
DEPARTMENT OF ELECTRICAL
ENGINEERING AND

INFORMATION TECHNOLOGY
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis

Switch Design for Microfluidic

Large-Scale Integration

Yanlu Ma

DEPARTMENT OF ELECTRICAL
ENGINEERING AND

INFORMATION TECHNOLOGY
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis

Switch Design for Microfluidic

Large-Scale Integration

Author: Yanlu Ma

Supervisor: Prof. Dr. -Ing. Ulf Schlichtmann

Advisor: Dr. -Ing. Tsun-Ming Tseng

Submission Date: 10.8.2020

Master’s thesis statement of
originality

Herewith I confirm that I have done my master’s thesis by myself, without

contributions from any sources other than those cited in the text and

bibliography.

Munich, 10.8.2020

Place and date Signature

i

Abstract

In the past few decades, continuous-flow microfluidic large-scale integration

(mLSI) is more and more important in biological/chemical fields. This is

driven largely by the need for greater, more accurate and faster access

to information on the composition of substances in the development of

environmental and materials science.

However, the prior research underestimates the microfluidic layer in-

teractions in the design. With that in mind, a co-layout synthesis tool

for continuous-flow microfluidic biochips, which is called Columba, is

proposed by Dr. Tsun-Ming Tseng. This tool has several functional mod-

ules such as mixers, reaction chambers and switches. By combining these

elements it can form different physical structures.

Switches guide fluid direction when flow channels cross. In some cases,

two different microfluids need to avoid contamination. But the tool does

not support this feature. This work proposes to design a new module model

for switch, in order to adapt to different circumstances. Proposed method

is based on a linear programming model that optimizes physical structure

ii

of switch. Experimental results represent that the proposed method can

efficiently avoid contamination.

iii

Acknowledgements

I would like to thank the following individuals, without whom I would not

have been able to complete my thesis, and without whom I would not have

made it through my Master’s degree!

Firstly, I would like to thank my supervisor, Dr. Tsun-Ming Tseng, for his

support throughout this project. I am extremely grateful for our friendly

chats during our meetings.

Secondly, I must thank Prof. Ulf Schlichtmann for giving me the opportu-

nity to finish my thesis at Chair of Electronic Design Automation. I would

also like to thank Alexandre Carvalho Truppel. His work on WRONoCs

inspired me a lot.

Finally, I would like to thank my boyfriend, Teng Wang. And my biggest

thank to my family for all the support. I love you all.

Yanlu Ma

iv

Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Physical architecture of microfluidic biochips 1

1.2 Thesis structure . 2

2 Background 4

2.1 Columba . 4

2.2 Columba 2.0 vs Columba S 6

2.3 Switch design problem . 11

3 Design Concept 12

3.1 Design flow . 12

3.2 Physical Model . 13

3.3 Mathematical model . 14

3.3.1 Algorithm . 18

v

3.3.2 Design Workflow . 19

3.4 Software setup . 21

4 Optimization algorithm 23

4.1 Switch model . 23

4.1.1 Constants and indices 25

4.1.2 Variables and constraints 26

4.2 Path allocation . 28

5 Result and Analysis 35

5.1 Result . 36

5.2 Analysis . 43

6 Conclusion and Prospect 47

6.1 Conclusion . 47

6.2 Prospect . 48

Bibliography 49

vi

List of Figures

1.1 Structure of flow-based biochips [1] 2

1.2 Structure of valve [2] . 3

2.1 Design of a nucleic acid processor by Columba [3] (a) Switch

(b) Mixer . 5

2.2 mLSI Design implemented in AutoCAD [3] 7

2.3 Switch structure in Columba 2.0 [3] 9

2.4 Switch structure in Columba S [5] 10

3.1 The traditional network flow model [6] 14

3.2 Network flow model inside a tile [6] 15

3.3 Flow model of one GRU . 16

3.4 Flow model of two GRUs . 17

3.5 Optimization Process of Gurobi 17

3.6 Software platform [8] . 21

3.7 Installation of Gurobi packages 22

4.1 Switch model - One GRU . 24

vii

List of Figures

4.2 Switch model - Two GRUs . 24

4.3 Example of Input . 28

4.4 Path matrix 1 - 1 . 30

4.5 Path matrix 1 - 2 . 30

4.6 Path matrix 1 - 3 . 31

4.7 Path matrix 2 - 1 . 31

4.8 Path matrix 2 - 2 . 32

4.9 Path matrix 2 - 3 . 32

5.1 Input 1 - one GRU . 36

5.2 Input 1 with AC - Output . 36

5.3 Input 1 - Path visualization 37

5.4 Input 1 - Comparison between different path allocation . . . 37

5.5 Input 2 - one GRU . 38

5.6 Input 2 without AC - Output 38

5.7 Input 2 with AC - Output . 39

5.8 Input 2 - Path visualization 39

5.9 Input 2 - Comparison between different path allocation . . . 40

5.10 Input 3 - one GRU . 40

5.11 Input 3 without AC - Output 41

5.12 Input 3 with AC - Output . 41

5.13 Input 3 - Path visualization 41

5.14 Input 3 - Comparison between different path allocation . . . 42

5.15 Input 4 - two GRUS . 42

viii

List of Figures

5.16 Input 4 without AC - Output 42

5.17 Input 4 with AC - Output . 43

5.18 Input 4 - Path visualization 44

5.19 Input 4 - Comparison between different path allocation . . . 45

ix

List of Tables

2.1 Pin selection for switch [3] . 8

4.1 Constants and indices . 25

4.2 Variables . 26

x

Abbreviations

CPU Central Processing Unit

EDA Electronic Design Automation

IC Integrated Circuit

GRU General Routing Unit

LP Linear Programming

mLSI microfluidic Large-Scale Integration

MIP Mixed Integer Programming

xi

1 Introduction

In this chapter, we will have an overview of flow-based microfluidic

biochips. First, physical architecture of microfluidic biochips is described.

Second, the structure of this thesis is given.

1.1 Physical architecture of microfluidic biochips

In the past decades, flow-based microfluidic biochips [1] are rapidly de-

veloped for biological experiments. Soft lithography is used to produce

two-layer continuous-flow microfluidic biochips [2]. The structure of flow-

based microfluidic biochips is shown in Fig. 1.1 [1].

Control layer. This layer is used to activate/deactivate the flow paths in

accordance with requirements.

Flow layer. Under/Above the control layer is the flow layer, which is

constructed for transportation of samples and reagents.

Channel. Each layer contains several channels, which allow fluids to flow

through.

1

1 Introduction

Figure 1.1: Structure of flow-based biochips [1]

Valve. Continuous-flow microfluidic biochips use valves to control the

movement of samples and reagents [1]. When fluid fills the control channel,

membrane will be pressed upwards. Thus, the flow channel is blocked. The

structure of valve is shown in Fig. 1.2 [2].

1.2 Thesis structure

This thesis starts with a short review of background in the second chapter,

mentioning why Columba necessary and how Columba works. It also

compares the difference between Columba 2.0 and Columba S.

Chapter 3 discusses the general concept of this thesis. A formal definition

of new design is given and the optimization problem is studied. Among

2

1 Introduction

Figure 1.2: Structure of valve [2]

others, chapter 3 shows the reason of choosing linear programming based

optimization algorithm.

Chapter 4 implements the details of an optimization algorithm.

Chapter 5 shows the results and compares this new method with previous

work, depending on different number of in-/outlets and requirements to

avoid contamination.

Finally, Chapter 6 draws a conclusion for this thesis and proposes space

for future development.

3

2 Background

Having given a review of flow-based microfluidic biochips, this chapter

gives the introduction on a co-layout synthesis tool - Columba [3]. It also

gives the starting point for this thesis, since this research focuses on the

switch design, which is an important module model of Columba.

2.1 Columba

It is due to error rates in manual design that an automation design for

continuous-flow microfluidic large-scale integration (mLSI) increases sig-

nificantly [3]. Compared to previous design automation, Columba takes

interaction between different layers into consideration. As shown in Fig.

2.1 [4], the design of a nucleic acid processor is generated by Columba.

From the graph we can see that this design has one control layer (green

lines) and one flow layer (red lines). Valves in width of control layer are

intersection of two lines. Columba design is based on different functional

microfluidic components. These components provide the physical struc-

4

2 Background

Figure 2.1: Design of a nucleic acid processor by Columba [3] (a) Switch (b)
Mixer

5

2 Background

tures of microfluidics. For instance, mixers (a) are used for mixing operation.

Switches (b) are used to control the direction of fluid flow in intersecting

flow channels. In addition, liquid is added von inlets and it flows out of

the outlets. The design rules of those components are described in plain

text. Then Columba takes netlist descriptions from text as inputs. Finally,

an AutoCAD-compatible design is generated by Columba. As shown in

Fig. 2.2, this design can be directly used for mask fabrication [3].

2.2 Columba 2.0 vs Columba S

Columba has two different optimized versions, Columba 2.0 and Columba

S. Both of them are optimized for lesser run time and also for fewer number

of inlets/outlets. In particular, Columba S is optimized for shorter length

of flow channel.

Here we only focus on the switch structure. Different physical structures

are illustrated in Fig. 2.3 [3] and in Fig. 2.4 [5]. Control channels are green

lines. Flow channels are blue lines. Valves are indicated with orange lines.

The general proposed method to actuate valves is pin selection. Table 2.1

[3] shows pin options in Columba 2.0 to actuate valves.

Switch in Columba 2.0 has one main flow channel and several flow

channel flow channel junctions. The distance between adjacent flow chan-

nel junctions is constant. Only one direction of the paired flow channel

junctions can be used as flow channel, the other one as well as the corre-

6

2 Background

Figure 2.2: mLSI Design implemented in AutoCAD [3]

7

2 Background

sponding valve and control channel will be removed. In other words, once

Columba chooses one flow channel junction connected with pin p2’ as flow

path, then the opposite flow channel junction connected with pin p200 and

valve v2 are automatically deleted. Fig. 2.3 shows the principle modul (the

upper structure) and one possible binding option (the structure below).

Switch in Columba S consists of one flow channel spine and several

flow channel junctions. Due to the characteristics of spine, the distance

between adjacent flow channel junctions can be changed to suit different

needs. Therefore flow channels can access from different locations, in order

to minimize the total channel length. Compared to switch structure in

Columba 2.0, only one side of pins can be reserved. As a result, valves can

be actuated either from the top or from the bottom [5].

Table 2.1: Pin selection for switch

v0 {p0} , {p1} , {p0, p1}

v1 {p2} , {p3} , {p2, p3}

v2 {p4} , {p5} , {p6} , {p7} , {p4, p5} , {p4, p7} , {p5, p6} , {p6, p7}

v2 {p4} , {p5} , {p6} , {p7} , {p4, p5} , {p4, p7} , {p5, p6} , {p6, p7}

· · · (analogous to v2 and v2)

8

2 Background

Figure 2.3: Switch structure in Columba 2.0 [3]

9

2 Background

Figure 2.4: Switch structure in Columba S [5]

10

2 Background

2.3 Switch design problem

As the need for biological experimentation grows, which enables the design

of a platform for large and complex applications. Different samples and

reagents might flow through same switch structure. Therefore, cross-

contamination of reagents may occur in any of the following situations:

1. The reagent contains the substrate to be measured in the next test.

2. The current reactant has an effect on the latter reaction.

These might result in the contamination. However, these two versions

of Columba do not provide much attention to avoidance of contamination,

since current switch consists of one main flow channel. All fluids flowing

through same switch share this path, which may causes contamination. A

major goal of this thesis is to design a new switch structure with follows:

Contamination Avoidence Discussed before.

Structural Diversity Achieved through pin assignment and physical

model.

11

3 Design Concept

In this chapter, the concept and design flow of switch design will be

discussed. First, an approach to the physical construction of switch is

presented with examples from published research. Then, the proposed

method is described presenting the reason for choosing Mixed Integer

Programming (MIP) and for choosing corresponding software. Finally, the

necessary steps of software setup are listed.

3.1 Design flow

The design of switch starts with the following prerequisites:

• The goal of this thesis is the switch design based on Columba. All

design of functional components in Columba relies on pin assignment. For

the sake of consistency, pin assignment is also considered in this design.

Therefore, we have to find new physical topology first.

With the prerequisites, the design concept of switch includes these three

aspects:

12

3 Design Concept

• Design of physical model for switch.

• Possible optimization algorithm.

• Software setup.

3.2 Physical Model

The basic topology of this model (Fig. 3.3) is inspired by published research.

Tan Yan and Martin. F. Wong proposed a network flow model in Fig. 3.1 [6].

They focused on the traditional escape routing problem, due to limitation

of the wire-number between two orthogonal or diagonal adjacent pin. Then,

they built an algorithm based on this model. Fig. 3.2 [6] shows the details

inside a tile. Four pins on the boundary can be used as flow entrances.

Five nodes (N, W, S, E, C) form an inner-structure. Compared to previous

switch model, this structure has an advantage in the structure diversity.

The main flow channel can be replaced by this inner-structure.

I extend this model with more pins on the boundary. It includes TL (Top

left), T (Top), TR (Top right), L (Left), R (Right), BL (Bottom left), B (Bottom),

BR (Bottom right). Those pins can be used as inlets/outlets of fluids. Edges

between pins and nodes are recognized as flow paths. Fig. 3.3 shows the

pins, nodes and connections between them. For example, T - N - C - S - BR

indicates one possible path of fluid. Furthermore, this model is symmetric.

I call it General Routing Unit (GRU) for the physical topology. The relevant

essay was published by Alexandre Truppel [7].

13

3 Design Concept

Similar to flow model in Fig. 3.1, I propose a network consisting two

GRUs. Fig. 3.4 shows the combination of them. It contains twelve pins and

eight nodes adapting many situations. The combination of three or more

GRUs is not considered in this thesis.

Figure 3.1: The traditional network flow model [6]

3.3 Mathematical model

In order to build a mathematical model for switch, Mixed Integer Pro-

gramming (MIP) is an advanced method. All pins and connections in the

physical model of switch can be described as variables and linear con-

14

3 Design Concept

Figure 3.2: Network flow model inside a tile [6]

15

3 Design Concept

Figure 3.3: Flow model of one GRU

straints. The optimization problem is simplified into linear optimization

functions. Besides, a mixed integer linear program (MIP) is of the form:

min c
T · x

subject to A · x = b

xi 2 Z 8i 2 I

Gurobi is one of the advanced MIP solvers. Mathematical problems that

Gurobi can solve: linear problems and mixed integer linear and quadratic

problems.

Gurobi has several technical advantages:

1. Multi-objective optimization.

16

3 Design Concept

Figure 3.4: Flow model of two GRUs

Figure 3.5: Optimization Process of Gurobi

17

3 Design Concept

2. It uses the latest optimization to take the full advantage of multi-core

processors.

3. The problem scale is limited only by the amount of computer memory,

not by the number of variables or the number of constraints.

4. It is available on multiple platforms, including Windows, Linux, Mac

OS X.

5. A convenient and lightweight interface is provided which supports

C++, Java, Python, Matlab and R.

6. Low memory consumption

3.3.1 Algorithm

Transport path varies with different pin assignments. The contamination-

avoidance pin assignment problem is essentially an algorithmic design

problem. In practical modeling, we have to consider path conflict and

settings of valves. The pin-assignment problem is a difficult NP problem

that is difficult to solve quickly at large volumes. We have 8 pins of

inlets/outlets for one GRU. But using MIP directly is too restrictive, and

many conditions are not well represented. If we go through all the solutions

at once to find the optimal solution, the program will not be able to finish,

and if we the use greedy algorithm, we may not be able to get the optimal

solution.

Where the fluid enters and exits is uncertain. Then I convert this un-

certainty to path allocation, which means a liquid can choose one of the

18

3 Design Concept

established pathway options. Let’s start with a list of all possible paths and

move on to path allocation. Of course, as long as all points through which

the path passes are determined, the corresponding length of path can also

be calculated. Chapter 4 implements the details.

3.3.2 Design Workflow

In this subsection, inputs and outputs of this model are specified.

Input: Communication rules.

Step: Pin assignment and path allocation.

Output: • Path of each liquid.

• An image file to represent switch model.

Minimization objective: Total length of path

Communication rules define a set of inlets I and a set of outlets O, start

points and end points of fluids (Set IO), conflict of fluids (Set AC, indi-

cating which liquids need to avoid contaminating each other). Randomly

generated inputs should conform to the following:

1: One-to-one principle for set I and set O. Each inlet i 2 I and each

outlet o 2 O can only correspond to one pin. The total number of used

pins equals to the sum of number of inlets and outlets.

|I|+ |O| Number of pins (8 for one GRU, 12 for two GRUs)

2: |I| � |O|. This is why we need a switch.

19

3 Design Concept

3: All inlets i 2 I have corresponding outlets o 2 O .

4: Elements in set IO are in pairs of inlet and outlet. For example, (i2, o1).

5: |AC| can be zero.

6: Conflict between inlets i1 2 I , i2 2 I .

! The same inlet cannot conflict with itself. i1 6= i2

! The corresponding outlet is not shared. Either element (i1, o1) or

element (i2, o1) exists in set IO.

7: No conflict between outlets.

8: Conflict between inlet and outlet. i1 2 I , o1 2 O .

! Element (i1, o1) in set IO can not exist.

20

3 Design Concept

3.4 Software setup

Figure 3.6: Software platform [8]

Here I choose Anaconda as the software platform for programming.

Anaconda is an open source distribution for the programming language

Python. As shown in the last section, Python is supported by Gurobi. It’ll

take a few steps, so that Gurobi can support Python for Mac [9].

1: Add the Gurobi channel to default search list with command

conda config –add channels http://conda.anaconda.org/gurobi

2: Install the Gurobi package with command conda install gurobi. Fig. 3.7

shows the results in terminal window that Gurobi packages are installed.

3: Get a Gurobi License.

4: Set an environment variable in terminal by adding the following line to

21

3 Design Concept

shell startup file. Open the file in terminal with command vi /.bashrc. Then,

the gurobi.lic file is placed for platform.

export GRB_LICENSE_FILE = /Users/gurobi.lic

Figure 3.7: Installation of Gurobi packages

22

4 Optimization algorithm

After having randomly generated communication rule as input, this chapter

presents the details about an optimization algorithm. As discussed in

previous chapter, here we focus on the path allocation. I will define some

necessary variables and constraints related to them.

4.1 Switch model

Fig. 4.1 and Fig. 4.2 show the design of GRU consisting of flow channels,

control channels and valves. Each valve has two different paths to be

activated, except for v2, v10, v15, v21 and v22 in Fig. 4.2, since there is little

space for more channels. If a channel segment is not connected to any

selected pin [3], it will be removed in the final design. These two structures

are basic designs, which mean the unused flow channels and valves will

also be removed. d in Fig. 4.1 represents the minimum distance between

two channels.

23

4 Optimization algorithm

Figure 4.1: Switch model - One GRU

Figure 4.2: Switch model - Two GRUs

24

4 Optimization algorithm

4.1.1 Constants and indices

The general indices are points i 2 P [Q. The constants are as followed

as below:

The total number of inlets Ninlet and outlets Noutlet are given as input,

which also defines the number of GRUs Ngru.

L f h represents the length of flow channel. l1 is the length between T and

N, l2 for N and C, l3 for N and W, l4 for N and TL.

Table 4.1: Constants and Indices

Ninlet The total number of inlets

Noutlet The total number of outlets

Ngru The total number of GRUs

L f h 2 {l1, l2, l3, l4} , l1 l2 < l3 l4 Length of flow channel fh

P = {TL, T, TR, L, R, BL, BR, B} Pins of GRU

Q = {N, W, S, E, C} Nodes of GRU

f h
P

Q
Channel connected to pins

f h
Q
0

Q
Channel between nodes

25

4 Optimization algorithm

4.1.2 Variables and constraints

The variables and constraints are as follows:

Table 4.2: Variables

Binary variable

f f h f , f h, g Fluid f goes through flow channel fh in GRU g.

f ac f 1, f 2 Fluid f1 and f2 use same flow channel

bi, g point I of GRU g is accessed

f b f , i, g Fluid f contains point of GRU g in its path

v 2 V Valve : 0 - not activated ; 1 - activated

Continuous variable

l f , g Total length of all used flow channels

We introduce an binary variable bi, g , 8i 2 P [Q, g = 1... Ngru to

indicate whether point I of GRU g is accessed. bp, g = 1, 8p 2 P means

pin p of GRU g is used as an in-/outlet.

1. Each pin of GRUs is connected to exactly one inlet/outlet. One fluid

direction consists of one pair of inlet/outlet. Thus, the sum of all variables

bp, g is:

26

4 Optimization algorithm

Â
p 2 P

Â
g = 1... Ngru

bp, g = Ninlet + Noutlet (1)

Which can be also written as

bTL, g + bT, g + bTR, g + bR, g + bBR, g + bB, g + bBL, g + bL, g = Ninlet + Noutlet

(1.1)

8g = 1... Ngru

2. Once one pin is chosen as an in-/outlet, the corresponding node is

also determined. This is the uniqueness of the GRU structure.

bN, g = bT, g [bTL, g (2.1)

bW, g = bL, g [bBL, g (2.2)

bS, g = bB, g [bBR, g (2.3)

bE, g = bR, g [bTR, g (2.4)

27

4 Optimization algorithm

To describe the path of each fluid the set of binary variables f f h f , f h, g ,

8 f = 1... Nf , f h = 1... Nf h , g = 1... Ngru is created, where

f f h f , f h, g = 1 means fluid f goes through channel fh in GRU g.

3. If we try to avoid the contamination of 2 different fluids, following

constraints must be created:

f f h f 1, f h, g + f f h f 2, f h, g 1 (3)

4. The path must be continuous from the inlet to the responding outlet.

It is taken into consideration when we list all possible paths. At least one

node is included in one path.

4.2 Path allocation

Fig. 4.3 describes the details of input. We define a few symbols that are

common throughout next text:

Figure 4.3: Example of Input

• Inlet, Outlet: Use different arabic numbers to represent inlets and

outlets.

28

4 Optimization algorithm

• IO (In �Out): Combination of in-/outlets is also added into the input.

Inlet corresponds to start point and outlet corresponds to end point.

• AC: The liquid flowing through different inlets and outlets is at risk of

contamination.

• i 2 I: The total number of combination IO

ai represents start point of each IO.

bi represents end point of each IO.

• d 2 D

D = [0, 1, 2, 3, 4, ..., 407]. Full paths with index 0 - 407 (Case “one GRU”)

D = [0, 1, 2, 3, 4, ..., 15571]. Full paths with index 0 - 15571 (Case “two

GRUs”)

Based on physical templates, we can list all possible paths with calculated

length. Fig. 4.4 - Fig. 4.6 show the start points and end points of all paths.

The first column is the index of all paths for one GRU. It has 56 combinations

of start and end points. The second column shows the total number of

paths with same start and end points. Rest columns indicate whether path

d includes pin p and node n. Fig. 4.7 - Fig. 4.9 show the total points (pins p

and nodes n) that paths go through in case of two GRUs. Due to the large

volume of paths in this case only a few paths are shown here.

The above paths are split into an encoding matrix that contains the

location or not. The advantage of this processing is that the constraints can

be read directly from the matrix, which is convenient for programming. In

addition, it is convenient to count the total length of all selected paths. We

29

4 Optimization algorithm

Figure 4.4: Path matrix 1 - 1

Figure 4.5: Path matrix 1 - 2

30

4 Optimization algorithm

Figure 4.6: Path matrix 1 - 3

Figure 4.7: Path matrix 2 - 1

31

4 Optimization algorithm

Figure 4.8: Path matrix 2 - 2

Figure 4.9: Path matrix 2 - 3

32

4 Optimization algorithm

use d f to represent the data matrix in Fig. 4.6.

We introduce an auxiliary binary variable xi,d to indicate whether one

pair of Inlet-Outlet chooses path d. With this new variable we can rewrite

the constraints: Each pair of Inlet-Outlet chooses exactly one path.

Â
d 2 D

xi,d = 1 8i 2 I (4.1)

One path d can be chosen at most once.

Â
i 2 I

xi,d 1 8d 2 D (4.2)

The path must start and end at correct points.

pin = [’TL’, ’TR’, ’BR’, ’BL’, ’R’, ’L’ ,’T’, ’B’] in case "one GRU"

pin = [’TL’, ’T’, ’TR’, ’BR’, ’B’, ’BL’, ’R’, ’L’, ’T1’, ’T2’, ’B1’, ’B2’] in case

"two GRUs"

The order of elements in the array is not fixed. The programming code

will change the order until it finds the optimal solution. Otherwise, match

of in-/outlets and start-/endpoints has only one possibility, which may

result in infeasible model.

Â
d 2 D

xi,d ⇥ pin.index

⇣
d f

d,”Start”

⌘
= ai 8i 2 I (4.3)

Â
d 2 D

xi,d ⇥ pin.index

⇣
d f

d,”End”

⌘
= bi 8i 2 I (4.4)

33

4 Optimization algorithm

If we have to avoid contamination of different paths, following constraints

must be fulfilled:

Node n in those paths can be selected at most 1 time.

Matrix O, which has D rows and N columns, is part of matrix df.

N = [N, W, S, C, E] in case "one GRU"

N = [N1, W1, S1, C1, E1, N2, W2, S2, C2, E2] in case "two GRUs"

Â
i 2 AC

Â
d 2 D

xi,d ⇥ Od, n 1 8n 2 N (4.5)

Optimization objective:

Minimize the total length of all selected paths.

min L = Â
i 2 I

Â
d 2 D

xi,d ⇥ d fd, ”Length” (4.6)

subject to: (4.1) (4.2) (4.3) (4.4) (4.5)

34

5 Result and Analysis

In this chapter, the approach of optimization is fully tested. First, results

of 4 different inputs will be implemented. Then, a comparison is made

between different input protocols. Finally, performance of the optimization

algorithm will be discussed.

We implement the physical synthesis models in Python, and solve them

using Gurobi [24], a mixed integer linear programming (MILP) solver. For

this switch design, we tested different input protocols:

• Case 1: Only one GRU is needed and there is no contamination to be

avoided.

• Case 2: Only one GRU is needed but we have to avoid contamination

between inlets and outlets.

• Case 3: Two GRUs are needed and there is no contamination to be

avoided.

• Case 4: Two GRUs are needed but we have to avoid contamination

between inlets and outlets.

35

5 Result and Analysis

5.1 Result

In this part, Fig. 5.1 - Fig. 5.19 show details of inputs and the corresponding

results. In the following we analyze the results with details:

I have tested the model with four different inputs. For each input, the

selected paths are expressed in the form of picture and text. Unused paths

in figures are blocked with valves (orange lines). Input 1 has only 3 inlets

and 2 outlets, which is the simplest example. As shown in Fig. 5.3 and in

Fig. 5.4, compared to model in Columba 2.0, the model in this research has

no obvious advantage in physical structure. As the number of IOs increases,

the complexity has increased accordingly.

Figure 5.1: Input 1 - one GRU

Figure 5.2: Input 1 with AC - Output

36

5 Result and Analysis

Figure 5.3: Input 1 - Path visualization

Figure 5.4: Input 1 - Comparison between different path allocation

37

5 Result and Analysis

As shown in Fig. 5.5, input 2 has five inlets and three outlets. Compared

to input 1, more flow junctions are unblocked. For the same IO but with

different ACs, pin assignment and path allocation are different. Fig. 5.8

visualizes the complete path allocation but Fig. 5.9 focuses on the paths

which should be separated in oder to avoid contamination. Model on the

left is without AC. In-Out 1 and In-Out 2 have one shared point S. Model

on the right is with AC. It can be seen clearly that In-Out 1 and In-Out 2

have no shared points.

Figure 5.5: Input 2 - one GRU

Figure 5.6: Input 2 without AC - Output

The situation is the similar in example 3 and example 4. As shown in Fig.

5.14a, In-Out 3 and In-Out 4 has common point S, when we don’t consider

AC. In comparison, the paths of In-Out 3 and In-Out 4 are separated in Fig.

38

5 Result and Analysis

Figure 5.7: Input 2 with AC - Output

Figure 5.8: Input 2 - Path visualization

39

5 Result and Analysis

Figure 5.9: Input 2 - Comparison between different path allocation

5.14b. As shown in Fig. 5.19a, point E1 and point W2 and point C2, which

are not allowed. After optimization with AC constraints, there is no more

common points.

Figure 5.10: Input 3 - one GRU

40

5 Result and Analysis

Figure 5.11: Input 3 without AC - Output

Figure 5.12: Input 3 with AC - Output

Figure 5.13: Input 3 - Path visualization

41

5 Result and Analysis

Figure 5.14: Input 3 - Comparison between different path allocation

Figure 5.15: Input 4 - two GRUS

Figure 5.16: Input 4 without AC - Output

42

5 Result and Analysis

Figure 5.17: Input 4 with AC - Output

5.2 Analysis

• Path allocation

In example 2, 3 and 4, the path allocation varies with different AC.

Compared with models in Columba 2.0 and Columba S, if the number of

inlets and outlets is less, the generated structure is similar in this research.

As the situation gets more complicated, Columba 2.0 and Columba S cannot

generate an effective structure. The advantage of this switch design is as

followed as below:

One structure can be used for different inputs. There is no need to

regenerate new structures. We can point out routes that can be used to avoid

contamination in advance. This is necessary for biological experiments.

• Run Time

For all input protocols, Gurobi synthesizes them within seconds. The

43

5 Result and Analysis

Figure 5.18: Input 4 - Path visualization

44

5 Result and Analysis

Figure 5.19: Input 4 - Comparison between different path allocation

45

5 Result and Analysis

program run time increases with the scale of GRU and the protocol. For

the same IO with different AC, there is a significant improvement in time

efficiency. However, for the same IO with and without AC, there is no

significant improvement in time efficiency. The run time of different inputs

is shown in Table 5.1 .

Table 5.1: Run time of different inputs

I + O AC Run time with AC Run time without AC
3 + 2 1 0.02s 0.02s
5 + 3 1 0.04s 0.04s
5 + 3 2 0.04s 0.04s
7 + 4 2 0.35s 0.33s
7 + 4 4 0.40s 0.40s

46

6 Conclusion and Prospect

6.1 Conclusion

The technological progress of flow-based microfluidic biochips is continu-

ous in the last decade. Previous studies, however, still follow the simple

architectural model framework without considering contanmination avoid-

ance. It actually becomes a bottleneck. In this paper, we propose a new

architectural framework of switch, which is a place prone to cross contami-

nation.

To construct a new switch structure a linear programming model was

developed. First, the idea of General Routing Unit was used for reference.

Different from only one main flow channel in the previous design, General

Routing Unit provides several flow channels as main flow channels. With

the help of Gurobi, which is the fastest math programming solver, the

optimization of the programming model was also demonstrated. Finally,

we used several tests to characterize the performance of the solver and the

quality of results was obtained.

47

6 Conclusion and Prospect

In general, this research provides feasible flow paths for each liquid

considering contanmination avoidance. We can tell in advance which routes

that the liquids flow through in oder to avoid cross contamination. It is

conducive for experimenters doing biological experiments.

6.2 Prospect

In the future there is a huge prospect of following areas.

GRU designs. More GRU structure can be designed and they can form

different physical structure to adapt to different biological experiment

situation. As an example, a 3D-Structure, which might effectively reduce

the crossover.

Solve times. In this paper the run time of the solver is in half of a second.

As the complexity of the physical structure increases, run consumption

increases.

48

Bibliography

[1] C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann, Transport or

store? Synthesizing flow-based microfluidic biochips using distributed channel

storage. 2017 54th ACM/EDAC/IEEE Design Automation Conference

(DAC). IEEE, 2017.

[2] M. Li, T.-M. Tseng, Y. Ma, T. Ho, and U. Schlichtmann, VOM: Flow-Path

Validation and Control-Sequence Optimization for Multilayered Continuous-

Flow Microfluidic Biochips. 2019 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019,

pp. 1-8, doi: 10.1109/ICCAD45719.

[3] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E.

Araci, and U. Schlichtmann, Columba 2.0: A co-layout synthesis tool for

continuous-flow microfluidic biochips. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 37.8: 1588-1601, 2017.

[4] J. W. Hong, G. H. V. Studer, W. F. Anderson, and S. R. Quake, A

nanoliter-scale nucleic acid processor with parallel architecture. Nature

Biotechnology, vol. 22, no. 4, pp. 435–439, 2004.

49

Bibliography

[5] T.-M. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T.-Y. Ho,

and U. Schlichtmann, Columba S: A scalable co-layout design automation

tool for microfluidic large-scale integration. Proceedings of the 55th Annual

Design Automation Conference, 2018.

[6] T. Yan and M. D. F. Wong, A Correct Network Flow Model for Escape Rout-

ing. Proceedings of the 46th Annual Design Automation Conference,

2009.

[7] A. Truppel, T.-M. Tseng, D. Bertozzi, J. C. Alves, and U. Schlichtmann,

PSION+: Combining logical topology and physical layout optimization for

Wavelength-Routed ONoCs. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 2020.

[8] Anaconda, Anaconda logo. https://www.anaconda.com, 2004.

[9] Gurobi, Gurobi Optimizer Quick Start Guide. https://www.gurobi.com,

2019.

50

	Contents
	List of Figures
	List of Tables
	Introduction
	Physical architecture of microfluidic biochips
	Thesis structure

	Background
	Columba
	Columba 2.0 vs Columba S
	Switch design problem

	Design Concept
	Design flow
	Physical Model
	Mathematical model
	Algorithm
	Design Workflow

	Software setup

	Optimization algorithm
	Switch model
	Constants and indices
	Variables and constraints

	Path allocation

	Result and Analysis
	Result
	Analysis

	Conclusion and Prospect
	Conclusion
	Prospect

	Bibliography

