial with increasing depth which is consistent with the initial reason for introducing

residual connections [Che+20a; KW17]. We further illustrate this in the context of the trend

shown in (2.15). Extending the analysis of depth we now consider the residual connections

as defined in (2.14). By (2.15) we can still observe the exponential dependency on J and

therefore focus on two main aspects: i) Theoretically the generalization error for the Resnet

is upper bound by GNN, which empirically is observed for both the SBM as well as for

Cora (Figure 2.2c (right)). ii) Focusing on the Resnets, Theorem 3 predicts an ordering

in the generalization error given by α which is again observed for both the SBM as well

as for Cora. Therefore while there seems to be a deviation in the exponential behavior of

J as given in Theorem 3, the ordering of the generalization error-bound described by α is

6However this would need a substantial deviation from the current structure as such dependencies on
depth are also found in related PAC bounds [LUZ21].
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observed empirically. While this does not give us a complete picture we can note that the

remarks on over smoothing suggest that shallower networks are preferable and we again note

that the VC dimension bound (2.4) does not provide any useful insights to the influence of

depth.

2.5 Discussion

We conclude this section by first discussing additional related works with regard to learning

theoretical analysis as well as parallel works that analyze GCNs using alternative tools.

Finally, we discuss the implications of the derived results.

Related Work. While empirical studies provide some insights into the behavior of ma-

chine learning models, rigorous theoretical analysis is the key to deep insights into a model.

The focus of this section is to provide a learning-theoretic analysis of the generalization of

GNNs in the transductive setting. Vapnik first studied the problem of transductive inference

and provided generalization bounds for empirical risk minimization [Vap82; Vap98]. Sub-

sequent works further analyzed this setting in transductive regression [CM07], and derive

VC Dimension and Rademacher complexity for transductive classification [TLP16; EYP09].

Generalization error bounds for 1-layer GNNs have been derived in a transductive setting

based on algorithmic stability [VZ19]. In contrast, the focus of the current chapter is on

learning-theoretic measures, which have been previously used to analyze GNNs in a super-

vised setting. In [STH18], VC Dimension is derived for a specific class of GNNs and a

generalization error bound is given using node representations. However, their approach of

subsuming the graph convolutions under Pfaffian functions does not allow for an explicit

representation in terms of the diffusion operator which is important to our presented anal-

ysis. [GJJ20] derives the Rademacher complexity for GNN in a supervised setting with a

focus of the equivariant structures of the input graphs and does not allow for an explicit

inclusion and analysis of the graph information. [LUZ21] provides PAC-Bayes bounds for

GNNs that are tighter than the bounds in [GJJ20].

In the context of this work, especially relevant is [OS20b; OS20a]. [OS20a] describes the

effect of over-smoothing with an increasing number of layers. [OS20b] analyzes GNNs in the

transductive setting. However, they consider a multiscale GCN, and therefore, the analysis

is based on a weak-learning/boosting framework where the focus is mostly on exploring

the weak learning component, whereas this section focuses on the specific analysis of the

generalization bound and the influence of its individual components. In addition, we provide

a detailed analysis of its dependence on the graph and feature information and provide a

more expressive bound by considering generalization under planted models.

Conclusion. Statistical learning theory has proven to be a successful tool for a complete

and rigorous analysis of traditional learning algorithms. At the same time, research suggests
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that when applied to deep learning models these methods become non-informative. However,

on the example of GNNs, we demonstrate that classical statistical learning theory can be

used under consideration of the right complexity measure and distributional assumptions

on the data to provide insight into trends of deep models. Our analysis provides the first

fundamental results on the influence of different parameters on generalization and opens

up different lines of follow-up work. Considering the current setup we can also extend the

theoretical analysis to more advanced architectures such as dropout or batch normalization.

Finally, while our analysis focuses on generalization we suggest that the idea of analyzing

GNNs under planted models can be extended to other learning-theoretical measures such as

stability or model selection as well as the supervised (graph-classification) setting.

While in the following chapters, we shift to different data settings we will rely on the insights

gained from this first chapter. This is done by using the following main insights: a) while

in the neural network setting the considered analysis can provide insights into trends for

a complete analysis other approaches have to be considered. b) refining the analysis using

data assumptions provides more detailed insights through more expressive bounds. This is

a very common idea in traditional machine learning for refining a given analysis, this also

applies to the deep learning setup.
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Chapter 3

Representation Learning Dynamics of Deep Self-Supervised Models

Ordinal DataFeaturesFeature and SimilarityFeature, Graph and Partial LabelsGround Truth

(a) (e)(d)(c)(b)

Feature and Similarity

(c)

Feature and Similarity

(c)

Figure 3.1: The Self-Supervised Setup. Features are given as well as semantic similarities
between at least some of the objects. Framed in the Self-Supervised Learning setting this
becomes a triplet setting such that objects oj , oi and or are represented by xi, x

+
j and x−r .

Let us now assume that we no longer have access to partial labels and the full underlying

similarity structure such as a graph but still a notion of what makes objects similar to

each other. Therefore we now enter the domain of Self-Supervised Learning (SSL) where

we take advantage of our knowledge of semantic similarities to construct similar and dis-

similar samples for learning with the goal to map similar objects close to each other in the

embedding.

SSL is an important paradigm for learning representations from unlabelled data, and SSL

with neural networks has been highly successful in practice but current theoretical analy-

sis of SSL is mostly restricted to generalization error bounds. However, as we observed in

Chapter 2 the analysis of neural network-based approaches through traditional learning the-

oretical measures has significant limitations. In contrast, learning dynamics often provide

a precise characterization of the behavior of neural network based models but, so far, are

mainly known in supervised settings. In this section, we study the learning dynamics of SSL

models, specifically representations obtained by minimizing contrastive and non-contrastive

losses. We show in Section 3.1 that a näive extension of the dynamics of multivariate

regression to SSL leads to learning trivial scalar representations that demonstrate dimen-

sion collapse in SSL. Consequently in Section 3.2, 3.3 we formulate SSL objectives with

orthogonality constraints on the weights, and derive the exact (network width independent)

learning dynamics of the SSL models trained using gradient descent on the Grassmannian

manifold. We also argue that the infinite width approximation of SSL models significantly

deviates from the neural tangent kernel approximations of supervised models. We numeri-
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cally illustrate the validity of our theoretical findings and discuss how the presented results

provide a framework for further theoretical analysis of contrastive and non-contrastive SSL

in Section 3.4.

Let us start with recalling the (non)contrastive setting we outlined in Chapter 1 more

formally.

Contrastive Learning. Contrastive SSL has its roots in the work of [HCL06]. Recent deep

learning based contrastive SSL show great empirical success in computer vision [Che+20b;

Car+21; JT19], video data [Fer+17; Ser+18], natural language tasks [MM20] and speech

[Ste+19; Moh+22]. In general a contrastive loss is defined by considering an anchor image,

x ∈ Rd, positive samples {x+} ⊂ Rd generated using data augmentation techniques as well

as independent negative samples {x−} ⊂ Rd. The heuristic goal is to align the anchor more

with the positive samples than the negative ones, which is rooted in the idea of maximizing

mutual information between similar samples of the data. In this work, we consider a simple

contrastive loss minimisation problem along the lines of [Aro+19c], assuming exactly one

positive sample x+i and one negative sample x−i for each anchor xi,
1

min
Θ

n∑
i=1

f(xi)
⊤ (f(x−i )− f(x+i )) , (3.1)

where f = [f1(·,Θ) . . . fh(·,Θ)]⊤ : Rd → Rh is the embedding function, parameterized by Θ,

the learnable parameters.

Non-Contrastive Learning Non-contrastive losses emerged from the observation that

negative samples (or pairs) in contrastive SSL are not necessary in practice, and it suffices

to maximise only alignment between positve pairs [CH21; Che+20b; Gri+20]. Considering

a simplified version of the setup in [Che+20b] one learns a representation by minimising the

loss 2

min
Θ

n∑
i=1

−f(xi)⊤f(x+i ). (3.2)

The embedding f = [f1(·,Θ) . . . fh(·,Θ)]⊤ : Rd → Rh, parametrised by Θ, typically com-

prises of a base encoder network and a projection head in practice [Che+20b].

3.1 Learning Dynamics of Regression and its Näive Extension to SSL

In the context of regression, [JGH18a] show that the evolution dynamics of (infinite width)

neural networks, trained using gradient descent under a squared loss, is equivalent to that of

specific kernel machines, known as the neural tangent kernels (NTK). The analysis has been

1It is straightforward to extend our analysis to multiple positive and negative samples, but the expressions
become cumbersome, without providing additional insights.

2We simplify [Che+20b] by replacing the cosine similarity with the standard dot product and also by
replacing an additional positive sample x++

i by anchor xi for convenience.
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extended to a wide range of models, including convolutional networks [Aro+19b], recur-

rent networks [Ale+21], overparametrised autoencoders [NWH21], graph neural networks

[Du+19b; SEG22] among others. However, these works are mostly restricted to squared

losses, with few results for margin loss [Che+21], but derivation of such kernel machines

are still open for contrastive or non-contrastive losses (3.1)–(3.2), or broadly, in the context

of SSL. To illustrate the differences between regression and SSL, we outline the learning

dynamics of multivariate regression with squared loss, and discuss how a näive extension to

SSL is inadequate.

3.1.1 Learning Dynamics of Multivariate Regression

Given a training feature matrixX := [x1, · · · , xn]⊤ ∈ Rn×d and corresponding z-dimensional

labels Y := [y1, · · · , yn]⊤ ∈ Rn×h, consider the regression problem of learning a neural

network function f(x) = [f1(x,Θ) . . . fh(x,Θ)]⊤, parameterized by Θ, by minimising the

squared loss function

L(Θ) :=
1

2

n∑
i=1

∥f(xi)− yi∥2.

Under gradient flow, the evolution dynamics of the parameter during training is Θ̊ = −∇ΘL
and, consequently, the evolution of the l-th component of network output (x), for any input

x, follows the differential equation

f̊l(x) =
〈
∇Θfl(x), Θ̊

〉
= −

n∑
i=1

h∑
j=1

⟨∇Θfl(x),∇Θfj(xi)⟩ (fj(xi)− yi,j). (3.3)

While the above dynamics apparently involve interaction between the different dimensions

of the output f(x), through ⟨∇Θfl(x),∇Θfj(xi)⟩, it is easy to observe that this interaction

does not contribute to the dynamics of linear or kernel models. We formalise this in the

following lemma.

Lemma 1 (No interaction across output dimensions). Let f : Rd → Rh be either a

linear model f(x) = Θx, or a kernel machine f(x) = Θϕ(x), where ϕ corresponds to the

implicit feature map of a kernel k, that is, k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩.
Then in the infinite width limit (h→∞) the inner products between the gradients are given

by

⟨∇Θfl(x),∇Θfj(x
′)⟩ =


0 if l ̸= j,

x⊤x′ if l = j (linear case),

k(x, x′) if l = j (kernel case).
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For infinite width neural networks, whose weights are randomly initialised with appropriate

scaling, [JGH18a] show that at, initialisation, Lemma 1 holds with k being the neural tangent

kernel. Approximations for wide neural networks further imply the kernel remains same

during training [LZB20], and so Lemma 1 continues to hold through training.

Remark 1 (Multivariate regression = independent univariate regressions). A con-

sequence of Lemma 1 is that the learning dynamics (3.3) simplifies to

f̊l(x) = −
n∑
i=1

⟨∇Θfl(x),∇Θfl(xi)⟩ (fl(xi)− yi,l),

that is, each component of the output fl evolves independently from other fj , j ̸= l. Hence,

one may solve a z-variate squared regression problem as z independent univariate prob-

lems. We discuss below that a similar phenomenon is true in SSL dynamics with disastrous

consequences.

3.1.2 Dynamics of näive SSL has Trivial Solution

We now present the learning dynamics of SSL with contrastive and non-contrastive losses

in (3.1)–(3.2). For convenience, we first discuss the non-contrastive case. Assuming that

the network function f : Rd → Rh is parametrised by Θ, the gradient of the loss L(Θ) =
n∑
i=1

−f(xi)⊤f(x+i ) is

∇ΘL(Θ) = −
n∑
i=1

h∑
j=1

fj(xi) · ∇Θfj(x
+
i ) + fj(x

+
i ) · ∇Θfj(xi)

Hence, under gradient descent Θ̊ = −∇ΘL, the evolution of each component of f(x), given

by f̊l(x) =
〈
∇Θfl(x), Θ̊

〉
is

f̊l(x) =

n∑
i=1

h∑
j=1

⟨∇Θfl(x),∇Θfj(xi)⟩ fj(x+i ) +
〈
∇Θfl(x),∇Θfj(x

+
i )
〉
fj(xi). (3.4)

Similarly, in the case of contrastive loss (3.1), the learning dynamics of f(x), for any input

x, is similarly expressed by

f̊l(x) =

n∑
i=1

h∑
j=1

⟨∇Θfl(x),∇Θfj(xi)⟩ fj(x+i ) +
〈
∇Θfl(x),∇Θfj(x

+
i )
〉
fj(xi)

− ⟨∇Θfl(x),∇Θfj(xi)⟩ fj(x−i )−
〈
∇Θfl(x),∇Θfj(x

−
i )
〉
fj(xi). (3.5)

We note Lemma 1 depends only on the model and not the loss function, and hence, it is

applicable for the SSL dynamics in (3.4)–(3.5). However, there are no multivariate training

labels y ∈ Rh in SSL (i.e. y = 0) that can drive the dynamics of the different components
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f1, . . . , fh in different directions, which leads to dimension collapse.

Proposition 2 (Dimension collapse in SSL dynamics). Under the conditions of Lemma

1, every component of the network output u : Rd → Rh has identical dynamics. As a

consequence, the output collapses to one dimension at convergence.

For linear model, f(x) = Θx, the dynamics of f(x) is given by

f̊l(x) =

n∑
i=1

(x⊤xi)fl(x
+
i ) + (x⊤x+i )fl(xi)

for the non-contrastive case, and

f̊l(x) =

n∑
i=1

(x⊤xi)
(
fl(x

+
i )− fl(x−i )

)
+ (x⊤x+i − x⊤x−i )fl(xi)

for the contrastive case. For kernel models, the dynamics is similarly obtained by replacing

each x⊤x′ by k(x, x′).

By the extension of Lemma 1 to neural network and NTK dynamics, one can conclude that

Proposition 2 and dimension collapse also happen for wide neural networks, when trained

for the SSL losses in (3.1)–(3.2).

Remark 2 (SSL dynamics for other losses). One may argue that the above dimension

collapse is a consequence of loss definitions in (3.1)–(3.2), and may not exist for other losses.

We note that [Liu+23] analyse contrastive learning with linear model under InfoNCE, and

the simplified loss closely resembles (3.1), which implies decoupling of output dimensions

(and hence, dimension collapse) would also happen for InfoNCE. The same argument also

holds for non-constrastive loss in [Che+20b]. However, for the spectral contrastive loss

of [Hao+21], the output dimensions remain coupled in the SSL dynamics due to existing

interactions f(xi)
⊤f(x−i ) on the training data.

Remark 3 (Projections cannot overcome dimension collapse). [Jin+22] propose to

project the representation learned by a SSL model into a much smaller dimension, and

show that fixed (non trainable) projectors may suffice. For a linear model, this implies

f(x) = AΘx, where A ∈ Rr×h, r ≪ h is fixed. It is straightforward to adapt the dynamics

and Proposition 2 to this case, and observe that for any r > 1, all the r components of f(x)

have identical learning dynamics, and hence, collapse at convergence.

3.2 SSL with (Orthogonality) Constraints

For the remainder of the section, we assume that the SSL model u : Rd → Rh corresponds

to a 2-layer neural network of the form

x ∈ Rd W1−−→ Rh
′ ψ(·)−−→ Rh

′ W⊤
2−−→ f(x) =W⊤

2 ψ(W1x) ∈ Rh,
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where h is the size of the hidden layer and Θ = (W1,W
⊤
2 ) are trainable matrices. Whenever

needed, we use fψ for the output to emphasize the nonlinear activation ψ, and contrast it

with a 2-layer linear network f I(x) =W⊤
2 W1x.

Based on the discussion in the previous section, it is natural to ask how can the SSL problem

be rephrased to avoid dimension collapse. An obvious approach is to add regularisation or

constraints [BPL22; Erm+21; Car+20]. The most obvious regularisation or constraint on

W1,W2 is entry-wise, such as on Frobenius norm. While there has been little study on various

regularisations in SSL literature, a plethora of variants for Frobenius norm regularisations

can be found for autoencoders, such as sum-regularsiation, ∥W1∥2F + ∥W2∥2F , or product

regularisation ∥W⊤
2 W1∥2F [Kun+19].

It is known in the optimisation literature that regularised loss minimisation can be equiv-

alently expressed as constrained optimisation problems. In this section, we use the latter

formulation for convenience of the subsequent analysis. The following result shows that

Frobenius norm constraints do not prevent the output dimensions from decoupling, and

hence, it is still prone to dimension collapse.

Proposition 3 (Frobenius norm constraint does not prevent dimension collapse).

Consider a linear SSL model fψ(x) =W⊤
2 ψ(W1x). The optimisation problem

min
W1,W2

L(W1,W2) s.t. ∥W1∥F ≤ c1, ∥W2∥F ≤ c2,

where the loss L is given by (3.1) or (3.2), has a global solution f(x) = [a(x) 0 . . . 0]⊤ ∈ Rh.

The above result precisely shows dimension collapse for linear networks f I even with Frobe-

nius norm constraints. An alternative to Frobenius norm constraint can be to constrain the

L2-operator norm. To this end, the following result shows that, for linear networks, the

operator norm constraint can be realised in multiple equivalent ways.

Proposition 4 (Equivalence of operator norm and orthonognality constraints).

Consider a linear SSL model f I(x) =W⊤
2 W1x, and let the loss L(W1,W2) be given by either

(3.1) or (3.2) whose general form is L(W1,W2) =
∥∥W⊤

2 W1CW
⊤
1 W2

∥∥2
2
, where C has at least

one negative eigenvalue. Then the following optimisation problems are equivalent:

1. min
W1,W2

L(W1,W2)

∥W2∥22 ∥W1∥22
;

2. min
W1,W2

L(W1,W2) s.t. ∥W2∥2 ≤ 1, ∥W1∥2 ≤ 1;

3. min
W1,W2

L(W1,W2) s.t. ∥W⊤
2 W1∥2 ≤ 1;

4. min
W1,W2

L(W1,W2) s.t. W⊤
2 W2 = Ih, W⊤

1 W1 = Id.

Additionally this regularization avoids dimension collapse.
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Figure 3.2: Comparison of gradient decent optimization with different regularisers (left)
comparison of the loss function (right) comparison of the evolution of the outputs for the
different considered constraints.

Avoidance of dimensional collapse is also heuristically evident in the orthogonality constraint

W⊤
2 W2 = Ih, W⊤

1 W1 = Id, which we focus on in the subsequent sections. In particular we

observe from the proof of Proposition 4 that this regularization extracts the eigenvectors of

C corresponding to its ”most-negative” eigenvalues

Example 1 (SSL dynamics on half moons). We numerically illustrate the importance

of constraints in SSL. We consider a contrastive setting (loss in (3.1)) for the half moon

dataset [Ped+11], where x− is an independent sample from the dataset and x+ = x + ε

where ε ∼ N (0, 0.1I). Let us now compare the dynamics of L (no constraints) and Lorth,
the scaling loss that corresponds to orthogonality constraints, and present the results in

Figure 3.2. We observe that under orthogonal constraints, independent of the initialization

the function converges to fixed points (which we theoretically show in Theorem 6). On the

other hand the dynamics for unconstrained loss L diverge.

3.2.1 Non-Linear SSL Models are Almost Linear

While the above discussion pertains to only linear models, we now show that the network,

with nonlinear activation ψ and orthogonality constraints,

fψ(t)(x) =W⊤
2 ψ(W1x)

s.t. W⊤
2 W2 = Ih, W⊤

1 W1 = Id,

is almost linear. For this discussion, we explicitly mention the time dependence as a subscript

fψ(t). We begin by arguing theoretically that in the infinite width limit at initialization there

is very little difference between the output of the non-linear machine fψ(0) and that of its

linear counterpart f I(0).

Theorem 4 (Comparison of Linear and Non-linear Network). Recall that f(t) pro-

vides the output of the machine at time t and therefore consider the linear and non-linear
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setting at initialization as

f I(0) =W⊤
2 W1x s.t. W⊤

2 W2 = Ih, W⊤
1 W1 = Id; (3.6)

fψ(0) =W⊤
2 ψ (W1x) s.t. W⊤

2 W2 = Ih, W⊤
1 W1 = Id.

Let ψ(·) be an activation function, such that ψ(0) = 0, ψ′(0) = 1, and |ψ′′(·)| ≤ c. 3 Then

at initialization as uniformly random orthogonal matrices

∥∥∥fψ(0) − f I(0)∥∥∥ ≤ Kc ∥x∥2 d

√
log4 h′

h′

where K is an universal constant ψ, d is the feature dimension and h the width of the hidden

layer.

We furthermore conjecture that the same behaviour holds during evolution.

Conjecture 1 (Evolution of Non-linear Networks). Consider the setup of Theorem 4

with the linear
(
f I(t)

)
and non-linear machine

(
fψ(t)

)
as defined in (3.6) and an optimization

of the general

min
W2W1

Tr
(
f⊤(t)f(t)

)
s.t. W⊤

2 W2 = Ih and W⊤
1 W1 = Id.

Again assume ψ is an activation function, such that ψ(0) = 0 and ψ′(0) = 1. Then

∥∥∥fψ(t) − f I(t)∥∥∥→ 0 ∀t > 0 as h′ →∞.

Numerical justification of the above conjecture is presented in the following section.

3.2.2 Numerical Evaluation.

We now illustrate the findings of of Theorem 4 and Conjecture 1 numerically. For evaluation

we use the following experimental setup: We train a network with contrastive loss as defined

in (3.1) using gradient descent with learning rate 0.01 for 500 epochs and hidden layer size

from 10 to 2000. We consider the following three loss functions: (1) sigmoid, (2) ReLU

(ψ(x) = max{x, 0}) and (3) tanh. The results are shown in Figure 3.3 where the plot shows

the average over 10 initializations. We note that tanh fulfills the conditions on ψ and we

see that with increasing layer size the difference between linear and non-linear goes to zero.

While ReLU only fulfills ψ(0) = 0 the overall picture still is consistent with tanh but with

slower convergence. Finally the results on sigmoid (which has a linear drift consistent with

its value at 0) indicate that the conditions on ψ are necessary as we observe the opposite

3This last assumption can also be weakened to say that ψ′′ is continuous at 0. See the proof of the
theorem for details.
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Figure 3.3: Difference between the non-linear output and the linear output under various
conditions on the activation function. Row 1. Change of the difference while training for
hidden layer size 10 to 2000 (indicated by color bar). Row 2. Difference at initialization
and epoch 500.

picture: with increased layer width the difference between linear and non-linear increases.

3.3 Learning Dynamics of Linear SSL Models

Having showed that the non-linear dynamics are close to the linear ones we now analyze

the linear dynamics. We do so by first showing that the two SSL settings discussed in

the introduction can be phrased as a more general trace minimization problem. From

there we derive the learning dynamics and discuss the evolution of the differential equation.

Furthermore we numerically evaluate the theoretical results and show that the dynamics

coincide with learning the general loss function under gradient decent.

We can define a simple linear embedding function u as: f(x) = W⊤
2 W1x where the feature

dimension is d for n data points. The hidden layer dimension is h and embedding dimension

z, such that the weights are given by W2 ∈ Rh′×h,W1 ∈ Rh′×d. Therefore we can write our

loss function as

L =

n∑
i=n

Tr
(
W⊤

2 W1xi
(
x−i − x+i

)⊤
W⊤

1 W2

)
= Tr

(
W⊤

2 W1C̃W
⊤
1 W2

)
= Tr

(
W⊤

2 W1CW
⊤
1 W2

)
with

C =
C̃ + C̃⊤

2
and C̃ =

n∑
i

xi
(
x−i − x+i

)⊤
. (3.7)

Furthermore (3.1) can easily be extended to the p positive and q negative sample setting

where we then obtain C̃ =
∑n
i

(∑q
j xi

(
x−j
)⊤ −∑p

j xi
(
x+j
)⊤)

. In addition we can also

frame the previously considered non-contrastive model in (3.2) in the simple linear setting
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by considering the general loss function with C̃ =
∑n
i xi

(
x+i
)⊤
. We can now consider the

learning dynamics of models, that minimize objects of the form

Definition 3 (General Loss Function). Consider the following loss function

LW2W1
:= Tr

(
W⊤

2 W1CW
⊤
1 W2

)
(3.8)

s.t. W⊤
2 W2 = Ih and W⊤

1 W1 = Id.

where W1 ∈ Rh′×d and W2 ∈ Rh′×h are the trainable weight matrices. C ∈ Rd×d is a

symmetric, data dependent matrix.

With the general optimization problem set up we can analyze (3.8) by deriving the dynamics

under orthogonality constraints on the weights, which constitutes gradient descent on the

Grassmannian manifold. While orthogonality constraints are easy to initialize the main

mathematical complexity arises from ensuring that the constraint is preserved over time.

Following [LLY20], we do so by ensuring that the gradients lie in the tangent bundle of

orthogonal matrices.

3.3.1 Theoretical Analysis

In the following we present the dynamics in Theorem 5, followed by the analysis of the

evolution of the dynamics in Theorem 6.

Theorem 5 (Learning Dynamics in the Linear Setting). Let us recall the the general

linear trace minimization problem stated in (3.8):

min
W2W1

Tr
(
W⊤

2 W1CW
⊤
1 W2

)
s.t. W⊤

2 W2 = Ih and W⊤
1 W1 = Id.

where W1 ∈ Rh′×d and W2 ∈ Rh′×h are the trainable weight matrices and C ∈ Rd×d a

symmetric, data dependent matrices, such that C = V ΛV ⊤ with V := [v1, . . . , vd]. Then with

q :=
[
f I(v1), · · · , f I(vd)

]⊤
, where f represents the machine function i.e. f I(x) = W⊤

2 W1x,

the learning dynamics of q, the machine outputs are given by

q̊ = −2
[
2Λq − Λqq⊤q − qq⊤Λq

]
. (3.9)

Similar differential equations to (3.9) have been analysed in [YHM94] and [Fuk98]. The

typical way to find stable solutions to such equations involve converting it to a differential

equation on qq⊤. This gives us a matrix riccati type equation. For brevity’s sake we write

below a complete solution when z = 1.

Evolution of the differential equation. While the above differential equation doesn’t
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seem to have a simple closed form, a few critical observations can still be made about it -

particularly about what this differential equation converges to. As observed in Figure 3.4

(right), independent of initialisation we converge to either of two points. In the following

we formalise this observation.

Theorem 6 (Evolution of learning dynamics in (3.9) for h = 1). Let h = 1 then our update

rule simplifies to

q̊

2
= −(1− q⊤q)Λq − (I− qq⊤)Λq. (3.10)

We can distinguish two cases:

• Assume all the eigenvalues of Λ are strictly positive then q converges to 0.

• Assume there is at least one negative eigenvalue of Λ, then q becomes the smallest

eigenvector, e1.

The requirement of negative eigenvalues of C for a non-trivial convergence might be sur-

prising however we can observe this when considering C in expectation. Let us assume C is

constructed by (3.7) and note that E[C̃] = E
[∑n

i xi
(
x−i − x+i

)⊤ ]
. While this already gives

a heuristic of what is going on, for some more precise mathematical calculations, we can

specialise to the situation where x− is given by an independent sample and x+ is given by

adding a noise value ϵ sampled from N(0, σI), i.e. x+ = x+ ϵ. Then

E[C̃] =
n∑
i=1

E[xi]E[x−i
⊤
]− E[xix+i

⊤
] = −nE[xx⊤].

Thus E[C] is in fact negative definite.

New Datapoint. While the above dynamics provide the setting during training we can

furthermore investigate what happens if we input a new datapoint or a testpoint to the

machine. Because u is a linear function and because v1, ..., vd is a basis this is quite trivial.

So if x̂ is a new point, let α = (α1, ..., αd)
⊤ be the co-ordinates of x̂, i.e. x̂ =

∑d
i αivi or

α = V ⊤x̂. Then

ft(x̂) = ft

(
d∑
i

αivi

)
=

d∑
i

αift(vi) = q⊤t α = q⊤t V
⊤x̂.

3.3.2 Numerical Evaluation

We can now further illustrate the above derived theoretical results empirically.

Leaning dynamics (Theorem 5) and new Datapoint. We can now illustrate that the

derived dynamics in (3.9) do indeed behave similar to learning (3.8) using gradient decent
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updates. To analyze the learning dynamics we consider the gradient decent update of (3.8):

W
(t+1)
1,2 =W

(t)
1,2 + η∇L

W
(t)
2 ,W

(t)
1

(3.11)

whereW
(t)
1 ,W

(t)
2 are the weights at time step t and η is the learning rate as a reference. Prac-

tically the constraints in (3.8) are enforced by projecting the weights back onto W⊤
2 W2 = Ih

and W⊤
1 W1 = Id after each gradient step. Secondly we consider a discretized version of

(3.9)

qt+1 = qt − 2η
[
2Λqt − Λqtq

⊤
t qt − qtq⊤t Λqt

]
. (3.12)

where qt is the machine outputs at time step t. We now illustrate the comparison through

in Figure 3.4 where we consider different width of the network (h ∈ {10, 100, 1000}) and

η = 0.01. We can firstly observe on the left, that the loss function of the trained network

and the dynamics and observe while the decay is slightly slower in the dynamics setting

both converge to the same final loss value. Secondly we can compare the function outputs

during training in Figure 3.4 (right): We initialize the NN randomly and use this initial

machine output as q0. We observe that during the evolution using (3.11) & (3.12) for a

given initialization the are stay close to each other and converge to the same final outputs.

Runtime and downstram task. Before going into the illustration of the dynamics we

furthermore note that an update step using (3.12) is significantly faster then a SGD step
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using (3.11). For this illustration we now consider two classes with 200 datapoints each

from the MNIST dataset [Den12]. This is illustrated in Figure 3.5 (left) where we compare

the runtime over different layer width (of which (3.12) is independent of). Expectantly

(3.11) scales linearly with h and overall (3.12) has a shorter runtime per timestep. While

throughout the section we focus on the obtained embeddings we can furthermore consider

the performance of downstream tasks on top of the embeddings. We illustrate this in the

setting above where we apply a linear SVM on top of the embeddings. The results are shown

in Figure 3.5 (right) where we observe that overall the performance of the downstream task

for both the SGD optimization and the differential equation coincide.

Numerical Evaluation of Theorem 6. We can again illustrate that the behaviour stated

in Theorem 6 can indeed be observed empirically. This is shown in Figure 3.4 (right), a

setting where C has negative eigenvalues. We observe that eventually the machine outputs

converge to the smallest eigenvector.

3.4 Discussion

We conclude with outlining related work on analyzing SSL models and discuss the findings

of this section. Finally we outline how the results of this section build the foundation to

derive more precise characterization of SSL models.

Related works. Our focus is on the evolution of the learned representations, and hence,

considerably different from the main SSL literature focus on generalisation theory and spec-

tral analysis of SSL. From an optimisation perspective, [Liu+23] derive the loss landscape

of contrastive SSL with linear models, f(x) =Wx, under InfoNCE loss [OLV18]. Although

the contrastive loss in (3.1) seems simpler than InfoNCE, they are structurally similar un-

der linear models [Liu+23, see Eqns. 4–6]. Training dynamics for contrastive SSL with

deep linear models have been partially investigated by [Tia22], who show an equivalence

with principal component analysis, and by [Jin+22], who establish that dimension collapse

occurs for over-parametrised linear contrastive models. Theorem 5 provides a more precise

characterisation and convergence criterion of the evolution dynamics than previous works.

Furthermore, none of prior works consider non-linear models or orthogonality constraints as

studied in this work.

We also distinguish our contributions (and discussions on neural tangent kernel connections)

with the kernel equivalents of SSL studied in [Sha+22; Cab+23]. While [Sha+22; Cab+23]

specifically pose SSL objectives using kernel models, [Kia+22b] show that contrastive SSL

objectives induce specific kernels. Importantly, these works neither study the learning dy-

namics nor consider the neural tangent kernel regime.

Discussion. The study of learning dynamics of (infinite-width) neural networks has led to

important results for the supervised setting. However, there is little understanding of SSL
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dynamics. Our initial steps towards analysing SSL dynamics encounters a hurdle: standard

SSL training has drastic dimension collapse (Proposition 2), unless there are suitable con-

straints. We consider a general formulation of linear SSL under orthogonality constraints

(3.8), and derive its learning dynamics (Theorem 5). We also show that the derived dynam-

ics can approximate the SSL dynamics using wide neural networks (Theorem 4) under some

conditions on activation ψ. We not only provide a framework for analysis of SSL dynamics,

but also shows how the analysis can critically differ from the supervised setting. As we

numerically demonstrate, our derived dynamics can be used an efficient computational tool

to approximate SSL models. In particular, the equivalence in Proposition 4 ensures that the

orthogonality constraints can be equivalently imposed using a scaled loss, which is easy to

implement in practice. We conclude with a limitation and open problem.
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Chapter 4

Kernel Self-Supervised Learning

Ordinal DataFeaturesFeature and SimilarityFeature, Graph and Partial LabelsGround Truth

(a) (e)(d)(c)(b)

Feature and Similarity

(c)

Feature and Similarity

(c)

Figure 4.1: Self Supervised Setup. Self Supervised Setup. Features are given as well as
semantic similarities between at least some of the objects. Framed in the Self-Supervised
Learning setting this becomes a triplet setting such that objects oj , oi and or are represented
by xi, x

+
j and x−r .

In the previous chapter we relied on a linear approximation of wide networks to derive

dynamics, but a more precise characterisation in terms of a kernel approximation [JGH18b;

LZB20] may be possible. This could better explain the dynamics of complex deep SSL

models. However, integrating orthogonality or operator norm constraints in the NTK regime

remains an open question. An important building block for such an exact characterization

through kernel approximations of neural networks in the supervised setting such as [JGH18b]

is the solution of Kernel methods in the regression setting. In this section we build an

equivalent foundation for the contrastive Self-supervised learning setting and in the process

show that the derived Kernel methods in and of itself provide a useful tool in the small data

setup. But before going into into detail let us shortly recap the supervised setting to better

outline differences.

A recap on Kernel methods. Assume we have n data points in Rd, collected in the feature

matrix X = [X1, . . . , Xn] ∈ Rd×n, with associated label vector y ∈ Rn. For a pre-specified

kernel k : Rd × Rd → R, let H be the RKHS and ϕ : Rd → H be the (canonical) feature

map associated with k. The representer theorem allows us to perform all computations in

the sample space (Rd) instead of the Hilbert space.

Theorem 7 (Representer theorem in the supervised setting [KW71; SHS01]). Let g :

[0,∞)→ R a strictly monotonic increasing function and L : (Rd × R× R)n → R ∪ {∞} an
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arbitrary loss function. Then each minimizer f ∈ H of the regularised functional

L ((X1, y1, f (X1)) , . . . , (Xn, yn, f (Xn))) + g
(
∥f∥2H

)
admits a representation of the form

f(x) =

n∑
i=1

αik (Xi, X) .

The implication of the above theorem can be easily explained through kernel ridge regression,

where one learns a model X∗ 7→ y∗ of the form y∗ = wTϕ(X∗) by solving the optimisation

problem

min
w

∥∥y − wTϕ (Xi)
∥∥2
F
+ λ∥w∥2. (4.1)

Using Theorem 7 (the kernel trick), one can show that the inference does not need access to

the feature map. For a new observation X∗ it holds that

y∗ = wToptϕ(X
∗) = y (K + λIn)−1

k(X,X∗). (4.2)

The important takeaway here is that we only need to evaluate the kernel k, and not ϕ.

Kernel SSL. Now recall from the previous chapter, we observed that orthogonal constraints

are essential in the SSL setting, however, this is not included in the formulation in Theorem 7,

therefore the first question that comes up is if Kernel methods can directly be extended to

the contrastive loss setting. Secondly the closed form solution in (4.2) is directly derived from

(4.1) and therefore an equivalent to the losses from this section is needed to obtain Kernel

approximation results for neural networks, extending results from [JGH18b; LZB20] to deep

SSL models. In the following section, we therefore address both aspects and investigate the

SSL setting through the lens of Kernel methods.

We now follow the main idea outlined in the discussion of the last chapter. Staying in the

overall same setting — the one of self-supervised learning (Figure 4.1) — we now shift our

focus to modeling contrastive SSL losses through kernel methods. This has the main goal

to (i) present new SSL kernel methods that are suitable for small data problems where

kernel methods are well established in the supervised setting [Xu+23; TBH23; CT21]; (ii)

kernels are non-parametric, and yet considered to be quite interpretable [PM17; HH14];

and (iii) finally show, there is a natural translation from deep SSL to kernel SSL, without

compromising performance, building the foundation for future more precise modeling of

infinite wide deep SSL models.

Formally to obtain kernel methods we kernelise a single hidden layer, mapping data x ∈ Rd
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4.1. REPRESENTER THEOREMS

to an embedding z ∈ Rh:

x ∈ Rd ϕ(·)−−→ H W−→ z ∈ Rh.

Therefore we learn a representation of the form fΘ(x) = W⊤ϕ(x) by optimizing the objec-

tive functions defined in [Aro+19c; Che+20b]. In principle, kernel methods minimize a loss

functional L over the entire, possibly infinite-dimensional RKHS. It is the celebrated repre-

senter theorem [KW71; SHS01] that ensures the practical feasibility of this approach: Under

mild conditions on the loss L, the optimizer is surely contained within the finite-dimensional

subspace HX . This result is well established in the supervised setting under regularized loss

functions. However, in the SSL setup, we consider orthogonal constraints of the form

W ∗W = Ih.

Therefore before going into deriving kernel methods, this brings up the question: can we

extend the idea of representer theorems to the SSL setting?

4.1 Representer Theorems

In this section we show that this is indeed possible but before going into the new result

let us recap the example of standard kernel ridge regression where the loss functional L is

simply the regularized empirical squared error

L(w) =
n∑
i=1

(w(xi)− yi)2 + λ∥w∥2.

The fact that all minimisers of this problem indeed lie in HX can be seen by simply de-

composing H = HX ⊕H⊥
X , observing that w(xi) = 0 for all w ∈ H⊥

X , and concluding that

projecting any w onto H can only ever decrease the functional L. This very argument can

be extended to representation learning, where regularization is important to avoid mode

collapse. We formally state the following result.

Theorem 8. (Representer Theorem for Representation Learning) Given data x1, . . . , xn,

denote by LX(w1, . . . , wh) a loss functional on Hh that does not change whenever w1, . . . , wh

are projected onto the finite-dimensional subspace HX spanned by the data. Then, any

minimiser of the regularized loss functional

L(w1, . . . , wh) = LX(w1, . . . , wh) + λ∥W∥2H

consists of w1, . . . , wh ∈ HX .

This justifies the use of kernel methods when the norm of the embedding map is penalized.

However, it does not address loss functionals L that instead impose an orthonormality
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4.2. REPRESENTATION LEARNING WITH KERNELS

constraint on the embedding W . It is natural to ask when a representer theorem exist for

these settings as well. Below, we give a necessary and sufficient condition.

Theorem 9 (Representer theorem under orthonormality constraints). Given data X and an

embedding dimension h ∈ N, let L : Hh → R be a loss function that vanishes on H⊥
X . Assume

dim(H⊥
X) ≥ h. Consider the following constrained minimisation problem over w1, . . . , wh ∈

H
minimise L(w1, . . . , wh)

s.t. W ∗W = Ih
(4.3)

Furthermore, consider the inequality-constrained problem over HX

minimise L(w1, . . . , wh)

s.t. WTW ⪯ Ih and w1, . . . , wh ∈ HX
(4.4)

Then, every minimiser of (4.3) is contained in HhX if and only if every minimiser of (4.4)

satisfies WTW = Ih.

In practice, the conditions (4.4) can often be verified directly by checking the gradient of L
on HX , or under orthonormalization (see Appendix). Together with the standard represen-

ter theorem, this guarantees that kernel methods can indeed be extended to representation

learning — without sacrificing the appealing properties that the representer theorem pro-

vides us with.

4.2 Representation Learning with Kernels

Building on this foundation, we can now formalize the previously discussed representation

learning paradigms in the kernel setting — namely SSL using contrastive loss functions, as

well as unsupervised learning through reconstruction loss.

4.2.1 Simple Contrastive Loss

For convenience, we restrict ourselves to a triplet setting with training samples

(xi, x
+
i , x

−
i ), i = 1, . . . , n.

The idea is to consider an anchor image xi, a positive sample x+i generated using data

augmentation techniques, as well as an independent negative sample x−i . The goal is to

align the anchor more with the positive sample than with the independent negative sample.

In the following, we consider two loss functions that implement this idea as illustrated in

Figure 4.2.

In both cases, we kernelize a single hidden layer, mapping data x ∈ Rd to an embedding
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4.2. REPRESENTATION LEARNING WITH KERNELS

Figure 4.2: Euclidean spaces and corresponding mappings are shown in green, RKHS and
corresponding mappings in blue. Considering a triplet setting, the reference (x), positive
(x+) and negative (x−) are embedded into a latent space. The function is optimised by
increasing the distance between embedding z, z− and decreasing the distance between em-
bedding of z, z+. We consider two different losses, that follow this basic idea.

z ∈ Rh.

x ∈ Rd ϕ(·)−−→ r ∈ H W−→ z ∈ Rh. (4.5)

We start with a simple contrastive loss inspired by [Aro+19c], with additional regularisation.

Intuitively, this loss directly compares the difference in alignment between the anchor and

the positive an the anchor and the negative sample. Formally, we define it as follows.

Definition 4 (Contrastive Kernel Learning). We learn a representation of the form fW (x) =

WTϕ(x) (see mapping in Eq. 4.5) by optimising the objective function

LSi :=

n∑
i=1

fW (xi)
T
(
fW (x−i )− fW (x+i )

)
s.t. W ∗W = Ih

(4.6)

By verifying the conditions of Theorem 9, we reduce the problem to a finite-dimensional

optimisation. Theorem 10 then provides a closed from solution to the optimisation problem

in Eq. 4.6.

Theorem 10 (Closed Form Solution and Inference at Optimal parameterization). Consider

the optimisation problem as stated in Definition 4. Let X,X+, X− ∈ Rd×n denote the data

corresponding to the anchors, positive and negative samples, respectively. Define the kernel

matrices

K = [k(xi, xj)]i,j K− =
[
k(xi, x

−
j )
]
i,j

K+ =
[
k(xi, x

+
j )
]
i,j

K−− =
[
k(x−i , x

−
j )
]
i,j

K++ =
[
k(x+i , x

+
j )
]
i,j

K−+ =
[
k(x−i , x

+
j )
]
i,j
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4.2. REPRESENTATION LEARNING WITH KERNELS

Furthermore, define the matrices

K∆ = K−− +K++ −K−+ −KT
−+ K1 =

K K− −K+

K3 K∆


B =

K− −K+

K∆

 · [K K− −K+

]
K2 = −1

2

(
B +BT

)
.

Let A2 consist of the top h eigenvectors of the matrix K
−1/2
1 K2K

−1/2
1 , which we assume to

have h non-negative eigenvalues. Let A = K
−1/2
1 A2. Then, at optimal parameterization, the

embedding of any x∗ ∈ Rd can be written in closed form as

z∗ = AT

 k(x∗, X)

k(x∗, X−)− k(x∗, X+)


4.2.2 Spectral Contrastive Loss

Let us now consider a kernel contrastive learning based on an alternative, commonly used

spectral contrastive loss function [Hao+21].

Definition 5 (Spectral Kernel Learning). We learn a representation of the form fW (x) =

WTϕ(x) (see mapping in Eq. 4.5) by optimising the following objective function, LSp:

L =

n∑
i=1

−2fW (xi)
T fW (x+i ) +

(
fW (xi)

T fW (x−i )
)2

+ λ ∥W∥2H .

While a closed from expression seems out of reach, we can directly rewrite the loss function

using the kernel trick and optimise it using simple gradient descent. This allows us to

state the following result, which yields an optimisation directly in terms of the embeddings

z1, . . . , zn ∈ Rh.

Theorem 11 (Gradients and Inference at Optimal Parameterization). Consider the opti-

misation problem as stated in Definition 5, with K denoting the kernel matrix. Then, we

can equivalently minimise the objective w.r.t. the embeddings Z ∈ Rh×3n. Denoting by

z1, . . . , z3n the columns of Z, the loss to be minimised becomes

min
Z∈Rh×3n

n∑
i=1

−2zTi zi+n +
(
zTi zi+2n

)2
+ λ · Tr

(
ZK−1ZT

)
The gradient of the loss function in terms of Z is therefore given by

2λZK−1 +


−2zi+n + 2(zTi zi+2n)zi+2n , i ∈ [n]

−2zi−n , i ∈ [n+ 1, 2n]

2(zTi zi−2n)zi−2n , i ∈ [2n+ 1, 3n]

56



4.3. GENERALISATION ERROR BOUNDS

For any new point x∗ ∈ Rd, the trained model maps it to

z∗ := ZK−1k(X,x∗).

4.3 Generalisation Error Bounds

Kernel methods in the supervised setting are well established and previous works offer

rigorous theoretical analysis [Wah90; SS02; BM02a]. In this section, we show that the

proposed kernel methods for contrastive SSL as well as for the reconstruction setting can

be analysed in a similar fashion, and we provide generalisation error bounds for each of the

proposed models.

4.3.1 Error Bound for Representation Learning Setting

In general we are interested in characterizing L(f) = EX∼D [l (f(X))] where f(X) is the

representation function and l(·) is a loss function, which is either a contrastive loss or based

on reconstruction. However, since we do not have access to the distribution of the data D,
we can only observe the empirical (training) error, L̂(f) = 1

n

∑n
i=1 l (f(Xi)), where n is the

number of unlabelled datapoints we can characterise the generalisation error as

L(f) ≤ L̂(f) + complexity term + slack term

The exact form of the complexity and slack term depends on the embeddings and the loss.

In the following, we precisely characterise them for all of the proposed models.

Theorem 12 (Error Bound for Kernel Contrastive Loss). Let

F :=
{
X 7→WTϕ (X) : ∥WT ∥H ≤ ω

}
be the class of embedding functions we consider in the contrastive setting. Define α :=(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
as well as κ := maxx′

i∈{xi,x
−
i ,x

+
i }n

i=1
k(x′i, x

′
i).

We then obtain the generalisation error for the proposed losses as follows.

1. Simple Contrastive Loss. Let the loss be given by Definition 4. Then, for any

δ > 0, the following statement holds with probability at least 1− δ for any f ∈ F :

LSi(f) ≤ L̂Si(f) +O

ω2
√
κα

n
+ ω2κ

√
log 1

δ

n


2. Spectral Contrastive Loss. Let the loss be given by Definition 5. Then, for any

57



4.3. GENERALISATION ERROR BOUNDS

δ > 0, the following statement holds with probability at least 1− δ for any f ∈ F :

LSp(f) ≤ L̂Sp(f) +O

λω2 +
ω3κ

3
2α

n
+ ω4κ2

√
log 1

δ

n


The above bounds demonstrate that with increasing number of unlabelled datapoints, the

complexity term in the generalisation-error bound decreases. Thus, the proposed models

follow the general SSL paradigm of increasing the number of unlabelled data to improve the

model performance.

4.3.2 Error Bound for Supervised Downstream Task

While the above bounds provide us with insights on the generalisation of the representation

learning setting, in most cases we are also interested in the performance on downstream

tasks. Conveniently, we can use the setup presented in [Aro+19c] to bound the error of the

supervised downstream tasks in terms of the unsupervised loss, providing a bound of the

form

Lsup(f) ≤ c1L̂un(f) + c1 ∗ complexity term

where c1 and c2 are data dependent constants.

More formally we can write this as follows. We can use the setup presented in [Aro+19c]

to bound the supervised error of the downstream tasks by the unsupervised as computed

above. Before we state the bound let us formally define the supervised task. We consider a

two-class classification task T with {c1, c2} distinct classes and a linear classifier on top of

the learned representation. Let this function be given by V ∈ R2×h. In the following let Xc

be a datapoint X belonging to class c.

Lsup (T , f) = inf
V

E
(X,c)

[V f(Xc1)− V f(Xc2) | c1 ̸= c2]

From there we can furthermore define the average supervised loss as taking the expectation

over the distribution of classes. The average loss for a function f on a binary classification

task tasks is defined as

Lsup (f) := E
{c1,c2}∼ρ2

[Lsup ({c1, c2}, f) | c1 ̸= c2]

where the latent class distribution is given by ρ. From there we can now bound the supervised

loss by the corresponding unsupervised one.

Corollary 1 (Error Bound on Downstream Tasks). Let t = E
c,c′∼ρ2

1 {c = c′} and τ := 1
(1−t)

be the probability that two classes sampled independently from ρ are the same. Again define
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4.4. EXPERIMENTAL EVALUATION

α :=
(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
. In the following let Lsup be the loss of

the supervised downstream task.

1. Simple Contrastive Loss. Let L̂Si be the simple contrastive loss as defined in Def-

inition 4. Then for any δ > 0, the following statement holds with probability at least

1− δ for any f ∈ F :

LSi
sup ≤τ

(
L̂Si
un − t

)
+ τO

ω2
√
κα

n
+ ω2κ

√
log 1

δ

n



2. Spectral Contrastive Loss. Let L̂Sp be the spectral contrastive loss as defined in

Definition 5. For any δ > 0, the following statement holds with probability at least

1− δ for any f ∈ F :

LSp
sup ≤τ

(
L̂Sp
un − t

)
+ τO

ω3κ
3
2α

n
+ ω6κ3

√
log 1

δ

n



This highlights that a better representation (as given by a smaller loss of the unsupervised

task) also improves the performance of the supervised downstream task.

4.4 Experimental Evaluation

We empirically demonstrate that the two proposed kernel methods perform on par or out-

perform classification on the original features as well as Kernel PCA and compare them to

neural network representation learning models. We show this, together with another newly

introduced kernel method, in more detail in Section 5.2 in the following chapter.

4.5 Discussion

In this chapter, we show that new variants of representer theorem allows one to rephrase

SSL optimisation problems or the learned representations in terms of kernel functions. The

resulting kernel SSL models provide natural tools for theoretical analysis. We believe that

presented theory and method provide both scope for precise analysis of SSL and can also be

extended to other SSL principles, such as other pretext tasks or joint embedding methods

[Aro+19c; BPL22; Gri+20; CH21]. We conclude with some additional discussions.

Related Work. [JHM22] show that minimising certain contrastive losses can be interpreted

as learning kernel functions that approximate a fixed positive-pair kernel, and hence, propose

an approach of combining deep SSL with Kernel PCA. Closer to our work appears to be

[Kia+22a], where the neural network is replaced by a function learned on the RKHS of a

kernel. However, their loss functions are quite different from ours. Moreover, by generalising

the representer theorem, we can also enforce orthonormality on the embedding maps from
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the RKHS itself. [Zha+23] studies the role of augmentations in SSL through the lense of the

RKHS induced by an augmentation. [Sha+22] present a margin maximisation approach for

contrastive learning that can be solved using kernel support vector machines. Their approach

is close to our simple contrastive loss method (Definition 4), but not the same as we obtain

a kernel eigenvalue problem. While [JHM22; Sha+22] consider specific contrastive losses,

we present a wider range of kernel SSL models and provide generalisation error bounds for

all proposed models.

Computational limitations and small dataset setting. Exactly computing kernel ma-

trices is not scalable, however random feature (RF) approximations of kernel methods are

well suited for large data [RR07; CRR18]. While one may construct scalable kernel repre-

sentation learning methods using RF, it should be noted that RF models are lazy-trained

networks [Gho+19]. So fully-trained deep representation learning models may be more suit-

able in such scenarios. However representation learning is relevant in all problems with

availability of partially labelled data. This does not only apply to the big data regime where

deep learning approaches are predominantly used, but also to small data settings where

kernel methods are traditionally an important tool [FD+14]. The practical significance of

developing kernel approaches is to broaden the scope of the representation learning paradigm

beyond the deep learning community.

Kernel SSL vs. SSL with infinite-width neural networks. While it is known that

regression with infinite-width networks is equivalent to kernel regression with neural tangent

kernel (NTK) [JGH18b], similar results are not known for SSL. We believe that a study of the

learning dynamics of neural network based SSL would show their equivalence with our kernel

contrastive models with NTK and therefore the previous two chapters build the foundation

to a more precise future characterization of SSL models.
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Chapter 5

Representation Learning using Kernel Autoencoders

Ordinal DataFeaturesFeature and SimilarityFeature, Graph and Partial LabelsGround Truth

(a) (e)(d)(c)(b)

Features

(d)

Figure 5.1: Unsupervised Setup. Given are n samples with features of dimension d.

From the SSL setting of the last two chapters we now move on to the classical unsupervised

learning setting as shown in Figure 5.1. While previously we had access to features and a

notion of what makes objects similar to construct positive and negative samples we now only

have access to the feature information. But could we not just construct similarities from the

features? One might naturally ask where the line can be drawn between the unsupervised

and SSL settings.

Unsupervised setting ←→ SSL setting1. Let us illustrate this by showing how one can

move from one setting to the other. Unsupervised setting←− SSL setting. This direction can

be directly be obtained by disregarding the additional similarity information. Unsupervised

setting −→ SSL setting. One can observe that we can always define a similarity metric on

the features to define how similar two samples are. This would indicate that we can move

from the unsupervised to the SSL setup, however in practice the similarity considered in the

SSL setup is generally defined on a more high-level idea (such as flips or rotations in images)

and we therefore consider it as an additional similarity information that goes beyond one

simply obtained from features. Therefore we consider the unsupervised setup to have less

information on the unlabelled data in comparison to the SSL setting.

Let us now move towards outlining the main approach we consider for unsupervised repre-

sentation learning. We consider representation learning, where the high-level idea is to map

the data to a lower dimensional latent space, and then back to the features. The model is

1Note that this is not a universal distinction. Both unsupervised and SSL settings are largely driven by
empirical advances through a vast number of application areas and therefore both terms are not uniquely
defined in the literature. However, outlines how we interpret the fundamental idea of both settings and use
them in this thesis.
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optimized by minimizing the difference between the input data and the reconstruction. This

has been formalized through principal component analysis (PCA) [Pea01] and its nonlinear

extension Kernel PCA [SSM98]. While few approaches exist in traditional machine learning,

the paradigm of representation through reconstruction has built the foundation of a large

number of deep learning methods. Autoencoders (AE) [Kra91] use a neural network for

both the embedding into the latent space as well as for the reconstruction. The empirical

success of autoencoders has given rise to a large body of work, developed for task-specific

regularization (e.g. [Yan+17]), as well as for a wide range of applications such as image

denoising [BCM05], clustering [Yan+17] or natural language processing [Zha+22a].

However, the current theoretical understanding of even simple AEs is still limited to for-

malizing the optimal parameterization of linear AE2 depending on the considered regular-

ization [BH89; Kun+19; Bao+20; PKK18]. Working towards modeling and understanding

non-linear models we consider an approach similar to the one proposed in Chapter 4 by

replacing mappings, traditionally implemented through neural networks with Kernel ma-

chines. In the AE context this means, both the encoder and decoder correspond now to

kernel machines, resulting in the mapping

x ∈ Rd ϕ1(·)−−−→ r1 ∈ H1
W1−−→ z ∈ Rh ϕ2(·)−−−→ r2 ∈ H2

W2−−→ x ∈ Rd

where typically h < d. Let us now formalize how we can optimize the above mapping.

5.1 Define Kernel Autoencoders

While several materializations of the above high-level idea come to mind, we define the

Kernel AE as follows and also illustrate it in Figure 5.2.

Definition 6 (Kernel AE). Given data X ∈ Rd×n and a regularization parameter λ > 0,

define the loss functional

LAE(W1,W2) :=
∥∥X −WT

2 ϕ2
(
WT

1 ϕ1 (X)
)∥∥2

H + λ
(
∥W1∥2H + ∥W2∥2H

)
The Kernel AE corresponds to the optimisation problem

min
W1,W2

LAE(W1,W2)

s.t. ∥WT
1 ϕ(xi)∥2 = 1 ∀ i ∈ [n]

(5.1)

Let us justify our choice of architecture briefly. Firstly, we include norm regularizations on

2[BH89] showed that linear AE without regularization finds solutions in the principal component spanning
subspace, but the individual components and corresponding eigenvalues cannot be recovered. [Kun+19] show
that l2 regularization reduces the symmetry solutions to the group of orthogonal transformations. Finally
[Bao+20] show that non-uniform l2 regularization allows linear AE to recover ordered, axis-aligned principal
components.
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Kernel Autoencoder

Neural Network Autoencoder

Kernel PCA

Figure 5.2: Euclidean spaces and corresponding mappings are shown in green, RKHS and
corresponding mappings in blue. Overview of reconstruction-based approaches: traditional
Kernel PCA, neural network based AE, and Kernel AE (proposed new method). (left) AE
models: top shows the Kernel versions and bottom the traditional neural network formula-
tion. The loss is computed between the original input x and the reconstruction x̂. (right)
Kernel PCA: Kernel PCA essentially performs PCA in the RKHS H [SSM98] and therefore
computes distances in the feature space. We present an alternative reconstruction-based for-
mulation — Kernel Autoencoders (KAE) — that evaluates the reconstruction in the sample
space instead of computing distances in the feature space. In comparison to Kernel PCA,
this approach also provides a simple inference step for unseen data points.

both the encoder as well as the decoder. This is motivated by the following observation:

When the feature map ϕ2 maps to the RKHS of a universal kernel, any choice of n distinct

points z1, . . . , zn in the bottleneck allows for perfect reconstruction. We therefore encourage

the Kernel AE to learn smooth maps by penalizing the norm in the RKHS. In addition,

we include the constraint ∥WT
1 ϕ(xi)∥2 = 1 ∀ i ∈ [n] to prevent the Kernel AE from simply

pushing the points z1, . . . , zn to zero. This happens whenever the impact of rescaling zi

affects the norm of the encoder W1 differently from the decoder W2 (as is the case for

commonly used kernels such as Gaussian and Laplacian). Nonetheless, we stress that other

choices of regularization are also possible, and we explore some of them in the Appendix.

While a closed form solution of Definition 6 is difficult to obtain, we show that the optimi-

sation can be rewritten in terms of kernel matrices.

Theorem 13 (Kernel formulation and inference at optimal parameterization). For any

bottleneck Z ∈ Rh×n, define the reconstruction

Q(Z) = X(KZ + λIn)−1KZ

Learning the Kernel AE from Definition 6 is then equivalent to minimising the following

expression over all possible embeddings Z ∈ Rh×n:

∥Q(Z)−X∥2 + λTr
(
ZK−1

X ZT +QK−1
Z QT

)
s.t. ∥zi∥2 = 1 ∀i ∈ [n]
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5.1. DEFINE KERNEL AUTOENCODERS

Given Z, any new x∗ ∈ Rd is embedded in the bottleneck as

z∗ = ZK−1
X k(x∗, X)

and reconstructed as

x̂∗ = X (KZ + λIn)
−1
k(z∗, Z)

Remark 4 (Connection to Kernel PCA). In light of the known connections between linear

autoencoders and standard PCA, it is natural to wonder how above Kernel AE relates to

Kernel PCA [SSM98]. The latter performs PCA in the RKHS H, and is hence equivalent

to minimising the reconstruction error over all orthogonal basis transformations W in H

L(W ) =

n∑
i=1

∥∥ϕ(xi)−WTPhWϕ(xi)
∥∥2 (5.2)

where Ph denotes the projection onto the first h canonical basis vectors, and we assume that

the features ϕ(xi) are centered. How does the Kernel AE WT
2 ϕ2(W

T
1 ϕ1(x)) relate to this if

we replace the regularisation terms on W1,W2 by an orthogonality constraint on both? For

simplicity, let us assume h = 1. The optimisation problem then essentially becomes

L =

n∑
i=1

∥xi −W2(W1(xi))∥2 (5.3)

whereW1 : Rd → R is a function from the RKHS over Rd (with unit norm), andW2 : R→ Rd

consists of d orthonormal functions from the RKHS over R. Clearly, Eq. 5.3 evaluates the

reconstruction error in the sample space, much in contrast to the loss function in Eq. 5.2

which computes distances in the RKHS. Additionally, the map WT learned in Eq. 5.2 from

the bottleneck back to H is given by the basis transformation W in Kernel PCA, whereas

it is fixed as the feature map ϕ over Rh in the AE setting. Kernel PCA can be viewed as

an AE architecture that maps solely within H, via

ϕ(x)→Wϕ(x)→ PhWϕ(x)→WTPhWϕ(x).

Notably, the results of Kernel PCA usually do not translate back to the sample space easily.

Given a point x ∈ Rd, the projection of ϕ(x) onto the subspace spanned by Kernel PCA

is not guaranteed to have a pre-image in Rd, and a direct interpretation of the learned

representations can therefore be difficult. In contrast, our method is quite interpretable,

as it also provides an explicit formula for the reconstruction x̂∗ of unseen data points —

not just their projection onto a subspace in an abstract Hilbert space. In particular, by

choosing an appropriate kernel3 and tuning the regularization parameter λ, a practitioner

3The choice of kernel could be influenced by the type of functions that are considered interpretable in
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5.1. DEFINE KERNEL AUTOENCODERS

may directly control the complexity of both decoder as well as the encoder.

Remark 5 (De-noising Kernel AE). In this section, we considered the standard setting

where the model learns the reconstruction of the input data. A common extension is the

de-nosing setting (e.g. [BCM05; Vin+10]), which formally moves the model from a recon-

struction to a SSL setting, where we replace the input with a noisy version of the data.

The goal is now to learn a function that removes the noise and, in the process, learns latent

representations. More formally, the mapping becomes

x ∈ Rd ϕ1(·)−−−→ r1 ∈ H1
W1−−→ z ∈ Rh ϕ2(·)−−−→ r2 ∈ H2

W2−−→ x ∈ Rd.

where x is given by x := x+ ε with ε being the noise term. We again note that the simple

extension to this setting further distinguishes our approach from Kernel PCA, where such

augmentations are not as easily possible.

Theorem 14 (Error Bound for Kernel AE). Assume the optimisation be given by Defini-

tion 6 and define the class of encoders/decoders as: F :=
{
X 7→ WT

2 ϕ2
(
WT

1 ϕ1 (X)
)
s.t.

∥WT
1 ϕ(xi)∥2 = 1 ∀ i ∈ [n] : ∥WT

1 ∥H ≤ ω1, ∥WT
2 ∥H ≤ ω2

}
. Let r := λ(ω2

1 + ω2
2) and

γ = maxs∈Rhs.t.∥s∥2=1 {k(s, s)}, then for any δ > 0, the following statement holds with

probability at least 1− δ for any f ∈ F :

LAE(f) ≤ L̂AE(f) +O

r + ω2

√
dγ√
n

+

√
log 1

δ

n


The above bounds demonstrate that with increasing number of unlabelled datapoints, the

complexity term in the generalisation-error bound decreases. Thus, the proposed models

follow the general SSL paradigm of increasing the number of unlabelled data to improve the

model performance. Again we can also show that this improvement in the representation

translates to an improvement in the downstream task.

Corollary 2 (Error Bound on Downstream Tasks). Let t = E
c,c′∼ρ2

1 {c = c′} and τ := 1
(1−t)

be the probability that two classes sampled independently from ρ are the same. Again define

α :=
(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
. In the following let Lsup be the loss of

the supervised downstream task. Consider the embedding function from the function class

F :=
{
X 7→WTϕ (X) : ∥WT ∥H ≤ ω

}
and let be L̂AE+

un the loss on the embedding for X+

and L̂AE−
un the loss on the embedding for X−, standing in for two classes4. Furthermore let

Tr[KX+ ],Tr[KX− ] ≤ β For any δ > 0, the following statement holds with probability at least

the domain of application.
4Remark: while it seems surprising that positive and negative samples suddenly appear in the AE setup

we note that in the contrastive setting this allows to naturally account for mappings to different classes.
Therefore in the AE, introducing this setting allows for class differentiation in the embedding.
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Figure 5.3: From left to right: we first consider k-nn on the original features followed by
k-nn on embeddings obtained by Kernel PCA, and the proposed methods.

1− δ for any f ∈ F :

LAEsup ≤ τ
(∣∣∣L̂AE+

un − L̂AE−
un

∣∣∣− t)+ τO

ω√hβ√
n

+

√
log 1

δ

n


With the formal foundations outlined we now illustrate how the proposed models can be

used in practice.

5.2 Experimental Evaluation

In this section we illustrate the empirical performance of the kernel-based representation

learning models introduced in this and the previous chapter (Chapter 4 & 5). As discussed

in the introduction, there is a wide range of representation learning models, that are often

quite specific to the given task. We mainly consider classification in a setting with only

partially labelled data at our disposal, as well as image de-noising using the Kernel AE. We

state the main setup and results in the following, and provide all further details (as well as

experiments on additional datasets) in the supplementary material.

5.2.1 Classification on Embedding

Data. In this section, we consider the following four datasets: concentric circles, cubes

[Ped+11], Iris [Fis36a] and Ionosphere [Sig+89]. We fix the following data split: unlabelled =

50%, labelled = 5% and test = 45%, and consider h = 2 as the embedding dimension.

Classification task using k nearest neighbours (k-nn) using embedding as fea-

tures. We investigate classification as an example of a supervised downstream task. The

setting is the following: We have access to Xunlab. and Xlab. datapoints, which we use to
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5.2. EXPERIMENTAL EVALUATION

train the representation learning model without access to labels. Then, as the downstream

classification model, we consider a k-nn model (with k = 3) learned on the embedding of

Xlab., with corresponding labels Ylab.. We test on Xtest, Ytest. As a benchmark, we compare

to k-nn both on the original features as well as on the embeddings obtained by standard

Kernel PCA.

Choice of kernel and their parameterization. For the proposed kernel methods as

well as for Kernel PCA we consider three standard kernels, Gaussian, Laplacian and linear

kernels as well as a 1-layer ReLU Kernel [BB21]. For Gaussian and Laplacian kernel we

choose the bandwidth using a grid search over 15 steps spaced logarithmically between 0.01

and 100. We perform leave-one-out validation on Xlab. to pick the bandwidth of the method

applied to the test set. The classification experiments on the above listed datasets are

present in Figure 5.3. All results show the mean and standard deviation over five splits of

each dataset. It is apparent throughout the experiments that the choice of kernel plays a

significant role in the overall performance of the model. This dependency is not surprising,

as the performance of a specific kernel directly links to the underlying data-structure, and

the choice of kernel is an essential part of the model design. This is in accordance with

existing kernel methods — and an important future direction is to analyze what kernel

characteristics are beneficial in a representation learning setting.

Comparison of supervised and representation learning. As stated in the introduction

(and supported theoretically in the previous section), the main motivation for representation

learning is to take advantage of unlabelled data by learning embeddings that outperform

the original features on downstream tasks. To evaluate this empirically for the kernel repre-

sentation learning models analyzed in this paper, we compare k-nn on the original data to

k-nn on the embeddings as shown in Figure 5.3. We observe that for Circles, Cubes, Iris and

Ionosphere there always exists an embedding that outperforms k-nn on the original data.

In addition, we observe in Figure 4 that increasing the number of unlabelled datapoints

overall increases the accuracy for the downstream task as shown on the example of Linear

and ReLU Kernel for the Circle dataset.

Comparing different embedding methods. Having observed that learning a represen-

tation before classification is beneficial, we now focus on the different embedding approaches.

While the performed experiments do not reveal clear trends between different methods, we

do note that the proposed methods overall perform on par or outperform Kernel PCA,

underlining their relevance for kernel SSL.

5.2.2 Comparison to Neural Networks for Classification and De-noising

Representation learning has mainly been established in the context of deep neural networks.

In this paper, we make a step towards decoupling the representation learning paradigm from

the widely used deep learning models. Nonetheless, we can still compare the proposed kernel
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(b) De-noising using neural network with and Kernel AEs on MNIST, Cifar and SVHN.

Figure 5.4: Comparison to neural networks for classification and de-noising.

methods to neural networks. We construct the corresponding NN model by replacing the

linear function in the reproducing kernel Hilbert space,W⊤ϕ(x) by an one-hidden layer neu-

ral network W2σ(W1x), where σ(·) is a non-linear activation function (and we still minimise

a similar loss function).

Classification. We compare the performance of both representation learning approaches

in Figure 5.4a for datasets CIFAR-10 [KH+09], as well as a subset of the first two classes of

MNIST [Den12] (i.e. n = 500). We observe that the kernel methods perform on par with,

or even outperform the neural networks. This indicates that there is not one dominant

approach but one has to choose depending on the given task.

De-Noising. As a second task, we consider de-noising using (Kernel) AE. Data is sampled

from the first five classes of MNIST, CIFAR-10 and SVHN [Net+11] with n = 225 and the

noisy version are generated by x := x+ ε, εi ∼ N (0, 0.1). We compare the performance of

kernel-based approaches with the neural network reconstructions in Figure 5.4b by plotting

the mean square error on the test set between the AE output and the clean data. Kernel

AE outperforms the neural network AE in all considered settings. Moreover, there is little

variation among the different kernels. This indicates that at least in the presented settings,

the proposed kernel methods pose a viable alternative to traditional neural network based

representation learning.

5.3 Discussion

Most remarks for this section are along the lines of the ones from the last section on SSL as

the underlying idea — model an existing neural network approach through kernel methods

is the same, however with a change in the objective function and data setting. Therefore

again the practical application is in the small data setting as we showed in the previous

Section 5.2.

68



5.3. DISCUSSION

From a theoretical perspective, while it is known that regression with infinite-width networks

is equivalent to kernel regression with neural tangent kernel (NTK) [JGH18b; Aro+19b], sim-

ilar results are not known for SSL and this brings up the question: Is kernel SSL equivalent

to SSL with infinitely-wide neural networks? It is possible to show that single-layer Kernel

AE with NTK is the infinite-width limit of over-parametrized AE [NWH21; RBU20]. We

believe that the same equivalence also holds for kernel contrastive learning (Definition 4)

with NTK, but leave this as an open problem. We do not know if Definition 6 with NTK

is the limit for bottleneck deep learning AE since, as we noted earlier, there is no unique

formulation for Kernel AE.

Furthermore, we note that several non-parametric generalizations of PCA, including func-

tional PCA, kernel PCA, principal curves etc., have been studied over decades and could

be compared to Kernel AEs. However, unlike kernel SSL, embedding methods are typically

not inductive. As shown previously, the inductive representation learning by Kernel AE and

contrastive learning make them suitable for downstream supervised tasks.
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Chapter 6

Unsupervised Cluster Specific Representation Learning

Ordinal DataFeaturesFeature and SimilarityFeature, Graph and Partial LabelsGround Truth

(a) (e)(d)(c)(b)

Features

(d)

Figure 6.1: Unsupervised Setup. Given are n samples with features of dimension d.

In the last chapter, we considered the problem of learning representations from unlabelled

data through optimizing reconstructions from the perspective of kernel methods. We ob-

tained a practically helpful new method that allows for a thorough theoretical analysis due

to the Kernel-based approach. This places Kernel AE in the traditional learning regime and

the theoretical results we obtain are with regards to generalization. While this provides a

step towards a better theoretical foundation of AE models, we now take a step back and

again analyze the setting of AEs, however now in the deep learning setting and with regards

to the learned representation instead of generalization.

With the increasing use of very high dimensional data, an important task is to find a good

lower dimensional representation either to reduce noise in the data or to overcome the curse

of dimensionality. However, as outlined in the introduction:

Question 2. What is a good representation?

And how can we guarantee that a given algorithm obtains it? Conceptually a latent rep-

resentation should preserve certain structures of the data while removing noise dimensions.

Naturally, there are different perspectives on what could constitute an important structure

of the given data, such as an underlying topology or clustering structure. In this work, we

consider the latter from a statistical perspective and more specifically from the perspective

of its covariance structure and latent representation. Suppose our dataset consists of κ clus-

ters that each have some inherent structure. Then we would want those separate structures

to be again represented in the latent space.

The Autoencoder architecture we considered in the last section was a simple one hidden layer
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Figure 6.2: Illustration simpson’s paradox in the ‘penguin dataset’ [GWF14]. The three
clusters and their first principal component are plotted in red, blue and green respectively
and the principal direction for the full dataset in black.

encoding and decoding. However in more general we can define the optimization problem

as follows

min
Φ,Ψ
∥X − gΨ (fΘ (X))∥ − λ ∗ penalty, (6.1)

where X ∈ Rd×n is the centred data input matrix consisting of n samples of dimension d

and X̂ = gΨ (fΘ (X)) the reconstruction. Let gΨ(·) be the decoder function, parameterized

by Ψ mapping from the data dimension d onto the latent dimension h and fΘ(·) the encoder
function parameterized by Θ mapping back to d. λ determines the strength of the penalty,

that is chosen depending on the task or desired properties of the parameters.

It has been shown that in the linear setting the encoder recovers the principal components of

the full dataset [Kun+19]. However this one representation does not necessarily capture the

underlying cluster structure well as illustrated in Figure 6.2. A classical example of this is

the so called simpson’s paradox [Sim51], a known phenomenon in statistics where the trend

in clusters does not align with the trend that appears in the full dataset, often observed

in social-science and medical-science statistics [Wag82; Hol16]. Figure 6.2 shows that one

representation for all the data points (shown in black) does not capture the structures of

individual clusters well (shown by the colored arrows). To be able to model such struc-

tures we therefore introduce a modified AE architecture we term Tensorized Autoencoders

(TAE) that, in the linear setting, provably recovers the principal directions of each cluster

while jointly learning the cluster assignment. This new AE architecture considers a single

AE for each cluster allowing us to learn distinct cluster representations and is illustrated

in Figure 6.3. Important to note that while this increases the number of parameters, the

representation still remains the same dimension as before. In particular this still experimen-

tally performs better than a single autoencoder with d × κ encoding dimension. Formally

we change (6.1) to the following
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Figure 6.3: Illustration of the tensorized AE. An input Xi, is passed through κ AEs, with
k-means penalty latent space that reconstruct Xi. Ti,j weight the outputs of the AEs by
class assignment.

min
{Φj ,Ψj}κ

j=1,T

n∑
i=1

κ∑
j=1

Tj,i

[∥∥(Xi − Cj)− gΨj

(
fΘj

(Xi − Cj)
)∥∥2 − λ ∗ penaltyj] , (6.2)

where T is a κ×n matrix, such that Tj,i is the probability that data point i belongs to class

j, gΨj (·) and fΘj (·) are the decoder and the encoder functions respectively specific to points

in class j, and Cj is a parameter centering the data passed to each autoencoder specific to

class j. Specifically a k-means [Mac67] penalty is considered to enforce a cluster friendly

structure in the latent space (similar to the one proposed in [Yan+17]).

To further illustrate the importance of the new formulation (6.2), that provides cluster spe-

cific representations, we look at two important representations learning downstream tasks.

Clustering. The main goal of clustering is to group similar objects into the same class

in an unsupervised setting. While this problem has been extensively studied in traditional

machine learning the time complexity significantly increases with high dimensional data

and therefore existing works focus on projecting data into low-dimensional spaces and then

cluster the embedded representations [RL03; Tia+14; Wan+16]. Several methods have been

developed that use deep unsupervised models to learn representations with a clustering focus

that simultaneously learns feature representations and cluster assignments using deep neural

networks [XGF16; Diz+17; Wan+16; XX15; Wan+15]. However all of these algorithms

learn a single representation for the full dataset. Assuming we use an AE for learning

the representation we formally consider (6.1) and perform the clustering on fΘ (X) instead

of X. Now the question is, is one representation of the data sufficient? We investigate

this question by considering different planted datasets as shown in Figure 6.4, where we

compare the clustering obtained from k-means ++ [AV07] on the original features, the

embedding obtained by a standard AE and the proposed TAE. In addition we also consider

a simple variational autoencoder (VAE) [KW13] and Deep Clustering (DC) [Yan+17] and

observe that in this setting they perform very similar to standard AE. Therefore for the

later experiments we only focus on the comparison to k-means ++ and standard AE. The

advantage of TAE is that it captures the directions of the clusters whereas simple AE mis-

classifies some points in clusters that are close in euclidean space. For those datasets the

distance function is inherently linked to the shape of the clusters. We extend this analysis
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to real world data and more complex AE architectures in Section 6.2.

De-noising. Consider an image corrupted by noise, the task is to remove the noise from

the image. In this setting a good representation is one that only returns the true data

structure and removes the noise. Here we are not directly interested in the embedding but

only in the obtained reconstruction of the decoder. However we again conjecture that having

separate embeddings for each cluster is beneficial as it allows to learn more cluster specific

representations.

We consider a De-Noising AE (DAE), formally defined [BCM05; Cho13] by considering X+ε

as input in Eq 6.1 where ε is an additive noise term and the goal is to remove the noise

from the data. An additional advantage in the denosing setting is that the cluster structure

obtained by the TAE does not have to match the one imposed by the ground truth. This is

beneficial in cases where there is not a unique way to cluster given data (e.g. when clustering

cars, one might group by color or by type). We see this advantage empirically illustrated in

Figure 6.4, right, where we see that the MSE of the simple AE is consistently significantly

higher than for the TAE. We further validate this intuition empirically in Section 6.2.

Remark 6 (On the line between unsupervised and Self-Supervised Learning). We note

at this point that the above setup blurs the line between unsupervised and self-supervised

learning. While clustering is purely in the unsupervised setup as we only consider the a

task performed on X (or fΘ(X)), the de-noising setup is more in the self-supervised setup,

as by our previous definition SSL is defined by data (X) and an augmented version (X + ε

in this case), however AEs in general allow to model both setups. Given the motivation of

this section we mainly consider them from the unsupervised perspective through preserving

cluster structures, but empirically analyze both setups in the following.
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6.1 Analysis of Tensorized Linear AE with K-Means Penalty

To get a better understanding of the behaviour of the proposed architecture in (6.2), we

consider a simple linear-AE as this allows us to analytically derive the optimal parameteri-

zation. We extend the analysis empirically to a non-linear setting in section 6.2.

6.1.1 Formal Setup

For simplicity consider the clustering setting where X̃ := X ∈ Rd×n, with n being the

number of data-points and d the feature dimension. Note that the analysis extends directly

to the de-noising setting as well. For a two layer linear AE, let U ∈ Rκ×h×d and V ∈ Rκ×d×h

be the encoding and decoding tensor respectively. Then for each 1 ≤ j ≤ κ, letW (j)
1 ∈ Rh×d,

be the encoding matrix by taking the appropriate slice of the tensor U . Essentially W
(j)
2

corresponds to the encoding function of the j’th cluster. We assume W
(j)
1 is a projection

matrix i.e. W
(j)
1 W

(j)⊤
1 = Ih. Similarly define W

(j)
2 ∈ Rd×h from the decoder W2 (injection

matrix).Finally let Cj be the cluster centers and λ be the weight assigned to the penalty.

We treat it as a hyperparameter. From there we define the loss function as

Lλ(X) :=

n∑
i=1

κ∑
j=1

Tj,i

[ ∥∥∥(Xi − Cj)−W (j)
1 W

(j)
2 (Xi − Cj)

∥∥∥2 − λ
∥∥∥W (j)

2 (Xi − Cj)
∥∥∥2 ],

s.t. 1⊤
κ T = 1⊤

n , Tj,i ≥ 0, (6.3)

where we define T to be a κ × n matrix, such that Tj,i is the probability that datapoint

i belongs to class j. To ensure that the entries can be interpreted as probabilities we

impose the above stated constraints. To further illuminate the intuition behind T consider

a dataset {Xi}ni=1 where associated to each datapoint Xi there are probabilities {Tj,i}κj=1

corresponding to how certain we are that Xi is sampled from the true distribution. These

{Tj,i} are latent variables that we learn from the dataset.

6.1.2 Parameterization at Optimum

For the linear setting we derive the parameterization at the optimum but for reference we

first recall the optimum of a standard linear AE:

Theorem 15 (Parameterization at Optimal for Linear AE). [BH89] showed that linear AE

without regurlarization finds solutions in the principal component spanning subspace, but the

individual components and corresponding eigenvalues cannot be recovered. [Kun+19] show

that l2 regularization reduces the symmetry solutions to the group of orthogonal transforma-

tions. Finally [Bao+20] show that non-uniform l2 regularization allows linear AE to recover

ordered, axis-aligned principal components.

From this we note that we only learn a single representation for the data and therefore

cannot capture the underlying cluster structures. To give the intuition of this cost, before
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we characterize the optimal parameters of a linear TAE, lets consider a single datapoint Xi

assigned to cluster Cj and its cost is,

Tj,i

[∥∥∥(Xi − Cj)−W (j)
1 W

(j)
2 (Xi − Cj)

∥∥∥2 − λ ∥∥∥W (j)
2 (Xi − Cj)

∥∥∥2] .
Ignoring Cj , the cost is simply the cost ofXi in AE weighted by the probability of it belonging

to cluster j (i.e. Tj,i). With this intuition, we characterize the optimal parameters of a linear

TAE in the following theorem.

Theorem 16 (Parameterization at Optimal for TAE). For 0 < λ ≤ 1, optimizing Eq. 6.3

results in the parameters at the optimum satisfying the following:

i) Class Assignment. While in Eq. 6.3 we define Tj,i as the probability that Xi be-

longs to class j at the optimal Tj,i = 1 or 0 and therefore converges to a strict class

assignment.

ii) Centers. Cj at optimum naturally satisfies the condition

Cj =

∑
i=1 Tj,iXi∑
i=1 Tj,i

.

iii) Encoding / Decoding (learned weights). We first show that W
(j)⊤
1 = W

(j)
2 , and

define

Σ̂j :=

n∑
i=1

Tj,i (Xi − Cj) (Xi − Cj)⊤ ,

then the encoding corresponds to the top h eigenvectors of Σ̂j.

At the above values for the parameters, Cj and Σ̂j acts as estimates for the means and

covariances for each specific class respectively. Thus assuming that T gives reasonable cluster

assignments,W
(j)
2 andW

(j)
1 combined gives the principal components of each cluster. While

points ii) and iii) follow directly by deriving the parameterization at the optimal and we

give the full derivation in the supplementary material, we give a short intuition on i) here.

First we note that as per our current definition L is linear in T . Thus the global optimum of

the loss with respect to the aforementioned linear conditions on T must be at some vertex

of the convex polytope defined by the conditions. Since these conditions are 1⊤
κ T = 1⊤

n and

Tj,i ≥ 0, at any of the vertices of the corresponding polytope we have that Tj,i = 1 or 0. This

combined with the fact that at global optimum Cj satisfies the condition Cj =
∑

i=1 Tj,iXi∑
i=1 Tj,i

implies that the global optimum of the loss L in this expanded space is precisely same as

that of the cost in the strict case we discuss in remark 7. This is important as it shows that

even though we allow the optimization using gradient decent the parameterization at the

optimal assigns each datapoint to one AE.

Let us compare Theorem 16 to the general notion proposed in the introduction: We would

like an approach to obtain a separate meaningful representation (in the sense of recovering
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principal directions) for each cluster structure without having prior knowledge of which

cluster a given datapoint belongs to. Theorem 16 shows that the proposed tensorized AE

(Eq. 6.3) fulfills those requirements as TAE recover the top κ eigenvectors for each cluster

separately.

Remark 7 (Strict cost function). Since we showed in Theorem 16 that Eq. 6.3 converges to

a strict class assignment we can alternatively also define the loss function directly with strict

class assignments as follows: Let X
T (i)

be the center of all data-points which Xi belongs to.

We define the loss function with strict class assignments as

min
S

min
W2,T (i),W1,T (i)

min
CT (i)

n∑
i=1

∥∥∥(Xi −X
T (i))−W2,T (i)W1,T (i)

(
Xi −X

T (i))∥∥∥2
− λ

∥∥W1,T (i)Xi − CT (i)

∥∥2
Similar to Theorem 16 we again characterize the parameters at the optimal and most im-

portantly note that with

Σ̂j =

∑
i:T (i)=j

(
Xi −X

j)(
Xi −X

j)⊤
|{i : T (i) = j}| ,

as long as λ < 1, the optimal projection W
(j)
1 for the above cost is exactly the top h

eigenvectors of Σ̂j .

6.1.3 Optimization

While in the previous section we discussed the optimum that is obtained by solving the

optimization problem in Eq. 6.3 we now look at how to practically train the tensorized AE.

The general steps for learning the encoder and decoder are summarized as follows, where

step 2 and 3 are repeated until convergence.

1. Initialize weights and cluster assignments according to k-means ++ [AV07]1.

2. Update the weights for the encoder and decoder (using e.g. a GD step).

3. Update the class assignment T . To do so we consider a number of different options:

Option 1: using a GD step under constraints 1⊤
κ S = 1⊤

n , Tj,i ≥ 0.

Option 2: using an un-constrained GD step and project T back onto the constraints.

Option 3: using a Lloyd’s step2 on a strict class-assignment.

The choice of options in step 3 mostly depends on the framework of implementation. As

noted, T as defined in Eq. 6.3 allows us to perform gradient updates on the class assignments.

1Note on the initialization: while in this algorithm we consider a k-means++ in cases where we have
access to some labels (e.g. in a semi-supervised setting) this can be replaced by considering random points
with given labels for each cluster as initializations.

2Here the Lyod’s step solves the linear problem on T assuming all other parameters are fixed.
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The advantage is that since T is not defined binary, frameworks such as CVXPY [DB16] or

Keras [Cho+15] can be used to perform a constrained gradient steps, however in popular

frameworks such as PyTorch [Pas+19], that as of the time of writing this work do not

directly support constraint optimization Option 3 can be used.

While the general goal of the proposed setup is to learn good data representations, the exact

train and test steps depend on the downstream task. In this work there are two main settings.

For instance in clustering we directly apply the above steps and jointly learn the clustering

and embedding. While in a simple AE we would have to apply a clustering algorithm onto

the latent representations, in TAE the above steps directly provide the clusters. While

for the linear case we prove that Tij is binary, in practice, especially with more complex

networks one has to compute argmaxj Tij to determine the class assignment. On the other

hand in de-nosing we again jointly learn the embedding and cluster assignment but only

train on the train set and in a second step use the learned TAE to de-noise images in the test

set. While for a simple AE we can directly pass test data, with a TAE we use the approach

presented in section 6.1.4 that allows us to assign the new datapoint to the appropriate AE

to process it. This same setup could be used for tasks such as super resolution or inpainting.

Importantly, while the results from Theorem 16 hold only for the exact linear formulation

in Eq. 6.3, the main idea and training steps can be extended to arbitrary encoding and

decoding functions which we illustrate empirically in section 6.2.

6.1.4 Test on New Data

In the context of De-noising and validating clustering on an independent test dataset or

other downstream tasks, we generally need a way of encoding and decoding a new or test

datapoint. In contrast to AE, where one simply passes any new data through the trained

network, TAE additionally decides on the latent variable T . Note then that essentially in

our model the actual parameters are Cj ,W
(j)
2 ,W

(j)
1 whereas T is simply an encoding of our

confidence of what the latent variable or label is for each Xi. Thus to run the TAE on a

new datapoint, we have to first estimate this latent variable.

Following this idea, let t ∈ Rκ, with its j’th coordinate being tj .
3 Then given a new

datapoint X̃i and given the trained parameters Cj ,W
(j)
2 ,W

(j)
1 , we first find t̂ such that

t̂ = argmin
1⊤
κ t=1;tj≥0

κ∑
j=1

tj

[∥∥∥(X̃i − Cj)−W (j)
1 W

(j)
2 (X̃i − Cj)

∥∥∥2 − λ∥∥∥W (j)
2 (X̃i − Cj)

∥∥∥2] .
We use this setting for example for a de-noising task such that the de-noised reconstruction

of X̃i would be given by (I−W (ĵ)
2 W

(ĵ)
1 )(X̃i − Cĵ) + Cĵ .

We consider the following two cases to present a heuristic that the step in general does

3Note then that this is a linear problem in the variables tj and thus its solution is at some vertex of the

bounding polytope, i.e. there is some ĵ such that t̂ĵ = 1. Thus the label assigned to X̃i is this j.
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not worsen the prediction. On the one hand if clusters are well separated, this implies that

the separate AEs are quite different and therefore a wrong assignment would be significant.

However well separated clusters also implies that the assignment of a new point is with high

probability correct. On the other hand if the clusters are not well separated then the point

might be assigned to the wrong cluster more easily, however similar clusters also implies

similar AEs so even if we assign a new point to the wrong AE the reconstruction is still close

to the one from the correct AE.

6.2 Experiments with Non-Linear and Convolutional Networks

The above linear setting allows us to perform a thorough analysis of the model and prove

that the parameterization at the optimal fulfills the desired criteria of learning a meaningful

representation for each cluster instead of one for the whole dataset. However in an applied

setting we would like to take advantage of the expressive power of more complex, non-linear

encoders and decoders as well. Therefore we first discuss how tensorized AE can be extended

to a more general setting and additionally empirically validate its performance.

All further details on the implementation4 and experiments are provided in the supplemen-

tary material.

6.2.1 Extension to Arbitrary AE Architectures

Given a single datapoint x and some specific architecture, let L{Θj ,Ψj}κ
j=1

(x) and fΘj (·) be
the corresponding loss function and encoder parameterized by Θj respectively. Then the

corresponding tensorized autoencoder is generated by first considering κ many independent

copies of the above AE {fΘj (·)}κj=1. Then the tensorized loss is defined by

L(X) :=

n∑
i=1

κ∑
j=1

Tj,i

[
LΘj ,Ψj

(Xi − Cj)− λ
∥∥fΘj

(Xi − Cj)
∥∥2] ,

where Cj is defined as Cj =
∑

i=1 Tj,iXi∑
i=1 Tj,i

. While a more involved analysis is required to prove

the exact latent representation in this case, the overall idea presented in (6.2). Again for

the training we follow the steps presented in Section 6.1.3.

6.2.2 Clustering on Real Data

While on the toy data in Figure 6.4 we clearly observed how the analyzed approaches deal

with different datastructures, we extend the analysis to real data and also more complex

AE architectures.

For comparability of the number of parameters we furthermore compare AE 1 with latent

dimension d and AE 2 with latent dimensions d × k in Figure 6.6. We note that their

4The code is available at: https://github.com/mahalakshmi-sabanayagam/tensorized autoencoder
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Figure 6.5: Illustration of the final clustering obtained for the penguin dataset, two features
by the different algorithms.
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Figure 6.6: Comparison of k-means ++, standard AE with k-means ++ and TAE. AE 1
has latent dimension d while AE 2 has latent dimension d × k. MNIST MLP shows the
performance for a single hidden layer network, while MNIST CNN considers an encoder
and decoder with two convolutional layers each. Again the latent dimension is d for both
networks.

performance on the clustering task is very comparable and we therefore conclude that the

performance of the TAE is not a direct result of the increased number of parameters but is

achieved due to the different architecture.

To start the analysis we consider the penguin dataset presented in the introduction. Fig-

ure 6.5 (top left) shows the simpson’s paradox for the penguin dataset and the other plots

show the clusterings the different algorithms converge to. Notably we see that for k-means

as well as for both AE architectures, the y-axis parallel decision boundaries are obtained

where as for the TAE we obtain clusters that are closer to the true structures.

To further quantify the empirical performance of TAE we show the average and standard

deviation over five runs for the ’penguin dataset’ with two and four features as well as the

’iris dataset’ [Fis36b; And36] and ’MNIST’ [LC10b] (sub-sample of 50 datapoints for class

{1, 2, 3, 4, 5} each) for simple linear networks as well as two layer convolutional networks.

We show this in Figure 6.6. For penguin dataset and iris we consider d = 1 and d =

10 for MNIST. We observe that the difference in the performance between AE and TAE

is significant for the penguin dataset which we attribute to the above outlined clustering

structures. For MNIST, we observe very similar performance of AE and TAE, which is most

likely due to the fact that the underlying clustering structures have very similar properties,

such there is no significant difference for the TAE to exploit.
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Figure 6.7: Real data de-noising for different Datasets and networks. Note that the MSE is
plotted in log scale.
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Figure 6.8: (left) De-nosing under change in noise level for the four toy datasets. (middle)
De-nosing for five classes MNIST using AE and TAE with non-optimal κ. (right) De-nosing
for five classes MNIST. Analysis of run-time with changing number of κ in TAE.

6.2.3 De-Noising on Real Data

Similar to the experiments on clustering real data we look at de-noising on various real

datasets with standard AE and TAE. We use the same datasets we used in the clustering

case to illustrate that TAE learns a reasonable clustering as well as a better reconstruction.

The original data was corrupted by adding an isometric Gaussian to each data point. We

illustrate this difference in Figure 6.7 and observe that TAE consistently performs the same

or significantly better then the standard AE. For the penguin dataset we observe a better

cluster recovery and a better de-noising performance. Interestingly for the Iris dataset

the reconstruction obtained by TAE is significantly better the the one by the standard

AE while their clustering performance is about the same. Finally for MNIST with CNN

we get a markedly improved performance on using TAE, while using a single layer linear

neural network as the underlying architecture doesn’t gives us any significant improvement

in performance. This suggests that it is important to choose a function class or underlying

architecture that is capable of capturing a low dimensional representation of the data.

Let us consider the presented de-nosing setting for some further investigation of the model.

Different levels of noise. When considering de-noising an obvious question on the influ-

ence of the noise level on the performance of AE and TAE. To analyze this we go back to the

toy datasets introduced previously and observe in Figure 6.8 (left) that while with increasing

noise level the the MSE increases for both approaches, TAE consistently outperforms the

standard AE on all datasets.

Performance of TAE when κ is not the true number of clusters. Let us consider
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the MNIST setting stated before with five classes. We observe in Figure 6.8 (middle) that

the MSE is monotonously improved with κ getting closer to κtrue, all improving on standard

AE. This indicates that even if the number of clusters is not known5 TAE for de-noising

tasks performs better then standard AE.

Importance of initialization of T . While we propose k-means++ as an initialization pro-

cedure for the cluster assignment, empirically the question is how important this assumption

is. Figure 6.8 (middle) illustrates that in the previously considered MNIST setting there is no

noticeable difference between the the k-means++ initialization and a random initialization.

However we conjecture that the difference increases for more complex the dataset.

Computational demands. Finally an important point is the computational comparison

between AE and TAE. By construction one can see that the computational complexity

scales linearly with the number of considered clusters. We can observe that this also holds

empirically as shown in Figure 6.8 (right), again for the MNIST setting considered in the

previous two points.

6.3 Connection to Expectation Maximization

The astute reader would notice that the gradient descent step that we are proposing is similar

to Expectation Maximization (EM) algorithm. To explain this connection more carefully

(and propose a slightly modified algorithm in the case of Gaussian data), we first write down

the EM algorithm itself.

Let X1, . . . , Xn be data coming from from some distribution in the set of distributions with

parameter θ with some latent or unobserved variables Z. Let L(θ;X,Z) be the likelihood

function of the parameters. The EM algorithm then seeks to maximise

Q(θ) =

n∑
i=1

1

n
EZ|Xi,θ[logL(θ;Xi, Z)].

To make matters a little clearer let us see what this implies when the data comes from a

mixture of Gaussians. Let

X ∼
κ∑
i=1

piN(µi,Σi).

To imagine a latent variable imagine the data being generated as follows. First sam-

ple a random variable Z such that p(Z = i) = pi. Then sample an observation from

N(µz,ΣZ). Thus in this case the latent variable Z is the assignment of the data to its

respective cluster or the observed data’s label. The parameters θ in this case is the vector

(p1, ..., pκ, µ1, ..., µκ,Σ1, ...,Σκ). Then given data Xi, the probability the corresponding Z is

5This is a general problem in any clustering based tasks, and also present in deep clustering [Yan+17]
works. A possible future approach would be along the lines of the semidefinite programming relaxation in
[YSC17], however this comes with computational overhead and the extension is not trivial.
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j is given by (using Bayes rule) :

Tj,i =
pjf(Xi;µj ,Σj)∑
t ptf(Xi;µt,Σt)

=
pj
√
det(2πΣj) exp

(
− 1

2 (Xi − µj)Σ−1
j (Xi − µj)

)∑
t pt
√
det(2πΣt) exp

(
− 1

2 (Xi − µt)Σ−1
t (Xi − µt)

) .
Then the expectation of the log likelihood EZ [L(θ;X,Z)] is :

1

n

n∑
i=1

κ∑
j=1

Tj,i

(
log det(2πΣj)

2
−
||Σ−1/2

j (Xi − µj)||2
2

)
.

Now note that ignoring the determinant term (log det(2πΣj)) maximizing this above quan-

tity is exactly minimizing

n∑
i=1

κ∑
j=1

Tj,i

∥∥∥Σ−1/2
j (Xi − µj)

∥∥∥2 .
Note then that this is very similar to the term we are optimizing if we allow T to be

independent of Σj and set

Σ−1
j = (I−W (j)

1 W
(j)
2 )⊤(I−W (j)

1 W
(j)
2 )− λW (j)⊤

2 W
(j)
2 , and µj = Cj .

In other words we are fixing the covariance matrix to have numerically low rank, i.e. it has

only h (few) of its eigenvalues are 1/λ (very large) whereas rest of them are 1 (small).

The connection between TAE and the EM algorithm is especially interesting as there is a

vast literature on the theoretical properties of EM and therefore opens up future research

directions for a more fine-grained analysis of TAEs.

6.4 Related Work and Future Applications

Theoretical analysis of AE. The theoretical understanding of simple AE is still limited

and mainly summarized in Theorem 15 and formalizes the optimal parameterization of linear

AE depending on the considered regularization [BH89; Kun+19; Bao+20; PKK18]. While

the considered proof techniques differ in our work we derive a similar result of the TAE.

An important future direction for theoretical analysis for both simple AE and TAE is the

extension to the non-linear setting.

Before going into the related work on clustering and de-noising we would like to note here

that the focus of this work is to show the difference in learning a single representation for

the data and a representation for each cluster in the data. The general literature of possible,

task specific, AE models is vast and would exceed the limits of this related work section.

Therefore we focus on the most relevant related work, which is the basic setup for clustering
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on embedding and de-noising with simple AEs.

Clustering. The main goal of clustering is to group similar objects into the same class

in an unsupervised setting. While this problem has been extensively studied in traditional

machine learning in terms of feature selection [BDM09; ATL13], distance functions [Xin+02;

XNZ08] and group methods [Mac67; Lux07; LMO04] (for a more comprehensive overview

see [AR14]) the time complexity significantly increases with high dimensional data, previous

work focuses on projecting data into low-dimensional spaces and then cluster the embedded

representations [RL03; Tia+14; Wan+16]. For there there several methods have been de-

veloped that use deep unsupervised models to learn representations with a clustering focus

that simultaneously learns feature representations and cluster assignments using deep neural

networks [XGF16; Diz+17; Wan+16; XX15; Wan+15].

De-noising. We consider de-noising with AEs [BCM05; Cho13]. While there are several

extensions to more complex AE models and task specific setups (see e.g. [Zha+22b]) in this

work we focus on the question if learning cluster specific representations is beneficial for

reducing the reconstruction error, which to the best of our Knowledge has been considered

so far.

Possible future applications. We note that while in this chapter we focus on clustering

and de-noising the general concept can be extended to other AE based downstream tasks

such as anomaly detection [MFB19; SY14; ZP17], image compression [The+17; BLS17],

super resolution [Zen+17; Son+17] and machine translation [Cho+14; SVL14].

Such extensions are especially of interest for future applications as Figure 6.4 and Sec-

tion 6.2.3 show that TAE outperform standard AE especially when measured in the recon-

struction quality. This indicates that tasks such as image compression can benefit from

using TAE, as for such tasks the matching to the true clustering is not required.

6.5 Discussion

This chapter presents a meta-algorithm that can be used to better adapt any existing AE

architecture to datasets in which one might anticipate cluster structures. By jointly learning

the cluster structure and low dimensional representations of clusters, the proposed tensor

auto-encoder (TAE) directly improves upon k-means, applied to a dataset or to an encoding

of the same generated by an AE. More importantly, in the context of de-noising or down-

stream learning tasks, while it is trivial to note that mathematically a TAE can never have a

worse MSE than a corresponding AE, we verify the same experimentally. On the surface, the

difference in performance might simply seem to be a matter of more parameters. However,

we show experimentally (see experiment on real data clustering, Figure 6.6) that even with

the same total number of parameters TAE clusters better and hence gives a more accurate

reconstruction than an AE. An open question in this regard would be to show such a result
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mathematically under certain data assumptions. Another open implementation problem

would be to design a more efficient gradient step for the TAE.

Social impact. As this chapter has a stronger focus on developing new algorithms, that

can directly be used in practice we conclude by discussing how this change in existing AE

approaches can have implications in a societal context. Usage of traditional autoencoders

on large diverse communities often favours creating a single latent monolithic representation

mostly representing a single majority. This might create situations where the interests of

various smaller communities are ignored. An instance of this might be to use autoencoders

to find a couple of parameters that are the most significant markers of a particular disease.

Using tensorized autoencoders might be of interest in these situations as this might create

multiple representations for each community. On the other hand in cases where recovering

more explicit clustering structures has negative implications, TAE might not be favorable.

A possible example here could be differential privacy. However, to better understand this

setting the interplay between properties of latent representations in AE and privacy will

have to be more thoroughly investigated in the future.
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Chapter 7

Comparison Based Clustering

Ordinal DataFeaturesFeature and SimilarityFeature, Graph and Partial LabelsGround Truth

(a) (e)(d)(c)(b)
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Figure 7.1: Ordinal Setup. Only ordinal comparisons between objects are given. Similarities
between i, j given by ζi,j and between j, r given by ζr,j exist, however only ζi,j ≶ ζr,j is
observed.

All previous data-settings relied on having explicit feature descriptions of each object and in

some cases relations between objects. For our final setting we consider no feature information

and only ordinal relations between data. This can therefore be seen as the data-setting with

the least information about the unlabelled objects1.

In this setting we consider the task of clustering, where the objective is to group together

objects that share the same semantic meaning, that are similar to each other, into κ disjoint

partitions. In comparison to the previous chapter we however now aim to solve the clustering

task directly instead of focusing on learning representations first. This problem has been

extensively studied in the literature when a measure of similarity between the objects is

readily available, for example when the examples have a Euclidean representation or a graph

structure [SM00; AV07; von07]. However, it has attracted less attention when the objects

are difficult to represent in a standard way, for example cars or food. A recent trend to

tackle this problem is to use comparison based learning [Ukk17; EZK18] where, instead of

similarities, one only observes comparisons between the examples:

1. Triplet comparison: Object xi is more similar to object xj than to object xk as

illustrated in Figure 7.1;

2. Quadruplet comparison: Objects xi and xj are more similar to each other than

objects xk and xl.

1One could go from the unsupervised setting in the previous chapter to the one in this setting by con-
structing ordinal comparisons using a similarity metric on the features.
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There are two ways to obtain these comparisons. On the one hand, one can adaptively query

them from an oracle, for example a crowd. This is the active setting. On the other hand,

they can be directly given, with no way to make new queries. This is the passive setting.

In this chapter, we study comparison based learning for clustering using passively obtained

triplets and quadruplets.

Motivation of this work. A key bottleneck in comparison based learning is the overall

number of available comparisons: given n examples, there exist O
(
n3
)
different triplets and

O
(
n4
)
different quadruplets. In practice, it means that, in most applications, obtaining all

the comparisons is not realistic. Instead, most approaches try to use as few comparisons as

possible. This problem is relatively easy when the comparisons can be actively queried and

it is known that Ω (n lnn) adaptively selected comparisons are sufficient for various learning

problems [HGL17; EZK18; GPL19]. On the other hand, this problem becomes harder when

the comparisons are passively obtained. The general conclusion in most theoretical results on

learning from passive ordinal comparisons is that, in the worst case, almost all the O
(
n3
)

or O
(
n4
)
comparisons should be observed [JN11; EZK18]. The focus of this work is to

show that, by carefully handling the passively obtained comparisons, it is possible to design

comparison based approaches that use almost as few comparisons as active approaches for

planted clustering problems.

Near-optimal guarantees for clustering with passive comparisons. In hierarchical

clustering, [EZK18] showed that constructing a hierarchy that satisfies all comparisons in

a top-down fashion requires Ω
(
n3
)
passively obtained triplets in the worst case. Similarly,

[GPL19] considered a planted model and showed that Ω
(
n3.5 lnn

)
passive quadruplets suffice

to recover the true hierarchy in the data using a bottom-up approach. Since the main

difficulty lies in recovering the small clusters at the bottom of the tree, we believe that

this latter result also holds for standard clustering. In this chapter, we consider a planted

model for standard clustering and we show that, when the number of clusters k is constant,

Ω
(
n(lnn)2

)
passive triplets or quadruplets are sufficient for exact recovery.2 This result

is comparable to the sufficient number of active comparisons in most problems, that is

Ω (n lnn) [HGL17; EZK18]. Furthermore, it is near-optimal. Indeed, to cluster an example,

it is necessary to observe it in a comparison at least once as, otherwise, it can only be assigned

to a random cluster. Thus, to cluster n objects, it is necessary to have access to at least

Ω (n) comparisons. Finally, to obtain these results, we study a semi-definite programming

(SDP) based clustering method and our analysis could be of significant interest beyond the

comparison based framework.

General noise model for comparison based learning. In comparison based learning,

2When we write that Ω
(
n(lnn)2

)
comparisons are sufficient, we express that any number of comparisons

greater than Cn(lnn)2 with C a constant is sufficient to solve the problem. In other words, it means that
having exactly Cn(lnn)2 comparisons is sufficient but also that having more comparisons is not detrimental.
This notation is used in statistics and information theory [FRG09] and is equivalent to ≳.
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there are two main sources of noise. First, the observed comparisons can be noisy, that is the

observed triplets and quadruplets are not in line with the underlying similarities. This noise

stems, for example, from the randomness of the answers gathered from a crowd. It is typi-

cally modelled by assuming that each observed comparison is randomly (and independently)

flipped [JJN16; EZK18]. This is mitigated in the active setting by repeatedly querying each

comparison, but may have a significant impact in the passive setting where a single instance

of each comparison is often observed. Apart from the aforementioned observation errors,

the underlying similarities may also have intrinsic noise. For instance, the food data set by

[WKB14] contains triplet comparisons in terms of which items taste more similar, and it is

possible that the taste of a dessert is closer to a main dish than to another dessert. This

noise has been considered in [GPL19] by assuming that every pair of items possesses a latent

random similarity, which affects the responses to comparisons. In this chapter, we propose,

to the best of our knowledge, the first analysis that considers and shows the impact of both

types of noise on the number of passive comparisons.

Scalable comparison based similarity functions. Several similarity and kernel func-

tions have been proposed in the literature [KL17; GPL19]. However, computing these sim-

ilarities is usually expensive as they require up to O (n) passes over the set of available

comparisons. In this chapter, we propose new similarity functions whose construction is

much more efficient than previous kernels. Indeed, they can be obtained with a single

pass over the set of available comparisons. It means that our similarity functions can be

computed in an online fashion where the comparisons are obtained one at a time from a

stream. The main drawback compared to existing approaches is that we lose the positive

semi-definiteness of the similarity matrix, but our theoretical results show that this is not an

issue in the context of clustering. We also demonstrate this empirically as our similarities

obtain results that are comparable with state of the art methods.

7.1 Background and Theoretical Framework

In this section, we present the comparison based framework and our planted clustering

model, under which we later show that a small number of passive comparisons suffices for

learning. We consider the following setup. There are n items, denoted by [n] = {1, 2, . . . , n},
and we assume that, for every pair of distinct items i, j ∈ [n], there is an implicit real-valued

similarity ζij that we cannot directly observe. Instead, we have access to

Triplets: T =
{
(i, j, r) ∈ [n]3 : ζij > ζir, i, j, r distinct

}
, or

Quadruplets: Q =
{
(i, j, r, s) ∈ [n]4 : ζij > ζrs, i ̸= j, r ̸= s, (i, j) ̸= (r, s)

}
.

(7.1)

There are O
(
n4
)
possible quadruplets and O

(
n3
)
possible triplets, and it is expensive to

collect such a large number of comparisons via crowdsourcing. In practice, T or Q only
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contain a small fraction of all possible comparisons. We note that if a triple i, j, r ∈ [n]

is observed with i as reference item, then either (i, j, r) ∈ T or (i, r, j) ∈ T depending on

whether i is more similar to j or to r. Similarly, when tuples (i, j) and (r, s) are compared,

we have either (i, j, r, s) ∈ Q or (r, s, i, j) ∈ Q.

Sampling and noise in comparisons. This chapter focuses on passive observation of

comparisons. To model this, we assume that the comparisons are obtained via uniform

sampling, and every comparison is equally likely to be observed. Let p ∈ (0, 1] denote a

sampling rate that depends on n. We assume that every comparison (triplet or quadruplet)

is independently observed with probability p. In expectation, |Q| = O
(
pn4
)
and |T | =

O
(
pn3
)
, and we can control the sampling rate p to study the effect of the number of

observations, |Q| or |T |, on the performance of an algorithm.

As noted in the introduction, the observed comparisons are typically noisy due to random

flipping of answers by the crowd workers and inherent noise in the similarities. To model

the external (crowd) noise we follow the work of [JJN16] and, given a parameter ϵ ∈ (0, 1],

we assume that any observed comparison is correct with probability 1
2 (1 + ϵ) and flipped

with probability 1
2 (1− ϵ). To be precise, for observed triple i, j, r ∈ [n] such that ζij > ζir,

P
(
(i, j, r) ∈ T | ζij > ζir

)
=

1 + ϵ

2
, whereas P

(
(i, r, j) ∈ T | ζij > ζir

)
=

1− ϵ
2

. (7.2)

The probabilities for flipping quadruplets can be similarly expressed. We model the inherent

noise by assuming ζij to be random, and present a model for the similarities under planted

clustering.

Planted clustering model. We now present a theoretical model for the inherent noise

in the similarities that reflects a clustered structure of the items. The following model is

a variant of the popular stochastic block model, studied in the context of graph clustering

[Abb17], and is related to the non-parametric weighted stochastic block model [XJL20].

We assume that the item set [n] is partitioned into κ clusters C1, . . . , Cκ of sizes n1, . . . , nκ,

respectively, but the number of clusters κ as well as the clusters C1, . . . , Cκ are

unknown to the algorithm. Let Fin and Fout be two distributions defined on R. We

assume that the inherent (and unobserved) similarities {ζij : i < j} are random and mutually

independent, and

ζij ∼ Fin if i, j ∈ Cℓ for some ℓ, and ζij ∼ Fout otherwise.

We further assume that ζii is undefined, ζji = ζij , and that for ζ, ζ ′ independent,

Pζ,ζ′∼Fin
(ζ > ζ ′) = Pζ,ζ′∼Fout

(ζ > ζ ′) = 1/2, and

Pζ∼Fin,ζ′∼Fout(ζ > ζ ′) = (1 + δ)/2 for some δ ∈ (0, 1].
(7.3)
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The first condition in (7.3) requires that Fin, Fout do not have point masses, and is assumed

for analytical convenience. The second condition ensures that within cluster similarities are

larger than inter-cluster similarities—a natural requirement. [GPL19] used a special case of

the above model, where Fin, Fout are assumed to be Gaussian with identical variances σ2,

and means satisfy µin > µout . In this case, δ = 2Φ
(
(µin − µout)/

√
2σ
)
− 1 where Φ is the

cumulative distribution function of the standard normal distribution.

7.2 A Theoretical Analysis of Similarity Based Clustering

Before presenting our new comparison based similarity functions, we describe the SDP

approach for clustering from similarity matrices that we use throughout the chapter [YSC18;

CY20].

Similarity based clustering is widely used in machine learning, and there exist a range of

popular approaches including spectral methods [von07], semi-definite relaxations [YS16],

or linkage algorithms [Das16] among others. We consider the following SDP for similarity

based clustering. Let H ∈ Rn×n be a symmetric similarity matrix among n items, and

Z ∈ {0, 1}n×κ be the cluster assignment matrix that we wish to estimate. For unknown

number of clusters κ, it is difficult to directly determine Z, and hence, we estimate the

normalised clustering matrix N ∈ Rn×n such that Nij = 1
|C| if i, j co-occur in estimated

cluster C, and Nij = 0 otherwise. Note that Tr (N) = κ. The following SDP was proposed

and analysed by [YSC18] under the stochastic block model for graphs, and can also be

applied in the more general context of data clustering [CY20]. This SDP is agnostic to the

number of clusters, but penalises large values of Tr (X) to restrict the number of estimated

clusters:

max
N

Tr (HN)− λTr (N)

s.t. N ≥ 0, N ⪰ 0, N1 = 1.

(SDP-λ)

Here, λ is a tuning parameter and 1 denotes the vector of all ones. The constraints N ≥ 0

and N ⪰ 0 restricts the optimisation to non-negative, positive semi-definite matrices.

[PEG20] presents a general theoretical result for SDP-λ. Assume that the data has an

implicit partition into κ clusters C1, . . . , Cκ of sizes n1, . . . , nκ and with cluster assignment

matrix Z, and suppose that the similarity H is close to an ideal similarity matrix H̃ that has

a κ× κ block structure H̃ = ZΣZT . The matrix Σ ∈ Rκ×κ is such that Σℓℓ′ represents the

ideal pairwise similarity between items from clusters Cℓ and Cℓ′ . Typically, under a random

planted model, H̃ is the same as E[H] up to possible differences in the diagonal terms. For

H = H̃ and certain values of λ, the unique optimal solution of SDP-λ is a block diagonal

matrix N∗ = ZΛ−1ZT , where Λ ∈ Rκ×κ is diagonal with entries n1, . . . , nκ. Thus, in the

ideal case, solving the SDP provides the desired normalised clustering matrix from which

one can recover the partition C1, . . . , Cκ. The following result shows that N∗ is also the
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unique optimal solution of SDP-λ if H is sufficiently close to H̃.

Proposition 5 (Recovery of planted clusters using SDP-λ [PEG20]). Let Z ∈ {0, 1}n×κ be

the assignments for a planted κ-way clustering, H̃ = ZΣZT , and N∗ = ZΛ−1ZT as defined

above. Define

∆1 = min
ℓ ̸=ℓ′

(
Σℓℓ +Σℓ′ℓ′

2
− Σℓℓ′

)
, and ∆2 = max

i∈[n]
max
ℓ∈[k]

∣∣∣∣∣∣ 1

|Cℓ|
∑
j∈Cℓ

(
Hij − H̃ij

)∣∣∣∣∣∣ .
N∗ is the unique optimal solution of SDP-λ for any choice of λ in the interval

∥∥∥H − H̃∥∥∥
2
< λ < min

ℓ
nℓ ·min

{
∆1

2
, ∆1 − 6∆2

}
.

The term ∆1 quantifies the separation between the ideal within and inter-cluster similarities,

and is similar in spirit to the weak assortativity criterion for stochastic block models [YSC18].

On the other hand, the matrix spectral norm ∥H − H̃∥2 and the term ∆2 both quantify the

deviation of the similarities H from their ideal values H̃. Note that the number of clusters

can be computed as κ = Tr (X) and cluster assignment Z is obtained by clustering the rows

of N∗ using κ-means or spectral clustering for example. In the experiments (Section 7.5),

we present a data-dependent approach to tune λ and find κ.

We conclude this section by noting that most of the previous analyses of SDP clustering

either assume sub-Gaussian data [YS16] or consider similarity matrices with independence

assumptions [CX14; YSC18] that might not hold in general, and do not hold for our AddS-3

and AddS-4 similarities described in the next section. In contrast, the deterministic criteria

stated in Proposition 5 make the result applicable in more general settings.

7.3 Similarities from Passive Comparisons

We present two new similarity functions computed from passive comparisons (AddS-3 and

AddS-4) and guarantees for recovering planted clusters using SDP-λ in conjunction with

these similarities. [KL17] introduced pairwise similarities computed from triplets. A quadru-

plets variant was proposed by [GPL19]. These similarities, detailed in Appendix 7.4, are

positive-definite kernels and have multiplicative forms. In contrast, we compute the simi-

larity between items i, j by simply adding binary responses to comparisons involving i and

j.

Similarity from quadruplets. We construct the additive similarity for quadruplets, re-

ferred to as AddS-4, in the following way. Recall the definition of Q in Equation (7.1) and

for every i ̸= j, define

Hij =
∑
r ̸=s

(
I{(i,j,r,s)∈Q} − I{(r,s,i,j)∈Q}

)
, (AddS-4)
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where I{·} is the indicator function. The intuition is that if i, j are similar (ζij is large), then

for every observed tuple i, j, r, s, ζij > ζrs is more likely to be observed. Thus, (i, j, r, s)

appears in Q more often than (r, s, i, j), and Hij is a (possibly large) positive term. On

the other hand, smaller ζij leads to a negative value of Hij . Under the aforementioned

planted model with clusters of size n1, . . . , nκ, one can verify that Hij indeed reveals the

planted clusters in expectation since if i, j belong to the same planted cluster, then E[Hij ] =

pϵδ
∑
ℓ∈[k]

nℓ(n− nℓ)
2

, and E[Hij ] = −pϵδ
∑
ℓ∈[k]

(
nℓ
2

)
otherwise. Thus, in expectation, the

within cluster similarity exceeds the inter-cluster similarity by pϵδ
(
n
2

)
.

Similarity from triplets. The additive similarity based on passive triplets AddS-3 is given

by

Hij =
∑
r ̸=i,j

(
I{(i,j,r)∈T } − I{(i,r,j)∈T }

)
+
(
I{(j,i,r)∈T } − I{(j,r,i)∈T }

)
(AddS-3)

for every i ̸= j. The AddS-3 similarity Hij aggregates all the comparisons that involve both

i and j, with either i or j as the reference item. Similar to the case of AddS-4, Hij tends

to be positive when ζij is large, and negative for small ζij . One can also verify that, under

a planted model, the expected within cluster AddS-3 similarity exceeds the inter-cluster

similarity by pϵδ(n− 2).

A significant advantage of AddS-3 and AddS-4 over existing similarities is in terms of compu-

tational time for constructing H. Unlike existing kernels, both similarities can be computed

from a single pass over T or Q. In addition, the following result shows that the proposed

similarities can exactly recover planted clusters using only a few (near optimal) number of

passive comparisons.

Theorem 17 (Cluster recovery using AddS-3 and AddS-4 [PEG20]). Let N∗ denote the

normalised clustering matrix corresponding to the true partition, and nmin be the size of

the smallest planted cluster. Given the triplet or the quadruplet setting, there exist absolute

constants c1, c2, c3, c4 > 0 such that, with probability at least 1− 1
n , N

∗ is the unique optimal

solution of SDP-λ if δ satisfies c1

√
n lnn

nmin
< δ ≤ 1 , and one of the following two conditions

hold:

• (triplet setting) H is given by AddS-3, and the number of triplets |T | and the pa-

rameter λ satisfy

|T | > c2
n3(lnn)2

ϵ2δ2n2min

and c3 max

{√
|T | lnn

n
, |T |ϵ

√
lnn

n3
, (lnn)2

}
< λ < c4|T |

ϵδnmin

n2
;

• (quadruplet setting) H is given by AddS-4, and the number of quadruplets |Q| and
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λ satisfy

|Q| > c2
n3(lnn)2

ϵ2δ2n2min

and c3 max

{√
|Q| lnn

n
, |Q|ϵ

√
lnn

n3
, (lnn)2

}
< λ < c4|Q|

ϵδnmin

n2
.

The condition on δ and the number of comparisons ensure that the interval for λ is non-

empty.

This result shows that given a sufficient number of comparisons, one can exactly recover the

planted clusters using SDP-λ with an appropriate choice of λ. In particular, if there are

κ planted clusters of similar sizes and δ satisfies the stated condition, then recovery of the

planted clusters with zero error is possible with only Ω
(
κ2

ϵ2δ2n(lnn)
2
)

passively obtained

triplets or quadruplets. In this particular context, we make a few important remarks about

the sufficient conditions.

Remark 8 (Comparison with existing results). For fixed κ and fixed ϵ, δ ∈ (0, 1], The-

orem 17 states that Ω
(
n(lnn)2

)
passive comparisons (triplets or quadruplets) suffice to

exactly recover the clusters. This significantly improves over the result of [GPL19] stating

that Ω
(
n3.5 lnn

)
passive quadruplets are sufficient in a planted setting, and the fact that

Ω
(
n3
)
triplets are necessary in the worst case [EZK18].

Remark 9 (Dependence of the number of comparisons on the noise levels ϵ, δ). When

one can actively obtain comparisons, [EZK18] showed that it suffices to query Ω
(
n ln

(
n
ϵ

))
triplets. Compared to the ln

(
1
ϵ

)
dependence in the active setting, the sufficient number

of passive comparisons in Theorem 17 has a stronger dependence of 1
ϵ2 on the crowd noise

level ϵ. While we do not know whether this dependence is optimal, the stronger criterion

is intuitive since, unlike the active setting, the passive setting does not provide repeated

observations of the same comparisons that can easily nullify the crowd noise. The number of

comparisons also depends as 1
δ2 on the inherent noise level, which is similar to the conditions

in [GPL19].

Theorem 17 states that exact recovery primarily depends on two sufficient conditions, one

on δ and the other on the number of passive comparisons (|T | or |Q|). The following two

remarks show that both conditions are necessary, up to possible differences in logarithmic

factors.

Remark 10 (Necessity of the condition on δ). The condition on δ imposes the condition

of nmin = Ω
(√

n lnn
)
. This requirement on nmin appears naturally in planted problems.

Indeed, assuming that all κ clusters are of similar sizes, the above condition is equivalent to

a requirement of κ = O
(√

n
lnn

)
and it is believed that polynomial time algorithms cannot

recover κ≫ √n planted clusters [CX14, Conjecture 1].
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Remark 11 (Near-optimal number of comparisons). To cluster n items, one needs to ob-

serve each example at least once. Hence, one trivially needs at least Ω (n) comparisons

(active or passive). Similarly, existing works on actively obtained comparisons show that

Ω (n lnn) comparisons are sufficient for learning in supervised or unsupervised problems

[HGL17; EZK18; GPL19]. We observe that, in the setting of Remark 8, it suffices to

have Ω
(
n(lnn)2

)
passive comparisons which matches the necessary conditions up to loga-

rithmic factors. However, the sufficient condition on the number of comparisons becomes

Ω
(
κ2n(lnn)2

)
if κ grows with n while ϵ and δ are fixed. It means that the worst case of

κ = O
(√

n
lnn

)
, stated in Remark 10, can only be tackled using at least Ω

(
n2 lnn

)
passive

comparisons.

Remark 12 (No new information beyond Ω
(
n2/ϵ2

)
comparisons). Theorem 17 shows that

for large n and Ω
(
n2/ϵ2

)
number of comparisons, the condition for exact recovery of the

clusters is only governed by the condition on δ as the interval for λ is always non empty.

It means that, beyond a quadratic number of comparisons, no new information is gained

by observing more comparisons. This explains why significantly fewer passive comparisons

suffice in practice than the known worst-case requirements of Ω
(
n3
)
passive triplets or

Ω
(
n4
)
passive quadruplets.

We conclude our theoretical discussion with a remark about recovering planted clusters when

the pairwise similarities ζij are observed. The presented methods are near optimal even in

this setting.

Remark 13 (Recovering planted clusters for non-parametric Fin, Fout). Theoretical studies

in the classic setting of clustering with observed pairwise similarities {ζij : i < j} typically
assume that the distributions Fin and Fout for the pairwise similarities are Bernoulli (in

unweighted graphs), or take finitely many values (labelled graphs), or belong to exponential

families [CX14; AJC15; YP16]. Hence, the applicability of such results are restrictive.

Recently, [XJL20] considered non-parametric distributions for Fin, Fout, and presented a

near-optimal approach based on discretisation of the similarities into finitely many bins.

Our work suggests an alternative approach: compute ordinal comparisons from the original

similarities and use clustering on AddS-3 or AddS-4. Theorem 17 then guarantees, for any

non-parametric and continuous Fin and Fout, exact recovery of the planted clusters under a

near-optimal condition on δ.

7.4 Existing Comparison Based Similarities and Kernel Functions

The literature on ordinal embedding from triplet comparisons is extensive [JN11; AC17]. In

contrast, the idea of directly constructing similarity or kernel matrices from the comparisons,

without embedding the data in an Euclidean space, is rather new. Such an approach is

known to be significantly faster than embedding methods, and provides similar or sometimes
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better performances in certain learning tasks. To the best of our knowledge, there are

only two works that learn kernel functions from comparisons [KL17; GPL19], while the

works of [JJN16] and [MJN17] estimate a Gram (or kernel) matrix from the triplets, which

is then further used for data embedding. In this section, we describe the aforementioned

approaches for constructing pairwise similarities from comparisons. Through this discussion,

we illustrate the fundamental difference between the proposed additive similarities, AddS-3

and AddS-4, and the existing kernels that are of multiplicative nature [KL17; GPL19].

Kernels from ordinal data were introduced by [KL17], who proposed two kernel functions

(named k1 and k2) based on observed triplets. The kernels originated from the notion of

Kendall’s τ correlation between two rankings, and k1 was empirically observed to perform

slightly better. We mention this kernel function, which we refer to as a multiplicative triplet

kernel (MulK-3). For any distinct i, j ∈ [n], the MulK-3 similarity is computed as

Hij =

∑
r<s

(
I{(i,r,s)∈T } − I{(i,s,r)∈T }

)(
I{(j,r,s)∈T } − I{(j,s,r)∈T }

)
√
|{(ℓ, r, s) ∈ T : ℓ = i}|

√
|{(ℓ, r, s) ∈ T : ℓ = j}|

(MulK-3)

where T is the set of observed triplets. Note that this kernel does not consider comparisons

involving ζij but, instead, uses multiplicative terms indicating how i and j behave with

respect to every pair r, s. For uniform sampling with rate p ≫ lnn
n2 , the denominators in

MulK-3 are approximately p
(
n
2

)
for every i ̸= j. Hence, it suffices to focus only on the

numerator. [GPL19] proposed a kernel similar to MulK-3 for the case of quadruplets, which

is referred to as multiplicative quadruplet kernel (MulK-4). For i ̸= j, it is given by

Hij =
∑
ℓ ̸=i,j

∑
r<s

(
I{(i,ℓ,r,s)∈Q} − I{(r,s,i,ℓ)∈Q}

)(
I{(j,ℓ,r,s)∈Q} − I{(r,s,j,ℓ)∈Q}

)
. (MulK-4)

[GPL19] studied MulK-4 in the context of hierarchical clustering, and showed that it re-

quires O
(
n3.5 lnn

)
passive quadruplet comparisons to exactly recover a planted hierarchical

structure in the data. Combining their concentration results with Proposition 5 shows that

the same number of passive quadruplets suffices to recover the planted clusters considered

in this work. Note that both MulK-3 and MulK-4 kernel functions have a multiplicative

nature since each entry is an aggregate of products. This is essential for their positive

semi-definite property. In contrast, the proposed AddS-3 and AddS-4 similarities simply

aggregate comparisons involving the pairwise similarity wij , and hence, are not positive

semi-definite kernels.

We also mention the work on fast ordinal triplet embedding (FORTE) [MJN17], which

learns a metric from the given triplet comparisons. One can easily adapt the formulation to

that of learning a kernel matrix K ∈ Rn×n from triplets. Consider the squared distance in

the corresponding reproducing kernel Hilbert space (RKHS), d2K(i, j) = Kii − 2Kij +Kjj .

Assuming that the triplets adhere to the distance relation in the RKHS, it is easy to see
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that when a comparison of t = {i, r, s} with i as pivot is available, then

yt := I{(i,r,s)∈T } − I{(i,s,r)∈T } = sign
(
d2K(i, r)− d2K(i, s)

)
= sign (Krr − 2Kir −Kss + 2Kis) ,

which is the sign of a linear map of K, which we can denote as sign(⟨Mt,K⟩) for some

Mt ∈ Rn×n. One can learn the optimal kernel matrix, that satisfies most triplet comparisons,

by minimising the empirical loss
1

|T |
∑
t∈T

ℓ(yt⟨Mt,K⟩) with positive definiteness constraints

for K, where ℓ is a loss function (log loss is suggested by [JJN16]).

7.5 Experiments

The goal of this section is three-fold: present a strategy to tune λ in SDP-λ; empirically val-

idate our theoretical findings; and demonstrate the performance of the proposed approaches

on real datasets.

Choosing λ and estimating the number of clusters based on Theorem 17. Given

a similarity matrix H, the main difficulty involved in using SDP-λ is tuning the parameter

λ. [YSC18] proposed the algorithm SPUR to select the best λ as

λ∗ = argmax
0≤λ≤λmax

∑
i≤kλ σi(Nλ)

Tr (Nλ)

where Nλ is the solution of SDP-λ, κλ is the closest integer to Tr (Nλ) and an estimate of the

number of clusters, σi(Nλ) is the i-th largest eigenvalue of Nλ, and λmax is a theoretically

well-founded upper bound on λ. The maximum of the above objective is 1, achieved when

Nλ has the same structure as N∗ in Proposition 5. In our setting, Theorem 17 gives an upper

bound on λ that depends on ϵ, δ and nmin which are not known in practice. Furthermore, it

is computationally beneficial to use the theoretical lower bound for λ instead of using λ ≥ 0

as suggested in SPUR.

We propose to modify SPUR based on the fact that the estimated number of clusters k

monotonically decreases with λ. Given Theorem 17, we choose λmin =
√
c(lnn)/n and

λmax = c/n, where c = |Q| or |T |. The trace of the SDP-λ solution then gives two estimates

of the number of clusters, κλmin
and κλmax

, and we search over κ ∈ [κλmax
, κλmin

] instead

of searching over λ—in practice, it helps to search over the values max{2, κλmax
} ≤ κ ≤

κλmin + 2. We select κ that maximises the above SPUR objective, where N is computed

using a simpler SDP [YSC18]:

maxN ⟨H,N⟩ (SDP-κ)

s.t. N ≥ 0, N ⪰ 0, N1 = 1, Tr (N) = κ.
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Algorithm 1: Comparison-based SPUR

input : The number of examples n and the comparisons T or Q.
begin

Define c = |T | or |Q|.
Let H be obtained with AddS-3 or AddS-4.

Define λmin =
√

c(ln c)
n and λmax = c

n .

Nλmin , Nλmax ← SDP-λmin, SDP-λmax on H.
κλmin , κλmax ← ⌊Tr (Nλmin)⌉, ⌊Tr (Nλmax)⌉.
for κ = max{2, κλmax

} to κλmin
+ 2 do

Solve SDP-κ to obtain Nκ.
end

Choose κ̂ = argmax
κ

∑
i≤κ σi(Nκ)

Tr(Nκ)
, where σi(Nκ) denotes the i-th largest eigenvalue of

Nκ.
end
output: Number of clusters κ̂, Nκ̂.

The overall approach is summarized in Algorithm 1.

Clustering with AddS-3 and AddS-4.3 For the proposed similarity matrices AddS-3 and

AddS-4, the above strategy provides the optimal number of clusters κ and a corresponding

solution Nκ of SDP-κ. The partition is obtained by clustering the rows of Nκ using k-

means. Alternative approaches, such as spectral clustering, lead to similar performances.

In the last step of our approach, we use k-means to cluster the learned matrix Nκ. We

experimentally demonstrate here that the partition obtained is, in fact, independent of the

clustering algorithm used in this step. Hence, in Figure 7.2, we compare spectral clustering

with k-means. As in the main previsou discussion, we here consider varying the number of

observations, |T |, |Q| and varying the crowd noise ϵ for both the setting where κ is estimated

by SPUR and where we consider κ to be known. There is no differences between the ARI

obtained when using k-means or spectral clustering.
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Figure 7.2: Comparing clustering algorithms to partition N in the last step. Using k-means
or spectral clustering does not affect the output of our approach.

Evaluation function. We use the Adjusted Rand Index (ARI) [HA85] between the ground

3We provide a Python implementation on https://github.com/mperrot/AddS-Clustering

96

https://github.com/mperrot/AddS-Clustering


7.5. EXPERIMENTS

n(lnn)1 n(lnn)3.5 n(lnn)6

|T |, |Q|

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

AddS-4

MulK-4

AddS-3

MulK-3

0.4 0.6 0.8 1.0
ε

0.0

0.2

0.4

0.6

0.8

1.0

AddS-3

MulK-3

n(lnn)3

n(lnn)4

U, β
n(lnn)3

U, β
n(lnn)4

U, N
n(lnn)3

U, N
n(lnn)4

0.0

0.2

0.4

0.6

0.8

1.0

AddS-3

MulK-3
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(b) Vary the external noise
level, ϵ
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Figure 7.3: ARI of various methods on the planted model (higher is better). We vary:
(7.3a) the number of comparisons |T | and |Q|; (7.3b) the crowd noise level ϵ; (7.3c) the
distributions Fin and Fout.

truth and the predictions. The ARI takes values in [−1, 1] and measures the agreement

between two partitions: 1 implies identical partitions, whereas 0 implies that the predicted

clustering is random. In all the experiments, we report the mean and standard deviation

over 10 repetitions.

7.5.1 Simulated Data with Planted Clusters

Overview. We generate data using the planted model from Section 7.1 and verify that the

learned clusters are similar to the planted ones. As default parameters we use n = 1000,

κ = 4, ϵ = 0.75, |T | = |Q| = n(lnn)4 and Fin = N
(√

2σΦ−1
(
1+δ
2

)
, σ2
)
, Fout = N

(
0, σ2

)
with σ = 0.1 and δ = 0.5. In each experiment, we investigate the sensitivity of our method

by varying one of the parameters while keeping the others fixed. We use SPUR to estimate

the number of clusters. As baselines, we use SDP-κ (using the number of clusters estimated

by our approaches) followed by k-means with two comparison based multiplicative kernels:

MulK-3 for triplets [KL17] and MulK-4 for quadruplets [GPL19].

In Figure 7.3a, we vary the number of sampled comparisons. Unsurprisingly, our approaches

are able to exactly recover the planted clusters using as few as n(lnn)3 comparisons—

extra lnn factor compared to Theorem 17 accounts for ϵ, δ and constants. MulK-3 and

MulK-4 respectively need n(lnn)4.5 and n(lnn)5.5 comparisons (both values exceed n2 for

n = 1000). In all our experiments, AddS-3 and AddS-4 have comparable performance while

MulK-3 is significantly better than MulK-4. Thus we focus on triplets in the subsequent

experiments for the sake of readability. In Figure 7.3b, we vary the external noise level

ϵ. Given n(lnn)4 comparisons, AddS-3 exactly recovers the planted clusters for ϵ as small

as 0.25 (high crowd noise) while, given the same number of comparisons, MulK-3 only

recovers the planted clusters for ϵ > 0.9. Figure 7.3c shows that AddS-3 outperforms

MulK-3 even when different distributions for Fin and Fout are considered (Uniform+Beta

or Uniform+Normal; details are discussed below). It also shows that the distributions

affect the performances, which is not evident from Theorem 17, indicating the possibility of

a refined analysis under distributional assumptions.
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We now provide additional experiments on our planted model. We demonstrate that, given

a sufficient number of comparisons, SPUR correctly estimates the number of clusters. We

give details on the distributions used in Figure 7.3c. Finally, we consider several additional

experiments where we vary the planted model parameters.

Compare SPUR with known k.An important question is how good is SPUR at estimat-

ing the true number of clusters. We illustrate this in Figure 7.4. We start by comparing

the first two columns, showing how the ARI changes for various parameters of the planted

model. In the setting of |Q|, |T | = n(lnn)3 we see that using a known number of clusters

outperforms SPUR, especially in parameter ranges that are harder to cluster (e.g. small

δ, ϵ or for a larger number of clusters). If we consider |Q|, |T | = n(lnn)4, SPUR correctly

estimates the number of clusters and thus we omit the plots with known k.

Experimental details for changing Fin, Fout in the planted model In this section, we

give implementation details on the different distributions considered in Figure 7.3c. In the

following let ϕ be the normal pdf and Φ the normal cdf. Recall that, in all the experiments,

we fix δ = 0.5 as the default.

Parameters for Fin and Fout normal distributions. Let Fin = N (µin, σ) and Fout =

N (µout, σ). We fix σ = 0.1 and µout = 0. Using δ we can compute µin. Indeed, in

this case, the cumulative distribution function is known and, thus, by setting it equal to

Pζ∼Fin,ζ′∼Fout
(ζ > ζ ′) = 1+δ

2 for some δ ∈ (0, 1] (as given in Equation (7.3)) we directly

get the δ defined in Section 7.1: δ = 2Φ
(
(µin − µout)/(

√
2σ)
)
− 1. Then, assuming that

µout = 0, we get µin =
√
2σΦ−1

(
1+δ
2

)
.

Parameters for Fin and Fout Beta distributions. Let Fin = Beta(α, β), Fout = Beta(α′, β′).

We set α′ = β′ = 1 such that Fout = Beta(1, 1) = Unif(0, 1). We can then compute

Pζ∼Beta(α,β),ζ′∼Beta(1,1)(ζ > ζ ′) = Eζ

[∫ ζ

0

dζ ′

]
= Eζ [ζ] =

α

α+ β

where the last line follows from the mean of the Beta distribution. Setting this equal to 1+δ
2

and solving for α gives: α = β
(

1+δ
1−δ

)
. In our experiments, we fix β = 2.

Parameters for Fin Normal and Fout Uniform. Let Fin = N (µ, 0), Fout = Unif(0, 1). To set

µ, we compute:

Pζ∼N (µ,0),ζ′∼Unif(0,1)(ζ > ζ ′) =

∫ ∞

0

ϕ(ζ − µ)dζ
[∫ min(w,1)

0

dζ ′

]

=

∫ 1

0

ζϕ(ζ − µ)dζ +
∫ ∞

1

ϕ(ζ − µ)dζ + µ (Φ(1− µ)− Φ(−µ))

=1 + ϕ(−µ)− ϕ(1− µ) + (µ− 1)Φ(1− µ)− µΦ(−µ)

Solving numerically for µ gives µ = 1+δ
2 .
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Influence of different planted model parameters In this section we present additional

experiments where we vary various parameters of the planted model. Recall that we consider

the following parameters as default: n = 1000, κ = 4, ϵ = 0.75, |T | = |Q| = n(lnn)4 and

Fin = N
(√

2σΦ−1
(
1+δ
2

)
, σ2
)
, Fout = N

(
0, σ2

)
with σ = 0.1 and δ = 0.5.

Number of samples n, first row in Figure 7.4. We can first note that for |Q|, |T | = n(lnn)3

there is no difference in the behaviour between SPUR and known k. Both AddS-3 and

AddS-4 achieve full recovery while MulK-3 and MulK-4 predictions are random. To learn

somewhat meaningful partitions with MulK-3, one needs to increase the number of obser-

vations to n(lnn)4. However, even with this many comparisons, MulK-4 still learns random

clusters.

Intrinsic noise δ, second row in Figure 7.4. Using |Q|, |T | = n(lnn)3, we see that, for both

SPUR and known k, AddS-3 and AddS-4 exactly recover the clusters even when the intrinsic

noise is high, that is δ = 0.4. MulK-3 and MulK-4 can only make random predictions in this

case. When the number of observations increases to n(lnn)4, AddS-3 and AddS-4 exactly

recover the clusters even for values of δ that are as small as 0.25. In this case, MulK-4 still

predicts random clusters, while MulK-3 is able to recover the clusters when the intrinsic

noise is sufficiently small, that is δ ≥ 0.6.

Crowd noise ϵ, third row in Figure 7.4. This parameter was already analyzed previously.

The plots are recalled here for the sake of completeness.

Number of clusters κ, fourth row in Figure 7.4. Finally, we vary the number of planted

clusters. Here, we observe the most noticeable difference between SPUR and known κ.

For |Q|, |T | = n(lnn)3, AddS-3 and AddS-4 with SPUR achieve perfect recovery for up

to five clusters. While we notice a similar behaviour for AddS-3 and AddS-4 with known

κ, the drop in ARI only starts for κ > 7 and is far less important than with SPUR. For

n(lnn)4 observations AddS-3 and AddS-4 consistently recover all the clusters. On the other

hand, MulK-3 only recovers clusters up to κ = 3 (here, MulK-3 uses the number of clusters

estimated by AddS-3 with SPUR, that is κ = 3). Once again, MulK-4 can only make random

predictions.

7.5.2 MNIST Clustering with Comparisons

We consider two datasets which are subsets of the MNIST test dataset [LC10a] that originally

contains 10000 examples roughly equally distributed among the ten digits: (i) a subset of

2163 examples containing all the 1 and 7 (MNIST 1vs.7 ), two digits that are visually very

similar, and (ii) a randomly selected subset of 2000 examples drawn without replacement

and covering all 10 classes (MNIST 10 ). In both cases, to generate the comparisons, we

use the Gaussian similarity on a 2-dimensional embedding of the entire MNIST test data

constructed with t-SNE [Maa14] and normalized so that each example lies in [−1, 1]2. We
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Figure 7.4: Further experiments on the planted model. On the one hand, SPUR needs
sufficiently many comparisons to correctly estimate the number of underlying clusters. On
the other hand, our approaches are not overly sensitive to changes in the planted model
parameters and are able to exactly recover the planted clusters with n(lnn)3 comparisons
even in fairly difficult cases (small δ, high κ, . . . ). Furthermore, given n(lnn)4 comparisons,
our approaches are able to exactly recover the planted clusters in all the considered cases.
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Figure 7.5: Experiments on MNIST using the cosine similarity. The absolute ARI perfor-
mances are different from the Gaussian similarity. However, the overall trend is preserved
and, given sufficiently many comparisons, all the ordinal baselines reach the performance of
k-means on the original data.

focus on the triplet setting and we randomly and uniformly draw, without replacement,

between n(lnn)2 and n(lnn)4 comparisons to be observed by the different approaches. We

also consider two additional baselines. First, we use t-STE [MW12], an ordinal embedding

approach, to embed the examples in 2 dimensions, and then cluster them using k-means on

the embedded data. Second, we directly use k-means on the normalized data obtained with

t-SNE. The latter is a baseline with access to Euclidean data instead of triplet comparisons.

We now consider additional experiments on the MNIST dataset. First, we consider a second

similarity measure to generate the triplets. Then, we illustrate the partitions obtained with

AddS-3 with known κ and SPUR respectively.

Gaussian similarity. We previously used the Gaussian similarity to generate the compar-

isons. More precisely, we compute the similarity between two examples xi and xj as

ζij = exp

(
∥xi − xj∥22

γ2

)
with γ = 1.

Cosine similarity. Instead of the Gaussian similarity, we could consider alternatives to

generate the comparisons. For example, the Cosine similarity:

ζij =
⟨xi, xj⟩
∥xi∥2 ∥xj∥2

.

In Figure 7.5, we show that using this alternative similarity affects the absolute results of

the considered approaches. However, it does not change the overall trend, that is, as the

number of comparisons increases, AddS-3 converges to the baseline of k-means with access

to the original similarities.

Clustering using known k. Figure 7.6a shows the t-SNE embedding of 2000 MNIST samples

of all ten classes, where we see a clear separation between some classes (for example, 0 and

1) and very close embedding between others (for example, 1 and 9). Note that the classes

obtained by AddS-3 are shown up to permutations and may not reflect the majority label

in the different clusters. Further note that the data presented here corresponds to a single
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(a) MNIST embedding with true labels
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(b) AddS-3 κ = 10, |T | = n(lnn)2
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(c) AddS-3 κ = 10, |T | = n(lnn)3
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(d) AddS-3 κ = 10, |T | = n(lnn)4

Figure 7.6: t-SNE embedding of 2000 MNIST samples with (7.6a) true labeling and (7.6d)–
(7.6b) clusters obtained by AddS-3 with known κ = 10 and varying number of observations.
The classes are given up to permutations and may not reflect the majority label in each
cluster.

repetition out of the 10 repetitions used to compute the mean ARI (with standard deviation).

In Figure 7.6d, we see that, for |T | = n(lnn)2, the learned partition is not very representative

of the original labels. Figure 7.6c shows that, when the number of comparisons increases to

|T | = n(lnn)3, the recovery ability of AddS-3 is greatly improved. However, the obtained

partitions are not entirely satisfactory. Finally, Figure 7.6b shows that, when the number of

comparisons further increases to |T | = n(lnn)4, the clustering obtained is close to the true

labeling and most clusters are correctly identified.

Clustering using SPUR. In this second set of experiments, we extend our observations from

the previous paragraph to the labeling obtained by AddS-3 using SPUR. One can note

that SPUR always underestimates the number of clusters. Hence, in Figure 7.7a, with

|T | = n(lnn)3, the number of predicted clusters is κ = 6 while, in Figure 7.7b, with

|T | = n(lnn)4, the number of predicted clusters is κ = 8. This explain the slightly worse

behaviour of SPUR compared to known κ in Figure 7.9b. Nevertheless, the difference in

average ARI is not so significant when |T | = n(lnn)4, suggesting that 8 clusters is, in fact,

a good estimate of the number of clusters that can reliably be distinguished by the different

methods.
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(b) AddS-3 SPUR, |T | = n(lnn)4

Figure 7.7: t-SNE embedding of 2000 MNIST samples with the clusters predicted by AddS-3
using SPUR and varying number of comparisons. The classes are given up to permutations
and may not reflect the majority label in each cluster.

For MNIST 1vs.7 (Figure 7.9a), |T | = n(lnn)2 is sufficient for AddS-3 to reach the perfor-

mance of k-means and t-STE while MulK-3 requires n(lnn)3 triplets. Furthermore, note

that AddS-3 with known number of clusters performs similarly to AddS-3 using SPUR, in-

dicating that SPUR estimates the number of clusters correctly. If we consider MNIST 10

(Figure 7.9b) and |T | = n(lnn)2, AddS-3 with known κ outperforms AddS-3 using SPUR,

suggesting that the number of comparisons here is not sufficient to estimate the number

of clusters accurately. Moreover, AddS-3 with known κ outperforms MulK-3 while being

close to the performance of t-STE. Finally for n(lnn)4 triplets, all ordinal methods converge

to the baseline of k-means with access to original data. The ARI of AddS-3 SPUR im-

proves when the number of comparisons increases due to better estimations of the number

of clusters—estimated k increases from 3 for |T | = n(lnn)2 up to 9 for |T | = n(lnn)4.

7.5.3 Real Comparison Based Data.

First, we consider the Food dataset [WKB14] that contains 100 examples and 190376 triplet

comparisons. Unfortunately, there is no ground truth and, thus, quantitatively assessing

the quality of the obtained partitions is difficult. Second, we consider the Car dataset4

[KL16]. It contains 60 examples grouped into 3 classes (SUV, city cars, sport cars) with 4

outliers, and exhibits 12112 triplet comparisons. For this dataset, AddS-3 SPUR estimates

κ = 2 instead of the correct 3 clusters. Figure 7.9c considers all ordinal methods with κ = 2

and κ = 3, and shows the pairwise agreement (ARI) between different methods and also

with the true labels. While (MulK-3) with κ = 3 agrees the most with the true labels, all

the clustering methods agree well for κ = 2 (top-left 3 × 3 block). Hence, the data may

have another natural clustering with two clusters, suggesting possible discrepancies in how

4The Car dataset [KL16] is a comparison based dataset that contains 60 examples grouped into 3 classes
(SUV, city cars, sport cars) with 4 outliers. This dataset originally comes with a set of 6056 comparisons of
the form “xi is most central in the triple xi, xj , xk.” Each of these comparisons corresponds to two triplets:
“xj is more similar to xi than to xk” and “xk is more similar to xi than to xj .” Hence, we have access to
12112 triplet comparisons.
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Figure 7.8: ARI between the clustering obtained by the different baselines. AddS-3 and
AddS-4 with SPUR both estimate that the number of cluster is κ = 2. There is a high
degree of agreement between the different approaches.
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Figure 7.9: Experiments on real datasets. (7.9a)–(7.9b) ARI on MNIST; (7.9c) ARI similar-
ity matrix comparing the clusters obtained by the different methods on car (darker means
more agreement).

different people judge the similarities between cars (for instance, color or brand instead of

the specified classes).

Food DatasetIn addition to the Car dataset we now look at a second comparison based

dataset called Food [WKB14]. It contains 100 food images and comes with 190376 triplet

comparisons. Since there are no ground truth labels for the food dataset, we use the number

of clusters estimated by SPUR for all methods and plot, in Figure 7.8, the similarity matrix

between the different clustering approaches considered. Here, there is a high degree of

agreement between all the clustering methods. Thus, most approaches predict the same

clusters up to minor differences for a few data points.

7.6 Discussion

It is generally believed that a large number of passive comparisons is necessary in comparison

based learning. Existing results on clustering require at least Ω
(
n3
)
passive comparisons in

the worst-case or under a planted framework. We show that, in fact, Ω
(
n(lnn)2

)
passive

comparisons suffice for accurately recovering planted clusters. This number of comparisons

is near-optimal, and almost matches the number of active comparisons typically needed

for learning. Our theoretical findings are based on two simple approaches for constructing

pairwise similarity matrices from passive comparisons (AddS-3 and AddS-4). The present

analysis is in a restricted framework, where all within (or inter) cluster similarities are as-

sumed to be identically distributed. Based on existing work on robustness of SDPs [MPW16],

we believe that our theoretical result holds in a more general semi-random setting. Lastly,
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while we studied the merits of AddS-3 and AddS-4 in the context of clustering, they could be

used for other problems such as semi-supervised learning, data embedding, or classification.

Broader Impact This work primarily has applications in the fields of psychophysics and

crowdsourcing, and more generally, in learning from human responses. Such data and learn-

ing problems could be affected by implicit biases in human responses. However, this latter

issue is beyond the scope of this work and, thus, was not formally analysed.
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Chapter 8

Outlook

In this thesis, we took a journey through different data settings and algorithms and we

worked towards a better understanding of the role of unlabelled data. With the number

of covered settings and algorithms being so broad it is clear that a ‘complete’ overview of

the topic would go beyond the scope of any thesis. In addition the area of learning from

unlabelled data is constantly evolving with new data settings and algorithms emerging. So

how broadly applicable are the findings of this work and what are its implications? While

translating theoretical results from one model or data setting to another is often not directly

possible, results such as the ones presented in this thesis can build a foundation. Consider

as an example the two contrastive losses proposed in Chapter 4. While from an engineering

standpoint, the two are very similar (one squares the loss term with regard to the negative

sample) the theoretical analysis is very different. Nevertheless, both build on the proposed

representer theorem (Theorem 9) and it is reasonable to assume that a similar analysis can

be extended to other SSL losses under orthogonal constraints.

Let us therefore outline how the different parts of this thesis build such foundations. In this

final chapter, we revisit the main data settings and algorithms considered in this thesis and

ask what major questions or directions emerge from them. To approach this question we first

consider the viewpoint of theoretical tools in Section 8.1. We start from traditional learning

theoretical bounds and explore where we see their future applications and limitations. From

there we highlight how an analysis through dynamics and infinite width networks can com-

plete the picture in cases where learning theoretical bounds fail and how this work builds

the foundation for such an analysis in the SSL setting. Finally we propose advances for the

main proposed algorithms in Section 8.2.

8.1 From Learning Theoretical Bounds to and Infinite Width Analysis

Learning theoretical analysis of Kernel methods. In the supervised setting and in

the context to traditional models such as Kernels, learning theoretical bounds still play

an important role [SSM97]. We observe in Chapter 4 & 5 that this picture still applies
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to the unlabelled data setting when considering Kernel versions of popular neural network

approaches. As we expect both chapters to also build the foundation for future developments

of additional Kernel methods (e.g. under different SSL losses) this outlines one of the main

areas of future applications for traditional learning theoretical measures. In those cases

traditional bounds still provide precise tools that give valuable insights and guarantees for

models.

Beyond learning theoretical analysis of GCNs. Moving away from the Kernel set-

ting the application becomes more nuanced and a blind application of established learning

theoretical measures does not always provide the full picture. While the analysis of GCNs

using Rademacher complexity provided some good characterizations it also outlined that

even under strong model assumptions such bounds will remain loose and can only model

certain trends as shown in the behaviour with depth. Several follow-up works to [EVG21],

underline this assessment as they mainly support our finding that to obtain more informa-

tive bounds it is crucial to pick the ‘right’ complexity measures. A promising candidate

PAC learning [LUZ21; Ju+23] allowing for numerically tighter bounds but still suffers from

some of the same limitations (e.g. with regards to depth and overparameterization). In

addition, most of those approaches do not provide results that model the influence of the

graph properties on the generalization behavior in detail as we could show in Theorem 2

through an analysis under planted model assumptions. However this is central if considering

this problem from the perspective of unlabelled data. While it could be interesting to refine

existing PAC bounds [Ju+23] by considering planted graph model settings all those settings

have the limitations of traditional learning theoretical bounds in common (e.g. with regards

to modeling behaviour in the overparameterized regime) and are therefore inherently limited

in their explainability. Let us outline possible path that can lead beyond those limitations

Alternative Analysis Approaches. In the broader deep learning context, there has been

a growing call for alternatives to standard learning theoretical bounds since they do not

adequately capture the behavior of deep models [Ney+17]. To this end, different limiting

case analyses have been introduced. In the context of GNNs, it is known that GNNs have

a fundamental connection to belief propagation and message passing [DDS16; Gil+17] and

some theoretical analyses of GNNs have been based on cavity methods and mean field

approaches for supervised [ZLZ20] and transductive settings [KTO19; CBL19]. The central

idea of these approaches is to show results in the limit of the number of iterations. In

another limiting setting, [Du+19a] study GNNs with infinitely wide hidden layers, and derive

corresponding neural tangent kernel [JGH18a; Aro+19b] that can provide generalization

error bounds in the supervised setting. [KBV20] derive continuous versions of GNNs applied

to large random graphs.

From Generalization error bounds to exact risk. Beyond the above approaches the modeling

of generalization error bounds or more precisely the derivation of loss curves can also be

107



8.1. FROM LEARNING THEORETICAL BOUNDS TO AND INFINITE WIDTH
ANALYSIS

approached through the lens of random matrix theory. This direction is interesting as it

allows for very precise bounds and also models the overparameterized regime well. However

this comes at the cost of a high complexity of analysis, making it currently only feasible

for simple models such as lazy trained two-layer networks [MM22] and often under very

strong assumptions on data. In addition even small changes in the considered model re-

quire significant changes in proof techniques. Since we published [EVG21], the basis of

Chapter 2, follow-up works have built on the presented results and addressed several of the

earlier outlined questions. Most importantly a very recent work takes an important step

towards a more exact characterization, by showing that exact risk characterizations are also

possible in simple GCNs under SBM assumptions [Shi+23]. While still performed for sim-

ple GCN models this work allows an exact characterization of risk bounds while taking the

graph information (in the case of [Shi+23], especially the role of homophily in graphs) into

consideration.

Traditional learning theoretical bounds and exact risk computation seem to outline two ex-

tremes of possible approaches to model risk and illustrate the trade-off between expressively,

complexity and flexibility of the analysis. Is there a middle ground that provides helpful

characterizations — maybe even beyond generalization — while being applicable to real

world models?

Towards an infinite width limit analysis of SSL models through dynamics and

kernel models. As discussed previously SSL models have become a central backbone

of state-the-art models [Rad+18; Dev+19], and therefore deriving theoretical guarantees

become increasingly more important. However existing results are mostly restricted to ana-

lyzing the generalization properties of such models [VZ19; STH18; GJJ20; LUZ21; OS20b;

OS20a]. While this is an important aspect as outlined in Chapter 2 it does not completely

characterize the capabilities and limitations of SSL models. A possible approach to answer

questions beyond the generalization error is to build on Chapter 3 & 4 by deriving an NTK

formulation for SSL models.

As outlined in Chapter 4 the first step to adapt the general idea from the supervised setting

[JGH18a] is to note that the analysis of dynamics has to be performed under orthogonal

constraints. We take the first step in the linear setting in Chapter 3 however an extension

to the non-linear setting would make the considered models more relevant. From there as

noted previously we have to rely on the kernel formulation of the SSL model to obtain the

embedding for a given datapoint, which we provide in Chapter 4.

NTK formulations in the supervised setting have been shown to be a useful tool [GPK22]

for theoretical analysis. We conjecture that deriving an NTK formulation in the SSL setting

would allow us to provide similar results for the unlabelled data setting as well. Let us

outline a few interesting directions:
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1. [CGW21] showed that NTKs offer an efficient tool for architecture search in the super-

vised setting as the NTK provides a simple closed-form solution that can be analyzed

without having to consider an expensive hyperparameter search and optimization. As

those properties are not unique to the supervised setting we suggest a similar approach

can be applied to the SSL setting as well.

While this translation from the supervised to the SSL setting here is quite direct, other

quantities are more ambiguous.

2. Robustness in the supervised setting has been studied through the lens of NTK [TK22]

and is usually defined with regard to changes in label prediction. On a high level one

can often consider robustness as the question of how much the inputs can be changed so

that the prediction of the classifier changes. However if only learning of representations,

as is the case in SSL, without a downstream task it is less clear what it means for the

algorithm to be robust. An NTK formation could be a suitable tool to investigate this

question, again due to the closed-form expression that allows for an easier analysis.

3. Beyond the above questions the representation learning setting also opens up new

questions beyond the ones we consider in the supervised setting. The most obvious

question here is the characterization of the learned representations as this would pro-

vide a better understanding of the model and can allow us to derive more precise

guarantees for downstream tasks. We take a first step towards such a result by analyz-

ing the linear dynamics in Theorem 6 however a similar result for non-linear models

and higher dimensional embeddings would be more informative on real-world models.

4. In Chapter 3 we performed our analysis for a specific one hidden layer neural network

architecture. However in the supervised setting NTK have shown to be very versatile

and able to model a large number of network architectures such as deep network

[JGH18a], convolutional networks [Aro+19b] or Graph neural networks [Du+19a].

Therefore an NTK formulation in the SSL setting would allow to analyze point 2 & 3

for a broad range of real world models.

Formal characterization of embeddings from non-linear AEs. While in the previous

section we focused on the SSL setup we can apply the same general idea to other models

in the unlabelled data setting as well. Let us therefore consider the question of an exact

characterization of the embedding obtained by non-linear AEs. A first step would be to

understand the learned representation in the Kernel setting by analyzing the solution learned

by the Kernel AE in Chapter 5. While the derived formulation does not provide a closed form

and therefore no direct characterization we still obtain iterative updated rules in terms of

the Kernel in the feature space. A detailed analysis of this iterative process could provide us

with a precise characterization of the learned latent representation in the Kernel AE setting.

A second step could be the analysis or the infinite width limit. This comes with several
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technical challenges as it has been shown in [LZB20] that for networks with bottlenecks1,

such as is the case for an AE, the corresponding Kernel expression does not stay constant

during training. Without the kernel staying constant, we can not directly apply the approach

presented by [JGH18a] which relies on computing expectations under the distribution of the

weights at initialization. However, as we are not actually interested in the full machine

output but only in the learned embedding and analysis of only the encoder through an

infinite width limit might offer a way to circumvent the problem of bottleneck layers and

offer a way to precisely characterize embeddings obtained by non-linear AEs.

8.2 Algorithmic Advances and Extensions

The main focus of the thesis is in the development of theoretical foundation but this also

goes hand in hand with the development of new algorithms. Therefore we use this final

section to further outline possible future advances.

Learning cluster specific representations. We started out from a theoretical charac-

terization of the latent representations — in this case with regards to preserving cluster-

ing structures — the resulting model also proves very effective in practice. As such more

application-oriented future extensions promise further improvements.

Practically addressing the main downside of the proposed method, that it scales in time and

parameters with the cluster number κ is an important aspect. A possible solution to this

problem is to not tensorize the full architecture but only the mapping to and from the latent

representation. The intuition behind this is that early layers learn high-level features and

final layers the combination of such features, therefore one can still learn a meaningful full

cluster-specific representation by only tensorizing the final mapping layer.

Secondly one can ask if the proposed idea of learning cluster-specific representations can

be extended to models beyond the AE setup. The high-level idea could be extended to

any embedding approach such as SSL models, where now instead of having an encoder

and decoder for each cluster we consider simply an encoding function for each cluster. Both

outlined directions are part of ongoing research and preliminary results show to be promising.

Near-Optimal comparison based clustering. From a theoretical perspective recall that

in the ordinal setup and in the active setting Ω(n lnn) number of comparisons is sufficient

for exact recovery and our proposed algorithm shows that Ω(n(lnn)2) passive triplets or

quadruplets are sufficient for exact recovery and therefore is near-optimal in the number

of required data points. This outlines that the room for theoretical improvements is while

existing, limited. At the same time on the algorithmic side, advances are still possible.

While theoretically sound, our proposed algorithm relies on computing the similarity mea-

sure from the given comparison and then solving the SDP. Therefore a possible future

1Bottleneck in this setting means that there exists a finite width layer between layers that go to infinity.
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direction could be to approach the same problem but from a neural network perspective2.

While, as we also saw in this thesis, the analysis of neural network models is notoriously

complex, and therefore obtaining such precise guarantees as derived in Chapter 7 would be

hard. Nevertheless a possible route would be to aim for proving approximate instead of

exact recovery and trade off preciseness of recovery for faster computation.

2In the setting of learning embeddings from ordinal data this has been shown to be a practically useful
approach. See [Van+23] for a comprehensive overview.
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Appendix A

Proofs

A.1 Proofs for Chapter 2

A.1.1 Proof for Proposition 1

For the hypothesis class over all linear GNNs, that is ψ(x) := x, with binary outputs, the

VC Dimension is given by

VCdim
(
sign ◦F linear

G
)
= min

{
d, rank

(
S
)
, min
j∈[J−1]

{hj}
}
.

Similarly, the VC Dimension for the hypothesis class of GNNs with ReLU non-linearities

and binary outputs, can be bounded as VCdim
(
sign ◦FReLU

G
)
≤ min {rank(S), hJ−1}.

Using the above bounds, it follows that, for any δ ∈ (0, 1), the generalisation error for any

f ∈ sign ◦FG satisfies, with probability 1− δ,

Ln(h)− L̂m(h) ≤
√

8

m

(
min {rank(S), hJ−1} · ln(em) + ln

(
4

δ

))
. (A.1)

Proof. For this proof we will need the following know result on the VC-dimension of linearly

independent points:

Theorem 18 ([Bur98]). Consider some set of m points in Rn. Choose any one of the

points as origin. Then the m points can be shattered by oriented hyperplanes if and only if

the position vectors of the remaining points are linearly independent.

For deriving VCdim
(
sign ◦F linear

G
)
we start with the VC-dimension of the final layer with

F sign
B =

{
f signB (x) := sign (Bw) : w ∈ Rm

}
over an arbitrary matrix B ∈ Rn×m, where

B is later substituted for the linear network. Let rank(B) = r then we show that there

is c ⊂ [n], |c| = r s.t. ∀ b ∈ {±1}r and hsignB (c) = {±1}c. Using SVD we decompose
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B = UmΛV ⊤ and define z⊤1 , · · · , z⊤m ∈ Rk as the rows of U . Using this we rewrite:

Bw =


z⊤1
...

z⊤d

mΛV ⊤w︸ ︷︷ ︸
=a∈Rd

=


z⊤1 a
...

z⊤d a


Rewrite F sign

B as F sign =
{
fa(z) = sign(a⊤z)

}
. Since F sign lies in the class of all homoge-

nious linear classifiers in r dimensions and from orthonormal condition on z it follows that

span ({z1, · · · zn}) = Rr. Using this observation as well as results on the VC-dimension of lin-

ear independent pointsets [Bur98] it follows that VCdim(F sign
B ) = VCdim(F sign) = r. Sub-

stituting B with the linear network and using that for two matrixes B′ and B: rank(B′B) =

min(rank(B′), rank(B)) gives rank
(
B
)
:= rank

(
SH(p)

)
= rank

(
S · · ·SXW (1) · · ·W (p−1)

)
as

the final result.

For extending to the non-linear setting we first note that we can not make a general statement

on the rank of a matrix after applying a non-linearity. That is for some matrix M and non-

linearity ReLU(·) we have no order relation between rank(M) and rank(ReLU(M)). This

can be checked by a simple counterexample. Therefore the above presented proof does not

extend to the hidden layer size but since the last layer is linear the dependency on S persists.

We define the hypothesis class over all linear GNNs where all but the last activation function

are linear ψj(x) := x ∀j ∈ [J − 1] and ψJ(x) := sign(x) as F sign,I
G =

{
f sign,IG (X)

}
and recall

that layer j has dimension hj . Then the VC-Dimension is given by the minimum of the rank

of the adjacency matrix, the dimension of the features and the minimum hidden layer size,

that is,

VCdim
(
F sign,I

G

)
= min

{
d, rank

(
S
)
, min
j∈[J−1]

{hj}
}
. (A.2)

Therefore consider the hypothesis class GNNs with of non-linearities ψj(x) := ReLU(x) ∀j ∈
[J − 1] and ψJ(x) := sign(x): F sign,ReLU

G =
{
f sign,ReLU
G (X)

}
and again compute the VC-

Dimension, similar to the proof shown above, we can note that we lose information on the

hidden layers (and therefore also on d) and the bound becomes

VCdim
(
F sign,ReLU

G

)
≤ min {rank(S), hp−1} , (A.3)

that is, it still depends on the rank of S but only on the last hidden layer dimension.

Following defined we use the a standard result for generalisation e.g. in [SSBD14]. For

δ ∈ (0, 1) any h ∈ FG satisfies

Ln(h)− L̂m(h) ≤

√√√√8
(
VCdim (FG) ln

(
em

VCdim(FG)

)
+ ln

(
4
δ

) )
m

(A.4)
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with probability 1− δ. Applying (A.2) and (A.3) to (A.4) gives the final bound.

A.1.2 Proof of Theorem 1

Consider Fψ,β,ωG ⊆ FψG such that the trainable parameters satisfy ∥bj∥1 ≤ β and ∥Wj∥∞ ≤
ω for every j ∈ [J ]. The transductive Rademacher complexity (TRC) of the restricted

hypothesis class is bounded as

Rm,n(Fψ,β,ωG ) ≤ c1n
2

m(n−m)

J−1∑
j=0

cj2 ∥S∥j∞

+ c3c
J
2 ∥S∥J∞ ∥SX∥2→∞

√
log(n) , (A.5)

where c1 := 2Lψβ, c2 := 2Lψω, c3 := Lψω
√
2/d and Lψ is Lipschitz constant for activation

ψ.

The bound on TRC leads to a generalisation error bound following [EYP09]. For any

δ ∈ (0, 1), the generalisation error for any h ∈ Fψ,β,ωG satisfies

Lu(h)− L̂m(h) ≤ Rm,n(Fψ,β,ωG ) + c4
n
√
min{m,n−m}
m(n−m)

+ c5

√
n

m(n−m)
ln

(
1

δ

)
(A.6)

with probability 1− δ, where c4, c5 are absolute constants such that c4 < 5.05 and c5 < 0.8.

Proof. To derive the TRC we start with the following propositions describing the recursive

TRC for a GNN neuron that is applied J − 1 times for all but the first layer.

Proposition 6 (Recursive TRC of one GNN neuron). Consider gj+1 := ψ (bj + Sgj (H)Wj),

j ∈ [J ]. Now we define the function class over one neuron as

FψG :=

hψG (H) = ψ

bi + hj∑
l

Wlj

n∑
t

Sitg(H)lr

 ∣∣∣∣∣∣ g ∈ F ′, ∥bi∥1 ≤ β


where F ′ is the class of Rn×hj → R, including the zero function. Then with W·j :=[
W1r, · · · ,Whjr

]⊤
:

Rm,n(FψG ) ≤ 2Lψ (βQ(n) + ∥S∥∞ ∥W·r∥1 Rm,n(F ′))

After the recursive application we end up with a formulation of all layers and a dependency

on the TRC of the first layer. Therefore we then use the following proposition to finish the

proof.

Proposition 7 (Bound on TRC, first layer). Define the hypothesis class over the function
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of the first layer g0 as:

FψG :=
{
hψG (X) = ψ (b+ SXW1)

∣∣∣ ∥b∥1 ≤ β}
then the TRC is give by

Rm,n(FψG ) ≤ Lψ
(
βQ(n)2 +Q ∥W1∥∞ ∥SX∥2→∞

√
2 log(n)

d

)

Then by combining the above results we obtain Theorem 1 as follows: Consider Fψ,β,ωG ⊆ FψG
such that the trainable parameters satisfy ∥bj∥1 ≤ β and ∥Wj∥∞ ≤ ω for every j ∈ [J ]. The

transductive Randemacher complexity (TRC) of the restricted hypothesis class is bounded

as Rm,n(Fψ,β,ωG ) ≤ c1n
2

m(n−m)

(∑J−1
k=0 c

j
2 ∥S∥j∞

)
+ c3c

J
2 ∥S∥J∞ ∥SX∥2→∞

√
log(n) , where c1 :=

2Lψβ, c2 := 2Lψω, c3 := Lψω
√
2/d and Lψ is Lipschitz constant for activation ψ.

Before proofing the above propositions we proof some preliminary lemmas for TRC calculus

that we will use in the later steps.

Lemma 2 (Scalar multiplication). Let A ⊆ Rn, a scalar c ∈ R and a vector a0 ∈ Rn then

Rm,n ({ca+ a0 : a ∈ A}) ≤ |c|Rm,n(A)

Proof. Directly by construction.

Lemma 3 (Addition). Let A ⊆ Rn, B ⊆ Rn then

Rm,n(A+B) = Rm,n(A) +Rm,n(B)

Proof. By construction and linearity of expectation.

Lemma 4 (Convex hull). Let A ⊆ Rn

and A′ =
{∑N

j=1 αja
(j)
∣∣∣ N ∈ N, ∀j, a(j) ∈ A,αj ≥ 0, ∥α∥1 = 1

}
then

Rm,n(A) = Rm,n(A
′).

Proof. The proof follows similar to the one for inductive Rademacher complexity (e.g.

[SSBD14]). We first note that for any vector v the following holds:

sup
α≥0:∥α∥1=1

N∑
j=1

αjvj = max
j
vj
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Then:

Rm,n(A
′) = QE

σ

 sup
α≥0:∥α∥1=1

sup
{a(i)}N

i=1

n∑
i=1

σi

N∑
j=1

αja
(j)
i


= QE

σ

 sup
α≥0:∥α∥1=1

N∑
j=1

αj sup
a(j)

n∑
i=1

σia
(j)
i


= QE

σ

[
sup
a∈A

n∑
i=1

σiai

]
= Rm,n(A)

which concludes the proof.

Lemma 5 (Contraction [EYP09]). Let A ⊆ Rn be a set of vectors. Let f( · ) and g( · ) be
real-value functions. Let σ = {σi}ni=1 be Rademacher variables as defined in Definition 2.

If for all 1 ≤ i ≤ n and any a, a′ ∈ A, |f (ai)− f (a′i)| ≤ |g (ai)− g (a′i)| then

E
σ

[
n∑
i=1

σif(ai)

]
≤ E

σ

[
n∑
i=1

σig(ai)

]

Extending this to Lipschitz continues functions. Let v( · ) be a Lv-Lipschitz continues

function such that |v(f (ai))− v(f (a′i))| ≤ 1
Lv
|f (ai)− f (a′i)|. Now let the corresponding

hypothesis classes be F := {f(·)},V := {v(f(·))} then

Rm,n(V) ≤
1

Lv
Rm,n(H) (A.7)

Lemma 6 (Cardinality of finite sets). Let A = {a1, · · · , an} be a finite set of vectors in Rd

and let a = 1
n

∑n
i=1 ai then

Rm,n(A) ≤ max
a∈A
∥a− a∥2

√
2 log(n)

d

Proof. The proof follows the general idea of the proof forMassarts Lemma (see e.g. [SSBD14]).
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From Lemma 4 wlog. let a = 0. Let λ > 0 and A′ = {λa1, · · · , λan}. Therefore

1

Q
Rm,n(A

′) = E
σ

[
max
a∈A′

⟨σ, a⟩
]

= E
σ

[
log

(
max
a∈A′

exp (⟨σ, a⟩)
)]

≤ E
σ

[
log

(∑
a∈A′

exp (⟨σ, a⟩)
)]

Jensen inequality

≤ log

(
E
σ

[∑
a∈A′

exp (⟨σ, a⟩)
])

σi is i.i.d.

= log

(∑
a∈A′

∏
i=1

E
σi

[exp(σiai)]

)

Bound E
σi

[exp(σiai)]:

E
σi

[exp(σiai)] = p exp(1ai) + (1− 2p) exp(0ai) + p exp(−1ai) by definition of σi

= (1− 2p) + p

∞∑
i=0

(−a)i + ai

i!

≤ 1

2

∞∑
i=0

(−a)i + ai

i!
as p ≤ 1

2 . Equality for p = 1
2 .

=
exp(ai) + exp(−ai)

2

≤ exp

(
a2i
2

)

Because

exp(a) + exp(−a)
2

=

∞∑
n=0

a2n

(2n)!
≤

∞∑
2nn!

=
a2n

2nn!
exp

(
a2

2

)

and (2n)! ≥ 2nn! ∀n ≥ 0. Going back we now get:

1

Q
Rm,n(A

′) ≤ log

(∑
a∈A′

∏
i=1

E
σi

[exp(σiai)]

)

≤ log

(∑
a∈A′

∏
i=1

exp

(
a2i
2

))

= log

(∑
a∈A′

exp

(
∥a∥2
2

))

≤ log

(
|A′|max

a∈A′
exp

(
∥a∥2
2

))

= log (|A′|) + max
a∈A′

(
∥a∥2
2

)

By constructionRm,n(A) =
1
λRm,n(A

′) and thereforeRm,n ≤ 1
λd

(
log(|A|) + λ2 maxa∈A′

(
∥a∥2

2

))
.
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By setting λ =
√

2 log(|A|)
maxa∈A′∥a∥2 and rearranging:

Rm,n(A) ≤ max
a∈A
∥a− a∥2

√
2 log(n)

d

which concludes the proof.

Proof of Proposition 6

We start from the general GNN setup as defined as follows: Consider a class of GNNs

defined over K layers, with dimension of layer k ∈ [K] being dk and S ∈ Rn×n the diffusion

operator. Let ϕ, ψ be Lϕ, Lψ-Lipschitz pointwise functions. Define:

gk+1 := ϕ (bk + Sgk (H)Wk) ,

g0 := X

and the hypothesis class over all such functions as

Hϕ,ψG :=
{
hϕ,ψG (X) = ψ (gK ◦ · · · ◦ g0)

}
.

From there we derive a recursive TRC bound depending on the previous layer.

Consider gk+1 := ϕ (bk + Sgk (H)Wk), k ∈ {1, · · · ,K}. Now we define the function class

over one neuron as

HϕG :=

{
hϕG(H) = ϕ

(
bi +

dk∑
l

Wlj

n∑
t

Sitg(H)lj

) ∣∣∣∣∣ g ∈ F , ∥b∥1 ≤ β
}

where F is the class of Rn×dk → R, including the zero function. Then with W·j :=

[W1j , · · · ,Wdkj ]
⊤
:

Rm,n(HϕG) ≤ 2Lϕ
(
βQ(n) + ∥S∥∞ ∥W·j∥1 Rm,n(F)

)
Proof. By Lemma 5 and Lemma 3 we get

Rm,n(HϕG) ≤ Lϕ (Rm,n(Hlin) +Rm,n(Hbias))

where

Hlin :=

{
hlin(H) =

dk∑
l

Wlj

n∑
t

Sitg(H)lj

∣∣∣∣∣ g ∈ F , ∥W·j∥1 ≤ ω
}

Hbias := {hbias(H) = b | |b| ≤ β}

with W·j := [W1j , · · · ,Wdkj ]
⊤
. We will now bound the Rademacher complexity for both
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the above function classes individually and start with bounding the linear term Rm,n(Hlin).
For readability we define glj := g(H)lj and can bound each entry of the output of one layer

as follows

Hij =

dk∑
l

Wlj

n∑
t

Sitglj

=W1jSi1g1j + · · ·+W1jSing1j︸ ︷︷ ︸
W1jg1j(

∑n
t Sit)

+W2jSi1g2j + · · ·+W2jSing2j︸ ︷︷ ︸
W2jg2j(

∑n
t Sit)

+ · · ·

≤ ∥S∥∞

(
dk∑
l

W1jg1j

)

where in the last step we use
∑n
t Sit ≤ ∥S∥∞. Now we define

H̃lin :=

{
hlin(H) =

dk∑
l

Wljg(H)lj

∣∣∣∣∣ g ∈ F , ∥W·j∥1 ≤ ω
}

H̃′
lin :=

{
hlin(H) =

dk∑
l

Wljg(H)lj

∣∣∣∣∣ g ∈ F , ∥W·j∥1 = ω

}

and since ∥S∥∞ is constant we get by Lemma 2

Rm,n(Hlin) ≤ ∥S∥∞ Rm,n(H̃lin).

To further bound Rm,n(H̃lin) we can a similar process then for standard deep neural net-

works with slight deviation on the indexing of the weight matrix.

Let Hull (·) be a convex hull. In the first step we show that

Rm,n(H̃lin) = ωRm,n(Hull (F − F))

where F − F := {f − f ′, f ∈ F , f ′ ∈ F}. Note that the maximum over all function over

Wil with constraint ∥W·j∥1 ≤ ω is achieved for ∥W·j∥1 = ω then

Rm,n(H̃lin) = Rm,n(H̃′
lin)

Let 0 be the zero function. Then for ∥W·j∥1 = 1:

∑
l

Wljglj =
∑

l:Wlj≥0

Wlj(glj − 0) +
∑

l:Wlj<0

|Wlj |(0− glj)
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which is Hull (F − F). Combining the above results we get:

Rm,n(Hlin) ≤ ∥S∥∞ ωRm,n

(
H̃lin

)
= ∥S∥∞ ωRm,n (Hull (F − F))

= ∥S∥∞ ωRm,n (F − F)

= ∥S∥∞ ω (Rm,n (F) +Rm,n (−F)) Lemma 3

= 2 ∥S∥∞ ωRm,n (F) Lemma 2

which concludes this part of the proof.

Let us now bound the bias term Rm,n(Hbias) which can be done by standard arguments on

bounding Rademacher complexity terms.

Rm,n(Hbias) = QE
σ

[
sup
b:|b|≤β

b

n∑
i=1

σi

]
≤ QE

σ

[
sup
b:|b|≤β

|b|
∣∣∣∣∣
n∑
i=1

σi]

∣∣∣∣∣
]

= βQE
σ

[∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
]
≤ βQE

σ

[
n∑
i=1

|σi|
]

≤ βQ
n∑
i=1

E
σ
[|σi|] ≤ βQ

n∑
i=1

2p ≤ βQ(n)2p ≤ βQ(n)2

This concludes this part of the proof.

Combining the two bounds gives:

Rm,n(HϕG) ≤ 2Lϕ
(
βQ(n) + ∥S∥∞ ∥W·j∥1 Rm,n(F)

)
concluding the proof of Proposition 6.

Proof of Proposition 7

Proof. First similar to Proposition 6 we use Lemma 3 and Lemma 5

Rm,n(HϕG) ≤ Lϕ (Rm,n(Hlin) +Rm,n(Hbias))

As before Rm,n(Hbias) ≤ βQ(n)2p. In this case we define the linear term as

Hlin := {hlin(X) = SXW} .
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Bounding the TRC of Hlin

Rm,n(Hlin) = QE
σ

[
sup

W :∥W∥∞≤ω
σ⊤SXW

]
≤ Q ∥W∥∞ E

σ

[∥∥σ⊤SX
∥∥
∞

]

To bound E
σ

[∥∥σ⊤SX
∥∥
∞

]
we define ti = (x1j , . . . , xnj)

⊤ and T = {t1, . . . , tn}, T− =

{−t1, . . . ,−tn}. Therefore

E
σ

[∥∥σ⊤SX
∥∥
∞

]
≤ E

σ

[
max
t∈T
|σ⊤St|

]
= E

σ

[
max

t∈T∪T−
σ⊤St

]
≤ max
t∈T∪T−

∥St∥2
√

2 log(n)

d
Lemma 6

= ∥St∥2→∞

√
2 log(n)

d

Combining with the above results gives

Rm,n(Hlin) ≤ Q ∥W∥∞ ∥St∥2→∞

√
2 log(n)

d
.

Taking the bound on the bias term into considerations gives the final bound and concludes

the proof of Proposition 7.

A.1.3 Proof of Theorem 2

Let c1, c2 and c3 as defined in Theorem 1 and Γ := |y⊤v|. Let c6 := (1 + o(1)), c7 :=

(1 + jo(1)), c8 := (1 + Jo(1)). Assuming p, q ≫ (lnn)2

n we can bound the expected TRC for

A as defined in (2.8) and X as defined in (2.7) as follows:

Case 1, Degree normalized: S = Snor

E
X,A

[
Rm,n(Fψ,β,ωG )

]
≤ c1n

2

m(n−m)

J−1∑
j=0

c7c
j
2

(
p

q

) j
2

+ c8c3c
J
2

(
p

q

) J
2 √

ln(n) ×

(
c6 ∥µ∥∞

1 +
(
p−q
2

)2
Γ2(

p+q
2

)2 + c6

√
ln(n)

q
∥µ∥∞ + c6

√
σ(1 + 2 ln(d))

q

)
(A.8)
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Case 2, Self Loop: S = Sloop

E
X,A

[
Rm,n(Fψ,β,ωG )

]
≤ c1n

2

m(n−m)

J−1∑
j=0

c7c
j
2(np)

j

+ c8c3c
J
2 (np)

J
√
ln(n) ×

(
c6 ∥µ∥∞ n

(
1 +

(
p− q
2

)2

Γ2

)
+ n

√
p+ q

2
∥µ∥∞ + c6n

√
pσ
√
1 + 2 ln(d)

)
(A.9)

Proof. From the above bound we can note that to derive the TRC in expectation we have to

compute E
[
∥S∥j∞

]
and E

[
∥S∥j∞ ∥SX∥2→∞

]
where we can decompose the latter as follows

E
[
∥S∥k∞ ∥SX∥2→∞

]
≤E

[
∥S∥j∞ ∥SX∥2→∞

]
+ E

[
∥S∥j∞ ∥(S − S)X∥2→∞

]
+ E

[
∥S∥j∞ ∥S(X −X )∥2→∞

]
≤∥SX∥2→∞ E

[
∥S∥j∞

]
+

√
E
[
∥S∥2j∞

]√
E
[
∥(S − S)X∥22→∞

]
+

√
E
[
∥S∥2j∞

]√
E
[
∥(X −X )S∥22→∞

]
where the second inequality follows from noting that ∥SX∥2→∞ is deterministic and does not

depend on the expectation and the decomposition of the last two terms follows from using

Cauchy-Schwarz inequality. Let C = (1 + o(1)). The following table gives an overview over

the bounds on the different terms, where the individual entries are derived in subsequently.

Self Loop Degree Normalized

A.1.3: ∥SX∥2→∞ C ∥mµ∥∞ n
(
1 +

(
p−q
2

)2
Γ2
)

C ∥mµ∥∞
(
1+( p−q

2 )
2
Γ2

)
( p+q

2 )

A.1.3: E
[
∥(S − S)X∥22→∞

]
Cn2p ∥mµ∥∞ C n ln(n)

1+(n−1)q ∥mµ∥∞

A.1.3: E
[
∥(X −X )S∥22→∞

]
Cn2pσ2(1 + 2 ln d) C 1

q

A.1.3: E
[
∥S∥k∞

]
(Cnp)k

(
C p
q

) k
2
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Bound E [∥(S − S)X∥2→∞]

Proof. We first note that:

∥(S − S)X∥2→∞ =
∥∥(S − S) zµ⊤∥∥

2→∞ by definition of X

= max
j

∥∥(S − S) zµ⊤
j

∥∥
2

by definition of ∥ · ∥2→∞

= ∥(S − S) z∥2 ∥µ∥∞ (A.10)

and we only have to compute the expectation of ∥(S − S) z∥2 as ∥µ∥∞ is deterministic.

Taking the expectation:

E [∥(S − S) z∥2] ≤
√

E
[
z⊤ (S − S)⊤ (S − S) z

]

=

∑
ij

zizj
∑
k

E
[
(S − S)ki (S − S)kj

] 1
2

(A.11)

where (A.11) follows from the fact that z is deterministic. From this expression we can now

consider the self loop and degree normalized case for the diffusion operator.

Case 1: Self loop.

∑
k E
[
(S − S)ki (S − S)kj

]
in (A.11) now becomes

∑
k E
[
(A−A)ki (A−A)kj

]
where we

distinguish two cases:

i ̸= j ⇒ Aki and Akj are independent⇒ E
[
(A−A)ki (A−A)kj

]
= 0

i = j ⇒ E [(A−A)ki (A−A)ki] = Var(Aki) = Aki(1−Aki)

Therefore (A.11) becomes

E [∥(S − S) z∥2] ≤
(∑

i

z2i
∑
k

Aki(1−Aki)
) 1

2

=

(∑
ik

Aki(1−Aki)
) 1

2

∵ z2i = 1

≤
(∑

ik

Aki
) 1

2

≤
(
n2
p+ q

2

) 1
2

= n

√
p+ q

2
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and giving us the final bound as using the above in (A.10):

E [∥(S − S)X∥2→∞] ≤ n
√
p+ q

2
∥µ∥∞

Case 2: Degree normalized.

Note that for this section we initially considered an extension of the degree normalized model

where the self loop is weighted by γ. For the final version however we set γ = 1.

As before first note that:

∥(S − S)X∥2→∞ =
∥∥(S − S) zµ⊤∥∥

2→∞ = max
j

∥∥(S − S) zµ⊤
j

∥∥
2

= ∥(S − S) z∥2 ∥µ∥∞ (A.12)

and we only have to compute the expectation of ∥(S − S) z∥2 in (A.12). To bound this term

we start by defining:

S := (D + γI)−
1
2 (A+ γI)(D + γI)−

1
2

S := (D + γI)−
1
2 (A+ γI)(D + γI)−

1
2

S := (D + γI)−
1
2 (A+ γI)(D + γI)−

1
2

such that we can write:

∥(S − S) z∥2 ≤
∥∥(S − S) z∥∥

2
+
∥∥(S − S) z∥∥

2
(A.13)

and bound the two terms separately:

Bound first term in (A.13):
∥∥(S − S) z∥∥

2

First we note that:

∥∥(S − S) z∥∥
2
≤
∥∥∥(D + γI)−

1
2 (A−A)(D + γI)−

1
2 z
∥∥∥
2
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and therefore

E
[∥∥(S − S) z∥∥

2

]
≤
(
E
[
z⊤(D + γI)−

1
2 (A−A)(D + γI)−1(A−A)(D + γI)−

1
2 z
])− 1

2

=

(∑
i,j

zizj√
(γ +Dii)(γ +Djj)

∑
k ̸=i,j

E [(A−A)ki(A−A)kj ]
γ +Dkk︸ ︷︷ ︸

term 2

)− 1
2

(A.14)

≤
(∑

i

z2i
γ +Dii

· Dii
γ + (n− 1)q

)− 1
2

(A.15)

≤
(

n

γ + (n− 1)q

)− 1
2

∵ z2i = 1

Where the step form (A.14) to (A.15) follows by bounding (A.14), term 2 as follows. For

i ̸= j the expression is zero. Otherwise for i = j:

∑
k ̸=i,j

E [(A−A)ki(A−A)kj ]
γ +Dkk

=
∑
k ̸=i

Var(Aki)

γ +Dkk

=
∑
k ̸=i

Aki(1−Aki)
γ +Dkk

≤
∑
k ̸=i

Aki
γ + (n− 1)q

∵ Dkk ≥ (n− 1)q

=
Dii

γ + (n− 1)q

Therefore

E
[∥∥(S − S) z∥∥

2

]
≤
√

n

γ + (n− 1)q

Bound second term in (A.13):
∥∥(S − S) z∥∥

2

Let B := D + γI and C := D + γI. We first consider the following decomposition:

B− 1
2AB− 1

2 − C− 1
2AC− 1

2

= B− 1
2AB− 1

2 −B− 1
2AB− 1

2B
1
2C− 1

2 +B− 1
2AB− 1

2B
1
2C− 1

2 − C− 1
2B

1
2B− 1

2AB− 1
2B

1
2C− 1

2︸ ︷︷ ︸
equal to C− 1

2AC− 1
2

= B− 1
2AB− 1

2︸ ︷︷ ︸
S

(
I−B 1

2C− 1
2

)
+
(
I− C− 1

2B
1
2

)
B− 1

2AB− 1
2︸ ︷︷ ︸

S

B
1
2C− 1

2 (A.16)
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Using (A.16) we can bound the expectation of
∥∥(S − S) z∥∥

2
as:

E
[∥∥(S − S) z∥∥

2

]
=E

[(
(D + γI)−

1
2 (A+ γI)(D + γI)−

1
2 − (D + γI)−

1
2 (A+ γI)(D + γI)−

1
2

)
z
]

≤E
[∥∥∥S (I− (D + γI)

1
2 (D + γI)−

1
2

)
z
∥∥∥
2

]
(A.17)

+ E
[∥∥∥(I− (D + γI)

1
2 (D + γI)−

1
2

)
S(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥
2

]
(A.18)

Bound (A.17):

E
[∥∥∥S (I− (D + γI)

1
2 (D + γI)−

1
2

)
z
∥∥∥
2

]
≤ E

[
∥S∥2

∥∥∥(I− (D + γI)
1
2 (D + γI)−

1
2

)
z
∥∥∥
2

]

≤

√√√√√∑
i

E

(1−√Dii + γ

Dii + γ

)2

z2i

 ∵ ∥S∥2 ≤ 1

≤

√√√√√∑
i

E

(1−√Dii + γ

Dii + γ

)2


we therefore now need to compute
∑
i E
[(

1−
√

Dii+γ
Dii+γ

)2]
. Note that for x ≥ 0, |1−√x| ≤

|1− x|. Using this we write

∑
i

E

(1−√Dii + γ

Dii + γ

)2
 ≤∑

i

E

[(
1− Dii + γ

Dii + γ

)2
]

=
∑
i

1− 2 +
E
[
(Dii + γ)2

]
(Dii + γ)2

=
∑
i

−1 +
E
[
(γ +

∑
k ̸=iAik)

2
]

(Dii + γ)2

= −n+
∑
i

(Dii + γ)2 +Dii +
∑
k ̸=iA

2
ik

(Dii + γ)2

=
∑
i

∑
k ̸=iAik(1−Aik)
(Dii + γ)2

≤
∑
i

1

Dii + γ

≤ n

γ + (n− 1)q
(A.19)
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Bound (A.18):

E
[∥∥∥(I− (D + γI)

1
2 (D + γI)−

1
2

)
S(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥
2

]
≤E

[∥∥∥I− (D + γI)
1
2 (D + γI)−

1
2

∥∥∥
2
∥S∥2

∥∥∥(D + γI)
1
2 (D + γI)−

1
2 z
∥∥∥
2

]
≤E

[
max
i

(
1−

√
(D + γI)ii
(D + γI)ii

)∥∥∥(D + γI)
1
2 (D + γI)−

1
2 z
∥∥∥
2

]

≤
(
E

[
max
i

(
1−

√
Dii + γ

Dii + γ

)]
︸ ︷︷ ︸

term1

E
[∥∥∥(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥2]︸ ︷︷ ︸

term2

) 1
2

(A.20)

where (A.20) follows from applying the Cauchy-Schwarz inequality. Then for (A.20) term 2

we get:

E
[∥∥∥(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥2] =∑

i

E
[
Dii + γ

Dii + γ
z2i

]

=
∑
i

E [Dii + γ]

Dii + γ︸ ︷︷ ︸
=1

= n

(A.20) term 1 we again note that for x ≥ 0, |1−√x| ≤ |1− x|. Using this we write:

E

max
i

(
1−

√
Dii + γ

Dii + γ

)2
 ≤ E

[
max
i

(
1− Dii + γ

Dii + γ

)2
]

≤ 1

s
ln

(
exp

(
E

[
smax

i

(
1− Dii + γ

Dii + γ

)2
]))

≤ 1

s
ln

(
E

[
exp

(
smax

i

(
1− Dii + γ

Dii + γ

)2
)])

=
1

s
ln

(
E

[
max
i

(
exp s

((
1− Dii + γ

Dii + γ

)2
))])

≤ 1

s
ln

(∑
i

E

[
exp

(
s

(
1− Dii + γ

Dii + γ

)2

︸ ︷︷ ︸
yi

)
︸ ︷︷ ︸

term1

]

︸ ︷︷ ︸
term2

)
(A.21)
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Now to further bound (A.21) we first compute (A.21), term 1 as:

exp(syi) = 1 + syi +
∑
k≥2

(syi)
k

k!

= 1 + syi + (syi)
∑
k≥2

(syi)
k−1

k!

= 1 + syi + (syi)
∑
k≥0

(syi)
k

(k + 1)k!

≤ 1 + syi + (syi) exp(syi)

≤ 1 + (exp(s) + 1)syi

Taking the expectation over the previous line, using linearity of expectation and the expres-

sion for
∑
i E [yi] from (A.19) it follows that for (A.21), term 2 we obtain

∑
i

E [exp(syi)] ≤ n+ (exp(s) + 1)s
∑
i

E [yi]

= n+ (exp(s) + 1)s
n

γ + (n− 1)q

Going back to (A.21):

(A.21) ≤ 1

s
ln

(
n+ (exp(s) + 1)s

n

γ + (n− 1)q

)
∀s > 0

≤ 1

s
ln

(
n+ exp(2s)

n

γ + (n− 1)q

)
Note: s > 0⇒ ln s ≤ s− 1

⇒ (es + 1)s ≤ e2s

≤ ln(n)

s
+

1

s
ln

(
1 +

exp(2s)

γ + (n− 1)q

)
Let e2s ≥ γ + (n− 1)q

≤ ln(n)

s
+

1

s
ln

(
2 exp(2s)

γ + (n− 1)q

)
≤ ln(n)

s
+ 2 +

1

s
ln

(
2

γ + (n− 1)q

)
Take s := γ + (n− 1)q ≥ 2

≤ C ln(n)

γ + (n− 1)q

Finally combining the above results:

E
[∥∥(S − S)z∥∥

2

]
≤
√

n

γ + (n− 1)q
+

√
n

C ln(n)

γ + (n− 1)q

= C

√
n ln(n)

γ + (n− 1)q

and

E [∥(S − S)X∥2→∞] ≤ C
√

n lnn

γ + (n− 1)q
∥µ∥∞
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This concludes he bound of E [∥(S − S)X∥2→∞].

Bound E [∥(X −X )S∥2→∞]

Proof. We first note that

E [∥(X −X )S∥2→∞] = E
[
max
j∈[d]
∥Sϵ·j∥2

]
≤
(
E
[
max
j∈[d]
∥Sϵ·j∥22

]) 1
2

Let z ∼ N (0, σ2I) then

∥Sz∥22 = z⊤S⊤Sz

= zV ΛV ⊤z Eigendecompsition

=

n∑
i=1

λiz
′2
i where V ⊤z = z′i ∼ N (0, σ2I)

=

n∑
i=1;λi>0

λiσ
2yi yi, · · · , yd iid∼ X 2

Where the first line follows from the eigendecomposition S⊤S = V ΛV ⊤. Therefore ∥Sz∥22 is

distributed as a generalised X 2 with mean σTr(S⊤S) and variance 2
∑
λiσ

4 = 2σ4
∥∥S⊤S

∥∥2
F
.

Now define

MGFy(s) =
1

exp
(
1
2

∑
i:λi>0 log(1− 2sλi)

)
and consider s ∈

(
0, 1

2λmin

)
where λmin is the smallest non-zero eigenvalue of S⊤S.

exp

(
sE
[
max
j
yj

])
≤ E [exp (smax(yj)])

= E [max exp (syj ])

≤
∑
j

E [exp (syj)]

= d ·MGFy(s)

= d exp

(
−1

2

∑
i:λi>0

log(1− 2sλi)

)
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it follows that

E
[
max
j
yj

]
≤ ln d

s
− 1

2s

∑
i:λi>0

log(1− 2sλi)︸ ︷︷ ︸
≤−2sλi

≤ ln d

s
+
∑
i:λi>0

λi︸ ︷︷ ︸
Tr(S⊤S)

∵ log(1 + x) ≤ x ∀x > −1

≤ 2λmin ln d+Tr(S⊤S) ∵ s ∈
(
0, 1

2λmin

)
and min for s = 1

2λmin

Using σmin(S) ≤ ∥S∥2 and ∥S∥F ≤ k ∥S∥2 we can bound the last line as ∥S∥22 (k+2 ln d) in

the low-rank setting. However since we consider S to be random this is not applicable (also

see the remarks in the VC Dimension section). Therefore

2λmin ln d+Tr(S⊤S) = σ2
min(S) ln d+ ∥S∥2F

≤ ∥S∥2F (1 + 2 ln d)

and taking the square root gives us the final result:

E [∥(X −X )S∥2→∞] ≤ σ ∥S∥F
√
1 + 2 ln d

Bound E
[
∥S∥2F

]
.

Case 1: Self loop.

We first note that ∥S∥2F = n+ number of edges and therefore:

E
[
∥S∥2F

]
≤ n+ n2p

= (1 + o(1))n2p

Therefore

E
[
∥(X −X )S∥22→∞

]
≤ (1 + o(1))n2pσ2(1 + 2 ln d)

Case 2: Degree normalized.

Note that we here overload the notation d such that we define the degree for node i as di
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and similar dmin is the minimum degree.

E
[
∥S∥2F

]
=E

[
∥S∥2F

∣∣∣{dmin > np−
√
4cnp lnn

}]
P
(
dmin > np−

√
4cnp lnn

)
+ E

[
∥S∥2F

∣∣∣{dmin < np−
√
4cnp lnn

}]
P
(
dmin < np−

√
4cnp lnn

)
≤E

[
∥S∥2F

∣∣∣{dmin > np−
√
4cnp lnn

}]
P
(
dmin > np−

√
4cnp lnn

)
+ n2

1

nc︸ ︷︷ ︸
=o(1)

≤
∑
i,j

Aij + I{i = j}
(di + 1)(dj + 1)

≤ 1

dmin + 1

∑
i

∑
j Aij + I{i = j}

di + 1︸ ︷︷ ︸
=1

≤ n

nq + 1−√4cnp lnn
=(1 + o(1))

1

q

Therefore

E
[
∥(X −X )S∥22→∞

]
≤ (1 + o(1))

σ2(1 + 2 ln d)

q

This concludes the bound of E
[
∥(X −X )S∥22→∞

]
.

Bound E
[
∥S∥k∞

]
.

Proof. In general we can note that ∥S∥k∞ = max1≤i≤n

(∑n
j=1 Sij

)k

Case 1: Self loop.

We first define the degree for node i as

di ∼ Bin
(n
2
− 1, p

)
+Bin

(n
2
, q
)

then ∥S∥∞ = max1≤i≤n

(∑n
j=1 Sij

)
= 1+maxi di and assume p > lnn

n and let t =
√
4np lnn

P
(
di − E [di] > t

)
≤ exp

(
− t22
np+ t

3

)
Bernstein inequality

≤ exp

(−4cnp lnn
4np

)
=

1

n
c
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and therefore

P
(
max
i
di ≥ np+

√
4cnp lnn

)
≤ 1

nc−1

P
(
(1 + max

i
di)

k ≥ (1 + np+
√
4cnp lnn)k

)
≤ 1

n
c

and

E
[
(1 + max

i
di)

k
]
≤ (1 + np+

√
4cnp lnn)k +

1

nc−i
nk

= (1 + np+
√
4cnp lnn)k + nk+1−c

For large n and p≫ (lnn)2

n take c = lnn:

E
[
∥S∥k∞

]
≤ ((1 + o(1))np)

k

Case 2: Degree normalized.

∥S∥∞ = max
i

∑
j

Sij

= max
i

∑
j

Aij√
di + 1

√
dj + 1

≤ max
i

1√
dmin + 1

∑
j Aij√
di + 1

= max
i

√
di + 1

dmin + 1

≤
√
dmin+ 1

dmin + 1

Similar to above we can now note that:

P
(
max
i
di ≥ np+

√
4cnp lnn

)
≤ 1

nc

P
(
max
i
di ≤ np+

√
4cnp lnn

)
≤ 1

nc

and it follows

P

(√
dmax + 1

dmin + 1
≥ np+

√
4cnp lnn+ 1

np−√4cnp lnn+ 1

)
≤ 2

nc
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For large n and p, q ≫ (lnn)2

n :

E
[
∥S∥k∞

]
≤ E

[(
dmax + 1

dmin + 1

) k
2

]

=

(
(1 + o(1))

p

q

) k
2

This concludes the bound of E
[
∥S∥k∞

]
.

Bound ∥SX∥2→∞.

Proof.

Case 1: Self loop.

SX = (1− p)zµ⊤ − p− q
2

yy⊤zµ⊤

=

(
(1− p)z −

(
p− q
2

y⊤z

)
y

)
µ⊤

and

(SX )ij =
(
(1− p)zi −

(
p− q
2

y⊤z

)
︸ ︷︷ ︸

:=δ

yi

)
µj

Now using this to compute the two-infinity norm:

∥SX∥2→∞ = ∥µ∥∞
√∑

i

((1− p)zi − δyi)2

= ∥µ∥∞
√∑

i

(1− p)2 + δ2 − 2δ(1− p)yizi

= ∥µ∥∞

(
n(1− p)2 + n(y⊤z)2

(
p− q
2

)2

− 2(y⊤z)2
p− q
2

(1− p)
)

= (1 + o(1)) ∥µ∥∞ n

(
1 +

(
p− q
2

)2

(y⊤z)2

)

Case 2: Degree normalized.

We note that the expected degree is (1+o(1))np+q2 and therefore similar to above we obtain

∥SX∥2→∞ = (1 + o(1)) ∥µ∥∞

(
1 +

(
p−q
2

)2
(y⊤z)2

)
(
p+q
2

) .
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This concludes the bound of ∥SX∥2→∞.

A.1.4 Proof of Theorem 3

Consider a Residual network as defined in (2.14) and Fψ,β,ωG ⊂ FψG such that the trainable

parameters satisfy ∥bj∥1 ≤ β and ∥Wj∥∞ ≤ ω for every j ∈ [K]. Then with α ∈ (0, 1) and

c1 := 2Lψβ, c2 := 2Lψω, c3 := Lψω
√

2/d the TRC of the restricted class or Residual GNNs

is bounded as

Rm,n(Fψ,β,ωG ) ≤ ((1− α)c1 + α2Lψ ∥X∥∞)n2

m(n−m)

J−1∑
j=0

(1− α)cj2 ∥S∥j∞


+ α2Lψ ∥X∥∞ + (1− α)c3cJ2 ∥S∥J∞ ∥SX∥2→∞

√
log(n) (A.22)

Proof. Recall the setup for residual connections as defined in the main paper where we can

now write the layer wise propagation rule as fj+1 := ψ ((1− α) (bj + Sfj (H)Wj) + αf0 (H)) ,

with α ∈ (0, 1). We can now derive a generalization error bound similar to the one given in

Theorem 1 for the Residual network. As most of the steps are the same we will only remark

the main changes. Recall that for the vanilla case we considered

Rm,n(FψG ) ≤ Lψ (Rm,n(Flin) +Rm,n(Fbias))

and by Lemma 3 and Lemma 2 we obtain a similar bound for the Residual network as

Rm,n(FψG ) ≤ Lψ ((1− α)Rm,n(Flin) + (1− α)Rm,n(Fbias) + αRm,n(FX)) .

The bounds for Rm,n(Flin) and Rm,n(Fbias) are as derived in previously. Rm,n(FX) can be

bound as

Rm,n(FX) ≤ 2Q ∥X∥∞ n

Where the proof follows analogous to the one for the bias term, Rm,n(Fbias.

Again with recursively applying the bounds for each layer and combining it with the bound

on the first layer results in the full TRC bound. Consider a Residual network as defined in

(2.14) and Fψ,β,ωG ⊂ FψG such that the trainable parameters satisfy ∥bj∥1 ≤ β and ∥Wj∥∞ ≤
ω for every j ∈ [J ]. Then with α ∈ (0, 1) and c1 := 2Lψβ, c2 := 2Lψω, c3 := Lψω

√
2/d the

TRC of the restricted class or Residual GNNs is bounded as (A.22), which concludes the

proof.
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A.2 Proofs for Chapter 3

A.2.1 Proof of Lemma 1

Let f : Rd → Rh be either a linear model f(x) = Θx, or a kernel machine f(x) = Θϕ(x),

where ϕ corresponds to the implicit feature map of a kernel k, that is, k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩.
Then in the infinite width limit (h→∞) the inner products between the gradients are given

by

⟨∇Θfl(x),∇Θfj(x
′)⟩ =


0 if l ̸= j,

x⊤x′ if l = j (linear case),

k(x, x′) if l = j (kernel case).

Proof. Let the collumns of W2 be denoted by w1, w2, ..., wh. Then we note that each com-

ponent of u, fj is given by fj(x) = w⊤
j ψ(W1x). Thus if l ̸= j, fj(x) has no dependence with

wl i.e. ∇wl
fj(x) = 0. Thus we get that when l ̸= j,

⟨∇Θfl(x),∇Θfj(x
′)⟩ = ⟨∇W1

fl(x),∇W1
fj(x

′)⟩ .

We can now use [LZB20] (for instance its Lemma 1) which basically concludes that no

training happens at the penultimate or prior layers. In limit all positive gradients arise only

from the final layer. As such

⟨∇W1
fl(x),∇W1

fj(x
′)⟩ = 0.

By the same token, for l = j,

⟨∇Θfl(x),∇Θfj(x
′)⟩ = ⟨∇W1

fl(x),∇W1
fj(x

′)⟩+
〈
∇wj

fj(x),∇wj
fj(x

′)
〉

= ⟨ψ(W1x), ψ(W1x
′)⟩ .

Finally again using the fact that W1 does not change in training and that W1 is initialized

from a normalized Gaussian, when ψ is the identity map, it is well known that the above

converges to x⊤x′ (as there ⟨ψ(W1x), ψ(W1x
′)⟩ = x⊤(W⊤

1 W1)x → x⊤x′) and otherwise to

a deterministic kernel k (see e.g. [LZB20], [Aro+19c]).

A.2.2 Proof of Proposition 2

Under the conditions of Lemma 1, every component of the network output u : Rd → Rh has

identical dynamics, and hence, identical fixed points. As a consequence, the output collapses

to one dimension at convergence.
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For linear model, f(x) = Θx, the dynamics of f(x) is given by

f̊l(x) =

n∑
i=1

(x⊤xi)fl(x
+
i ) + (x⊤x+i )fl(xi)

for the non-contrastive case, and

f̊l(x) =

n∑
i=1

(x⊤xi)
(
fl(x

+
i )− fl(x−i )

)
+ (x⊤x+i − x⊤x−i )fl(xi)

for the contrastive case. For kernel models, the dynamcis is similarly obtained by replacing

each x⊤x′ by k(x, x′).

A.2.3 Proof or Proposition 3

Consider a linear SSL model fψ(x) =W⊤
2 ψ(W1x). The optimisation problem

min
W1,W2

L(W1,W2) s.t. ∥W1∥F ≤ c1, ∥W2∥F ≤ c2,

where the loss L is given by (3.1) or (3.2), has a global solution f(x) = [a(x) 0 . . . 0]⊤ ∈ Rh.

Proof. For simplicity of the proof we begin by reformulating the loss function in both con-

trastive and noncontrastive setting to a more general form. In particular it is trivial to check

that we can generalize by writing

L = Tr
(
W⊤

2 f(X,W1)W2

)
,

where X denotes the collection of all the relevant data (i.e. ∀ 1 ≤ i ≤ n xi, as well

as x+i and x− where applicable), and f(X,W1) =
∑n
i=1 ψ(W1xi)

(
ψ(W1x

−
i )− ψ(W1x

+
i )
)⊤

in the contrastive setting (3.1) while f(X,W1) = −∑n
i=1 ψ(W1xi)ψ(W1x

+
i )

⊤ in the non-

contrastive setting (3.2).

Then decompose

W2W
⊤
2 =

k∑
i=1

σ2
i viv

⊤
i .

Note then that ∥W2∥2F = Tr
(
W2W

⊤
2

)
=
∑k
i=1 σ

2
i . Thus the optimization target,

L(W1,W2) = Tr
(
W⊤

2 f(X,W1)W2

)
= Tr

(
f(X,W1)W2W

⊤
2

)
= Tr

(
f(X,W1)

k∑
i=1

σ2
i viv

⊤
i

)
=

k∑
i=1

σ2
i v

⊤
i f(X,W1)vi

≥ min
i=1 to k

{v⊤i f(X,W1)vi}
k∑
i=1

σ2
i = ∥W2∥2F min

i=1 to k
{v⊤i f(X,W1)vi}.

Thus when the Frobenius norm is restricted (i.e. bounded between 0 and c), if f(X,W1) has
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atleast one negative eigenvalue the loss is minimized when v1 is the eigenvector corresponding

to the most negative eigenvalue of f(X,W1) with σ1 = ∥W2∥F , with no other non-zero

singular value. On the other hand if f(X,W1) has no negative eigenvalue then the loss is

minimized when W2 = 0.

A.2.4 Proof of Proposition 4

Consider a linear SSL model f I(x) =W⊤
2 W1x, and let the loss L(W1,W2) be given by either

(3.1) or (3.2) whose general form is L(W1,W2) =
∥∥W⊤

2 W1CW
⊤
1 W2

∥∥2
2
, where C has atleast

one negative eigenvalue. Then the following optimisation problems are equivalent:

1. min
W1,W2

L(W1,W2)

∥W2∥22 ∥W1∥22
;

2. min
W1,W2

L(W1,W2) s.t. ∥W2∥2 ≤ 1, ∥W1∥2 ≤ 1;

3. min
W1,W2

L(W1,W2) s.t. ∥W⊤
2 W1∥2 ≤ 1;

4. min
W1,W2

L(W1,W2) s.t. W⊤
2 W2 = Ih, W⊤

1 W1 = Id.

Additionally this regularization avoids dimension collapse.

Proof. We begin by quickly observing that (1) ⇐⇒ (2). This is simply done by defining

Ŵi =
Wi

∥Wi∥2
for i = 1, 2. Then we have

argmin
W1,W2

Tr
(
W⊤

2 W1CW
⊤
1 W2

)
∥W1∥22 ∥W2∥22

= argmin
Ŵ1,Ŵ2:∥Ŵ1∥

2
=∥Ŵ1∥

2
=1

Tr
(
Ŵ⊤

2 Ŵ1CŴ
⊤
1 Ŵ2

)

Using the fact that at least one eigenvalue of C is strictly negative (this rules out the case

that the optimal is achieved when Wi = 0 as that would have prevented division by norm)

then we can quickly get that

argmin
Ŵ1,Ŵ2:∥Ŵ1∥

2
=∥Ŵ1∥

2
=1

Tr
(
Ŵ⊤

2 Ŵ1CŴ
⊤
1 Ŵ2

)
= argmin
Ŵ1,Ŵ2:∥Ŵ1∥

2
≤1;∥Ŵ1∥

2
≤1

Tr
(
Ŵ⊤

2 Ŵ1CŴ
⊤
1 Ŵ2

)
.

For (2) ⇐⇒ (3), we begin by observing that by submultiplicativity of norm, any W1,W2

such that ∥W1∥2 ≤ 1 and ∥W2∥2 ≤ 1 automatically falls is the optimization space given by∥∥W⊤
1 W2

∥∥ ≤ 1 thus giving one direction of the optimization equivalence for free. For the

other side we note that given anyW1,W2 such that
∥∥W⊤

1 W2

∥∥2
2
=
∥∥W⊤

1 W2W
⊤
2 W1

∥∥
2
≤ 1, we

can construct Ŵ1, Ŵ2 such that
∥∥∥Ŵi

∥∥∥ ≤ 1 andW⊤
1 W2W

⊤
2 W1 = Ŵ⊤

1 Ŵ2Ŵ
⊤
2 Ŵ1. This follows

from considering the singular values decomposition ofW⊤
1 W2, gettingW

⊤
1 W2 = U⊤ΣV . As

the norm of the product is smaller than 1, all the entries of the singular value matrix Σ

are less than 1. Thus depending upon which among d or z is larger we consider either the

matrices ΣU and V or the matrices U and ΣV to be our candidate Ŵ1 and Ŵ2 respectively.
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To complete we will simply have to add zero rows to our choice i.e. say U and ΣV to match

the dimensions (i.e. to get a n× d matrix from a h× d one).

Finally for (3) ⇐⇒ (4) we begin by defining W =W⊤
1 W2. Then the optimization problem

in (3) becomes,

min
W :∥W∥2≤1

Tr
(
W⊤CW

)
= min
W :∥W∥2≤1

Tr
(
CWW⊤) .

We then prove that we are done if we can prove the claim at optimal of (3) (i.e. the above

optimization problem) all the eigenvalues of WW⊤ are 1 or 0. Given this claim the singular

value decomposition of W becomes only W = U⊤V , where if k = rank(W ), U is a k × d
matrix and V a k × h matrix. Additionally by property of SVD, the collumns of U and V

are orthonormal. Finally as

k = rank(W ) ≤ min{rank(W1), rank(W2)} ≤ min{d, z} ≤ n,

we can add a bunch of zero rows to U and V to get our n× d and n× h matrices which will

be our corresponding W1 and W2.

It remains to prove that Tr
(
CWW⊤) is minimized when all the eigenvalues of WW⊤ are 1

or 0. To do this simply decompose

WW⊤ =

k∑
i=1

σ2
i viv

⊤
i ,

where vi is the set of orthonormal eigenvectors of WW⊤ corresponding to non-zero eigen-

values of WW⊤ (or alternatively non-zero singular values of W ) Then

Tr
(
CWW⊤) =Tr

(
C

k∑
i=1

σ2
i viv

⊤
i

)
=

k∑
i=1

σ2
i Tr

(
Cviv

⊤
i

)
=

k∑
i=1

σ2
i v

⊤
i Cvi.

Thus if C has l many strictly negative eigenvalues λ1 ≤ · · · ≤ λl with corresponding eigen-

vectors c1, . . . , cl and σ
2
i is positive the above quantity is minimized by choosing as many of

these as possible i.e. v1 = c1, . . . , vmin{d,z,l} = cmin{d,z,l} and setting the corresponding σi

to be 1 while every setting all other eigen-values to 0.

We then also note by consequence of the above proof that we avoid dimension collapse when

possible i.e. when C has multiple strictly negative eigenvalues (which is what one should

expect if the data is not one dimensional as E[C] = −E[xx⊤])
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A.2.5 Proof of Theorem 4

Recall that f(t) provides the output of the machine at time t and therefore consider the

linear and non-linear setting at initialization as

f I(0) =W⊤
2 W1x s.t. W⊤

2 W2 = Ih, W⊤
1 W1 = Id; (A.23)

fψ(0) =W⊤
2 ψ (W1x) s.t. W⊤

2 W2 = Ih, W⊤
1 W1 = Id.

Let ψ(·) be an activation function, such that ψ(0) = 0, ψ′(0) = 1, and |ψ′′(·)| ≤ c. 1 Then

at initialization as uniformly random orthogonal matrices

∥∥∥fψ(0) − f I(0)∥∥∥ ≤ Kc ∥x∥2 d

√
log4 h′

h′

where K is an universal constant ψ, d is the feature dimension and h the width of the hidden

layer.

Proof. Let us start by defining some properties for the non-linearity: Assume the non-linear

function ψ is continuously twice differentiable near 0 and has no bias i.e. ψ(0) = 0. Then

via scaling we can assume WLOG that ψ′(0) = 1. As |ψ′′(x)| ≤ c, we get that 2

|ψ(x)− x| ≤ cx2

2
. (A.24)

Before contiuning we first state the following Lemma (see proof [***])

Lemma 7. Given any d ≤ p, Let Q be a uniformly random h′×d semi-orthonormal matrix.

I.e. Q is the first d columns of an uniformly random h′ × h′ orthonormal matrix. Then

there are constants L and a sequence ϵp converging to 0 as h goes to infinity such that ,

P

(
max |Qi,j | ≥

L log h′√
h′

)
≤ ϵn

Now recall that the mapping of the first weight matrix is given by W1 : Rd → Rh′
, h′ ≫ d

under the constraint that W⊤
1 W = I. Under uniformly random initialization by Lemma 7

then with probability asymptotically going to 1 we have that

max (W1)
2
i,j ≤ C

log2 h′

h′

1This last assumption can also be weakened to say that ψ′′ is continuous at 0. See the proof of the
theorem for details.

2We can actually also use the weaker assumption that ψ′′(0) is continuous at 0. Thus there is some

bounded (compact) set A containing 0 and a constant c such that ∀x ∈ A, |ψ(x)− x| ≤ cx2

2
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Thus the norm of each row of W1 we get with a.w.h.p. :

∥rowi (W1)∥2 =

d∑
j=1

(W1)
2
i,j ≤ C

d log2 h′

h′

From there we can now write the value of each node in the layer using Cauchy-Schwarz

inequality as

|rowi(W1) · x|2 ≤ ∥rowi (W1)∥2 ∥x∥2 ≤ C ∥x∥2
d log2 h′

h′
. (A.25)

We now apply the non-linearity to this quantity and denote the output of the first layer

after the non-linearity as

vi = ψ (rowi (W1) · x)

Define the vector ϵ ∈ Rh′
, where

ϵj = vi − rowi (W1) · x

Then we have for h′ large enough3:

∥ϵ∥2 =

h′∑
i=1

ϵ2i =

h′∑
i=1

(vi − rowi (W1) · x)2

≤
h′∑
i=1

c2

4
(rowi (W1) · x)4 by equation A.24

≤
h′∑
i=1

c2

4

(
C ∥x∥2 d log

2 h′

h′

)2

by equation A.25

= K2c2 ∥x∥4 h
′d2 log4 h′

h′2
= K2c2 ∥x∥4 d

2 log4 h′

h′
,

where K is the universal constant C
2 . Combining this with the second layer we get the

difference of the outputs of the two networks as

∥∥∥fψ(0) − fI(0)∥∥∥ =
∥∥W⊤

2 v −W⊤
2 W1x

∥∥ =
∥∥W⊤

2 (v −W1x)
∥∥

≤ ∥W2∥ ∥ϵ∥ = ∥ϵ∥ as ∥W2∥ = 1

≤ Kc ∥x∥2 d

√
log4 h′

h′
→ 0.

3Note that for the weaker assumption we can still use equation A.24. This is because by equa-
tion A.25,w.h.p. rowi(W1) · x goes to 0 and thus rowi(W1) · x ∈ A in limit

140



A.2. PROOFS FOR CHAPTER 3

A.2.6 Proof of Lemma 7

Let us first restate the lemma: Given any d ≤ p, Let Q be a uniformly random h× d semi-

orthonormal matrix. I.e. Q is the first d columns of an uniformly random h×h orthonormal

matrix. Then there are constants L and a sequence ϵp converging to 0 as h goes to infinity

such that ,

P

(
max |Qi,j | ≥

L log h√
h

)
≤ ϵn

Proof. We note that it is enough to prove the claim when d = h′, i.e. Q is uniformly random

h′×h′ orthonormal matrix. Then as our distribution is uniform, the density at any particular

Q is same as the density at any UQ where U is some other fixed orthogonal matrix. Thus if

q1 is the first column of Q, the marginal distribution of q1 has the property that its density

at any q1 is same as that of Uq1 for any orthogonal matrix U . In other words the marginal

distribution for any column of Q is simply that of the uniform unit sphere.

Consider then the following random variable which has the same distribution as that of a

fixed column of Q i.e. uniform unit h-sphere. Let X = (X1, ..., Xh′) be iid random variables

from N (0, 1). Then we know that X ∼ N (0, Ih′). From the rotational symmetry property

of standard gaussian then we have that X
∥X∥ is distributed as an uniform sample from the

unit sphere in h′ dimensions. By union bound then, we have

P

(
max

1≤i≤h′
|Xi| ≥ t log h′

)
≤ 1√

2π
h′e−

t2 log2 h′
2

=⇒ P

(
max

1≤i≤h′
|Xi| ≤ t log h′

)
≥ 1− 1√

2π
h′e−

t2 log2 h′
2 .

As each Xi is iid normal, X2
i is iid Chi-square with E[X2

i ] = 1, thus by Chernoff there exists

constants C ′, c′ such that

P

(∑h′

i=1X
2
i

h′
≥ 1− s

)
≥ 1− C ′e−c

′h′s2 .

Since max1≤i≤h′ |Xi| ≤ t log h′ and
∑h′

i=1X
2
i

h′ ≤ (1 + s) implies that max1≤i≤h′
|Xi|
∥X∥ ≤

t log h′√
h′(1−s)

, we get that

P

(
max

1≤i≤h′

|Xi|
∥X∥ ≤

t log h′√
h′(1− s)

)
≥ 1− 1√

2π
h′e−

t2 log2 h′
2 − C ′e−c

′h′s2

=⇒ P

(
max

1≤i≤h′

|Xi|
∥X∥ ≥

t log h′√
h′(1− s)

)
≤ 1√

2π
h′e−

t2 log2 h′
2 + C ′e−c

′h′s2

From the argument before that any j’th column of Q is distributed as X. Using the above
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and another union bound then get us

P

(
max

1≤i≤h′
max

1≤i≤h′
|Qi,j | ≥

t log h′√
h′(1− s)

)
≤ 1√

2π
h′e−

t2 log2 h′
2 + C ′e−c

′h′s2

=⇒ P

(
max

1≤j≤h′
max

1≤i≤h′
|Qi,j | ≥

t log h′√
h′(1− s)

)
≤ 1√

2π
h′

2
e−

t2 log2 h′
h′ e−c

′h′s2

We note that for any constants t, c′ that as h′ goes to infinity, both h′
2
e−

t2 log2 h′
2 and

h′e−c
′h′s2 goes to zero. The proof is then finished by choosing some appropriate constants

s, t ≥ 0.

A.2.7 Proof of Theorem 5

Let us recall the the general linear trace minimization problem stated in (3.8):

min
W2W1

Tr
(
W⊤

2 W1CW
⊤
1 W2

)
s.t. W⊤

2 W2 = Ih and W⊤
1 W1 = Id.

where W1 ∈ Rh′×d and W2 ∈ Rh′×h are the trainable weight matrices and C ∈ Rd×d a

symmetric, data dependent matrices, such that C = V ΛV ⊤ with V := [v1, . . . , vd]. Then

with q :=
[
f I(v1), · · · , f I(vd)

]⊤
, where f represents the machine function i.e. f I(x) =

W⊤
2 W1x, the learning dynamics of q, the machine outputs are given by

q̊ = −2
[
2Λq − Λqq⊤q − qq⊤Λq

]
. (A.26)

Proof. To simplify notation we are dropping the superscript I from f I(t). The u in the

following proof is already presumed to be linear. For the same reason we are also dropping

the symbol of time, t, from u,W2,W1 even though all of them are indeed time dependent.

Finally for any time dependent function f , we denote ∂f
∂t by f̊ .

From [EAS98], we get that the derivative of a function γ restricted to a grassmanian is

derived by left-multiplying 1− γγ⊤ to the ”free” or unrestricted derivative of γ. Using this

and recalling that the loss in Eq. 3.8 is given by

L = Tr
(
W⊤

2 W1CW
⊤
1 W2

)
,

we therefore can write W̊1 and W̊2 as

W̊2(t) = −
(
I −W2W

⊤
2

)
∇W2

L = −2
(
I −W2W

⊤
2

) (
W1CW

⊤
1 W2

)
W̊1(t) = −

(
I −W1W

⊤
1

)
∇W1

L = −2
(
I −W1W

⊤
1

) (
W2W

⊤
2 W1C

)
.
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Thus we obtain

∂ f(t)(x)

∂ t
=W̊2(t)

⊤W1(t)x+W2(t)
⊤W̊1(t)x

=
((
I −W2W

⊤
2

) (
−2W1CW

⊤
1 W2

))⊤
W1(t)x

+W2(t)
⊤ (I −W1W

⊤
1

) (
−2W2W

⊤
2 W1C

)
x

=− 2
(
W⊤

2 W1C����W⊤
1 W1x + ����W⊤

2 W2W
⊤
2 W1Cx

)
+ 2

(
W⊤

2 W1CW
⊤
1 W2W

⊤
2 W1x + W⊤

2 W1W
⊤
1 W2 W

⊤
2 W1Cx

)
=− 2

(
2W⊤

2 W1Cx−W⊤
2 W1CW

⊤
1 W2W

⊤
2 W1x

−
d∑
i

W⊤
2 W1viv

⊤
i W

⊤
1 W2 W

⊤
2 W1Cx

)
,

where we obtain the second equality by expanding the terms, taking advantage of W⊤
2 W2 =

I,W⊤
1 W1 = I and Id =

∑d
i viv

⊤
i . Now setting x as vj and using the fact that they are

eigenvectors for C and using C =
∑d
i λiviv

⊤
i gives us:

f̊(vj) =− 2

(
2λjf(t)(vj)−

d∑
i

λif(t)(vi)f(t)(vi)
⊤f(t)(vj)− λj

d∑
i

f(t)(vi)f(t)(vi)
⊤f(t)(vj)

)

Let’s rewrite this in matrix notation. First define q := [f(v1), . . . f(vd)]
⊤

thus obtaining:

q̊ = −2
[
2Λq − Λqq⊤q − qq⊤Λq

]
which concludes the proof.

A.2.8 Proof of Theorem 6

Let h = 1 then our update rule simplifies to

q̊

2
= −(1− q⊤q)Λq − (I− qq⊤)Λq. (A.27)

We can distinguish two cases:

• Assume all the eigenvalues of Λ are strictly positive then q converges to 0.

• Assume there is at least one negative eigenvalue of Λ, then q becomes the smallest

eigenvector, e1.

Proof. For instance first suppose that all the eigenvalues of Λ are strictly positive and thus

q⊤Λq > 0. Then

d(q⊤q)

dt
= 2q⊤q̊ = 4

[
− (1− q⊤q)q⊤Λq − q⊤(I − qq⊤)Λq

]
= −8(1− q⊤q)q⊤Λq
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Observing now that because of orthonormality of our weight matrices, q⊤q = ∥q∥2 ≤ 1 we

get that the derivative of ∥q∥2 is always negative and thus q converges to 0.

Now suppose on the other hand there is atleast one negative eigenvalue. WLOG let e1

denote the eigenvector with the smallest eigenvalue (which is negative). Then

d(e⊤1 q)

dt
= e⊤1 q̊ = 2

[
− (1− q⊤q)e⊤1 Λq − e⊤1 (I − qq⊤)Λq

]
= 2
[
(1− q⊤q)(−λ1)e⊤1 q + (q⊤Λq − λ1)e⊤1 q)

]
We now note that q⊤Λq − λ1 ≥ 0 as λ1 is the smallest eigenvalue. Thus as −λ1 is positive,

the derivative of e⊤1 q is always positive unless 1− q⊤q = q⊤Λq−λ1 = 0, which only happens

at q = e1. In other words, eventually q becomes the smallest eigenvector e1.
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A.3 Proofs for Chapter 4

A.3.1 Proof of Theorem 9

Given data X and an embedding dimension h ∈ N, let L : Hh → R be a loss function that

vanishes on H⊥
X . Assume dim(H⊥

X) ≥ h. Consider the following constrained minimisation

problem over w1, . . . , wh ∈ H
minimise L(w1, . . . , wh)

s.t. W ∗W = Ih

(A.28)

Furthermore, consider the inequality-constrained problem over HX

minimise L(w1, . . . , wh)

s.t. WTW ⪯ Ih and w1, . . . , wh ∈ HX
(A.29)

Then, every minimiser of (A.28) is contained in HhX if and only if every minimiser of (A.29)

satisfies WTW = Ih.

Let us prove our characterization of loss functionals that admit representer theorems under

orthonormality constraints. Denote PX : H → HX for the projection onto the finite-

dimensional subspace HX . Recall that PX is a bounded linear operator with operator norm

∥PX∥ = 1, satisfying P 2
X = PX .

Proof. Let us begin by assuming that a collection of functions w1, . . . , wh is a minimiser of

minimise L(w1, . . . , wh)

s.t. W ∗W = Ih

(A.30)

that is not contained in HX . Then, PXw1, . . . , PXwh ∈ HX achieve the same minimum,

because L vanishes outside of HX . Because not all w1, . . . , wh are contained in HX ,W ∗W ̸=
Ih. Thus, we have found a minimiser of

minimise L(w1, . . . , wh)

s.t. WTW ⪯ Ih and w1, . . . , wh ∈ HX
(A.31)

that does not satisfy the constraint with equality. For the other direction, assume that there

exists a minimiser (w1, . . . , wh) ∈ HX of (A.31) that does not satisfy the constraint with

equality. Then, exploiting the fact that dim(H⊥
X) ≥ h, we can simply add V1, . . . , Vh ∈ H⊥

X

to w1, . . . , wh without changing L, while at the same time ensuring ⟨wi + Vi, wj + Vj⟩ =
1i=j . This new minimiser of L is not contained in HX and hence there is no representer

theorem.

Remark 14. As mentioned in the main paper, checking that optimisers W of (A.31) are
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indeed orthonormal can be done by analyzing the behaviour of the loss functional L under

orthonormalization of a given solution W with WTW ̸= Ih. To illustrate this briefly in a

finite-dimensional setting, consider the trace loss

L(W ) = −Tr(WTAW )

for some A ⪰ 0. If WTW ⪯ Ih, then we can orthonormalize it via X = WV −1, where

V V T =WTW . Then, XTX = Ih and

L(X) = Tr(WTAW (V V T )−1) = Tr(WTAW (WTW )−1) ≤ L(W )

where the final inequality follows from the fact that WTW ̸= Ih.

A.3.2 Proof of Theorem 10

Consider the optimisation problem as stated in Definition 4. Let X,X+, X− ∈ Rd×n denote

the data corresponding to the anchors, positive and negative samples, respectively. Define

the kernel matrices

K = [k(xi, xj)]i,j K− =
[
k(xi, x

−
j )
]
i,j

K+ =
[
k(xi, x

+
j )
]
i,j

K−− =
[
k(x−i , x

−
j )
]
i,j

K++ =
[
k(x+i , x

+
j )
]
i,j

K−+ =
[
k(x−i , x

+
j )
]
i,j

Furthermore, define the matrices

K∆ = K−− +K++ −K−+ −KT
−+ K1 =

K K− −K+

K3 K∆


B =

K− −K+

K∆

 · [K K− −K+

]
K2 = −1

2

(
B +BT

)
.

Let A2 consist of the top h eigenvectors of the matrix K
−1/2
1 K2K

−1/2
1 , which we assume

to have h non-negative eigenvalues. Let A = K
−1/2
1 A2. Then, at optimal parameterization,

the embedding of any x∗ ∈ Rd can be written in closed form as

z∗ = AT

 k(x∗, X)

k(x∗, X−)− k(x∗, X+)


Proof. Define the (possibly infinite-dimensional) matrices Φ = [ϕ(x1), . . . , ϕ(xn)] and ∆ =

[ϕ(x−1 ) − ϕ(x+1 ), . . . , ϕ(x−n ) − ϕ(x+n )], where ϕ : Rd → H is the canonical feature map asso-

ciated with the given kernel and H is the corresponding RKHS. We start by deriving the
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optimal parameterization. To do so recall the loss problem setup:

min
W

n∑
i=1

f(xi)
T
(
f(x−i )− f(x+i )

)
where f(xi) =WTϕ(xi) s.t. W ∗W = Ih

(A.32)

By virtue of the representer theorem under orthonormality constraints, we may reduce this

to a finite-dimensional optimisation problem on the span of (Φ,∆), change the constraints

to WTW ⪯ Ih for the moment, and finally verify that the optimal solution does in fact

satisfy WTW = Ih. If that is the case, we know that this solution is also the minimiser of

(A.32) over the entire space H. Hence, let us assume that there exists A ∈ R2n×h such that

W = [Φ,∆]A

Thus, denoting K1 = [Φ,∆]T [Φ,∆] ∈ R2n×2n, we may rewrite our optimisation problem as

min
A

n∑
i=1

ϕ(xi)
T [Φ,∆]AAT [Φ,∆]T

(
ϕ(x−i )− ϕ(x+i )

)
(A.33)

s.t. ATK1A ⪯ Ih (A.34)

This is equivalent to

min
A

Tr
(
AT [Φ,∆]T∆ΦT [Φ,∆]A

)
s.t. ATK1A ⪯ Ih

Denoting B = [Φ,∆]T∆ΦT [Φ,∆] and K2 = − 1
2

(
B +BT

)
for the negative symmetric part

of B, we are left with the trace maximization

max
A

Tr
(
ATK2A

)
s.t. ATK1A ⪯ Ih

Writing A2 = K
1/2
1 A ∈ R2n×h, this simplifies to

max
A2

Tr
(
AT2K

−1/2
1 K2K

−1/2
1 A2

)
s.t. AT2 A2 ⪯ Ih

This expression is maximized when A2 consists of the top h orthonormal eigenvectors of

K
−1/2
1 K2K

−1/2
1 , which do in fact satisfy AT2 A2 = Ih, and hence W = [Φ,∆]A also satisfies

WTW = Ih with equality. Note that both K1 and K2 depend only on inner products in the

RKHS and can hence be computed directly from the kernel k, and that there is no need for

evaluating the feature map directly. Finally, A = K
−1/2
1 A2 becomes the desired minimiser
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of A.33. For a new point x∗, it holds that

f(x∗) =WTϕ(x∗)

= AT [Φ,∆]Tϕ(x∗)

= AT

 k(x∗, X)

k(x∗, X−)− k(x∗, X+)


which again requires only knowledge of the kernel, and not of the (implicit) feature map.

A.3.3 Proof of Theorem 11

Consider the optimisation problem as stated in Definition 5, with K denoting the kernel

matrix. Then, we can equivalently minimise the objective w.r.t. the embeddings Z ∈ Rh×3n.

Denoting by z1, . . . ,z3n the columns of Z, the loss to be minimised becomes

min
Z∈Rh×3n

n∑
i=1

−2zTi zi+n +
(
zTi zi+2n

)2
+ λ · Tr

(
ZK−1ZT

)
The gradient of the loss function in terms of Z is therefore given by

2λZK−1 +


−2zi+n + 2(zTi zi+2n)zi+2n , i ∈ [n]

−2zi−n , i ∈ [n+ 1, 2n]

2(zTi zi−2n)zi−2n , i ∈ [2n+ 1, 3n]

For any new point x∗ ∈ Rd, the trained model maps it to

z∗ := ZK−1k(X,x∗).

Proof. Recall that in contrastive learning with the spectral contrastive loss, we learn a rep-

resentation of the form fW (x) = WTϕ(x) = (w1(x), . . . , wh(x)) by optimising the following

objective function:

LSp :=

n∑
i=1

−2fW (xi)
T fW (x+i ) +

(
fW (xi)

T fW (x−i )
)2

+ λ ∥W∥2H .

Since the term
∑n
i=1−2fW (xi)

T fW (x+i ) +
(
fW (xi)

T fW (x−i )
)2

vanishes for any choice of

w1, . . . , wh ∈ H⊥
X , and we add a norm regularization to this objective function, it is clear

by the representer theorem that any minimiser of LSp must consist of h functions from

HX . We may hence write wj = Φaj for some aj ∈ Rn. Denoting Z for the embeddings

under the map WTϕ(xi) and A for the matrix with columns a1, . . . ,ah, we see that for any

j ∈ [h], it must hold that ATK = Z and hence A = K−1ZT . Thus, W = ΦK−1ZT and

∥W∥2 = Tr(ZK−1KK−1ZT ) = Tr(ZK−1ZT ). This allows us to reformulate the minimisa-

148



A.3. PROOFS FOR CHAPTER 4

tion problem as an optimisation over the embedded points Z, yielding the gradients

∇LSp = 2λZK−1 +


−2zi+n + 2(zTi zi+2n)zi+2n , i ∈ [n]

−2zi−n , i ∈ [n+ 1, 2n]

2(zTi zi−2n)zi−2n , i ∈ [2n+ 1, 3n]

Finally, by virtue of our choice of W = ΦK−1ZT , any new point x∗ ∈ Rd is mapped to

z∗ := ZK−1k(X,x∗).

A.3.4 Proof of Theorem 12

Let F :=
{
X 7→WTϕ (X) : ∥WT ∥H ≤ ω

}
be the class of embedding functions we consider

in the contrastive setting. Define α :=
(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
as

well as κ := maxx′
i∈{xi,x

−
i ,x

+
i }n

i=1
k(x′i, x

′
i). We then obtain the generalisation error for the

proposed losses as follows.

1. Simple Contrastive Loss. Let the loss be given by Definition 4. Then, for any

δ > 0, the following statement holds with probability at least 1− δ for any f ∈ F :

LSi(f) ≤ L̂Si(f) +O

ω2
√
κα

n
+ ω2κ

√
log 1

δ

n


2. Spectral Contrastive Loss. Let the loss be given by Definition 5. Then, for any

δ > 0, the following statement holds with probability at least 1− δ for any f ∈ F :

LSp(f) ≤ L̂Sp(f) +O

λω2 +
ω3κ

3
2α

n
+ ω4κ2

√
log 1

δ

n


Proof. Part 1. Simple Contrastive Loss. We start from the following Lemma, that is

defined in the context of the simple contrastive loss:

Lemma 8 ([Aro+19c]). With probability at least 1− δ over the training set, ∀f ∈ F :

Lun ≤ L̂un +O

RRc(F ,x)
n

+B

√
log 1

δ

n


where ∥f(·)∥ ≤ R and B the bound on the loss function wich in the case of the simple

contrastive loss can be given by B = O(R2).

Furthermore the the Rademacher complexity term in the above lemma is defined over the
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following definition.

Definition 7 (Expected Rademacher Complexity for Contrastive Setting (following [Aro+19c])).

Let our dataset be consistent of triplets S =
{
xi, x

+
i , x

−
i

}n
i=1

and

f|S =
(
ft (xj) , ft

(
x+j
)
, ft
(
x−j
))
j∈[n],t∈[h]

∈ R3hn

be the restriction of and f ∈ F to S, then we define the empirical Rademacher Complexity

as

Rc(F ,x) = E
σ∼{±1}3nh

[
sup
f∈F

3dn∑
i=1

σif|S (xi)

]
.

Having the setup complete we can now compute the complexity term of the in this paper

considered kernel function. In the first step we pluck in our considered model and split it

up by the reference, positive and negative samples:

Rc(F ,x)

= E
σ∼{±1}3nd

[
sup
f∈F

3hn∑
i=1

σif|S (xi)

]

= E
σ∼{±1}3nd

 sup
W :∥W∥H≤ω

h∑
j=1

n∑
i=1

σiW
T
·,jϕ (xi) + σi+nW

T
·,jϕ

(
x−i
)
+ σi+2nW

T
·,jϕ

(
x+i
)

≤ ω
(
E
σ

[
h

∥∥∥∥∥
n∑
i=1

σiϕ (xi)

∥∥∥∥∥
]
+ E

σ

[
h

∥∥∥∥∥
n∑
i=1

σiϕ
(
x−i
)∥∥∥∥∥
]
+ E

σ

[
h

∥∥∥∥∥
n∑
i=1

σiϕ
(
x+i
)∥∥∥∥∥
])

(by linearity of expectation and Cauchy-Schwartz inequality)

= ω

E
σ


√√√√h

∥∥∥∥∥
n∑
i=1

σiϕ (xi)

∥∥∥∥∥
2
+ E

σ


√√√√h

∥∥∥∥∥
n∑
i=1

σiϕ
(
x−i
)∥∥∥∥∥

2
+ E

σ


√√√√h

∥∥∥∥∥
n∑
i=1

σiϕ
(
x+i
)∥∥∥∥∥

2



≤ ω


√√√√√hE

σ

∥∥∥∥∥
n∑
i=1

σiϕ (xi)

∥∥∥∥∥
2
+

√√√√√hE
σ

∥∥∥∥∥
n∑
i=1

σiϕ
(
x−i
)∥∥∥∥∥

2
+

√√√√√hE
σ

∥∥∥∥∥
n∑
i=1

σiϕ
(
x+i
)∥∥∥∥∥

2



(Jensen’s inequality)

= ω
(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
.
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Secondly we have to bound the quantity ∥f(·)∥ ≤ R:

∥f(·)∥ =
∥∥WTϕ(x)

∥∥ (by definition of considered embedding function)

≤
∥∥WT

∥∥ ∥ϕ(x)∥
≤ ω ∥ϕ(x)∥ (by definition of function class

∥∥WT
∥∥ is bound)

≤ ω
√
⟨ϕ(x)Tϕ(x)⟩

≤ ω
√
max
xi

.k(xi, xi) (bounding over all possible xi)

Defining κ := maxx′
i∈{xi,x

−
i ,x

+
i }n

i=1
k(x′i, x

′
i) to account for reference, positive and negative

samples and combining all results concludes this part of the proof.

Proof. Part 2. Spectral Contrastive Loss.

The overall proof structure follows the one presented above for the simple contrastive loss,

however Lemma 8 is define for the simple contrastive loss. Therefore we will adept the proof

of [Aro+19c] Lemma A.2. to obtain the following lemma for the spectral contrastive loss.

Lemma 9. With probability at least 1− δ over the training set, ∀f ∈ F :

Lun ≤ L̂un +O

R3Rc(F ,x)
n

+B

√
log 1

δ

n

 (A.35)

where Rc(F ,x) is the Vector Rademacher Complexity where ∥f(·)∥ ≤ R and B = O(R4).

Before proofing Lemma 9 we first recall the following Lemma:

Lemma 10 (Corollary 4 in [Mau16]). Let Z be any set and S = {zj}nj=1 ∈ Zn. Let F̃ be a

class of functions f̃ : Z → Rd and h : Rd → R be L-Lipschitz. For all f̃ ∈ F̃ , let gf̃ = h ◦ f̃ .
Then

E
σ∼{±1}n

[
sup
f̃∈F̃

〈
σ,
(
gf̃

)
|S

〉]
≤
√
2L E

σ∼{±1}dn

[
sup
f̃∈F̃

〈
σ, f̃|S

〉]
(A.36)

where f̃|S =
(
f̃t (zj)

)
t∈[d],j∈[n]

.

We start by considering the classical Rademacher complexity based generalization error. For

a real function class G whose functions map from a set Z to [0, 1] and for any δ > 0, if S is

a training set composed by n i.i.d. samples {zj}nj=1, then with probability at least 1− 2
δ ,for

all g ∈ G

E[g(z)] ≤ 1

n

n∑
j=1

g (zi) +
2RS(G)

n
+ 3

√
log 4

δ

2n
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where RS(G) is the standard Rademacher complexity. We can apply this to our setting by

considering Z = X 3 and defining the function class as

G =

{
gf
(
x, x+, x−

)
=

1

B

(
f(x)T f

(
x+
)
−
(
f (xi)

T
f
(
x−i
))2)

| f ∈ F
}
.

Now to show (A.35) consider some universal constant c we have to show RS(G) ≤ cR
3

B RS(G)
or equivalently

E
σ∼{±1}n

[
sup
f∈F

〈
σ, (gf )|S

〉]
≤ cR

3

B
E

σ∼{±1}3dn

[
sup
f∈F

〈
σ, f|S

〉]
(A.37)

where (gf )|S =
{
gf
(
xj , x

+
j , x

−
1

)}n
j=1

. We can now observe by setting Z = X 3, b = 3d and

F̃ =
{
f̃
(
x, x+, x−

)
=
(
f(x), f

(
x+
)
, f
(
x−
)
,
)
| f ∈ F

}
and using gf̃ = gf that (A.36) and (A.37) exactly coincide and we need to show L ≤ c√

2
R3

B for

some constant c. Now for z = (x, x+, x−) we have gf̃ (z) =
1
Bψ(f̃(z)) where ψ : R(1+2)d → R

with ψ
((
vt, v

+
t , v

−
t

)
t∈[d]

)
=
∑
t−vtv+t +

(
vtv

−
t

)2
. We can now show that ψ is R3 lipschitz

where
∑
t v

2
t ,
∑
t

(
v+t
)2
,
∑
t

(
v−t
)2 ≤ R2 by computing its Jacobian. To do so we derive

∂ψi

∂v+t
= −vt ∂ψi

∂vt
= −v+t + v−t v

−
t vt and ∂ψi

∂v−t
= vtvtv

−
t and get by triangle inequality the

Frobenius norm on the Jacobian J of ψ

∥J∥F ≤
√∑

t

(v−t )
4(vt)2 + (v−t )

3v3t + (v−t )
2v4t + (v+t )

2 + (v+t )vt + (vt)2 = O(R3).

Finally using ∥J∥2 ≤ ∥J∥F bounds the lipschitzness and concludes the proof of Lemma 9.

As the function class we consider for embedding does not change

(F :=
{
X 7→WTϕ (X) : ∥WT ∥H ≤ ω

}
)

, we again obtain Rc(F ,x) ≤ ω
(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
and ω

√
κ ≤

R, which combined with the above Lemma 9 concludes the proof.

A.3.5 Proof Corrollary 1

Let t = E
c,c′∼ρ2

1 {c = c′} and τ := 1
(1−t) be the probability that two classes sampled indepen-

dently from ρ are the same. Again define α :=
(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
.

In the following let Lsup be the loss of the supervised downstream task.

1. Simple Contrastive Loss. Let L̂Si be the simple contrastive loss as defined in

Definition 4. Then for any δ > 0, the following statement holds with probability at
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least 1− δ for any f ∈ F :

LSi
sup ≤τ

(
L̂Si
un − t

)
+ τO

ω2
√
κα

n
+ ω2κ

√
log 1

δ

n



2. Spectral Contrastive Loss. Let L̂Sp be the spectral contrastive loss as defined in

Definition 5. For any δ > 0, the following statement holds with probability at least

1− δ for any f ∈ F :

LSp
sup ≤τ

(
L̂Sp
un − t

)
+ τO

ω3κ
3
2α

n
+ ω6κ3

√
log 1

δ

n


Proof. Before we state the bound let us formally define the supervised task. We consider a

two-class classification task T with {c1, c2} distinct classes and a linear classifier on top of

the learned representation. Let this function given by V ∈ R2×h. In the following let Xc be

a datapoint X belonging to class c.

Lsup (T , f) = inf
V

E
(X,c)

[V f(Xc)− V f(Xc′) | ci ̸= cj ]

From there we can furthermore define the average supervised loss as taking the expectation

over the distribution of classes. The average loss for a function f on a binary classification

task tasks is defined as

Lsup (f) := E
{c1,c2}∼ρ2

[Lsup ({c1, c2}, f) | ci ̸= cj ]

where the latent class distribution is given by ρ.

In the following let µc = E
x∼Dc

f(x) be the mean of class c and f(X) the embedding function.

1. Simple Contrastive Loss. This lemma is directly proven for the simple contrastive

loss in [Aro+19c]. We will first restate the proof for the simple contrastive loss from

completeness. We can now bound the unsupervised loss:
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Lun(f) = E
(X,X+)∼Dsim

X−∼Dneg

[
f(X)T

(
f
(
X+
)
− f

(
X−))]

= E
c+,c−∼ρ2
x∼Dc+

E
x+∼Dc+

x−∼Dc−

[
f(X)T

(
f
(
X+
)
− f

(
X−))]

≥ E
c+,c−∼ρ2

E
X∼Dc+

[
f(x)T (µc+ − µc−)

]
= (1− τ) E

c+,c−∼ρ2

[
Lµsup

({
c+, c−

}
, f
)
| c+ ̸= c−

]
+ τ

= (1− τ)Lsup(f) + τ

The bound then follows directly from Theorem 14 and the above results.

2. Spectral Contrastive Loss. We follow the same general idea as in Case 1, with

changed loss function. Observe that we can bound the spectral by the simple con-

trastive loss with an additional constant. While this is a very rough bound in this

setting we are only interested in bounding the unsupervised by the supervised loss and

constants are observed into the big O notation. The bound then follows directly from

Theorem 14 and the above results.

This concludes the proof.
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A.4 Proofs for Chapter 5

A.4.1 Proof of Theorem 13

For any bottleneck Z ∈ Rh×n, define the reconstruction

Q(Z) = X(KZ + λIn)
−1KZ

Learning the Kernel AE from Definition 6 is then equivalent to minimising the following

expression over all possible embeddings Z ∈ Rh×n:

∥Q(Z)−X∥2 + λTr
(
ZK−1

X ZT +QK−1
Z QT

)
s.t. ∥zi∥2 = 1 ∀i ∈ [n]

Given Z, any new x∗ ∈ Rd is embedded in the bottleneck as

z∗ = ZK−1
X k(x∗, X)

and reconstructed as

x̂∗ = X (KZ + λIn)
−1
k(z∗, Z)

Proof. Writing Z = [z1, . . . , zn] ∈ Rh×n for the points in the bottleneck andQ = [q1, . . . , qn] ∈
Rd×n for the points in the output layer, and denoting ΦX ,ΦZ ,KX ,KZ for the respective

feature maps and kernel matrices of inputs X and bottleneck Z, the representer theorem

(with norm regularization) and the same argument as in the proof of Theorem 11 yields that

the minimum-norm W1 and W2 satisfying WT
1 ΦX = Z and WT

2 ΦZ = Q are given by

W1 = ΦXK
−1
X ZT

W2 = ΦZK
−1
Z QT

Their Frobenius norms (in the infinite-dimensional case, their Hilbert-Schmidt norms) are

∥W1∥2 = Tr(ZK−1
X ZT )

∥W2∥2 = Tr(QK−1
Z QT )

Thus, the loss function is equivalent to minimising the expression

min
Z,Q
∥X −Q∥2 + λ · Tr(ZK−1

X ZT +QK−1
Z QT )

s.t. ∥zi∥2 = 1 for all i ∈ [n]

Observe that for any fixed bottleneck Z, Tr(ZK−1
X ZT ) remains constant and the above
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problem reduces to a sum of d kernel ridge regressions, with labels X and observations Z.

Thus, the optimal parameterization W2 simplifies to

W2 = ΦZ (KZ + λIn)
−1
XT

and directly implies the final layer

Q = X (KZ + λIn)
−1
KZ

Learning the Kernel AE from Definition 6 is hence equivalent to minimising the following

expression over all possible embeddings Z ∈ Rh×n:

∥Q(Z)−X∥2 + λTr
(
ZK−1

X ZT +QK−1
Z QT

)
s.t. ∥zi∥2 = 1 ∀i ∈ [n].

Given Z, any new x∗ ∈ Rd is embedded in the bottleneck as

z∗ = ZK−1
X k(x∗, X)

and reconstructed as

x̂∗ = X (KZ + λIn)
−1
k(z∗, Z)

A.4.2 Proof of Theorem 14

Assume the optimisation be given by Definition 6 and define the class of encoders/decoders

as: F :=
{
X 7→ WT

2 ϕ2
(
WT

1 ϕ1 (X)
)
s.t. ∥WT

1 ϕ(xi)∥2 = 1 ∀ i ∈ [n] : ∥WT
1 ∥H ≤

ω1, ∥WT
2 ∥H ≤ ω2

}
. Let r := λ(ω2

1 + ω2
2) and γ = maxs∈Rhs.t.∥s∥2=1 {k(s, s)}, then for

any δ > 0, the following statement holds with probability at least 1− δ for any f ∈ F :

LAE(f) ≤ L̂AE(f) +O

r + ω2

√
dγ√
n

+

√
log 1

δ

n


Proof. Again we have to characterize the complexity and the slack term. We will start

by following a version of the standard Rademacher complexity to account for the multi-

dimensional output to bound the former.

Definition 8 (Empirical Vector Rademacher Complexity following [MP16]). Let us consider

a function class F :=
{
f : Rd → Rh

}
and a dataset S = {xi}ni=1, xi ∈ Rd. Let I : [h]→ 2[n]

be a function which assignes to every t ∈ [h] a subset It ⊂ [n] and σij are doubly indexed,
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independent Rademacher variables. Then we define the Rademacher complexity as

RI(F ,x) =
1

n
E

[
sup
f∈F

h∑
t=1

∑
i∈It

σtift (xi)

]
.

In simple terms this is a standard Rademacher approach while taking the dimension over

the output dimension into account.

We first start with the overall loss function and

L
(
X, fBAEW1,W2

(
X
))

:=
∥∥X −WT

2 ϕ2
(
WT

1 ϕ1
(
X
))∥∥2

H + λ
(
∥W1∥2H + ∥W2∥2H

)
s.t. ∥WT

1 ϕ(xi)∥2 = 1 ∀ i ∈ [n],

and use the additive nature of Rademacher complexity to bound the regularization terms

first by ω1, ω2. Secondly noting that the square norm is L-Lipschitz and using the Lipschitz

composition property of Rademacher complexity to bound

RI(ℓ ◦ F ,x) ≤ LRI(F ,x)

and we therefore can focus on the encoding-decoding function RI(F ,x). Starting from this

general formulation we can now apply this to our setting

RI(F ,x) =
1

n
E

[
sup
f∈F

h∑
t=1

∑
i∈It

σtift (xi)

]
(by Definition 8)

=
1

n
E

[
sup

W1,W2:∥W2∥H≤ω2

d∑
t

∑
i∈It

σtiW·tϕ (W1σ(xi))

]
(model definition)

=
1

n
E

[
sup

W1,W2:∥W2∥H≤ω2

d∑
t

〈
W·t,

∑
i∈It

σtiϕ (W1σ(xi))

〉]

=
ω2

n
E

sup
W1

√√√√ d∑
t

∥∥∥∥∥∑
i∈It

σtiϕ (W1σ(xi))

∥∥∥∥∥
2


≤ ω2

n

√√√√√ d∑
t

E

sup
W1

∥∥∥∥∥∑
i∈It

σtiϕ (W1σ(xi))

∥∥∥∥∥
2
 (Jenson inequality)

=
ω2

n

√
d
∑
i

sup
W1

∥ϕ (W1σ(xi))∥2 (E [σiσj ] = 0, i ̸= j)

Now recall that by definition ∥WT
1 ϕ(xi)∥2 = 1 ∀ i ∈ [n]. Therefore picking the supremum

over W1 is obtained for γ = maxs∈Rh s.t. ∥s∥2=1 {k(s, s)} and

ω2

n
sup
W1

√
d
∑
i

∥ϕ (W1σ(xi))∥2 ≤
ω2

n

√
dnγ =

ω2

√
dγ√
n
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Combining the above with the standard generalisation error bound [BM02b] in the regression

setting adds the slack term and concludes the proof.

A.4.3 Proof Corollary 2

Let t = E
c,c′∼ρ2

1 {c = c′} and τ := 1
(1−t) be the probability that two classes sampled indepen-

dently from ρ are the same. Again define α :=
(√

hTr [KX ] +
√
hTr [KX− ] +

√
hTr [KX+ ]

)
.

In the following let Lsup be the loss of the supervised downstream task.

Consider the embedding function from the function class F :=
{
X 7→WTϕ (X) : ∥WT ∥H ≤ ω

}
and let be L̂AE+

un the loss on the embedding for X+ and L̂AE−
un the loss on the embedding

for X−, standing in for two classes4. Furthermore let Tr[KX+ ],Tr[KX− ] ≤ β For any δ > 0,

the following statement holds with probability at least 1− δ for any f ∈ F :

LAEsup ≤ τ
(∣∣∣L̂AE+

un − L̂AE−
un

∣∣∣− t)+ τO

ω√hβ√
n

+

√
log 1

δ

n


Proof. Before we state the bound let us formally define the supervised task. We consider a

two-class classification task T with {c1, c2} distinct classes and a linear classifier on top of

the learned representation. Let this function given by V ∈ R2×h. In the following let Xc be

a datapoint X belonging to class c.

Lsup (T , f) = inf
V

E
(X,c)

[V f(Xc)− V f(Xc′) | ci ̸= cj ]

From there we can furthermore define the average supervised loss as taking the expectation

over the distribution of classes. The average loss for a function f on a binary classification

task tasks is defined as

Lsup (f) := E
{c1,c2}∼ρ2

[Lsup ({c1, c2}, f) | ci ̸= cj ]

where the latent class distribution is given by ρ.

In the following let µc = E
x∼Dc

f(x) be the mean of class c and f(X) the embedding function.

We can now observe that while the general idea is the same, there is an important difference

between the two contrastive approaches above and the kernel AE approach. While in Case

1 and 2 f(X) directly gives the embedding function and also a difference between mappings

to different classes using positive and negative samples. In the AE case the loss is computed

on the reconstruction and not directly on the embedding. In the following we therefore

consider f(X) as the embedding function. And let us consider the embedding of positive

4Remark: while it seems surprising that positive and negative samples suddenly appear in the AE setup
we note that in the contrastive setting this allows to naturally account for mappings to different classes.
Therefore in the AE, introducing this setting allows for class differentiation in the embedding.
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and negative samples as stand ins for the classes.

∣∣Lun(f(X))− Lun(f(X−))
∣∣ ≥ E

X∼Dsim

X−∼Dneg

[f(X)− f(Xc−)]

= E
c,c−∼ρ2

E
X∼Dc

[f(X)− f(Xc−)]

= (1− τ) E
c,c−∼ρ2

[
Lµsup

({
c, c−

}
, f
)
| c ̸= c−

]
+ τ

= (1− τ)Lsup(f) + τ

Again observe that f(X) is now only the embedding function, over the class

F :=
{
X 7→WTϕ (X) : ∥WT ∥H ≤ ω

}
.

Similarly to the proof of Theorem 14 we directly get the complexity term as:

Rc(F ,x) ≤ ω
√
hTr [KX ].

Considering it for both positive and negative samples and combined with the above results

we obtain the bound for the Kernel AE case. This concludes the proof.
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A.5 Proofs for Chapter 6

A.5.1 Proof Theorem 16

For brevity of the proof define

Uj :=W
(j)
1

Vj :=W
(j)
2

and let us recall the proof statement: For 0 < λ ≤ 1, optimizing Eq. 6.3 results in the

parameters at the optimum satisfying the following:

i) Class Assignment. While in Eq. 6.3 we define Sj,i as the probability that Xi be-

longs to class j at the optimal Sj,i = 1 or 0 and therefore converges to a strict class

assignment.

ii) Centers. Cj at optimum naturally satisfies the condition

Cj =

∑
i=1 Sj,iXi∑
i=1 Sj,i

.

iii) Encoding / Decoding (learned weights). We first show that V Tj = Uj , and define

Σ̂j :=

n∑
i=1

Sj,i (Xi − Cj) (Xi − Cj)T ,

then the encoding corresponds to the top h eigenvectors of Σ̂j .

Proof. (i) This part is trivial once we note that for a fixed Cj , Uj , Vj , the loss is linear in

Sj,i. Thus the optimal must occur at the extreme points of the constraints

1Tk S = 1Tn

Sj,i ≥ 0.

Let us first prove part (iii). To get conditions on Uj , Vj let us fix S,Cj and get conditions

of optimal in terms of the fixed quantities. Define

Σ̂j :=

n∑
i=1

Sj,i(Xi − Cj)(Xi − Cj)T
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Let us now optimize Vj , Uj for each fixed j.

min
Vj ,Uj

n∑
i=1

Sj,i

(
∥(Xi − Cj)− VjUj(Xi − Cj)∥2 − λ ∥Uj(Xi − Cj)∥2

)
= min
Vj ,Uj

n∑
i=1

Sj,i

(
∥(I− VjUj)(Xi − Cj)∥2 − λ ∥Uj(Xi − Cj)∥2

)
= min
Vj ,Uj

n∑
i=1

Sj,i
(
(Xi − Cj)T (I− VjUj)T (I− VjUj)(Xi − Cj)

− λ(Xi − Cj)TUTj Uj(Xi − Cj)
)

= min
Vj ,Uj

n∑
i=1

Sj,i Tr
[
(Xi − Cj)T (I− VjUj)T (I− VjUj)(Xi − Cj)

]
− λeTj SeiTr

[
(Xi − Cj)TUTj Uj(Xi − Cj)

]
= min
Vj ,Uj

n∑
i=1

Sj,i Tr
[
(I− VjUj)T (I− VjUj)(Xi − Cj)(Xi − Cj)T

]
− λeTj SeiTr

[
UTj Uj(Xi − Cj)(Xi − Cj)T

]
= min
Vj ,Uj

Tr
[
(I− VjUj)T (I− VjUj)Σ̂j

]
− λTr

[
UTj UjΣ̂j

]
= min
Vj ,Uj

Tr
[
((I− VjUj)T (I− VjUj)− λUTj Uj)Σ̂j

]
= min
Vj ,Uj

Tr
[
(I− VjUj − UTj V Tj + (1− λ)UTj Uj)Σ̂j

]
.

We can now bound the above as follows

min
Vj ,Uj

Tr
[
(I− VjUj − UTj V Tj + (1− λ)UTj Uj)Σ̂j

]
= min
Vj ,Uj

Tr
[
(I+ (1− λ)UTj Uj)Σ̂j

]
− Tr

[
(UTj V

T
j + VjUj)Σ̂j

]
= min
Vj ,Uj

Tr
[
(I+ (1− λ)UTj Uj)Σ̂j

]
− 2Tr

[
UjΣ̂jV

T
j

]
≥ min
Vj ,Uj

Tr
[
(I+ (1− λ)UTj Uj)Σ̂j

]
− 2

√
Tr
[
UjΣ̂

1/2
j Σ̂

1/2
j UTj

]
Tr
[
V Tj Σ̂

1/2
j Σ̂

1/2
j Vj

]
(A.38)

≥ min
Vj ,Uj

Tr
[
(I+ (1− λ)UTj Uj)Σ̂j

]
− 2

√√√√Tr
[
UjΣ̂jUTj

] h∑
i=1

αi (A.39)

= min
Vj ,Uj

d∑
i=1

αi − 2

√√√√Tr
[
UjΣ̂jUTj

] h∑
i=1

αi + (1− λ) Tr
[
UjΣ̂jU

T
j

]
,

where the inequality A.38 follows from applying Cauchy Schwarz inequality and the in-

equality A.39 from observing that the columns of V are h orthonormal vectors to get

Tr
[
V Tj Σ̂jVj

]
≤∑h

i=1 αi.

Let us set x =

√
Tr
[
UjΣ̂jUTj

]
, a = 1 − λ, b = 2

√∑h
i=1 αi and c =

∑d
i=1 αi. We can

now observe that 0 ≤ x =

√
Tr
[
UjΣ̂jUTj

]
≤
√∑h

i=1 αi =
b
2 and the minimization problem
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becomes

ax2 − bx+ c

which is a quadratic and thus decreasing when x ≤ b
2a . Therefore as b

2 ≤ b
2a the minimum

is achieved at x = b
2 thus we get

min
Vj ,Uj

Tr
[
(I− VjUj − UTj V Tj + (1− λ)UTj Uj)Σ̂j

]
≥

d∑
i=1

αi − 2

√√√√ h∑
i=1

αi

h∑
i=1

αi + (1 + λ)

h∑
i=1

αi

=

d∑
i=1

αi − (1 + λ)

h∑
i=1

αi

Reviewing the proof above we note that for the inequality to be achieved, we must satisfy

the conditions :

• Tr
[
UjΣ̂jU

⊤
j

]
=
∑h
i=1 αi (from optimizing the quadratic above),

• V Tj Σ̂
1/2
j = UjΣ̂

1/2
j (from equalizing C.S. used to get inequality A.38),

• Tr
[
V ⊤
j Σ̂jVj

]
=
∑h
i=1 αi (from equalizing inequality A.39).

Luckily the above conditions are only all satisfied for the following unique choice of or-

thonormal Ûj and V̂j . If αi and wi are the eigenvalues (arranged in descending order) and

eigenvectors of Σ̂j respectively define

Ûj =


wT

1

...

wT
h

 , V̂j = [w1, . . . ,wh] .

We then obtain,

Tr
[
(I− V̂jÛj − ÛTj V̂ Tj + (1− λ)ÛTj Ûj)Σ̂j

]
=

d∑
i=1

αi − (1 + λ)

h∑
j

αj

= −λ
h∑
i=1

αi +

d∑
j=h+1

αj .

Let us finally derive (ii).

Define

A := (I− VjUj − UTj V Tj + (1− λ)UTj Uj).
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Then,

min
Cj

Tr

[(
I− VjUj − UTj V Tj + (1− λ)UTj Uj

)( n∑
i=1

Sj,i(Xi − Cj)(Xi − Cj)T
)]

=min
Cj

Tr

[
A

(
n∑
i=1

Sj,i(Xi − Cj)(Xi − Cj)T
)]

=min
Cj

Tr

[
A

(
n∑
i=1

Sj,i(XiX
T
i −XiC

T
j + CjC

T
j )

)]

=min
Cj

Tr

[
A

((
n∑
i=1

Sj,iXiX
T
i

)
−
(

n∑
i=1

Sj,iXi

)
CTj +

(
n∑
i=1

Sj,i

)
CjC

T
j

)]
.

As Uj , Vj are variables varying in a space independent of Cj , at optimality of the above, the

partial derivative with respect to Cj must be 0. Thus we have,

∂

∂Cj
= −A

(
n∑
i=1

Sj,iXi

)
+A

(
n∑
i=1

Sj,i

)
Cj = 0 (A.40)

On the other hand from the derivation of (iii), we also have the condition that at optimality

Vj = U⊤
j = Û⊤

j . Thus at optimality

A =
(
I− (1 + λ)Û⊤

j Ûj

)
.

In particular when λ > 0, A (at optimality) is invertible (as its eigenvalues are 0 and −λ).
Using this in equation A.40 we get

Ĉj =

∑n
i=1 Sj,iXi∑n
i=1 Sj,i

which concluded the proof.
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Appendix B

Additional Experimental Details

B.1 Experimental Details for Chapter 5

B.1.1 Kernel Definitions

For completeness we include the definitions of the kernels considered in this paper below.

Definition 9 (Radial Basis Function (RBF) Kernel). Let x and y be vectors, the the RBF

kernel is defined as:

k(x, y) = exp
(
−γ∥x− y∥2

)
.

In the case γ = σ−2 this becomes the Gaussian kernel of variance σ2.

Definition 10 (Laplacian Kernel). Similar to the RBF kernel, let x and y be vectors, then

the Laplacian kernel is defined as:

k(x, y) = exp (−γ∥x− y∥1) .

Definition 11 (Linear Kernel). Let x and y be vectors, then the linear kernel is defined

as:

k(x, y) = x⊤y.

In addition to the above definitions that we consider in this paper the following definition

illustrate that NTK inspired kernels such as the ReLU Kernel are also viable options to be

considered as a ’pluck in option’ to the proposed models.

Definition 12 (ReLU Kernel [BB21]). For a ReLU network with L layers with inputs on the

sphere, taking appropriate limits on the widths, one can show: kNTK (x, y) = κLNTK

(
x⊤y

)
,
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Figure B.1: Data x is mapped to the latent space z using the encoder and then reconstructed
as x̂ using the decoder. From AE to Kernel AE. Bottom mapping / green: Standard fully
trained deep leaning approach where hidden layers are mapped into a high dimensional
euclidean space. Top mapping / blue: proposed kernel version where hidden layers are
mapped into a Hilbert space.

with κ1NTK(u) = κ1(u) = u and for ℓ = 2, . . . , L

κℓ(u) = κ1
(
κℓ−1(u)

)
κℓNTK(u) = κℓ−1

NTK(u)κ0
(
κℓ−1(u)

)
+ κℓ(u)

where

κ0(u) =
1

π
(π − arccos(u))

κ1(u) =
1

π

(
u · (π − arccos(u)) +

√
1− u2

)
.

In this final section we provide the experimental details for the comparison to neural net-

work methods, referenced in the final section of the main paper as well as the experiments

with SVM in addition to k-nn as a downstream task. In addition we provide additional

experiments on further datasets.

B.1.2 Further discussion and experiments comparing neural networks and ker-

nel approaches

As discussed in the introduction, representation learning has become established mainly in

the contest of deep learning models. In this paper, we decouple the representation learning

paradigm from the widely used deep learning models. While the paper focuses on the specific

examples of kernel autoencoders and kernel contrastive learning, our constructions follow

a general principle: instead of considering a (one-hidden layer) neural network W2σ(W1x)

we consider a linear functional in the reproducing kernel Hilbert space W⊤ϕ(x), but still

minimise a similar loss functions (reconstruction error in AEs or contrastive losses). We

further illustrate this on the example of the Kernel AE.

Comparison of deep learning AE and Kernel AE. Consider the kernel AE illustrated

in Figure B.1. A deep learning model is shown in the bottom. The encoder maps the input
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Figure B.2: Comparison of kernel methods and neural network models. Plotted is the
accuracy for Kernel methods as defined in Section 6.2 with the addition of a supervised
Neural network on the labelled data as well as the neural network models corresponding to
the contrastive and AE kernel methods.

x ∈ Rd to a hidden layer r1 = σ(W1x) ∈ Rt via a linear mapW1, and a non-linear activation

σ(·) with t ≫ d and then to a latent representation z = W2r1 ∈ Rk with typically h < d.

Similarly, the decoder maps the representation z to the output x̂ = W4r2 ∈ Rd via the

hidden layer r2 = σ(W3z) ∈ Rt. The weights W1, . . . ,W4 are learned through a regularized

loss minimisation given training samples x1, . . . , xn. A non-parametric (kernel) variant of

the AE is obtained by replacing the encoder/decoder with implicit maps ϕ1 : Rd → H,
ϕ2 : Rh → H, where H is the RKHS associated some positive definite kernel k. In the main

part we show that, for any new point x∗, the reconstructed point x̂∗ can be expressed only in

terms of the kernel evaluation k(x, x′), computed between x∗, x1, . . . , xn, without explicit

knowledge of H, ϕ1(·) or ϕ2(·).

Experimental comparison. Similar to the above comparison we can also define deep

learning models analogues to the contrastive SSL models . The general implementation is

done in Python with the implementation in PyTorch [Pas+19] for fully and optimisation

of trained models. The presented setup in Figure B.2 is the same as in the main paper

with some additional experiments. We firstly extend the analysis by considering SVM as

a downstream task as well. We can first note that learning a neural network on the small

set of labelled data (most left bar) fails, most likely due to the fact that due to the high

complexity of the model overfits the training data. Overall we observe that under SVM the

general comparison between neural network and kernel methods are aligned with the one

under k-nn.

We will conclude this section with some additional remarks on the comparison and connec-

tion between Kernel approaches and neural network methods.

Do we need deep kernel representation learning models? Although our construction

considers only one a linear functionalW⊤ϕ(x), the feature map ϕ(x) can also capture deeper

networks. For instance, one may use L-layer ReLU NTK [BB21] in kernel SSL to model the

behaviour “deep” SSL.

Comparison to generalisation error bounds for deep learning models. A common
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problem in the analysis of modern machine and deep learning methods is that thorough

statistical approaches such as VC-dimension [Vap82; Vap98] or Rademacher complexity

[TLP16] do not hold in the overparmeterized learning regime. On the other hand in the

context of kernel machines those approaches are well developed [Wah90; SS02; BM02a]. The

proposed extensions allow for a more thorough theoretical analysis of representation learning

as well as kernel variants of unsupervised deep learning methods.

B.1.3 Further experiments

In this section we extend the experiments presented in the main section. We additionally

provided the performance of linear SVM as a donwstream classifier in addition to the earlier

considered k-nn classifier. Furthermore we extend the analysis by considering the following

datasets.

We denote the split as split = unlabelled%/labelled%/test%. We show the results for

the following three dadatsets: concentric circles, factor 0.6 (n = 200, d = 2,#classes =

2) [Ped+11], cubes (n = 200, d = 13,#classes = 4, split = 50/10/40) [Ped+11], Iris

(n = 150, d = 4,#classes = 3, split = 50/5/45) [Fis36a], Ionosphere (n = 351, d =

34,#classes = 2, split = 50/5/45) [Sig+89], blobs (n = 200, d = 2,#classes = 3, split =

50/5/45) [Ped+11], Breast cancer (n = 569, d = 30,#classes = 2, split = 50/5/45)

[Wol+95], Heart Failure (n = 299, d = 13,#classes = 2, split = 50/5/45) [DG20], Mush-

room (sub-sample) (n = 200, d = 22,#classes = 2, split = 50/5/45) [Sch87], Wine (n =

178, d = 13,#classes = 3, split = 50/10/4) [AF91], Parkinson’s Disease Classification

from Speech (n = 756, d = 754,#classes = 2, split = 50/5/45) [Sak+19] and Moons

(n = 200, d = 2,#classes = 2, split = 50/5/45) [Ped+11].

We can conclude this section by observing that overall the main findings in the main paper

stay consistent throughout the analysis of additional datasets and downstream tasks.
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Figure B.3: Accuracy for different methods. From left to right: we first consider k-nn and
Kernel SVM on the original features followed by SVM and k-nn on embeddings obtained
by Kernel SVM, simple contrastive kernel method, spectral contrastive kernel method and
kernel AE.
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B.2 Algorithmic Details for Ordinal Clustering Algorithm

In this section, we provide details on the modified SPUR algorithm that we use to tune the

parameter λ, and to select the number of clusters.

SPUR, acronym for Semidefinite Program with Unknown r (r denoting the number of clus-

ters), was proposed by [YSC18] to tune the parameter λ of SDP-λ in the context of graph

clustering (see Algorithm 2). The underlying idea of this approach is to search for the opti-

mal λ using a grid search over the range 0 < λ < λmax, where λmax is derived from an exact

recovery result under stochastic block model.

Algorithm 2: Semidefinite Program with Unknown k (SPUR).

input : graph A, number of candidates T .
begin

for t = 1 to T do
λt = exp

(
t
T ln (1 + λmax)

)
− 1. ([YSC18] set λmax = ∥A∥op)

Solve SDP-λ with λ = λt to obtain Nt.
Estimate kt = integer approximation of Tr (Nt).

end

Choose t̂ = argmax
t

∑
i≤κt

σi(Nt)

Tr (Nt)
, where σi(Nt) denotes i-th largest eigenvalue of

Nt.

end
output: Number of clusters κt̂, Nt̂.

In the present setting, Theorem 17 shows that the planted clusters can be exactly recovered

given a sufficient number of comparisons and an appropriate choice of λ. From Theorem 17,

a candidate for λmax can be chosen as |T |
n (for triplets) or |Q|

n (for quadruplets), which is

a loose upper bound for the theoretical interval for λ, obtained by noting that ϵδnmin ≤ n.

Thus, following [YSC18], we could use Algorithm 2 with our choice of λmax.

Unfortunately, this approach has two main drawbacks. First, it ignores the lower bound in

Theorem 17 and, second, setting T , the number of λ values that should be considered in

Algorithm 2, is difficult. To address the former issue, we propose to consider Theorem 17

once more and to use λmin =
√
c(lnn)/n as a lower bound for λ instead of 0, as used in

[YSC18]. To address the latter issue, we use the fact that the estimated number of clusters

κ monotonically decreases with λ as shown in the next Lemma.

Lemma 11 (The estimated number of clusters decreases monotonically with in-

creasing λ). For any λ > 0, let Nλ denote the solution of SDP-λ and κλ = ⌊Tr (Nλ)⌉ be
the integer approximation of Tr (Nλ), which is an estimate of the number of clusters. Then,

κλ is a non-increasing function of λ, that is

λ′ ≥ λ⇒ κλ′ ≤ κλ.

Proof. We start this proof by noting that since κλ is the integer approximation of Tr (Nλ),
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it suffices to show that Tr (Nλ) is a non-increasing function of λ. Then, consider distinct

λ′, λ and let Nλ′ , Nλ be the solutions of SDP-λ with parameters λ′, λ, respectively. We have

Tr (HNλ)− λTr (Nλ) ≥ Tr (Sλ′)− λTr (Nλ′) ,

Tr (HNλ)− λ′Tr (Nλ) ≤ Tr (HNλ′)− λ′Tr (Nλ′) .

Subtracting the second inequality from the first inequality implies

Tr (HNλ)− λTr (Nλ)− (Tr (HNλ)− λ′Tr (Nλ))

≥ Tr (HNλ′)− λTr (Nλ′)− Tr (SNλ′) + λ′Tr (Nλ′)

which implies

(λ′ − λ)Tr (Nλ) ≥ (λ′ − λ)Tr (Nλ′)

or equivalently, (λ′ − λ)(Tr (Nλ′) − Tr (Nλ)) ≤ 0. Thus, for λ′ > λ, we can conclude that

Tr (Nλ′) ≤ Tr (Nλ), which shows that Tr (Nλ) and kλ are non-increasing functions of λ.

Following this, using λmin and λmax, we get two estimates of the number of clusters, κλmin

and κλmax
. Then, we search over κ ∈ [κλmax

, κλmin
] instead of searching over λ—in practice,

it helps to search over the values max{2, κλmax} ≤ κ ≤ κλmin +2. We select κ that maximises

the above SPUR objective, where Nκ is computed using the simpler SDP-κ [YSC18]. This

approach is summarized in Algorithm 1 in the main section.
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