
Pre-
pri

nt

Identification and Interpretation of Change
Patterns in Semantic 3D City Models

Son H. Nguyen and Thomas H. Kolbe

Technical University of Munich, Germany
(son.nguyen, thomas.kolbe)@tum.de

Abstract. Urban Digital Twins have received significant attention in
recent years due to their economic and research importance. Although
many definitions exist, the general consensus agrees on a continuous two-
way data flow between a physical entity and its virtual counterpart in a
digital twin. In the context of smart cities and semantic 3D city models,
however, no major breakthrough in realizing such complex change detec-
tion and analysis systems has yet been achieved. While several methods
for change detection in semantic 3D city models have been proposed,
the analysis of found changes, especially the identification of patterns
among a large number of changes, has not been given as much atten-
tion. Without a proper handling of patterns, it is difficult to provide
useful interpretation of changes with respect to stakeholders. Therefore,
this research proposes a framework to define, detect and decipher com-
plex semantic change patterns in semantic 3D city models. The approach
provides a central rule network to describe aggregation relations between
changes as well as methods to identify and capture detected change pat-
terns directly in the graph representation of a city model.

Keywords: semantic networks, change patterns, urban digital twins

1 Introduction

Digital Twins have in recent years become a major driving force behind many
technological and economic progresses worldwide. In the context of smart cities
and urban development, a digital twin of a city - an Urban Digital Twin - is
a comprehensive framework for organizing and harnessing the many diverse as-
pects of a city, ranging from physical components and logical structure to partak-
ing actors and processes. Urban Digital Twins are created for specific purposes.
The goal is to gain essential insights into the state of the city and its develop-
ment by observing and analyzing the information available in its correspond-
ing digital twin, thereby supporting both regular operations and critical urban
planning and decision-making. Despite the many definitions of digital twins,
the general consensus agrees that a digital twin must involve a physical entity,
a corresponding digital representation and a continuous feedback loop between
the physical and digital entity. This means that changes in the real world must
be reflected on the digital side, and vice versa, as illustrated in Figure 1. Such

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Link to the original publication
https://link.springer.com/chapter/10.1007/978-3-031-43699-4_30

https://link.springer.com/chapter/10.1007/978-3-031-43699-4_30

Pre-
pri

nt

2 Nguyen and Kolbe

systematic two-way synchronization is however difficult to implement and scale
efficiently [5, 15]. According to a recent survey among international experts [7],
updating (including change detection, version management and efficiency) was
identified as one of the most commonly cited technical challenges of Urban Dig-
ital Twins, for which no known complete solution has yet been achieved. As a
result, many current smart city deployments, especially in 3D city modelling,
often replace old datasets with newer versions, which not only wastes time and
computational resources, but also ignores any meaningful development that may
have materialized in the datasets during the recorded time period.

Physical
Entity

t0

Physical
Entity

t1

Digital
Entity

t0

Digital
Entity

t1

change

reflect

change

modify

Data
Comparison

Pattern
Capture

Change
Interpretation

Semantic
Enrichment

Fig. 1: An overview of an Urban Digital Twin (left) and its Semantic Enrichment
process (right) between two temporal versions of the digital entity. The focus of
this research is on the Pattern Capture and Change Interpretation (blue).

Therefore, acquiring efficient methods not only to detect changes but also
to assess and understand the results is of significant advantage. Moreover, the
gained knowledge provides a valuable insight into the semantic interrelations
among changes. Thus, the general goal is to increase the semantic usefulness
and readiness of the model. The modified digital entity can therefore be further
enriched with semantic contents in a multi-levelled process called the Seman-
tic Enrichment, as illustrated on the right-hand side of Figure 1. This process
consists of three consecutive levels listed in ascending semantic order as follows:
1. Data Comparison: Snapshots recorded at different timestamps are matched

and compared. This step is directly linked to the data storage and has the
lowest level of semantic detail.

2. Pattern Capture: Based on the changes detected in the previous level,
patterns of changes are captured to provide additional semantic context on
the data. The semantic detail of this level is thus increased.

3. Change Interpretation: Combining the results from previous levels, com-
prehensive semantic interpretation of changes can be produced. This level
has the highest concentration of semantic contents.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 3

Change detection and version control in general is not new and has been
discussed by several studies in recent years, such as in the field of semantic 3D
city modelling [10, 14]. The majority of these studies however focused solely on
the detection of literal modifications in the data (Semantic Enrichment, level
1), without further considering their semantic context. Most changes however
also have a meaning and purpose relevant to specific groups of stakeholders [8].
A graph-based framework was introduced [9] to better model and understand
the interrelations between changes and stakeholders, as well as the correlations
and reasoning of changes in semantic 3D city models (Semantic Enrichment,
level 3). An open question, however, remains as to how patterns of changes can
be efficiently captured (Semantic Enrichment, level 2). The current approach
in many smart city deployments is to create database queries for each pattern
and execute them in any necessary order on an ad hoc basis. This not only
requires expert knowledge on the structure of the underlying databases, but
may further lead to unwanted scheduling and efficiency problems, especially if
rules are dependent on each other (forming a “pattern” of patterns).

This research explores the changes that occurred in the digital representation
of a city within a digital twin. The goal is to uncover patterns and underlying
meanings or reasoning that these changes have on the real city. To achieve this,
this paper proposes a framework to define, detect and decipher complex change
patterns in semantic 3D city models, namely (1) a single rule network to define
all aggregation semantic rules, and (2) methods to detect patterns based on given
rules. The proposed methods were developed for Urban Digital Twins represented
by semantic 3D city models in CityGML as one of their core components but
can also be applied to other fields with similar use cases and semantic object
representations, such as in the BIM field.

2 Foundations and Related Work

Since semantic 3D city models are structured as graphs [1, 3, 9], most match-
ing methods also naturally store changes in compatible data structures. This
leads to the pattern matching problem of graphs. Figure 2 gives an overview of
the methods introduced in this research, where (1) changes detected between
graph representations of two semantic 3D city models are first matched against
given pattern rules (Figure 2a), (2) additional interpretation nodes are then
created and attached to the source nodes in the graph database (Figure 2b),
which (3) can ultimately be utilized to derive meaningful interpretations about
the changes in the data (Figure 2c). To achieve this, four key technical require-
ments of matching change patterns in semantic 3D city models must be fulfilled,
namely Dynamic Aggregation, On-the-fly Typing, Origin Handling and Memory
Efficiency, as described in Table 1. Thus, this research proposes several concepts,
which, to a degree, have their roots in Rete networks, Petri nets and graph trans-
formation systems. This section shall therefore provide a brief introduction to
some the most relevant components of each concept.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

4 Nguyen and Kolbe

Pre-defined Pattern Rules

(a) Detected changes (gray) between graph representations of two given buildings are
matched against pre-defined pattern rules (green).

(b) A pattern (red) indicating a possible roof raise of a building has been detected
with moved roofs and resized walls upwards by 1 m.

∆h = 1

“Building roofs
have been raised

by 1 m.”

(c) Interpretations are derived from the detected pattern.

Fig. 2: An illustration of the pattern matching process. Input changes (gray)
belonging to a pattern (blue) are aggregated into new interpretation nodes (red).

2.1 Rete Networks

The Rete match algorithm is an efficient method for matching a large number
of patterns against a large number of objects [4]. The algorithm was originally
developed for production system interpreters. A typical production system con-
sists of (1) an unordered collection of conditional statements, (2) a global work-
ing memory (or database) holding temporary data, and (3) a rule interpreter
that can assess rule conditions. To avoid iteration over input, the Rete algo-
rithm stores matched objects in each corresponding rule. When a new element
is inserted or an existing element is removed from the shared working element,
affected rules are notified and their list of stored objects is updated accordingly.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 5

Table 1: Key requirements for change patterns in semantic 3D city models.
Requirement Description

Dynamic
Aggregation

Most aggregation rules specify a static number of input objects. In
many important use cases, however, input quantity is not known
before execution. Therefore, dynamic aggregation must be enabled.

On-the-fly
Typing

As input for pattern matching, changes of city objects may be given
in any order. To avoid repeated iteration, the system must be able
to identify changes based on their types and attributes in real-time.

Origin
Handling

In addition to types, changes must be distinguished by their seman-
tic context. For example, when interpreting changes to a building,
only changes relevant to that specific building are considered.

Memory
Efficiency

Graph representations of cities may become very large, leading to
a potentially overwhelming number of produced changes. This re-
quires efficient algorithms with regard to memory consumption.

To avoid repeated iteration over rules, a directed acyclic graph representation of
rules is used for pattern matching. This graph is called the Rete network [4].

One major advantage of the Rete match algorithm is its processing speed
due to the employed working memory containing temporary data of each pat-
tern during execution. The working memory “memorizes” previously read input
objects as well as intermediate results in “buckets”, which, if full, shall trigger
corresponding actions. Thus, the working memory allows both on-the-fly type
checking and on-demand reactivation of pending rules. Moreover, the Rete algo-
rithm excels in use cases, where input is a stream consisting of randomly ordered
and differently typed objects, on which a large number of insertion and deletion
operations are performed. The performance of the Rete algorithm largely de-
pends on the implementation of its working memory. In general however, in
worst-case scenarios, the original Rete algorithm may store all temporary data
in main memory, degenerating memory efficiency. The methods proposed in this
research employ an extended version of the afore-mentioned working memory
while avoiding excessive memory consumption.

2.2 Petri Nets

Petri nets were first proposed to model parallel and distributed systems [11]. A
Petri net is a bipartite graph consisting of places and transitions. The partitions
are connected via directed arcs. Places may contain tokens, which can travel
between neighbouring places. In rule-based systems, places semantically repre-
sent the current state or conditions of rules, while transitions represent actions.
If a sufficient number of tokens exist at a place, its outgoing transition(s) shall
be triggered, consuming input tokens and producing new ones. The number of
tokens consumed and produced is dictated by the transitions’ weights.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

6 Nguyen and Kolbe

Petri nets have strong scalability and modelling potential in rule-based ap-
plications. The use of tokens is well-suited for describing many aggregation rules
of changes in semantic 3D city models. Petri nets can be represented mathemat-
ically as both graphs and matrices. However, tokens in classical Petri nets have
neither an attribute, a type, nor an origin, and are thus indistinguishable. In con-
trast, changes in semantic 3D city models are typed and attributed. Therefore,
this research employs a specialized Petri net capable of distinguishing tokens
based on their types, attributes and semantic context.

2.3 Graph Transformation Systems

Due to the graph-based nature of semantic 3D city models, matching their change
patterns can also be considered a use case of graph transformation. Graph trans-
formation was first proposed as a graph grammar for rule-based rewriting of non-
linear data structures [6,12,13]. In graph transformation, rules are defined using
type graphs and instance graphs. A type graph defines the conceptual model
of object classes, while an instance graph is a snapshot containing concrete
values and structure prescribed by the corresponding type graph.

Graph transformation systems are a powerful tool for handling complex se-
mantic structures. Type-enabled graph transformation can utilize hidden context
information of objects, enabling more complex analyses. However, graph trans-
formation employs graph isomorphism, whose complexity is neither polynomial
nor known to be NP-complete [16]. In addition, the structure of the type and
instance graphs given by the transformation rules must be known, but this infor-
mation is often unknown until execution. The methods proposed in this research
employ a simplified approach to graph transformation. Instead of relying on
graph isomorphism, node types and semantic positions in graphs are used to
improve the runtime efficiency of the pattern matching process.

3 Defining Pattern Rules

Based on the strengths and limitations of the concepts discussed in Section 2,
this research proposes a compact aggregative rule network to define graph-based
rules for change patterns in semantic 3D city models.

3.1 Definitions

A content network is a directed and attributed graph representation of a
semantic 3D city model, where all information about the city model is stored.
Nodes in a content network are called content nodes. An example of a content
network is shown in Figure 3. A content network contains graph representation
of both the old and new dataset. Detected changes are attached to both graphs,
but for visual clarity, this study only shows one of these graph representations
with connected changes, as shown later in Figure 5.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 7

Building
msdHeight

Roof
Surface

Ground
Surface

Wall
Surface

Wall
Surface

Wall
Surface

Wall
Surface

boundary
Surface

boundary
Surface

boundary
Surface

boundary
Surface

boundary
Surface

boundary
Surface

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Fig. 3: A content network for a simplified building model, representing multiple
1-to-n relations between a building and its boundary surfaces. This is directly
derived from a CityGML dataset as described in previous publications [10].

A rule network is a directed acyclic and attributed graph that allows all
rules for pattern matching to be defined in one place. It is a type graph capable
of describing the characteristic behaviours of different types of changes, allowing
the dependencies between rules to be explicitly captured. Nodes in a rule network
are called rule nodes and can represent both literal detected changes in the data
and interpreted changes later on. Figure 4 shows an example of a rule network.

Each rule node is assigned a type corresponding to the changes it represents.
Rule nodes are connected using directed rule edges. A rule edge has three com-
ponents: the next content type, a list of conditions and a weight. The content
type acts as a “checkpoint” for the rule interpreter to navigate within the content
network. For example, the content nodes associated with the rule edge between
PolygonResized and WallResized are wall surfaces in the content network. Con-

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

8 Nguyen and Kolbe

Polygon
Moved

vT

Polygon
Resized

D

Property
Changed

∆h

Roof
Moved

vT

Wall
Resized

D

Height
Changed

∆h

Roof
Raised

∆h

RoofSurface;
1; 1

WallSurface;
1; 1

Building;
name=msdHeight; 1

Building;
vT = (0, 0,∆h); ∗

Building;
D = (0, 0,∆h); ∗

Building;
∆h > 0; 1

Fig. 4: An example of a rule network for the content network shown in Figure 3.
Each edge is notated with 〈next content type; conditions; weight〉.

ditions are logical expressions evaluated against properties in the corresponding
change nodes. Values can be named and shared as variables across converging
rule edges. New properties in previous changes are forwarded to the next one
as part of the knowledge gained through the interpretation process. If no con-
dition is needed, the value 1 is used. All conditions must be fulfilled to trigger
an aggregation. For example, the rule edge between RoofMoved and RoofRaised
dictates that the translation vector vT must have no x and y component, while
the z value is named ∆h to represent any real value. This variable is reused in
other rule edges. Moreover, as shown in the rule edge between HeightChanged
and RoofRaised, additional constraints can be introduced to limit property val-
ues. Parametrized conditions are evaluated during runtime at the next rule node
by matching property values of collected changes, as explained in Section 4.

The weight of a rule edge dictates the number of occurrences of changes
corresponding to the previous rule node required for the creation of the next
interpretation node. If a rule node has multiple incoming edges, it can only
be activated when all previous rule nodes have collected a sufficient number
of changes. For example, the rule node RoofRaised can only be activated if all
required occurrences of RoofMoved, WallResized and HeightChanged exist. The
weight can be assigned a specific value or a placeholder ∗ for an unknown value.
For instance, since each building can have a different number of wall surfaces, the
weight of the rule edge between WallResized and RoofRaised is first initialized
with ∗. This placeholder is updated with a concrete value by the rule interpreter
at runtime. The interpreter searches “upwards” in the content network for the
next content node that matches the content type given in the rule edge, then

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 9

traverses all paths “downwards” until a content node specified by the previous
rule node is found. The placeholder is then replaced with the number of reached
paths. For instance, while processing the rule edge between WallResized and
RoofRaised, the interpreter searches for a Building node, as its type is specified
as the next content type of the rule edge. From this Building node, all paths
to Wall nodes are counted. A comparison between this rule network and the
concepts previously mentioned in Section 2 is summarized in Table 2.

Table 2: A comparison between the proposed rule network and related
concepts with respect to the key requirements described in Table 1.

Dynamic
Aggregation

On-the-fly
Typing

Origin
Handling

Memory
Efficiency

Rete networks1 × × ×
Petri nets1 × ×

Graph transformation1 × ×
Proposed rule network2

× Not applicable Applicable if typing is enabled Applicable
1 Original publication is considered. Some variants may differ.

4 Detecting Change Patterns

Given a rule network, change patterns in a content network can be matched. The
detected patterns are represented as additional interpretation nodes attached
to their corresponding content nodes. For instance, a PolygonMoved node is
attached to a source Polygon node, while a RoofRaised is attached to a Building
object. The results of the pattern matching process are illustrated in Figure 5.

The method used to detect change patterns during the pattern matching
process is summarized in Figure 6 and described in Algorithm 1. The algorithm
employs a FIFO (First In, First Out) queue that functions like a conveyor belt in
an assembly line. The queue contains all literal and interpreted changes, removes
the first element for processing, and stores the aggregated changes at the end
of the queue until all elements have been processed. The algorithm aims to
aggregate input changes into new, higher-level semantic changes. Changes are
aggregated if they satisfy all four criteria: type, origin, condition and count check
required by given rules. The type and condition check can be determined based
on the type and attributes available in each change. To conduct the remaining
count and origin check, the method employs two of its key concepts, namely an
aggregative memory and a graph-based semantic context.

When a rule is applied, its associated next content node is initialized with
a memory to store crucial aggregation information about the current and maxi-
mum number of changes collected per type. Each time the content node encoun-
ters a change required by its rule, it increases its count of the object type by one

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

10 Nguyen and Kolbe

Building
msdHeight

Roof
Surface

Ground
Surface

Wall
Surface

Wall
Surface

Wall
Surface

Wall
Surface

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Roof
Raised

∆h

Polygon
Moved

vT

Roof
Moved

vT

Property
Changed

∆h

Height
Changed

∆h

Polygon
Resized

D

Wall
Resized

D

Polygon
Resized

D

Wall
ResizedD

Polygon
Resized

D

Wall
Resized D

Polygon
Resized

D

Wall
Resized

D

Fig. 5: An example of the results (blue) of the pattern matching process based
on the content network shown in Figure 3 and the rule network shown in Fig-
ure 4. For visual clarity, boundarySurface nodes are omitted. Interpretation con-
nections are shown in orange. In this example, the algorithm starts with the
changes PolygonMoved, PolygonResized and PropertyChanged at the lowest level
and gradually propagates “upwards” in the content network until a content node
with a wanted type is encountered, such as the path PolygonResized → Polygon
→ WallSurface, where WallSurface is required by WallResized. Once all crite-
ria have been fulfilled, a new interpretation node WallResized is created. The
propagation proceeds until a CityModel node (not shown) is reached, which is
associated with global or systematic change patterns. Thus, the pattern match-
ing algorithm is an aggregation process, where changes of lower semantic levels
are aggregated to produce new changes of higher semantic levels.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 11

← ← ← . . . ←

Input changes Interpreted

Type
Check

Origin
Check

Condition
Check

Count
Check

RULES

process produce

Fig. 6: The pattern matching algorithm uses a queue to process all literal and
interpreted changes (blue). Changes that pass all checks are aggregated into a
new interpreted change (red) and added to the queue for further processing.

Algorithm 1: Pattern matching algorithm
Data : A content network NC and a rule network NR

A queue Q initialized with detected changes connected with NC

Result: Interpreted changes connected with NC

1 while Q is not empty do
2 q ← dequeue Q
3 r ← find rule in NR that accepts q.type, or else continue
4 n← find node in NC of r.type starting from q, or else continue
5 if n.memory does not exist then
6 n.memory ← initialize memory
7 end
8 if r.conditions are all fulfilled then
9 if n accepts q.origin then

10 increase n.memory.count (q.type) by 1
11 store reference to q in n.memory.ref s
12 end
13 if n.memory.count (t) = max, ∀t ∈ n.memory.types then
14 m← create interpretation node representing the change pattern
15 initialize m.type, m.origin and store q.properties in m
16 connect n and all stored references in n.memory.ref s with m
17 enque m into Q
18 end
19 end
20 end

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

12 Nguyen and Kolbe

until this value reaches a maximum. The count check is considered complete, if
the number of all change occurrences per type reaches a maximum. This memory
can be implemented as a collection of key-value pairs. Listing 1 gives an example
of the memory of the content node Building shown in Figure 5.

� �
{

" variables " : [" deltaH "],
" rules " : [

{
" rule_type " : " RoofMoved ",
" count_value " : 1,
" max_value " : 1,
" properties " : { "vT" : "(0, 0, 0.969)" }

},
{

" rule_type " : " WallResized ",
" count_value " : 2,
" max_value " : 4,
" properties " : { "D" : "(0, 0, 0.969)" }

},
{

" rule_type " : " HeightChanged ",
" count_value " : 1,
" max_value " : 1,
" properties " : { " deltaH " : 0.969 }

}
]

}� �
Listing 1: An excerpt from the memory of a Building node shown in Figure 5
that has collected 1 instance of RoofMoved, 2 WallResized and 1 HeightChanged.

The use of memory is similar to that of Rete networks [4] and can eliminate
repeated iteration by processing changes on the fly. However, in contrast to clas-
sical Rete networks, the proposed method does not store entire objects in its
memory. Instead, the algorithm first identifies objects based on their types and
attributes, then updates the number of their occurrences accordingly. Moreover,
at the start, the memory is empty and only expanded as new rules and changes
are encountered. This avoids the worst-case memory consumption of Rete net-
works, where the working memory could hold all input objects at runtime.

Another key concept of the pattern matching algorithm is the ability to
distinguish objects based on their semantic context or origin in the network. An
origin of a node is a set containing itself and all its ancestors in a directed acyclic
network. In an input sequence of changes, such as (r, w,w, r, r, h, . . .), where the
change types are RoofMoved, WallResized and HeightChanged, it is unknown

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 13

whether these changes refer to the boundary surfaces of the same building or
several different ones. Therefore, the origin check is employed as an additional
guard to ensure changes are aggregated correctly. This is related to the problem
of finding the lowest common ancestor [2], as illustrated in Figure 7.

Surface s1v1 Surface s2v2 Surface s3v3

Building LCA of s1 and s2Rule R1v

CityModel LCA of s1 and s3
LCA of s2 and s3

Rule R2

Fig. 7: An example of changes v1, v2 and v3 associated with surfaces s1, s2 and
s3 (green). The lowest common ancestor (LCA) of s1 and s2 is located at the
Building node (blue), while the LCA of s1 and s3, as well as s2 and s3, is located
at CityModel (red). Thus, rule R1 accepts v1 and v2, while rule R2 accepts both
R1 and v3. The interpretation of higher levels only considers the interpretation of
objects on the next lower level, or literal changes if no interpretation is available.

5 Application Examples

In the following experiments, change patterns between two CityGML documents
in Level of Detail (LoD) 2 are matched. The datasets used are excerpts, each con-
taining 44 buildings from a selected area of Hamburg, Germany. These datasets
were recorded in 2016 and 2022 and are provided publicly by the city.1 All data
are managed within a single graph database, which includes the content network
of both the city models and their changes, as well as rule networks for detecting
change patterns. The graph database Neo4j is used. The rule interpreter shown
in Algorithm 1 can be implemented using Neo4j’s Cypher query language or its
Java API. A Java implementation of the rule interpreter can be exported as a
user-defined procedure, which can then be invoked directly from Cypher.

Global patterns have been observed based on a total number of 1049 changes
on thematic attributes distributed over roof surfaces, building parts and build-
ings (see Table 3). A visualization of these patterns can be found in Figure 8.
1 https://metaver.de

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

14 Nguyen and Kolbe

Table 3: A summary of thematic changes between 2016 and 2022.

Property name Description B P R

Insert

Dachhoehe1 Roof height 9 × 25 × 0 ×
Firsthoehe1 Ridge height 21 × 63 0 ×
Geo.typ2DRef.1 Source geometry type 44 0 × 0 ×
Grundrissaktualitaet1 Ground plan update 44 63 0 ×
Hauskoordinate1 Building coordinates 5 × 0 × 0 ×
Qu.Dacherkennung1 Roof detection quality 21 × 63 0 ×
Traufhoehe1 Eaves height 21 × 63 0 ×
tridicon Dachform1 Tridicon roof shape 21 × 63 0 ×

Update

gmlid Identifier 44 63 81
creationDate Modification date 44 63 0 ×
measuredHeight Measured height 20 × 63 0 ×
function Function 14 × 0 × 0 ×
roofType Roof type 1 × 7 × 0 ×
Datenqu.Dachhoehe1 Source roof height 2 × 10 × 0 ×
Flaechengroesse1 Surface area 0 × 0 × 33 ×
Flaechenneigung1 Surface inclination 0 × 0 × 32 ×
Flaechenrichtung1 Surface orientation 0 × 0 × 2 ×
Gemeindeschluessel1 Municipality key 44 0 × 0 ×

1 Generic string attribute B Building P Building part R Roof surface
× Local or clustered change pattern Global change pattern

Out of 638 roof, wall, and ground surfaces, 552 have been observed to either
be moved or changed in size. Translation is detected by calculating the offset
vector between geometries, while size changes are measured by deviations in the
surfaces’ 3D bounding boxes. Notably, all 134 translation and 394 (94 %) of all
size changes occurred vertically, with translation offsets ranging from −0.957 m
(downwards) to 1.895 m (upwards), and resize margins between −1.836 m (height
decrease) and 2.288 m (height increase). These changes are significantly reduced
to a few interpretations in the following three steps.

Firstly, by extending the rule network given in Figure 4, translation and resize
changes of the same margin for all roof, wall or ground surfaces of a building are
aggregated into interpretation nodes attached to buildings (see Table 4).

Secondly, the aggregated nodes are further combined into tuples. Since each
building is bounded by three types of surfaces and each interpretation node
indicates a surface translation, resize, or none of the above, there exist 27 com-

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 15

Building

Building part

Roof surface

Tridicon roof shape

Source geometry type

Eaves height

Roof detection quality

Building coordinates

Ridge height

Roof height

Function

Municipality key

Ground plan update

Surface orientation

Surface inclination

Surface area

Source roof height
Roof type

Measured height

Modification date

Identifier

Update

Insert

Fig. 8: An overview of change patterns detected in the thematic data of the
Hamburg datasets between 2016 and 2022. Changes are categorized by their
functions shown on the right column (inserted and updated properties). The left
column represents the number of change occurrences grouped by feature types,
where most modifications occurred. The property names are given in the middle.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

16 Nguyen and Kolbe

Table 4: A summary of surface-based changes between 2016 and 2022.

Surface changes Aggregated Found patterns of same margin1,2

2 Ground size changes 2 (100%) 0 Building with all grounds resized

6 Wall translations 4 (67%) 1 Building with all walls moved

31 Roof size changes 25 (81%) 5 Buildings with all roofs resized

49 Roof translations 49 (100%) 11 Buildings with all roofs moved

79 Ground translations 79 (100%) 38 Buildings with all grounds moved

385 Wall size changes 204 (53%) 12 Buildings with all walls resized
1 Only buildings in which all surfaces of a given type have been moved or resized
by the same amount are considered.
2 A building may be counted multiple times, up to a maximum of three occurrences,
with one count for each boundary surface type.

binations to form an interpretation tuple for each building. A tuple RWG denotes
a consistent translation (T), resize (S) or none (X) for all roofs (R, first position),
walls (W, second) and grounds (G, third) of a building.

Thirdly, the translation and resize margins stored in the interpretation tuples
are studied to reveal correlations between geometric changes. For example:

1. All roof, wall and ground surfaces of one building marked with TTT have
been vertically shifted by the same offset −0.049 m, meaning the entire build-
ing has been moved downwards by that amount.

2. A common pattern has been observed in all ten buildings marked with TST,
where each building’s roof and ground surfaces were moved by ∆zr and
∆zg, and all wall surfaces resized by ∆zw, such that ∆zw + ∆zg = ∆zr

(see Table 5). For example, the roofs of building B1 have been raised by
approximately 1 m, supported by an equivalent increase in wall height and
a small downward translation of ground surfaces. This information is useful
for stakeholders such as urban planners, energy consultants, and city may-
ors, as it may indicate that a building has been expanded by an additional
storey, potentially increasing the amount of available living space. In con-
trast, buildings with small deviations, such as B8, may be of interest to data
brokers and quality managers.

3. Of the six buildings marked with XXX, two have remained geometrically
unchanged, as none of their boundary surfaces has been translated or resized.

Therefore, the interpretation nodes produced by the pattern matching pro-
cess are crucial in providing a deeper understanding of the interrelationships
between detected changes in the datasets. Further information on the imple-
mentation and additional examples can be found online (work in progress).2

2 https://github.com/tum-gis/citymodel-compare

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

Identification and Interpretation of Change Patterns 17

Table 5: An overview of the translation offsets ∆zr and ∆zg of all roof and
ground surfaces, resize margins ∆zw of all wall surfaces, and difference in each
building’s measured heights ∆h (in cm). The correlations ∆zw + ∆zg = ∆zr

and ∆h = ∆zw apply in all ten buildings (B1-10) marked with TST.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

∆zr 96.9 16.1 12.0 9.4 −2.8 −4.5 −5.7 −5.8 −6.0 −7.4
∆zw 102.5 25.1 16.5 12.0 10.8 11.4 −3.2 0.8 5.0 18.8
∆zg −5.6 −9.0 −4.5 −2.6 −13.6 −15.9 −2.5 −6.6 −11.0 −26.2

∆h 102.5 25.1 16.5 12.0 10.8 11.4 −3.2 0.8 5.0 18.8

6 Conclusion and Future Work

Based on the strengths and limitations of well-known concepts for rule-based
systems, such as those of Rete networks, Petri nets and graph transformation
systems, this research proposed a framework to define rules for matching change
patterns in semantic 3D city models. The framework employs graph represen-
tations of semantic 3D city models, called the content networks, as a basis for
all pattern detection processes. Rules are defined in a rule network, which is a
type graph that can describe the characteristic behaviours and interrelations of
different classes of changes in aggregative semantic patterns. By applying a rule
network to a content network, change patterns can be detected and captured
during the pattern matching process. The detected change patterns are repre-
sented as interpretation nodes connected to the content network, thus enabling
faster retrieval and handling of the semantic patterns of changes.

The method employs aggregative rules to effectively condense a large num-
ber of changes into a few interpretation nodes that are more comprehensible
to various stakeholders. Based on these gained interpretations, more efficient
and complex analyses on the city’s evolution can be performed. Moreover, the
employed rule networks are compact yet expressive, and can be used in highly
automated processes. It should be noted, however, that the framework is de-
signed to perform aggregation and logical operations exclusively, thus requiring
the provision of detected changes, as presented in our earlier publications [10],
including those of complex geometric objects.

Combined with other previous related work [8,9], this research serves as one
of the last missing pieces required for a comprehensive understanding of changes
in semantic 3D city models. Further experimentation and optimization of the
proposed methods on large-scale real-world datasets are planned. An investi-
gation will be conducted to determine the potential reasons for changes, their
impact on city models, and how they can be represented and detected using the
proposed framework.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

Pre-
pri

nt

18 Nguyen and Kolbe

References

1. Amgad Agoub, Felix Kunde, and Martin Kada. Potential of Graph Databases in
Representing and Enriching Standardized Geodata. Dreiländertagung der DGPF,
der OVG und der SGPF, 36, 2016.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On Finding Lowest Common An-
cestors in Trees. SIAM Journal on Computing, 5(1):115–132, 1976.

3. Kerstin Falkowski and Jürgen Ebert. Graph-based Urban Object Model Process-
ing. City Models, Roads and Traffic (CMRT’09): Object Extraction for 3D City
Models, Road Databases and Traffic Monitoring-Concepts, Algorithms and Evalu-
ation, Paris, France, 9:115–120, 2009.

4. Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19(1):17–37, 1982.

5. Michael Grieves and John Vickers. Digital Twin: Mitigating Unpredictable, Unde-
sirable Emergent Behavior in Complex Systems, pages 85–113. Springer Interna-
tional Publishing, Cham, 2017.

6. Reiko Heckel. Graph Transformation in a Nutshell. Electronic Notes in Theoretical
Computer Science, 148:187–198, 02 2006.

7. Binyu Lei, Patrick Janssen, Jantien Stoter, and Filip Biljecki. Challenges of Urban
Digital Twins: A Systematic Review and a Delphi Expert Survey. Automation in
Construction, 147:104716, 2023.

8. Son H. Nguyen and Thomas H. Kolbe. Modelling Changes, Stakeholders and
their Relations in Semantic 3D City Models. In ISPRS, editor, Proceedings of the
16th International 3D GeoInfo Conference 2021, volume VIII-4/W2-2021 of ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
pages 137–144. New York University, ISPRS, 10 2021.

9. Son H. Nguyen and Thomas H. Kolbe. Path-tracing Semantic Networks to Inter-
pret Changes in Semantic 3D City Models. In Proceedings of the 17th International
3D GeoInfo Conference 2022, volume X-4/W2-2022 of ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences. UNSW Sydney,
ISPRS, 10 2022.

10. Son H. Nguyen, Zhihang Yao, and Thomas H. Kolbe. Spatio-Semantic Compar-
ison of Large 3D City Models in CityGML Using a Graph Database. In ISPRS,
editor, Proceedings of the 12th International 3D GeoInfo Conference 2017, volume
IV-4/W5 of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, pages 99–106. University of Melbourne, ISPRS, 2017.

11. Carl Petri. Kommunikation mit Automaten. PhD thesis, TU Darmstadt, 1962.
12. John L. Pfaltz and Azriel Rosenfeld. Web Grammars. In Proceedings of the 1st

International Joint Conference on Artificial Intelligence, IJCAI’69, page 609–619,
San Francisco, CA, USA, 1969. Morgan Kaufmann Publishers Inc.

13. Terrence W. Pratt. Pair Grammars, Graph Languages and String-to-Graph Trans-
lations. J. Comput. Syst. Sci., 5:560–595, 1971.

14. Richard Redweik and Thomas Becker. Change Detection in CityGML Documents,
pages 107–121. Springer International Publishing, Cham, 2015.

15. Angira Sharma, Edward Kosasih, Jie Zhang, Alexandra Brintrup, and Anisoara Ca-
linescu. Digital Twins: State of the Art Theory and Practice, Challenges, and Open
Research Questions. Journal of Industrial Information Integration, 30:100383,
2022.

16. Steven S. Skiena. The Algorithm Design Manual. Springer Publishing Company,
Incorporated, 2nd edition, 2008.

This is a pre-print for personal use only.
The paper will be published in Springer's Lecture Notes in Geoinformation and Cartography (LNG&C)

series in a book titled “Recent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference”.
This article was selected based on the results of a double-blind review of the full paper.

