LL1LL

TUM SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

TECHNISCHE UNIVERSITAT MUNCHEN

Research Internship

Research Internship Report

Zhao Wei

LL1LL

TUM SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

TECHNISCHE UNIVERSITAT MUNCHEN

Research Internship

Research Internship Report

Exploration of high-throughput based on
ring-structure for wavelength-routed optical
networks-on-chips

Author: Zhao Wei
Supervisor: Prof. Dr.-Ing. Ulf Schlichtmann
Advisor: Dr.-Ing. Tsun-Ming Tseng

Submission Date: 31.08.2022

I confirm that this research internship is my own work and I have documented all sources
and material used.

Munich, 31.08.2022 Zhao Wei

Abstract

Wavelength-routed optical network-on-chips (WRONoCs) is considered to be one of the
most appealing multicore fields with increasing connectivity and scalability. The design of
WRONOCs consists of many aspects. For example, physical layout, message routing, and
waveguide routing. It offers high bandwidth and low latency by stacking an additional
optical layer which avoids traffic contention as well as arbitration. However, due to the high
connectivity of the WRONOoCs, the problem of the losses such as crossing loss and propagation
loss needs to be carefully addressed. This report proposes an algorithm named Hierarchical
ring. It enables multiple sub-rings interconnected by rings on the upper hierarchy based on
the conventional ring structure. Hierarchical ring considers the communication requirements
among the nodes and it aims to minimize the propagation loss compared to the conventional
method while maintaining the same bandwidth. Compared to conventional ring routing,
Hierarchical ring has great potentials to adapt for future demands of application-specific
implementations.

1ii

Contents

Abstract iii
1 Introduction 1
2 Preliminary and Background 2
2.1 DBSCAN method e 3
22 Hamiltonianpath o 4
2.3 Integer linear programming 4

3 Proposed Algorithms and Models 5
3.1 Graphpartitioning L L 5
3.2 Intra-clusterrouting L o L 6
321 Inputdata 6

3.2.2 Sets, indices and variables o 7

323 Outputdata 7

324 Constraints e e e e 7

3.3 Inter-clusterrouting L 9
331 Inputdata 9

3.3.2 Setjindices and variables. 9

333 Outputdata 9

334 Constraints e e 10

4 Results and Discussion 11
41 DBSCAN results o o e, 11
42 Intra-cluster routing and Inter-cluster routing result 12

5 Conclusions 14
Bibliography 15

iv

1 Introduction

The arising interest in multicore starts with Moore’s Law, named after Gordon E. Moore.
In the early sixties, he observed that the number of transistors in an integrated circuit
doubled every 24 months. However, power density becomes increasingly problematic with
the increased frequency and microarchitecture improvements. The focus thus shifts towards
the multicore systems. The design of different interconnect topologies determines the system
performance as well as the latency and losses. WRONo0Cs with an additional optical layer are
becoming more and more attractive as further bandwidth improvement on the electrical layer
is hardly achieved while maintaining the same feasibility and scalability. The state-of-the-art
WRONOCs topology approaches include A-router [1], snake [2] and ring [3] (see Figure 1.1).

e pullealo sl

n
a2
n uup
| ‘ Hub2 Hubt
b1 b2 b3 b4 it iR 1D L \ b I

(a) A-router (b) snake (c) ring

M

JJ O
0000

Figure 1.1: Different state-of-the-art topologies.

[4] illustrates the worst-case losses comparison between different topologies. The result
shows that A-router and snake mainly suffer from crossing loss (due to waveguide crossing)
while the major loss of ring structure is the propagation loss which depends on the waveguide
distance between the source and destination. Compared to other topology implementations,
ring structure has the lowest loss down to 46% to 56% reduction by avoiding waveguide
crosses and reducing the signal propagation distances with the use of clockwise and counter-
clockwise directions. Moreover, this result could be further improved with better parameter
value of propagation loss, thus making ring structure to become a promising topology for
future WRONo0Cs. Another advantage of ring structure is that regardless of the distance
between source and destination, its worst case loss is the lowest. This enables a larger number
of cores implementations with high robustness.

2 Preliminary and Background

Ring is a contention-free network with high throughput. In this architecture, a wavelength
is reusable for multiple communications on a single waveguide that greatly relaxes the
constraints of the number of wavelengths. Figure 2.1 shows the physical structure as well as
the conceptual view of the ring. One physical ring waveguide is shared among multiple virtual
cycles (or rings) each assigning a wavelength for different sources and targets. Figure 2.1b
shows the physical view of the optical network interface (ONI) of the ring. A microring
resonator (MRR) is a ring-formed waveguide. The signal will resonate with MRRs and couple
into MRR if the wavelength of the signal is an integer multiple of MRR’s wavelength (see
Figure 2.1b orange path), otherwise it will continue in its original direction without being

impacted (see Figure 2.1b blue path).

T
=
B

~~~~~~~

(b) physical view of ONI for reception

(a) conceptual view of different wavelengths passing
and transmission

through the same waveguide

Figure 2.1: ring structure.

However, propagation loss is dominant in the ring structure. To date, there is no opti-
mization approach regarding signal path length minimization as well as considering com-
munication requirements in ring. In this report, I propose a nouveau topology: Hierarchical
ring. Hierarchical ring aims to minimize the propagation loss while fulfilling communication
requirements to the maximum extent by forming density-based clusters. Each cluster (see
the light green rectangle in Figure 2.2) in my topology is designed to group the nodes whose
communication requirements with each other are high. I then connect my clusters to form a
large cycle (see the dark green dashed rectangle in Figure 2.2) that connects all the clusters to
meet the demand of inter-cluster communication. My design flow consists of three stages:




2 Preliminary and Background

(1) graph partition based on the communication requirements and the Euclidean distance
between nodes using the DBSCAN (Density-based spatial clustering of applications) method.
(2) clockwise and counter-clockwise weighted Hamiltonian path routing of each cluster based
on the same features as (1). (3) global Hamiltonian path routing for connecting all the clusters.

Figure 2.2: light green rectangles represents an example of partitioned result; dark green
rectangle is a example of global routing.

2.1 DBSCAN method

DBSCAN is a graph partition method without defining a prior number of clusters. I define
the value of parameters radius € and minimum points minPts at the beginning. Three types of
points are elaborated in DBSCAN: 1) core point: the number of reachable points is greater or
at least equal to minPts given , 2) border point: reachable by at least one core point given , and
3) noise point: not reachable by any core point. To perform the algorithm, I initially pick an
unprocessed point in the graph. If it is the core point then I mark all the neighboring points
as border points of this point which will form a cluster, otherwise, I mark it temporarily as a
noise point to see if it could be further updated to a border point of another cluster. Then I
continue my process of repeating the first step until all the points have been visited once. It
is noteworthy that DBSCAN is normally sensitive to the values of ¢ and minPts, and subtle
differences may entail completely different partition sizes and partitioned points.




2 Preliminary and Background

2.2 Hamiltonian path

A Hamiltonian path is a graph path that visits each vertex exactly once. If a Hamiltonian
path exists and the starting vertex is the same as the ending vertex of the path, the resulting
graph cycle is called a Hamiltonian cycle. So far, the weight of the edge in the Hamiltonian
path is default and is assumed to be identical on every edge. Therefore, I take communication
requirements and Euclidean distance between two nodes into the weight consideration,
resulting in a weighted Hamiltonian cycle problem. The objective is to explore a weighted
Hamiltonian cycle that fulfills all my requirements.

2.3 Integer linear programming

An integer linear programming (ILP) problem is a mathematical optimization or feasibility
program in which the objective function and the constraints are both linear. The goal of using
ILP in my model is to meet communication requirements and minimize the total propagation
loss of the network. The variables in my model represent decisions. For example, ‘1" is when
ILP decides to include an edge of the graph in my model. A standard form of ILP is 1) set
the target functions, 2) subject the problems to a set of linear equations and constraints, and
3) obtain an optimal solution or non-feasible result. The advantage of the ILP problem is not
only providing an optimal solution for my problem but also being more dynamic and flexible
since I could add more features to the model without violating the previous constraints.




3 Proposed Algorithms and Models

In this section, I first provide an overview of my routing flow and then illustrate each part in
detail.

reiterate

1. Graph partitioning

ausiliary
3. inter-cluster routing

communication matrix;
physical positions of the
hubs on the optical layer;

Routing solution

2. intra-cluster routing

ILP-based weighted Hamil

cluster path 1
clox

Figure 3.1: For pictures with the same name, the direct folder needs to be chosen.

Figure 3.1 summarizes my algorithm flow, consisting of three stages: 1) graph partition, 2)
intra-cluster routing, and 3) inter-cluster routing. During the first stage, clusters containing
different nodes are constructed. I further do the weighted Hamiltonian cycles in each cluster
with aid of auxiliary random points. In the following, I route the random points to form the
global Hamiltonian cycle. At last, I reiterate the model to get different optimization results
based on different random points” locations, I then choose the locations with the minimum
cost.

3.1 Graph partitioning

As I mentioned before, DBSCAN will be applied in Hierarchy ring model. The algorithm of
DBSCSN performs clusters allocation given parameters: radius ¢, minimum nodes minPts,
communication requirements between different nodes, and their physical locations.

DBSCAN starts by picking up an arbitrary nodes P that has not been visited. One function
deduces the number of neighboring nodes within the radius € of the node P, and if it contains
at least minPts nodes, a cluster C is forming. Otherwise, the point is labeled as noise. For
each node Q of the neighboring nodes, I update the label of it as C indicating that it belongs
to the same cluster as P. I then seek the neighboring nodes of Q. If the neighboring nodes
of Q are larger or equal to minPts, I expand the neighboring node of Q to the neighboring




3 Proposed Algorithms and Models

node of P and continue my iteration. A cluster is completely found as I go through all the
neighboring nodes of P. Then, a new unvisited node is retrieved and will be processed.
DBSCAN can be used with any distance function. In my model, I consider communication
requirements between two points as an additional feature besides Euclidean distance.

3.2 Intra-cluster routing

As described in Section Preliminary and Background, few attempt to consider the aspect
of nodes’ traffic. Therefore, I intend to improve the aforementioned work by starting intra-
cluster routing. However, if some of the nodes in the cluster are simultaneously working for
intra-cluster communication and inter-cluster communication, a highly complex problem will
be aroused against the designer’s choice accordingly. I propose a heuristic approach to this
problem which is to use auxiliary random points. I define four random points as the I/O port
of each cluster to do the inter-cluster communication with other clusters. All the Hamiltonian
paths must use these four points as the starting point and the ending point of each cluster.
To further minimize the propagation loss on the optical layer, I establish two routing directions
in the model: the clockwise and the counter-clockwise Hamiltonian path routing. I ensure the
distinction between these two directions by using residual networks [5]. I construct a residual
network, denoted G (V, E), where V denotes the nodes and E edges representing whether the
communication exists between the nodes. In the beginning, the number of available capacities
on the direct edge (u,v) and (v,u) are the communication requirements between u and v. If
one direction is determined to pass edge (u,v), the amount of available capacity of this edge
will become zero, leading to prohibiting the same routing path with the other direction and
thus two distinct paths are guaranteed.
I formally define the optimization problem for intra-cluster routing as follows.

3.2.1 Input data

* CM: A square communication matrix C;; € RN*N with N being the sum of nodes and
where each C; ; represents the communication requirement between node i and node j.
In my test cases, we apply WRONoC applications with hubs and memory controllers.
Each hub represents a node and each memory controller represents a node as well.
Cij = 0 indicates there is no communication between node i and node j since I omit the
communication in one hub (e.g. C;; = 0) as well as the communication between their
memory controllers.

0 Cuia2  CHimct ChHimc2

CH1,H2 0 Caa,mct CHo,mc2
Cuimct Chz,mct 0 0
Crai,mc2 CHo,mc2 0 0

¢ Physical positions of the hubs and memory controllers on the optical layer.




3 Proposed Algorithms and Models

¢ Partitioned results of DBSCAN in the form of arrays. Each array represents a cluster
containing different hubs and memory controllers.

3.2.2 Sets, indices and variables

e Sets and Indices:
i, jecluster C,: indices and set of each cluster (n€ [1, the number of partitioned clusters])
n €Random points R,: indices and set of random points (n€ [1, 4])

Pairings = (i, j) € C x C: set of pairings within one cluster where C defines as the union
of C, and R, (C, URy)

G= (C, Pairings): A graph where the set C defines the set of the vertices and the set
Pairings defines the set of edges

d;; € R": Distance between i and j, V(i,j) € Pairings

Cij € R*: Communication flow from Random point i to j

® Variables:
k € [1,2]: the indices of two Hamiltonian paths in cluster C,
bE?: the starting point in the k Hamiltonian path
b’g": the ending point in the k Hamiltonian path

m,i,j

b - the edge in model of Hamiltonian path k. Note that b, cemodel

edgemodel*
edge(i,j) will be adopted in the routing path k

= 1 implies that

3.2.3 Output data

Two routing paths of each cluster C,

3.2.4 Constraints

¢ Constraints for random points in C,:

for each individual path k, I choose one random point out of four as the starting point:

Yoer,bs ' =1,Vm € k (3.1)

for each individual path k, I choose one random point as the ending point:

Yoer, b =1,Vm €k (3.2)

To avoid signal conflicts, for each random point, I only map its function one time in C,:

by” +b7° +by? + b7 = 1,¥0 € R, (3.3)




3 Proposed Algorithms and Models

Mutual exclusion of two pairs of edges in each path in C,

if one random point Rn is selected for path k, then the edges could be connected to this
random point. In contrast, if Rn is not selected, I remove all the edges connected to this
random point:

S ercnbzzig’é;()delﬁm ek,veR, (3.4a)
by’ = Yrec, bZ’QZZO s VM € kv € R, (3.4b)

Constraints for weighted Hamiltonian paths

if the random point is the starting point, there is no incoming edge:

b <1 — ercnbgzlge’zoddﬁm €kveR, (3.5)

if the random point is the ending point, there is no outgoing edge:

b;ﬂ,v <1- erCn bZigéfnodel’vm € kv € Ry (3.6)

there is no edge connected between 2 random points:

bfdﬁ%ﬁgd =0,Ym € k,¥(Ry,R,) € Pairings (3.7)

for each cluster point C, in path k, the number of incoming edges is equal to the number
of outgoing edges:

mxloy m,0,x2
leeC,, bedgemodel - ZX2€Cn bedgemodel’vm €k vvely (3.8)

for each cluster point C, in path k, the number of incoming edges is equal to 1 and the
same as the number of outgoing edges:

ercnbzige’iodd =1,VmekuveC, (3.9a)
erCanZlge';odel =1,VmekuveC, (3.9b)

an extra constraint is set up to prevent the sub-cycle, particularly for the routing path
from (random points, cluster points) to (cluster points, random points):

m,x,0 m,o,x
ZXGCn bedgemodel + ZXGCn bedgemodel <1LVmeckuveR, (3.10)

Residual network constraint: if one directed edge is chosen by one path in Pairings, I
prohibit the selection of the same directed edge in another path in Pairings.

1,01,02 2,01,02 o o
bedgemodel + bedgemodel = 1,V(7)1, 02) € Pairings (3.11)




3 Proposed Algorithms and Models

* Objective function

I obtain the optimal result of two weighted Hamiltonian path by setting the following
target function:

. . . m,i,j o m,i,j
minL = 3 cx Z(i,j)ePairings dl,] bedgemodel Cijj bedgemodel (3.12)

3.3 Inter-cluster routing

To satisfy the inter-cluster communication concurrently, an ILP-based inter-cluster routing is
adopted. Note there are several differences between intra-cluster routing and inter-cluster
routing:

¢ The cluster hubs are not involved
¢ The weight of the edge relies exclusively on the physical locations of random points

¢ There will be no starting point nor ending point since a cycle will be formed instead of
a path in the previous work (see 3.2 intra-cluster routing)

A similar formal model based on [6] will be described in the following;:

3.3.1 Input data

Physical positions of the random points on the optical layer

3.3.2 Set,indices and variables

¢ Sets and Indices:
i,j €ERy
Pairs = (i,j) € R, X R,
S C Ry: A subset of the set of R,
G = (Ry, Pairs): A graph where the set R, defines the set of the vertices and the set
Pairs defines the set of edges
e Variables
d;; € R*: Distance between i and j, V(i,j) € Pairs

x;j: xi; = 1if I decide to connect Random point i with Random point j. Otherwise, the
decision variable is equal to zero.

3.3.3 Output data

A Hamiltonian cycle with all the random points




3 Proposed Algorithms and Models

3.3.4 Constraints

¢ Constraints for the Hamiltonian cycle
Symmetry Constraints: for each edge (i, j) is selected, then edge (j, i) is likewise selected:

X;j = x;;,V(i,]) € Pairs (3.13)

Each vertex has one incoming edge and one outgoing edge:

Y.(i,j)cPairsXij = 2, Vi € Ry (3.14)

Subtour elimination: These constraints ensure that for any subset of nodes of the set of
Random points, there is no cycle:

Z(l‘#]‘)esxl"j S ’S‘ — 1,VS ~ Rn (315)

* Objective function
I obtain the optimal result of two weighted Hamiltonian paths by setting the following
target function:
min L = Y ; j)cpairsdij - Xij (3.16)

It is worth mentioning that preventing multiple sub cycles in a Hamiltonian cycle needs an
exponential number of these constraints. Consequently, I use a callback function to find
violated subtours and add these constraints to the model as lazy constraints. The function
subtourelim starts by retrieving the solution and then comparing the number of solution edges
with the appropriate one. Since I have n random points, n edges should be counted in the
solution if the optimization model correctly forms a Hamiltonian cycle. Therefore, if the
number of edges in the solution is smaller than I expected, I invalidate this solution from the
solution space and reiteratemymodel to search for new solution.

Input: solution model
Output: new lazy constraints

if valid solution then
retrive solution sol = model.cbGetSolution()

select the edges in sol if sol [i,j] > 0.5
end
tour=subtour(edges selected)

if len(tour) <len(Card(random Points)) then
| new lazy constraints are added

end

Algorithm 1: fonction subtourelim.

Eventually, I reiterate the intra-cluster routing and inter-cluster routing by applying different
locations of random points each time. I terminate the process until the final result converges.

10



4 Results and Discussion

Hierarchy ring is implemented in Python and all the simulations discussed in this report
were conducted on a 2.4GHz CPU. Firstly, I evaluate the result from DBSCAN. Secondly, I
discuss the optimization results based on my model.

4.1 DBSCAN results

I initially implement the case with 4 hubs and 4 memory controllers then with 8 hubs and 8
memory controllers. I separately increase the value of radius € and minimum points minPts
to examine their impact on the graph partitioning.

As shown in Table 4.1 and Table 4.2, the first column represents the value of radius ¢, the
first row represents the value of defined minPts and each entry represents the number of
partitions at given value € and minPts. For each column of the tables, the number of partitions
decreases with the increasing radius value. The value of ¢ is in terms of hundreds since
I adjust the weight coefficient of communication requirements and Euclidean distance to
average their impact. However, the number of partitions is not sensitive to the change of
minPts (see each row in Table 4.1 and Table 4.2).The results suggests that the value of minPts
is not critical to the graph partition in this case. Furthermore, comparison of the mean and
variance of the two cases are shown in Table 4.3. The results show that the contribution of the
number of minPts is insignificant in both cases. Since my model is currently applied within
the aforementioned scope, the values of radius ¢ and minimum hubs minPts are set as 700
and 3 for 4-cores, which are the mediums of the available partition numbers.

Table 4.1: The impact of minPts on the number of partitions in different values of ¢ in architec-

ture 4Hubx4MC.
numberof minPts |1 |2 |3 |4|5|6|7 |8
¢ =100 6|6|6|6|6|6|6|6
e =200 5/5|5|5|5|5|5|5
e =300 5/5|5|5|5|5|5|5
e =400 414141441444
e =800 3133|4414 (4]|4

11



4 Results and Discussion

Table 4.2: The impact of minPts on the number of partitions in different values of ¢ in architec-
ture 8Hubx8MC.

numberofminPts | 1 | 2 | 3 | 4 | 5| 6 | 7 | 816
=100 101010 |10 |12 |12 | 12| 12
€ =200 6| 6| 6| 6| 8| 8|8 8
e =300 6 |6 |6 |6 |7|7]|7 7
€ =400 4 |41 4|6| 6| 6|6 6
e =800 2212122313 3

Table 4.3: Mean and variance of the number of clusters on varying ¢ in 2 architectures.

4Hubx4MC 8Hubx8MC
number of partitioned clusters | number of partitioned clusters
Mean Variance Mean Variance
£=100 6 0 11.5 0.75
€=200 5 0 7.5 0.75
£=300 5 0 6.75 0.1875
£=400 4 0 5.625 0.609375
e=800 | 3.625 0.234 2.6875 0.2148

(a) 20 iterations (b) 200 iterations (c) 2000 iterations

Figure 4.1: optimization results.

4.2 Intra-cluster routing and Inter-cluster routing result

I run my optimization model on 4Hubx4MC architecture. I set the value of radius & and
minimum hubs minPts as 700 and 3 respectively. Since the random points are not included in
the model, I need to rerun the model each time on applying different random points locations.
Figure 4.1 shows the routing result when I run 20,200,2000 times respectively. However, the
result does not converge until 2000 times. Besides, there are some evident issues that need to
be addressed:

12



4 Results and Discussion

Some random points are overlapping in my routing result. Additional constraints need
to be added to prevent it.

I do not have noise points in this optical layer layout. The existence of noise points for
other layouts awaits further exploration.

Random points are not included in my optimization model which may lead to extra
redundancy of the model that needs to run a large amount of time to converge. Future
optimization may be achieved by the integration of random points into the model.
However, including random points induces non-linearity of the constraints. For example,
the distance function calculation follows the non-linear square calculation which is
prohibited by the ILP. Due to the time limitation, I could not carry out this improvement.

Instead of one cycle, inappropriate constraints may lead to two independent cycles,
which refers to two mutually exclusive cycles. [7] proposes a method by flipping the
boundary edges on the grid graph to merge two cycles. However, this approach is only
valid in grid graph.

My optimization model on 4Hubx4MC architecture is rudimentary for this Hierarchical
ring which reveals the major problems in my design. The extension to 8Hubx8MC
architecture will be conducted once the aforementioned problems being addressed.

13



5 Conclusions

In this report, I propose a Hierarchical ring that improves the conventional ring by considering
communication requirements and physical locations between nodes. I establish my topology
in three steps: graph partitioning, cluster routing and global routing. Hierarchical ring has
great potential. Further study of this topology could be conducted in 3 aspects. First, set
constraints to prevent overlapping of the random points and rebuild the model considering
random points to remove the extra redundancy to the model. Second, perform wavelength
assignment and communication parallelism based on [8] and [9]. Last, compare optimization
results in three scenarios: 1) Hierarchical ring structure, 2) Hierarchical ring structure with
communication-parallelism, and 3) the state of the art with Hierarchical ring structure.
Comparison criteria includes the performance and the network complexity, which could be
accounted by the waveguide crossings, the MRR usage and optimization time.

14



Bibliography

[1] S. Beux, I. O’Connor, G. Nicolescu, G. Bois, and P. Paulin. “Reduction methods for
adapting optical network on chip topologies to 3D architectures”. In: Microprocessors and
Microsystems 37 (Feb. 2013), pp. 87-98. po1: 10.1016/j .micpro.2012.11.001.

[2] L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi. “Contrasting wavelength-routed optical
NoC topologies for power-efficient 3d-stacked multicore processors using physical-layer
analysis”. In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE). 2013,
pp- 1589-1594. por: 10.7873/DATE. 2013.323.

[3] S. Le Beux, J. Trajkovic, I. O’Connor, and G. Nicolescu. “Layout guidelines for 3D
architectures including Optical Ring Network-on-Chip (ORNoC)”. In: 2011 IEEE/IFIP
19th International Conference on VLSI and System-on-Chip. 2011, pp. 242-247. por: 10.1109/
VLSISoC.2011.6081645.

[4] S. Le Beux, H. Li, G. Nicolescu, J. Trajkovic, and I. O’Connor. “Optical crossbars on
chip, a comparative study based on worst-case losses”. In: Concurrency and Computation:
Practice and Experience (Oct. 2014), pp. 2492-2503. por1: 10.1002/cpe . 3336. URL: https:
//hal.inria.fr/hal-01117004.

[5] L.R.Fordand D. R. Fulkerson. “Maximal Flow Through a Network”. In: Canadian Journal
of Mathematics 8 (1956), pp. 399-404. por: 10.41563/CJM-1956-045-5.

[6] B.Mike. Traveling Salesman Problem.2011. URL: https://gurobi.github.io/modelingexamples/
traveling_salesman/tsp.html.

[7] C.Umans and W. Lenhart. “Hamiltonian cycles in solid grid graphs”. In: Proceedings
38th Annual Symposium on Foundations of Computer Science. 1997, pp. 496-505. por: 10.
1109/SFCS.1997.646138.

[8] M.Li, T-M. Tseng, D. Bertozzi, M. Tala, and U. Schlichtmann. “CustomTopo: A Topology
Generation Method for Application-Specific Wavelength-Routed Optical NoCs”. In: 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2018, pp. 1-8. por:
10.1145/3240765.3240789.

[9] M. Li, T-M. Tseng, M. Tala, and U. Schlichtmann. “Maximizing the Communication
Parallelism for Wavelength-Routed Optical Networks-On-Chips”. In: 2020 25th Asia and
South Pacific Design Automation Conference (ASP-DAC). 2020, pp. 109-114. por: 10.1109/
ASP-DAC47756.2020.9045163.

15


https://doi.org/10.1016/j.micpro.2012.11.001
https://doi.org/10.7873/DATE.2013.323
https://doi.org/10.1109/VLSISoC.2011.6081645
https://doi.org/10.1109/VLSISoC.2011.6081645
https://doi.org/10.1002/cpe.3336
https://hal.inria.fr/hal-01117004
https://hal.inria.fr/hal-01117004
https://doi.org/10.4153/CJM-1956-045-5
https://gurobi.github.io/modelingexamples/traveling_salesman/tsp.html
https://gurobi.github.io/modelingexamples/traveling_salesman/tsp.html
https://doi.org/10.1109/SFCS.1997.646138
https://doi.org/10.1109/SFCS.1997.646138
https://doi.org/10.1145/3240765.3240789
https://doi.org/10.1109/ASP-DAC47756.2020.9045163
https://doi.org/10.1109/ASP-DAC47756.2020.9045163

	Abstract
	Contents
	Introduction
	Preliminary and Background
	DBSCAN method
	Hamiltonian path
	Integer linear programming

	Proposed Algorithms and Models
	Graph partitioning
	Intra-cluster routing
	Input data
	Sets, indices and variables
	Output data
	Constraints

	Inter-cluster routing
	Input data
	Set,indices and variables
	Output data
	Constraints


	Results and Discussion
	DBSCAN results
	Intra-cluster routing and Inter-cluster routing result

	Conclusions
	Bibliography

