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Abstract

The growth and response to treatment of solid tumours are complex and multifaceted processes:
in addition to biological factors, such as genetic mutations and signalling pathways, the physical
properties of the tumour cells and their microenvironment are key determinants. Examples of
such physical properties are the stiffness of the extracellular matrix and the flow of the interstitial
fluid. Both influence the growth of the tumour and its response to treatment but also counteract
the transport of drugs. We employ a computational multiphase porous-media model of tumour
growth that can consider these different biological and physical factors and their interactions. To
advance oncology, cancer research needs to move beyond the boundaries of a single discipline
and integrate knowledge from different fields. This thesis aims to contribute to this integration by
developing a physics-based computational model of nanomedicine transport in the tumour and its
microenvironment. Integrating the model with probabilistic approaches to sensitivity analysis and
calibration bridges the gap to experimental data.

Nanoparticle drug delivery systems have emerged as a promising approach to improve the
delivery of drugs to tumours. Yet, the design of such systems is challenging. We therefore develop
a computational model of nanoparticle transport in the tumour and its microenvironment, which
includes major transport barriers, such as the blood vessel wall or the interstitial fluid flow. Our
study of passive targeting based on the enhanced permeability and retention (EPR) effect reveals that
a non-perfused core and an increased interstitial fluid pressure—typical features of solid tumours—
limit nanoparticle delivery. The size of the vessel-wall pores and the permeability of the blood vessel
wall have a major impact on the amount of nanoparticles that reach the tumour, and only small
nanoparticles with a higher diffusivity can penetrate the tumour sufficiently to reach the core. We
then extend our model to active targeting by magnetic nanoparticles guided by an external magnetic
field: we study the capture of magnetic nanoparticles under the combined effect of fluid flow and
magnetic forces. Our multiphase porous-media approach enables us to model interstitial fluid flow
around the tumour fully coupled to the flow in the tumour. The combination of a Smoluchowski
diffusion-advection equation for the nanoparticle transport with the derived analytical expression
for the magnetic force exerted by a cylindrical magnet allows us to efficiently investigate different
magnet configurations.

Such a model is subject to uncertainties for a number of reasons, in particular the lack of
knowledge about the exact values of the model parameters. Determining the uncertain model
parameters is often very elaborate and costly. Identifying the most influential parameters is therefore
essential in order to focus efforts on them. To this end, we perform a sensitivity analysis based
on the Sobol method. We demonstrate that the use of a Gaussian process as a metamodel enables
a global variance-based sensitivity analysis even of complex, computationally expensive models,
including a transparent declaration of the uncertainties involved in the estimation process. Relatively
small numbers of evaluations of the full model suffice to separate the most influential parameters
from the non-influential ones, and even higher-order interaction effects can be quantified. With
the most influential parameters identified, we bridge the gap to experimental data: we perform a
Bayesian calibration to experimental data of neuroblastoma tumour spheroids in collagen hydrogels
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in microfluidic devices. While the inferred posterior distribution allows us tomatch the experimental
data, including the high variability, the knowledge gained for the uncertain parameters is limited by
the insufficient and noisy experimental data.

The physics-based in silicomodel developed in this thesis enables an efficient and systematic
exploration of the design space of nanoparticle drug delivery systems, combined with a better
understanding of the underlying physicalmechanisms, the uncertainties involved, and the integration
of experimental data. As an effective tool for enhanced hypothesis testing and strategy generation,
it expedites translation to in vivo scenarios and ultimately to clinical practice, thereby improving
therapeutic outcomes and limiting adverse side effects for cancer patients.
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Zusammenfassung

Tumorwachstum und das Ansprechen auf eine Therapie sind komplexe Prozesse. Neben biologischen
Faktoren, wie Genmutationen und Signaltransduktion, sind auch die physikalischen Eigenschaften
der Tumorzellen und ihrer Mikroumgebung von entscheidender Bedeutung. Beispiele hierfür sind
die Steifigkeit der extrazellulären Matrix und der Fluss des interstitiellen Fluids. Diese beeinflussen
das Wachstum des Tumors und sein Ansprechen auf die Behandlung, während sie gleichzeitig dem
Transport von Medikamenten entgegenwirken. Wir verwenden ein physikbasiertes Mehrphasenmo-
dell, das auf der Theorie der porösen Medien beruht, um das Tumorwachstum zu modellieren und
die Wechselwirkungen zwischen den verschiedenen biologischen und physikalischen Faktoren zu
berücksichtigen. Um die Hürden auf demWeg zu neuen und verbesserten Therapien zu überwinden,
muss die Krebsforschung interdisziplinär werden und das Wissen aus verschiedenen Bereichen
zusammenführen. Die vorliegende Arbeit leistet dazu einen Beitrag, indem sie ein physikbasiertes
Simulationsmodell für den Transport von Nanopartikeln als Wirkstoffträger im Tumor und seiner
Mikroumgebung entwickelt. Um die Lücke zu experimentellen Daten zu schließen, wird dieses
Modell weiter mit probabilistischen Ansätzen der Sensitivitätsanalyse und Bayes’scher Kalibrierung
verknüpft.
Wirkstofftransportsysteme auf der Basis von Nanopartikeln haben sich als vielversprechender Ansatz
für den Transport von Medikamenten zu Tumoren erwiesen. Die Optimierung solcher System stellt
jedoch eine Herausforderung dar. Wir entwickeln daher ein Simulationsmodell für den Transport
von Nanopartikeln im Tumor und seiner Mikroumgebung, das wichtige Transportbarrieren wie die
Blutgefäßwand oder den Fluss des interstitiellen Fluids berücksichtigt. Unsere Studie zum passiven
Targeting zeigt, dass ein nicht durchbluteter Tumorkern und ein erhöhter Druck im Tumor – beides
typische Eigenschaften von soliden Tumoren – den Transport von Nanopartikeln einschränken.
Die Größe der Poren und die Permeabilität der Blutgefäßwand haben einen starken Einfluss darauf,
wie viele Nanopartikel den Tumor erreichen. Zudem können nur kleine Nanopartikel mit einer
hohen Diffusivität den Tumor ausreichend durchdringen, um auch die Zellen im Tumorkern zu
erreichen. Anschließend erweitern wir unser Modell auf das aktive Targeting durch magnetische
Nanopartikel, die durch ein externes Magnetfeld gesteuert werden. Wir untersuchen das Einfangen
von magnetischen Nanopartikeln unter dem Einfluss von Fluidströmung und magnetischen Kräften.
Unser Ansatz, der auf der Theorie der mehrphasigen porösen Medien basiert, erlaubt es uns, die
Strömung des interstitiellen Fluids um den Tumor herum vollständig gekoppelt mit der Strömung
im Tumor zu modellieren. Die Kombination einer Smoluchowski-Diffusions-Advektions-Gleichung
für den Nanopartikeltransport mit dem hergeleiteten analytischen Ausdruck für die magnetische
Kraft eines zylindrischen Magneten ermöglicht eine effiziente Untersuchung verschiedener Magnet-
konfigurationen.
Ein solches Modell ist aus verschiedenen Gründen mit Unsicherheiten behaftet. Insbesondere sind
die genauen Werte der Modellparameter oft nicht bekannt und ihre Bestimmung ist aufwendig
und kostspielig. Es ist daher unerlässlich, zunächst die wichtigsten Parameter zu identifizieren und
sich dann auf diese zu konzentrieren. Dazu führen wir eine Sensitivitätsanalyse basierend auf der
Sobol-Methode durch und zeigen, dass die Verwendung eines Gauß-Prozesses als Metamodell eine
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globale varianzbasierte Sensitivitätsanalyse auch für komplexe, rechenintensive Modelle ermöglicht,
einschließlich einer transparenten Angabe der beinhalteten Unsicherheiten. Wenige Auswertungen
des Simulationsmodells reichen aus, um die einflussreichsten Parameter von den nicht einflussrei-
chen zu unterscheiden und auch Interaktionseffekte höherer Ordnung quantifizieren zu können.
Sobald die einflussreichsten Parameter identifiziert sind, schlagen wir die Brücke zurück zu den
experimentellen Daten: Wir führen eine Bayes’sche Kalibrierung mit experimentellen Daten von
Neuroblastom-Tumorsphäroiden in Kollagen-Hydrogel in einem mikrofluidischen Chip durch.
Während die A-posteriori-Wahrscheinlichkeitsverteilung eine Übereinstimmung mit den experi-
mentellen Daten erreicht, einschließlich der hohen Variabilität, ist der Erkenntnisgewinn für die
unsicheren Modellparameter begrenzt durch die unzureichenden und verrauschten experimentellen
Daten.
Das in dieser Arbeit entwickelte physikbasierte Simulationsmodell ermöglicht eine effiziente und
systematische Untersuchung des Designraums von Nanopartikel-Wirkstofftransportsystemen, ver-
bunden mit einem besseren Verständnis der zugrunde liegenden physikalischen Mechanismen,
der damit verbundenen Unsicherheiten und der Integration experimenteller Daten. Als wirksames
Instrument für eine verbesserte Hypothesenprüfung und Strategieentwicklung beschleunigt es die
Übertragung auf in vivo-Szenarien und schließlich auf die klinische Praxis. Dadurch können thera-
peutische Ergebnisse verbessert und schwerwiegende Nebenwirkungen für Krebspatienten begrenzt
werden.
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1
Introduction

As we launch ourselves into this story, there’s one thing we all might
agree on: cancer is complicated. However, and you might find this
surprising, what emerges from short answers to a handful of rather
obvious questions is that cancer is a great paradox.

Understanding Cancer, Robin Hesketh [1]

1.1 Motivation
Why are some tumours benign while others are malignant? Why do some tumours metastasise while
others do not? Why do some tumours respond to treatment initially but then become resistant? And,
why is this different for each patient? These are some of the questions that cancer researchers have
been trying to answer for decades and that are part of the paradox of cancer.

A tumour (Latin, swelling) is an abnormal, autonomously growing mass of tissue resulting from
uncontrolled cell proliferation: the cells have escaped the normal regulatory circuits of cell growth,
divide at an uncontrollably high rate, and evade apoptosis (programmed cell death) [2, 3]. As long as
tumours remain localised, they are considered benign. However, if tumour cells acquire the ability
to invade neighbouring tissue and metastasise to distant sites, they are considered malignant—what
we commonly refer to as cancer [4, 5]. While most benign tumours can be removed surgically and
do not pose a threat to the patient, malignant tumours cause the vast majority of cancer-related
deaths. Today, many cancers are treatable and have a 5-year survival rate of 90% or more [6]. Yet,
despite an intense scientific effort with several decades of research and nearly two million papers on
cancer [5], the global societal and personal burden of cancer continues to grow [7]. Despite many
important insights and therapies, the improvement of cancer mortality rates still lags behind that of
other diseases [8]. So much progress has been made, yet so much remains to be done, and so many
paradoxes remain to be solved.

While tumour growth has traditionally been considered a disease of the cell alone, e.g., caused by
genetic changes, recent advances in cancer research have highlighted the critical role of the tumour
microenvironment [9]. In addition, the link between signalling pathways and the physical properties
of the tumour and its microenvironment plays a pivotal role in comprehending the growth of tumours
and enhancing cancer therapies. From a biological point of view, in a tumour with millions of cells,
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1.1 Motivation

every cell could theoretically have a different genetic mutation [10]. From a physical point of view,
cancer is not solely a genetic disease but also depends on the physical properties of the tumour and
its microenvironment [11]: for example, an elevated interstitial fluid pressure induces treatment
resistance, or an increased stiffness of the extracellular matrix (ECM) promotes invasiveness and
metastasis [9]. Hence, the tumour and its microenvironment form a biologically and physically
complex system. Specifically, this comprises transport barriers that limit the delivery of drugs to the
tumour, consequently impeding the efficacy of cancer therapies.

Among the different therapeutic approaches to cancer, chemotherapy is widely used and has
significantly reduced mortality rates associated with various types of cancer [12]. Yet, chemotherapy
causes tremendous side effects, physically and psychologically [13], during treatment and even long-
term after the treatment has ended [14, 15]. The problem is that not only diseased tissue is exposed to
the drugs, but healthy tissue is also attacked: drugs are systemically distributed throughout the body
and are not specific to the tumour. The maximum dose tolerated by the patient is therefore limited by
the toxicity to healthy tissue and still not sufficient to kill all tumour cells [16, 17]. This was the basis
for Paul Ehrlich’s idea of amagic bullet, which selectively kills cancer cells while leaving surrounding
healthy tissue undamaged [18, 19]. The concept of a magic bullet has been present for over a century.
However, it is only in recent years that the development of nanomedicine appears to have brought it
within reach. Nanoparticles have emerged as a promising tool for more specific tumour targeting
because of their unique physical properties and their potential for sophisticated functionalisation,
e.g., loading them with chemotherapeutic drugs [20], coating them with cancer-cell recognising
ligands [21], or guiding magnetic nanoparticles to the tumour using an external magnetic field [22,
23]. Yet, despite this potential, the transport of nanoparticles to the cancer cells is challenging due to
the transport barriers that the nanoparticles have to overcome to reach the cancer cells: Dai et al. [21]
showed that less than 14 out of 1 million (0.0014% injected dose) intravenously injected nanoparticles
coated with cancer-cell recognising ligands actually reached the tumour cells.

To understand and overcome these transport barriers, experimental research is indispensable,
e.g., based on in vitro and in vivo experiments. However, control over the experimental condi-
tions and measurement techniques limits its scope. Besides, experiments are often expensive and
time-consuming, and even with unlimited resources, testing all possible scenarios, conditions, and
configurations is impossible. In recent decades, considerable attention has therefore been devoted to
the development of computational models that simulate tumour growth and treatment strategies.
Computational models are a powerful tool to explore a large number of possible model scenarios in
a systematic and efficient way—thereby complementing experimental research. Such an integrated
approach combining computational models and experimental research improves hypothesis testing,
strategy generation, and clinical relevance [24]. The goal of computational models is to provide
predictions to better understand the underlying biological phenomena and ultimately support
decision-making in a medical context.

The predictions of computational models are inherently subject to uncertainties. On the one
hand, the computational model includes sources of uncertainty, e.g., due to the simplifications and
assumptions made, the numerical methods used, or the input parameters, which are often not known
precisely. On the other hand, the experimental data used to calibrate the model is additionally subject
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1.1 Motivation

to uncertainties, e.g., due to measurement errors. To consider these uncertainties, probabilistic
approaches are used.

The essential characteristic of a probabilistic approach is the explicit use of probability distribu-
tions to describe the involved uncertainty [25]. The number of uncertain input parameters, which
have to be calibrated, is often large. In this context, a sensitivity analysis first allows the separation
of the most influential parameters from the non-influential parameters. Subsequently, Bayesian
calibration allows inferring knowledge about the uncertain input parameters from experimental
data—while accounting for the underlying uncertainties.

The complexity of tumour growth and drug delivery requires an interdisciplinary approach to
understand the underlying mechanisms and develop new therapies. This thesis follows such an
approach by developing a physics-based computational model of nanomedicine for cancer treatment
and combining it with probabilistic methods to quantify the uncertainties and integrate experimental
data. The following sections introduce these two main aspects of this thesis.

1.1.1 Physics-based computational modelling of cancer nanomedicine
Mathematical and computational modelling is playing an increasingly prominent role in cancer
research—so much so that a large consortium of researchers recently published a roadmap for the
future [26]. Computational models of tumour growth span a wide range of scales, from the molecular
level to the tissue level, and a wide range of approaches, from discrete to continuum models, as
reviewed by Deisboeck et al. [27].

Models at the molecular level investigate signalling pathways based on ordinary differential
equations, e.g., [28, 29]. At the next scale, the microscopic scale, models focus on the interactions
between individual cells and are therefore called cell-based, agent-based or discrete models. Metzcar
et al. [30] provide a comprehensive review of cell-based models of tumour growth. While cell-based
models account for the diversity of cellular dynamical features and thus explore tumour heterogeneity,
their computational cost limits their application to millions of cells in a larger tumour growing over
a longer time scale. In contrast, models at the macroscale do not consider individual cells but instead
describe the tumour as a continuum based on partial differential equations, such as conservation
laws. Continuum-based models can capture volumetric tumour growth on a larger scale (in time
and space)—which is also accessible to conventional clinical imaging modalities. Most importantly,
continuum-basedmodels are based on fundamental physical principles and can thus describe stresses,
strains, fluid flow, and diffusion in the tumour microenvironment—physical quantities which cell-
based models cannot describe but which have been recognised as crucial to understanding tumour
growth in recent years [9]. Finally, hybrid models combine the strengths of both cell-based and
continuum-based approaches, e.g., Phillips et al. [31] combine an agent-based model of vascular
changes with a continuum model of nutrient dynamics.

We will use a multiphase computational model based on porous media to simulate the growing
tumour and its microenvironment [32, 33]. Based on the theory of porous media, the model consists
of a solid phase, the ECM, with the pore space filled with fluid phases, the interstitial fluid, the tumour
cells and the healthy host cells. Such a physics-based approach at the continuum scale is a powerful
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1.1 Motivation

tool to build a versatile model able to investigate a wide range of biological processes. In particular,
building themodel on first principles provides a physically plausible description of the tumour and its
microenvironment, including mass transport through biological and physical barriers—also known
as transport oncophysics barriers [34–37]. Exploiting these transport characteristics to overcome
barriers is the key to improving the design of therapeutic strategies.

Amongst the multifarious therapeutic approaches to cancer, nanomedicine is a promising ap-
proach to improve the delivery of drugs to the tumour. Nanoparticles are organic or inorganic
particles with a size of 1 nm to 100 nm, which puts them on the same length scale as important
building blocks of the human body: the DNA has a diameter of 2.5 nm, and a red blood cell has
a diameter of 7 µm [38]. Nanoparticles are very versatile because of the vastness of their design
space and because their size, shape, stiffness, and surface functionalisation can be tailored to the
application [39]. Compared to conventional chemotherapeutics, nanomedicine provides several
approaches to more specific tumour targeting. On the one hand, passive targeting exploits the en-
hanced permeability and retention (EPR) effect: due to the leakiness of the tumour vasculature and
the inhibited lymphatic drainage, nanoparticles passively accumulate in the tumour [40–42]. On the
other hand, active targeting exploits the overexpression of certain receptors on the surface of cancer
cells by functionalising the nanoparticles with ligands that bind to these receptors. Alternatively,
magnetic nanoparticles can be guided to the tumour using an external magnetic field—a technique
known as magnetic drug targeting, which we will further explore in this thesis.

Due to their small size, magnetic nanoparticles form a single magnetic domain: they become
highly magnetic in the presence of an external magnetic field but revert to a non-magnetic state
when the field is removed—a property known as superparamagnetism [43]. To capture the magnetic
nanoparticles in the tumour, the magnetic force must be strong enough to overcome counteracting
forces, e.g., fluid forces caused by the blood flowor interstitial fluid flow, and further transport barriers,
e.g., the wall of the blood vessels. However, this is hard to achieve because of the inherently weak
magnetic forces—especially deeper in the body. These challenges make the design and successful
application of magnetic nanoparticle-based cancer therapy impossible purely via trial-and-error
approaches in experimental research. Here, computational models can help by predicting the
transport of the nanoparticles and hence guide the design of novel prototypes.

1.1.2 Probabilistic approaches: sensitivity analysis and Bayesian calibration
Physics-based computational models can describe the behaviour of a system and predict the outcome,
even under unobserved circumstances. Nevertheless, Saltelli [44] states that physics-based models
are customarily over-parametrised: they include more laws and parameters than available data would
support. This becomes particularly critical when model parameters are to be determined, e.g., by
inverse analysis. Here, sensitivity analysis becomes a crucial part of model development [45].

For most input parameters of a model, the value is not known precisely but is subject to uncer-
tainty. This uncertainty in the model input parameters propagates through the model, resulting in
uncertainty in the model output. Uncertainty quantification (UQ) quantifies this uncertainty in the
model output. Sensitivity analysis apportions the uncertainty in the model output to the uncertainty
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1.2 Contributions of this thesis

in the model input parameters [46, 47]. This enables threefold conclusions: first, we can identify
the most influential parameters on which further experimental research should focus; second, we
can identify parameters with little or no effect, which can be set to a fixed value within their range;
third, we can identify and quantify interactions between parameters. This knowledge avoids wasting
resources on determining non-influential parameters and, thus, expedites the efficient design of
future studies both computationally and experimentally.

We will use the Sobol method [48, 49], a variance-based global sensitivity analysis method. A
global sensitivity analysis is usually computationally expensive, and therefore modellers often rely
on local methods alone: local methods provide a local measure at a base point, only exploring one
point in the input space and resulting in a deficient sensitivity analysis [50]. Global methods, such
as the Sobol method, explore the entire input space and provide a global measure of sensitivity
but are computationally expensive because they require a large number of model evaluations. We
mitigate this drawback by introducing a Gaussian process as a metamodel for the full model [51].
This introduces an additional source of uncertainty in the estimation of the Sobol indices, which we
will quantify and include in the analysis based on Le Gratiet et al. [52].

After identifying which parameters are the most influential, the next step is to infer knowledge
about these parameters from experimental data. Direct measurements are often impossible, and
the parameters must be estimated based on inverse analysis. There are two main approaches to
inverse analysis: deterministic and probabilistic. Deterministic optimisation techniques, e.g., the
Levenberg–Marquardt algorithm [53, 54], yield a point estimate for the best fit to the experimental
data but cannot quantify how certain this estimate is. Probabilistic (Bayesian) approaches infer the
entire probability distribution of the model parameters, naturally including the uncertainty in the
experimental data and the uncertainty in the inferred parameters. We will use the sequential Monte
Carlo method [55–57] to perform Bayesian calibration: this state-of-the-art Bayesian approach comes
at a high computational cost, which we will mitigate again using a Gaussian process as a metamodel.

1.2 Contributions of this thesis
This thesis aims to contribute to unravelling the complexity of cancer and its treatment through an
interdisciplinary approach spanning computational modelling, probabilistic approaches, physics,
and experimental research in biology and medicine. Fig. 1.1 presents the main contributions, how
they are connected, and how they connect different disciplines. The main contributions of this thesis
are:

(1) A continuum-based model of the passive transport of drug-loaded nanoparticles to and
in a vascular tumour [58]. We extend the multiphase porous-media model of tumour growth to
include the passive transport of drug-loaded nanoparticles via the interendothelial pathway, the
transendothelial pathway, and lymphatic drainage. Our model reproduces transport characteristics
known from experimental and clinical data: the non-perfused core and the increased interstitial
pressure in the tumour core (resulting in an outward flow of interstitial fluid) limit nanoparticle
delivery. In particular, we show that the number of nanoparticles reaching the tumour depends on the
size of the vessel-wall pores and the permeability of the blood vessel endothelium. The nanoparticles
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X1
X2

X3

Probabilistic approachesExperimental research
in biology and medicine

Computational modelling

Physics

(2) Analytical expression
of the magnetic force of
a cylindrical magnet

(1) Passive transport 
of nanoparticles

(3) In-�ow capture 
of magnetic 
nanoparticles

(4) Global sensitivity analysis

(5) Bayesian 
calibration

x

p(x)

Figure 1.1 The main contributions of this thesis and how they connect different disciplines: (1) A continuum-based
model of the passive transport of drug-loaded nanoparticles to and in a vascular tumour [58], (2) An analytical
expression for the magnetic force of a cylindrical permanent magnet of finite length on magnetic nanoparticles [59],
(3) A continuum-based model of the capture of magnetic nanoparticles under the combined effect of fluid flow and
an external magnetic field [60], (4) Global sensitivity analysis based on Gaussian-process metamodelling [61], and (5)
Bayesian calibration based on in vitro observations of neuroblastoma spheroids in a hydrogel microenvironment
[62].
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1.2 Contributions of this thesis

only reach the tumour core if the transport in the interstitial fluid is diffusion-dominated, i.e., in the
case of small nanoparticles with a higher diffusivity.

(2) An analytical expression for the magnetic force of a cylindrical permanent magnet of
finite length on magnetic nanoparticles [59]. We derive an analytical expression for the magnetic
force based on elliptic integrals, which enables us to directly evaluate the magnetic force with
minimal computational effort compared to numerically solving Maxwell’s equations. We can then
study different magnet configurations in three dimensions—instead of the two-dimensional models
commonly used in the literature. A Python implementation of the analytical expression is made
available under an open-source license [63]

(3) A continuum-based model of the capture of magnetic nanoparticles under the combined
effect of fluid flow and an external magnetic field [60]. We present a continuum approach to
model the in-flow capture of magnetic nanoparticles based on the Smoluchowski advection-diffusion
equation. The fluid flow around the tumour spheroid is fully coupled to the flow inside the tumour
spheroid—which is naturally included in our multiphase porous-media approach. Investigating
the capture of magnetic nanoparticles in a controlled flow environment with a tumour spheroid, as
commonly used in experimental in vitro setups, forms the basis for the study of more complex in
vivo or ex vivo scenarios.

(4) Global sensitivity analysis based on Gaussian-process metamodelling [61]. We demon-
strate how a global variance-based sensitivity analysis can be performed using Gaussian-process
metamodelling to estimate the Sobol indices. Since employing a Gaussian process as a metamodel
introduces additional uncertainty, we include a transparent declaration of the uncertainties involved
in the estimation process. This approach enables a global sensitivity analysis for computationally
expensive models with a moderate number of input space dimensions at a manageable computational
cost—including higher-order Sobol indices to quantify interaction effects. We show that we can
identify the most influential parameters and separate them from the non-influential parameters with
a small number of training samples.

(5) Bayesian calibration based on in vitro observations of neuroblastoma spheroids in a hy-
drogel microenvironment [62]. We combine our tumour growth model with in vitro experiments
with tumour spheroids in a collagen hydrogel in microfluidic devices such that both include the in-
teractions between the tumour and its microenvironment—a unique combination of state-of-the-art
techniques on the computational and experimental side. We apply Bayesian calibration based on the
sequential Monte Carlo approach to infer knowledge about the uncertain input parameters. While
the inferred posterior distribution allows us to match the experimental data, the knowledge gained
about the uncertain input parameters is still limited—even with state-of-the-art techniques in all
parts of the workflow.

The contributions and achievements of this thesis resulted in the following publications:
• B. Wirthl*, J. Kremheller*, B. A. Schrefler and W. A. Wall. ‘Extension of a Multiphase Tumour
Growth Model to Study Nanoparticle Delivery to Solid Tumours’. PLOS ONE 15.2 (2020),
e0228443 [58]. *Co-first authorship
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• B. Wirthl, V. Wirthl andW. A. Wall. ‘Efficient Computational Model of the In-Flow Capturing
ofMagnetic Nanoparticles by a CylindricalMagnet for Cancer Nanomedicine’. Physical Review
E 109.6 (2024), 065309 [59].

• B.Wirthl, C. Janko, S. Lyer, B. A. Schrefler, C. Alexiou andW.A.Wall. ‘An in silicomodel of the
capturing of magnetic nanoparticles in tumour spheroids in the presence of flow’. Biomedical
Microdevices 26.1 (2024) [60].

• B. Wirthl, S. Brandstaeter, J. Nitzler, B. A. Schrefler and W. A. Wall. ‘Global Sensitivity
Analysis Based on Gaussian-process Metamodelling for Complex Biomechanical Problems’.
International Journal for Numerical Methods in Biomedical Engineering 39.3 (2023), e3675 [61].

• S. Hervas-Raluy*, B. Wirthl*, P. E. Guerrero, G. Robalo Rei, J. Nitzler, E. Coronado, J. F. de
Mora Sainz, B. A. Schrefler, M. J. Gomez-Benito, J. M. Garćıa-Aznar and W. A. Wall. ‘Tumour
Growth: An Approach to Calibrate Parameters of a Multiphase Porous Media Model Based on
in Vitro Observations of Neuroblastoma Spheroid Growth in a Hydrogel Microenvironment’.
Computers in Biology and Medicine 159 (2023), 106895 [62]. *Co-first authorship

1.3 Outline
The remainder of this thesis is organised as follows. Chapter 2 introduces the multiphase porous-
media model of tumour growth, which the subsequent chapters build upon. Chapter 3 extends the
model to include drug-loaded nanoparticle transport: first focusing on passive transport based on
the EPR effect and then on active transport using magnetic nanoparticles and an external magnetic
field. Chapter 4 presents a global sensitivity analysis based on estimating the Sobol indices of the
model parameters using Gaussian-process metamodelling. Chapter 5 shows how state-of-the-art
experimental data can be integrated into the model using Bayesian inverse analysis. Finally, the
conclusion and outlook in Chapter 6 summarise the main findings of this thesis and give an outlook
on future research directions.
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2
A multiphase porous-media model of tumour growth

2.1 Methods
The following subsections provide a concise summary of the multiphase porous-media model of
tumour growth, which forms the basis of the work presented in this thesis. The model has previously
been presented in various forms [32, 33, 64–74], including features such as a deformable ECM [33],
invasion of host tissue [67] and different approaches to model the vasculature and angiogenesis [72–
74]. Kremheller [75] presented an extensive description of the model equations and their derivation.

2.1.1 General concepts
A porous-media approach to model tumour growth. In the tumour microenvironment, the
ECM forms a porous network around cells: it guarantees the structural integrity of the tissue and
modulates processes such as cell migration [76]. The cells and the interstitial fluid fill the pore space
of the ECM, flow and move through it, and interact with it. As such, the ECM, the cells, and the
interstitial fluid form a multiphase porous medium. The ratio of the ECM pore volume to the total
volume is the porosity ε

ε dΩt = dΩ
f
t (2.1)

with Ωt being the current total volume and Ω f
t the current fluid volume, composed of cells and

interstitial fluid, at a specific time t. The porosity is a function of time and changes as the tumour
grows and pushes the ECM aside. Considering the tumour cells and host cells as (viscous) fluid
phases directly allows us to model the relative movement of the different phases, which is essential
for the invasion of host tissue, to name one example. The vasculature is modelled as an additional
independent porous network where blood flows. We also include several species which are trans-
ported by the different phases, namely oxygen (as the nutrient driving the growth of the tumour),
necrotic tumour cells (formed when deprived of oxygen) and nanoparticles (used to deliver drugs to
the tumour). All components are schematically depicted in Fig. 2.1A.

When describing a porous medium, we distinguish between two scales: the microscale and the
macroscale, depicted in Fig. 2.1B. At themicroscale, all of these components are clearly distinguishable,
and the interfaces are fully resolved. Also, the physical laws—according to classical continuum
mechanics—are formulated at the microscale. However, the exact interface geometry is often not
of interest and experimental methods to determine it are not available or not efficient. So, we
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Figure 2.1 A) Components of the multiphase tumour growth model. The model comprises a solid phase (the
extracellular matrix, ECM), three fluid phases (host cells, tumour cells, and interstitial fluid) flowing through the
pore space, and the vasculature (which is modelled as an additional independent porous network). The arrows
indicate the flow of the fluid phases through the ECM. In addition, the phases transport species, namely necrotic
tumour cells, oxygen, and nanoparticles. B) Microscale to macroscale up-scaling. At the microscale, all components
are resolved. Up-scaling results in a continuous description at the macroscale, where the phases are described
by volume fractions εα . Employing the thermodynamically constrained averaging theory (TCAT) ensures a firm
connection between the two scales.

describe the system at the macroscale. This leads to a continuous description of the porous medium
with the phases modelled as overlapping continua. Hence, at the macroscale, the phases cannot be
distinguished any more and occupy a shared domain.

When up-scaling from the microscale to the macroscale, we employ the thermodynamically
constrained averaging theory (TCAT), developed by Gray and Miller [77, 78], to maintain a firm
connection between the two scales. This brings the added benefit that all macroscale quantities
maintain a distinct connection to their microscale counterparts—lending the model a high degree of
physical interpretability [32].

At the macroscale, the different phases are described by volume fractions εα with α = t, h, ℓ,
where the superscript α generically denotes the fluid phases, the superscript t the tumour cells, h the
host cells, and ℓ (liquid) the interstitial fluid. We further assume that the porous medium is fully
saturated, i.e., the fluid phases completely fill the pore volume, and hence

ε = εt + εh + εℓ . (2.2)

Together with the volume fraction of the ECM (indicated by the superscript s) and the volume
fraction of the vasculature (indicated by the superscript v) the volume fractions sum up to unity:

εs + εt + εh + εℓ + εv = 1. (2.3)

The saturation of the fluid phases in the pore space is given by

Sα = ε
α

ε
for α = t, h, ℓ, (2.4)
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and the saturations hence also have to sum up to unity:

S t + Sh + Sℓ = 1. (2.5)

Since the ECM is deformable, the porosity, volume fractions, and saturations change as the tumour
grows.

Employing a multiphase porous-media approach to model tumour growth has several unique
advantages, which, based on [79], comprise:

1. The macroscopic behaviour of the porous medium is rigorously connected to the microscale
physics and microstructure.

2. The different phases of the porous medium may consist of several species, e.g., tumour cells
subdivide into living and necrotic tumour cells.

3. If the system is not in equilibrium, e.g., the tumour grows, mass transport between the different
phases and species can capture this.

4. Interactions and momentum exchange occur between the individual fluid phases and between
these and the solid phase. Therefore, fluid-solid mechanical interactions contribute to the
strains and stresses in the solid phase.

Thermodynamically constrained averaging theory (TCAT) for up-scaling. To achieve the up-
scaling from the microscale to the macroscale, we employ the thermodynamically constrained
averaging theory (TCAT) [80, 81]: by explicitly employing all approximations, TCAT ensures that
resultant macroscale models are consistent with microscale variable definitions and conventions
[77].

Fig. 2.2 schematically summarises the elements of the TCAT and their connection, based on [77,
80, 81]. The yellow boxes denote the starting point: the standardmicroscale conservation equations of
mass, momentum, and energy for all entities—including fluid and solid phases, interfaces, common
curves, and common points. In addition, microscale thermodynamic equations are postulated
for each entity, setting the TCAT apart from other averaging theories. Thermal and mechanical
equilibrium conditions are obtained based on variational techniques. Subsequently, averaging
theorems are employed to change the scale from microscale to macroscale. This averaging process
results in five types of larger-scale equations presented in maroon boxes.

Particular attention needs to be paid to the evolution equations. At the microscale, interfaces
that separate phases are fully resolved and specified as boundary conditions. At the macroscale,
however, phases are co-located: each phase occupies a fraction of the total volume, defined using
porosity, volume fraction, and saturation. These properties are functions of time and do not exist on
the microscale. We hence need additional equations, the so-called evolution equations, to describe
the evolution of the volume fractions.

Yet, this still yields a system with more unknowns than equations, and we need additional closure
relations to produce a closed, solvable model. An essential concept of the TCAT is using an entropy
inequality to derive these closure relations. Miller et al. [82] recently presented the general simplified
entropy inequality (SEI) for multiphase porous-media models and showed how to use the flux-force
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Figure 2.2 Elements of the thermodynamically constrained averaging theory. The figure is reproduced in a slightly
modified version from [81] with permission from Elsevier.

pairs in the SEI to formulate a permissible set of closure relations. Although the tumour growth
model employed in this thesis exploits several aspects of TCAT formulations, a complete and rigorous
hierarchy of models formulated and closed using TCAT procedures remains to be established [82].

To demonstrate how the volume fractions andmass transfer terms enter themacroscale equations
directly through rigorous up-scaling based onTCAT, we exemplarily present the averaging techniques
for up-scaling the mass balance of a fluid phase α, based on [77, 83]. The microscale conservation of
massMα for the generic phase α with mass density ρα and velocity uα is given as

Mα =
∂ρα
∂t
+∇ ⋅ (ραuα) = 0, (2.6)

where the time derivative in the first term is the time derivative at a fixed spatial position x. Note
that the subscripts denote the microscale quantities. We now employ the averaging operator

⟨Pi⟩Ω j ,Ωk ,w =
∫Ω j

wPi dτ

∫Ωk
w dτ

(2.7)

with the first subscript denoting the domain over which the property P is averaged. The second
subscript denotes the averaging domain in the denominator of the right-hand side of the equation.
The third subscript denotes an optional weight, which we set to w = 1 when no third subscript is
given. The averaging operator can be split across sums of terms, and hence averaging Eq. (2.6) results
in

Mα = ⟨Mα⟩Ωα ,Ω = ⟨
∂ρα
∂t
⟩
Ωα ,Ω
+ ⟨∇ ⋅ (ραuα)⟩Ωα ,Ω , (2.8)
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the macroscopic mass balance of the fluid phase α. To evaluate the time derivative of the microscale
density, we average it according to the transport averaging theorem [77, p. 213]

⟨
∂ρα
∂t
⟩
Ωα ,Ω
=
∂
∂t
⟨ρα⟩Ωα ,Ω − ∑

κ∈Jcα
⟨nα ⋅ uκρα⟩Ωκ ,Ω =

∂ (εαρα)
∂t

− ∑
κ∈Jcα
⟨ραuκ ⋅ nα⟩Ωκ ,Ω (2.9)

with outward normal vector n. Following the standard TCAT notation, Jcα denotes the connected
set of phases and common curves to interface α, i.e., all interfaces separating phase α from adjacent
phases. In Eq. (2.9), we used the following definition based on [77, p. 208]

⟨ρα⟩Ωα ,Ω = ⟨ρα⟩Ωα ,Ωα⟨1⟩Ωα ,Ω = ραεα (2.10)

with the macroscale mass density ρα = ⟨ρα⟩Ωα ,Ωα and the volume fraction εα = ⟨1⟩Ωα ,Ω—which is
how the volume fraction enters the macroscopic mass balance. Note that the superscripts denote the
macroscale quantities.

To evaluate the divergence in the second term in Eq. (2.8), we apply the divergence averaging
theorem [77, p. 213]

⟨∇ ⋅ (ραuα)⟩Ωα ,Ω = ∇ ⋅ ⟨ραuα⟩Ωα ,Ω + ∑
κ∈Jcα
⟨ραuα ⋅ nα⟩Ωκ ,Ω (2.11)

and evaluate the averaging operator of the first term as

∇ ⋅ ⟨ραuα⟩Ωα ,Ω = ∇ ⋅ (⟨uα⟩Ωα ,Ωα ,ρα⟨ρα⟩Ωα ,Ωα⟨1⟩Ωα ,Ω) = ∇ ⋅ (uαραεα) . (2.12)

Here, we introduce the macroscale velocity uα , which is a mass-averaged quantity with the weighting
function w = ρα denoted by the overbar. We further combine the sums from Eqs. (2.9) and (2.11)

∑
κ∈Jcα
⟨ραuα ⋅ nα⟩Ωκ ,Ω − ∑

κ∈Jcα
⟨ραuκ ⋅ nα⟩Ωκ ,Ω = ∑

κ∈Jcα
⟨ρα (uα − uκ) ⋅ nα⟩Ωκ ,Ω (2.13)

and define the mass transfer between the κ interface and the phase α based on [77, p. 222]

∑
κ∈Jcα

κ→α
M = ∑

κ∈Jcα
⟨ρα (uκ − uα) ⋅ nα⟩Ωκ ,Ω . (2.14)

We finally recombine all macroscale quantities and rewrite the macroscopic mass balance as

Mα =
∂ (ραεα)

∂t
+∇ ⋅ (ραεαuα) − ∑

κ∈Jcα

κ→α
M = 0. (2.15)

All other equations necessary for the tumour growth model are derived similarly. The exemplary
derivation of the macroscopic mass balance shows how the volume fractions and the mass transfer
term—two characteristic quantities of the multiphase porous-media approach—enter the macroscale
equations. For the sake of readability, we drop the overlines denoting the mass-averaged macroscale
quantities in the following.
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2.1.2 Solid phase: the extracellular matrix
The solid phase, often called the skeleton, of our porous medium is the extracellular matrix (ECM):
its components (e.g., collagens, proteoglycans, elastin, and cell-binding glycoproteins) link together
to form an intricate, structurally stable network [84]. The cells and the interstitial fluid fill the pore
space of the ECM, move through it, and interact with it. The pressure of these fluid phases in the
pore space influences the stress state of the solid. Based on Terzaghi’s effective stress principle [85],
the total Cauchy stress σ tot is defined as the effective Cauchy stress σeff in the solid phase minus the
solid pressure ps

σ tot = σeff − psI (2.16)

with the solid pressure ps defined as the weighted sum of fluid pressures pα , saturations Sα , and the
blood pressure pv in the vasculature

ps = ε
ε + εv ∑

α∈{t,h,ℓ}
Sαpα + εv

ε + εv
pv , (2.17)

as introduced by [72].
The governing equation of the solid phase is the balance of momentum, which pulled back into

material configuration reads

∇0 ⋅ (F ⋅ Stot) = ∇0 ⋅ (F ⋅ Seff − F ⋅ ps JF−1F−T) = 0, (2.18)

with thematerial divergence operator∇0, the second Piola–Kirchhoff stress tensor S, the deformation
gradient F and its determinant J. In Eq. (2.18), we assume that no body forces act on the solid phase,
and we neglect inertia, i.e., acceleration is assumed to be zero.

While the total stress governs the balance of momentum, it is the effective stress that produces
the strain of the solid and which we can hence relate to the deformation of the solid [86, Sec. 2.5.2]:
the effective second Piola–Kirchhoff stress tensor Seff is related to the right Cauchy–Green strain
tensor C via a strain-energy function Ψ as

Seff = 2
∂Ψ(C)
∂C

. (2.19)

For most examples throughout this thesis, we use a simple compressible Neo-Hookean model
[87, p. 247] with a strain-energy function of the form

Ψ∞NH =
G
2
(tr(C) − 3) +

G
2β
(J−2β − 1) with β = ν

1 − 2ν
(2.20)

with the shear modulus G and the Poisson’s ratio ν.
In Chapter 5, we apply the multiphase porous-media model to in vitro experiments with collagen

hydrogel. Experimental characterisation of the mechanical properties of these hydrogels revealed
a visco-elastic behaviour [88–90], and we use a visco-hyperelastic material model to describe the
mechanical behaviour of the hydrogel. The Neo-Hookean material model describes the hyperelastic
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part, while the viscous part is added as a generalisedMaxwell model, based on [91]. The strain-energy
function of the visco-hyperelastic material is given as

Ψ = Ψ∞NH + γ(C , Γα), (2.21)

where Ψ∞NH describes the hyperelastic part (characterising the equilibrium state of the solid) and
γ describes the visco-elastic contribution (characterising the non-equilibrium state, i.e., creep or
relaxation). The dissipative potential γ is a function of the right Cauchy–Green strain tensor C and a
set of strain-like internal (history) variables denoted by Γα.

Similar to the right Cauchy–Green strain tensor C and its kinematic conjugate being the second
Piola–Kirchhoff stress tensor S, the strain-like internal variables Γα result in a non-equilibrium stress
tensor Q given by

Q = −2
∂γ(C , Γα)

∂Γα
. (2.22)

The Maxwell model follows as .
Q +

1
τ
Q =

.
Seff (2.23)

with the relaxation time τ and the superimposed dot denoting the material time derivative. Based on
the shear modulus G and the dynamic viscosity of the ECM µs, we calculate the relaxation time τ as

τ = µ
s

G
.

2.1.3 Fluid phases: the interstitial fluid and the cells
We consider multiple fluid phases that fill the pore space of the ECM: the interstitial fluid and the
cells. Usually, we include two cell phases: the tumour cells and the healthy host cells. This results
in a total of three fluid phases. For in vitro experiments with tumour spheroids, no host cells are
present, and we only consider two fluid phases. It is important to note that our approach, based on
porous media, directly considers the flow of the fluid phases, which is particularly important for the
interstitial fluid as the interstitial fluid flow is an important factor of the tumour microenvironment
[92, 93].

While we model the interstitial fluid as a fluid with a low viscosity µℓ, similar to that of water,
the cell phases have a considerably higher viscosity µt and µh. Hence, the tumour is modelled as a
(highly) viscous fluid growing and moving in the ECM. The fluid phases are further characterised
by their density ρα , which we assume to be constant and thus only consider the incompressible case.

The governing equations of the fluid phases (except the last fluid phase) are the mass balance
equations based on the pressures pα of the phases

ε ∂S
α

∂t
RRRRRRRRRX
− Sα ∂ε

v

∂t
RRRRRRRRRX
+ Sα (1 − εv)∇ ⋅ vs −∇ ⋅ ( k

α

µα
∇pα) = 1

ρα ∑κ∈Jcα

κ→α
M . (2.24)

15



2.1 Methods

For the last fluid phase, we do not use Eq. (2.24) as the governing equation but instead sum up
the mass balance equations of all fluid phases, resulting in

−
∂εv
∂t
RRRRRRRRRX
+ (1 − εv)∇ ⋅ vs − ∑

γ∈{t,h,ℓ}
(∇ ⋅ ( k

α

µα
∇pα)) = ∑

γ∈{t,h,ℓ}

⎛

⎝

1
ργ ∑κ∈Jcγ

κ→γ
M
⎞

⎠
, (2.25)

which includes several simplifications, e.g., based on the sum of saturations given by Eq. (2.5). Further
details are presented in [33]. Note that the time derivatives in Eqs. (2.24) and (2.25) are local time
derivatives at a fixed material point X, which introduces an additional convective term based on
Eq. (2.27), similar to the fundamental Arbitrary Lagrangian-Eulerian (ALE) equation [94].

Remark (The Arbitrary Lagrangian-Eulerian (ALE) approach). In continuum mechanics, the two
commonly used descriptions are the material configuration with all material points X and the spatial
configuration with all spatial points x, also called Lagrangian and Eulerian descriptions. The total
material time derivative with respect to the solid phase of a material quantity (●)(X , t) is given as

d(●)(X , t)
dt

=
∂(●)(X , t)

∂t
RRRRRRRRRX
, (2.26)

and the local time derivative at a fixed spatial position x of a spatial quantity (●)(x(X , t)) is given as

∂(●)(x(X , t))
∂t

RRRRRRRRRx
=
∂(●)(x(X , t))

∂t
RRRRRRRRRX
− vs ⋅∇(●), with vs =

∂x
∂t
RRRRRRRRRX

(2.27)

being the velocity of the solid phase. The ALE description combines features from the Lagrangian and
Eulerian approaches: the nodes neither follow the particle movement nor are they fixed in space; instead,
they move in some arbitrarily specified way. In poromechanics, the observer is not arbitrary but follows
the motion of the solid phase.

In Eq. (2.24), we describe the convective flow with Darcy’s law as

εα (uα − vs) = − k
α

µα
∇pα , (2.28)

where kα is the effective permeability tensor of the fluid phase.

Remark (The Darcy equation as momentum balance of the fluid phase). A more general form of the
momentum balance of the fluid phase α is given by the Darcy–Brinkman equation

εα (uα − vs) = kα

µα
[−∇pα − ρα ∂u

α

∂t
´¹¹¹¹¹¸¹¹¹¹¹¹¶

Inertia

+
µα
εα
∇ ⋅ (εα∇uα)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Viscous term

+ ραb
²

Body forces

], (2.29)

with b denoting the body forces, e.g., gravity. The viscous term is called Brinkman term and accounts
for the viscous forces in the fluid phase, similar to the viscous term in the Navier–Stokes equations. It
is interesting to note that Eq. (2.29) can be derived as a homogenisation of the Stokes problem on the
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microscale, assuming a no-slip condition at the interface between the fluid and the solid phase [95, 96].
In our case, we assume a steady state, i.e., we neglect inertia, and we also neglect the viscous contribution
and body forces. This results in Eq. (2.28) and allows us to condense the momentum balance into the
mass balance of the fluid, resulting in a single governing equation, that is Eq. (2.24). A pure Darcy flow
has no shear stresses, and no curvature of the flow is possible, i.e., a no-slip condition at the macroscale
for a pure Darcy flow without the viscous term is an ill-posed problem [97, Sec. 3.6.3].

As the three fluid phases share the pore space of the ECM, they interact with each other and with
the ECM. These interactions influence the permeability and interfacial tension.

The effective permeability tensor kα describes how easily a specific phase can flow through the
solid scaffold, and we define it as kα = kαrel k I based on the scalar intrinsic permeability k of the
ECM. The intrinsic permeability characterises how easily one single fluid phase filling the entire
pore space can flow through the scaffold. In our case, we have multiple fluid phases sharing the pore
space: each phase interferes with and impedes the flow of the other phases. Therefore, the relative
permeability kαrel is a function of the corresponding saturation given by

kαrel = (Sα)Aα (2.30)

with a model coefficient Aα, as proposed by [67]. We use the simple empirical relation given by
Eq. (2.30) for the relative permeability since no detailed measurements are available for our particular
multiphase system. This simple form still agrees with the classical models commonly used in
porous-media mechanics [98]. However, a more specific model for our multiphase system should be
determined, e.g., from specific experiments, through micro-models, or Lattice-Boltzmannmodelling
[67].

Although the fluid phases are adjacent and share one pore space, they are immiscible. Pressure
differences phℓ and pth between the fluid phases must be sustained to preserve this immiscibility.
These pressure differences result from the interfacial tensions σth and σhℓ and the curvature of the
interface between the fluid phases [65], and we use the following heuristic model at the macroscale:

phℓ (Sℓ) = ph − pℓ = a tan [
π
2
(1 − Sℓ)b] (2.31)

pth (S t) = pt − ph = a σth
σhℓ

tan [
π
2
(S t)b] (2.32)

with two model constants a and b. These pressure-saturation relationships also provide the link
back to the fluid saturations to close the system of equations. A higher interfacial tension causes
higher infiltration of one fluid phase into the other and hence a less compact tumour [67]. Eqs. (2.31)
and (2.32) are phenomenological approximations at the macroscale to account for the curvature of
the interface, similar to those commonly used for geophysical multiphase systems [99], and therefore
Miller et al. [82] present a detailed approach to link pressures to saturations based upon the simplified
entropy inequality in the TCAT formulation.
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The remaining saturation of the host cells Sh then follows as

Sh (pth , phℓ) = 1 − Sℓ (phℓ) − S t (pth) . (2.33)

2.1.4 Species: oxygen and necrotic tumour cells
The phases can transport further subcomponents. In the basic form of the tumour growth model, we
include oxygen as a nutrient and necrotic tumour cells. The lack of nutrients causes living tumour
cells to become necrotic, and these necrotic tumour cells are a subcomponent of the tumour cell
phase. Themass fraction of necrotic tumour cells is denoted by ωNt . Similarly, nutrients are modelled
as a species in the interstitial fluid. The nutrient mass fraction ωnℓ drives the growth of the tumour.

The governing equation used for a species i with mass fraction ωiα in the fluid phase α is the
reaction-diffusion-advection equation

ραεSα ∂ω
iα

∂t
RRRRRRRRRX
−∇ ⋅ (ραεS lD iα

eff∇ωiα) − ρα k
α

µα
∇pα ⋅∇ωiα = ∑

κ∈Jcα

iκ→iα
M + εSαr iα − ωiα

∑
κ∈Jcα

κ→α
M (2.34)

with a diffusive contribution based on Fick’s law and an advective contribution based on Darcy’s
law. The right-hand side of Eq. (2.34) includes the mass transfer terms between species and between
phases and the intra-phase reaction term r iα.

We describe the diffusion of oxygen in the interstitial fluid by

Dnℓ
eff = Dnℓ

0 (εSℓ)
δ

(2.35)

with the diffusion coefficient in the interstitial fluid Dnℓ
0 and a constant δ: the effective diffusion

coefficient Dnℓ
eff of oxygen has a nonlinear dependence on the volume fraction of interstitial fluid, as

it is also related to the connectivity grade of the extracellular spaces and tortuosity of the porous
network, and the parameter δ was calibrated experimentally by [65]. We assume the necrotic cells
do not diffuse, thus setting their diffusion coefficient to zero.

In Section 2.2.3, we include further species, e.g., tumour angiogenic factors (TAFs) and matrix
metalloproteinases (MMPs), to investigate the complex interactions of biochemical and biophysical
cues of the microenvironment on tumour growth.

2.1.5 Vasculature and angiogenesis
We include the vasculature as an additional porous network, resulting in a double-porosity formula-
tion with two separate porous networks: the first porous network is the pore space between the ECM
fibres with the host cells, tumour cells, and the interstitial fluid; the second porous network is the
vasculature, with blood flow and species transport alongside the pores of the ECM. Here, we only
employ this homogenised representation of the vasculature. Kremheller et al. [73–75] additionally
presented a discrete and a hybrid approach.
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In the homogenised approach, the blood flow in the vasculature is governed by the mass balance
written as

∂εv
∂t
RRRRRRRRRX
+ εv∇ ⋅ vs −∇ ⋅ ( k

v

µv
∇pv) = − 1

ρv
v→ℓ
M leak, (2.36)

with the permeability tensor kv in the Darcy equation for the convective velocity to evaluate the
blood pressure pv . Like the other phases, the vasculature can also transport species, e.g., oxygen as a
nutrient, governed by Eq. (2.34).

The vasculature of tumours exhibits abnormalities compared to the vasculature of healthy tissue:
it is highly disorganised, with high tortuosity and a heterogeneous distribution of blood vessels
[100]. In particular, the tumour vasculature is leaky, i.e., it is hyperpermeable to macromolecules
[101] and has endothelial gaps [102]. This leakiness is highly relevant for the delivery of drugs to the
tumour: on the one hand, it allows drugs to escape from the vasculature; but, on the other hand, it
also results in higher interstitial fluid pressure in the tumour, causing an outward flow that impedes
drug delivery [103]. We include this leakiness by a leakage termMleak in Eq. (2.36).

Moreover, the vasculature is not a static network but can grow and remodel—a process actively
driven by the tumour. Including a suitable model of angiogenesis, the formation of new blood vessels
from pre-existing vasculature, is crucial for modelling tumour growth for two main reasons. First,
angiogenesis is a critical step in the progression of tumours: in the absence of neovascularisation,
tumours cannot grow beyond a size of 2mm to 3mm due to a lack of nutrients and oxygen, while
vascularisation on the other side results in a rapid growth [104]. Second, tumour cells can escape the
primary tumour and metastasise to other parts of the body via the newly formed vasculature [105].

Angiogenesis is a multistep process: due to a lack of oxygen and nutrients, tumour cells become
hypoxic and secrete tumour angiogenic factors (TAF); these TAFs stimulate the migration of en-
dothelial cells from the existing vasculature towards the tumour, forming a new vascular network that
supplies the tumour with oxygen and nutrients. In the simplest case, we assume that the motion of
endothelial cells and, thus, the angiogenesis is driven by two factors: randommotility and chemotaxis
in response to TAF gradients. We only consider one type of TAF, which is secreted by the tumour
cells, diffuses in the interstitial fluid, and drives the angiogenesis. This could, for example, be vascular
endothelial growth factor (VEGF), one of the most potent TAFs [92]. In addition, we only consider
the soluble isoform of VEGF, i.e., it is dissolved in and transported by the interstitial fluid, and we
model it as a species in the interstitial fluid with mass fraction ωTAFℓ governed by Eq. (2.34).

We write the evolution equation of angiogenesis as introduced by [72]

∂εv
∂t
RRRRRRRRRX
+ εv∇ ⋅ vs +∇ ⋅ ( jv − εvvs) = Ccoll, (2.37)

with Ccoll denoting a model for blood vessel collapse [58, 75]. The flux term is modelled as

jv − εvvs = −∇ ⋅ (Dv∇εv)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Random motility

+∇ ⋅ (εvεSℓ χ (ωTAFℓ)∇ωTAFℓ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Chemotaxis

. (2.38)

19



2.1 Methods

Table 2.1 Mass transfer terms for the different phases of the tumour growth model. The extracellular matrix is the
solid phase. Host cells, tumour cells, and the interstitial fluid are modelled as fluid phases occupying the pores of
the ECM.

Entity Symbol Term

Extracellular Matrix ∑κ∈Jcs
κ→s
M = 0

Interstitial fluid ∑κ∈Jc l

κ→ℓ
M = −

ℓ→t
Mgrowth +

v→ℓ
M leak −

ℓ→ly
Mdrain

Tumour cells ∑κ∈Jc t
κ→t
M =

ℓ→t
Mgrowth

Host cells ∑κ∈Jch

κ→h
M = 0

This formulation includes random motion of endothelial cells due to molecular diffusion with mass
diffusivity Dv . It further describes chemotaxis with a non-constant chemotactic coefficient χ (ωTAFℓ),
as employed in [72].

Altogether, this results in a two-way coupling between the tumour and angiogenesis: the tumour
cells secrete TAF, which drives the angiogenesis, and the newly formed vasculature supplies the
tumour with nutrients, which in turn drives the growth of the tumour.

Including only one soluble isoform of TAF is the most straightforward approach to model
angiogenesis. However, the biochemical pathways regulating angiogenesis include many more key
players: tip endothelial cells, TAF bound to the ECM and matrix metalloproteinases (MMPs), which
degrade ECM proteins and release soluble TAF, to name a few [92, 106]. In addition, biophysical cues
attract increasing interest, in particular, the interstitial fluid flow [92, 93]. We leverage the flexibility
of our model to include these biochemical and biophysical cues as additional factors in Section 2.2.3.

2.1.6 Mass transfer terms governing tumour growth
To bring everything together, we are left with the question of what actually drives the growth of the
tumour in the multiphase porous-media model: as long as the tumour cells are supplied with enough
oxygen, the tumour phase grows.

The mass transfer terms for the different phases are summarised in Table 2.1. Based on Sciumè
et al. [67], tumour growth is captured by the mass transfer term from the interstitial fluid to the
tumour phase

ℓ→t
Mgrowth = γtgrowth ⟨

ωnℓ − ωnℓ
crit

ωnℓ
env − ωnℓ

crit

⟩
+

(1 − ωNt) εS t , (2.39)

where
ℓ→t
Mgrowth represents the inter-phase exchange of mass between the phases ℓ and t (representing

the mass of interstitial fluid which becomes tumour due to cell growth) and γtgrowth denotes the
growth coefficient [65]. The parameter ωnℓ

crit is the critical nutrient threshold below which cells starve
and become necrotic, and ωnℓ

env is the reference mass fraction of oxygen available in the environment
(i.e., in interstitial fluid without a tumour). The Macaulay brackets ⟨⋅⟩

+
indicate the positive value of

the argument if the argument is positive but zero if it is not.
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As discussed in Section 2.1.5, the tumour vasculature is leaky due to abnormal vessel characterist-
ics. This is highly relevant since the leakage of fluid from the vasculature into the interstitial fluid
can transport drugs into the tumour but at the same time causes an increase in the interstitial fluid
pressure, which impedes the delivery of drugs to the tumour—one of the many paradoxes of tumour
drug delivery. We include the leakage of fluid from the vasculature into the interstitial fluid as

v→ℓ
M leak = ρvεvLvp

S
V
⟨peff − pℓ⟩

+
, (2.40)

where a net outflow from the vessel into the interstitial fluid occurs when the effective pressure peff,
given by

peff = pv − σ (πv − πℓ) , (2.41)

is higher than the interstitial pressure pℓ. In Eq. (2.40), we employ a Starling equation with a hydraulic
conductivity of the membrane Lvp and surface-to-volume ratio S/V to describe the transendothelial
fluid exchange in capillaries. The plasma protein oncotic pressure is denoted as πv , the interstitial
oncotic pressure as πℓ and the Staverman’s reflection coefficient as σ . Together, σ(πv − πℓ) is the
oncotic pressure difference between the blood vessels and the interstitial fluid. Based on [107], we
define the hydraulic conductivity Lvp of the blood vessel wall as

Lvp =
γpore r20
8µv t

, (2.42)

with the fraction of pores γpore, the pore radius r0 and the vessel wall thickness t.
The fluid that leaks from the vasculature into the interstitial fluid is collected by the lymphatic

system and transported back into the blood circulation. Tumours however impair the lymphatic
system by collapsing lymphatic vessels and blocking lymphatic drainage [108–110]. Based on [72, 111],
we include lymphatic drainage, again based on a Starling equation, as

ℓ→ly
Mdrain = ρℓ (Lp

S
V
)

ly

⟨pℓ − ply⟩
+
⟨1 −

pt

ply
coll

⟩

+

, (2.43)

with (Lp SV )
ly
being the lymphatic filtration coefficient. When the tumour pressure pt exceeds the

critical lymphatic pressure ply
coll, the lymphatic vessels collapse, and the lymphatic drainage is blocked.

In combination with the leakiness of the blood vessels, the inhibited lymphatic drainage results in
fluid retention in the tumour, causing an increase in the interstitial fluid pressure. We consider the
fluid drainage but do not explicitly resolve the lymphatic system.

Mass transfer also occurs between the species, which we summarise in Table 2.2. In the following,
we only consider oxygen as a nutrient and necrotic tumour cells as species. Tumour cells become
necrotic when not supplied with enough oxygen. Based on [67], we include the increase in the
necrotic fraction of tumour cells as

εtrNt = γtnecrosis ⟨
ωnℓ

crit − ωnℓ

ωnℓ
env − ωnℓ

crit

⟩
+

(1 − ωNt) εS t , (2.44)
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Table 2.2 Mass transfer terms for species. Necrotic tumour cells are the necrotic portion of the tumour cells, and
oxygen is dissolved in the interstitial fluid.

Species Phase Terms on the right-hand side of Eq. (2.34)

Necrotic tumour cells Tumour cells εtrNt − ωNt
ℓ→t
Mgrowth

Oxygen Interstitial fluid −
nℓ→t
M cons −

nℓ→h
M cons +

nv→nℓ
M tc + ωnℓ

ℓ→t
Mgrowth

where γtnecrosis is the necrosis coefficient.
The tumour is supplied with oxygen by its vasculature. The oxygen transported by the blood

flow is exchanged with the interstitial fluid via the capillary walls. We include this transcapillary
exchange of oxygen as

nv→nℓ
M tc = ρnγtv

S
V
⟨Pvoxy − Pℓoxy⟩

+
εv , (2.45)

with the oxygen partial pressures Pvoxy and Pℓoxy, as presented in [73].
Living tumour cells consume oxygen dissolved in the interstitial fluid, as described by

nℓ→t
M cons = (γntgrowth ⟨

ωnℓ − ωnℓ
crit

ωnℓ
env − ωnℓ

crit

⟩
+

+ γnt0 sin(
π
2
ωnℓ

ωnℓ
env
))(1 − ωNt) εS t , (2.46)

again based on [67]. The first addend describes the consumption of oxygen during tumour growth
proportional to the coefficient γntgrowth, and the second addend accounts for the normal metabolism of
tumour cells proportional to the coefficient γnt0 1. Oxygen consumption due to the normal metabolism
of the host cells is considered in a similar way as

nℓ→h
M cons = γnh0 sin(

π
2
ωnℓ

ωnℓ
env
) εSh , (2.47)

where γnh0 describes the oxygen demand of the host cells [73].

2.1.7 Computational solution approach
To solve the governing equations in space and time, we use the standard Galerkin procedure to
obtain the weak form of the equations and then discretise the equations in space and time; for
the discretisation in space, we employ the finite element method and a one-step-θ scheme for
the discretisation in time. The resulting system of equations is strongly coupled, and we apply a
monolithic solution algorithm with a single Newton–Raphson loop per time step. The linear system
of equations has a block structure. We therefore solve it using a generalised minimal residual method
(GMRES) iterative solver with a preconditioner based on a block Gauss–Seidel (BGS) method

1Since the oxygen mass fraction ωnℓ is always smaller or equal to ωnℓ
env, the argument of the sine function varies

between 0 and π/2, and the oxygen consumption due to normal metabolism of the cells reaches its maximum for
ωnℓ = ωnℓ

env. The sine function is chosen for numerical reasons because of its horizontal tangent.
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combined with an algebraic multigrid (AMG) method (for further details see, e.g., [112–114]). As a
computational framework, we use our in-house parallel multi-physics research code BACI [115].

The standard Galerkin procedure can lead to numerical instabilities when the convective terms
dominate the advection-diffusion equation. To overcome this issue, we use the streamline-upwind
Petrov–Galerkin (SUPG) method [116] to stabilise the convective terms, and we choose the stabilisa-
tion parameter τ as proposed by [117].

2.2 Tumour growth examples and discussion
In the following, we present and discuss three numerical examples of tumour growth. The first
example in Section 2.2.1 is a three-dimensional simulation of tumour growth without host tissue and
vasculature, similar to in vitro experiments withmulticellular tumour spheroids. The second example
in Section 2.2.2 is a two-dimensional simulation of vascular tumour growth in host tissue—similar
to an in vivo setup—which serves as a starting point for the third example in Section 2.2.3, where
we demonstrate the flexibility of our approach to model complex interactions between different
species and fields to investigate the influence of biochemical and biophysical cues on angiogenesis
and tumour growth.

2.2.1 In vitro growth of a tumour spheroid
This section presents a three-dimensional example of tumour growth without host tissue or vas-
culature. Such a setup aims to reproduce experimental assays of multicellular tumour spheroids
grown in vitro in a collagen hydrogel, which we later use for the Bayesian calibration in Chapter 5,
as published in [62]. The model is reduced to two fluid phases flowing in the pore space: tumour
cells and culture medium (instead of interstitial fluid). Fig. 2.3 summarises the initial and boundary
conditions of the numerical analysis.

We assume the spheroids to be spherical, with an initial mean radius of 10 µm. Due to the
assumed spherical symmetry, only a segment of a spherical 3D geometry is computationally resolved.
The total spherical computational domain has a radius of 100 µm, and we only consider a segment
of 0.16 rad × 0.16 rad.

Concerning the solid phase of the porous medium, we employ the visco-hyperelastic constitutive
law given by Eqs. (2.21) and (2.23) because the experimental characterisation of the mechanical
properties of commonly used hydrogels revealed a visco-elastic behaviour [88–90]. The domain is
fixed at the inner surface with a Dirichlet boundary condition and can deform in the radial direction.

Tumour cells initially occupy the inner part Ωt with a radius of 10 µm, simulating the initial cell
seed. At the initial time, the tumour saturation is S t = 0.875 in Ωt and zero in the rest of the domain.
Our assumption is that there are no necrotic cells in the early stages. We also assume a constant
nutrient supply, as the culture medium in the experiment is changed every two days to ensure a
constant nutrient concentration. Therefore, the mass fraction of nutrients in the culture medium is
set as constant and equal to ωnℓ

D = 4.2 × 10−6 [72], which is applied as a Dirichlet boundary condition
at the outer surface Γ of the domain. All employed parameters are listed in Appendix A.1.
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Figure 2.3 Computational setup. The tumour is assumed to be spherical, so only a segment of the spherical 3D
geometry is modelled using the symmetry of the problem. The initial tumour domain Ωt (in blue) contains tumour
cells and culture medium in the pore space. In the domain Ωℓ (in beige), the pore space is initially filled with culture
medium only. Dirichlet boundary conditions for the fluid phases and species are applied on the outer surface,
marked in grey. This figure is based on [62], where it is licensed under CC BY-NC-ND 4.0.

The domain is discretised in space with 250 3D trilinear hexahedral elements aligned in the radial
direction. The time discretisation is based on the one-step-theta scheme with θ = 0.52 and a time
step of ∆t = 450 s. In total, 1344 time steps are evaluated; thus, the simulation describes the growth
of a spheroid over seven days.

The results, depicted in Fig. 2.4, demonstrate characteristic features of tumour growth. The
volume of the tumour spheroid increases exponentially over time, as shown in Fig. 2.4A and as
observed in experiments [118]. In more detail, we will discuss experimentally observed growth in
Chapter 5. In the tumour spheroid, the saturation of the tumour cells is above 90% after seven days, as
shown in Fig. 2.4B, with the remaining pore space occupied by culture medium. The growing tumour
displaces the surrounding ECM, as shown in Fig. 2.4C: the highest displacement is observed at the
outer surface of the tumour spheroid, where the ECM is pushed outwards. Sciumè et al. [33] showed
that the ECM stiffness influences the growth of the tumour, hence an important factor to consider.
Even though, currently, only the measurement of the tumour volume is experimentally accessible,
the displacement of the tumour microenvironment could be a promising input for calibration of the
model based on coupled multi-physics observations—as we will sketch in Section 5.5.

Themass fraction of oxygen—the only nutrient we consider—in the interstitial fluid ωnℓ is shown
in Fig. 2.4D. Without vasculature, the oxygen supply is limited to diffusion. As the tumour cells
consume oxygen, the oxygen level in the core of the tumour drops below the critical value of ωnℓ

crit,
and the tumour cells become necrotic. Accordingly, Fig. 2.4E shows that a necrotic core develops in
the centre of the tumour.

2.2.2 In vivo growth of a vascularised tumour
Moving away from the controlled environment of the in vitro experiments in the previous example,
we will now focus on a in vivo scenario. We study the growth of a tumour in host tissue, which is
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Figure 2.4 Results of in vitro tumour spheroid growth over 7 days. The white line indicates the edge of the tumour. A)
Volume of the tumour spheroid over time. Note that this is the volume of the entire spheroid, not only the simulated
segment. B) Saturation of tumour cells S t . C) Displacement d of the extracellular matrix (ECM). D) Mass fraction of
oxygen ωnℓ . E) Mass fraction of necrotic tumour cells ωNt .
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vascularised with a network of blood vessels—adding a layer of complexity to the problem. As a
result, the tumour microenvironment is now composed of the ECM, interstitial fluid, tumour cells,
host cells, and blood vessels. As such, this scenario later serves as a starting point for investigating
nanoparticle-mediated drug delivery in Section 3.1. This example was published in B. Wirthl, J.
Kremheller, B. A. Schrefler and W. A. Wall. ‘Extension of a Multiphase Tumour Growth Model to
Study Nanoparticle Delivery to Solid Tumours’. PLOS ONE 15.2 (2020), e0228443 [58].

We analyse a domain of 1mm × 1mm where, due to the symmetry of the problem, only one
quarter is actually simulated (0.5mm × 0.5mm). A circular tumour Ωt with an initial radius of
r0 = 25 µm is growing in host tissue Ωh (see Fig. 2.5). This could either be a primary tumour or
a metastasis seeded by a parental tumour. The tissue is vascularised with an initial blood vessel
volume fraction of εv0 = 0.02: this value is estimated based on the data of Secomb et al. [119, 120] and
in accordance with Jain [121], who stated that the vascular space occupies between 1% and 20% in
tumours. In this example, we only consider the collapse of blood vessels but not the formation of new
blood vessels. We further set themass fraction of oxygen in the vasculature to ωnv

D = 2.88×10−4, which
corresponds to an oxygen partial pressure in the vasculature of Pvoxy ≈ 100mmHg. Because we do not
study transport phenomena in the vasculature here, we assume that ωnv

D is constant and apply it as a
Dirichlet boundary condition on the entire domain Ωt ∪Ωh. Oxygen is provided via transcapillary
exchange from blood vessels and thereby reaches the interstitial fluid. Initially, tumour cells have a
saturation of S t = 0.5 in the tumour domain Ωt

0 and S t = 0 in the host domain Ωh
0 . Moreover, we do

not have any necrotic tumour cells at the initial state: those depend on reaction terms of the tumour
growth model and form at later time steps. The domain for each field is discretised with 120 × 120
bilinear elements, assuming a plain strain case. The structure, fluid, and species transport meshes
are conforming. The time discretisation is based on the backward Euler method with a time step
of ∆t = 1800 s. In total, 320 time steps are simulated, describing tumour growth in a time frame of
160 hours (≈ 6.5 days). Appendix A.2 lists all parameters: most parameters are based on available
literature and have been previously employed [70, 72]. As the constitutive law for the ECM, we
employ the Neo-Hookean material law with an initial volume fraction of the ECM of εs0 = 0.2.

The volume fraction of living tumour cells εLTC = ε (1 − ωNt) after 160 hours is shown in Fig. 2.6A,
where the white contour line indicates the edge of the tumour. The slightly non-spherical shape
of the tumour results from the boundary conditions being applied to a quadratic domain. After a
growth phase of 160 hours, the tumour has reached a radius of 440 µm. Here and in the following,
the edge of the tumour is defined as S t = 0.1. Based on this, the radius is estimated as the mean
value of the Euclidean distance of the edge to the centre of the tumour (upper left corner of the
domain). Fig. 2.6A further shows that the majority of living tumour cells can be found in the tumour
periphery, whereas the tumour core consists of necrotic cells. The volume fraction of vasculature
depicted in Fig. 2.6B presents the effect of our model for blood-vessel collapse: considerably fewer
blood vessels can be found in the tumour area, including an inner core of approximately 100 µm
containing no vessels at all. Vessel compression is a hallmark shared by all solid tumours [122].
The growing tumour pushes against its surrounding microenvironment, collapsing both blood and
lymphatic vessels. Provenzano et al. [123] concluded from their experimental study that elevated
interstitial fluid pressure induces blood vessel collapse. By contrast, Chauhan et al. [124] stated that
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Figure 2.5 Computational setup. Geometry of the two-dimensional growth of a vascular tumour with the boundary
and initial conditions. Note that the initial tumour radius is not sketched to scale.

interstitial fluid pressure cannot compress and collapse blood vessels; instead, the compression of
blood vessels is caused by solid stresses. Based on the findings of Padera et al. [110], which indicated
that proliferating tumour cells cause the collapse of blood vessels, we use pt as the critical value in the
collapse model. Compared to the model for blood vessel collapse employed in Vavourakis et al. [125],
we use a heuristic approach where we set the parameters in such a way that blood vessel collapse
is restricted to the tumour region. Notwithstanding, we are aware of the fact that more complex
models are necessary to further investigate the exact reasons for blood vessel collapse.

The distribution of oxygen in the interstitial fluid ωnℓ, depicted in Fig. 2.6C, follows a similar
pattern. While the oxygen level in the host cells’ region around the tumour is ωnℓ = 3.25 × 10−6,
the oxygen level drops significantly when moving towards the central region of the tumour. The
innermost part of the tumour is poorly supplied with oxygen. Therefore, tumour cells in this region
become necrotic, and a necrotic core evolves. In the centre of the tumour approximately 50% of the
tumour cells are necrotic, as can be seen in Fig. 2.6D. A temporal analysis of the size of the tumour
and its necrotic core, as presented in Fig. 2.6E, shows that the necrotic core starts to develop when
the tumour reaches a radius of more than 100 µm, which is the case after 65 hours of growth. Similar
to other tumour models [126, 127], our results show that the central region of the tumour mainly
contains necrotic cells, while the outer shell consists of proliferating cells. This tumour structure
(necrotic core + viable outer shell) is attributed to the non-uniform nutrient distribution [126]. The
tumour cells close to the outer surface receive sufficient oxygen to proliferate. On the contrary,
the oxygen level inside the tumour core falls below the critical limit, thereby causing cell death.
According to Carmeliet and Jain [128], cells located more than 100 µm away from the closest capillary
become hypoxic because 100 µm is the diffusion limit for oxygen. The development of a necrotic
core therefore starts when the tumour reaches a radius of more than 100 µm, as the temporal analysis
of tumour growth shows in Fig. 2.6E.

Fig. 2.6F shows the increased interstitial pressure in the tumour: the maximum pressure reached
in the interstitial fluid is pℓmax = 840Pa = 6.3mmHg. As seen in Fig. 2.6F, the interstitial fluid pressure
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is high and constant in the central region of the tumour but decreases steeply in the periphery. The
maximum interstitial fluid pressure predicted by our model lies within the range of 5mmHg to
10mmHg proposed by Dewhirst and Secomb [129]. Nevertheless, the raised interstitial fluid pressure
can reach values as high as 60mmHg [103]. A plateau of interstitial fluid pressure in the central
region of the tumour is typical [103, 130] and has also been observed in in vivo experiments [131].
As described by Heldin et al. [103], the elevated interstitial fluid pressure stems from deficiencies
in blood and lymph vessel function. Due to blood vessel leakiness, fluid from the vasculature is
transported into the interstitial fluid, while at the same time, lymphatic drainage inside the tumour
is impaired. This combination results in fluid accumulation in the tumour region, causing increased
interstitial fluid pressure.

To conclude, the results of this example demonstrate that our model is able to reproduce the
characteristic features of tumour growth in host tissue: the development of a necrotic non-perfused
core, the formation of a tumour periphery with proliferating cells, and the increased interstitial fluid
pressure in the tumour region.

2.2.3 Complex in vivo interactions in the tumour microenvironment
Kremheller et al. [72, 73] investigated angiogenesis based on one soluble isoform of TAF: when
the tumour grows, the oxygen level in the core drops below a critical value, and the tumour cells
secrete TAF, which induces angiogenesis. However, the biochemical pathways of angiogenesis are
complex and involve many different factors [92, 106], which additionally are regulated by biophysical
factors such as interstitial fluid flow. In this section, we present a simulation of tumour growth
with a complex model for angiogenesis, which includes the influence of interstitial fluid flow on the
biochemical pathways of angiogenesis. This work was part of a student term paper and Master’s
thesis by B. Lince Valadares Onofre [132, 133], supervised by the author of this thesis.

Recent advances in experimental techniques with microfluidics have enabled the investigation
of the influence of interstitial fluid flow on angiogenesis but the results are puzzling: some studies
observe angiogenesis in the direction of the flow [134, 135], others in the opposite direction [136–
138], and some report no influence of interstitial fluid flow on angiogenesis [139]. To unravel these
contradictory results, Moure et al. [93] presented a computational model of angiogenesis that includes
the influence of interstitial fluid flow on the biochemical pathways of angiogenesis: they showed that
angiogenesis occurs in the direction of the flow when controlled by initially matrix-bound TAF and
in the opposite direction when controlled by soluble TAF. Nevertheless, Moure et al. [93] considered
the interstitial fluid velocity to be given, and Vilanova et al. [92] stated that a model accounting
for coupled intravascular and extravascular flow on a time-evolving vascular network is an open
challenge.

We here demonstrate that our approach to model the tumour and its microenvironment as a
multiphase porous medium directly enables the investigation of all these aspects: the interaction
between different forms of TAF (matrix-bound and soluble), the influence of interstitial fluid flow,
and the coupling of intravascular and extravascular flow on a time-evolving vascular network.
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To investigate interactions between different cues of the biochemical pathways of angiogenesis,
we extend our setup by including the following additional species: tip endothelial cells (TECs),
matrix metalloproteinases (MMPs), matrix-bound TAF, and soluble TAF, as depicted in Fig. 2.7.

First, the TECs are moving with the leading edge of the growing vasculature. While Moure
et al. [93] include the TECs as a discrete compartment, we model them in a continuum approach as
an additional species with mass fraction ωTECℓ, governed by a diffusion-reaction equation similar to
Aubert et al. [140]

εSℓ ∂ω
TECℓ

∂t
RRRRRRRRRX
−∇ ⋅ (DTECℓ

eff εSℓ∇ωTECℓ) −∇ ⋅ (DTECvεSℓωTECℓ∇εv) +∇ ⋅ (χTEC
0 εSℓωTECℓ∇ωTAFℓ)

=
1
ρℓ
( ∑
κ∈Jcℓ

TECκ→TECℓ
M + εSℓrTECℓ − ωTECℓ

∑
κ∈Jcℓ

κ→ℓ
M ) .

(2.48)

The second term on the left-hand side describes the diffusion of TECs in the interstitial fluid with a
diffusion coefficient DTECℓ

eff . The third term describes the movement away from the vasculature with
a diffusion coefficient DTECv . The fourth term describes the chemotactic movement towards a higher
concentration of TAF with a chemotactic sensitivity χTEC

0 . Since TECs stay at the leading edge of
the vasculature, we assume that they are not influenced by interstitial fluid flow. Additionally, we
include an intra-phase reaction term, based on Aubert et al. [140], given by

εSℓrTECℓ = γTEC
branchingωTECℓ − γTEC

tip-anastomosis (ωTECℓ)
2
− γTEC

NV-anastomosisωTECℓεv , (2.49)

which describes the tip branching, tip-tip anastomosis (fusing with another vessel), and tip-capillary
anastomosis.

Second, we assume that the TECs secrete MMPs, which we also include in a continuum approach
as an additional species in the interstitial fluid. The mass fraction of MMPs ωMMPℓ in the interstitial
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fluid is governed by the convection-diffusion-reaction equation Eq. (2.34) with an intra-phase
reaction term, based on [93], given by

εSℓrMMPℓ = βm (ωMMP
max − ωMMPℓ)ωTECℓ − γMMP

decayωMMPℓ − γMMP
uptakeωTECℓεv , (2.50)

including secretion of MMPs with a rate βm until a maximum concentration ωMMP
max of MMPs is

reached, decay of MMPs with a rate γMMP
decay, and uptake of MMPs by the vasculature with a rate γTEC

uptake.
Third, we includematrix-bound TAF ωTAFs as a species in the ECM, as introduced in [141]. MMPs

proteolytically cleave matrix-bound TAF, thereby releasing it into the interstitial fluid as soluble TAF
ωTAFℓ. We define the corresponding mass transfer term, based on [93], as

TAFs→TAFℓ
M = −βcωTAFsωMMPℓ , (2.51)

with the cleaving rate βc. The soluble TAF ωTAFℓ chemotactically governs angiogenesis based on
Eqs. (2.37) and (2.38).

Finally, the interstitial fluid flow in our model directly results from the coupling of the intravascu-
lar and extravascular flow based on leakage and lymphatic drainage: as demonstrated in Section 2.2.2,
this combination results in fluid accumulation in the tumour region, causing increased interstitial
fluid pressure and hence an outward flow. However, to investigate the influence of the interstitial
fluid flow on the biochemical pathways of angiogenesis and to compare our results to the literature,
we additionally apply an interstitial fluid flow through the domain, similar to [93].

We study an example of a tumour growing between two blood vessels, as depicted in Fig. 2.8A,
over a time of 27 days. The initial radius of the tumour is r0 = 25 µm, and the initial mass fraction of
matrix-bound TAF is ωTAFs

0 = 7.68 × 10−9 in the entire domain. In addition, as mentioned above, we
apply an interstitial fluid flow of uℓ = 0.3 µms−1 in the direction of the x-axis (see Fig. 2.8B). The
details of the computational setup and the parameters are given in [133].

We compare two scenarios: in the first scenario, we assume that the TECs secrete MMPs,
which cleave matrix-bound TAF, thereby releasing it into the interstitial fluid as soluble TAF, which
chemotactically governs angiogenesis; in the second scenario, the tumour cells additionally secrete
soluble TAF.

The results show that the interstitial fluid flow influences the distribution of the chemical cues in
the tumour microenvironment, as depicted in Fig. 2.8C: while the TECs stay at the leading edge of
the vasculature, the MMPs and soluble TAF are transported in the direction of the flow to the right
side of the domain. Matrix-bound TAF is not directly influenced by the interstitial fluid flow, but
since the MMPs are transported to the right side of the domain, the matrix-bound TAF is cleaved
there. This demonstrates the complexity of the interactions between different species and fields
in the tumour microenvironment. The comparison of the two scenarios shows that when we also
consider the secretion of soluble TAF by the tumour cells, the angiogenesis is more pronounced, and
the angiogenic pattern is more complex.

This example demonstrates the flexibility of our approach tomodel complex interactions between
different species and fields to be able to investigate the influence of biochemical and biophysical cues
on angiogenesis.
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3
Nanoparticle-mediated drug delivery

While chemotherapy is one of the most common treatments for cancer, it comes with a significant
drawback: the administered drugs do not reach the cancer cells at sufficiently high doses while at the
same time attacking healthy tissue. This causes significant side effects and suffering in cancer patients.
Nanoparticles have emerged as a promising approach to overcome this deficiency by achieving more
specific tumour targeting.

Nanoparticles are nanosized (1 nm to 100 nm) organic or inorganic materials which can be
designed with different physicochemical properties, e.g., size, shape, stiffness and surface functional-
isation, and programmed with various biological and medical functions [39, 142, 143]. For example,
a chemotherapeutic agent can be encapsulated in the nanoparticles or attached to their surface.
Drug-loaded nanoparticles can then be used for cancer therapy in two ways: passive targeting and
active targeting. In passive targeting, nanoparticles are injected into the bloodstream, and their size
and properties allow them to accumulate in the tumour tissue through the enhanced permeability
and retention (EPR) effect [40–42]. In active targeting, nanoparticles are conjugated with ligands of
cancer-specific tumour biomarkers, which enables them to bind to the tumour cells [39, 143, 144], or
magnetic nanoparticles are guided to the tumour by an external magnetic field [145–147]—thereby
achieving a more specific tumour targeting.

While nanoparticles have shown great potential for cancer therapy, their transport to the tumour
cells is indeed challenging [148–150]: Dai et al. [21] prominently showed that less than 14 out of 1
million (0.0014% injected dose) intravenously injected nanoparticles actually reached the tumour
cells. A key role in this disappointing result is likely to be played by transport barriers, which include
transport through the circulatory system, extravasation from the blood vessels into the tumour
tissue, and transport in the interstitial fluid to the tumour [24, 151]. Our limited understanding of
the underlying mechanisms makes it even more difficult to overcome the transport barriers [152].
Hence, to improve the efficacy of nanoparticle-based drugs, we need a more detailed understanding
of the mechanisms of nanoparticle transport to and in the tumour, combined with effective design
strategies.

To achieve this goal, the tumour and its microenvironment must be considered in their entirety.
Historically, new anti-cancer drugs and treatment strategies were developed and tested in classical 2D
cell cultures. However, 2D cell cultures cannot reproduce the properties of in vivo tumours, especially
the complex 3D tumour architecture and microenvironment, and the results of such experiments
often do not translate to in vivo conditions [153]. Therefore, 3D cell cultures, such as multicellular

33



3.1 Passive targeting

tumour spheroids, have emerged in recent decades [154], and microtechnologies facilitated the
controlled, reproducible development of uniform tumour spheroids [155]. The same holds for
computational models: including a suitable model of the tumour microenvironment—particularly
of the relevant transport barriers—is essential to overcome current limitations of nanoparticle-based
drug delivery. A new area called transport oncophysics has emerged in this context. The driving
idea behind it is to describe and address cancer with a focus on the physical phenomena of mass
transport [34]. Tumours are classified according to their transport phenotype based on specific
transport properties instead of merely genetic characteristics [36].

In this chapter, we start with a computational model of passive targeting in Section 3.1 and then
extend it to active targeting with magnetic nanoparticles in Section 3.2.

3.1 Passive targeting
To better understand the characteristics, particularly the barriers to nanoparticle transport and
the factors that enhance or limit their clinical application, we extend our tumour-growth model to
include nanoparticle transport. The model aims to predict the accumulation of nanoparticles in the
tumour and allows a deeper insight into nanoparticle transport mechanisms. As we do not restrict
the model to a specific therapeutic approach at this stage, the term nanoparticle is used in a generic
way. The transport barriers encountered by nanoparticles on their way from (systemic) injection to
the tumour are shared by all nanoparticle drugs [151]. Nanoparticles used in cancer treatment could,
for instance, be drug-loaded nanoparticles [156] or magnetic nanoparticles mediating hyperthermia
[157, 158]. Also, our framework could also easily be extended to include multistage delivery systems
[159–161].

This section on passive targeting is largely based on B. Wirthl*, J. Kremheller*, B. A. Schrefler
and W. A. Wall. ‘Extension of a Multiphase Tumour Growth Model to Study Nanoparticle Delivery
to Solid Tumours’. PLOS ONE 15.2 (2020), e0228443 [58]. *Co-first authorship

3.1.1 Methods
We include the nanoparticles as additional species in our tumour growth model. The mass balance
equation of nanoparticles with a mass fraction ωNPα in a generic phase α, e.g., the interstitial fluid, is
then given by

ραεSα ∂ω
NPα

∂t
−∇ ⋅ (ραεSαDNPα∇ωNPα) − ρα k

α

µα
∇pα ⋅∇ωNPα

= ∑
κ∈Jcα

NPκ→NPα
M + εαrNPα − ωNPα

∑
κ∈Jcα

κ→α
M ,

(3.1)

similar to the other species (see Eq. (2.34)). The nanoparticles can be dissolved in the blood in
the vasculature and the interstitial fluid, hence α, κ ∈ {v , ℓ}. Further, DNPα denotes the diffusion
coefficient of nanoparticles in the fluid.
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We assume that nanoparticles are intravenously injected and subsequently advected by blood
flow. However, we do not explicitly model transport in the vasculature and assume a constant mass
fraction of nanoparticles in the vasculature ωNPv . The capillary walls are semipermeable [162], and
due to their small size, nanoparticles can extravasate into the interstitial fluid and diffuse towards
the tumour. We do not have any source term on the right-hand side of Eq. (3.1), i.e., εαrNPα = 0.

The remaining mass transfer terms on the right-hand side of Eq. (3.1) are discussed in the
following. In sum, the mass transfer of nanoparticles to and from the interstitial fluid (denoted by
the superscript ℓ) comprises three different mechanisms, namely the interendothelial pathway, the
transendothelial pathway, and lymphatic drainage, as depicted in Fig. 3.1. Those are given by

∑
κ∈Jcℓ

NPκ→NPℓ
M =

NPv→NPℓ
Minter
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Interendothelial
Fig. 3.1A

+
NPv→NPℓ
Mtrans
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Transendothelial
Fig. 3.1B

−
NPℓ→NPly
Mdrain
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Drainage
Fig. 3.1C

. (3.2)

The extravasation of nanoparticles from the capillaries into the interstitial fluid occurs through
two different pathways: the interendothelial and the transendothelial pathway [163, 164]. We describe
the mass transfer from the vasculature to the interstitial fluid based on the Staverman–Kedem–
Katchalsky equation [165–167], a commonly usedmodel for membrane transport. Based on Jain [168],
the mass transfer is given by

NPv→NPℓ
M =

NPv→NPℓ
Minter +

NPv→NPℓ
Mtrans

= ρvεvLvp
S
V
[pv − pℓ − σ (πv − πℓ)]∆ωNP

lm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Interendothelial

pathway

+ ρvεvPv S
V
⟨ωNPv − ωNPℓ⟩

+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Transendothelial

pathway

. (3.3)

The first term describes transport through the interendothelial pathway, also called intercellular
extravasation [163]: this is a convective process, meaning that the nanoparticles are dragged by the
transvascular fluid flow [168]. The endothelial cells around normal capillary vessels are tightly lined
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so that larger molecules are not able to pass through the space between cells. Due to abnormal
vessel characteristics of the tumour vasculature, endothelial cells in this area are poorly aligned,
leading to gaps which reach a size of 100 nm to 500 nm [163, 169]. The vessel walls are leaky and
hyperpermeable, which results in fluid extravasation and passively transports nanoparticles from the
vasculature through pores or fenestrations into the interstitial fluid [164]. This mass transfer via the
interendothelial pathways is described by a Starling equation based on the hydraulic conductivity Lvp
of the blood-vessel wall, given by Eq. (2.42), and the log-mean concentration ∆ωNP

lm within the pore,
given by

∆ωNP
lm =

ωNPv − ωNPℓ

log(ωNPv/ωNPℓ)
≃
ωNPv + ωNPℓ

2
. (3.4)

The second transport mechanism across the vessel walls is the transendothelial pathway: nan-
oparticles can diffuse through the capillary vessel wall, e.g., through interconnected cytoplasmic
vesicles and vacuoles [163]. This diffusive flux through the transendothelial pathway depends on the
vascular permeability Pv and the mass fraction difference of nanoparticles across the vessel wall. By
using Macaulay brackets ⟨⋅⟩+, we only allow diffusive flux from the vessels to the interstitial fluid
and not vice versa.

In addition to blood vessels, lymphatic vessels contribute to mass transfer with the interstitial
fluid. In normal tissues, the lymphatic vessels absorb extravasated fluid andmolecules [170]. However,
tumours lack a functioning lymphatic system, resulting in inefficient drainage of fluid [128]. The
uptake of nanoparticles dispersed in the interstitial fluid by the lymphatic system can be written as

NPℓ→NPly
Mdrain = ρℓωNPℓ (Lp

S
V
)

ly

⟨pℓ − ply⟩
+
⟨1 −

pt

ply
coll

⟩

+

(3.5)

with the lymphatic filtration coefficient (Lp SV )
ly
. This is similar to the mass transfer term for fluid

drainage from the interstitial fluid (see Eq. (2.43) and [72, 73]). We assume ply ≈ 0 in the following.
Above the collapsing pressure ply

coll, lymphatic drainage is impaired, and the lymphatic system does
not take up fluid or nanoparticles.

We further prescribe that tumour growth does not influence the mass balance of nanoparticles
dispersed in the interstitial fluid and that nanoparticles have no intra-phase reaction term. That is,
we set

NPℓ→NPt
M + εℓrNPℓ − ωNPℓ (−

ℓ→t
Mgrowth) = 0 (3.6)

in Eq. (3.1).

3.1.2 Numerical examples and discussion
The pathway nanoparticles take from an intravenous infusion site to the tumour comprises three
main phases [129], schematically shown in Fig. 3.2: transport in the vasculature with subsequent
crossing of the vessel walls; transport in the interstitial fluid; and finally, removal by the lymphatic
system. The transport of nanoparticles along the described pathway is affected by several biophysical
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Figure 3.2 Transport barriers to nanoparticle transport. A) Transport across the vessel wall via the interendothelial
and/or the transendothelial pathway. B) Transport in the interstitial fluid characterised by the diffusivity DNPℓ . C)
Removal by the lymphatic system via lymphatic drainage. This figure is adapted from [58], where it is licensed under
CC BY 4.0.

barriers [171], and we therefore investigate the distribution of nanoparticles in the interstitial fluid
based on a systematic variation of the parameters which characterise these three transport phases.

We use the result of a grown tumour and its microenvironment—studied in Section 2.2.2—as a
starting point for a systematic nanoparticle transport study. The setup of the example is inspired
by the experiments conducted by Ziemys et al. [172] and thus is of practical biological and clinical
relevance. We study the influence of different parameters, which also are of biological interest:
they serve to characterise the transport phenotype of the tumour. Here, we investigate how those
parameters affect the distribution of nanoparticles in the tumour microenvironment.

To simulate the transport and accumulation of nanoparticles within the tumour, we use the
final result after 160 hours of tumour growth (see Fig. 2.6) as initial condition for the nanoparticle
simulations. At this point, the tumour displays common characteristics of solid tumours, as described
in Section 2.2.2, which complicate efficient nanoparticle delivery.

We then simulate a treatment with an intravenous infusion of the particles: we assume that an
intravenous infusion of nanoparticles directly influences their mass fraction in the blood in the
entire systemic circulation [129] and that it reaches a steady state where the drug concentration
in the blood is constant [173]. Therefore, we prescribe a constant value of ωNPv

D = 2.0 × 10−3 as
a Dirichlet boundary condition on the entire domain Ωt ∪ Ωh to account for the administered
nanoparticles in the vasculature. This value is of the same order of magnitude as the nanoparticle
reference concentration of Nabil et al. [158] and is small enough not to influence the global physical
properties of the solvent, in this case blood [65]. Terentyuk et al. [174] used a 20min injection period
for experiments where a nanoshell suspension is tested for tumour treatment in rats. Similarly,
Nabil et al. [158] started with an initial injection period of 20min for numerical experiments with
nanoparticles. Based on these examples, we analyse a time interval of 20min with a time step of
∆t = 60 s for all following simulations. The tumour growth equations are still evaluated, but due
to the different time scales of tumour growth and nanoparticle transport, the tumour is effectively
stationary in the configuration depicted in Fig. 2.6.
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Transport across the blood vessel wall. In the first part of the transport study, we investigate the
influence of the two transvascular pathways on the distribution of nanoparticles in the interstitial
fluid: the interendothelial pathway versus the transendothelial pathway.

We start with varying the influence of the interendothelial pathway and change the amount
of convective transport across the vessel walls while keeping a constant vascular permeability of
Pv = 3.5 × 10−4mm/s [175]. Based on Eq. (2.42), we consider different pore sizes, namely

r0 ∈ {50nm, 100nm, 150nm, 200nm} , (3.7)

which is within the range proposed by Stylianopoulos and Jain [107]. In this first part, we do not
consider lymphatic drainage but only analyse transport across the blood vessel wall.

The results in Fig. 3.3A1 show that the nanoparticles mainly accumulate in the region with a high
volume fraction of vasculature, which in our case coincides with the region of host cells around the
tumour—the still well-perfused part (see Fig. 2.6B and C). The mass fraction of nanoparticles in the
interstitial fluid rises from 1.0 × 10−3 to 1.7 × 10−3 for a pore radius of r0 = 50nm and r0 = 200nm,
respectively. In contrast, considerably fewer particles reach the tumour core in all four cases, on
average 0.3 × 10−3 in the tumour centre.

We further investigate the contribution of the transcellular pathway where particles are trans-
ported across endothelial cells either through a series of linked vesicles or through a single vesicle
[163]. We now vary the vascular permeability Pv while keeping a constant pore radius of r0 = 150nm:
we choose dextran as a model carrier to analyse the effect of different vascular permeabilities on
the distribution of nanoparticles in the interstitial fluid. In Fig. 3.4, we summarise permeability
coefficients of dextrans with different molecular weights, as determined by Dreher et al. [176], Chou
et al. [177], and Ho et al. [175]: the measured permeability coefficients differ by more than one order
of magnitude. As a baseline, we use the purely convective transport via the interendothelial pathway
and set Pv = 0. We then choose the values for 10 kDa, as an example, to study the influence on the
distribution of nanoparticles in the interstitial fluid.

The results are depicted in Fig. 3.3A2: compared to the results for the interendothelial pathway, the
qualitative distribution of nanoparticles in the interstitial fluid does not change under the influence
of transcellular transport; only the absolute mass fraction of nanoparticles in the interstitial fluid
changes. In our example with a fixed pore radius of r0 = 150nm, a permeability coefficient of
Pv = 3.2× 10−5mm/s—as determined by Dreher et al. [176]—has little influence on the nanoparticles
distribution, which rises by only 5% when compared to the baseline simulation with Pv = 0. In
contrast, the values Pv = 3.5 × 10−4mm/s by Ho et al. [175] and Pv = 1.28 × 10−3mm/s by Chou
et al. [177] result in an increase of the mass fraction of nanoparticles in the interstitial fluid by 41%
and 84%, respectively.

Together, the variation of the pore radius r0 and the vessel wall permeability Pv shows that
particles mainly accumulate in the region outside the tumour in both cases. This distribution of
nanoparticles is due to the fact that the convective mass transferMinter and the diffusive mass transfer
Mtrans of nanoparticles across the vessel walls, as prescribed by Eq. (3.3), is most significant in the
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Figure 3.3 Nanoparticle distribution in the interstitial fluid after a 20 min injection period. A) Influence of transport
across vessel walls via the inter- and the transendothelial pathway. B) Influence of transport characteristics in the
interstitial fluid with different Péclet numbers. C) Influence of lymphatic drainage with different Damköhler numbers.
This figure is adapted from [58], where it is licensed under CC BY 4.0.

39

https://creativecommons.org/licenses/by/4.0/


3.1 Passive targeting

Dreher et al. 2006

Ho et al. 2017

Chou et al. 2013
Pv  (m

m
/s

)

3.3 kDa 10 kDa 40 kDa 70 kDa 2 MDa
10-6

10-5

10-4

10-3

10-2

Figure 3.4 Values for the vascular permeability coefficient. Vascular permeability coefficient Pv of dextrans with a
molecular weight of 3.3 kDa, 10 kDa, 40 kDa, 70 kDa and 2MDa summarised from data by Dreher et al. [176], Chou
et al. [177] and Ho et al. [175]. This figure is taken from [58], where it is licensed under CC BY 4.0.

Table 3.1 Parameters for nanoparticle transport across vessel walls.

Symbol Parameter Value Units Ref.
γpore Fraction of pores 10 × 10−4 — [125]
µv Viscosity of blood 4 × 10−3 Pa s [107]
t Thickness of vessel wall 1 µm [178]
S/V Surface-to-volume ratio 20 mm−1 [130]
r0 Pore radius 50, 100, 150*, 200 nm [107]
Pv Blood-vessel wall permeability 0, 3.2 × 10−5, mm/s [175–177]

of 10 kDa dextran 3.5 × 10−4*, 1.28 × 10−3

* The bold value marks the default values used for the nanoparticle transport study.

region outside the tumour which is well perfused. However, to reach the core of the tumour, diffusion
inside the interstitial fluid is necessary, which is the inhibiting factor here.

As depicted in Fig. 3.4, the permeability coefficients measured by Dreher et al. [176], Chou
et al. [177] and Ho et al. [175] differ by more than one order of magnitude. Dreher et al. [176] used
a mouse model to measure the apparent permeability in vivo: their setup includes an unknown
influence of convection, as stated by the authors. Chou et al. [177] used the Kedem–Katchalsky
equation to fit the permeability and diffusivity of dextrans to the data of Dreher et al. [176]. In
contrast, Ho et al. [175] reasoned that a systematic quantitative study of permeabilities utilising
animal models is difficult and instead proposed an in vitromodel based onmicrofluidics. This model
allows a quantitative study of the extravasation and control over the pathway the nanoparticles take.
Therefore, we employ the permeability coefficient determined by Ho et al. [175] as the default value
for the following simulations (see Table 3.1).

Our findings are consistent with the fact that the extravasation of nanoparticles through both
pathways (trans- and interendothelial route) influence the number of nanoparticles reaching the
tumour. The remaining question however is which mechanism is dominant. Wilhelm et al. [163]

40

https://creativecommons.org/licenses/by/4.0/


3.1 Passive targeting

summarise that the distinction between transvascular transport through intercellular gaps or transen-
dothelial cell pores is complex and that intercellular gaps have not yet been definitively established.
Nevertheless, nanotechnology has focused on transport through intercellular gaps as described by the
enhanced permeability and retention (EPR) effect, and so far has not overcome major problems with
poor delivery efficiency [163, 179, 180]. We therefore use a combination of trans- and interendothelial
routes, where both pathways contribute a considerable amount of nanoparticle transport to the
interstitial fluid by setting the pore radius to r0 = 150nm and the vascular permeability coefficient to
Pv = 3.5 × 10−4mm/s [175] for all following simulations. Jain and Stylianopoulos [169] nonetheless
stated that tumour vasculature is not always as leaky as postulated in the description of the EPR effect,
and Wilhelm et al. [163] concluded that future research should concentrate on the transendothelial
transport mechanism. Here, we have shown that the transendothelial pathway indeed plays a major
role and can increase the efficiency of drug delivery.

Transport in the interstitial fluid. We further investigate the transport of nanoparticles in the
interstitial fluid, which is driven by diffusion and convection. To study the transport in the interstitial
fluid, we use the Péclet number as the ratio of convective transport rate to diffusive transport rate in
the interstitial fluid

Pe =
uℓL

εSℓDNPl =
(Sℓ)Aℓ−1 kL
εµℓDNPℓ ∇p

ℓ , (3.8)

where we use the Darcy equation for the convective velocity uℓ. The characteristic length is set
to L = (Atumour/Ptumour) = 220µm, with Atumour being the surface of the tumour and Ptumour its
perimeter. The pressure gradient ∇pℓ is calculated using central differences. For the further analysis,
we use the mean value Pe of the Péclet number on the entire domain Ωt ∪ Ωh. We now include
both inter- and transendothelial pathways for transport across the vessel walls. Here, we use a
constant permeability coefficient of Pv = 3.5 × 10−4mm/s [175] and a pore radius of r0 = 150nm,
as discussed in the previous section. In order to investigate nanoparticle distributions in different
transport regimes, we compare dextrans with different molecular weights, similar to the experiments
performed by Ziemys et al. [172]. The interstitial diffusivities for 3.3 kDa, 10 kDa, 70 kDa and 2MDa
dextran determined by Chou et al. [177] result in Péclet numbers in the range of 0.5 to 56 (see
Table 3.2). This allows us to compare diffusion-dominated with convection-dominated transport in
the interstitial fluid. The convective transport rate is influenced by the pressure gradient ∇pℓ, while
the diffusive transport rate depends on the particle size and on the ECM, which—due to its dense
structure—impedes diffusive transport [169, 171]. We use the Péclet number to collectively analyse
the influence of all these factors.

Fig. 3.3B1 presents the distribution of dextrans with various molecular weights in the interstitial
fluid. In the diffusion-dominated case, where Pe = 0.5 and DNPℓ = 30.83 µm2/s for 3.3 kDa, the
nanoparticles spread more uniformly across the domain. In contrast, in the convection-dominated
case, where Pe = 56 and DNPℓ = 0.26 µm2/s, the particles accumulate at the tumour edge. In particular,
no particles reach the core of the tumour, which coincides with the region without blood vessels
(see Fig. 2.6B). We thus observe that the nanoparticles can only reach the whole tumour domain if
diffusion dominates the transport in the interstitial fluid. If however convection dominates the flow

41



3.1 Passive targeting

Table 3.2 Characteristics of dextrans of different molecular weights with values based on Chou et al. [177].

Dextran molecular weight (kDa) Diffusivity DNPℓ (µm2/s) Péclet number Size (nm)*
3.3 30.83 0.5 1.6
10 17.28 0.8 2.8
70 3.01 4.8 7.3
2000 (= 2MDa) 0.26 56 25

* Molecular size is expressed as the hydrodynamic radius determined by the Stokes–Einstein equation.
The values are taken from Dreher et al. [176].

characteristics, particles do not reach the core of the tumour or any regions located further away
from functioning blood vessels.

For all simulations so far, we included an oncotic pressure difference of σ (πv − πℓ) = 1333Pa
[111, 181]. This implies two things: first, the oncotic pressure in the tumour interstitium πℓ differs
significantly from the oncotic pressure in blood plasma πv and hence, an oncotic pressure gradient
is present; second, the reflection coefficient σ , which influences the effectiveness of the pressure
gradient, must be greater than zero. In contrast to the findings of Baxter and Jain [181], Stohrer
et al. [182] stated that, based on their measurements, the oncotic pressure gradient across the blood-
vessel wall is low. Moreover, Tong et al. [183] assumed a reflection coefficient close to zero because
of large pores in the vessel walls and the consequent leakiness. Hence, the question arises as to
whether and how the presence of an oncotic pressure difference across the tumour microvascular
wall influences the distribution of nanoparticles. We therefore analyse the distributions of dextran in
the extreme case of σ (πv − πℓ) = 0Pa. The results in Fig. 3.3B2 show that the qualitative distribution
of particles in the interstitial fluid is similar to the results with an oncotic pressure gradient (compare
Fig. 3.3B1). However, a quantitative comparison reveals that approximately 20% more particles reach
the interstitial fluid when no significant oncotic pressure gradient is present.

After crossing the vascular barrier, nanoparticles must navigate the tumour microenvironment to
reach cancerous cells. The interstitial fluid pressure in the tumour can be 10 to 40 times higher than
in host tissue, creating an outward pressure gradient [103]. This increases the outward interstitial
flow, thereby limiting convective transport into the tumour region [163]. Nanoparticle transport to
the centre of the tumour is thus impeded, and nanoparticles hardly reach the tumour core or any
regions located further away from functioning vasculature, as shown in Fig. 3.3B. As Zhang et al. [184]
summed up, the elevated interstitial fluid pressure is one of the main factors hindering effective
nanoparticle tumour penetration, and Goel et al. [185] stated that vascular normalisation reduces
tumour hypoxia and the interstitial fluid pressure. Based on those findings, Chauhan et al. [186]
suggested that vascular normalisation improves the convective delivery of nanoparticles.

Ziemys et al. [172] concluded that the dominant transport mechanism is diffusion. Our results
show that only if diffusive transport in the interstitial fluid is significant do nanoparticles penetrate
the centre of the tumour [187]. However, Nichols and Bae [179] and Danhier and Preat [188] stated
that the higher and heterogeneous density of human ECM leads to regions that are inaccessible to
nanoparticles. Consequently, the interstitial fluid pressure gradient impedes convective transport,
while the denser structure of the tumour ECM limits diffusive transport [169].
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In summary, the movement of nanoparticles in the interstitial fluid is significantly limited, and
the particles remain close to where they cross the vascular barrier. Consequently, nanoparticles only
reach well-vascularised regions and the highest concentrations are located near the vascular surface
[176]. Since tumour cores are poorly perfused [38], nanoparticles and anti-cancer agents transported
by nanoparticles do not reach those regions. Our model has proven to be well-suited to capture this
behaviour.

Lymphatic drainage. We now include lymphatic drainage of interstitial fluid and the nanoparticles
contained therein: the lymphatic system generally drains excessive fluid, thereby removing waste
products and foreign substances [189]. To analyse its influence on the distribution of nanoparticles
in the tumour, we assume that the lymphatic system recognises the nanoparticles as foreign bodies
and thus removes them at an increased rate. Similar to the Péclet number, we define the Damköhler
number as the ratio of reactive timescale to convective timescale, as proposed by Shipley and
Chapman [190]

Da =
λL
uℓ

, (3.9)

where λ represents the rate of species loss in the interstitial fluid due to lymphatic drainage given by

λ =
NPℓ→NPly
Mdrain

ρℓ
= (Lp

S
V
)

ly

⟨pℓ − ply⟩
+
⟨1 −

pt

ply
coll

⟩

+

(3.10)

and the convective velocity uℓ, as also employed in Eq. (3.8). We analyse the resulting distribution
of nanoparticles in the interstitial fluid for different Damköhler numbers. To that end, we vary
the hydraulic conductivity of lymphatic vessels. Baxter and Jain [187] used a lymphatic filtration
coefficient (Lp ⋅ SV )

ly
= 1.04× 10−6 (Pa s)−1 for the lymphatic vessels. To investigate different transport

regimes, we employ different values for the lymphatic filtration coefficient, resulting in a mean value
of the Damköhler number of Da = 0.3, 1.5 and 7.3 on the entire domain. We again use a constant
permeability coefficient of Pv = 3.5 × 10−4mm/s [175] and a pore radius of r0 = 150nm.

Above the collapsing pressure ply
coll, interstitial hypertension in the tumour causes lymphatic

vessels to collapse, and thus no fluid is drained [72]. This is the case in the whole tumour zone;
hence, lymphatic drainage is impaired. The drainage of the lymphatic system therefore only influ-
ences regions outside the tumour. The amount of drained fluid increases with increasing hydraulic
conductivity, as shown in Fig. 3.3C. In particular, in the case of 2MDa dextran, where transport in
the interstitial fluid is convection-dominated, the particles clearly accumulate at the outer edge of
the tumour.

This interplay of transvascular transport and lymphatic drainage results in an accumulation of
nanoparticles in the tumour—a phenomenon called enhanced permeability and retention (EPR) effect.
Endothelial cells in the vasculature are poorly aligned, leading to large fenestrations. This effect
causes extensive leakage of blood plasma components, including macromolecules and nanoparticles,
into the interstitium. At the same time, lymphatic clearance is inhibited by the increased interstitial
pressure of the tumour. This combination of vascular leakage and impaired lymphatic drainage leads
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Figure 3.5 The enhanced permeability and retention (EPR) effect. Nanoparticles (NPs) leak from the vasculature
to the interstitial fluid. In the tumour region, the lymphatic drainage is impaired, and hence the particles are not
removed by the lymphatic system. This results in a passive accumulation of nanoparticles in the tumour called the
EPR effect [40]. This figure is taken from [58], where it is licensed under CC BY 4.0.

to the passive retention of nanoparticles in the tumour. The EPR effect, as depicted in Fig. 3.5, was
first described by Matsumura and Maeda [40] in 1986. It became a gold standard for the design of
anti-cancer agents based on macromolecules and nanoparticles to selectively target tumour sites
[42].

Since the first mention of the EPR effect more than 30 years ago, the number of publications
citing it has increased exponentially [179]. Nichols and Bae [179] however stated that despite good
documentation and the experimental validation of the EPR effect in small animal models, in particu-
lar with nanoparticles, the clinical translation of nanomedicine is still limited. A literature summary
[163] revealed that only 0.7% of the administered nanoparticles reach solid tumours in mouse models,
and only 14 out of 1 million nanoparticles reach the cancer cells [21]. In addition, human tumours
differ frommurine tumours in several major characteristics: the fact that rodent tumours growmuch
faster than human tumours leads to several differences [188]. In some human tumours, blood vessels
are less leaky than expected, limiting extravasation and delivery of nanoparticles [169]. Heterogen-
eous blood flow in tumours and resulting hypoxic areas hinder the delivery of nanoparticles and
drugs to these tumour zones [191].

Our results confirm that our model can capture the EPR effect. Nevertheless, proper calibration
of the model is crucial to determine the transport regimes that occur in vivo. In particular, better
experimental characterisation of lymphatic drainage is essential to validate the mechanisms con-
tributing to the EPR effect. Our results show that the EPR effect might reduce the accumulation of
nanoparticles or drugs in host tissue and prevent side effects of conventional chemotherapy. At the
same time, it does not improve delivery to the tumour, particularly not to the tumour centre.

Many studies assume homogeneous tumours and a uniform distribution of the nanoparticles
[192, 193]. In contrast, we model and observe highly uneven distributions which, in a similar form,
have been observed in vivo as summarised by Wilhelm et al. [163] and limit the clinical translation
of nanomedicine. Our model in particular captures the high interstitial pressure in tumours, which
hinders nanoparticles from reaching all regions of the tumour.
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3.1.3 Conclusion
We have extended our vascular multiphase tumour growth model to include a suitable model for
passive nanoparticle transport by the tumour microenvironment and have investigated the resulting
nanoparticle distributions. We especially considered the transport barriers proposed by transport
oncophysics [36]: medical and clinical studies in this context have revealed that several anatomical
and physiological factors hinder sufficient penetration of nanoparticles to reach the whole tumour
zone. Our tumour model reproduces those transport characteristics, particularly the EPR effect. We
have shown that the accumulation of nanoparticles in the tumour depends on several parameters
and that nanoparticles do not reach the entire tumour in all cases.

Our model predicts that considering the transendothelial pathway could increase the amount
of nanoparticles reaching the tumour. Until now, nanotechnology has focused solely on transport
through the interendothelial pathway and has not overcome major delivery problems. Conversely,
a comprehensive characterisation of the transendothelial pathway lacks precise parameters from
a biological point of view, e.g., for vascular permeability. We further deduce from our results
that nanoparticles can reach the tumour core if (or even only if ) transport in the interstitial fluid
is diffusion-dominated. However, diffusion is limited to about 100 µm [129], and the structure
of the ECM impairs diffusion. If, on the contrary, the transport is convection-dominated, the
high interstitial pressure counteracts transport into the tumour. As a result, nanoparticles remain
in proximity to where they cross the vascular border. Since tumour cores are poorly perfused,
nanoparticles cannot reach the central regions of the tumour.

One possible treatment strategy to overcome these difficulties is vascular normalisation to restore
the functionality of the tumour vasculature and thereby improve drug delivery [194]. Studying drug
delivery in combination with a tumour growth model could have several benefits in future work: for
instance, the effect of periodic treatments with intermittent tumour growth can be assessed, or novel
therapies—such as vascular normalisation followed by treatment with a conventional drug—can be
integrated more easily. This can give valuable insight into transport characteristics and accumulation
of nanoparticles in tumours, which can be transferred to medical studies.

3.2 Magnetic targeting
As passive targeting is limited by the EPR effect, active targeting is a promising approach to improve
the efficacy of nanoparticle-based drugs. For example, an external magnetic field is applied to direct
magnetic nanoparticles to the target tissue, i.e., the tumour [195]. Such magnetic carriers allow
targeting the tumour with enhanced uptake at the target site while reducing the systemic toxicity of
the drug [196].

Magnetic nanoparticles possess unique physical properties: due to their small size (1 nm to
100 nm), they form a single magnetic domain. Therefore, they become highly magnetic in the
presence of an external magnetic field but revert to a non-magnetic state when the field is removed,
called superparamagnetism [197]. The nanoparticles are injected intravenously, and then a magnet
placed on the body surface concentrates the nanoparticles at the target site. The translationalmagnetic
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force pulling the particles towards the magnet depends on their magnetic properties and the applied
magnetic field and field gradients [198]. However, the magnetic field and the field gradient decrease
rapidly with increasing distance [199]. Additionally, counteracting hydrodynamic forces further
complicate capturing particles from flow, e.g., blood flow or flow in the interstitium. The pressure
gradient between the tumour and the surrounding host tissue causes an outward flow of interstitial
fluid from the tumour—an additional transport barrier for nanoparticles [103].

To study the magnetic capturing of nanoparticles in tumour spheroids in the presence of flow,
we use a simplified in vitro test setup: a tumour spheroid is placed in a flow chamber with a magnet
underneath to capture the nanoparticles, as presented by [200]. We retain the essential characteristics
and transport barriers of the tumour microenvironment while reducing the complexity of the in
vivo scenario to a controlled and monitorable setup.

On the way towards a comprehensive computational model for effective nanoparticle-mediated
drug design, we start with a model for our experimental test setup, where we can control the en-
vironmental conditions and measure the relevant quantities. The potential of our physics-based
computational model will provide a stepping stone to in vivo scenarios where control and measure-
ment are limited, and ultimately, such an in silico tool can accelerate translation into the clinical
setting.

Here, we develop a computational model of the transport of magnetic nanoparticles in the experi-
mental test setup described above: we integrate amodel for the transport of magnetic nanoparticles in
an external magnetic field with a tumour model, which includes the fluid flow. We use a continuum
approach to model the nanoparticle transport based on a diffusion-advection equation and integrate
it with our multiphase porous-media model for the tumour spheroid and the fluid flow.

Several computational models have previously been developed to study individual aspects of the
transport of nanoparticles under the combined effect of flow and magnetic forces in the tumour
microenvironment. Chauhan et al. [186], Welter and Rieger [201], Cattaneo and Zunino [202],
and Vilanova et al. [92] developed tumour models which study the interstitial fluid flow in the
tumourmicroenvironment but without including nanoparticle transport. Concerning computational
models of tumour spheroids, Deisboeck et al. [27], Karolak et al. [203] and Metzcar et al. [30]
comprehensively reviewed the state of the art. Frieboes et al. [204], Curtis et al. [156], and Wirthl
et al. [58] presented models of nanoparticle-based cancer therapy limited to the passive transport
of nanoparticles without a magnetic field. Furlani and Ng [205], Furlani and Furlani [206], and
Hewlin and Tindall [207] studied the capture of magnetic nanoparticles in flow but focused on blood
vessels. Detailed computational models which study magnetic nano-drug delivery systems under
consideration of transport barriers of the tumour microenvironment include Shamsi et al. [208] and
Rezaeian et al. [209].

The novelty of our approach lies in the coupling of fluid flow around and through the tumour
spheroid integrated into a theoretically sound and consistent physics-basedmultiphase porous-media
model together with the transport of magnetic nanoparticles in an external magnetic field, which
is evaluated in a numerically efficient way based on analytical expressions for the magnetic field
and force. We focus on an in vitro test setup in a perfused microfluidic device. Such setups are a
powerful tool because of the control over the environmental conditions, and they even replace in
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vivo experiments in preclinical drug testing [210, 211]. Developing a computational model for such a
setup is hence highly relevant to improving the efficacy of nanoparticle-based drugs.

The content of this section is largely based on the author’s following publications: B. Wirthl,
V. Wirthl and W. A. Wall. ‘Efficient Computational Model of the In-Flow Capturing of Magnetic
Nanoparticles by a Cylindrical Magnet for Cancer Nanomedicine’. Physical Review E 109.6 (2024),
065309 [59], which is copyrighted by the American Physical Society and reused here with permission
from the American Physical Society and B. Wirthl, C. Janko, S. Lyer, B. A. Schrefler, C. Alexiou and
W. A. Wall. ‘An in silico model of the capturing of magnetic nanoparticles in tumour spheroids in
the presence of flow’. Biomedical Microdevices 26.1 (2024) [60], which is licensed under CC BY 4.0.

3.2.1 Motivational experimental test setup
In our test setup, we study the magnetic accumulation of superparamagnetic iron oxide nanoparticles
(SPIONs) in a flow chamber. Among the various types of magnetic nanoparticles, SPIONs are the
most extensively investigated because of their biocompatibility [212]. The experimental setup is
sketched in Fig. 3.6A and described in detail in [200]. Therefore, we only give a brief summary below.
Tumour spheroids of melanoma cells and fibroblasts were grown for three days. The SPIONs were
loaded with a chemotherapeutic drug, in this case, mitoxantrone. To investigate the accumulation
of the SPIONs under dynamic conditions, the tumour spheroids were placed in MIVO®single flow
chambers without transwell insert (React4Life, Genova, Italy). The flow chamber was perfused using
a peristaltic pump, and the SPIONs were injected into the flow. The SPIONs are then accumulated at
the tumour spheroid by permanent magnets.

3.2.2 Methods
To investigate the transport of magnetic nanoparticles in the test setup described above, we develop
a computational model that specifically tackles the following novel challenges (compared to passive
transport as discussed in the previous subsection):

1. Model the free fluid flowing around the tumour spheroid in the flow chamber coupled to the
flow in the tumour spheroid.

2. Model the magnetic nanoparticles transported with the fluid and within the tumour spheroid
subjected to the force of an external cylindrical magnet.

The computational setup is depicted in Fig. 3.6B.
The magnetic nanoparticles are dispersed in the fluid and transported by its flow. Additionally,

a cylindrical magnet is positioned below the flow chamber and exerts a magnetic force on the
nanoparticles. Many publications [213–217] use particle-based approaches for the nanoparticles,
where the forces are computed for each individual particle. However, tumour spheroids are on the
scale of a few hundred micrometres, while nanoparticles are several orders of magnitude smaller.
Investigating the transport of nanoparticles with a particle-based approach at the scale of the tumour
spheroid thus involves up to a billion particles—an enormous computational burden [215]. But as we
are not interested in the movement of the individual nanoparticles, there exist much more efficient
approaches. We therefore use a continuum approach for the nanoparticles, where we employ a
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Figure 3.6 Experimental and computational setup A) Experimental setup for magnetic accumulations of superpara-
magnetic iron oxide nanoparticles (SPIONs) in a flow system. The tumour spheroid is placed in a MIVO®chamber
connected to a peristaltic pump. Permanent magnets guide the SPIONs to the tumour spheroid. The pictures are
adapted from [200], licensed under CC BY 4.0. B) Computational setup combining the flow of the free fluid in Ωℓ

with a multiphase porous medium for the tumour spheroid in Ωt . A cylindrical permanent magnet is positioned
below the flow chamber. The nanoparticles (NPs) are transported with the fluid and guided by the magnetic field.
This figure is taken from [60], where it is licensed under CC BY 4.0.

diffusion-advection equation directly at the macroscale. The bottom wall is also impenetrable for
the magnetic nanoparticles.

3.2.2.1 Multiphase porous-media model for the tumour spheroid and the free fluid

The tumour spheroid consists of the tumour cells, the extracellular matrix (ECM) and the interstitial
fluid (in vivo) or the culture medium (in the test setup), as sketched in Fig. 3.7. We decompose this
system into two distinct but fully coupled regions, which we model as a multiphase porous medium:
the region of the free fluid Ωℓ and the region of the tumour spheroid Ωt . To model the flow in both
regions, Ωℓ and Ωt, we use a one-domain approach, i.e., we solve the same equation in the entire
domain Ω = Ωℓ ∪ Ωt: the mass balance equation with a Darcy momentum equation condensed
into a single equation. The bottom wall of the domain is impermeable and has a no-slip boundary
condition.

Here, we write the mass balance of the fluid phases as

ραε ∂S
α

∂t
+∇ ⋅ (ραεSαuα) = 0, (3.11)

where we define the tensor Kα as the permeability tensor divided by the dynamic viscosity µα of the
fluid phase

Kα =
kαrelkI
µα

with kαrel = (Sα)
Aα (3.12)
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Culture medium

NPs
Tumour cells

ECM

Figure 3.7 Porous medium with the pore space of the extracellular matrix (ECM) occupied by the tumour cells and the
culture medium. The brown arrows indicate the flow of the culture medium, which is transporting the nanoparticles
(NP).

and the velocity of the fluid phase as

uα = −
1
εSα

Kα∇pα . (3.13)

As described above, we use a one-domain approach and solve one equation (in this case Eq. (3.11))
on the entire domain. Outside the tumour spheroid, the culture medium is the only phase, and no
ECM is present; thus, ε = 1.0 = const and Sℓ = 1.0. In Ωℓ, we set the tensor K ℓ and the pressure
gradient so that the average velocity of the culture medium is uℓ = 0.25mms−1 based on Eq. (3.13).
We assume the flow to be laminar and the Reynolds number to be small, as is typically the case in
microfluidic devices [218, 219]2. In addition, we only consider a steady state, i.e., the velocities do
not change in time, and neglect body forces, e.g., the gravitational force. At the bottom wall, we
apply a no-slip boundary condition, i.e., uℓ = 0.

The mass balance equation of the free fluid then reduces to

∇ ⋅ uℓ = 0 with uℓ = K ℓ∇pℓ . (3.14)

For the free fluid, K ℓ can be interpreted as an apparent permeability tensor field, similar to the
approach presented by Valdés-Parada and Lasseux [220]. Hence, the mass balance equation is the
well-known continuity equation, e.g., as included in the Navier–Stokes equations, but we condensed
a Darcy momentum equation into it to obtain a single equation (see Section 2.1.3 for details).

In sum, employing the multiphase porous-media model captures essential aspects: the fluid flow
around and through the tumour spheroid and the interaction of the flow with the tumour cells. The
implications of the fluid flow are crucial both to understand tumour growth better and to improve
the design of drug delivery systems [221, 222].

In the following, we refer to the flow of the culture medium as the fluid flow because we do not
further investigate the flow of the tumour cells as the second fluid phase.

We again employ the tumour-growthmodel to generate a physically plausible initial condition for
the tumour spheroid: it results in a saturation of the tumour cell phase of S t = 0.8 and a saturation of
the culture medium phase of Sℓ = 0.2. We then use these results as an initial condition for studying
the transport of magnetic nanoparticles in the flow chamber.

2Given a domain width of w = 1mm and assuming an average flow velocity of uℓ = 0.25mms−1 results in a Reynolds
number of Re = ρℓuℓw/µℓ = 0.25 < 1.
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3.2.2.2 Transport of the magnetic nanoparticles

We model the transport of the magnetic nanoparticles with a diffusion-advection equation as a
continuum approach. We assume that the magnetic nanoparticles are dispersed in the fluid in a
stable colloidal suspension, so the particle mass fraction ωNPℓ is small (ωNPℓ ≪ 1). We therefore
assume that nanoparticles do not interact with each other, i.e., we neglect the inter-particle forces for
now, and we assume that the nanoparticles do not influence the fluid flow.

The mass fraction ωNPℓ of the magnetic nanoparticles in the medium is governed by the mass
balance equation

ρℓεSℓ ∂ω
NPℓ

∂t
+∇ ⋅ (ρℓqNP) = 0, (3.15)

where qNP is the flux of themagnetic nanoparticles. We assume that no (chemical) reaction within the
phase occurs and nomass transfer to other phases. The flux is the sum of three transport mechanisms:
diffusion, advection with the fluid flow, and magnetophoresis (= the motion of magnetic particles in
response to an external magnetic field [223]), i.e.,

qNP = qNP
diff + q

NP
adv + q

NP
mag (3.16)

with the diffusive and the advective flux as defined in Section 2.1.4.
When the nanoparticles are also subjected to a magnetic force, we include an additional magneto-

phoretic flux qmag depending on the magnetic force Fmag. Typically, the resulting magnetophoretic
velocity umag is assumed to be directly proportional to the applied force, e.g., see [205, 224], resulting
in a magnetophoretic flux of

qNP
mag = ωNPℓεSℓumag = ωNPℓζ−1Fmag, (3.17)

where ζ = 6πµℓRNP is the mobility of a particle of radius RNP in a fluid with dynamic viscosity3 µℓ,
based on Stokes’ law.

Eq. (3.17) assumes that the velocity is always directly proportional to the applied force. Now
consider an example of a channel with an impenetrable wall and a force perpendicular to the wall, as
sketched in Fig. 3.6: the force results in a velocity perpendicular to the wall, which in turn results
in the nanoparticles leaving the domain through the impenetrable wall—which is obviously not
physical.

We therefore introduce the mobility tensorM, which relates the magnetophoretic velocity to
the magnetic forces, i.e.,

umag =MFmag, (3.18)

or more explicitly,
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ux
uy
uz

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Mxx Mxy Mxz

Myx Myy Myz

Mzx Myz Mzz

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Fx
Fy
Fz

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.19)

3The parameter µℓ denotes the dynamic viscosity of the fluid by the superscript ℓ (liquid) to distinguish it from the
magnetic vacuum permeability µ0 introduced in Section 3.2.2.3.
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similar to [225, 226]. The mobility is a tensor fieldM(x) that depends on the position x. Now, a
force in a specific direction does not necessarily result in a velocity in that direction, but only if the
particle can move in this direction, i.e., if the mobility is non-zero. At an impenetrable wall, the
nanoparticles cannot move in the direction perpendicular to the wall, i.e., into the wall, and thus
the mobility is zero in this direction, resulting also in zero velocity. All off-diagonal entries of the
mobility tensorM are also zero: a force in one direction only causes a velocity in the same direction
and no shear contribution.

We further introduce a relative mobility mℓ
rel similar to the relative permeability kℓrel in Eq. (3.12).

All diagonal entries of the mobility tensor inside the domain are given by

Mxx =Myy =Mzz =
mℓ

rel

6πµℓRNP
with mℓ

rel = (Sℓ)
Aℓ . (3.20)

At the impenetrable wall, the diagonal entries tangential to the wall are also given by Eq. (3.20).
But, the entry perpendicular to the wall is zeroMzz = 0. The key point here is that we employ the
mobility as a tensor field—instead of a scalar.

Remark (The mobility tensor in other applications). Pimponi et al. [225] used the mobility tensor to
model microspheres moving on a superhydrophobic wall, and Chen et al. [226] applied the mobility
tensor to the grain-boundary mobility during the evolution of polycrystalline microstructures, explicitly
arguing that mobility must be a tensor (not a scalar).

The advantages of our approach based on the mobility tensor field are twofold: firstly, we include
a simple approach to model nanoparticle accumulation at the wall—as opposed to [206, 227] where
the boundary condition at the wall is unclear; secondly, the relative mobility allows us to consider the
interaction of the nanoparticles with other phases—which is especially relevant for the interaction
with the ECM [152].

The final form of the Smoluchowski advection-diffusion equation [228] is then given by

ρℓεSℓ ∂ω
NPℓ

∂t
−∇ ⋅ (ρℓεSℓDNPℓ∇ωNPℓ) − ρℓK ℓ∇pℓ ⋅∇ωNPℓ +∇ ⋅ (ρℓωNPℓMNP Fmag ) = 0. (3.21)

3.2.2.3 Magnetic force on the nanoparticles

Due to the permanent magnet, the magnetic nanoparticles are subjected to a static non-homogenous
external magnetic field H leading to a force Fmag. This force however does not only depend on the
magnetic field but also the magnetic response of the particles.

Due to the small size of the particles, we assume that they can be modelled as an equivalent
point dipole located at the centre of the particle (effective dipole moment approach [205, 229, 230]).
Also, due to the small size, the nanoparticles are superparamagnetic: they are magnetised with
a large magnetic susceptibility χNP when an external magnetic field is applied but do not retain
their magnetisation after the external magnetic field is removed. Hence, when a superparamagnetic
nanoparticle is placed in an external magnetic field, it magnetises, resulting in a magnetic moment
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mNP. The force on the magnetic dipole induced in the nanoparticle is given by

Fmag = µ0 (mNP ⋅∇)H , (3.22)

with the magnetic vacuum permeability µ04. Using the magnetisation MNP as the magnetic moment
per volume, i.e., MNP = mNP/VNP with VNP being the volume of the nanoparticle, the force can be
written as

Fmag = µ0VNP (MNP ⋅∇)H . (3.23)

Thus, the force depends on the magnetisation of the nanoparticle and the derivatives of the applied
magnetic field.

The magnetised nanoparticles also produce a magnetic field, affecting the nearby nanoparticles.
For now, we assume that the magnetic force that the nanoparticles exert on each other is negligible
compared to the magnetic force exerted by the external magnetic field—which is a valid assumption
for low concentrations of nanoparticles and hence large distances between the nanoparticles [205,
232–235]. We will investigate and discuss the validity of this assumption in Section 3.2.3.4.

Magnetisation model. To relate the magnetisation of the nanoparticle to the applied magnetic
field, we use a linear magnetisation model with saturation, given by

MNP = f (∣H∣)H with f (∣H∣) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

3χNP

3+χNP if ∣H∣ < Hsat

Msp
∣H∣ if ∣H∣ ≥ Hsat

(3.24)

withMsp being the saturation magnetisation andHsat the field strength for which the particle reaches
saturation, as presented by [205, 224, 230]. An example of such a magnetisation curve is shown in
Fig. 3.8. If the particle is below saturation, its magnetisation is proportional to the applied magnetic
field

MNP =
3χNP

3 + χNP
H , (3.25)

and the particle reaches saturation for

Hsat =
χNP + 3
3χNP

Msp, (3.26)

which can be derived based on the effective dipole moment approach [205, 229]. Above saturation,
the magnetisation is equal to the saturation magnetisationMsp, i.e.,

MNP = Msp
H
∣H∣

. (3.27)

The magnetisation is always aligned with the applied magnetic field.
4We assume that the fluid (water) and air are non-magnetic, and thus assume that their permeability is equal to the

vacuum magnetic permeability defined as µ0 = 1.256 637 062 12(19) × 10−6NA−2 [231]. The exact values for water and
air differ from the value for vacuum at the fifth and seventh decimal place, respectively.
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Figure 3.8 Magnetisation curve for a superparamagnetic nanoparticle with linear magnetisation and saturation
above an applied magnetic field of Hsat , assuming a saturation magnetisation of Msp = 478 kAm−1 [205] and a
magnetic susceptibility of χNP ≫ 1 [205, 212, 236]. This figure is reprinted with permission from [59], where it is
copyrighted by the American Physical Society.

Finally, as discussed above, the particles are superparamagnetic: their magnetic susceptibility is
much higher than the magnetic susceptibility of paramagnetic materials, i.e., χNP ≫ 1 [205, 212, 236].
Eq. (3.24) can then be simplified to

f (∣H∣) =
⎧⎪⎪
⎨
⎪⎪⎩

3 if ∣H∣ < 1
3Msp

Msp
∣H∣ if ∣H∣ ≥ 1

3Msp
. (3.28)

In sum, the magnetic force on the nanoparticles is given by

Fmag = µ0VNP f (∣H∣) (H ⋅∇)H , (3.29)

which shows that the magnetic force depends both on the strength of the magnetic field and its
derivatives.

Analytical expression for the magnetic field. Usually, the magnetic field H is obtained by solving
Maxwell’s equations numerically. Analytic expressions are only well-known for some classic textbook
cases: themagnetic field of point multipoles or infinitely long wires carrying a current [237]. However,
for a finite-length cylindrical magnet, which we have here, Derby and Olbert [238] and Caciagli
et al. [239] presented analytic expressions based on the elliptic integrals. These analytic expressions
are beneficial because the magnetic quantities can be evaluated at all coordinates with minimal
computational effort compared to numerically solving Maxwell’s equations, e.g., using the finite
element method.

In the following, we summarise the analytic expression for the magnetic field, as presented by
[238, 239], and then extend this by deriving the analytic expressions for the magnetic force. The
cylindrical magnet is magnetised in the longitudinal direction. The field components of the magnetic
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field H in cylindrical coordinates (ρ, ϕ, z) are given by

Hρ(ρ, z) =
MsRmag

π
[α+P1(k+) − α−P1(k−)] , (3.30)

Hz(ρ, z) =
MsRmag

π(ρ + Rmag)
[β+P2(k+) − β−P2(k−)] , (3.31)

andHϕ = 0 due to the radial symmetry of the system [238, 239]5. Here,Ms denotes the magnetisation
of the cylindrical magnet and Rmag its radius. The origin of the cylindrical coordinate system is
located at the centre of the magnet. The two auxiliary functions P1 and P2 are defined as

P1(k) = K (1 − k2) −
2

1 − k2
[K (1 − k2) − E (1 − k2)] (3.32)

P2(k) = −
γ

1 − γ2
[Π (1 − γ2, 1 − k2) − K (1 − k2)] − 1

1 − γ2
[γ2Π (1 − γ2, 1 − k2) − K (1 − k2)] , (3.33)

with the following auxiliary variables

ρ± = Rmag ± ρ, ζ± =
Lmag

2
± z, α± =

1
√
ζ2
±
+ ρ2
+

, β± = ζ±α±, γ = − ρ−
ρ+

, k± =

¿
Á
ÁÀ ζ2

±
+ ρ2
−

ζ2
±
+ ρ2
+

,

and Lmag being the length of the cylindrical magnet. Eqs. (3.32) and (3.33) are based on the complete
elliptic integrals of the first, second and third kind, which in Legendre’s notation are written as

K(m) =
π/2

∫
0

dθ
√
1 −m sin2 θ

(3.34)

E(m) =
π/2

∫
0

√
1 −m sin2 θ dθ (3.35)

Π(n,m) =
π/2

∫
0

dθ
(1 − n sin2 θ)

√
1 −m sin2 θ

. (3.36)

All three kinds of elliptic integrals can be efficiently evaluated using Carlson’s functions RF , FD and
RJ [240, 241] as

K(m) = RF(0, 1 −m, 1) (3.37)

E(m) = RF(0, 1 −m, 1) −
m
3
RD(0, 1 −m, 1) (3.38)

Π(n,m) = RF(0, 1 −m, 1) +
n
3
RJ(0, 1 −m, 1 − n). (3.39)

5Eqs. (3.30) and (3.31) are mathematically well-behaved except on the edge of the magnet at ρ = ±Rmag and z = ± Lmag

2
[238].

54



3.2 Magnetic targeting

5

0

5

z 
(m

m
)

500

5 0 5
x (mm)

0

M
ag

ne
tic

 fi
el

d 
H

 (A
/m

m
)

M
ag

ne
tic

 fo
rc

e 
 F

m
ag

 (p
N

)

5 0 5
x (mm)

0

2

5

0

5

z 
(m

m
)

A) B)

Figure 3.9 Magnetic field H (A) and magnetic force Fmag (B) on the nanoparticles of a cylindrical magnet with radius
Rmag = 2mm and length Lmag = 7mm. This figure is reprinted with permission from [59], where it is copyrighted by
the American Physical Society.

Numerical Recipes [242] provides algorithms and source code for evaluating Carlson’s functions,
which are also implemented in Mathematica [243] and SciPy [244].

Remark (Parameter and sign conventions in the elliptic integrals). Note that Numerical Recipes [242,
p. 315] uses a different sign convention for the variable n in the third elliptic integral, such that

Π(n,m) =
π/2

∫
0

dθ
(1 + n sin2 θ)

√
1 −m sin2 θ

= RF(0, 1 −m, 1) −
n
3
RJ(0, 1 −m, 1 + n). (3.40)

Additionally, Caciagli et al. [239] use the convention with parameter k, where m = k̃2 =
√
1 − k2 in

their Eq. (6). Mathematica [243] and SciPy [244] however use the parameter m, as presented here in
Eqs. (3.34) to (3.36).

Fig. 3.9A shows an example of the magnetic field H of a cylindrical magnet with radius Rmag =

2mm, length Lmag = 7mm and magnetisationMs = 1 × 106Am−1. Inside the magnet, the magnetic
field is given by

H =
B
µ0
−Ms , (3.41)

with the magnetic flux density B. For a longitudinally magnetised magnet, the magnetisation vector
is Ms = Msez, with ez being the unit vector in z-direction. The magnetisation vector is constant
inside and zero outside the magnet. The result for the magnetic field H in Fig. 3.9A is qualitatively
well known: the magnetic field lines originate at one pole and end at the other, forming fanned-out
circular segments around the magnet.

Analytical expression for the magnetic force. As discussed above, the magnetic force Fmag

depends on the magnetic field and its derivatives. Since the first derivatives of the elliptic integrals are
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known analytically, we can derive an analytical expression for the magnetic force Fmag. Evaluating
Eq. (3.29) for the analytical expression for the magnetic field results in the force components given by

Fρ(ρ, z) =
µ0VNP f (∣H∣)M2

s
4π2ρ+ρ3a1a2a3a4

⎡
⎢
⎢
⎢
⎢
⎣

(
a4c1ζ+E(ψ+)

α−
+
a3c2ζ−E(ψ−)

α+
−
a3a4ζ+K(ψ+)

α−
−
a3a4ζ−K(ψ−)

α+
) ρ2Q2

+ (
a4(b21 + b3ρ2)E(ψ+)

α−
−
a3(b22 + b4ρ2)E(ψ−)

α+
+
a3a4b2K(ψ−)

α+
−
a3a4b1K(ψ+)

α−
) ρ+Q1

⎤
⎥
⎥
⎥
⎥
⎦

(3.42)

and

Fz(ρ, z) =
µ0VNP f (∣H∣)M2

s
4π2a1a2a3a4

⎡
⎢
⎢
⎢
⎢
⎣

(
a3a4ζ+K(ψ+)

α−
+
a3a4ζ−K(ψ−)

α+
−
a4c1ζ+E(ψ+)

α−
−
a3c2ζ−E(ψ−)

α+
)
Q1

ρ2

+ (
a3c4E(ψ−)

α+
−
a4c3E(ψ+)

α−
+
a3a4K(ψ+)

α−
−
a3a4K(ψ−)

α+
)
Q2

ρ+

⎤
⎥
⎥
⎥
⎥
⎦

,

(3.43)

with two auxiliary functions Q1 and Q2 based on the elliptic integrals

Q1(α+, α−,ψ+,ψ−, a1, a2, c1, c2) =
a2E(ψ−)
α+

−
a1E(ψ+)
α−

+
c1K(ψ+)
α−

−
c2K(ψ−)

α+
,

Q2(α+, α−,ψ+,ψ−, ρ+, ρ−, ζ+, ζ−, β) =
ρ+ζ+K(ψ+)

α−
+
ρ+ζ−K(ψ−)

α+
+
ρ−ζ+Π(β,ψ+)

α−
+
ρ−ζ−Π(β,ψ−)

α+
.

and the following auxiliary variables6

ρ± = Rmag ± ρ, ζ± =
Lmag

2
± z, β =

4ρRmag

ρ2
+

a1 = ρ2+ + ζ2+, a2 = ρ2+ + ζ2−, a3 = ρ2− + ζ2+, a4 = ρ2− + ζ2−,

α+ =
1
√a1

, α− =
1
√a2

, ψ+ =
4ρRmag

a1
, ψ− =

4ρRmag

a2
,

b1 = ζ2+ + R2
mag, b2 = ζ2− + R2

mag, b3 = ζ2+ − R2
mag, b4 = ζ2− − R2

mag,
c1 = b1 + ρ2, c2 = b2 + ρ2, c3 = b3 + ρ2, c4 = b4 + ρ2.

The coordinate transformations from cylindrical coordinates to cartesian coordinates are given by

Fx(x , y, z) = Fρ(ρ, z) cos(φ) (3.44)
Fy(x , y, z) = Fρ(ρ, z) sin(φ) (3.45)
Fz(x , y, z) = Fz(ρ, z) (3.46)

6Note that Eqs. (3.42) and (3.43) are undefined at ρ = 0 and ρ = ±Rmag. Outside the magnet, these singularities are
removable and Fmag is extendable.

56



3.2 Magnetic targeting

with ρ = √x2 + y2 and φ = arctan ( xy)7.
Fig. 3.9B shows the magnetic force Fmag for a cylindrical magnet with radius Rmag = 2mm and

length Lmag = 7mm. Calculating the magnetic force is only meaningful outside the magnet. The
magnetic force is on the order of pN, similar to the order of magnitude estimated in [215] for a similar
configuration.

We also provide a Python implementation of the analytical expressions for the magnetic field
and force, see [63].

3.2.3 Numerical examples and discussion
In the following, we present and discuss numerical examples to demonstrate the capabilities of the
proposed model. In Section 3.2.3.1, we start with a two-dimensional example where we investigate the
influence of the mobility tensor field on the nanoparticle capture at the impenetrable wall. Next, in
Section 3.2.3.2, we investigate the nanoparticle distribution in three dimensions for different positions
and orientations of a finite-length cylindrical magnet, leveraging the analytical expression for the
magnetic force, which we derived. In Section 3.2.3.3, we extend the previous example to include a
tumour spheroid. Finally, in Section 3.2.3.4, using the analytical expressions for the magnetic field
and force, we examine the validity of the assumption that the inter-particle forces are negligible
compared to the magnetic force exerted by the external magnetic field.

3.2.3.1 Influence of the mobility tensor field

We first present a two-dimensional example where we investigate the influence of the mobility
tensor fieldM(x) on the distribution of the magnetic particles. This example was published in
B. Wirthl, V. Wirthl and W. A. Wall. ‘Efficient Computational Model of the In-Flow Capturing of
Magnetic Nanoparticles by a Cylindrical Magnet for Cancer Nanomedicine’. Physical Review E 109.6
(2024), 065309 [59], where it is copyrighted by the American Physical Society. It is reused here with
permission from the American Physical Society.

The computational setup is depicted in Fig. 3.10A. We study a two-dimensional slice in the XZ-
plane with a size of 9mm×3.5mm, which is discretised with 180×70 linear rectangular elements. The
time step size is ∆t = 1 s and the total simulation time is 150 s. For simplicity, we consider a constant
advective flow velocityuadv = 0.1mms−1 along the x-axis and a constantmagnetic force Fmag = 0.2 pN
along the z-axis, which is a reasonable order of magnitude for the considered cylindrical magnets
(see Fig. 3.9B). For a water-like fluid with a viscosity of µℓ = 1 × 10−3 Pa s and nanoparticles with a
radius of RNP = 100nm, this corresponds to a magnetophoretic velocity of umag ≈ 0.1mms−1. We
assume a diffusion coefficient of DNPℓ = 3 × 10−3mm2 s−1. On the inflow boundary at x = 0, we
prescribe the mass fraction of nanoparticles as a Dirichlet boundary condition given by

ωNPℓ
D (z) =

2.0 × 10−6

0.8
√
2π

exp(−
(z − 2.5)2
2 ⋅ 0.82

) , (3.47)

7Most programming languages provide a function arctan2(y,x) which is defined for all x , y ∈ R and returns the
correct angle φ with respect to the quadrant of the point (x , y).
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which is a bell-shaped function with a maximum value of ωNPℓ = 1.0 × 10−6.
The wall at the bottom of the domain is impenetrable, and we prescribe a Dirichlet boundary

condition for the mass fraction of nanoparticles given by ωNPℓ
D = 0. Additionally, the z-component

of the mobility tensor field is zero at the bottom wall, i.e.,Mzz = 0. We compare the results for the
nanoparticle distribution given different functions forMzz(z). The functions are given in Fig. 3.10B.
On the one hand, we consider the Heaviside functionMzz(z) = H(z−δ), with δ being the boundary
layer thickness: this means that the mobility of the nanoparticles is zero in the boundary layer. We
choose δ so that the boundary layer is two or three elements wide (given an element size of 0.05).
On the other hand, we consider different smooth functions forMzz(z), which have the value one
inside the domain and have different slopes towards the boundary.

Fig. 3.10C presents the results given the different functions forMzz(z). In all cases, the nano-
particles accumulate at the impenetrable wall at the bottom of the domain, which was the primary
motivation for introducing the mobility tensor field. All functions lead to a similar distribution of the
nanoparticles, with the thickness of the layer of captured nanoparticles depending on the function
Mzz(z). However, it shall be noted that the smooth functions are numerically better behaved than
the Heaviside function, which can cause convergence issues.

Defining a tensor fieldM(x) is a simple way to model the accumulation of nanoparticles at
an impenetrable wall. It is worth noting that most similar studies in the literature, e.g., [205, 206,
227], do not clarify the boundary conditions for the nanoparticles at the wall and also seem to not
use appropriate boundary conditions for the nanoparticles at the wall. This allows for studying the
trajectories of the nanoparticles in the bulk of the fluid, but it is impossible to investigate the capture
of the nanoparticles at a wall. Only Khashan et al. [232] presented and discussed an approach for an
impermeability condition at the wall: they set the combined advective-diffusive flux to zero, i.e.,

ωNPℓ (uadv + umag) ⋅ n − DNP∇ωNPℓ ⋅ n = 0. (3.48)

Wedrop the advective velocity because any physically plausible velocity field cannot have a component
perpendicular to an impermeable wall, either by directly imposing a physically plausible velocity
field (as we do here) or by prescribing a no-slip boundary condition and solving the fluid equations.
Khashan et al. [232] subsequently set the normal component of the magnetophoretic velocity at the
wall also to zero. Eq. (3.48) then reduces to the classical Neumann boundary conditionDNP∇ωNPℓ ⋅n =
0, which we also impose. In sum, their boundary condition is equivalent to our approach based on
setting the normal component of the mobility tensor to zero, i.e.,Mzz = 0. Nevertheless, Khashan
et al. [232] also stated that their employed boundary condition poses a numerical challenge due
to the steep concentration gradient at the wall. They solve this problem by prior grid refinement
adaptive to the magnetic field gradient. We circumvent this problem by setting the mobility to zero
on several elements or by using a smooth function.

3.2.3.2 Nanoparticle capture with a cylindrical magnet of finite length

Wenow investigate a three-dimensional example with a cylindrical magnet positioned below the fluid
domain. The analytical solution for the magnetic force enables us to efficiently compare different
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Table 3.3 Parameters for the magnetic nanoparticles, the magnet, and the fluid

Symbol Parameter Value Units Ref.
Magnetic nanoparticles
RNP Radius of the nanoparticles 100 nm [205]
DNP Diffusion coefficient 3 × 10−3 mm2 s−1 Assumed
Msp Saturation magnetisation 478 kAm−1 [205]
Magnet
Rmag Radius of the magnet 2.5 mm Assumed
Lmag Length of the magnet 5.0 mm Assumed
Ms Magnetisation of the magnet 1 × 106 Am−1 [205]
Fluid (water)
µℓ Dynamic viscosity 1 × 10−3 Pa s Known

orientations of a cylindrical magnet. This example was published in B. Wirthl, V. Wirthl and W. A.
Wall. ‘Efficient Computational Model of the In-Flow Capturing of Magnetic Nanoparticles by a
Cylindrical Magnet for Cancer Nanomedicine’. Physical Review E 109.6 (2024), 065309 [59], where it
is copyrighted by the American Physical Society. It is reused here with permission from the American
Physical Society.

The computational setup is the one sketched in Fig. 3.6. The domain has a size of 9mm× 4mm×
3.5mm, which is discretised with 180 × 160 × 70 linear hexahedral elements. The time step size is
again ∆t = 1 s and the total simulated time 150 s. For simplicity, we also again assume a constant
advective flow velocity of uadv = 0.1mms−1. The parameters for the magnetic nanoparticles, the
magnet, and the fluid are given in Table 3.3. The nanoparticle mass fraction on the inflow boundary
is again defined by Eq. (3.47) and zero at the bottom wall. We use a smooth function for the mobility
tensor field, i.e., Function 4 shown in Fig. 3.10B and discussed in the previous subsection. The
cylindrical magnet has a radius of Rmag = 2.5mm and a length of Lmag = 5.0mm and is centered
below the domain with a distance of 0.2mm to the bottom wall. In the first step, we compare three
different orientations of the magnet: A) The magnet is oriented vertically (along the z-axis); B) The
magnet is oriented horizontally (along the x-axis); C) The magnet is rotated 45○ around the y-axis.

Fig. 3.11 shows the mass fraction of the nanoparticles for the three different orientations of the
magnet. For the vertical orientation, the nanoparticles are attracted to the magnet and accumulate at
the bottom wall in a circular shape directly above the magnet, similar to experimental results, e.g.,
[245]. For the horizontal orientation, the nanoparticles accumulate above the two ends of the magnet,
forming two ellipses. For the 45○ orientation, the nanoparticles form one ellipse above where the
edge of the magnet is closest to the bottom wall. Examples in the literature are restricted to a single
orientation of a cylindrical magnet of infinite length, e.g., [205, 207]. In particular, we show that the
nanoparticles accumulate above the ends of the magnet—which can obviously not be investigated
with a magnet of infinite length.

Further, we here leverage what Derby and Olbert [238] and Caciagli et al. [239] stated: their
derived analytical expressions for themagnetic field ofmagnetised cylinders are especially convenient
for applications where magnetic forces on magnetic dipoles are required—nanoparticles being one
such example. Note that our results for the magnetic force are restricted to a cylindrical magnet
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Figure 3.11 Results for the nanoparticle capture with a cylindrical magnet of finite length positioned below the
domain. The colourbar applies to all plots. This figure is reprinted with permission from [59], where it is copyrighted
by the American Physical Society.
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with longitudinal magnetisation. Similar analytical solutions for cylindrical magnets with arbitrary
magnetisation can also be derived based on the respective analytical expressions for the magnetic
field, which Caciagli et al. [239] presented. However, if the magnet is of an arbitrary shape, the
magnetic field and force must be evaluated based on numerically solving Maxwell’s equations.

Several studies in the literature, e.g., [205–207, 246–248] reduced the setup to a two-dimensional
problem in the XZ-plane and assumed the cylindrical magnet to be infinitely long. In this case, the
magnetic force can also be expressed analytically, as derived in [205], and is given by

Fx = −µ0VNP f (∣H∣)M2
sR4

mag
x

2 (x2 + z2)3
(3.49)

Fz = −µ0VNP f (∣H∣)M2
sR4

mag
z

2 (x2 + z2)3
, (3.50)

where the coordinate system is at the centre of the magnet, and the longitudinal axis of the magnet is
perpendicular to the XZ-plane. We now compare results based on this assumption of an infinitely
long magnet to the results for a finite-length magnet. In both cases, we assume that the magnet has a
radius of Rmag = 2.5mm and a distance of ∆ = 0.2mm to the bottom boundary of the domain. The
cylindrical magnet of finite length has a length of Lmag = 5.0mm, as used in the previous examples.
For simplicity, we here assume that f (∣H∣) = 1.0 = const in both cases.

Fig. 3.12 shows the magnetic force and the resulting nanoparticle distribution for the magnet of
infinite length compared to the finite-length magnet. As is also evident in Fig. 3.9, the magnetic force
of the finite-length magnet varies along the longitudinal axis of the magnet, and so we compare the
force in different slices along the longitudinal axis, in this case the y-axis (but the z-axis in Fig. 3.9).
As evident in Fig. 3.12, the direction of the magnetic force is the same in all cases, but the magnitude
is significantly different. For the cylindrical magnet of infinite length, the maximum force in the
domain is 0.72 pN. For the finite-length magnet, the maximum force varies considerably depending
on the position of the slice: the maximummagnitude is 0.06 pN, 0.09 pN, 1.02 pN and 1.65 pN for
the slices at y = 0.0mm, 1.0mm, 2.3mm and 2.5mm, respectively. Accordingly, the nanoparticle
distributions are also markedly different: the nanoparticles accumulate in a higher mass fraction
above the ends of the finite-length magnet than along the infinitely long magnet.

In sum, one has to be aware that the assumption of an infinitely long magnet leads to significantly
different results than a finite-length magnet. The analytical solution for the finite-length magnet
provides a simple and computationally efficient way to investigate the transport of nanoparticles in a
more realistic setup.

3.2.3.3 In-flow nanoparticle capture with a tumour spheroid

We now investigate the motivational example sketched in Fig. 3.6B: we study the capture of magnetic
nanoparticles in the flow chamber with a tumour spheroid. This example was published in B. Wirthl,
C. Janko, S. Lyer, B. A. Schrefler, C. Alexiou and W. A. Wall. ‘An in silico model of the capturing of
magnetic nanoparticles in tumour spheroids in the presence of flow’. Biomedical Microdevices 26.1
(2024) [60], which is licensed under CC BY 4.0.
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Figure 3.12 Comparison of the magnetic force and the resulting nanoparticle distribution for a cylindrical magnet of
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is copyrighted by the American Physical Society.
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Table 3.4 Parameters for the magnetic nanoparticles, the cylindrical magnet, and the fluid phases.

Symbol Parameter Value Units Ref.
Magnetic nanoparticles
RNP Radius of the nanoparticles 100 nm [205]
DNP Diffusion coefficient 2.5 × 10−10 m2 s−1 [250]
Msp Saturation magnetisation 4.78 × 105 Am−1 [205]
Cylindrical magnet
Rmag Radius of the magnet 0.5 mm Assumed
Lmag Length of the magnet 1.0 mm Assumed
Ms Magnetisation of the magnet 1 × 106 Am−1 [205]
Fluid phases
ρℓ, ρt Density of the medium and the cells 1 × 103 kgm−3 Known
µℓ Dynamic viscosity of the medium 1 × 10−3 Pa s Known
µt Dynamic viscosity of the cells 20 Pa s [33]
k Intrinsic permeability of the ECM 1 × 10−9 mm2 [62]
Aℓ Relative permeability exponent of the medium 4 − [67]
At Relative permeability exponent of the cells 2 − [72]

We analyse four different configurations of the tumour spheroid: two different tumour spheroid
sizes (Rt

small ≈ 200µm and Rt
large ≈ 340µm) and two different positions (centred or lying at the

bottom of the chamber). The tumour spheroid placed at the bottom of the chamber mimics our
experimental test setup. The tumour spheroid in the centre of the chamber assumes that the tumour
spheroid is placed into an insert, fitting the flow chamber [249]. The entire computational domain
has a size of 2mm × 1mm × 1mm discretized with ∼ 2 × 106 linear hexahedral elements. This fine
discretisation is required to resolve the sharp gradients in the primary variables of the fluid field at
the edge of the tumour spheroid: the porosity is 1.0 outside and 0.8 inside the tumour spheroid, and
the culture medium only occupies a volume fraction of εℓ = εSℓ = 0.12 inside the tumour spheroid,
with the ECM and tumour cells sharing in remaining volume. We apply the pressure of the fluid as
Dirichlet boundary condition at the inflow and outflow such that the pressure difference together
with the tensor K results in an average velocity of 0.25mms−1 in Ωℓ, as given by Eq. (3.13). Table 3.4
summarises the employed parameters for the magnetic nanoparticles, the cylindrical magnet and
the fluid phases: all values are based on experimental results or previous computational studies in
the literature.

Fluid flow. We first analyse the fluid flow around and through the tumour spheroid for the four
different configurations. Fig. 3.13 depicts the results: the flow around the tumour spheroid resembles
the classical Stokes flow around a sphere. The velocity is zero at the impenetrable wall at the bottom
of the flow chamber, and the highest velocities occur at the top edge of the tumour spheroid. The
bulk of the fluid flows around the tumour, and the velocities inside the tumour are much smaller.
Nevertheless, the fluid in the tumour is not stagnant: the fluid velocities are of the order of nms−1.

We employ a one-domain approach due to its simplicity while retaining essential physics. If more
complex flow patterns around the tumour spheroid are of interest, such as transitional flow with
vortices or turbulent flow, one can solve the Navier–Stokes equations in Ωℓ. Based on a two-domain
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Figure 3.13 Velocities in the flow chamber for different tumour spheroid sizes and positions. A) Small tumour spheroid
centred in the flow chamber. B) Large tumour spheroid centred in the flow chamber. C) Small tumour spheroid lying
at the bottom of the flow chamber. D) Large tumour spheroid lying at the bottom of the flow chamber. E) Velocity
magnitude for the large tumour spheroid lying at the bottom of the flow chamber (case D): velocity magnitude in
the free fluid (left) in mm/s and in the tumour spheroid (right) in nm/s. This figure is taken from [60], where it is
licensed under CC BY 4.0.
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Figure 3.14 Magnetic flux density and force for the cylindrical magnet vertically positioned below the flow chamber
at a distance of 0.25mm from the bottom of the domain. The magnet has a radius of 0.5mm and a length of 1mm. A)
Magnetic flux density B. B) Magnetic force Fmag . This figure is taken from [60], where it is licensed under CC BY 4.0.

approach, the free fluid is described by the Navier–Stokes equations and coupled to the solid structure
or the porous medium via interface conditions, for example [251–253].

Nanoparticle distribution. We now investigate the distribution of the nanoparticles for the four
different configurations. For all configurations, the nanoparticles are injected in the upper half of the
inflow boundary with a mass fraction of ωNPℓ

D = 1.0 × 10−6. The cylindrical magnet has a radius of
Rmag = 0.5mm and a length of Lmag = 1mm. The centre of the magnet is positioned at x = 1.0mm,
centred in the y-direction with a vertical distance of 0.25mm to the bottom of the domain.

The resulting magnetic flux density B and magnetic force Fmag in the computational domain are
presented in Fig. 3.14. Both the magnetic flux density and the magnetic force are highest directly
at the edge of the magnet but rapidly decrease with distance. The smaller the magnet, the harder
it is to capture nanoparticles at the top of the domain. The maximum magnetic flux density is
∣B∣max = µ0∣H∣max = 300mT, which is of the same order of magnitude as the magnetic flux density in
our experimental setup [200, 254]. The maximummagnetic force in the domain is of the order of
pN, which is larger than the values estimated in [215] but on a similar order of magnitude.

Fig. 3.15 depicts the nanoparticle distribution at t = 20 s for the four different configurations. The
nanoparticles accumulate just above where the magnet is positioned. More nanoparticles accumulate
at the left side of the magnet due to the flow direction and the fact that the velocity in the lower
part of the domain is decreasing because of the no-slip condition at the bottom wall. In cases C and
D, where the tumour spheroid is positioned at the bottom of the domain, the nanoparticles form a
ring-like structure around the edge of the tumour spheroid.

The results in Fig. 3.15 further show that the nanoparticles have not yet fully penetrated the
tumour spheroid after 20 s but are located close to the surface, similar to what has been observed
experimentally [255, 256]. The penetration of the nanoparticles into the tumour spheroid is a
complex process, which we do not study in further detail here. Dai et al. [21] quantified that only
0.0014% of the intravenously injected nanoparticles reach the tumour cells, and He et al. [152]
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Figure 3.15 Results for the nanoparticle mass fractions ωNPℓ at t = 20 s for different tumour spheroid sizes and
positions. This figure is taken from [60], where it is licensed under CC BY 4.0.
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discussed the ECM as the main steric obstacle for nanoparticle diffusion in the tumour. However,
the underlying mechanisms remain largely unexplored. Experimental measurements of the diffusion
coefficient of nanoparticles in the tumour vary significantly and indicate that the diffusion coefficient
depends on the physicochemical properties of the nanoparticles, the tumour type, and the tumour
microenvironment [21]. A more detailed study of nanoparticle transport in the tumour spheroid is
consequently required, both experimentally and computationally, to overcome this transport barrier
and improve the efficacy of nanoparticle-based drug delivery systems.

Here, we only consider the force exerted by the external magnetic field. However, the magnetised
nanoparticles also exert forces on each other when they are close. We neglect these inter-particle
forces, similar to [257]. According to [205, 232–235, 258], the inter-particle forces are negligible when
the nanoparticles have a distance of more than three particle diameters, which we assume to be the
case and thus neglect the inter-particle forces. However, nanoparticles are known to form aggregates,
e.g., chains [259], and in such cases, the inter-particle forces indeed play a significant role. In this
context, [260, 261] studied nanoparticle agglomeration with a particle-based approach, including
the inter-particle forces for a small number of particles (up to 25). By contrast, Pálovics et al. [259]
presented a continuum model capable of modelling the aggregation of the nanoparticles: they first
simulated the aggregate formation at the microscale based on a discrete particle method and then
transferred the results to the continuum approach at the macroscale by adapting the viscosity.

Finally, we only study a simplified model in the experimental test setup and the computational
model: we consider the tumour spheroid with the ECM and the flow in the flow chamber, but such a
setup does not include the blood vessels and the surrounding tissue, which are important for the
translation of the results to in vivo scenarios and clinical practice. Accordingly, Stillman et al. [24]
argued that circulation and extravasation are major transport barriers, which in silcomodels should
include. The approach we present here is readily extendable to the vascular version of our tumour
growth model, which includes the vasculature, angiogenesis, and the surrounding host tissue [58,
72–74]. This then allows for integrating the results of magnetic nanoparticle capture in blood vessels
[205–207] with the results of nanoparticle transport in the tumour spheroid presented here.

3.2.3.4 Comparison of the force exerted by the permanent magnet to the inter-particle forces

In the preceding examples, we only considered the external magnetic force the permanent magnet
exerts on the nanoparticles. However, the nanoparticles also exert forces on each other, and thus the
question arises when these inter-particle forces are negligible compared to the force exerted by the
permanent magnet. So far, we have assumed that the low mass fraction of nanoparticles ensures that
the inter-particle distance is large enough for the inter-particle forces to be negligible, similar to [205,
232–235]. In general, the cut-off length of dipole-dipole interactions in nanoparticle assemblies is
about three particle diameters [258]. Assuming that the nanoparticles are more than three particle
diameters apart seems reasonable for the nanoparticles dissolved in the flowing fluid in our previous
examples. However, when the nanoparticles accumulate at the bottom of the domain, they come
very close to each other, and thus the inter-particle forces might become relevant there. Therefore,
we compare the external magnetic force to the inter-particle forces.
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This example was published in B. Wirthl, V. Wirthl and W. A. Wall. ‘Efficient Computational
Model of the In-Flow Capturing of Magnetic Nanoparticles by a Cylindrical Magnet for Cancer
Nanomedicine’. Physical Review E 109.6 (2024), 065309 [59], where it is copyrighted by the American
Physical Society. It is reused here with permission from the American Physical Society.

We use our analytical expressions for themagnetic field and the external magnetic force and build
on the force comparison presented by Pálovics and Rencz [215], who investigated a similar setup. We
analyse a simplified example shown in Fig. 3.16A: we consider two nanoparticles with a diameter of
dNP = 200nm and a distance r between their centres. The cylindrical magnet is positioned vertically
below the domain (see previous example Fig. 3.11A). We assume that the two nanoparticles are
aligned with the magnetic field H such that r is parallel to H. We again assume f (∣H∣) = 1.0 = const
for simplicity.

In the following, the non-bold symbols denote the magnitudes of the vectors, e.g., r = ∣r∣, and a
hat denotes the unit vector in the given direction, e.g., r̂ = r/r.

As discussed in Section 3.2.2.3, the nanoparticles are modelled as point dipoles, with the magnetic
moment m1 of nanoparticle 1 given by

m1 = VNPH . (3.51)

Thus, the magnetic moment of the nanoparticle is aligned with the applied magnetic field. Since the
nanoparticles are much smaller than the computational domain, we assume that H(x1) = H(x2)

and hence m1 = m2. The magnetised nanoparticle 1 generates a magnetic field H1 at the position r
of nanoparticle 2 , which based on Jackson [237] is given by

H1 =
1

4πr3
[3(m1r̂)r̂ −m1] . (3.52)

In our case, m1 ∥ r and Eq. (3.52) simplifies to

H1 =
1

2πr3
m1. (3.53)

Hence, the total magnetic field H∗2 at the position r of nanoparticle 2 is given by

H∗2 = H +H1 (3.54)

and accordingly, the magnetic moment of nanoparticle 2 also changes to

m∗2 = VNPH∗2 . (3.55)

The magnetic moments of both particles increase due to the cross-effects. The new values for
the magnetic moments can be substituted back into the previous equations to calculate a second
correction of the magnetic field and magnetic moments. In practice, this is not necessary, and we
omit it [215, 234].
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The force F 12 between the two particles, i.e., the inter-particle force, based on Griffiths [262] is
given by

F 12 =
3µ0m∗1 m∗2

4πr4
[r̂ (m̂∗1 m̂

∗

2 ) + m̂
∗

1 (r̂m̂
∗

2 ) + m̂
∗

2 (r̂m̂
∗

1 ) − 5r̂ (r̂m̂
∗

1 ) (r̂m̂
∗

2 )] = −
3µ0m∗1 m∗2

2πr4
r̂. (3.56)

We evaluate the inter-particle force F 12 for different distances r between the two nanoparticles:
r ∈ {5dNP, 3dNP, 2dNP, dNP}. Fig. 3.16B shows the force Fmag exerted by the external magnet and
Fig. 3.16C the inter-particle force F 12. For a distance of five particle diameters, the forces are on the
same order of magnitude, namely pN. However, the inter-particle force strongly increases for smaller
distances: for a distance of one particle diameter, it is about three orders of magnitude larger than
the force of the external magnet, especially for the particles at the bottom of the domain. This is in
good agreement with the results of Pálovics and Rencz [215].

These results underline that one cannot simply assume that the inter-particle forces are negligible
but must carefully assess whether they are relevant in the configuration studied with the assumptions
made.

3.2.4 Conclusion
Motivated by a recent experimental test setup [200], we presented a computational model for the
magnetic capture of nanoparticles in a flow chamber with a tumour spheroid. Our continuum
approach for the transport of the nanoparticles based on the Smoluchowski advection-diffusion
equation includes the advection by the fluid flow and the magnetophoresis by the external magnetic
field. Based on a multiphase porous-media approach, our model further couples the flow of the
free fluid to the flow in the tumour spheroid. We include a simple and numerically stable way
to consider an impenetrable boundary at the wall where the nanoparticles are captured. Further,
the analytical expression for the magnetic force of a cylindrical magnet of finite length on the
magnetic nanoparticles, which we derived, provides an efficient way tomodel the capture of magnetic
nanoparticles in a more realistic setup in three dimensions. Investigating the capturing of magnetic
nanoparticles in a controlled flow environment, both in vitro and in silico, forms the basis for further
studies in more complex scenarios, e.g., in a vascular in vivomodel.
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Figure 3.16 Comparison of the force exerted by the permanent magnet to the inter-particle forces. A) Setup of
the investigated case. B) Externally applied force Fmag . C) Inter-particle force F 12 between two nanoparticles with
a distance r between their centres. Note the different orders of magnitude of the forces, which are represented
by the different colourmaps used in the subfigures. This figure is reprinted with permission from [59], where it is
copyrighted by the American Physical Society.
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4
Global sensitivity analysis with Gaussian-process

metamodelling

The following Sections 4.1, 4.2, 4.3 and 4.5 are largely based on the author’s publication B. Wirthl,
S. Brandstaeter, J. Nitzler, B. A. Schrefler and W. A. Wall. ‘Global Sensitivity Analysis Based on
Gaussian-process Metamodelling for Complex Biomechanical Problems’. International Journal for
Numerical Methods in Biomedical Engineering 39.3 (2023), e3675 [61], which is licensed under CC BY
4.0.

4.1 Introduction
Over the past few decades, computational biomechanical models have become an essential tool in
cancer research. The goal of these models is to allow predictions so as to better understand the
underlying mechanisms or to support decision-making in a medical context, e.g., to choose the most
efficient therapy for a specific patient. Nevertheless, the output of such models is inherently subject
to uncertainty for various reasons. First, the underlying biological process is stochastic—which
is particularly true for oncophysics and cancer treatment models (for example, branching process
models for cancer [263, 264], or stochastic models for immunotherapy of cancer [265]). Second,
the experimental data used to calibrate models is uncertain [266]. Third, the computational model
itself includes sources of uncertainty, including the assumptions made to set up the model, other
simplifications, or the input parameters [50].

When analysing the uncertainty of the model output, we distinguish uncertainty analysis from
sensitivity analysis [50]. Uncertainty analysis quantifies the uncertainty in the model output by
propagating input uncertainties—via the model—onto the output [44]. Sensitivity analysis, on the
other hand, apportions the uncertainty in the model output to different sources of uncertainty in
the model input [47]. Inputs of interest can generally include not only model parameters but also
boundary and initial conditions, assumptions, and constraints [267]. In the context of sensitivity
analysis, those inputs of interest are commonly referred to as factors. Here, we only consider model
parameters as sources of uncertainty and refer to those as input parameters. The goal of senstivity
analysis is threefold:

1. Identify the most influential parameters on which further experimental estimation should
focus (called factor prioritisation or ranking).
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2. Identify parameters with little or no effect, which can thus be set to fixed values within their
range (called factor fixing or screening).

3. Identify and quantify the interaction between parameters.
This knowledge expedites the efficient design of future computational and experimental studies
while avoiding wasting resources on determining non-influential parameters.

We propose applying a specific type of sensitivity analysis to achieve the goals just described. One
way of quantifying the sensitivity of the model output Y on the input parameter Xi is to calculate
the partial derivative ∂Y/∂Xi , which involves choosing a base point X∗ and then perturbing one
factor at a time while keeping all remaining factors fixed. This results in a local sensitivity measure
at the base point X∗, which only explores one point of the input space and thus results in a deficient
sensitivity analysis [50]. In contrast, the Elementary Effects method (also called Morris method
[268]) is not limited to one single point but explores the whole input space. It thereby overcomes
the major limitation of local methods while only requiring a relatively small number of model
evaluations. While the Elementary Effects method is a global sensitivity analysis method, it only
provides semi-quantitative information and is typically used for factor fixing [44, 47]. However, it
cannot detect and quantify interactions between parameters and nonlinearities [269]. In the case of
complex biomechanical problems, like the tumour growth model, interactions between parameters
can be expected. Therefore, we need a global method that can provide more detailed information.

Our method of choice is the Sobol8 method [48, 49], which is a variance-based global sensitivity
analysis method that decomposes the output variance into portions attributed to the input parameters
(see Fig. 4.1). The downside is that it requires many model evaluations, which quickly becomes
computationally prohibitive in the case of complex models. We propose to introduce Gaussian
processes [51] as ametamodel for the full model tomitigate the problem of computationally expensive
model evaluations. Since the use of a metamodel introduces a further source of uncertainty in the
sensitivity analysis, we estimate the uncertainty following the approach presented by Le Gratiet
et al. [52]. After the full biomechanical model is substituted by the metamodel, we can calculate the
Sobol indices based on Monte Carlo integration. The uncertainty related to metamodelling and the
uncertainty related to Monte Carlo integration are analysed both separately and in total.

So far, the approach suggested by Le Gratiet et al. [52] has been applied to different computational
models: an individual-based model simulation of microbial communities [270], a mathematical
model of renal fibrosis [271], climate change simulations [272], and numerical wind-turbine models
[273]. Moreover, Sahli Costabal et al. [274] applied the same idea to the calculation of Elementary
Effects of a heartmodel. In [270–272, 274], the authors state that they used themethod, but no analysis
of the associated uncertainties was presented. Only Hirvoas et al. [273] quantified the uncertainty
related to the metamodel and the uncertainty related to Monte Carlo integration separately.

The goal of this chapter is to present the complete workflow of estimating Sobol indices based on
Gaussian processes as a metamodel, including the uncertainties: we demonstrate how to apply the
approach suggested by Le Gratiet et al. [52] to the tumour growth model and compare the results to

8The Sobol method was proposed by and is named after Ilya Meyerovich Sobol’ (Russian: Илья Меерович Соболь)
to whose last name an apostrophe is appended in English to transliterate the Russian letter ь. To avoid confusion with
the apostrophe used in English grammar, we omit the apostrophe when referring to the Sobol method.
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Uncertain input 
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p(X1)
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metamodel                
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X1
X2

X3. . .

Figure 4.1 Overview of sensitivity analysis with a Gaussian process metamodel. The Gaussian-process metamodel
fGP,N(X) is trained on a data set generated by the full model f (X). Uncertain input parameters X i are propagated
via the metamodel and result in an uncertain output Y . The Sobol method, as an example of a global sensitivity
analysis tool, decomposes the output variance into portions attributed to the input parameters. This figure is taken
from [61], where it is licensed under CC BY 4.0.

other complex models in the context of biomechanics and beyond. We also assess the performance
of the method when applied to such complex examples.

The following chapter is structured as follows: we first introduce the Sobol method and Gaussian
processes in general. The Gaussian-process metamodel is then used to estimate the Sobol indices,
including separate estimates for uncertainty related to Monte Carlo integration and uncertainty
related to the metamodel based on Le Gratiet et al. [52]. As an example, we subsequently demonstrate
how to apply this approach to our tumour growth model and assess its performance in detail. Finally,
we conclude with an outlook on different complexmodels in the context of biomechanics and beyond,
to which the approach can be applied.

4.2 Methods

4.2.1 The Sobol method
In its most general form, a model f is a functional representation of the relevant physical process.
The model calculates an output y = f (x) ∈ R for any given realisation x ∈ RD of the uncertain input
parameters X, with D being the number of parameters (see upper left side of Fig. 4.1). We assume
that the random vector X summarises the input parameters X1, . . . , XD, which are independent
random variables. The probability distribution of X is described by the probability density function
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p(x). In the following, we assume that the input parameters are uniformly distributed, with no
loss of generality. Common alternatives are the normal distribution or the log-normal distribution,
among many others.

Our goal is to investigate the sensitivity of the model output to the uncertain input parameters X.
Because of the randomness in the input parameters, the model output Y is also a random variable
defined as

Y = f (X) = f (X1, X2, . . . , XD) (4.1)

(see upper right side of Fig. 4.1). The output distribution can (partially) be described by its first two
moments: the expected value E [Y], given by

E [Y] = ∫ Y p(x)dx , (4.2)

with E [⋅] denoting the expectation operator, and the variance σ 2
Y = V [Y] , given by

σ 2
Y = V [Y] = ∫ (Y −E [Y])

2 p(x)dx (4.3)

with V [⋅] denoting the variance operator and σY the standard deviation.
One way of characterising sensitivity is to decompose the variance of the output V [Y] into

portions ascribed to the individual input parameters. A common sensitivity analysis method based
on variance decomposition is the Sobol method [275]. The core idea is to decompose the output
variance V [Y] as

V [Y] =
D
∑
i=1
Vi +

D−1
∑
i=1

D
∑
j>i
Vi j + ⋅ ⋅ ⋅ + V12...D (4.4)

with the conditional variances given by

Vi = VX i [EX∼i [Y ∣Xi]]

Vi j = VX i ,X j [EX∼i , j [Y ∣Xi , X j]] − Vi − Vj

Vi jk = VX i ,X j ,Xk [EX∼i , j ,k [Y ∣Xi , X j, Xk]] − Vi j − Vik − Vjk − Vi − Vj − Vk
. . .

where X∼i denotes the vector of all input parameters except Xi . Thus, the output varianceV [Y] is the
sum of variances contributed by input parameter Xi , including interactions with other parameters.
The idea now is to attribute the total variance to the individual input parameters according to their
variance contribution. Note that Vi j is the variance contributed by the input parameters Xi and X j

but not expressed in Vi nor Vj and is called the interaction of parameters Xi and X j. Note that this
decomposition assumes statistical independence of the input parameters Xi .

Because VX i [EX∼i [Y ∣Xi]] is the portion of the output variance ascribed to input parameter Xi ,
we define the first-order Sobol index S i as

S i = VX i [EX∼i [Y ∣Xi]]

V [Y]
. (4.5)
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The numerator VX i [EX∼i [Y ∣Xi]] describes the extent to which the output variance V [Y] would
be reduced if the parameter Xi was fixed. A parameter Xi with a high first-order index S i should,
hence, have priority when determining parameters based on experiments so as to efficiently reduce
the overall uncertainty of the model. The first-order Sobol index is typically used to identify the
most influential parameters, which is our first goal. Moreover, a parameter with a high first-order
index S i is more likely to be identifiable from experiments but can still be non-identifiable [267]:
to decide whether a parameter is identifiable or not, an identifiability analysis is required, which
complements the sensitivity analysis (see [276] for an overview of identifiability analysis).

The question now arises as to whether S i = 0 is also sufficient to conclude that a parameter has
no influence. In fact, this is not the case because the parameter might be involved in interactions with
other parameters. A parameter may have no effect if it is varied alone; however, this may be different
when it is varied in combination with another parameter or even with several other parameters. An
additional sensitivity measure that includes higher-order interaction effects is needed to identify
non-influential parameters. The total-order Sobol index is therefore defined as

STi = EX∼i [VX i [Y ∣X∼i]]
V [Y]

= 1 −
VX∼i [EX i [Y ∣X∼i]]

V [Y]
. (4.6)

In this case, the numerator EX∼i [VX i [Y ∣X∼i]] describes the expected output variance that would
be left if all parameters but Xi were to be determined [269]. If—and only if—this expected output
variance is close to zero, is the parameter Xi non-influential. The total-order index describes the
total contribution of the parameter Xi to the output Y : this includes the first-order effect plus any
higher-order effects that arise from interactions. The difference STi − S i then indicates interaction
effects between factor Xi and any other factor [44]. As mentioned above, the total-order index is
particularly helpful in the context of factor fixing: if STi = 0 (or is in practice sufficiently small), the
parameter Xi is non-influential and can be fixed anywhere in its input range without affecting the
output variance.

So, the first-order and the total-order Sobol indices serve our first two goals: identify the most
influential and the non-influential parameters. To additionally identify interactions between two
specific parameters Xi and X j—which is our third goal—we define the second-order Sobol index as

S i j =
VX i ,X j [EX∼i , j [Y ∣Xi , X j]]

V [Y]
− S i − S j. (4.7)

Finally, dividing Eq. (4.4) by V [Y] and inserting Eqs. (4.5) and (4.7) leads to

D
∑
i=1
S i +

D−1
∑
i=1

D
∑
j>i
S i j + . . . + S12...D = 1. (4.8)

All sensitivity indices thus sum up to one; furthermore, they are non-negative. This leads to an
interesting implication which is worth noting: even when we have a large number of parameters,
we cannot have a large number of influential parameters. If all D parameters are equally influential,
each can only contribute 1/D of the variance. If however a few parameters have a strong influence
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on the output Y , the remaining parameters can contribute even less [44]. As Box and Meyer [277]
stated: only a small subset of parameters significantly influences one specific system output (sparsity
of factors principle). It should also be noted that the total-order indices STi do not, in general, sum
up to one.

4.2.2 Numerical approximation of Sobol indices
To estimate the Sobol indices according to Eqs. (4.5), (4.6) and (4.7), we need to compute conditional
variances, e.g., VX i [EX∼i [Y ∣Xi]], which involves evaluating multidimensional integrals in the space
of the input parameters RD. Numerical integration based on quadrature rules becomes prohibitively
expensive as the number of input space dimensions increases. This is why Monte Carlo integration
is employed, the accuracy of which is independent of the number of input space dimensions [278].
Monte Carlo integration is a numerical integration technique based on random sampling. We
independently drawM input samplesX = {x(1), . . . , x(M)} from the input distribution and compute
the corresponding responses Y = {y(1), . . . , y(M)}. Thus, y(m) = f (x(m)) are realisations of the
random variable Y , for m = 1, . . . ,M. The Monte Carlo estimate of the expected value, given in
Eq. (4.2), then is

E [Y] = 1
M

M
∑
m=1

y(m). (4.9)

Monte Carlo estimates have a convergence rate of O(1/
√
M), which is independent of the input

dimension. Therefore, Monte Carlo integration is especially suitable for high-dimensional problems.
For each single integral, Monte Carlo integration involves evaluatingM Monte Carlo samples: to

compute, for example, VX i [EX∼i [Y ∣Xi]] one would needM samples to calculate the inner expecta-
tion and then repeat thisM times to calculate the outer variance, resulting in a computational cost
ofO(M2) [44]. SinceM usually has to be large9, this is impractical, especially considering that we
would need to evaluate the full model f for each Monte Carlo sample. To make the estimation of
Sobol indices more efficient, Ishigami and Homma [279] rewrote the multidimensional integral so
that it can be computed using a single Monte Carlo loop. For the first-order index, we rewrite

VX i [EX∼i [Y ∣Xi]] = EX i [E2
X∼i [Y ∣Xi]] − (EX i [EX∼i [Y ∣Xi]])

2 (4.10)

= ∫ E2
X∼i [Y ∣Xi]dxi − (∫ EX∼i [Y ∣Xi]dxi)

2
. (4.11)

The latter integral is (E [Y])2 since

∫ EX∼i [Y ∣Xi]dxi =∬ Y dxi dx∼i = ∫ Y dx . (4.12)

However, the former integral in Eq. (4.11) is computationally impractical: in a Monte Carlo frame,
such terms imply a double loop and thus a computational cost ofM2. Ishigami and Homma [279]
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rewrote this integral as

∫ E2
X∼i [Y ∣Xi]dxi =∭ f (X1, . . . , XD) ⋅ f (X′1 , . . . , Xi , . . . , X′D)dx∼i dx′∼i dxi (4.13)

=∬ f (X1, . . . , XD) ⋅ f (X′1 , . . . , Xi , . . . , X′D)dx dx′∼i , (4.14)

where the last line is equal to the expected value of

F(X1, . . . , XD , X′1 , . . . , Xi , . . . , X′D) = f (X1, . . . , XD) ⋅ f (X′1 , . . . , Xi , . . . , X′D), (4.15)

and it hence can be computed using a single Monte Carlo loop.
To make the best use of the model evaluations, we employ the efficient algorithms suggested

by Saltelli [281]: to estimate the first and the total-order indices, we generateM samples row-wise
concatenated as a matrix A and furtherM samples concatenated as a matrix B

A =

⎛
⎜
⎜
⎜
⎜
⎝

x11 x12 . . . x1i . . . x1D
x21 x22 . . . x2i . . . x2D
. . .
xM1 xM2 . . . xMi . . . xMD

⎞
⎟
⎟
⎟
⎟
⎠

and B =

⎛
⎜
⎜
⎜
⎜
⎝

x′11 x′12 . . . x′1i . . . x′1D
x′21 x′22 . . . x′2i . . . x′2D
. . .
x′M1 x′M2 . . . x′Mi . . . x′MD

⎞
⎟
⎟
⎟
⎟
⎠

, (4.16)

resulting in two independentM × D matrices. We write x ji as a generic element: the index j is the
row index running from 1 toM, the number of Monte Carlo samples, and similar the index i is the
column index running from 1 to D, the number of input space dimensions. We now introduce a
third matrix A(i)B as

A(i)B =

⎛
⎜
⎜
⎜
⎜
⎝

x11 x12 . . . x′1i . . . x1D
x21 x22 . . . x′2i . . . x2D
. . .
xM1 xM2 . . . x′Mi . . . xMD

⎞
⎟
⎟
⎟
⎟
⎠

, (4.17)

where all columns are taken from matrix A apart from the i-th column which is taken from matrix
B. One sample j in B and the corresponding sample j in A(i)B have in common x′ji but differ in all
other parameters x∼i .

To calculate the first-order index, we then use the estimator proposed by Saltelli et al. [282]

VX i [EX∼i [Y ∣Xi]] ≈
1
M

M
∑
m=1

f (B)m ( f (A(i)B )m − f (A)m) , (4.18)

and for the total-order index, we use the estimator proposed by Jansen [283]:

EX∼i [VX i [Y ∣X∼i]] ≈
1

2M

M
∑
m=1
( f (A)m − f (A(i)B )m)

2
. (4.19)

9The error of the Monte Carlo estimate for the expectation is proportional to
√

V[g]√
M

, with g denoting the integrand.
If we assume V [g] to be fixed, we have to increase the number of Monte Carlo samplesM, and the error of the estimate
thus decreases by 1√

M
[280].
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Alternative forms were presented in [48, 283–285], among others. The denominator is estimated as

V [Y] ≈ V[ f ([A B])], (4.20)

where we estimate the variance of the output as the sample variance V of evaluations of all samples A
and B. This yields better results, i.e., an estimator with lower variance, compared toV [Y] ≈ V[ f (A)]
alone [281].

In addition to the first- and total-order indices, we estimate the second-order indices as proposed
by Saltelli [281]:

VX i ,X j [EX∼i , j [Y ∣Xi , X j]] ≈
1
M

M
∑
m=1

f (B(i)A )m f (A( j)B )m − f (A)m f (B)m (4.21)

where the matrix B(i)A is built similar to A(i)B . More details on different sensitivity-index estimators
can be found in [281, 282], among others.

We hence have to evaluate our model f at all samples of the triplet A, B and A(i)B (and additionally
B(i)A if second-order indices are included). This means 2M simulations are needed for computing
f (A) and f (B) plus D ⋅M simulations needed for computing f (A(i)B ) for i = 1, . . . ,D. The cost of
first- and total-order indices is henceM(D + 2) simulations. If second-order indices are included,
we need an additional D ⋅M simulations for f (B(i)A ), resulting inM(2D+ 2) simulations in total (for
more details, see the original publication by Saltelli [281]). In practice, Quasi–Monte Carlo (QMC)
integration is often used to generate the samples because of its superior convergence rate compared
to Monte Carlo integration [286].

4.2.3 Gaussian process metamodels
As just described, Monte Carlo integration to estimate the Sobol indices requires a large number of
sample evaluations and is thus computationally prohibitive if the evaluation of the underlying model
is expensive. We therefore use a metamodel (also known as surrogate model or emulator) as an
approximation of the full model. Classically used metamodels include polynomials, splines, neural
networks, polynomial chaos expansion, support vector regression, and Gaussian processes (GPs),
among others [287, 288]. Before a metamodel can be used for a sensitivity analysis, for example, it
has to be trained to later ensure that it is a good approximation of the full model.

This process consists of three steps, which we first summarise (see Fig. 4.2) and then explain in
more detail below:

1. Generate N training samples summarised inX (resulting in an N × D matrix).
2. Evaluate the full model at the training samples to obtain the corresponding response: Y =

f (X ) (resulting in an N × 1 vector).
3. Form and train the metamodel.
First, we generate N training samples that are summarised in the matrixX (N × D matrix). The

choice of training samples has to provide a good coverage of the input space to later ensure a good
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1. Generate training 
samples    

Prior Gaussian process   

Trained posterior Gaussian process   

2. Evaluate full model
at the training samples

3. Form and train the
metamodel      

Mean
95% Con�dence interval
Realisations
Training samples

Figure 4.2 Schematic overview of the steps involved in training the Gaussian process metamodel. Conditioning the
prior Gaussian process on the training samples results in the posterior Gaussian process. This figure is taken from
[61], where it is licensed under CC BY 4.0.

predictive quality of the metamodel. To this end, we use a QMC approach based on Sobol sequences
[289] to generate the training samples.

Remark (Sequential design). A commonly used alternative to a QMC approach is Latin Hyper-
cube Sampling (LHS) [290]. Iooss et al. [287] state that optimised LHS is particularly well-suited for
metamodel fitting. However, sequential design is also important in the context of metamodelling: if
the original number of training samples is not sufficient to achieve a good predictive quality of the
metamodel, additional samples can be added while still making use of the original training samples.
Since only advanced LHS methods [291, 292] enable sequentially adding new points, while this is
straightforward with QMC schemes [293], we use a QMC approach.

Subsequently, we evaluate the full model at each training sample: Y = f (X ) with Y hence being
an N × 1 vector. This results in the training data set

D = {X ,Y} , (4.22)

where each row corresponds to one training point.
Finally, we have to train the metamodel. We use a GP fGP as a metamodel similar to [52, 294, 295]

and summarise what training means for GPs below. Note that we only include a compact overview
of the most relevant concepts used in this paper. For more details, the reader is referred, e.g., to
Rasmussen and Williams [51].
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A GP defines a distribution over functions such that any finite set of function values fGP(x(1)),
fGP(x(2)), . . . , fGP(x(n)) has a joint Gaussian distribution [51, 296]. From a Bayesian point of view,
we distinguish between prior and posterior: the prior GP reflects our beliefs about the metamodel
before seeing any (training) data, and the posterior GP is then conditioned on the (training) data,
i.e., includes the knowledge from the data (see Fig. 4.2). This conditioning on the data is what we
refer to as training.

The prior GP fGP(X) is given by

fGP(X) ∼ GP(mGP(X), k(X , X′)) (4.23)

and is completely specified by its mean function mGP(X) and its covariance function k(X , X′)
between all possible pairs (X , X′). The covariance function is a positive definite kernel, e.g., the
squared exponential covariance function (also called radial basis function)

k(X , X′) = σ 2
f exp(−

1
2ℓ2
∣∣X − X′∣∣2) (4.24)

with the characteristic length scale ℓ, variance parameter σ f and ∣∣ ⋅ ∣∣ denoting the Euclidean L2-norm.
We assume that the prior mean function is zero: mGP(X) = 0, which is common practice and
does not limit the GP model, as any uncertainty about the mean function can be included in the
choice of a covariance function [296]. Different covariance functions exist and can be combined,
for example, through multiplication or addition. Duvenaud [296] presents a concise overview of
different covariance functions for GPs and how to use them to express the structure of the data. The
choice of a suitable covariance function is essential since the more a-priori knowledge goes into
choosing the covariance function, the less data we need to train the metamodel [297].

As described above, we observe the output at N training points. The goal then is to predict the
output at N∗ new points summarised in X ∗; in our case, those new points (where we predict the
output) will be the Monte Carlo samples for estimating the Sobol indices.

Remember that Eq. (4.23) is only the prior distribution and does not yet incorporate our know-
ledge from the training data. To obtain the posterior, we now condition the prior GP on our set of N
training data points. This conditioning results in the key predictive equations

fGP,N(X ∗) ∼ GP(mGP,N(X ∗), kN(X ∗,X ∗)) (4.25)

with

mGP,N(X ∗) = KT
∗
K−1ε Y , (4.26)

kN(X ∗,X ∗) = K∗∗ − KT
∗
K−1ε K∗. (4.27)

In Eqs. (4.26) and (4.27), K ε = K + σ 2
y I, where K = k(X ,X ) denotes the N × N matrix we obtain

when evaluating the covariance function (given in Eq. (4.24)) for all pairs of training points, similarly
for K∗ = k(X ,X ∗) and K∗∗ = k(X ∗,X ∗). We use σ 2

y as an artificially introduced variable nugget
term to alleviate numerical problems [298, 299]. The hyperparameters θ = (σ f , ℓ) are optimised
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by maximising the log marginal likelihood using a gradient-based optimiser. The log marginal
likelihood is given by

log p(Y ∣X ) = − 1
2
YTK−1ε Y −

1
2
log ∣K ε∣ −

N
2
log 2π (4.28)

with ∣ ⋅ ∣ denoting the determinant. Maximising the log marginal likelihood given by Eq. (4.28) with
respect to the hyperparameters θ automatically incorporates a trade-off betweenmodel fit andmodel
complexity: the first term in Eq. (4.28) penalises the model’s failure to describe the data, while the
second term penalises high model complexity. Thus, this favours the least complex model that is
able to explain the data [51].

One advantage of employing GPs as a metamodel is that predictions can be computed exactly
in a closed form [296] and that GPs inherently provide uncertainty measures over the predictions.
Moreover, one can incorporate a wide range of modelling assumptions into the choice of the co-
variance function. However, note that computing the inverse in the first term in Eq. (4.28) (and
the determinant in the second term) is computationally expensive, i.e., on the orderO(N3). This
cubic complexity results in slow inference as the number of training samples increases. One further
challenge of using GPs as a metamodel is that they are susceptible to the curse of dimensionality: as
the dimensionality of the input space increases, the number of training samples required to train
the metamodel grows exponentially [300, 301] and the optimisation of hyperparameters θ becomes
impractical.

Remark (Advanced GPs). In case of large numbers of training samples and/or input space dimensions,
various advanced GP metamodels are available: Liu et al. [302] reviewed approaches to improve the
scalability of GPs to large data sets, e.g., by using stochastic variational inference [303]; Tripathy et
al. [301] presented an approach with built-in dimensionality reduction.

4.2.4 Estimation of Sobol indices and their uncertainty
To estimate the Sobol indices, we now use the estimators given by Eqs. (4.18), (4.19) and (4.21) and
substitute the realisations of the full model f with those of the trained GP metamodel fGP,N , as
suggested by [52]:

Ŝ i =
1
M ∑

M
m=1 fGP,N(B)m ( fGP,N(A

(i)
B )m − fGP,N(A)m)

V[ fGP,N([A B])]
, (4.29)

ŜTi =
1

2M ∑
M
m=1( fGP,N(A)m − fGP,N(A

(i)
B )m)

2

V[ fGP,N([A B])]
, (4.30)

Ŝ i j =
1
M ∑

M
m=1 fGP,N(B

(i)
A )m fGP,N(A

( j)
B )m − fGP,N(A)m fGP,N(B)m

V[ fGP,N([A B])]
− Ŝ i − Ŝ j, (4.31)

withM again being the number of Monte Carlo samples. We summarise the estimates as Ŝ◇ with
◇ ∈ {i , Ti , i j} for the first-, total-, or second-order index estimates, respectively. Remember that
we now evaluate the Monte Carlo samples with the metamodel instead of the full model. We can
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therefore afford considerably larger numbers of Monte Carlo samples. Since we sample realisations
of the GP metamodel fGP,N , the resulting estimates Ŝ◇ are again random variables. These include two
sources of uncertainty: one related to the metamodel approximation and one related to the Monte
Carlo integration. To estimate those uncertainties, and additionally the total uncertainty, we employ
the algorithm suggested by [52]. The steps described in the following can equally be applied to all
indices of different order.

We visually summarise the approach in Fig. 4.3; a more detailed version is included in the
Supplement A.4 of [61]. The core idea is to sample NGP realisations of the GP metamodel and
subsequently resample each realisation B times using the bootstrap technique [304]. This results in
NGP × B estimates Ŝ◇k,b of the respective Sobol index. We then calculate the mean as

S̄◇ = 1
NGPB

NGP

∑
k=1

B
∑
b=1
Ŝ◇k,b (4.32)

and the total variance as

σ̂ 2(S◇) = 1
NGPB − 1

NGP

∑
k=1

B
∑
b=1
(Ŝ◇k,b − S̄◇)

2
. (4.33)

Since this estimator includes two sources of uncertainty (one related to themetamodel approximation
and one related to the Monte Carlo integration), we decompose the variance of S◇ as

σ̂ 2(S◇) = σ̂ 2
GP(S◇)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Metamodel

+ σ̂ 2
MC(S◇)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Monte Carlo

. (4.34)

Sampling realisations of the metamodel fGP,N(X) as opposed to using only the predictive mean
mGP,N(X) allows us to take into account the covariance structure of the metamodel. The part of the
variance related to the metamodel approximation can be estimated as

σ̂ 2
GP(S◇) =

1
B

B
∑
b=1

1
NGP − 1

NGP

∑
k=1
(Ŝ◇k,b −

¯̂S◇b)
2
with ¯̂S◇b =

1
NGP

NGP

∑
k=1

Ŝ◇k,b . (4.35)

Alternatively, Janon et al. [305] present an approach to estimate an upper bound for the metamodel
error based directly on the covariance function of the GP, but their approach only provides a rough
upper bound [52]. In addition, Panin [306] present an approach to investigate the accuracy of Sobol
indices based on a general relation between the accuracy of an arbitrary metamodel and the error of
the estimated indices.

To estimate the uncertainty related to Monte Carlo integration, we use the bootstrap technique
[304]. The Monte Carlo samples A, B, A(i)B and B(i)A are resampled (i.e., sampled with replacement) B
times as depicted in Fig. 4.3. We then calculate Ŝ◇ according to Eqs. (4.29), (4.30) and (4.31) for each
bootstrap sample, resulting in B estimates for the Sobol index for each realisation k of the metamodel.
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Sample one realisation of the GP surrogate model at M Monte-Carlo samples

1 2 3 4 5 6 7 8 M...

Repeat for all bootstrap samples: b = 2,..., B

Repeat for all realisations:  k = 1,..., NGP

return: (NGP x B) estimates         for the Sobol index

5 7 5 4 3 4 2 1 3...

Draw samples with replacement: 

Figure 4.3 Calculation of (NGP×B) estimates Ŝ◇k ,b of the Sobol index. We sampleNGP realisations of the GP metamodel
and subsequently resample each realisation B times using the bootstrap technique as suggested by Le Gratiet
et al. [52]. This figure is taken from [61], where it is licensed under CC BY 4.0.

The part of the variance related to the Monte Carlo integration is given by

σ̂ 2
MC(S◇) =

1
NGP

NGP

∑
k=1

1
B − 1

B
∑
b=1
(Ŝ◇k,b −

¯̂S◇k)
2
with ¯̂S◇k =

1
B

B
∑
b=1
Ŝ◇k,b . (4.36)

The bootstrap technique is based on the fact that samplingwith replacement froma set of independent,
identically distributed data equals sampling from the empirical distribution function of the data
[307]. It is important to note that bootstrapping does not require further model evaluations. For a
general introduction to the bootstrap technique, the reader is referred to [308] or [309].

4.3 Application to nanoparticle-mediated drug delivery
To demonstrate the proposed approach, we apply it to nanoparticle-mediated drug delivery in
our multiphase tumour growth model, as presented and discussed in Section 3.1. All challenging,
motivating arguments for our approach to sensitivity analysis are present in this example, including
a complex, costly model and a large number of parameters.
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4.3.1 Computational setup
We include the transport of the nanoparticles as presented and discussed in Section 3.1, including
the interendothelial and the transendothelial pathway, the transport in the interstitial fluid, and
the lymphatic drainage. We now additionally assume that the nanoparticles transport and release
anti-cancer drugs. Those kill tumour cells and thus increase the mass fraction of necrotic tumour
cells ωNt . At the same time, those drugs have adverse side effects and kill host cells. This additionally
increases the mass fraction of necrotic host cells ωNh. For the sake of simplicity, we assume that the
mass fraction of killed cells is directly proportional to the mass fraction of nanoparticles present in
the interstitial fluid at a certain position. We introduce intra-phase reaction terms that increase the
mass fraction of necrotic tumour cells and host cells according to

rNtkill = γtkillωNPℓ(1 − ωNt) and rNhkill = γhkillωNPℓ(1 − ωNh), (4.37)

where γtkill and γhkill characterise the strength of the drug.
As the quantity of interest for the sensitivity analysis, we consider the mean of the necrotic

fraction of tumour cells given by
ω̄Nt =

1
At ∫ ωNt dΩ, (4.38)

where the tumour size is defined as At = ∫ H(S t − 0.1)dΩ with the Heaviside functionH(⋅). We
define the tumour as the part of the domain where S t > 0.1.

In the context of sensitivity analysis, it is crucial to choose the quantity of interest carefully and
to bear in mind that a parameter that is non-influential under one particular investigated condition,
e.g., one particular quantity of interest, might be highly influential under a new condition [267].

The computational setup is similar to the ones presented and discussed in Sections 2.2.2 and 3.1.2.
The transport of nanoparticles, and thus the question of which regions nanoparticles reach and
where drugs can kill cells, essentially depends on the tumour microenvironment. Solid tumours
exhibit typical features relevant in this context: a necrotic core with collapsed blood vessels as well as
an increased interstitial pressure, which experimental research has also observed [122, 126, 127, 129].
We analyse a time interval of 20min of nanoparticle transport and killing of cells based on examples
by [158, 174]. Assuming the intravenous infusion of nanoparticles, we prescribe a constant value of
ωNPv
D = 2.0 × 10−3 for the mass fraction of nanoparticles in the vasculature.
Table 4.1 summarises the six uncertain input parameters included in the sensitivity analysis.

We assume that all input parameters are distributed uniformly within the given ranges, which are
based on experimental data (see references in Table 4.1). The uniform distribution is chosen because
we lack more specific information about the input parameters: given only the range of the input
parameters (and no further information such as mean or variance), uniform distributions maximise
the information entropy and hence minimise the introduced bias [310, 311]. Note that the killing
coefficient of host cells γhkill has no influence on our quantity of interest, the mean of the necrotic
fraction of tumour cells—neither directly nor indirectly through coupling terms. We nevertheless
include the killing coefficient of host cells γhkill in the sensitivity analysis to investigate how reliably
we can identify a non-influential input parameter as such.
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Table 4.1 Probability distributions of the uncertain input parameters. We assume that all parameters are distributed
uniformly within the given range.

Symbol Parameter Range Units Source
Lvp Hydraulic conductivity of blood-vessel wall⋆ [7.8; 125] ⋅ 10−8 mm/(Pa s) [107]
Pv Blood-vessel wall permeability [3.2; 128] ⋅ 10−5 mm/s [175–177]
DNPℓ Diffusivity of nanoparticles [0.26; 30.83] µm3/s [177]
(Lp SV )

ly Lymphatic filtration coefficient [0; 5.2] ⋅ 10−4 Pa−1 s−1 [58]
γtkill Killing coefficient of tumour cells [5; 10] ⋅ 10−4 g/(mm3 s) –
γhkill Killing coefficient of host cells [2; 7] ⋅ 10−4 g/(mm3 s) –

* The given values for the hydraulic conductivity of the blood-vessel wall correspond to a pore radius of
r0 = [50; 200] nm as used in Section 3.1.2 and Wirthl et al. [58].

A) Nanoparticle distribution
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B) Necrotic tumour cells
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Figure 4.4 Distribution of nanoparticles and necrotic tumour cells in the tumour microenvironment for the mean
values of the uncertain input parameters. A) Mass fraction of nanoparticles in the interstitial fluid ωNPℓ . B) Mass
fraction of necrotic tumour cells ωNt . This figure is adapted from [61], where it is licensed under CC BY 4.0.

Fig. 4.4 presents a result for the distribution of nanoparticles in the interstitial fluid and the mass
fraction of necrotic tumour cells: for this example, we used the mean values of the six uncertain
input parameters given in Table 4.1. Most nanoparticles accumulate at the edge of the tumour, while
lymphatic drainage removes most particles outside the tumour area, and roughly 50% of the tumour
cells are necrotic.

4.3.2 Predictive quality of the metamodel
Sincewe use aGPmetamodel to estimate the Sobol indices, we first assess its predictive quality. To this
end, we investigate the quality of the metamodel predictions for two different covariance functions
k(X , X′) used for the GP: we compare a tensorised, squared, exponential covariance function to
a tensorised 5/2-Matérn covariance function (with ν = 5/2) [51, 312, 313]. A tensorised covariance
function has the form k(X , X′) = k1(X1, X′1) ⋅ k2(X2, X′2) ⋅ . . . ⋅ kD(XD , X′D) and as such includes
a set of hyperparameters θ = (σ f i , ℓi)i=1,...,D for all input space dimensions, which we optimise by
maximising the log marginal likelihood.
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For this comparison, we consider different sizes of training sample sets N = [10, 15, 20, 25, 30, 40,
60, 80, 100, 150, 200], which we generate based on Sobol sequences. Additionally, we generate a set
T of NT = 1000 testing samples disjoint of the training samples. Based on the training samples and
the testing samples, we calculate the Nash–Sutcliffe efficiency Q2 [314] given by

Q2 = 1 − ∑X∈T (mGP,N(X) − f (X))2

∑X∈T (mGP,N(X) − f̄ )
2 with f̄ = 1

NT
∑
X∈T

f (X) (4.39)

similar to [52]. This is based on the predictive posterior mean mGP,N(X) of the GP with optimised
hyperparameters, and thus compares the mean prediction of the posterior GP to the actual output of
the full model f . A Nash–Sutcliffe efficiency close to one indicates good agreement and hence reliable
predictions. Fig. 4.5 shows good convergence of the Nash–Sutcliffe efficiency for both covariance
functions with values close to one, even for smaller training sample set sizes. If the number of training
samples is restricted due to the computational cost, Van Steenkiste et al. [315] suggest an algorithm
to improve the metamodelling accuracy and efficiency based on sequential sampling.

Note that we use a set of testing samples here that is disjoint of our set of training samples; this
means that we also evaluate our full model NT times, which might be infeasible if the model is
computationally more expensive. In those cases, one can use cross-validation methods, such as those
explained in [51], where the training set itself is split into two disjoint sets: one is actually used for
training and the other for validation.
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Figure 4.5 Nash–Sutcliffe efficiency Q2 for different training sample set sizes with a tensorised, squared, exponential
covariance function and a tensorised Matérn covariance function. N training samples were randomly generated for
the main plot. For the detail plot, we repeated the process five times with different training sample sets of sizes
N = [10, 15, 20, 25, 30]. For reference, the dashed lines in the detail plot are identical to the dashed lines in the main
plot. This figure is taken from [61], where it is licensed under CC BY 4.0.
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Both covariance functions yield a very similar predictive quality. In the following, we only use
the tensorised, squared, exponential covariance function because it is the default choice in most
applications of GPs [296] and because it is a universal covariance function [316].

Remark (Randomness of metamodel training). In Fig. 4.5, we notice a slight kink in the Nash–Sutcliffe
efficiency for N = 25 in the case of the Matérn covariance function. Therefore, we repeat the training of
the GP with other randomly chosen training sample sets for N = [10, 15, 20, 25, 30] to check whether the
original training sets happen to perform exceptionally well. The grey detail plot in Fig. 4.5 presents the
results: while the Nash–Sutcliffe efficiency is still above 0.90 in all cases, we notice that some training
sample sets result in slightly worse efficiencies than others for those smaller sample sizes. This is precisely
the case for the Matérn covariance function with N = 25 in the main plot. Moreover, the two different
covariance functions lead to slightly different efficiencies.

One possible reason for such behaviour may be the convergence of the optimiser used to optimise the
hyperparameters according to Eq. (4.28). As with all gradient-based optimisers, the optimisation may
get stuck in a local minimum. To avoid ending the optimisation in a local minimum, one can repeat the
optimisation multiple times from random initial points [301], as provided by the package GPy [317], for
example, or use stochastic optimisation, such as Adam optimisation [318].

Further, we take a closer look at the underlying GP, which is depicted in Fig. 4.6 for 20 training
samples. The projection of the GP into the input-space dimensions reveals a linear relation in most
dimensions. We only see considerable nonlinearity for the blood-vessel wall permeability Pv . Those
characteristics make it much easier to train the GP based on a small number of training samples.

Remark (Projection of the D-dimensional Gaussian process). The projection mGPi(Xi) of the D-
dimensional posterior mean mGP,N(X) into the input space dimension Xi (as presented in Fig. 4.6) is
calculated as follows. First, we uniformly sample discrete values of the posterior mean mGP,N(X) in the
D-dimensional input space. Second, we project those values over the input space dimension Xi . Third,
the results are binned in the Xi-direction, and we calculate the mean and confidence interval for each
bin. Note that we only project the posterior mean mGP,N(X) and neglect the covariance function kN
here.

Plotting the model output over a specific input in the form of scatterplots—as done with the
training samples in Fig. 4.6—helps us gain a general understanding of themagnitude of the underlying
sensitivity [269]. Saltelli [44, Sec. 1.2.7] offers a compelling interpretation of scatterplots in relation
to the first-order Sobol index: if the conditional expectation EX∼i [Y ∣Xi]—here represented by the
projection of the mean mGPi of the GP—has a large variation across Xi , the corresponding input
parameter has a high first-order Sobol index. Fig. 4.6 reveals that the projection of the mean mGPi is
almost constant for the diffusivity of nanoparticles DNPℓ, the lymphatic filtration coefficient (Lp SV )

ly
,

and the killing coefficient of host cells γhkill. In contrast, the variation of the projection of the mean
mGPi is larger for the blood-vessel wall Lvp, the vascular permeability Pv , and the killing coefficient
γtkill, and we therefore expect the output to be highly sensitive to those parameters.
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Figure 4.6 Gaussian process for N = 20 with a tensorised, squared, exponential covariance function. Projected mean
mGPi(X i), projected 95% confidence interval (CI) and training samplesD for the mean of the necrotic fraction of
tumour cells ω̄N t̄ (the y-axis labels apply to both figures). This figure is taken from [61], where it is licensed under CC
BY 4.0.
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Figure 4.7 Convergence of first-order Sobol index estimate for increasing training sample set size. We use M = 10 000
Monte Carlo samples and NGP = 500 realisations of the Gaussian process. This figure is taken from [61], where it is
licensed under CC BY 4.0.

4.3.3 First-order Sobol index estimates
We now assess the convergence of the first-order Sobol index estimates for increasing numbers
of training samples. To calculate the mean S̄ i based on Eq. (4.32), we use NGP = 500 metamodel
realisations, and the number of Monte Carlo samples is set to M = 10000. We do not include
bootstrapping here. The uncertainties in the estimates will be studied in the next section.

Fig. 4.7 presents the results for training sample set sizes N = [10, . . . , 200]. The result confirms
what we expected based on the scatterplots in the previous section: three parameters—namely the
vascular permeability Pv , the killing coefficient γtkill, and the hydraulic conductivity of the blood-vessel
wall Lvp—have considerably higher first-order Sobol indices than the remaining three parameters.
Fig. 4.7 also allows to assess the convergence of the Sobol indices for an increasing number of
training samples: even small sizes of training sample sets yield values close to the value based on
N = 200. This is due to the high values of the respective Nash–Sutcliffe efficiency, as discussed in the
previous section. Those results are promising, in particular for models that are computationally very
expensive, and thus do not allow a large number of evaluations of the full model: the computational
cost of the demonstrated approach is considerably reduced compared to an analysis based directly
on evaluations of the full model, as for example presented in [31, 319] for tumour growth models.

We assessed convergence visually based on Fig. 4.7. In addition, [320] present a thorough defini-
tion of convergence criteria for global sensitivity analysis results. Nevertheless, the computationally
limiting factor is usually the number of Monte Carlo samples. Since we evaluate the Monte Carlo
samples on the GP metamodel, this limitation is less critical in the presented workflow. If sampling
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Table 4.2 First and total-order Sobol indices based on 200 training samples. We use M = 10 000 Monte Carlo samples,
NGP = 500 realisations of the Gaussian process, and B = 300 bootstrap samples.

Parameter S i STi

Lvp 0.092 0.121
Pv 0.600 0.632
DNPℓ 0.001 0.004
(Lp SV )

ly 0.009 0.011
γtkill 0.265 0.270
γhkill 0.000 0.000
Sum 0.967

the realisations of the metamodel for very large numbers of Monte Carlo samples becomes an issue,
Le Gratiet et al. [52] include an efficient approach based on conditional GPs.

4.3.4 Uncertainties of Sobol index estimation
We now go on to not only estimate the mean S̄ i but also include the uncertainty related to the
metamodel and to the Monte Carlo integration given by Eqs. (4.35) and (4.36). In addition to the
first-order index S i , we also include the total-order Sobol index STi . Again, we use different training
sample set sizes N = [10, . . . , 200] and a tensorised, squared, exponential covariance function with
hyperparameters optimised based on maximising the log marginal likelihood of the GP. We draw
NGP = 500 realisations of the GP, B = 300 bootstrap samples, andM = 10 000 Monte Carlo samples.
We calculate 95% confidence intervals on the basis of the variance related to the metamodel σ̂ 2

GP and
the variance related to Monte Carlo integration σ̂ 2

MC.
Fig. 4.8A presents the results for all six input parameters. Note the different scaling on the vertical

axes. We first take a look at the results for the indices themselves. Fig. 4.8A again confirms that
even for small numbers of training samples, the estimates for first and the total-order Sobol indices
rapidly converge. As mentioned above, we do not expect any influence of the parameter γhkill on the
quantity of interest. Fig. 4.8A shows that we can identify this non-influential parameter as such
even for small numbers of training samples. The parameter DNPℓ also leads to Sobol indices close
to zero for N < 60. For larger training sample set sizes however we get a slightly higher total-order
Sobol index, which is nevertheless small. Hence, we can clearly separate the three most influential
parameters from the three non-influential parameters.

Moreover, the total-order index is higher than the first-order index, in particular for the hydraulic
conductivity of the blood-vessel wall Lvp and the vessel wall permeability Pv . This leads to the
conclusion that higher-order effects are indeed present. We will therefore analyse the second-order
Sobol indices in the next section. In addition, Table 4.2 summarises the values for the first and the
total-order indices for 200 training samples: the sum of all first-order Sobol indices is 0.967. Since
this is close to one, we conclude that higher-order effects are present, but only play a minor role. The
largest part of the output variance is covered by the first-order indices.
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We now focus on the uncertainties: we assess the uncertainty related to the GP metamodel and
the total uncertainty, where the latter includes both sources of uncertainty (related to Monte Carlo
integration and related to the metamodel). For small training sample set sizes, we see considerable
uncertainty related to the metamodel (depicted in light blue/orange in Fig. 4.8A). However, the
uncertainty related to Monte Carlo integration dominates for N > 40. We therefore present the
uncertainty related to the metamodel in detail in Fig. 4.8B: the uncertainty rapidly decreases as the
number of training samples increases for both the first-order and the total-order index and becomes
one order of magnitude smaller than the uncertainty related to Monte Carlo integration. Hirvoas
et al. [273] also found the uncertainty related to the GP metamodel to be much smaller than the
uncertainty related to Monte Carlo integration in their example. The total uncertainty (depicted in
grey) could be reduced even further by increasing the number of Monte Carlo samples.

Based on these results, we conclude that including the uncertainty related to the metamodel is
not absolutely necessary in our example. However, the example presented in the outlook and the
example presented by Le Gratiet et al. [52] illustrate that this is not always the case: only taking into
account the Monte Carlo uncertainty might then underestimate the confidence interval. In such
cases, it is essential to consider the uncertainty related to the metamodel. Hence, this largely depends
on the model, the input parameters, and the quantity of interest, and no one-size-fits-all rule can be
given.

Nevertheless, even taking into account the metamodel and the Monte Carlo uncertainty may
incorrectly estimate the confidence intervals: poor optimisation of the hyperparameters may result in
underestimated or overestimated confidence intervals. In such cases, one could additionally consider
the uncertainty related to the estimation of the hyperparameters of the GP covariance function by
using a full-Bayesian approach with hyperpriors [52].

To sum up, the demonstrated workflow not only identifies parameters with a high first-order
Sobol index (necessary for factor prioritisation) but also parameters with a small total-order Sobol
index (necessary for factor fixing). In both cases, small numbers of training samples suffice in our
example.

4.3.5 Second-order Sobol index estimation
Since we concluded from the results in the previous sections that higher-order effects are indeed
present in our example, the goal now is to estimate the second-order Sobol indices, and thereby
identify interaction effects between the input parameters. The results in the previous section show
that the uncertainty related to Monte Carlo integration is dominant, and the uncertainty related to
the GP metamodel is much smaller. We therefore estimate the second-order indices based on the
predictive mean mGP,N(X) of the GP and do not take into account the uncertainty related to the
metamodel. Thus, we estimate the second-order Sobol indices as

Ŝ i j =
1
M ∑

M
m=1mGP,N(B

(i)
A )m mGP,N(A

( j)
B )m −mGP,N(A)m mGP,N(B)m

V[mGP,N([A B])]
− Ŝ i − Ŝ j, (4.40)

which includes estimating the first-order effects Ŝ i and Ŝ j also based on the mean of the GP only.
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Figure 4.8 First-order and total-order Sobol indices and 95% confidence intervals (CI) for an increasing number of
training samples. We use M = 10 000 Monte Carlo samples, NGP = 500 realisations of the Gaussian process, and
B = 300 bootstrap samples. A) Sobol indices with metamodel CI and the sum of metamodel and Monte Carlo CI for
the six input parameters separately. Monte Carlo abbreviates as MC. B) Detailed view of the metamodel CI. This
figure is taken from [61], where it is licensed under CC BY 4.0.
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Figure 4.9 Second-order Sobol indices Ŝ i j for M = 1 000000 Monte Carlo samples and B = 300 bootstrap samples.
The blue circles represent the first-order Sobol indices. The orange surrounds represent the total-order Sobol indices.
The grey areas connecting the nodes represent the second-order Sobol indices. All other second-order indices are
Ŝ i j < 0.001. This figure is taken from [61], where it is licensed under CC BY 4.0.

Table 4.3 Second-order Sobol indices for B = 300 bootstrap samples. All other second-order indices are S i j < 0.001.

Parameter i Parameter j M = 10 000 M = 1 000000
S i j 95% CI S i j 95% CI

Lvp Pv 0.0276 0.0198 0.0283 0.0021
Lvp DNPℓ −0.0009 0.0136 0.0003 0.0016
Lvp γtkill −0.0004 0.0142 0.0007 0.0017
Pv γtkill 0.0036 0.0312 0.0042 0.0030
(Lp SV )

ly DNPℓ 0.0021 0.0037 0.0023 0.0004

Using the same number of Monte Carlo samples as before (M = 10000), however, results in a
95% confidence interval with the same order of magnitude as the indices themselves and even leads
to negative values for the Sobol indices (as given in Table 4.3). Therefore, we increase the number of
Monte Carlo samples toM = 1 000000 to obtain reasonably small confidence intervals.

Table 4.3 and Fig. 4.9 summarise the results for the second-order Sobol indices: the highest
interaction is present between Pv and Lvp, as we already expected based on the results presented in
Fig. 4.8. Summing up all first- and second-order Sobol indices results in 0.999. We thus (almost)
completely apportioned the variance in the output to the input parameters, including interaction
effects.

The large number of Monte Carlo samples necessary to estimate the second-order Sobol indices
highlights the relevance of metamodel-based estimation approaches. Evaluating the full model f
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several million times is computationally prohibitive for most models. Without using a metamodel,
estimating higher-order Sobol indices is thus impossible in most cases.

4.4 Outlook to other complex models in the context of biomech-
anics and beyond

In the previous sections, we assessed the performance of the workflow as applied to a model of
nanoparticle-mediated drug delivery in great detail: even small numbers of training samples result
in reliable estimates of the Sobol indices and a small uncertainty related to the GP metamodel. To
give an outlook, we now apply the workflow to other complex models in the context of biomechanics
and beyond.

Arterial growth and remodelling. As a first example, we consider a homogenised, constrained
mixture model of arterial growth and remodelling [321–323]. This example was published as part of
the author’s publication [61].

Brandstaeter et al. [324] performed an exhaustive global sensitivity analysis, where they estimated
the first- and total-order Sobol indices by evaluating the full model for all Monte Carlo samples.
However, this entails a large computational burden (> 70000 model evaluations). Therefore, the
question arises as to whether we can reduce this computational cost by using a GP metamodel and
still get reliable Sobol index estimates, including reliable uncertainty estimates.

For this comparison, we investigate Case 2 of the original publication [324], where the maximum
diameter of an idealised cylindrical abdominal aorta was studied 15 years after spontaneous damage
to elastin. In this case, the majority of samples lead to minor dilatation of the vessel dmax < 3 cm. In
contrast, a considerable number of samples do not stabilise and keep enlarging, leading to aneurysms
with a much larger diameter dmax >> 3 cm (see Fig. 4b in [324]). We use the original results from
[324] as a reference and compare them to our results based on the metamodel approach.

First, we look at the GP metamodel’s predictive quality. Once again, we use a tensorised, squared,
exponential covariance function and compare the results for different numbers of training samples,
N = [40, 60, 80, 100, 150, 200, 300, 500] in this case. As an example, Fig. 4.10A presents the training
samples for N = 300 for two parameters. The results for the remaining parameters are included in
the Supplement of [61]. We see that the majority of samples result in a small dilatation in contrast to
the fewer aneurysmatic samples with a very large diameter of up to 8 cm. This bimodal structure of
the data makes training the GP metamodel more difficult compared to our previous example.

Second, we calculate the first- and total-order Sobol indices and respective uncertainties for
different numbers of training samples. To this end, we use M = 10000 Monte Carlo samples,
NGP = 500 realisations of the GP metamodel, and B = 300 bootstrap samples. By way of example, we
present the results for two parameters, the gain parameter k̄σ and the initial volume fraction of elastin
ϕel
t0 , in Fig. 4.10C. For the gain parameter k̄σ , the estimates based on the metamodel converge to the

reference values from [324] for both the first- and the total-order Sobol index. For the initial volume
fraction of elastin ϕel

t0 , the reference values for the Sobol indices are very small (0.01 or smaller). In
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Figure 4.10 Arterial growth and remodelling model example. A) Gaussian process. Projected mean mGPi(X i),
projected 95% confidence interval (CI) and training samplesD for the diameter dmax (the y-axis labels apply to both
figures). B) First-order and total-order Sobol indices and 95% confidence intervals (CI) for an increasing number of
training samples. Monte Carlo abbreviates as MC. This figure is taken from [61], where it is licensed under CC BY 4.0.
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this case, exact estimates based on the metamodel approach are much harder to achieve: for N ≤ 300
training samples the estimates only stabilise. Nevertheless, we can still reliably separate the three
most influential parameters from the non-influential parameters, even for small numbers of training
samples (see the Supplement of [61]). One further detail should be mentioned as an example: the plot
for ϕel

t0 reveals problems in estimating the first and total-order Sobol indices for N = 80 or 100. The
Sobol indices and the uncertainties are all close to zero. For N < 300, the GP has not yet converged
and hence does not capture all features of the quantity of interest. Furthermore, we note that the
uncertainty related to the metamodel is much higher and in some cases even dominates the total
uncertainty in this example, while the uncertainty related to Monte Carlo integration dominated
the previous example. It is therefore important to include the uncertainty related to the metamodel
because considering only the uncertainty related to Monte Carlo integration would underestimate
the total uncertainty in the Sobol index estimate.

Finally, the computation of higher-order indices was not feasible with the approach chosen in the
original contribution [324]. In contrast, the following will show that the metamodel-based approach
enables their computation. As an example, we again consider the gain parameter k̄σ : a closer look
at Fig. 4.10C reveals that the total-order index is considerably higher than the first-order index:
STk̄σ − S k̄σ = 0.34. This delta indicates interactions with other parameters, and thus estimating the
second-order indices is of particular interest for this example. Since we see in Fig. 4.10C that the
metamodel contributes significantly to the total uncertainty, we include uncertainty estimates for
the metamodel (as opposed to relying solely on the predictive mean, as in the previous second-order
estimates). The estimates indeed show interaction with two parameters: the turnover time10 τ and
the constitutive parameter k2 (S k̄σ τ = 0.19 and S k̄σ k2 = 0.06). However, the sum of all second-order
indices (S k̄σ j = 0.25) still does not cover the delta between the first and total-order index. Hence, we
specifically estimate the third-order Sobol index for the three most influential parameters, k̄σ , τ, and
k2, resulting in considerable third-order interaction: S k̄σ τk2 = 0.06.

Thus, we can identify influential parameters for factor prioritisation based on the metamodel
approach with small numbers of training samples, and we can also separate the influential parameters
from the non-influential ones. Hence, themetamodel-based approach provides the same results as the
approach based directly on the full model in the original publication [324]. The computational cost,
i.e., the number of evaluations of the full model, however, is much lower when using a metamodel.
Additionally, we can quantify higher-order indices, which is infeasible based on evaluations of the
full model.

Reduced-dimensional lung. We further apply the metamodel-based sensitivity analysis workflow
to a reduced-dimensional lung model, including alveolar recruitment/derecruitment dynamics. This
work was part of a student term paper by D. Rudlstorfer [325], co-supervised by the author of this
thesis together with C. Geitner.

Based on Geitner et al. [326], we investigate alveolar recruitment/derecruitment based on the
pressure- and time-dependent variation of the stress-free reference volume to capture fully collapsed,
poorly aerated and normally ventilated terminal units. The alveolar recruitment/derecruitment

10The turnover time was denoted by T in the original publication [324].
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A) Reduced-dimensional lung model
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Figure 4.11 Reduced-dimensional lung model example. A) Schematic overview of the reduced-dimensional lung
model. B) Simulated ventilation maneuvres, including the quasi-static inflation manoeuvre (orange) and the
inspiratory hold manoeuvre (green). C) First-order and total-order Sobol indices and 95% confidence intervals for
the volume increase during a quasi-static inflation manoeuvre (1) and the volume increase during an inspiratory
hold manoeuvre (2). The subfigures are adapted from [325].

model is included in a comprehensive multi-compartment reduced-dimensional model of an injured
human lung, depicted schematically in Fig. 4.11A. To use this model in a clinical setting, we need to
be able to determine the model parameters based on patient-specific clinical data, e.g., medical image
data or artificial ventilation data. Since this parametrisation should be feasible with a reasonable effort,
this presents a classical scenario for sensitivity analysis: we need to identify the most influential
parameters, which need to be determined patient-specifically, and separate them from the non-
influential parameters, which can be set to population average values.

We consider six uncertain input parameters and two quantities of interest: the volume increase
during a quasi-static inflation manoeuvre and during an inspiratory hold manoeuvre (see Fig. 4.11B).
Similar to the tumour example in the previous sections, a relatively small number of training samples
(N = 100) is sufficient to obtain a good predictive quality of theGaussian process, i.e., a Nash–Sutcliffe
efficiency of Q2 > 0.9 for both quantities of interest. Interestingly, the most influential parameters of
the quasi-static inflation manoeuvre are non-influential during the inspiratory hold manoeuvre and
vice versa (see Fig. 4.11C)—a valuable insight for the parametrisation of the model.

When manually calibrating the model, as presented in [326], difficulties are often encountered
when trying to fit a quasi-static inflation manoeuvre and an inspiratory hold manoeuvre simultan-
eously. The sensitivity analysis results suggest that fitting to both maneuvres is indeed necessary
to obtain the best patient-specific fit. However, the parameters can be fitted separately to the two
maneuvres.

Beyond biomechanics: Powder bed fusion additive manufacturing. To further demonstrate that
a carefully performed global sensitivity analysis is generally an integral part to ensure the high quality
of any model development, we apply a global sensitivity analysis to a model of powder bed fusion
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Figure 4.12 Powder bed fusion additive manufacturing (PBFAM) model example. A) Multi-layer PBFAM setup with a
single laser scan track. B) Melt pool bounding box volume used as the quantity of interest. C) First- and total-order
Sobol indices. The subfigures are adapted from [327].

additive manufacturing (PBFAM). This work was part of the Bachelor’s thesis by M.Waldmann [327],
co-supervised by the author of this thesis together with S. Proell.

Proell et al. [328] developed a highly efficient computational approach to predict the temperature
field during PBFAM and assumed that a convection boundary condition has a negligible influence
on the temperature field compared to the radiation and the evaporation boundary conditions. This
assumption was based on qualitative observations and experience with the model. Therefore, we
perform a global sensitivity analysis to quantify the influence of the convection boundary condition.
As depicted in Fig. 4.12A, we consider a simplified setup with a single laser scan track repeated on
six powder layers. The base plate serves as a main heat sink for the energy input by the laser needed
to melt the powder. The quantity of interest is chosen as the melt pool bounding box volume, as
depicted in Fig. 4.12B. Notably, the highly efficient approach presented by Proell et al. [328] enables
the estimation of the Sobol indices based on the full model, i.e., without using a metamodel.

The estimated Sobol indices indeed confirm that the convection boundary condition has a
negligible influence on the melt pool bounding box volume in the investigated parameter range
and considered setup, as shown in Fig. 4.12C. In addition, the results also reveal that the radiation
boundary condition has a negligible influence on the melt pool bounding box volume and that
(almost) the entire variance in themelt pool bounding box volume is due to the evaporation boundary
condition alone. We expected the other two boundary conditions to increase in importance for bigger
setups. However, all setups considered in [327] are highly dominated by the evaporation boundary
condition. Possible hypotheses that could explain this unexpected result include the following: the
investigated setup might be too small and should be increased in size (up to 1000 layers); or the melt
pool bounding box volume might not be the most expressive quantity of interest to investigate the
influence of the boundary conditions, or the model indeed behaves differently than expected or does
not capture the influence of the boundary conditions correctly. This insight highlights the relevance
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Figure 4.13 All-solid-state battery model example. A) Simplified geometric representation of a microstructure of a
battery cell. B) First- and second-order Sobol indices and 95% confidence intervals. C) Quantity of interest ∆SOC
evaluated in the input space. The subfigures are adapted from [329].

of a global sensitivity analysis to guide further model development and contribute to an improved
understanding of the model and underlying physics.

Beyond biomechanics: All-solid-state batteries. Finally, we apply a global sensitivity analysis
to an electrochemo-mechanical model for all-solid-state batteries (ASSBs). This work was part of
a student term paper by A. Wendl [329], co-supervised by the author of this thesis together with
S. Sinzig.

Sinzig et al. [330] developed a novel approach to capture ion transport in the coating layer of
active material particles in ASSBs embedded into a three-dimensional electrochemo-mechanical
continuum model. The question is how the thickness and ionic conductivity of the coating layer
influence the usable capacity of the battery (∆SOC, with SOC abbreviating state of charge). To this
end, we perform a global sensitivity analysis on a simplified geometry, as depicted in Fig. 4.13A.
Again, we do not use a metamodel and estimate the Sobol indices based on the full model.

The results of the sensitivity analysis, presented in Fig. 4.13B, reveal that the interaction between
the thickness and ionic conductivity dominates, i.e., the second-order index is considerably higher
than the first-order indices of both parameters. However, the confidence interval of the second-order
index is large. It could be reduced by increasing the number of Monte Carlo samples—which is
computationally prohibitive in this case, especially considering the convergence rate of Monte Carlo
integration beingO(1/

√
N) and the fact that the current geometry is already highly simplified. Hence,
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this presents an example where a metamodel-based approach would be beneficial to overcome the
computational limitation. However, a closer look at the quantity of interest ∆SOC in the parameter
space, shown in Fig. 4.13C, reveals a highly non-linear behaviour, which makes training a Gaussian
process more complex compared to the previous example in Section 4.3.

4.5 Conclusion
Since a global sensitivity analysis is computationally expensive, modellers often rely on local methods
alone, which may be inadequate [50]. The use of a metamodel-based approach, however, allows
a global variance-based sensitivity analysis to be performed, even for computationally expensive
biomechanical models with a moderate number of input space dimensions at a manageable com-
putational cost. The number of training samples required to obtain reliable estimates for the Sobol
indices depends largely on the problem set-up itself: our results demonstrate that we can identify the
most influential input parameters and separate them from non-influential parameters with small
numbers of training samples. However, quantifying the exact value of the Sobol indices requires
more training samples. Moreover, the approach is able to quantify the uncertainty related to the
metamodel: including this uncertainty is important, because considering only the uncertainty related
to Monte Carlo integration could underestimate the total uncertainty in the Sobol index estimates.
The metamodel-based approach also allows an estimation of higher-order Sobol indices, and thus a
quantification of interaction effects, which is not feasible without a metamodel due to the computa-
tional costs involved. While there is no one-size-fits-all rule, the approach is general and efficient
enough to allow a study of different aspects of sensitivity analysis, including a transparent declaration
of the uncertainties involved in the estimation process.

We demonstrated how a rigorous global sensitivity analysis can be applied to complex, computa-
tionally expensive problems. A carefully performed sensitivity analysis is generally an integral part
to ensure the high quality of any model development [50]. By demonstrating the workflow and its
application for biomechanical problems, we contribute to closing the gap between proposals of new
sensitivity analysis methods and application papers [267]. We hereby encourage sensitivity analysis
in general and the metamodel-based approach in particular in the biomechanics community. In the
big picture of model development, the presented workflow can be a building block towards inverse
analysis, or it can be a valuable tool to better understand the model itself.
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5
Bayesian inverse analysis

The following Sections 5.1, 5.2, 5.3, 5.4 and 5.6 are largely based on the author’s publication S. Hervas-
Raluy*, B. Wirthl*, P. E. Guerrero, G. Robalo Rei, J. Nitzler, E. Coronado, J. F. de Mora Sainz, B. A.
Schrefler, M. J. Gomez-Benito, J. M. Garćıa-Aznar and W. A. Wall. ‘Tumour Growth: An Approach
to Calibrate Parameters of a Multiphase Porous Media Model Based on in Vitro Observations of
Neuroblastoma Spheroid Growth in a Hydrogel Microenvironment’. Computers in Biology and
Medicine 159 (2023), 106895 [62], which is licensed under CC BY-NC-ND 4.0. *Co-first authorship

5.1 Introduction
The synergy between experimental and computational tools provides powerful opportunities: in
silicomodels are a helpful tool for simulating complex experiments, improving our understanding
of in vitro scenarios, and trialling new ideas in the computational environment prior to in vitro
experiments. Indeed, the calibration and validation ofmechanicalmodels based on experimental data
and the quantification of the associated uncertainties are integral to scientific activity, especially in a
medical context. While computational models have widened their horizons dramatically in recent
years, it is crucial to be able to calibrate these models so that relevant patient-specific predictions can
be made. In order to do this, the model parameters have to be determined. Some parameters can be
measured directly. Since however a direct measurement of most parameters is not possible, they have
to be estimated by inverse analysis. There are two general approaches to solving the inverse problem:
deterministic and probabilistic. While deterministic optimisation techniques yield a point estimate
for the best fit, Bayesian methods infer the entire probability distribution, including the uncertainty,
which is especially important in a medical setting. Since most models contain a large number of
uncertain parameters, which have to be calibrated, it is first necessary to identify the most influential
parameters and to distinguish them from non-influential parameters using sensitivity analysis.

Subsequent calibration then focuses on the most relevant parameters. In the context of tumour-
growth modelling, several groups have made some advances in this direction. Hawkins-Daarud
et al. [331] laid out a Bayesian framework for calibration, validation and uncertainty quantification of
tumour-growth models considering synthetic data, and Collis et al. [332] presented the Bayesian
calibration of a simple Gompertzian tumour-growth model as a tutorial. Furthermore, Urcun et
al. [333] used a similar methodology to analyse the effect of mechanical forces on tumour growth,
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and Lima et al. [334] performed a Bayesian calibration of a stochastic, multiscale agent-based model
based on two-dimensional (2D) cell cultures of human breast carcinoma cells.

So far, the tumour growth model presented in this thesis has been very generic and has not
been adapted to a specific tumour type. This chapter now focuses on a specific tumour type:
neuroblastoma, literally defined as an immature (blast) tumour (oma) of the nervous system (neuro)
[335]. Neuroblastomas typically occur in very young children and are rare in adults; the median age
of diagnosis is 17 months [336]. Neuroblastoma is by far the most common cancer of infancy (age <12
months): the incidence rate is almost twice that of leukaemia, the second most common malignancy
in the first year of life [335, 337–339]. The primary tumour is usually located in the adrenal glands,
inside the abdominal cavity, with metastasis frequently appearing in bone and bone marrow, liver,
lymphatic nodes, and, in very infants, even in the eyes or skin [335, 340]. Neuroblastomas exhibit
unique clinical features, including spontaneous regression, but also a high frequency of metastatic
disease at diagnosis. In fact, in 60–70% of cases, the tumour has already metastasised at the time of
diagnosis [341]. While infants with low-risk diseases typically have a favourable prognosis of >90%
survival, the 5-year survival rate of patients with high-risk diseases is below 40%, despite aggressive
treatment [342, 343].

Tomimic themorphological and functional features of in vivo neuroblastomas within a controlled
environment, multicellular tumour spheroids are grown in vitro [344]. To create a three-dimensional
(3D) microenvironment, we use collagen-based hydrogels: these collagen gels make it possible
to produce matrices with different mechanical properties depending on their composition and
preparation methods. There have been several recent attempts to replicate the first stages of tumour
formation [344–347]. Microfluidic techniques enable such miniaturisation of tumour growth [348].
Constraining the system to a small scale ensures better control of the environmental conditions. The
main advantage of this approach is its ability to recreate more realistic biological environments than
traditional in vitro 2D cell cultures [348–350]. 3D cell culture models are able to reproduce features
such as tumour architecture and metabolism, unlike 2D cultures.

In this chapter, we perform a Bayesian calibration of 3D neuroblastoma spheroid growth based on
our multiphase porous-media model and experimental data (see Fig. 5.1). The main contribution to
the state-of-the-art is the combination and integration of experimental and computational techniques
to achieve a validated model of tumour growth, which is an essential area for future progress in the
field but, so far, only sparsely covered. To this end, we combine in-vitro experiments of spheroid
growth in a 3D collagen-based porous hydrogel with a matching multiphase porous-media model
setup so that both adequately include the interaction of the tumour with its microenvironment. The
integration of both models is built on a unique approach based on a Bayesian calibration process,
which naturally incorporates the uncertainties associated with the calibration process.

In Section 5.2.1, we summarise the 3D neuroblastoma spheroids experiments performed in
microfluidic devices. Next, as introduced in Section 5.2.2, we perform a time-dependent global
sensitivity analysis to identify the relative importance of the model parameters, where we again
use the Sobol method [48, 49] combined with a Gaussian process as a metamodel, as presented in
Chapter 4. We then feed the results of the sensitivity analysis into a Bayesian calibration process
based on sequential Monte Carlo (SMC) methods [55, 351] to infer the posterior density of the most
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Figure 5.1 Workflow to calibrate the uncertain model parameters based on experimental data. The uncertain model
parameters are first analysed by a global sensitivity analysis, where the model is replaced by a Gaussian process (GP).
The sensitivity analysis determines which parameters are non-influential and which have a significant influence on
the selected quantity of interest, in this case the spheroid volume. The non-influential parameters are fixed, whereas
the influential ones are further calibrated by the Bayesian framework. In this part, the model is again replaced by a
Gaussian process, and the influential parameters are calibrated together with the experimental behaviour observed
in the microfluidic devices. This picture is taken from [62], where it is licensed under CC BY-NC-ND 4.0.

influential parameters from the experimental data (see Section 5.2.3). The findings of the study
are summarised in Section 5.3 and discussed in Section 5.4. Finally, we give an outlook on coupled
multi-physics observations in Section 5.5 and draw a conclusion in Section 5.6.

5.2 Methods

5.2.1 Experimental setup
In the following, we concisely summarise the experimental setup. The experiments were performed
by our collaborators at the University of Zaragoza (Spain) and are described in more detail in [62].

Neuroblastoma primary culture was obtained from a patient’s tumour at La Fe University and
Polytechnic Hospital (Valencia, Spain), with the approval of the Ethics Committee of the hospital.
The pathology department of the University of Valencia had diagnosed the patient with a poorly
differentiated neuroblastoma with a deletion in chromosome 11q. The differentiation of a tumour
describes the extent to which the tumour cells resemble their normal counterparts: while well-
differentiated tumours resemble normal cells and are considered less aggressive, poorly differentiated
tumours exhibit abnormal and immature cell features, making it difficult to determine the tumour’s
tissue of origin [352]. Often, poorly differentiated tumours are more aggressive and have a worse
prognosis than well-differentiated tumours [335]. The deletion in chromosome 11q is a genetic
alteration that is associated with a poor prognosis in neuroblastoma patients [353]. The tumour was
surgically removed, and the remaining material was used for the preparation of the primary culture.
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Figure 5.2 Microfluidic devices used for the analysis of 3D neuroblastoma spheroids. The image on the left shows
the microfluidic device bonded to a glass plate. On the right is a 3D visualisation of the microfluidic chip system.
Collagen hydrogel was loaded in the central chamber (light beige). The setup included two side media channels
(green) to supply the culture media and ensure the hydration and transport of nutrients and other chemical factors
throughout the hydrogel. Individual cells were seeded in the chamber and cultured for up to seven days. This figure
is taken from [62], where it is licensed under CC BY-NC-ND 4.0.

The neuroblastoma cells were cultured in a 3D collagen-based hydrogel in microfluidic devices.
The polydimethylsiloxane (PDMS)-based microfluidic devices were produced using the method
described by Shin et al. [349]. The device geometry is illustrated in Fig. 5.2 and described in detail in
Plou et al. [344]. The central chamber was filled with the hydrogel, prepared based on [349], and the
device additionally included two side channels (each with two media reservoirs, marked in green
in Fig. 5.2) for hydration and medium replacement to ensure the transport of nutrients and other
chemical factors throughout the hydrogel. Individual tumour cells were homogeneously embedded
in the 3D hydrogel in the chamber and cultured for up to seven days. The spheroid formation and
growth were visualised and recorded every 24 hours.

5.2.2 Global sensitivity analysis
The sensitivity analysis aims to separate the (most) influential uncertain input parameters from the
non-influential ones. We employ the workflow presented in Chapter 4 and again estimate the first-
and the total-order Sobol indices using a Gaussian process as a metamodel.

The computational setup is the same as in Section 2.2.1. The quantity of interest is the volume V t

of the tumour spheroid over time, given by

V t = ∫ H(S t − 0.1)dΩ, (5.1)

where the tumour is defined as the part of the domain where the saturation of tumour cells is greater
than 0.1 (S t > 0.1). As the neuroblastoma spheroids observed in the experimental tests grow in tightly
packed aggregates, we assume that a threshold of 0.1 is indicative of these particular experiments.
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Table 5.1 Probability distributions of the uncertain input parameters. We assume that all parameters are distributed
uniformly within the given range.

Symbol Parameter Range Units Ref.
k Intrinsic permeability of the ECM [0.5; 1.5] ⋅ 10−9 mm2 [72, 354, 355]
ν Poisson’s ratio of the ECM [0.35; 0.48] – [67, 356, 357]
G Shear modulus of the ECM [120; 710] Pa [89, 354, 358–361]
µs Dynamic viscosity of the ECM [10; 35] Pa s [89, 362, 363]
µt Dynamic viscosity of the TC⋆ [10; 1000] Pa s [33, 364–370]
σtℓ Interfacial tension [2; 50] Pa [67, 371]
At Rel. permeability exponent for TC [1; 10] – [72]
Aℓ Rel. permeability exponent for medium [1; 7] – [72]
γtgrowth Tumour-growth coefficient [0.1; 2.0] ⋅ 10−8 g/(mm3s) [67, 72, 171]
γtnecrosis Necrosis coefficient of TC [1; 10] ⋅ 10−9 g/(mm3s) [67, 72, 171]
γntgrowth Oxygen consumption due to growth [1; 5] ⋅ 10−10 g/(mm3s) [67, 72, 171]

* TC denotes the tumour cell phase.

From the myriad of model parameters, we identify those parameters whose values are known
a priori, e.g., from the literature, experimental measurements, previous in silico studies, or expert
knowledge: the initial tumour radius r0 is obtained from the experimental images; the densities of
the fluid phases (ρt and ρℓ) and the ECM (ρs) are assumed to be equal to the density of water. In
the experiments, nutrients are supplied daily to ensure they are available in sufficient concentration
throughout the assay. In the computational model, we include oxygen as the only nutrient and assume
that oxygen-related parameters (ωnℓ

crit, ωnℓ
env, Dnℓ

0 and δ) are known. All a priori known parameters
are listed in Table A.1.

The remaining parameters are considered uncertain, and we estimate their influence on the
quantity of interest V t. Table 5.1 lists the eleven uncertain parameters: we assume a uniform dis-
tribution for all parameters and define the ranges based on values obtained from the literature. In
particular, the ranges of the initial porosity ε0 and the properties of the ECM (intrinsic permeability
k, shear modulus G, Poisson’s ratio ν and dynamic viscosity µs) are based on experimental results,
where the role of the ECM was investigated [67, 72, 89, 354–363], and the dynamic viscosity of the
tumour cell phase µt has beenmeasured in numerous studies, producing values that vary over several
orders of magnitude [33, 364–370].

5.2.3 Bayesian calibration
We favour a Bayesian approach to parameterise our computational tumour-growth model for several
reasons. As stated above, the model contains uncertain input parameters for which we do not know
the true value. Additionally, the true value itself may be uncertain, e.g., due to randomness in the
underlying processes: probability distributions then characterise the uncertain input parameters
instead of a single (fixed) value. When working with experimental data of biological systems,
assuming that a certain degree of uncertainty is present (such as measurement error, model error
or intrinsic variability) is necessary. Otherwise, the solution is overconfident or incorrect. Indeed,
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uncertainty can also be found in computational modelling, e.g., by simplifying assumptions in the
model formulation. Therefore, Bayesian techniques are deemed the most appropriate for performing
model calibration since the approaches used are intrinsically able to characterise uncertainty [25].

Based on Bayes’ rule [372], a priori knowledge about the uncertain parameters θ of a model f is
updated in the presence of the experimental data yobs resulting in a posterior distribution p(θ∣yobs)

of the parameters as
p(θ∣yobs) ∝ p(yobs∣ f (θ)) p(θ), (5.2)

where p(θ) is the prior distribution and p(yobs∣ f (θ)) is the likelihood function.
The observations yobs are the tumour-spheroid volumes obtained by the in vitro experiments

over time. Here, we use N conditionally independent observations yobs = {yobs,i}
N
i=1, with N being

the number of observed tumour spheroids11. We assume an additive Gaussian noise є such that

yobs = f (θ) + σN ⋅ є with є ∼ N(0, 1), (5.3)

whereN denotes the Gaussian distribution and σN the standard deviation [373].
Further, the prior distribution p(θ) encodes the uncertainty about the parameters before ob-

serving the data. The prior distribution is specified beforehand and represents the parameter
information that we wish to include in the model calibration. It might represent the ignorance of a
parameter or introduce a strong subjective belief [332]. As the prior distribution, we use the same
distribution as in the global sensitivity analysis, i.e., a uniform distribution with the ranges given in
Table 5.1.

The likelihood function p(yobs∣ f (θ)) is a true probability density for the observations yobs,
conditionally dependent on the parameters θ: it connects the experimental data to the computational
model. In the context of Bayesian calibration, the likelihood function can be interpreted as a goodness-
of-fit measure, i.e., how well the model output fits the experimental data, given a particular value
for the input parameters [374]. Based on the additive Gaussian noise assumption (see Eq. (5.3)), the
likelihood is given by

p(yobs∣ f (θ)) =
N
∏
i=1
N(yobs,i ∣ f (θ), σN) =

N
∏
i=1

1
√
2πσN

exp(−
1

2σ 2
N
∥yobs,i − f (θ)∥2) ,

(5.4)

with ∥⋅∥ denoting the Euclidean L2-norm.
Finally, the posterior distribution p(θ∣yobs) characterises the knowledge of the model parameters,

having now observed the data. It is defined as a conditional distribution of the parameters θ, given
the data yobs. The aim of this Bayesian calibration is to obtain the posterior distribution of the most
influential uncertain model parameters.

11To avoid cluttered notation, the output of f (θ) is a vector containing the tumour-spheroid volumes at different
discrete time points. Similarly, yobs, i contains the experimentally observed volume of one tumour spheroid i at different
discrete time points, and yobs concatenates the tumour-spheroid volumes for all time points and all observed spheroids.
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Due to the implicit dependency on the forward solver, the posterior distribution is analytically
intractable, and we approximate it using sampling techniques [25]. However, sampling from the
posterior distribution involves numerous evaluations of the forward model f , which results in a tre-
mendous computational burden for complex models, such as our tumour-growth model. Therefore,
the forward model f is again replaced by a Gaussian process fGP as a metamodel (see Section 4.2.3):
we use a single-surface approximation [375] based on the mean of the Gaussian process. If including
the uncertainty introduced by using the Gaussian process metamodel instead of the forward model
is of interest, Bilionis and Zabaras [375] propose different approaches to capture this additional
uncertainty.

As sampling technique, we use a sequential Monte Carlo (SMC) approach [55–57, 351], in which
the posterior distribution is approximated by a large collection ofM ≫ 1 weighted particles [376],
such that

p(θ∣yobs) ≈
M
∑
i=0
W(i)δθ(i)(θ) with

M
∑
i=0
W(i) = 1 (5.5)

whereM is the number of particles, {W(i)}Mi=1 are weights, {θ
(i)
}Mi=1 is the ensemble of particles and

δ(⋅) represents the Dirac delta. The key idea of SMC is to start from a particle representation of the
prior distribution and sequentially blend over to the target, i.e., posterior distribution [56]. The SMC
method has gained considerable attention due to its superior efficiency and algorithmic robustness
compared to Markov Chain Monte Carlo methods [55, 56, 351, 377]. SMC comprises numerous steps,
such as reweighting, resampling and MCMC-based rejuvenation12. The technical details of SMC can
be found in [55, 56, 351, 378, 379].

5.3 Results
In this section, we first present the results of the experiment, that is, the evolution of the tumour
spheroid. We then move on to consider the outcome of the global sensitivity analysis and determine
which model parameters are the most influential. Finally, we calibrate the relevant parameters of the
multiphase model in such a way that they mimic the experimental results.

5.3.1 Growth of neuroblastoma spheroids in the microfluidic devices
The bright-field microscopy images in Fig. 5.3A show the growth of the spheroids in the collagen
hydrogel in the microfluidic device from day zero (single cells) to day seven. The size of the spheroids
is measured as the cell area of the spheroids: the size increases from 381(154) µm2 at day 0 up to
10 199(2384) µm2 at day seven, as shown in Fig. 5.3B.

An examination of the spheroid populations reveals a narrow morphology spectrum: most
spheroids form circular structures without elongations or protrusions on their surface. Measuring

12In the rejuvenation step, we use a random walk Metropolis kernel as the MCMC transition kernel, where the
covariance matrix of the proposal distribution is set proportionally to the empirical variance of the particles [57]. Further,
an adaptive tempering scheme [57] is employed such that the ratio between two subsequent tempering exponents equals
0.95.
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Figure 5.3 Growth of neuroblastoma spheroids in the collagen hydrogel in the microfluidic device. A) Representative
bright-field time-lapse images showing the formation of neuroblastoma spheroids on days 1, 3, 5, and 7. B) Evolution
of the spheroid area of individual spheroids over time. Data is expressed as mean ± SEM (standard error of the
mean). C) Evolution of the spheroid circularity of individual spheroids over time. Data is expressed as mean ± SD
(standard deviation). D) Confocal images as Z-stack13 (upper row) and orthogonal projection (bottom row) on day 7.
E) 3D reconstruction of a neuroblastoma spheroid on day 7. This figure is taken from [62], where it is licensed under
CC BY-NC-ND 4.0.

13Z-stacking is a digital imaging technique that combines multiple images taken at different focal lengths to create a
composite image with greater depth [380].
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the circularity over time reveals high circularity values, i.e., high circularities of the projected area of
the spheroids (with the median values ranging from 0.92 to 0.97 at various time points, see Fig. 5.3C),
confirming the predominance of a single spheroid phenotype. The lower circularity values during
the first days may be due to a small inherent error in measuring the size of small pixelated objects
or the lack of total compactness at the beginning of the spheroid formation. The observation of
a single phenotype is confirmed by confocal imaging and 3D reconstruction of the spheroids on
day seven (Fig. 5.3D and E): again, most spheroids have a round shape with a highly compacted
cytoskeleton, few protrusions, and a smooth surface. This phenotype is typically associated with
high cell-cell adhesion due to the high compressive forces acting on the spheroids in the 3D hydrogel.
Both cell spreading and tumour invasion are greatly reduced, and most of the cells remain as dense
and isolated aggregates, with minor motility through the collagen gel compared with previously
studied cancer types [344].

5.3.2 Global sensitivity analysis
We estimate the Sobol indices separately for each time point in the experimental measurements,
i.e., from day zero to day seven. For this purpose, we train a Gaussian process in which the scalar
quantity of interest is the tumour volume at the corresponding time point. The training is based
on 460 training samples and results in a Nash–Sutcliffe efficiency (see Eq. (4.39)) of Q2 > 0.96 for
all cases. First- and total-order Sobol indices are estimated for 1, 3, 5, and 7 days of growth. The
estimation is based on 100000 Monte Carlo samples, 300 bootstrap samples, and 500 realisations of
the trained Gaussian process metamodel.

Only five input parameters have a major impact on the tumour volume, these being the interfacial
tension (σtℓ), the dynamic viscosity of the tumour cell phase (µt), the relative permeability exponent
of the tumour cell phase (At), the tumour-growth coefficient (γtgrowth), and the intrinsic permeability
of the ECM (k). The remaining six parameters have a first- and total-order Sobol index of less than
0.01 (see Table 5.2). We thus conclude that these parameters are non-influential in the given setup
and can be fixed at any value within the studied ranges.

The Sobol index estimates for the most influential parameters are shown in Fig. 5.4: for all
five of the most influential parameters, the total-order Sobol index is considerably higher than the
first-order index, indicating higher-order interaction effects. Therefore, we estimate the second-
order Sobol indices for the influential parameters: the results confirm that interactions are indeed
present, particularly an interaction of the dynamic viscosity µt and the growth coefficient γtgrowth

(see Table 5.3).
Comparing the estimated Sobol indices for the various time points reveals that while the total-

order Sobol index of the growth coefficient γtgrowth dominates the global sensitivity analysis, the
corresponding first-order Sobol index decreases over time. At the same time, the influence of the
dynamic viscosity µt of the tumour cell phase increases, in particular the total-order Sobol index.
This could be because the cells are initially more independent as they are separated from each other.
In contrast, once the spheroid has grown, cells behave like a cluster and no longer as individual
entities. Our results highlight the increasing influence of the mechanical properties of the tumour cell
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Table 5.2 First- and total-order Sobol indices. All values are rounded to three decimal places.

Parameter Day 1 Day 3 Day 5 Day 7
S i STi S i STi S i STi S i STi

k 0.003 0.015 0.009 0.023 0.008 0.027 0.007 0.027
ν 0.001 0.003 0.000 0.000 0.000 0.001 0.000 0.001
G 0.001 0.004 0.000 0.001 0.000 0.004 0.0 0.005
µs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
µt 0.055 0.238 0.112 0.274 0.152 0.436 0.175 0.532
σtℓ 0.014 0.040 0.038 0.091 0.035 0.105 0.032 0.110
At 0.087 0.251 0.061 0.154 0.059 0.213 0.062 0.269
Aℓ 0.000 0.0 00 0.000 0.0 00 0.000 0.000 0.000 0.000
γtgrowth 0.632 0.679 0.521 0.739 0.344 0.665 0.250 0.605
γtnecrosis 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
γntgrowth 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.001

Table 5.3 Second-order Sobol indices for day 7 rounded to three decimal places.

Parameter µt At γtgrowth k
σtℓ 0.014 0.009 0.032 0.003
µt 0.067 0.188 0.007
At 0.059 0.0
γtgrowth 0.004

phase (in this case, its dynamic viscosity) the longer the tumour grows. Moreover, the influence of
interactions of different parameters also increases over time. On the one side, these results emphasise
the importance of using a proper global method for sensitivity analysis, such as the Sobol method
used here, which gives such detailed insights as opposed to local estimates. On the other side, further
experiments should build on this knowledge and not only investigate single mechanical properties
of tumours but also consider the interactions by changing more than one parameter at a time.

We also include the uncertainty of the Sobol index estimates based on the workflow presented in
Chapter 4: the total uncertainty in the Sobol index estimates, included as 99% confidence intervals in
Fig. 5.4, is reasonably small compared to the value of the Sobol indices. Neither the uncertainty due
to Monte Carlo integration nor the uncertainty due to the use of the Gaussian process metamodel is
dominating (see Table 5.4).

The results of the global sensitivity analysis show that six out of the eleven uncertain input
parameters have a total-order Sobol index close to zero. This suggests that these parameters are
non-influential with respect to the quantity of interest, i.e., the tumour volume, and can hence be
fixed anywhere with the range given in Table 5.1. As a result, the number of input space dimensions
that must be included in the subsequent calibration can be reduced to the number of influential
parameters. To validate this assumption, we fix the non-influential parameters at the mean value of
the corresponding probability distributions and compare the resulting PDFs of the tumour volume
to the original PDF with all eleven uncertain input parameters: the resulting distributions show very
good agreement for all time points (see Fig. 5.5), and we conclude that fixing the six non-influential
parameters is justified.
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growthγt

Figure 5.4 First- and total-order Sobol indices for 1, 3, 5, and 7 days of growth. First-order Sobol indices are shown as
bold bars, while total-order Sobol indices are shown as dashed bars in the background. The error bars indicate the
99% confidence intervals for the corresponding Sobol index estimates.

Table 5.4 Total-order Sobol indices with the 99% confidence intervals (CI) due to Monte Carlo (MC) integration and
the use of the Gaussian process (GP) metamodel for day 7. All values are rounded to four decimal places.

Parameter STi CI due to MC integration CI due to the GP
k 0.0269 0.0030 0.0007
ν 0.0012 0.0001 0.0001
G 0.0051 0.0005 0.0003
µt 0.5322 0.0570 0.0062
µs 0.0000 0.0000 0.0000
σtℓ 0.1102 0.0116 0.0020
At 0.2687 0.0334 0.0040
Aℓ 0.0000 0.0000 0.0000
γtgrowth 0.6049 0.0658 0.0057
γtnecrosis 0.0015 0.0001 0.0001
γntgrowth 0.0014 0.0001 0.0001
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Figure 5.5 Probability density functions (PDFs) for different numbers of uncertain input parameters. The solid lines
show the distributions with all 11 uncertain input parameters as listed in Table 5.1. The dashed lines represent the
distributions with the six non-influential parameters fixed at their mean values. This figure is taken from [62], where
it is licensed under CC BY-NC-ND 4.0.

5.3.3 Bayesian calibration
Based on the results of the global sensitivity analysis, only the most influential parameters are
included in the Bayesian calibration:

θ̂ = [σtℓ , µt , At , k, γtgrowth]. (5.6)

We define the priors of each parameter as uniform distributions, following the ranges used in the
global sensitivity analysis (see Table 5.1). The observations are the tumour volumes measured at the
eight different time points in the in vitro spheroid experiments, as described in Section 5.2.1. The
physics-based tumour model is replaced by the posterior mean of a Gaussian metamodel trained
on the following data set: the time is used as an additional input space dimension, and 536 training
samples, each taken at eight time points, hence from a training data set of 4288 data points. We use a
sparse variational Gaussian process to reduce computational complexity and storage demands [303].
This results in a Nash–Sutcliffe efficiency of Q2 > 0.98 for the metamodel. The posterior distribution
is approximated with 20000 particles and 5 SMC rejuvenation steps, using a fixed noise variance of
σ 2
N = 1 × 1012 µm6 (see Eq. (5.3)).
In the following, we consider the results of the Bayesian calibration from two perspectives. First,

we analyse the output distribution of the calibrated model p(V t ∣yobs) (in the output space, i.e., the
tumour volume). This allows us to compare the remaining uncertainty in the tumour volumeV t with
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Figure 5.6 Spheroid tumour volume over time. In green solid lines, the growth of each spheroid from the experimental
data set is plotted. The outcome of the metamodel evaluated at θ̂MAP is plotted in brown, and the outcome of the
forward model in dashed brown line using the same point estimate θ̂MAP . The distribution of the tumour volume
p(V t ∣yobs) of the calibrated model is evaluated at each experimental time point and shown in light blue. The mean
of the tumour volume of the calibrated model is plotted in dark blue. This figure is taken from [62], where it is
licensed under CC BY-NC-ND 4.0.

the experimental data. We then analyse the posterior distribution p(θ̂∣yobs) of the input parameters
themselves (in the input parameter space).

The results of the Bayesian calibration in the output space are shown in Fig. 5.6 together with
the experimental data. We evaluate the maximum a posteriori density estimate (MAP)14 in both the
tumour-growth model f and the mean of the Gaussian process metamodelmGP, and the correspond-
ing results are depicted as brown dashed and continuous lines, respectively. These plots confirm
that the Gaussian process metamodel emulates the tumour-growth model reasonably well. We also
exploit the capacity of the Bayesian approach to represent uncertainty in the output space. The
probability distribution of the tumour volume p(V t ∣yobs) that emerges from a forward uncertainty
quantification using the posterior distribution is plotted in light blue. It estimates the probability
density function of the spheroid volume over time. The mean tumour volume Ep(θ̂∣yobs)

[V t(θ̂)]
of the calibrated model is plotted in dark blue. It is noteworthy that the results of the Bayesian
calibration match the experimental variability.

To gain a better understanding of the five calibrated parameters, we consider the posterior
distribution p(θ̂∣yobs) in the input parameter space. Since we are interested in the implications
for each individual parameter, we first focus on 1D marginal posteriors p(θ i ∣yobs). We will then
analyse the 2D marginal posteriors for parameter pairs, as the global sensitivity analysis indicates
the presence of interactions between the input parameters. The overall results are shown in Fig. 5.7.

14The combination of parameters that results in the MAP density estimate is θ̂MAP: σtℓ = 49.898mNm−1, µ t =
706.56Pa s, At = 2.5259, k = 0.8201 × 10−9mm2, γ tgrowth = 1.7919 × 10

−8 gmm−3 s−1.
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It should be borne in mind that the 1D and 2D marginal distributions all are projections of the
five-dimensional posterior distribution p(θ̂∣yobs) to lower dimensions.

The marginal posterior of the growth coefficient γtgrowth has a higher probability mass clustered
around the value 2 × 10−8 gmm−3 s−1. Therefore, we conclude that the lower values obtained from
the literature are unlikely to fit the experimental neuroblastoma spheroid growth. The marginal
posterior of the growth coefficient is significantly different from the other four (σtℓ, µt, At and k).
This is in agreement with the global sensitivity analysis, which indicates that the growth coefficient
is the most influential parameter. Thus, we consider that the identification of a more probable range
of values for this parameter is a solid outcome of the Bayesian calibration. Nevertheless, the plot
does not reveal a clear peak at any certain value, presumably due to the need to explain the high
variability of the experimental data.

Fig. 5.7 further shows that the 1D marginal posterior distributions for the interfacial tension σtℓ
and permeability k of the ECM are uninformative. This finding is in agreement with the output of the
global sensitivity analysis, in which both parameters are the least influential of the five parameters
selected for the Bayesian calibration. The flat marginal posteriors indicate that no information about
the effect of each individual parameter can be extracted separately from the available data. This is
assumed to be due to the small influence of these parameters on the resulting tumour volume. Also,
the forward model may allow for a wide range of parameters without resulting in a drastic change in
the outcome. A further hypothesis is that this is due to the low data regime, which comprises only
eleven spheroid data points per time step. The 1D marginal posterior distribution of the dynamic
viscosity µt reveals a slightly higher probability mass for values below 500 Pa s.
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We now consider the 2D marginal posteriors. Figure 5.7 reveals that the dynamic viscosity µt
has a negative correlation to the relative permeability exponent At; in other words, that large µt
values have a high density in combination with small values for At . Apart from that, the 2D marginal
posteriors are relatively flat.

To conclude the Bayesian calibration results, we relate them back to the theoretical framework
of our computational model. In the TCAT framework, the interfacial tension (together with the
interfacial curvature) causes the pressure difference between the cell phase and the surrounding
medium at the microscale. However, at the macroscale, which is where all model equations are
formulated, the use of Eqs. (2.31) and (2.32) are only heuristically proposed relations [65]. The
interfacial tension influences the density of the tumour. Here, we only used the tumour volume
for the Bayesian calibration, which is why it is not possible to distinguish between two spheroids
of the same volume but with different densities. This might explain why the marginal posterior
for the interfacial tension does not show a clear peak. With the inclusion of additional data, such
as cell count, tumour mass or density, a more pronounced posterior may be possible. Similarly,
Eq. (2.30) is also a heuristical relation to include interaction forces between the cell phase and the
surroundingmedium at the macroscale [65], which again is not consistent with the TCAT framework.
Further experimental analyses of how tumour cells interact with their surroundings (ECM and other
phases) are clearly necessary. From the mathematical side, Miller et al. [82] have already proposed a
theoretically sound version which considers the interfaces between the phases.

5.4 Discussion
We combined in vitro experiments with computational modelling to investigate the growth of tumour
spheroids subject to regulation by their microenvironment. Our methodology goes one step beyond
those presented in the literature [331–334].

Employing 3D experiments with microfluidic chips allows us to better reproduce the spatial
organisation of cells, control themicroenvironmental conditions and present a low-cost and accessible
method for rapidly characterising 3D cell clusterisation. The potential impact of 3D cultures has
strongly been emphasised in recent year, and authors have provided a variety of techniques for 3D
culture systems to attain more reliable and comprehensive results [381], also for neuroblastoma
[382–386]. Traditionally, the hanging drop method has been used to study spheroid growth: the
cells are deposited by gravity at the bottom of the hanging droplets, gradually forming a spheroid.
However, as no scaffold provides support, the natural tumour microenvironment is missing, which
makes this approach unsuitable for reproducing in vivo tumour formation. Employing a collagen
hydrogel enhances the study of 3D growth models in a more reliable approach, and its usefulness for
the study and characterisation of different tumours has been widely reported [359, 387]. Previous
studies have also reviewed the role of ECM in neuroblastoma progression, evidencing that alterations
of the ECMmediate cancer progression [361, 388]: the ECM stiffness regulates the neuroblastoma
dynamics and behaviour [359, 389] as well as the chemotherapeutic distribution and efficacy [384].

The main limitation of spheroids is that they are formed from a single cell. Although culturing
them from single cells embedded in hydrogels allows us to produce spheroids without aggregation
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techniques, they are still a simplified model. Spheroids lag behind other more complex models
where multiple cell types interact and where physiological functions are more clearly defined, e.g.,
in organotypic cultures. The combination of long-term 3D culture and microfluidic devices paves
the way to a better understanding of tumour spheroid formation, offering a refined methodology to
feed the computational models. Additionally, to create a tumour-on-a-chip platform which closely
recreates in vivo tumour growth, the flow has to be incorporated into the microfluidic devices [345,
390, 391]. On the computational side, models must then replicate the complex tumour structure,
integrating the vascular network to simulate in vivo dynamic flow and drug transport in the tumour
microenvironment. This is directly enabled by our modelling approach [58, 73].

A multiphase porous-media model based on porous media is chosen for the simulation of
spheroid growth to better account for the features of the experimental setup. A wide range of
models is presented in the literature, e.g., [31, 392–395]. Hydrogels are network polymeric materials
with highly hydrophilic polymeric chains and are hence associated with large quantities of water,
which accounts for their biocompatibility. As with most polymers, the hydrogels exhibit time-
dependent mechanical behaviour due to the intrinsic viscoelasticity of the polymeric network. Our
modelling approach offers the advantage of seamlessly incorporating recent scientific findings on
the importance of hydrogel viscoelasticity [396, 397] by applying a viscoelastic material law for
the scaffold. To better characterise the multiphase nature of hydrated materials (like the collagen
hydrogels of these spheroids), porous-media approaches are seen as the best solution [398]. A further
advantage is that the multiphase model presented here allows us to replicate the experimental setup,
as the biophysical properties of the hydrogel scaffold (i.e., stiffness, porosity and permeability) are
valuable inputs in the model. A current limitation is that we do not include the fibre orientation of
the collagen gels and the ECM deposition, which could be the subject of potential future research.
Finally, studying tumour growth in a heterogeneous microenvironment (asymmetric as opposed to
spherical growth) is a further area in which the experimental and computational models complement
each other in a feedback loop.

Combining the experimental activity with the multiphase porous-media model is crucial to
improving our understanding of the biological processes, i.e., the onset, formation, and growth of
tumour spheroids. To do this, we first assess the model’s parameter sensitivity towards the relevant
output quantity over time, i.e., the tumour volume. This reveals an overall dominant effect of
the input parameter accounting for growth. The other influential input parameters concern the
biophysical properties of the tumour cells and their interaction with the microenvironment—a fact
that confirms the importance of understanding the links between cancer biophysics and biology [9].
These findings emphasise the advantage of a genuinely global method of sensitivity analysis, such as
the Sobol method, which enables detailed insights rather than local estimates.

We then estimate the model parameters using Bayesian calibration, as it is intrinsically able to
capture the uncertainties present in experimentalmeasurements, which is the biggest advantage of the
Bayesian approach. Bayesian calibration also enables prior knowledge to be seamlessly integrated. The
predictive probability density of the tumour volume resulting from forward uncertainty quantification
using the obtained posterior clearly reflects the ability of Bayesian methodology to capture the entire
in vitro variability. In future studies, the Bayesian approach offers a natural way of integrating
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additional data as it becomes available: knowledge of the uncertain input parameters can be further
updated using the posterior obtained in the present study as a prior. Further research could entail
modelling other sources of uncertainty, such as the effect of spatial- and/or time-variable nutrient
distribution. Such effects can be included in the analysis as additional random variables, in a similar
way to [399], and might indeed result in a more expressive posterior.

This study aims to better understand how spheroid growth evolves over time and how mech-
anical stimuli regulate it. In this context, we are able to monitor tumour-spheroid growth under
physiological conditions using 3D microfluidic devices and collagen hydrogels to mimic the ECM.
Nevertheless, it is impossible to measure certain cell or organoid properties in such experiments, a
limitation of the presented workflow. To characterise the mechanical properties of the spheroids,
they usually must be separated from the collagen network and subjected to further tests, such as
atomic force microscopy. This is rather complicated and no longer physiological because cells must
be separated from the organoid. The presented workflow may be more appropriate, as it not only
allows the properties of the whole spheroid to be estimated but also focuses on the properties of the
cells embedded in the spheroid.

Additionally, replicating the experimental outcomes reduces cost significantly since it allows
new experimental scenarios to be tested computationally a priori. This is of major importance when
we study infant cancer, where early diagnosis is key: in paediatric malignancies, trial sample sizes are
kept as low as possible while maintaining the ability and power to address the scientific objectives of
interest. Therefore, the availability of childhood cancer cells, specifically neuroblastoma cells, is low;
hence, computational modelling plays a crucial role in exploring these cancers.

5.5 Outlook to Bayesian inference with coupled multi-physics
observations

The posterior PDF in Fig. 5.7 shows that the Bayesian calibration is not able to infer a clearly peaked
posterior PDF for four out of the five parameters based on experimental measurements of the tumour
volume. This raises the question of whether including additional data could benefit the Bayesian
inference task and to what extent. In particular, the tumour spheroid growing in the ECM is a
multi-physics system; hence, we can consider additional observations from other fields. For example,
we can consider the displacement of the ECM, which is a direct consequence of the growth of the
spheroid. We here briefly sketch an outlook on how such additional observations can benefit the
Bayesian inference task, based on [400].

The tumour volume is a function of the saturation of tumour cells, hence, part of the fluid field.
Based on the theory of porous media, the fluid field is fully coupled to the displacement field of the
solid phase, the ECM. We now assume that we can measure the displacement of the ECM, e.g., by
using a fluorescent marker and applying image analysis [401] or by tracking microbeads embedded
in the ECM [402]. In our in silico setup, we focus on two parameters: the growth coefficient γtgrowth

and the interfacial tension σtℓ. We generate artificial data by solving the fully coupled problem for a
given set of parameters, the ground truth, and then adding Gaussian noise. The tumour volume is
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Figure 5.8 Posterior PDFs. Scenario 1: The ECM is assumed to be rigid, and only observations of the tumour volume
are considered. Scenario 2: The fully coupled problem is solved, but only observations of the tumour volume are
considered. Scenario 3: The fully coupled problem is solved, and observations of the tumour volume and the ECM
displacement are considered.

measured at two time points, and the ECM displacement is measured at two positions at the last
time point (day seven). We investigate and compare the following three scenarios:

Scenario 1: We assume the ECM to be rigid and only consider observations of the tumour volume.
Scenario 2: We solve the fully coupled problem but only consider observations of the tumour

volume, similar to the previous example in Section 5.3.
Scenario 3: We solve the fully coupled problem and consider observations of the tumour volume

and the ECM displacement.

Fig. 5.8 shows the posterior PDFs for the three scenarios. While the posterior PDF recovers
the ground truth for the growth coefficient γtgrowth in all three scenarios, the posterior PDF for the
interfacial tension σtℓ is clearly improved when the ECM displacement is included as an additional
observation in Scenario 3.

This example demonstrates how additional observations from other fields can indeed improve
the inference of the posterior PDF—a promising direction for future research. Moreover, the compu-
tational setup can also guide the experimental design: it can be used to investigate in silico which
additional observations are most beneficial for the inference task and how many observations are
required to obtain a sufficiently peaked posterior PDF.

5.6 Conclusion
Two notable challenges currently hinder the way towards clinical application of tumour-growth
simulations as a prognostic tool: the limited integration of in silico studies with experiments, and
missing characterisation of uncertainties in the models and the data [403]. In addition, the tumour
microenvironment is now known to be an active promoter of tumour growth and must hence be
taken into account [404]. To tackle all of these challenges, we combine novel in vitro experiments
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with a computational model in such a way that both include the interactions with the tumour
microenvironment. This unique combination is the essential building block that then allows us to
infer knowledge about our model parameters by applying state-of-the-art techniques: our global
sensitivity analysis based on the Sobol method and our Bayesian calibration based on the sequential
Monte Carlo approach (both using Gaussian processes as a metamodel) account for the underlying
uncertainties.

Properly identifying the posterior distributions by Bayesian calibration for such a complex model
(as our multiphase porous-media tumour growth model) is often limited by insufficient and noisy
experimental data. The required experimental design needs to be able to precisely monitor the spati-
otemporal evolution of the spheroid while also providing a stable and controlled microenvironment—
a challenging task given the currently available technologies [403]. This study reveals that the
knowledge gained for the uncertain parameters is obviously still limited. However, our results
show that the inferred posterior distribution allows us to match the experimental data, including
the high variability. Hence, the demonstrated workflow shall be considered a first step towards a
Bayesian calibration of all uncertain parameters, which suggests which next steps shall be taken:
from the experimental side, additional data such as cell count, tumour mass or ECM displacement is
required—and would indeed benefit the Bayesian inference task. From the mathematical side, future
model improvements need to consider the interfaces between the phases [82].
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6
Conclusion and outlook

This thesis presented an interdisciplinary approach to integrating a computational model into cancer
research, bridging the gaps to probabilistic approaches, physics, and experimental research in biology
and medicine.

We presented a continuum-based approach to model nanoparticle transport in the tumour and
its microenvironment. When studying passive targeting of drug-loaded nanoparticles, the tumour
microenvironment and its physical properties are key factors for the success of the treatment. In
this context, our model can reproduce important transport characteristics and barriers, including
the endothelial barrier, the non-perfused tumour core, and the outward flow of the interstitial fluid.
Hence, our model enables a systematic exploration of the nanoparticle design space and can help
to design novel prototypes. We showed that the size of vessel wall pores and the permeability of
the blood vessel wall have a significant impact on the successful delivery of nanoparticles to the
tumour. Considering only the interendothelial pathway might not be sufficient to overcome the
major challenges observed in the literature. Furthermore, only if the transport in the interstitial fluid
is diffusion-dominated can the nanoparticles reach the tumour core, i.e., only small nanoparticles
with higher diffusivity can reach the tumour core.

Since passive targeting is insufficient to overcome the nanoparticle transport barriers, we further
extended our model to include active targeting of magnetic nanoparticles. Based on the Smoluchow-
ski advection-diffusion equation, we investigated the capture of magnetic nanoparticles under the
combined effect of magnetic forces and fluid flow—the latter again being an important transport
mechanism in the tumour microenvironment. The analytical expression we derived for the magnetic
force exerted by a cylindrical magnet provides an efficient way to model the capture of magnetic
nanoparticles in a more realistic setup in three dimensions. We studied a simplified test setup with a
tumour spheroid in a flow chamber and a cylindrical magnet below the chamber, the configuration
commonly used in experiments. Combining such a in silico study with in vitro experiments in a
controlled flow environment forms the basis for further next steps to more complex scenarios, e.g.,
in a vascular in vivomodel.

Many novel nanoparticle prototypes fail in clinical trials [24]. The computationalmodel presented
in this thesis can help to gain insight into nanoparticle transport and, as a next step, support the
design of novel systems. Developing a comprehensive in silicomodel will enable a fast and systematic
exploration of the nanoparticle design space, which is impossible in experimental research alone:
this reduces the number of experiments required to the most promising candidates, bypassing costly
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and time-consuming trial-and-error design methods. A collaboration between experimentalists,
computational modellers, and clinicians will allow us to build an integrated framework for drug
development and accelerate the translation of the results into clinical practice.

However, our model still entails many uncertain input parameters. While the parameters have a
clear physical meaning—one of the attractive features of physics-based models—the determination
of these parameters is often very elaborate and costly or even impossible in practice. To distinguish
the most influential parameters from non-influential ones, we performed a global variance-based
sensitivity analysis based on the Sobol method. Since such a global sensitivity analysis is computa-
tionally expensive, modellers often resort to local methods alone, which may result in a deficient
analysis [50]. We instead used a Gaussian process as a metamodel to reduce the computational cost
of the sensitivity analysis. We showed that this approach indeed enables a global sensitivity analysis
to be performed at a reasonable computational cost, even for complex, computationally expensive
models. A small number of training samples is enough to identify which parameters are the most
influential ones, all while keeping the uncertainty introduced by the Gaussian process metamodel
small. The metamodel-based approach also enables the estimation of higher-order Sobol indices:
such a study of interaction effects is often neglected, but it can be crucial to understanding the
underlying mechanisms of a model.

After identifying the most influential parameters, we performed a Bayesian calibration of the
model to experimental data. We combined state-of-the-art experimental techniques based on tumour
spheroids in collagen hydrogels in a microfluidic device with our computational tumour-growth
model and a sequentialMonteCarlo approach to perform the calibration. While the inferred posterior
distribution allows us to match the experimental data and its high variability, the limitations also
become apparent: even with state-of-the-art techniques for all workflow steps, the knowledge gained
for the uncertain parameters is clearly limited, and insufficient, noisy data derived from cell culture
experiments restrains us from properly identifying the posterior distribution. Since high variability
is an inherent property of cell culture experiments—even among standardised experiments in a
world-leading research environment [405]—a probabilistic approach to calibration is essential to
support realistic data interpretation and conclusions.

So far, we have studied solid tumours very generically. In particular, we have not distinguished
between benign and malignant tumours. The crucial difference between these two types of tumours
is the ability of malignant tumours to invade the host tissue and to metastasise, i.e., to spread to
other parts of the body. Since metastasis is the main cause of death in cancer patients, focusing on
the mechanisms of metastasis is of utmost importance. In addition to genetic factors, the physical
interactions of tumour cells with the surroundingmicroenvironment and their mechanical properties
were found to determine metastatic spreading [406, 407]: the stiffness of the extracellular matrix and
the interstitial fluid flow both regulate cell mechanics [408, 409]. Gottheil et al. [410] correlated the
metastatic potential with the state of cell unjamming—a concept of soft condensed matter physics.
In addition, the transport of oxygen is also critical: Rankin and Giaccia [411] showed that hypoxia is
a potent driver of metastasis and resistance to chemo- and radiotherapy, and Plodinec et al. [412]
concluded that metastatic spreading correlates with low stiffness of hypoxia-associated cancer cells.
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Our model already includes many of these factors, e.g., the stiffness of the extracellular matrix, the
interstitial fluid flow, and the oxygen transport, and can thus readily be applied to study metastasis.

In addition to the distinction between benign andmalignant tumours, we also have not considered
the tumour-specific and patient-specific heterogeneity. Different tumour types have different prop-
erties, and the properties of the same tumour type can vary significantly between patients, and even
one specific tumour is heterogeneous in itself [10]. While Deisboeck et al. [27] see continuum-based
approaches as a lesser choice for the exploration of heterogeneity, the combination of a continuum-
based with a cell-based approach in the form of a hybrid model may be a promising way to overcome
this limitation. Considering heterogeneity is an important next step towards a patient-specific model,
which can ultimately predict the evolution of a tumour and design personalised treatment strategies.

On the way towards a comprehensive patient-specific tumour growth model, we believe that we
should not limit ourselves to finding the final, perfect model with all parameters precisely determined
as such a model would not even represent the real heterogeneous world: we must instead focus on
building incomplete, tentative and falsifiable models in the most predictive and expressive fashion
currently feasible [413].
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A
Parameters

A.1 Parameters for the in vitro growth example of a tumour spher-
oid

Table A.1 Parameters based on the literature.

Symbol Parameter Value Units Ref.
r0 Initial tumour radius 0.010 mm Measured
ρt , ρℓ, ρs Density of the fluid phases and the ECM 1 ⋅ 10−3 g/mm3 [414]
S t0 Initial tumour saturation 0.875 – [67]
ε0 Initial porosity 0.89 – [344, 354, 415–417]
ωnℓcrit Critical mass fraction of oxygen 1 ⋅ 10−6 – [70]
ωnℓenv Environmental mass fraction of oxygen 4.2 ⋅ 10−6 – [67]
Dnℓ
0 Interstitial diffusivity of oxygen 3.2 ⋅ 10−3 mm2/s [67]

δ Non-linear diffusion law of oxygen 2 – [67]
µℓ Dynamic viscosity of medium 0.95 ⋅ 10−3 Pa s [414]
γnt0 Oxygen consumption due to metabolism of TC⋆ 6 ⋅ 10−10 g/(mm3s) [67]

* TC denotes the tumour cell phase.

Table A.2 Parameters based on the sensitivity analysis and Bayesian calibration in Chapter 5.

Symbol Parameter Value Units
σtℓ Interfacial tension 49.989 µN/m
µt Dynamic viscosity of TC 706.56 Pa s
At Relative permeability exponent for TC 2.5259 –
Aℓ Relative permeability exponent for IF 4.0 –
γtgrowth Tumour-growth coefficient 1.7919 × 10−8 g/(mm3 s)
γtnecrosis Necrosis coefficient of TC 5.5 × 10−9 g/(mm3 s)
γntgrowth Oxygen consumption due to growth 3.0 × 10−10 g/(mm3 s)
k Intrinsic permeability of the ECM 0.8291 × 10−9 mm2

ν Poisson’s ratio of the ECM 0.415 –
G Shear modulus of the ECM 415 Pa
µs Dynamic viscosity of the ECM 22.5 Pa s

124



A.2 Parameters for the in vivo growth example of a vascularised tumour

A.2 Parameters for the in vivo growth example of a vascularised
tumour

Table A.3 Parameters of the extracellular matrix (ECM) as the solid phase.

Symbol Parameter Value Units Ref.
ρs Density of the ECM 1 × 10−3 g/mm3 [33]
ν Poisson’s ratio of the ECM 0.4 - [33]
E Young’s modulus of the ECM 800 Pa [72]
k Intrinsic permeability of the ECM 1 × 10−9 mm2 [72]

Table A.4 Parameters of the host cells, the tumour cells, and the interstitial fluid (IF).

Symbol Parameter Value Units Ref.
ε0 Initial volume fraction of HC, TC and IF 0.78 - [72]
ρh, ρt , ρℓ Density of fluid phases 1.0 × 10−3 g/mm3 [33]
µh, µt Dynamic viscosity of host cells and tumour cells 20 Pa s [68]
µℓ Dynamic viscosity of IF 1.0 × 10−3 Pa s [33]
Ah, At Exponent in Eq (2.30) for host cells and tumour cells 2 - [33]
Aℓ Exponent in Eq (2.30) for IF 4 - [72]
σhℓ Host cells-IF interfacial tension 72 g/s2 [33]
σth Tumour cells—host cells interfacial tension 36 g/s2 [33]
a Coefficient in Eq (2.31) and (2.32) 590 Pa [33]
b Coefficient in Eq (2.31) and (2.32) 1 - [33]
γtgrowth Growth coefficient of tumour cells 4.0 × 10−8 g/(mm3 s) [68]

(Lp SV )
ly Lymphatic filtration coefficient 1.04 × 10−6 1/(Pa s) [187]

ply Lymphatic pressure 0 mmHg [72]
ply

coll Threshold for lymphatic vessel collapse 1000 Pa

Table A.5 Parameters of the vasculature and for leakage from the vasculature to the interstitial fluid.

Symbol Parameter Value Units Ref.
ρv Density of blood 1.0 × 10−3 g/mm3 [73]
pv Blood pressure 20 mmHg
µv Dynamic viscosity of blood 4.0 × 10−3 Pa s [202]
Dv Endothelial cell random-motility coefficient 5.0 × 10−9 mm2/s [72]
σ(πv − πℓ) Osmotic pressure difference 1333 Pa [111]
Lvp Hydraulic conductivity for transcapillary flow ⋆ 0.7 × 10−6 mm/(Pa s) [125]
S/V Surface-to-volume ratio 20 1/mm [181]

* We assume a pore radius of r0 = 200nm [107] and a vessel wall thickness of t = 1 nm [178]. The fraction of
pores γpore = 10 × 10−4, defining the fraction of the endothelium surface occupied by pores, is based on [125].
Altogether, this results in a hydraulic conductivity of Lvp = 1.25 × 10−6mm/(Pa s).
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A.2 Parameters for the in vivo growth example of a vascularised tumour

Table A.6 Parameters for transport of necrotic tumour cells and oxygen.

Symbol Parameter Value Units Ref.
Dnℓ
0 Interstitial diffusivity of oxygen 3.2 × 10−3 mm2/s [33]

δ Nonlinear diffusion law of oxygen 2 - [33]
DNt

eff Diffusion coefficient of necrotic tumour cells 0 mm2/s [72]
γtnecrosis Necrosis coefficient 1.0 × 10−8 g/(mm3 s) [70]
γntgrowth Consumption related to growth 2.4 × 10−10 g/(mm3 s) [33]
γnt0 Consumption due to metabolism of tumour cells 6.0 × 10−10 g/(mm3 s) [33]
γnh0 Consumption due to metabolism of host cells 2.0 × 10−10 g/(mm3 s) [73]
ωnℓcrit Critical mass fraction of oxygen 1.0 × 10−6 - [68]
ωnℓenv Environmental mass fraction of oxygen 4.2 × 10−6 - [33]

Table A.7 Parameters for oxygen exchange based on [73].

Symbol Parameter Value Units Ref.
ρn Density of oxygen 1.429 × 10−6 g/mm3 [73]
αℓ Solubility of oxygen in the IF 3.0 × 10−5 mmHg−1 [418]
αv ,eff Effective solubility of oxygen in blood 3.1 × 10−5 mmHg−1 [419]
HD Discharge hematocrit 0.45 - [419]
Cnv
0 Concentration of oxygen at maximum saturation 0.5 - [419]

n Hill exponent 2.7 - [420]
Pvoxy,50 Partial pressure at 50% oxygen saturation 37 mmHg [420]
γtv Coefficient for transvascular oxygen exchange 1.429 × 10−5 mm/(mmHgs) [419]
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[79] F. Pesavento, B. A. Schrefler and G. Sciumè. ‘Multiphase Flow in Deforming Porous Media: A Review’.
Archives of Computational Methods in Engineering (2016). DOI: 10.1007/s11831-016-9171-6.

[80] C. T. Miller and W. G. Gray. ‘Thermodynamically Constrained Averaging Theory Approach for
Modeling Flow and Transport Phenomena in Porous Medium Systems: 2. Foundation’. Advances in
Water Resources 28.2 (2005), 181–202. DOI: 10.1016/J.ADVWATRES.2004.09.006.

[81] W. G. Gray, C. T. Miller and B. A. Schrefler. ‘Averaging Theory for Description of Environmental
Problems: What Have We Learned?’ Advances in Water Resources 51 (2013), 123–138. DOI: 10.1016/j.
advwatres.2011.12.005.

[82] C. T. Miller, W. G. Gray and B. A. Schrefler. ‘A Continuum Mechanical Framework for Modeling
Tumor Growth and Treatment in Two- and Three-Phase Systems’. Archive of Applied Mechanics (2021).
DOI: 10.1007/s00419-021-01891-8.

[83] S. E. Shelton. ‘Mechanistic Modeling of Cancer Tumor Growth Using a Porous Media Approach’.
Master’s Thesis. University of North Carolina at Chapel Hill, 2011.

[84] B. Yue. ‘Biology of the Extracellular Matrix: An Overview’. Journal of Glaucoma 23 (2014), S20–S23.
DOI: 10.1097/IJG.0000000000000108.

[85] O. Coussy. ‘Thermodynamics’. In: Poromechanics. Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2003,
pp. 37–70. DOI: 10.1002/0470092718.ch3.

[86] J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous Media. Dordrecht,
Boston, London: Springer Netherlands, 1990. DOI: 10.1007/978-94-009-1926-6_1.

[87] G. A. Holzapfel. Nonlinear Solid Mechanics : A Continuum Approach for Engineering. Hoboken, NJ,
USA: John Wiley & Sons, Ltd., 2000.

131

https://doi.org/10.1016/j.cma.2016.02.022
https://doi.org/10.1007/s00707-020-02908-z
https://doi.org/10.1016/j.cma.2018.06.009
https://doi.org/10.1002/cnm.3253
https://doi.org/10.1002/cnm.3508
https://doi.org/10.1038/s41467-020-18794-x
https://doi.org/10.1007/s11242-017-0900-6
https://doi.org/10.1007/s11242-017-0900-6
https://doi.org/10.1007/s11831-016-9171-6
https://doi.org/10.1016/J.ADVWATRES.2004.09.006
https://doi.org/10.1016/j.advwatres.2011.12.005
https://doi.org/10.1016/j.advwatres.2011.12.005
https://doi.org/10.1007/s00419-021-01891-8
https://doi.org/10.1097/IJG.0000000000000108
https://doi.org/10.1002/0470092718.ch3
https://doi.org/10.1007/978-94-009-1926-6_1


Bibliography

[88] B. Babaei, A. J. Velasquez-Mao, K. M. Pryse, W. B. McConnaughey, E. L. Elson and G. M. Genin.
‘Energy Dissipation in Quasi-Linear Viscoelastic Tissues, Cells, and Extracellular Matrix’. Journal of
the Mechanical Behavior of Biomedical Materials 84 (2018), 198–207. DOI: 10.1016/j.jmbbm.2018.05.011.
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