
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Visualization of the Fluid Behavior on
Microfluidic Large-Scale Integration

Biochips

Jing Huang

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Visualization of the Fluid Behavior on
Microfluidic Large-Scale Integration

Biochips

Visualisierung des Fluidverhaltens auf
Microfluidic Large-Scale Integration

Biochips

Author: Jing Huang
Supervisor: Prof.Dr.-ing Ulf Schlichtmann
Submission Date: 15.12.2019

I confirm that this bachelor’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, 15.12.2019 Jing Huang

Acknowledgments

I would like to express my deep gratitude to Prof. Dr.-Ing. Ulf Schlichtmann, head
of chair electronic design automation, and to Dr.-Ing. Tsun-Ming Tseng, research and
teaching assistant at the chair of electronic design automation, for offering me such
an opportunity to work on this interesting topic. I would like to especially thank my
supervisor, Ms. Mengchu Li, for her patient guidance, continuous encouragement and
useful critiques in carrying out this work.

I would also like to extend my thanks to my friends who give me technical support
and assistance in keeping my progress on schedule.

Abstract

Microfluidic biochips are miniaturized laboratories allowing thousands of bio-operations
to be performed in parallel. However, they possess structures with high complexity,
which triggers the development of design automation for biochips. Current design
automation approach is capable of automatically producing the physical design of
microfluidic biochips, scheduling the operations and binding operations to devices.
Furthermore, a design automation tool called VOM provides the first approach to
construct valid fluidic transportation paths dynamically. This thesis is an extension of
VOM that visualizes the simulation results from VOM, so that experimenters could see
the simulated process of bio-assay execution on microfluidic biochips.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3
2.1 VOM . 3

2.1.1 The objectives of VOM . 3
2.1.2 The method of VOM . 4

2.2 Design of the bio-chip . 5
2.2.1 Essential elements . 5
2.2.2 Flow structure: principal components 5
2.2.3 Control structure: pressure control 7

3 Research methodology 8
3.1 Objective . 8
3.2 The overview of the approach . 9

3.2.1 The first layer . 9
3.2.2 The second layer . 10
3.2.3 Intermediate output . 10

3.3 Input . 11
3.4 Terminology explanation . 13

4 Implementation 14
4.1 Map landmarks to identifiers . 14
4.2 Extract flow paths between landmarks . 15

4.2.1 Mixer . 15
4.2.2 The general flow edges . 17

4.3 Identify path controlled by control inlet 19
4.4 Parse the input . 21

4.4.1 Parsing the path of straight segment 22
4.4.2 Parsing the path of curved segment 22

v

Contents

4.5 Acquire flow path at given percentage . 22
4.5.1 Acquire the terminal point on a straight edge 23
4.5.2 Acquire the terminal point on an arc 25

4.6 Animate transportation operation . 27
4.6.1 Regulate the path direction . 27
4.6.2 Animate fluids and gases in the channels 27

5 Experiment results 28

List of Figures 34

List of Tables 36

Bibliography 37

vi

1 Introduction

Microfluidic large-scale integration is a technology, which manipulates the flow of
tiny amounts of fluids in the network of microchannels. This technology enables the
construction of multilayer continuous-flow microfluidic biochips, which are essentially
minimized labs. Due to the compact size of biochips, experiments are able to be
conducted cheaper and faster than with conventional laboratory instruments[1]. In
addition, in order to increase throughput, biochips also allow parallelization and multi-
plexing[2]. Hundreds or thousands of reactions can be performed simultaneously on a
biochip. Besides, biochips can be automatically operated by software, and meanwhile,
maintain the performance with precise and simple control over parameters. Because
of these advantages, this technology gains popularity in the past few decades. There
are many applications of it in different fields, such as chemistry, biology, and medical
treatment[3, 4, 5, 6].

Multilayer continuous-flow microfluidic biochip is constructed with two layers of
transparent elastomers using soft lithography technology[7]. Each layer is integrated
with microchannels, and there is a flexible membrane between the two layers. This
structure enables the formation of micro-valves. Figure 1.1 shows a polydimethylsilox-
ane (PDMS) push-down valve, where the layer with the control channel sits above the
layer with the flow channel. Flow channel has a rounded profile, when the control
channel is pressurized, it will push the membrane downwards to fit precisely in the flow
channel. In this case, the fluid transportation inside the flow channel will be blocked[8].
A control channel can be pressurized with external pressure source via a control inlet.
If a control channel is pressurized, valves on this channel are closed; otherwise, valves
on this channel are open. Valves divide flow channels into small chambers, which can
further build more complex microfluidic devices such as mixers.[9].

Figure 1.1: A two-layer polydimethylsiloxane (PDMS) push-down microfluidic valve[8].

1

1 Introduction

However, as microfluidic devices become more complicated, manually designing
microfluidic biochips tends to be more time-consuming and error-prone. Hence,
researchers have worked on constructing an automated software synthesis flow, which
can automatically produce an optimized physical chip design and an explicit protocol
for executing bio-applications. So far, design automation approaches for physical
design and high-level synthesis have been put into practice[10, 11, 12, 13]. However,
some connections between the design and protocols are still missing. In particular,
current works assume that fluid transportation paths are always valid. This assumption
does not always hold and may cause inaccuracy in resource usage and harm the
experimental performance.

Mengchu Li et al. recently proposed a design automation method called VOM to
validate the flow path and to optimize the control channel pressurization sequence.
However, the outputs of VOM are in plain-text and are not intuitive enough for the
users. Users need to learn to interpret the results to ensure that the process happening
inside of the biochips is designed as requested. Therefore, a visualization tool is in need
to display a bio-chip design and animate transportation operations. Specifically, after
inputting a schedule of fluid transportation operations, a user should be able to see the
fluid movements in the flow channels and the pressure status in control channels with
respect to time changes.

In general, the primary purpose of this thesis is to build a simulation tool to visualize
the final outputs of VOM with images and animations. In the following, I would like
to introduce the background knowledge related to my topic, then demonstrate an
overview of my solution approach and the implementation process. Subsequently, I
would review my experiment results.

2

2 Background

2.1 VOM

2.1.1 The objectives of VOM

Firstly, current research does not provide explicit sequence to pressurize control chan-
nels, the absence of which prevents the validation of a dynamically constructed flow
path. As valves conduct the fluid movement in actual deployment, it is impossible to
examine whether the fluid could reach out to the outlet following the target flow path
without corresponding protocol. Even when the physical connection of flow channels
forming a target flow path is valid, the flow would be blocked in the chip if a valve in
this path is set to be off[14].

Second, control channel pressurization protocol and flow paths might need to be
dynamically updated when implementing fluid-multiplexing operations. For instance,
in Figure 2.1, there are two flow sub-paths: path 1-2-5-3 and path 1-2-4. Considering
that path (2, 3) is shorter than path (2, 4), the fluid from M1 will reach M3 earlier than
the other mixers. In case the whole assay fails due to inaccurate scheduling, the valve
on the path (5, 3) is suggested to be turned off to block the flow transportation on this
segment.

Besides, VOM could also detect redundant design to decrease the waste of resources.

Figure 2.1: A bio-chip supports multiplexing from M1 to M2 and M3.

3

2 Background

2.1.2 The method of VOM

VOM implements a simulation-based approach. Figure 2.2 presents an overview of
the algorithmic flow of VOM. The inputs of VOM consist of a bio-chip design and
a high-level protocol describing fluidic transportation operations in sequence. VOM
first checks the compatibility of the flow layer. If flow layer design cannot support the
target flow paths, it will throw a warning exception. Otherwise, VOM would move
to the next step to build an optimal sequence to pressurize the control channel. If no
such a sequence can construct the target flow path, a warning would be produced.
Otherwise, it will test all potential channel-level protocols and choose the optimized one
based on user-defined optimization criteria: resource-oriented and transportation-time
oriented, then simulate the application process in an event-driven manner. When a
fluid-multiplexing operation is detected, VOM will update the target flow path of
current transportation operation in high-level protocol automatically and repeat this
process until no update is required. Finally, VOM creates a channel-level protocol, a
schedule for each fluid transportation operation, and a report on resource usage in the
control layer as outputs.

Figure 2.2: System diagram of VOM[14].

4

2 Background

2.2 Design of the bio-chip

Understanding the design of the bio-chip is the most primary task to build a specialized
simulation tool. The design refers to the floor-plan of the bio-chip. It introduces the
structures of essential elements and principal components to be visualized, and some
essential design rules applied in this test case from Columba 2.0[15].

2.2.1 Essential elements

Inlets, outlets, flow channels, control channels, valves, intersection points of two flow
channels are the most fundamental elements of the bio-chip design. Inlets/Outlets
are holes bond with external sources and channels. Reagents could enter the flow
channel via flow inlet and exit from the flow outlet. Control inlet introduces gases to
the control channel. In this thesis, the flow channel is colored with blue indicating
fluids, and the default color of the control channel is green. In regards to valves, they
are bound with control channels and flow channels simultaneously, so that they could
compartmentalize the compounds in the flow channel when the control channel is filled
with gas. Figure 2.3 shows that valves colored with orange reside on the control channel.
Besides, for the convenience of description, this thesis would name the intersection
point as a branch in the following context.[16].

Design rules

According to the design rules of Stanford Foundry[17], this thesis assumes the width
of the flow channel and valves to be 100µm, and the width of the control channel is
set relatively smaller: 30µm, but, flow/control inlet is much bigger, with the size of
1mm× 1mm.

2.2.2 Flow structure: principal components

• Mixer
As one of the most essential components in the microfluidic devices. Mixer is
mainly responsible for efficient mixing. It has a ring-shaped flow channel, whose
two opposite sides (either left-right or up-down) are often connected with two
more flow channels, a peristaltic pump formed by three or four interconnected
valves, another six position fixed valves as well as corresponding control chan-
nels(see Figure 2.3). This structure helps to accelerate mixing process. In Figure
2.4, two different reagents load in the mixer with closed valves at the bottom and
top. After peristaltic pumps had been actuated, two reagents moved circularly
along the ring-shaped flow channel and started mixing, which is apparently faster

5

2 Background

than passive diffusional mixing [2]. Additionally, mixer is asymmetric, which
implies that a mixer could be transformed into four different mixers with rotation.

Figure 2.3: A mixer with two flow channels on the leftmost and rightmost, six valves
v0, v1, v2, v3, v4, v5 at fixed position p0, p1, p4, p11, p18, p21 respectively, and a
peristaltic pump p at p12[15].

Figure 2.4: Red represents one reagent, and blue represents another reagent. A: before
mixing B: during mixing(See Supplementary Video ”RotaryMixerMixing.gif”
[18]))[15].

• Reaction chamber
A reaction chamber contains one main flow channel and two valves on the end
of it: an inlet valve and an outlet valve. The size of the chamber depends on the
requirement of the application.

• Switch
A switch utilizes valves to guide the direction of the fluid movement when flow
channels intersect with each other. There is a main flow channel with two valves
at both ends and multiple flow channels growing straightly from one side of the
main flow channel. However, these side flow channels are never across through

6

2 Background

the main flow channel. Apart from this, each side flow is bound with exactly one
valve.

2.2.3 Control structure: pressure control

If one control channel links with only one valve, as the amount of valves grows with
the increasing complexity of the application, more control inlets should be appended
to support control channels. In order to reduce the usage of control inlets, a better
approach is to connect a control channel with a group of valves from different com-
ponents to share pressure[19] [20]. As figure 2.5 shows, each control channel links
multiple valves. Therefore, pressurizing one control channel will close all valves along
this control channel sequentially.

Figure 2.5: Part of a biochip design where the control inlets connect valves of different
components[15].

7

3 Research methodology

3.1 Objective

The desired simulation tool aims to parse and simulate a series of scheduled flow trans-
portation operations from VOM, each of which specifies a set of fluid transportation
paths as well as corresponding due time, and a channel-level protocol defining the
sequence of pressurized control inlets.

fluid transpiration path

As except for inlets and outlets, only the status of valves(open/closed) or multiplex-
ing(branches) could influence the direction of the fluid movement in the flow channel,
the liquid transportation path is interpreted with a unique ordered pair of every two
landmarks(valve, inlet, outlet, branch) and the percentage of total length in-between.
Besides, for the sake of simple and accurate description, these landmarks are preferred
to be specified with identifiers rather than with coordinates.

Therefore, the first task of this simulation tool is to recognize the path within the
directed segment between landmarks given their identifiers and length-percentage, so
that users could locate any segment on the design.

corresponding due time

The flow movement following the transportation path is intended to be animated within
the given time to visualize the rate of the fluid since different kinds of liquids would
encounter various hydraulic resistance at different positions of the channel.

control inlet

When a sample of gas is introduced to control inlet, its molecules could disperse
throughout the control channel within one second. After the connected control channels
and all valves along them are distinguished given the identifier of a control inlet, this
process could be simulated by coloring this path instantly.

8

3 Research methodology

3.2 The overview of the approach

Another extension project of VOM made by YanLu Ma can already allocate each
landmark a distinct integer and display the design of bio-chip with the indices of
landmarks on it in JPEG(see Figure 3.3). However, a JPEG image can support neither
interaction nor animation as demanded. This simulation tool would be then built with
the two layers to achieve the objectives specified above. Figure 3.1 manifests a general
procedure of this project.

Figure 3.1: Flowchart of this project.

3.2.1 The first layer

In order to situate an arbitrary transportation path, it is necessary to make segments
bound by landmarks to be accessed by a pair of identifiers separately. The main idea is
to map each landmark to its allocated identifier and then explore all directed segments
between two adjacent landmarks, which denote the initial point and the terminal point
of this segment. It could be realized by analyzing the parsed design of bio-chip in C++.

Apart from paths of flow channels between landmarks, paths of control channels
controlled by control inlets would also be extracted from this layer, which automatically
links the paths and identifiers together.

Finally, it would produce an analyzed design of bio-chip, whose segments accord
with landmarks.

9

3 Research methodology

3.2.2 The second layer

In the second layer, this approach attempts to present the analyzed design of bio-
chip on an interactive web page with JavaScript, so that requests from users could
be dynamically processed. After parsing the request and identifying the required
percentage of a segment, the transportation path within the segment can be further
located in this layer.

The design is drawn using SVG, which can be manipulated by JavaScript. SVG
not only supports animation but also allows the user to scale the design to any size
without losing quality. Therefore, running liquids and gases can be visualized with
high resolution.

3.2.3 Intermediate output

Due to the incompatibility of C++ and JavaScript, the analyzed design of bio-chip
generated in the first layer would be stored in a plain-text file as an output, which
would be then passed to the second layer and then parsed via JavaScript.

It is preferred to directly define the path as a string following the rule of the element
<path> of SVG in the first layer, since <path> could draw both straight edges and curved
edges. Besides, <path> is inherently specified with prompts and a set of coordinates,
which exempts from the self-defined signs to distinguish the direction and type of
edges. It further reduces the complexity of parsing processing of the second layer.

Path

Draw graphics with <path>

basic shapes <path>

straight edge (a, b) M xa ya L xb yb

arc (a, b) M xa ya A rx ry x-axis-rotation large-arc-flag sweep-flag xb yb

Table 3.1: Draw straight and curved segment with <path>

M, L, and A are signs of commands to draw paths. M means "Move to", L refers
to "Line to". When drawing an straight edge from point a to point b, it first moves to
(xa, ya) and then draws a line to (xb, yb).

A indicates an arc, a section of an eclipse, or a circle with radius rx and ry. x −
axis− rotation determines the rotation of this arc. If the arc is greater than 180 degrees,

10

3 Research methodology

then large− arc− f lag sets to 1, otherwise, 0. If an arc draws clockwise from point a to
point b, then sweep-flag is 1, otherwise 0.

Figure 3.2: The original design of bio-chip spec-
ified with AutoCAD

Figure 3.3: The parsed design of bio-chip with
landmarks from the project of Yanlu
Ma

3.3 Input

In the project of Yanlu Ma, the original design of bio-chip (see Figure 3.2) specified
with an AutoCAD-compatible script has been parsed into a set of arrays in C++. The
first layer takes the following outputs from this project as inputs: the parsed design of
bio-chip, the identifiers of landmarks as well as the width and the length of the flow
channels. Although the width of the flow channel is given following the design rules of
Stanford Foundry(see section 2.1), due to its flexibility in the reaction chamber, directly
applying the default value would lead to an error.

The parsed design of bio-chip

The parsed design of bio-chip interprets its structure into an undirected graph consisting
of a set of vertices and a set of edges, each of which is defined through an unordered
pair of vertices. Each vertex might represent a flow channel intersection or a branch,
an inlet, and an outlet. In terms of an edge, it could indicate a flow channel, a control
channel, or a valve. A valve connects with a flow edge at its middle point.

Moreover, flow channels could construct different components of the design of
bio-chip, which results in a variety of combinations of edges.

• Mixer:
As Figure 3.4 shows, a ring-shaped flow channel could be seen as ten edges with

11

3 Research methodology

ten vertices. In this test case, edges {2, 3}, {4, 5}, {7, 8}, and {9, 10} are
quarter circles, whose radius is 283.3µm, while the rest edges are straight. As the
edges on the left side of {1, 6} are symmetric with on the right side, only the
coordinates of point a and point b are provided in the input to infer the whole
structure of the mixer.

Figure 3.4: Ring-shaped flow channel of the mixer.

• Switch:
The main channel and side channels of a switch are provided independently in
inputs. For instance, edge {1, 6} is the main channel, and other edges {2, 7},
{3, 8}, {4, 9}, {5, 10} are side channels(Figure 3.5).

Figure 3.5: Flow channels of a switch.

• Chamber:
A chamber contains a thicker edge {2, 3} as the main reaction chamber because
of adjustable width and another two edges {1, 2} and {3, 4} for the delivery of
the liquids(Figure 3.6).

12

3 Research methodology

Figure 3.6: Flow channels of the chamber.

• The rest channels:
The rest channels are edges used to bind different components. Some of them
might be horizontal, some might be vertical, and others might be oblique.

3.4 Terminology explanation

In this following context, I will use "edge", "segment", and "path" to describe different
relationships of vertices in different stages.

An edge refers to an unordered pair of vertices denoted with curly braces. In
Figure3.7(a), edge {3, 8} implies the connection between vertex 3 and vertex 8. And
a segment represents a sequence of directed edges without direction. For instance, a
segment between vertex 3 and vertex 10 in Figure3.7(b) is constructed via ((3, 8), (8, 9),
(9, 10)) or ((10, 9), (9, 8), (8, 3)) rather than via edge {3, 10}, which does not even
exist in Figure3.7. Path is the description of a directed segment or a directed edge. It is
defined by <path> of SVG. In Figure3.7(c), path (10, 11) specifies a directed straight
edge from vertex 10 to vertex 11. It could be described by "M x10 y10 L x11 y11".

(a) {1, 5}, {2, 6}, {4, 7}, {3, 8}, {8, 9}, {9, 10}

(b) {1, 5}, {2, 6}, {4, 7}, (3, 10) or (10, 3)

(c) {1, 5}, {2, 6}, {4, 7}, (10, 11), (11, 3)

Figure 3.7: Yellow indicates regular vertices, red means landmarks, greed implies origin
or destination. (a): The portion of the parsed design from previous project.
(b): Segment (3, 10) or (10, 3) is extracted from the first layer. (c): The flow
movement along path (10, 11) in the second layer.

13

4 Implementation

4.1 Map landmarks to identifiers

A valve can either be a horizontal rectangular or a vertical rectangular(Figure 4.1(a),
(d)). However, in the flow layer structure, a valve works as a vertex to separate the flow
segment(Figure 4.1(c), (f))), while in the control layer structure, it is an edge to bind
control channels(Figure 4.1(b), (e)).

Since most flow segments join valves at their middle points, I regard this specific
vertex as a landmark. Then I map all landmarks, including the middle vertices of
valves, branches, inlets, and outlets to their corresponding identifiers so that a vertex
could be identified as a landmark if it exists in this map.

Besides, even though the length of the valve is predefined, its two endpoints could not
be located with this middle point due to the uncertainty of the exact shape. Therefore,
the valves will be stored in the form of an edge and a vertex simultaneously.

Figure 4.1: Different representations of the valve in different channels. Valve: orange,
Flow channel: blue, Control channel: green.

14

4 Implementation

4.2 Extract flow paths between landmarks

4.2.1 Mixer

Due to the mixer’s structure, landmarks here refer to branches and valves. Each mixer
possesses exactly two branches. As for valves, though in the current design of biochip,
four valves of mixers are position-fixed, the simulation tool assumes that valves could
be placed anywhere to maintain the robustness and flexibility.

The branches divide the whole ring-shaped flow channels into two symmetric sec-
tions, either left-right or up-down, which apply various criteria to distinguish straight
edges and curved edges when extracting the paths. Besides, curved paths are depen-
dent on the position of the circle. For instance, for a left-right mixer, if the arc is on
the left of a circle, it is drawn counterclockwise from the initial point to the terminal
point with sweep− f lag set to 1; otherwise, clockwise with sweep− f lag set to 0. In
the following, I will explain the method to extract flow paths between landmarks on a
left-right mixer and apply the analog method on the up-down mixer.

Gather all candidate landmarks

The first step to locate an oriented segment is to gather all candidate landmarks.
In Figure 3.4, the landmarks in the rectangular, whose diagonal is edge {6, a}, are
precisely the candidate landmarks lying on the flow channels of the left-half mixer. To
extract the desired path, I sort all candidate landmarks along the flow channel towards
one direction to locate all pairs of adjacent landmarks. Besides, different sections of
the flow channel implement different sorting strategies. If the extracting process starts
from point 1, the landmarks in the upper part with directed edge (1, 9) are sorted by
decreasing x-coordinates, while the landmarks in the lower part with directed edge
(8, 6) are in an order with increasing x-coordinates. The candidate landmarks in the
middle section with directed edge (9, 8) will be ordered according to the increasing
y-coordinates.

Determine paths between candidates

Algorithm 1 explains the method to acquire paths between landmarks in the upper-left
part of the mixer (Figure 3.4). In the beginning, the first candidate is set to be the
initial point. If a second candidate exists, there appear to be three variants of paths
bounded by these two candidates in this section: completely straight, partially straight
and partially round, or completely round. After identifying the representation of each
variant, the second candidate would replace the first candidate as the initial point of
the next path. Generally, the previous candidate is the starting point, and the current

15

4 Implementation

candidate is the terminal point. This process would repeat continuously until no more
candidate exists. In the end, the last candidate would be the starting point of the next
section.

Furthermore, to make the arc to be drawn accurately, a function is deployed to
calculate the actual coordinate of the valve connecting with the flow channel based on
the coordinate of the valve’s center point and the radius of the circle.

The following demonstrates how to define the representation of a path when the
terminal point situates in the different sections of the left-half mixer. As the starting
point might not lie in the same section with the terminal point, the complexity of the
path grows with the section(Figure Figure 3.4).

• upper-left part

If a candidate lies on edge {1, 10}, a path could be specified with a directed
straight edge from the previous candidate to the current candidate. If not, it then
depends on the position of the former candidate. When the last candidate is
on the left of point 10, this path is in the shape of an arc starting from the last
candidate to the current candidate. Otherwise, a target path would be depicted
by a directed edge from the last candidate to point 10 and an arc from point 10 to
the current candidate.

• middle-left part

The middle-left part comes right after the upper-left part. If the number of
candidate landmarks in this part is more than zero, for the first candidate, the
target path consists of a path from the last candidate to point 9 in the upper-left
part as well as a directed line segment from point 11 to the current candidate. For
the rest candidates, a path in-between is the line segment from the last candidate
to the current candidate.

• lower-left part

The first path from the last candidate to the current candidate is relatively compli-
cated to define since the previous candidate could either locate in the upper-left
part or the middle-left part. In this case, after an incomplete path from the last
candidate to point 8 belonging to the sections above is induced, it will then
append the path from point 8 to the current candidate of this part. The further
possible paths are entirely on the inside of this part.

16

4 Implementation

Algorithm 1 Extract paths in upper-left
Input : All valves and branches in upper-left: valves

Joint point of straight segment and round segment: joint
starting point of a segment: start
starting point of a actual segment: startactual
Actual end point of a arc: actual

start← valves[0];
startactual ← start;
if candidates is not empty then

for i = 1 to (candidates.size - 1) do
if candidates[i] lies on straight segment then

add (start, candidates[i]) into segments;
startactual ← candidates[i];

else
actual ← getActualPoint(candidates[i]);
if start lies on the straight segment then

add (startactual , joint, actual) into segments;
else

add (startactual , actual) into segments;
end
startactual ← actual;

end
start← candidates[i]];

end
end

4.2.2 The general flow edges

The general flow edges include the edges constructing switches and chambers, and
the edges connecting components. They do not process any arcs and thus could be
grouped together. Since an edge might have no or multiple landmarks on it, it is
necessary to build connections among these flow edges to extract paths between two
adjacent landmarks. For instance, in Figure3.7, {3, 8}, {8, 9}, {9, 10} are initially
independent edges. The edge {3, 8} has to be first connected with edge {8, 9}, and
then with {9, 10}.

Besides, all flow channels are aimed to be split into multiple segments bounded by
two distinct landmarks. As long as an endpoint of a segment could not be identified to
be a landmark, this segment would continuously connect with the other flow edges
until both endpoints of the newly merged directed segment are detected as landmarks.

17

4 Implementation

I call this process as searching process. To finish it, the first and the last connected
edge in the sequence must start or end with a landmark. It indicates that some edges
provided in the input are bound with a landmark and a point. If this algorithm starts
searching from these landmarks(root landmarks), it could be able to find all target
paths between a pair of landmarks.

Locate all root landmarks

Except for valves, which are designed to lie in the middle of the edge, other landmarks
could be origins or destinations of the searching process. Inlets and outlets are inher-
ently entrances and exits of the fluid in the flow channels. As for branches, they could
appear in the mixer and switch.

• Branches in a mixer: For the left-right mixer, mixer divides the general flow
channels into flow channels connected with upper branches and flow channels
connected with lower branches. Searching processes starting from the landmarks
above the mixer will stop at the upper branches, and those processes starting
from the lower branches will end at the landmarks below the mixer.

• Branches in a switch: In a switch, the main channels are stored separately from
the side channels. Since the side channels are growing from branches, branches
are in the middle of the leading segment and are simultaneously the endpoints of
the side segments.

Extracting paths from root landmarks

Initially, all edges from the previous project will be stored twice in a map with one
endpoint as key, another as value, and in reverse so that it could immediately find
another endpoint when entering one endpoint. Therefore, by recursively looking for
another endpoint from a searching-start landmark, the next connected edge could be
located. In the meantime, I will extract all paths between landmarks on the newly
merged segment.

Algorithm 2 introduces the recursive function to search all target paths with the
initial point and the previous path both as the input. After the initial point is detected
to be an endpoint of an edge, I sort all landmarks lying on this edge towards another
endpoint. For the first landmark, if the previous path is an empty string, it implies that
this recursion function is called originally with a root landmark as the initial point. In
this case, the path between the root landmark and the first landmark could be directly
collected. Otherwise, this path will be appended to the previous path before it is
collected. In terms of the rest landmarks excluding the last landmark, a path could be

18

4 Implementation

defined with it and the landmark after it. As for the last landmark, if it happens to
be the endpoint of the current segment, then this searching process stops; if not, this
process will again concatenate the current segment and a subsequent edge to find more
landmarks by calling itself recursively. If no landmarks are on the current segment,
after the previous path is updated, it will also call itself.

4.3 Identify path controlled by control inlet

Each control inlet connects with a set of control edges and a set of valves working as
straight edges to bind control edges in the design. Therefore, a control path controlled
by a control inlet could be identified by constantly combining these edges until no
succeeding edges exist. This searching function could also be implemented via recursion
and applied to all known control inlets.

Besides, if an edge is confirmed to be a valve during the extraction, an edge will be
transformed to a rectangular(see Algorithm 3).

Algorithm 3 Process to acquire path
Input : Starting point of a segment: start

End point of a segment: end
Valve: valve

if the edge is vertical then
valve← (start.x, (start.y + end.y)/2);

end
if the edge is horizontal then

valve← ((start.x + end.x)/2, start.y);
end
if valve is a landmark then

path← path + rectangular(valve);
else

path← path + getPath(start, end);
end

19

4 Implementation

Algorithm 2 searchFlow(start, previousPath)
Input :

Detected landmarks on a segment: landmarks
Starting point of a segment: start
End point of a segment: destination

if there is edge with endpoint start then
for each detected edge do

if edge is not connected yet then
if edge(start, destination) has landmarks then

if previousPath is empty then
add (start, landmarks[0]) into segments;

else
path ← previousPath + getPath(start, landmarks[0]);
add path into segments;

end
tmp← landmarks[0];
for i = 1 to (landmarks.size - 1) do

add (tmp, landmarks[i]) to segments;
tmp ←landmarks[i];

end
if the last landmark of not equal to destination then

path← getPath(landmarks[landmarks.size−], destination);
searchFlow(destination, path);

end
else

path← getPath(start, destination);
if previousPath is empty then

searchFlow(destination, path)
else

path← previousPath + path;
searchFlow(destination, path);

end
end

end
end

end

20

4 Implementation

4.4 Parse the input

After all paths between landmarks are extracted, it moves to the second layer. In this
layer, the generated output from the first layer will be automatically uploaded to the
website, where the user can see the image of biochip and interact with it.

Once the JavaScript program receives the uploaded file, it starts parsing strings in
the file to a set of child elements of an SVG container to display the design. A flow
path could be drawn by directly assigning its string to an attribute d of a new <path>
element. Meanwhile, this program rebuilds one-to-one mappings from distinct paths
to corresponding identifiers of landmarks in this phase. However, as the flow within
two landmarks is expected to reach any reasonable extent, mapping cannot directly
adopt the static flow paths in strings from the input. Instead, the path would be further
parsed to a set of directed edges depicted with two vertices to allow the adjustment
as the specified length changes(see Figure 4.2). For instance, path (1, 2) could be
converted to a sequence of directed edges including (1, a), (a, b), and (b, 2) marked
with its length additionally to inform the weight of the edge in the path. For an arc, the
program also needs its angle and corresponding center point to locate its intern portion
dynamically.

Figure 4.2: Endpoint 1 and endpoint 2 are landmarks, while point a and point b are
normal vertices. This directed path from 1 to 2 contains a horizontal edge
(1, a), an oblique edge (a, b) and a vertical edge (b, 2). Besides, edge(b, 2)
occupied 15% of the whole path.

Preparation

• SVG: The following calculation is considered based on the SVG coordinates
system. In SVG, the x-axis grows from left to right, while the y-axis grows from
top to bottom.

• Degree to Radian: This explains the formula to convert degree to radiant and in

21

4 Implementation

reverse.
degree = randian ∗ 180°

π

Parsing two endpoints and the central point is quite straightforward. The following
explains the method to acquire additional attributes when parsing straight and curved
segments.

4.4.1 Parsing the path of straight segment

• Length: For straight segments, by applying Pythagorean theorem, the length of
the segment could be easily calculated. For instance, the length of path (a, b) is√
(a.x− b.x)2 + (a.y− b.y)2(Figure 4.2).

4.4.2 Parsing the path of curved segment

• Angle: In Figure 4.3, the centre of circle o and other two points a and b build
a triangle in the circle. Additionally, the central angle α subtended by an arc L
is exactly the angle of triangle - 6 aob, which could be computed via the law of
cosines. Besides, c is the length of path (a, b) and can be calculated by formula
from section 4.4.1. Then α is:

cosα =
a2 + b2 − c2

2ab
=> α = arccos

r2 + r2 − c2

2r2

• Length: As the length of an arc in a circle is a portion of the circumference, the
arc length can be computed with formula:

Arc length =
central angle

360°
∗ circum f erence

Thus,

L =
central angle

360°
∗ 2π ∗ radius =>

α

180°
∗ π ∗ r

.

4.5 Acquire flow path at given percentage

As the fluid in different portions of a parsed path might move at different speeds, to
visualize flow motion in different phases, this simulation tool could dynamically access
target fluid transportation paths with percentages. For clarity, I interpret the destination

22

4 Implementation

Figure 4.3: A circle with radius r. L denotes the arc length, while α is its central angle.

as the terminal point of the target path in the following context. The position of the
destination varies with the specified length calculated by the multiplication of the total
length of the original parsed path and percentage.

The first step to acquire the flow path at a specified length is comparing it with the
length of each composed edge in the sequence and meanwhile to update itself regularly.
In Figure 4.2, if the specified length L is greater than the length of the first edge (1, a),
this edge will be viewed as a sub-path of target path and deducted from the further
specified path. Accordingly, the specified length L gets smaller. Otherwise, it indicates
that the destination of the target path lies at a distance L away from the starting point
of the current edge.

Then, the next step aims to calculate the accurate coordinate of the destination on
the straight and curved edge. Since the coordinate of the destination is the offset from
the initial point, different directions would result in different calculations.

4.5.1 Acquire the terminal point on a straight edge

A straight directed edge could be horizontal, vertical, and oblique. Its type and direction
could be differentiated by comparing x-coordinate and y-coordinate of two endpoints.

horizontal

When the edge is horizontal, the destination has the same y-coordinate as the initial
point. If the starting point is at the left side of the terminal end, then the x-coordinate of
the destination is the x-coordinate of the starting point plus specified length; otherwise,
minus.

23

4 Implementation

vertical

As the edge is vertical, the x-coordinate of the destination and starting point are
identical. If the starting point is below the terminal end, then the y-coordinate of the
destination is the y-coordinate of the starting point plus specified length; otherwise,
minus.

oblique

For an oblique edge, the offset distance is the projection of the specified length. As
Figure 4.4 shows, different relative positions of the initial point and the terminal point
classify the obliques edges into four groups.

Figure 4.4: Four different oblique edges starting from point a (x1, y1) to point c (x2, y2).

(a) The starting point a is on the left-below of the terminal point c in Figure 4.4(a).
According to trigonometric function, a target path with specified length L on
edge(a, c) would ends at point:

(x1 + cos θ ∗ L, y1− sin θ ∗ L)

where θ could be acquired using inverse function:

tan θ =
(y1− y2)
(x2− x1)

=> θ = arctan
(y1− y2)
(x2− x1)

.

24

4 Implementation

(b) The starting point a is on the right-below of the terminal point c in Figure 4.4(b).
The destination would locate at:

(x1− cos θ ∗ L, y1− sin θ ∗ L) , with θ = arctan
(y1− y2)
(x1− x2)

.

(c) The starting point a is on the left-above of the terminal point c in Figure 4.4(d).
The destination would locate at:

(x1− sin θ ∗ L, y1 + cos θ ∗ L) , with θ = arctan
(x1− x2)
(y2− y1)

.

(d) The starting point a is on the right-above of the terminal point c in Figure
4.4(c).The destination would locate at:

(x1 + sin θ ∗ L, y1 + cos θ ∗ L) , with θ = arctan
(x2− x1)
(y2− y1)

.

4.5.2 Acquire the terminal point on an arc

All curved segments in the design of bio-chip are sub-segments of quarter circles. Thus,
calculating the position of a destination is the same as a point on the circle.

Staring point above terminal point

There are four different arcs on the quarter circles possessing different relative positions
to the origin o(x, y), which influences the coordinate of the destination.

• top-right

If the arc is the section of a quarter circle on the top-right corner(Figure 4.5(a), the
destination c will locate at the position:

(x + r ∗ cos β, y− r ∗ sin β) where β = θ − α.

Besides, with adjacent side od and hypotenuse side oa, θ can be measured via
trigonometric function:

cos θ =
xa − x

r
=> θ = arccos

xa − x
r

• top-left

The destination c in Figure 4.5(b) positions at:

(x− r ∗ cos β, y− r ∗ sin β) where β = θ − α and θ = arccos
x− xa

r
.

25

4 Implementation

Figure 4.5: A sub-path (a, c) with length L on the edge (a, b) is part of the target path

• bottom-left

The destination c in Figure 4.5(c) positions at:

(x− r ∗ cos β, y + r ∗ sin β) where β = θ + α and θ = arccos
x− xa

r
.

• bottom-right

The destination c in Figure 4.5(d) positions at:

(x + r ∗ cos β, y + r ∗ sin β) where β = θ + α and θ = arccos
xa − x

r
.

As for α, since the radian of a central angle is defined as the ratio of the length of the
subtended arc L divided by the radius of the circle r:

α ==
L
r
∗ 180°

π

Staring point below terminal point

Even if the starting point sits below the terminal point, the formula to calculate the
destination remains the same, but with different β and θ.

26

4 Implementation

β refers to the angle between oc and ob, while θ defines the angle between oa and
ob. When the starting point a switches the position with the terminal point c, angle β

would also swap with angle θ. Consequently, if β is initially bigger than θ, after the
reversion, β would be smaller than θ. Therefore,

β =

{
θ + α, if arc(a, c) has angle β = θ − α

θ − α, if arc(a, c) has angle β = θ + α

4.6 Animate transportation operation

4.6.1 Regulate the path direction

This simulation tool is independent of any high-level protocols. In the first layer, the
selection of the flow paths ignores the physical properties of fluids, and some paths
even begin with outlets. For this reason, the flow path would be modified to align with
the entered transportation flow routes.

When the protocol requests for 15% of the segment (2, 1) but only with path (1, 2)
available, the JavaScript program will start searching reversely. After obtaining the
target path (2, b), a key symbolising the direction from landmark 2 to landmark 2 and
a mapped value consisting of a series of edge (b, a) and edge (a, 1) would replace the
initial element representing path (1, 2) in the flow map(Figure 4.2). In this case, not
only the sequence of edges in the path but also the orientation of the directed each
edge is reversed. Hence, the next path could immediately begin at the first remaining
edge towards the matching direction.

Straight edge could be converted in the opposite direction by swapping two endpoints,
while the reversion of curves also engenders a contrary sweeping-flag and different
angles.

4.6.2 Animate fluids and gases in the channels

This program appends a new <path> element with a mapped control path to animate
the instant diffusion process of gases. In terms of the flow path, I utilize the style
property of HTML and asynchronization function to simulate the motion of liquids.

27

5 Experiment results

Image

This simulation device will immediately show the design of the bio-chip with the index
after it receives the script of the analyzed design.

In the following, I will exhibit the images of the dynamically generated designs
in three different scale (Figure 5.1 5.2 5.3) from Columba 2.0[15]. Table 5.1 explains
their input features and results after parsing and analyzing from the original design
in AutoCAD in the first layer, respectively. From the result, we can find out that the
portion of the analyze time grows with the number of edges to be analyzed.

• The first design is the most basic design of the biochip, which contains a mixer, a
chamber, and a switch.

• The second design consists of two mixers, two chambers, and three switches.

• The third design has five mixers, whose ring-shaped channel is symmetrical with
the horizontal axis, four chambers, and two complex switches.

Table 5.1: Input features and analyze results in the first layer.

Id |L| |V| |B| |F| |C| |E|
|Analyze

time|
|Total time|

1 24 16 4 4 13 24 0.005381 0.017562s
2 58 38 13 7 15 61 0.028899s 0.094293s
3 116 74 25 17 26 176 0.101829s 0.34692s

|L|: the number of landmarks in the design; |V|: the number o valves in the design; |B|:
the intersection points/branches in the design; |F|: the number of flow inlets/outlets in the
design; |V| = |B| + |F|; |C|: the number of control inlets in the design; |E|: the number of
edges bounded by two landmarks extracted from the first layer; |Analyze time|: the program
time to analyze the parsed design of biochip in C++; |Total time|: the program time to parse
and analyze the original design of biochip in AutoCAD.

In these images, landmarks, including valves, intersection points, and flow inlet-
s/outlets are in the same numbering group colored in blue, while control inlets are
labeled separately in green. Besides, I implement the stroke of a segment to reflect the

28

5 Experiment results

Figure 5.1: Image with Id 1.

29

5 Experiment results

Figure 5.2: Image with Id 2.

30

5 Experiment results

Figure 5.3: Image with Id 3.

31

5 Experiment results

width of the channel. The flow channel is thus thicker than the control channel, and the
chamber is the thickest segment among the flow segments. The channels are painted in
light green and light blue, which indicates the initial status.

Animation

In the animation phase, after the transportation operation is entered, the channel will
be then colored with blue and green to imply the fluid movement and the introduction
of gases.

Each transportation operation specifies the status in the specified time. As a com-
mand, it is structured following specific rules. A command contains three parts: time
in seconds, a set of labels of pressurized control inlets, and a set of flow transportation
paths, each of which is defined with the label of the starting point and the terminal
point, and a specified decimal denoting the percentage. Every two parts are separated
with a comma and a space. Every two elements in the same part are separated with a
comma.

Figure 5.2 introduces a sequence of the commands to animate the transportation in
the first seven seconds with the image in different phases displayed in Figure 5.4. In
Table 5.2, (a) is the initial state of the biochip, and the first command starts with (b),
which means that in the 2. second, the fluid from flow inlet numbered with 1 could
arrive at the landmark 24. As the control channel is immediately filled with gases, the
coloring process of the control channel and all valves along connected with the control
inlet 6 happens right after the initial state. In (e), the fluids from two different resources
start the movement in the sixth second and then reach the destination in the seventh
second.

(a) // initial state
(b) 2; 6; 1 24 1
(c) 4; ; 24 23 1
(d) 6; ; 23 9 0.7
(e) 7; 5; 23 9 0.3, 4 11 1

Table 5.2: The transportation path entered as the input.

32

5 Experiment results

Figure 5.4: The simulation of the transportation operation.

33

List of Figures

1.1 A two-layer polydimethylsiloxane (PDMS) push-down microfluidic valve[8]. 1

2.1 A bio-chip supports multiplexing from M1 to M2 and M3. 3
2.2 System diagram of VOM[14]. 4
2.3 A mixer with two flow channels on the leftmost and rightmost, six valves

v0, v1, v2, v3, v4, v5 at fixed position p0, p1, p4, p11, p18, p21 respectively, and
a peristaltic pump p at p12[15]. 6

2.4 Red represents one reagent, and blue represents another reagent. A:
before mixing B: during mixing(See Supplementary Video ”RotaryMix-
erMixing.gif” [18]))[15]. 6

2.5 Part of a biochip design where the control inlets connect valves of differ-
ent components[15]. 7

3.1 Flowchart of this project. 9
3.2 The original design of bio-chip specified with AutoCAD 11
3.3 The parsed design of bio-chip with landmarks from the project of Yanlu

Ma . 11
3.4 Ring-shaped flow channel of the mixer. 12
3.5 Flow channels of a switch. 12
3.6 Flow channels of the chamber. 13
3.7 Yellow indicates regular vertices, red means landmarks, greed implies

origin or destination. (a): The portion of the parsed design from previous
project. (b): Segment (3, 10) or (10, 3) is extracted from the first layer.
(c): The flow movement along path (10, 11) in the second layer. 13

4.1 Different representations of the valve in different channels. Valve: orange,
Flow channel: blue, Control channel: green. 14

4.2 Endpoint 1 and endpoint 2 are landmarks, while point a and point b
are normal vertices. This directed path from 1 to 2 contains a horizontal
edge (1, a), an oblique edge (a, b) and a vertical edge (b, 2). Besides,
edge(b, 2) occupied 15% of the whole path. 21

4.3 A circle with radius r. L denotes the arc length, while α is its central angle. 23

34

List of Figures

4.4 Four different oblique edges starting from point a (x1, y1) to point c (x2,
y2). 24

4.5 A sub-path (a, c) with length L on the edge (a, b) is part of the target path 26

5.1 Image with Id 1. 29
5.2 Image with Id 2. 30
5.3 Image with Id 3. 31
5.4 The simulation of the transportation operation. 33

35

List of Tables

3.1 Draw straight and curved segment with <path> 10

5.1 Input features and analyze results in the first layer. 28
5.2 The transportation path entered as the input. 32

36

Bibliography

[1] William SN Trimmer. “Microrobots and micromechanical systems.” In: Sensors
and actuators 19.3 (1989), pp. 267–287.

[2] Saurabh Vyawahare, Andrew D Griffiths, and Christoph A Merten. “Miniaturiza-
tion and parallelization of biological and chemical assays in microfluidic devices.”
In: Chemistry & biology 17.10 (2010), pp. 1052–1065.

[3] Petra S Dittrich, Kaoru Tachikawa, and Andreas Manz. “Micro total analysis
systems. Latest advancements and trends.” In: Analytical chemistry 78.12 (2006),
pp. 3887–3908.

[4] Petra S Dittrich and Andreas Manz. “Lab-on-a-chip: microfluidics in drug discov-
ery.” In: Nature Reviews Drug Discovery 5.3 (2006), p. 210.

[5] Todd M Squires and Stephen R Quake. “Microfluidics: Fluid physics at the
nanoliter scale.” In: Reviews of modern physics 77.3 (2005), p. 977.

[6] George M Whitesides. “The origins and the future of microfluidics.” In: Nature
442.7101 (2006), p. 368.

[7] Marc A Unger et al. “Monolithic microfabricated valves and pumps by multilayer
soft lithography.” In: Science 288.5463 (2000), pp. 113–116.

[8] Jessica Melin and Stephen R Quake. “Microfluidic large-scale integration: the
evolution of design rules for biological automation.” In: Annu. Rev. Biophys. Biomol.
Struct. 36 (2007), pp. 213–231.

[9] Kwang W Oh and Chong H Ahn. “A review of microvalves.” In: Journal of
micromechanics and microengineering 16.5 (2006), R13.

[10] Tsun-Ming Tseng et al. “Storage and caching: Synthesis of flow-based microfluidic
biochips.” In: IEEE Design & Test 32.6 (2015), pp. 69–75.

[11] Tsun-Ming Tseng et al. “Columba: Co-layout synthesis for continuous-flow mi-
crofluidic biochips.” In: Proceedings of the 53rd Annual Design Automation Conference.
ACM. 2016, p. 147.

[12] Mengchu Li et al. “Sieve-valve-aware synthesis of flow-based microfluidic biochips
considering specific biological execution limitations.” In: 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2016, pp. 624–629.

37

Bibliography

[13] Mengchu Li et al. “Component-oriented high-level synthesis for continuous-flow
microfluidics considering hybrid-scheduling.” In: 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE. 2017, pp. 1–6.

[14] Mengchu Li et al. “VOM: Flow-Path Validation and Control-Sequence Optimiza-
tion for Multilayered Continuous-Flow Microfluidic Biochips.” In: ().

[15] Tsun-Ming Tseng et al. “Columba 2.0: A co-layout synthesis tool for continuous-
flow microfluidic biochips.” In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37.8 (2017), pp. 1588–1601.

[16] Tsun-Ming Tseng et al. “Cloud Columba: Accessible Design Automation Plat-
form for Production and Inspiration.” In: IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (2016).

[17] Stanford Foundry. Basic Design Rules. url: http://web.stanford.edu/group/
foundry.

[18] IEEE Xplore Digital Library. IEEE Xplore. url: http://ieeexplore.ieee.org.

[19] Hailong Yao, Tsung-Yi Ho, and Yici Cai. “PACOR: practical control-layer routing
flow with length-matching constraint for flow-based microfluidic biochips.” In:
Proceedings of the 52nd Annual Design Automation Conference. ACM. 2015, p. 142.

[20] Kai Hu et al. “Control-layer routing and control-pin minimization for flow-based
microfluidic biochips.” In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36.1 (2016), pp. 55–68.

38

http://web.stanford.edu/group/foundry
http://web.stanford.edu/group/foundry
http://ieeexplore.ieee.org

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	VOM
	The objectives of VOM
	The method of VOM

	Design of the bio-chip
	Essential elements
	Flow structure: principal components
	Control structure: pressure control

	Research methodology
	Objective
	The overview of the approach
	The first layer
	The second layer
	Intermediate output

	Input
	Terminology explanation

	Implementation
	Map landmarks to identifiers
	Extract flow paths between landmarks
	Mixer
	The general flow edges

	Identify path controlled by control inlet
	Parse the input
	Parsing the path of straight segment
	Parsing the path of curved segment

	Acquire flow path at given percentage
	Acquire the terminal point on a straight edge
	Acquire the terminal point on an arc

	Animate transportation operation
	Regulate the path direction
	Animate fluids and gases in the channels

	Experiment results
	List of Figures
	List of Tables
	Bibliography

