
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

High-Level Synthesis for Microfluidic Large Scale Integration

Considering Hybrid-Scheduling

Fangda Zuo

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

High-Level Synthesis for Microfluidic
Large Scale Integration Considering

Hybrid-Scheduling

High-Level Synthesis für Microfluidic
Large Scale Integration angesichts

Hybrid-Scheduling

Author: Fangda Zuo

Supervisor: Prof. Dr. Andreas Herkersdorf

Advisor: Dr.-Ing. Tsun-Ming Tseng

Submission Date: 15.01.2019

I confirm that this master’s thesis in information systems is my own work and I have

documented all sources and material used.

Munich, 15.01.2019 Fangda Zuo

Acknowledgments

I would like to give all of them, who supported me during this work, my special

thanks.

Primarily, I would like to give my advisor Dr.-Ing. Tsun-Ming Tseng and Prof.

Dr.-Ing. Ulf Schlichtmann warm thanks for providing me this exciting and expressive

topic as my master’s thesis. With the valuable support of my advisor, I was able

to finish this thesis without hassle. I sincerely thank my friends, Mengchu Li, and

Ruichen Liu, for helping me improve the quality of my thesis. Besides, I would like

to thank Prof.Dr. sc.techn. Andreas Herkersdorf very much for being my supervisor.

Without him, I would not be able to do this fascinating topic at the Institute of

Electronic Design Automation.

Moreover, I would additionally thank my girlfriend, Wenting Yu, for keeping

me motivated for the entire time. It was a dark period for me. I could not overcome

difficult situations and accomplish anything without her selfless help.

Abstract

The rapid evolution of microfluidic design development requires matching

automated synthesis methods. As a frontier in microfluidic-based biochip design, a

top-down approach simplifies the design of integrated microfluidic-based biochip by

providing a library of high-level microfluidic components consisting of basic on-chip

units with specialized functionalities. More recently, a component-oriented device

and operation concept is proposed to enable flexible operation-device mapping and

therefore to improve on-chip resource utilization. As the major contribution of my

thesis, I present a method to solve binding and scheduling problems in one step

considering storage usage and all execution limitations. Moreover, to improve the

efficiency and robustness of my method, I propose an algorithm to process input and

check its feasibility. Experiments show the feasibility of the method and the efficiency

could be further improved by heuristics to handle large numbers of operations.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 5

2.1 High-Level Components . 5

2.1.1 Micromechanical Valve . 6

2.1.2 Pump . 6

2.1.3 Sieve Valve . 8

2.1.4 Mixer . 8

2.1.5 Cell Trap . 11

2.1.6 Heating Pad . 11

2.1.7 Optical System . 11

2.2 Operation properties and execution limitations 16

2.2.1 Operation properties . 16

2.2.2 Execution limitations . 17

2.3 Component-oriented Synthesis Concept 19

2.3.1 Microfluidic Components . 19

2.3.2 General Device and Component-oriented operation Definition 20

2.4 Problem formulation . 21

v

Contents

3 Method 22

3.1 Input Processing . 22

3.1.1 Modified weighted sequencing graph 24

3.1.2 Cycle in sequencing graph . 26

3.1.3 Exceedance of upper bound . 27

3.2 An Intuitive Approach . 32

3.3 Hybrid-Scheduling Approach . 33

3.3.1 Visualization of pre-generated schedule and indeterminate gaps 34

3.3.2 Operation Layering . 35

3.4 Storage Usage . 36

3.4.1 Storage Usage Strategy . 37

3.4.2 Modified Schedule Visualization Graph 38

3.4.3 Transportation Strategy . 39

3.5 Mathematical Modeling Method . 40

3.5.1 Model Construction . 40

3.5.2 Objective Configuration . 45

3.6 Output Refinement . 47

4 Result 49

4.1 Test Cases . 49

4.2 Performance . 50

4.2.1 Input Processing . 50

4.2.2 Variables and Constraints generated by Model 51

4.2.3 Modeling Result . 52

4.2.4 Heuristic . 55

5 Conclusion 58

Bibliography 59

vi

1 Introduction

With the increasing demand for massive parallelization, fast analysis and re-

sponse time, and precise process control in modern synthesis, the miniaturized

laboratory called lab-on-a-chip, also known as the biochip shown in figure 1.1, has

been developed and evolved rapidly in the past two decades. As an alternative to

conventional biochemical laboratories, the biochip is revolutionizing many applica-

tions, such as general single cell studies including growth [1, 2], genetic analysis [3],

study of protein[4], and chemical synthesis [5].

Microfluidics refers to the science and technology of systems for manipulation

of small amounts of fluids on the nanoliter scale and below to control the fluids

precisely on a particular platform. The history of microfluidics dates back to the early

1950s when efforts to dispense small amounts of liquid in the nano- and sub-nanolitre

ranges were made for providing the basics of today’s ink-jet technology [6, 7].

Microfluidic large-scale integration (mLSI) is one of the most advanced microflu-

idic technologies. MLSI enables the parallel execution of hundreds of assays with

multiple reagents in an automated manner [7].

Due to its characteristics, such as low fluid consumption and high selectivity, the

microfluidics technology has become attractive for chemical synthesis in both industry

and academia [8]. Computer-aided design automation approaches for continuous-

flow microfluidics [9] have been proposed in recent years to make this technology

scalable and therefore to transfer the technology from an academic environment to

1source: Maggie Bartlett, NHGRI

1

1 Introduction

Figure 1.1: Microelectromechanical systems chip, sometimes called "lab on a chip" 1

2

1 Introduction

an industrial realm which requires both low human resources requirements and low

initial investment [10].

With the rapid evolution of microfluidics technology evolved rapidly, more and

more synthesis designs that can be processed on the biochip and the correspond-

ing requirements have been proposed, which results in a gap between the biochip

concepts and design automation.

First of all, as more and more types of chemical reactions are enabled on biochip

due to the evolution of device and component integration, there are several execution

limitations of bioassays. For instance, the latest start time of sequencing operations or

parallel execution of related operations, are proposed and should be integrated into

the design automation concept. As to this point, I will elaborate on these execution

limitations later in the following chapter.

Besides, though several types of bioassay operations, for example mixing, detect-

ing, heating as well as filtering, are integrated into automated synthesis, several types,

such as storing, are neglected in previous design automation. However, to realize the

biochip from the possible needs of enabled bioassay to feasible chip design, it should

involve all existing types of operation and support types that may arise in the future

with high expandability.

In this work, I present a mathematical modeling method to solve the binding and

hybrid-scheduling problems of microfluidics design automation based on component-

oriented general device concept that enables functionality- and volume-mapping to

operations with or without execution limitations.

Chapter 2 will introduce the background of microfluidic design automation

briefly.

Chapter 3 presents my approach to the solution of binding and scheduling

problem using the component-oriented synthesis concept.

Chapter 4 shows the experimental results of my method and discusses the reason

for the experimental results.

3

1 Introduction

Chapter 5 concludes my attempts and proposes a vision for the future works.

4

2 Background

A biochemical assay consists of a series of operations. The microfluidic platform

comprises an easily combinable set of microfluidic unit-operations that allows assay

miniaturization within a consistent fabrication technology [11]. The unit where

an operation is executed is called a device, which may be made up of several

components with different specialized functionalities. As a base-element in such

design automation problems, a device, which is used to perform an operation, should

provide all functionalities required by the operation.

In this section, the background of biochip design automation will be introduced,

and then the motivation of my work will be further discussed, the problem formula-

tion of this work will be defined at the end of this section.

2.1 High-Level Components

As hundreds or thousands of components are integrated on a single chip, the

challenge to design an integrated microfluidic system becomes more and more

complex. As an exciting frontier in microfluidic-based biochip design, the top-

down approach simplifies the design of integrated microfluidic-based biochip by

providing a library of microfluidic components [7]. In order to have a comprehensive

understanding of biochip design, different types of components that are integrated

on the chip will be briefly reviewed.

5

2 Background

2.1.1 Micromechanical Valve

A valve is the basic unit of microfluidics to handle the fluid. Early micromechani-

cal valves were based on silicon microelectromechanical systems (MEMES) technology.

However, due to the complexity of highly integrated devices, the micromechanical

valves based on this technology is difficult to produce [12].

More recently, the polydimethylsiloxane (PDMS) pneumatic micro-valves [13]

are developed by using the soft lithography techniques [14]. Also, the first mLSI was

realized by using the multilayer soft lithography (MSL) to produce the monolithic

membrane valves. Since then, microfluidic biochip has proliferated, and it is now

even possible to integrate one million valves on a single chip [15].

Basically, a valve consists of two types of channels: the control channel and the

flow channel. These two channels intersect orthogonally, between which a membrane

is formed as a demarcation line of their corresponding layers. As shown in figure

2.1(a), if the control channel layer is on the top of the flow channel layer, a push-down

valve is formed. Alternatively, a push-up valve shown in figure 2.1(b) will be formed.

Also, as shown in figure 2.1(c), a three-layer device with both push-up and

push-down valves can be formed by combining the valves to increase valve density

and simplify the channel routing.

2.1.2 Pump

A pump refers to a chip component consisting of a linear array of valves. As

shown in figure 2.1(d), the valves actuate in sequence to provide the pressure for

fluid movement. Suppose 0 and 1 represent the opening and the closing of the valve

respectively, three valves are actuated in the pattern 101, 100, 110, 010, 011, 001. In

this manner, fluid in the flow channel can be push from one side to the other side.

6

2 Background

Figure 2.1: Monolithic micromechanical valves [7]: (a) Two-layer polydimethylsilox-

ane (PDMS) Push-Up Valve. (b) Two-layer PDMS Push-Down Valve.

(c) Three-layer device with both push-up and push-down valves. (d)

Schematic of a linear peristaltic pump using three valves in a series.

7

2 Background

2.1.3 Sieve Valve

A sieve valve is a particular component based on PDMS technology for liquid

transportation. Unlike the conventional push-up valve shown in figure 2.2(a) (marked

by blue color), which should be entirely closed by the control valves, a sieve valve

shown in figure 2.2(b) (marked by blue color) can be partially closed. By closing the

sieve valve, a gap in the valve will be formed, which is small enough to filter larger

particles, but at the same time, smaller particles and liquid can still pass through.

As shown in figure 2.2(c)(d), the anion exchange beads are stacked by the closed

sieve valve shown in inset (b). All the valves marked with X are closed. Since the

conventional valve at the bottom is open, the liquid can still flow through; thus, the

target is concentrated from a 40ml volume into less than 400nl [16] while retaining the

same amount of cells. The beads can be easily transported by opening the sieve valve

and pushing them with a new liquid. In this manner, the sieve valve can be used

to produce highly-concentrated target particles, which is important for cell-based

operations.

2.1.4 Mixer

A mixer is one of the most critical microfluidic devices since the mixing of

reagents is one of the fundamental requirements of the bioassay. One of the conven-

tional mixer design is to combine a rotary geometry with the pumps [18]. As shown

in figure 2.3, the mixing loop is sealed after the reagents are loaded into the device.

When the pump is activated, the closer the part of the liquid is to the center of the

ring, the faster it flows. As a result, the interface between two reagents is increased,

and consequently, the reagents can be mixed efficiently.

However, the mixers are not necessary for mixing operations due to the rapid

evolution of component designs. For example, a sieve valve mentioned above could

be used for mixing operations. The figure 2.4(a) shows the micrograph of a chip

8

2 Background

Figure 2.2: Sieve valve function [17]: (a) Regular valve. (b) Sieve valve. (c) Stacked

beads. (d) Snapshot of (c).

Figure 2.3: [7] (a) Rotary micromixer, DNA liquid within the mixing loop is marked by

green color and cells liquid is marked by yellow color. (b) After actuating

the pump two colored liquids are completely mixed.

9

2 Background

(a)

Figure 2.4: Sieve valve function [19]: (a) Micrograph of a chip designed for a kinase

activity assay. (b)-(e) Flow reversal protocol enables liquid samples to pass

through the bead column in both directions alternatively.

designed for a kinase activity assay. The flow channels marked by blue color are

controlled by the sieve valves marked by green color. Since the sieve valves can be

partially closed to filter larger particles while allowing smaller particles and liquid

passing through, as shown in figure 2.4(b)-(e), the beads are pushed by input samples

in both directions iteratively. Consequently, the mixing of beads and samples are

performed without a conventional mixer. Moreover, differing from the conventional

mixer which is difficult to support the mixing of large volumes of input samples

effectively, the sieve valves are used to produce highly-concentrated particles, and

thus, the mixing of large volumes can be executed by using sieve valves.

Besides the particular example of chip design, current designs demonstrate that

the mixing operations can also be performed in a mixer that is integrated with several

other microfluidic components which can be used for other operations to utilize the

use of chip resources, such as detecting [20], heating [21], and washing [17]. As

shown in figure 2.5, the mixers are integrated with cell-separation modules, which as

shown in Insert 2 are U-shaped (marked by blue color). They are separated from the

ring-shaped component (cell-separation module: blue, the rest of mixer: yellow) by the

10

2 Background

portion valves marked by black color. When the portion valves are opened, the blue

U-shaped cell-separation modules and the yellow U-shaped parts are combined to

form the complete conventional ring-shaped mixers for mixing operations. However,

after the portion valves are closed, the blue U-shaped parts will be separated from

the mixers and serve as cell-separation modules for cell-isolation operations.

2.1.5 Cell Trap

There are two major methods for single cell isolation. One is to use cell-separation

modules as shown in figure 2.5. To capture single-cells, the distance between two

floating cells is adjusted by changing the cell concentration and flow rate. Using this

method, the float can be captured separately by using cell-separation modules.

The other method is called cell traps. The cell traps vary in shapes and sizes to

fit and hold cells; some U-shaped PDMS traps are shown in figure 2.6(a)-(d). The

development of cell traps enables a large number of cell isolation operations which

can be executed in a parallel way. However, as shown in figure (e), the probability

that a cell trap captures exactly one cell is about 53%. Therefore the number of times

that the single-cell capturing operation needs to be executed cannot be determinate.

2.1.6 Heating Pad

As shown in figure 2.7(b), the component for heating operations consists of a

two-layer fluid-handling part and a heating circuit. The ring-shaped fluid channel

is sealed after the sample liquid is loaded. With different actuation pressure and

pumping frequency, the sample liquid is transported around the loop and heated.

2.1.7 Optical System

An optical system is a general component used to take images, which help

analyze operation results. The system usually consists of a light source and a detector.

11

2 Background

Figure 2.5: Single-cell mRNA extraction microfluidic device. (Insert 1) Micrograph

of mixer disign integrated with cell-separation modules by using portion

valve. (Insert 2) Cell-separation module with captured single-cell. (Insert

3) Bead columns next to the sieve valve to synthesize cDNA. (Insert 4)

Collection wells to store beads with attached cDNA. [20].

12

2 Background

Figure 2.6: Single-cell isolation using cell trap [22]. (a)-(d) Varying geometry of cell

traps, the depth varied as 10, 15, 30, and 60 µm. (e) The distribution of

trapped cells for the geometry shown in (a).

13

2 Background

Figure 2.7: Heating pad [21]. (a) Schematic of the heating pad (top view). (b) Assem-

bly of the rotary microchip and the heating pad.

14

2 Background

Figure 2.8: Photograph of a Single-Cell Isolation [23]: (a) micrograph of chip architec-

ture (scale bar 5 mm). (b) Schematic diagram of the automated sorting

procedure. (c) A color combination of a phase contrast image (gray) and a

fluorescence image (green). A red crossed square indicates the absence of

cell (scale bar 100 µm).

15

2 Background

mi : mixing wi : washinghi : heating

(a)

m1

m2

m3

m4

m6 m7 m8

Sample AReagent A

Reagent B

Reagent C

Reagent D

Reagent F Reagent G

h2 h3 h4h1

m5

Reagent E Reagent H

: duration

: dependency

immediate
execution:

mutual
exclusion

:

m1

PMMA formaldehyde+glycine

NP40 buffer

m3

MNase

m4

SDS+EDTA

m5

Rabbit IgG {anti-H3K4m3/

w2

m6

w3

m7

w4

m8

w1

m2

(b)

beads
DPBS+cells+

w5 w6 w7

h1

h2 h3 h4

DPBS/PIC

DPBS/PIC+ DPBS/PIC+

anti-AcH3}

: : parallel
execution

Figure 2.9: Sequencing graphs of Chromatin Immunoprecipitation (ChIP) [17]: (a)

Simplified graph. (b) Realistic graph

As shown in figure 2.8(c), right after the detection of a fluorescent signal, an image is

taken and analyzed to count the number of cells.

2.2 Operation properties and execution limitations

ChIP (Chromatin Immunoprecipitation) [24] is an assay used to study interactions

between protein and DNA. I take the ChIP assay as an example (figure 2.9) to

introduce the operation properties and execution limitations.

2.2.1 Operation properties

The operation means the manipulation of biochemical inputs. On continuous-

flow based microfluidic biochips, each operation has the following basic properties:

16

2 Background

1. Operation type: the type of operations, such as mixing, heating, washing, as

well as detecting. The nodes marked by different colors shown in figure 2.9(b)

represent different types of operation. The components mentioned above are

designed to perform these operations.

2. Input volume: the volume of the input sample to get the required synthesis

result. Since the different component designs have their own capacities to

execute operations with a certain volume of input sample, different devices may

be needed to execute the operations, which share the same operation type but

different input volumes.

3. Execution duration: the time that an operation is once fully executed, whether

it is successful or not. Some operation types, for instance single-cell-capturing

operation mentioned in section 2.1.5, are not necessarily successful.

4. Dependency: the relationship when an operation oc takes the output sample

of another operation op as its input sample. Similarly as that in [19], the

operation oc is defined as the child operation of operation op, and operation op

as the parent operation of operation oc. As shown in figure 2.9(b), each solid

edge represents a dependency relationship between its source and sink node.

Additionally, the successful execution of a parent operation limits the earliest

start time of its child operations.

2.2.2 Execution limitations

1. Latest start time: as shown in figure 2.9(b), the node m3 specifies the upper

bound of the start time of m4, and I define the limitation as the latest start

time. After the Micrococcal Nuclease (MNase) sample is loaded to execute

the operation m3, the DNA is digested from cells into fragments. To prevent

over-digestion of DNA and lyse cells completely, the operation m4 is performed

17

2 Background

with the Sodium Dodecyl Sulfate/Ethylenediaminetetraacetic acid (SDS/EDTA)

buffer. In case the DNA is over-digested, the DNA ends would be harmed, and

the required dinucleosome signal would disappear [25]. Thus, the start time of

operation m4 is closely related to the end time of operation m3 and cannot be

arbitrarily postponed.

2. Parallel execution: as shown in figure 2.9(b), m4 is the final operation of

the chromatin (Ch) process, and its output sample is used to perform the

immunoprecipitation (IP) process. The operations m7 and m8 take Dulbecco’s

phosphate-buffered saline/Protease Inhibitor Cocktail (DPBS/PIC) buffer with

target antibodies while the operation m5 as a reference operation takes no

antibody and the operation m6 as negative control takes antibodies that specify

no target proteins. Thus, to compare the outputs of these operations fairly, they

need to be executed in parallel [24, 26].

3. Indeterminate execution duration: some operations are not necessarily suc-

cessful, and therefore the execution duration of these operations to produce the

desired result cannot be confirmed. For example, as mentioned in section 2.1.5

and section 2.1.7, the cell traps are used for single cell isolation and the optical

systems are used to detect whether the cell traps have captured exactly one

cell or not. If the number of captured cells does not equal one, the operation

needs to be executed once again. The experimental result 2.6 shows that the

cell trap only succeeds in capturing precisely one cell with a probability of 53%.

Thus, the operation could be executed repeatedly, and the execution duration

of the operation become indeterminate. For short, I call the operations with

indeterminate execution duration indeterminate operation in the same way as in

[19].

18

2 Background

2.3 Component-oriented Synthesis Concept

In previous works, the operations and devices were classified into different types

by their functionality, and an operation could be assigned to a device only if their

types matched. As a accepted standard, these specifications simplified the scheduling

and binding problems.

However, the demarcation lines in the conventional type-classification standards

have become increasingly blurred as the component design evolves. For example, as

mentioned in figure 2.5(Insert 1), a ring-shaped mixer can be disassembled into two

U-shaped parts, one of which can be used as a cell-separation module. Thus, a mixer

in this design can support multiple types of operations. Consequently, more flexible

operation-device mapping methods are needed.

A component-oriented synthesis concept [19] is proposed to enable the precise

description of operations and microfluidic devices. Unlike the type-classification

standard mentioned above, which contained assumptions that simplified the problem,

the general device concept improves the utilization of on-chip resources and adaption

of technological updates by allowing flexible operation-device mapping.

2.3.1 Microfluidic Components

Both container and accessory are the microfluidic components. They are classified

by different area cost and processing cost when integrated into a chip.

1. Container: refers to a part of a flow channel which enables separate liquid

storage and handling. The integration of containers requires both area cost and

processing costs:

a) Chamber: a segment of a flow channel that is separated by several valves.

The segment is usually separated by two valves. However, as shown in

figure 2.2(c), five valves here separate the segment of the flow channel

19

2 Background

filled with stacked beads. The flow channels can vary in length and width

according to different operating protocols.

b) Ring: a ring-shaped flow channel connected end to end to enable circula-

tion flow. According to the definition of chamber, a ring is a specialized

chamber.

2. Accessories: refers to a library of component units with a particular function.

The accessories require no additional area cost because of the fact that they can

be integrated into containers.

a) Pump: a group of valves as mentioned in section 2.1.2 which provide

actuation pressures for liquid movement.

b) Heating pad: a component shown in figure 2.7 which supports heating

operations.

c) Optical system: the optical components for detecting operations.

d) Sieve valve: a particular valve shown in figure 2.2 which can be partially

closed for filtering of particles.

e) Cell trap: a passive component shown in figure 2.6 for cell-capturing.

2.3.2 General Device and Component-oriented operation Definition

Consisting of one container and several accessories, a general device, serves as

a general platform for operation execution. All high-level components mentioned

in section 2.1 can also be described well based on this concept. For instance, a

conventional mixer shown in figure 2.3 can be defined as a general device with a ring

as the container and a group of pumps as its accessories; the same device is shown in

figure 2.5 with an additional separation valve as its accessory serves as a platform

for both mixing and cell-separation operation; moreover, as shown in figure 2.2, a

20

2 Background

mixing operation can also be performed in a device consisting of a chamber as the

container and two sieve valves as its accessories.

Component-oriented operation is likewise proposed to accommodate the general

device concept. A component-oriented operation includes the following attributes:

1. container and accessories required for operation execution;

2. volume of input sample is used to select container with specified capacity;

3. dependency which indicates related operations;

4. execution limitations which specifies the execution time of this operation.

2.4 Problem formulation

The binding and scheduling problem is defined as follows:

• Input: specified information about a series of component-oriented operations

to perform a particular bioassay.

• Objective: minimization of assay execution time and the costs incurred by

integrating the required components on the chip.

• Output: the bioassay synthesis result specifying scheduling and binding results.

21

3 Method

In this chapter, a detailed description of my method will be given to solve the

problem mentioned above. The method proposed consists of the following parts:

1. Inputs processing for method robust and efficiency,

2. Hybrid-Scheduling approach to solve the problem with the indeterminate

operations,

3. Mathematical modeling and optimization of the problem, and

4. Reprocessing of the optimization result.

The flowchart of this method is shown in figure 3.1.

3.1 Input Processing

The input that describes an assay consisting of component-oriented operations

is the data in the form of a text file that contains information about the properties

and execution limitations of a series of operations. Abstractly, the protocols could be

shown in a sequencing graph like the one mentioned in chapter 2. In previous works,

the inputs were assumed to be correct and feasible. However, these assumptions

might not be valid considering the indeterminate execution duration and other

execution limitations. In this thesis, an "infeasible input” is defined as an input

22

3 Method

Figure 3.1: Block diagram of my method.

violating the execution limitations, and a "conditionally feasible input" as an input,

whose feasibility cannot be assured.

An infeasible input may occur due to a design error or a simple manual error

by generating the input files. It is reasonable to check the feasibility of design input

since the modern synthesis design can include up to hundred or thousand operations

and could cause the waste of time if the optimization program could not find the

feasible solutions after running for several hours. In this thesis, several infeasible

and conditionally feasible cases will be discussed, and the methods to detect or solve

them will be proposed. My goal is to improve the robustness and the efficiency of the

method by checking the feasibility of inputs before the beginning of mathematical

modeling.

23

3 Method

3.1.1 Modified weighted sequencing graph

In this thesis, I propose modified sequencing graph to describe and visualize the

input data and to illustrate upper bound limitation and indeterminate operation.

A modified weighted sequencing graph consists of the following elements:

• Operation and Operation Sequence: As shown in figure 3.2, in a modified weighted

sequencing graph, same as the elements in the original sequencing graph, each

node means an operation, and each edge represents the operation sequence or

so-called dependency relationship.

• Execution duration: The positive weight labeled on solid edges, or forward edges,

represents the execution duration of the parent operation.

• Upper bound limitation: The negative weight labeled on dotted edges, or back-

ward edges, represents the upper bound of the waiting time of a child operation,

which means that the child operation must be started not later than this given

time after the end of its parent operation.

• Indeterminate operation: The node with a double circle means an indeterminate

operation. The weight on the corresponding forward edge represents the time

that the operation is executed once regardless of the result.

• Source and Sink: Additionally, I added a starting node (source), which is marked

as indeterminate operation and has the outgoing flow to all sources in original

sequencing graph, to show the execution duration of indeterminate operations

in sequencing graph and represent sequencing graphs with multiple sources

and sinks as one flow network. Moreover, an end node (sink) is also added,

which can be considered as an indeterminate operation and has incoming flow

from all sinks in the original sequencing graph.

24

3 Method

Parent/Child operations

Lower bound/Upper bound

Indeterminate operations

S

1

2 3

4

E

22

4

2 -3
+ 3 ≥O2.st O4.st

44 = a + 1,a ∈ NO4.et

-3

2 1

1

Figure 3.2: Modified weighted sequencing graph, S represents source and E represents

sink.

25

3 Method

The source and sink are marked as indeterminate since it is intuitive that the

start and the end of the synthesis on the chip are triggered by the operator and

therefore have no fixed time information. As a network flow, the modified weighted

sequencing graph can be used for capability calculation or other graph theory related

algorithms.

3.1.2 Cycle in sequencing graph

S

1

2 3

4

E

22

43

2 2

1

Figure 3.3: Example of cycle in sequencing graph

In graph theory, a cycle as shown in fig 3.3 consisting of node 2 and node 4 in a

directed graph G (V, E) can be represented as a subgraph consisting of a set of nodes

and edges: G′ (V′, E′) , V′ ⊆ V, E′ ⊆ E. A cycle means the predecessor of each node

in the cycle is also its successor at the same time.

In this case, the start time of these operations represented by the nodes in the

cycle cannot be decided, since the end time of Oa, as a predecessor of Ob, must be no

26

3 Method

later than the start time of Ob, and meanwhile, the start time of Oa, as a successor

of Ob, should be no earlier than the end time of Ob, causing that the end time of Oa

should be no later than the start time of Oa, which is obviously infeasible.

As a solution, I could find the predecessors of each node by performing a Breadth-

first search (BFS). The decision to chose BFS is driven by the need for collecting other

information including execution duration, etc., in the input processing phase. Once

a successor of a node occurs in the set of its predecessor, the entire process will be

stopped immediately, and the input will be marked as infeasible.

3.1.3 Exceedance of upper bound

When assuming infinite time and chip area resource, an acyclic series of opera-

tions that do not have upper bound limitations is feasible, since one could always

find a start time for the child operation greater than all the lower bound of its par-

ents operations, and one could always find a device that is not occupied to execute

the child operation. All that is needed is to find an optimized solution. However,

this situation becomes different after considering upper bound limitation and the

indeterminate execution duration.

As shown in figure 3.4, the start time of operation O4 depends on the end time

of an indeterminate operation O3, and O4 must be started not later than a given time

after the end of operation O2. Since the upper bound is a fixed number and the

indeterminate operation could be executed repeatedly without the desired result,

the upper bound has a probability of being exceeded. This relationship is called

conditionally feasible, which means that the feasibility of the input depends on the

entire execution duration of the indeterminate operation.

To solve this, I proposed a method inspired by relative scheduling [27]. Since

ensuring the feasibility of the result has the highest priority, the start time of the

related operations could be postponed as much as necessary to ensure that the upper

27

3 Method

Algorithm 1 Input Processing Part I

1: feasiblity: the boolean value represents the input feasibilit

2:

3: procedure checkFeasibility()

4: if not isFeasible() then

5: feasibility← makeFeasible()

6: else

7: feasibility← true

8: end if

9: end procedure

10:

11: procedure isFeasible()

12: isFeasible← true

13: for all Op as parent operation do

14: for all Oc as child operation, Oc ∈ Op.upper_bound do

15: for all Opre, Opre ∈ Oc.indeterminate_predecessor do

16: if Opre /∈ Op.indeterminate_predecessor then

17: isFeasible← false

18: mark Opre

19: end if

20: end for

21: end for

22: end for

23: return isFeasible

24: end procedure

28

3 Method

Algorithm 2 Input Processing Part II

1: procedure makeFeasible()

2: isFeasible← true

3: for all marked Opre do

4: if not addEdge(Opre, Op) then

5: isFeasible← false

6: break

7: end if

8: end for

9: return isFeasible

10: end procedure

11:

12: procedure addEdge(u,v)

13: addedEdge← true

14: if Ou /∈ Ov.indeterminate_predecessor then

15: if Ov ∈ Ou.predecessor then

16: return false

17: else

18: add forward edge(u, v)

19: add Ou into Ov.indeterminate_predecessor

20: for all Ow, Ov ∈ Ow.upper_bound do

21: addedEdge← addedEdge∧ addEdge(Ou, Ow)

22: end for

23: return addedEdge

24: end if

25: else

26: return true

27: end if

28: end procedure

29

3 Method

S

1

2 3

4

E

2

4

S

1

2 3

4

E

2

-3

2 2

1

3

1

Figure 3.4: Example of upper bound exceedance

bounds will not be exceeded.

The exceedance case occurs between a pair of operations with an upper bound

limitation. As proved in [27], assuming G(V, E f) is acyclic, a sequencing graph G is

feasible for the pre-generated schedule only if all predecessors with the indeterminate

delay of v belong to the set of all predecessors with the indeterminate delay of u for

all edges (u, v), u, v ∈ V.

Hence, for each pair of operations with upper bound limitation, I could compare

their predecessors which has indeterminate execution delay. As shown in 3.5 and the

pseudo codes Algorithm 1 and Algorithm 2, if a cycle does not occur by doing so, the

added edge between the parent operation and the specified indeterminate operation

can avoid the exceedance case. Otherwise, the input will be marked as infeasible.

30

3 Method

S

1

2 3

4

E

2

4

S

1

2 3

4

E

2

-3

2 2

1

3

1

2

Figure 3.5: By adding edge, a conditionally feasible sequencing graph become feasi-

ble.

31

3 Method

3.2 An Intuitive Approach

Considering solving the scheduling and binding problems separately, an intuitive

approach for the scheduling problem is to set the execution time of the indeterminate

operations as a fixed time, which is the execution time of the operation, plus a variable

time, which represents the indeterminate execution delay.

S

2

1

3

4

5

E

2

4
2

a

3

3

b

1

ST:0

ST:0
ST: max{2,a}

ST: max{5,3+a}

ST: max{5,3+a}
ST: max{6,4+a,5+b,3+a+b}

Figure 3.6: The intuitive approach.

The figure 3.6 shows the idea of how to solve the scheduling part separately. The

most conventional way to solve the scheduling problem is to find the critical path

as presented in the [28]. By calculating the earliest and latest start and end time of

operation execution, a critical path to compact the scheduling plan could be found.

As a result, the plan can be optimized.

32

3 Method

However, the original critical path method is for the operations with fixed

execution duration. To make the method work for operations with indeterminate

execution delay as well, all execution time of indeterminate operations is set to

constant execution time plus a variable represents execution delay.

For example, if an operation Oc has multiple parent operations and at least one

of them is an indeterminate operation, the earliest start time of this operation Oc is set

to the maximum of all earliest end time of its parent operations for path calculation.

The mathematical expression is Oc.st.earliest = max{Op.et.earliest}, ∀Op ⊆ Oc.parent.

In this intuitive approach, the number of elements in the set max{Op.et.earliest}

explodes as the number of operations increases. Because this growth is not linear, this

method is not scalable for scheduling of a very large number of operations. Therefore,

a method to solve the problem with a large number of operations and meanwhile,

solve both scheduling and binding problem at the same time, is still needed.

3.3 Hybrid-Scheduling Approach

In a schedule, the indeterminate operation cannot be allocated to fixed time

slots. However, due to the need for device reservation in many applications, the

pre-generated schedule is indispensable. To solve this problem, a hybrid synthesis

method that includes not only pre-generated schedule step, but also real-time decision

step, is proposed. This method is an extended version of the method proposed in

[19].

In this method, operations are assigned into several layers to make sub-pre-

generated schedules with fixed time slots. In each sub-pre-generated schedule, the

explicit start time of included operations is modified by real-time decisions. The

operation-device binding problem is solved in these sub-schedules. The indeterminate

operations are placed at the end of the sub-schedules, and they occupy the corre-

sponding device until the sub-schedule is considered completed. Then the completion

33

3 Method

of the indeterminate operations will trigger the start of the next sub-schedule.

In this manner, the synthesis problems can be solved comprehensively.

3.3.1 Visualization of pre-generated schedule and indeterminate

gaps

Device 3

Device 2

Device 1

O4

O1

O2

1 2 3 4 5 6 7

O3

In
de

te
rm

in
at

e
G

ap

8 9 10 11 12 13 14 15 16Time

Figure 3.7: Visualization of a schedule output.

The fig 3.7 illustrate my desired output which is the pre-generated schedule.

In the coordinate indicator system, the x-axis represents time, and the y-axis repre-

sents the device. Each solid block represents an operation-device mapping and the

corresponding operation’s time consumption.

Since the indeterminate operations have no fixed end time in the pre-generated

schedule, their corresponding blocks represents only the first round of execution.

Their end time is represented by indeterminate gaps. The left side of an indeterminate

gap represents the latest end time of all operations including the first round of

indeterminate operations in the current sub-schedule. It is the nominal end time of

34

3 Method

this sub-schedule. The right side of an indeterminate gap means the real latest end

time of all indeterminate operations in the current sub-schedule and is the real end

time of this sub-schedule. The width of the indeterminate gap cannot be optimized

since it depends on the number of rounds that the corresponding indeterminate

operations are executed in real time.

3.3.2 Operation Layering

S

1

2 3

4

E

2

4

S

1

2 3

4

E

2

-3

2 2

1

3

1

2

Indeterminate
Gap

S

1

2 3

4

E

2

4

S

1

2 3

4

E

2

-3

2 2

1

3

1

2

Indeterminate
Gap

Figure 3.8: Example of layer cut, different colors represent different layering ap-

proaches.

In schedule visualization graph, a sub-schedule represents the set of operations

in one layer. In the sequencing graph, the layer can be represented by a cut like the

examples in fig 3.8. In fact, for real-time termination control, the start of operations in

35

3 Method

the sequencing sub-schedule depends on the end of operations in the previous sub-

schedule. The dependency results in additional edges the sequencing graph. In other

words, the cut for operation layering is a division of the vertices of the sequencing

network separating two parts. All operations in one part are the successors of each

operation in the other part.

To avoid that the method traps solutions into local optima, it should explore all

possible additional edges and the resulting operation layering.

Due to the fact that the width of the indeterminate gaps cannot be optimized,

I neglect it and choose the nominal end time as one of my optimization objectives.

Besides, the number of indeterminate gaps and layers are also included in my

optimization objectives. Before the next sub-schedule starts, only the devices for

indeterminate operation execution are active, and the rest of the devices are idle.

By executing multiple indeterminate operations in the same layer, the capability to

execute operations in parallel can be increased.

3.4 Storage Usage

As described in the background chapter, the storage usage is neglected in pre-

vious works. In the previous works, the products of the parent operation will be

exported immediately after the end of the execution and then be imported imme-

diately into the devices for child operations before their start. Between the end of

parent operation and the start of child operations, all corresponding devices are

considered to be free. This assumption simplifies the problem and can cause device

usage conflict in real chip design.

In this section, several storage usages and reasonable transportation strategies to

solve this problem are proposed.

36

3 Method

3.4.1 Storage Usage Strategy

A biochip consists of several components connected by channels. It is intuitive

to think of storing the operation products in a device or a channel. These have both

advantages and disadvantages.

Device as storage: operation products will be placed in devices, and the devices

will be marked as occupied when they are used as storage.

• Advantage:

– Intuitive way to store the products

– Easy to manage device usage

• Disadvantage:

– Requires more device resources

Channel as storage: operation products will be exported into a channel after the

end of the parent operation and then be stored in the channel.

• Advantage:

– Save device resources

• Disadvantage:

– No widely accepted standard for channel usage as storage

– Storage capability depends on channel length

Mixed storage usage: Operation product storage depends on device usage and

transportation time.

• Advantage:

– Most efficient resource (both time and device) usage

37

3 Method

• Disadvantage:

– No widely accepted standard for channel usage as storage

– Make problem more complicated

From the perspective of simplifying the problem and improving the compatibility

of the method, the device as storage is chosen as my standard storage strategy.

3.4.2 Modified Schedule Visualization Graph

To describe device storage and product transportation strategy clearly, the sched-

ule visualization graph for the representation of the device occupation is modified.

Device 3

Device 2

Device 1

O4

O1

O2

1 2 3 4 5 6 7

O3
In

de
te

rm
in

at
e

G
ap

8 9 10 11 12 13 14 15 16Time

device occupation

OST ST ET OET

Figure 3.9: Modified schedule visualization, a device is occupied even the correspond-

ing operation is not executed. A device can be occupied before or after

the execution of the corresponding operation.

As shown in the figure 3.9, each block that represents the operation-device

mapping consists now of three connected parts:

• the part (OST-ST) represents that the device is occupied by products from parent

operations,

38

3 Method

• the part (ST-ET) illustrates that the device is occupied for operation execution,

• and the part (ET-OET) serves as the device occupation for storage of operation

product

The modified schedule visualization graph will be used later for my transporta-

tion strategy description and explanation of other approaches to solving the problem.

3.4.3 Transportation Strategy

The transportation strategy is to decide when and how to import and export the

operation products to the designated device. In this method, I do not consider the

preparation phase of an assay, and the main focus will be put on the transportation

of the intermediate products.

In this section, two different transportation strategies for products transportation

will be discussed.

Device for Both Parent and Child Operations: After the execution of parent

operation, the operation products can be stored in both devices for the parent and

the child operation, the decision depends on the device usage and other execution

limitations.

Device for either Parent or Child Operation: After the execution of a parent

operation, the operation products will be stored only in the device for the parent or

the child operation.

• If the device for parent operations strategy is chosen, the device for parent operation

will still be occupied after the execution until the product is completely exported

to the corresponding devices due to the start of every child operations and their

needs of the product of this parent operation.

• Alternatively, if the device for child operation strategy is chosen, the operation

product will be exported immediately after the execution to every device for

39

3 Method

child operations and these devices will be considered occupied after receiving

the product.

The device for both parent and child operations strategy is chosen as my stan-

dard transportation strategy to avoid being trapped into the local optima.

3.5 Mathematical Modeling Method

I propose an integer-linear-programming (ILP) model to synthesize scheduling

and binding solutions for the entire problem.

The inputs of my model include:

• I. a set O representing a collection of component-oriented definitions of bi-

ological operations in a biological assay. The notation IO serves as a set of

indeterminate operations;

• II. a set D indicating the usage of general devices. The maximal number of the

devices allowed to be integrated on the chip is given by the user.

The notations of the variables in my model are listed in table 3.1

3.5.1 Model Construction

Operation Layering: each operation has exactly one layer. The layer index starts

from one, the start time of operations in the layer with a bigger index has to be not

earlier than the end time of operations in a layer with a smaller index. In other words,

the layer index of each operation is not smaller than that of its predecessor. Since

the indeterminate operations should be placed at the end of the sub-schedules, the

layer index of its successors should be bigger. Besides, in order to ensure that parallel

operations can start at the same time, their layer index must be the same.

∀oa ∈ O, ob ∈ oa.parallel_operation, La = Lb (1)

40

3 Method

Table 3.1: Notation of Variables

Binary Variables

Operation oi-related Device dj-related

Container Specification

ring (r) oi,r dj,r

chamber (ch) oi,ch dj,ch

Capacity

large (l) oi,cl dj,cl

medium (m) oi,cm dj,cm

small (s) oi,cs dj,cs

tiny (t) oi,ct dj,ct

Accessory Specification

pump (p) oi,p dj,p

heating pad (h) oi,h dj,h

optical system (o) oi,o dj,o

sieve valve (s) oi,s dj,s

cell trap (c) oi,c dj,c

Transportation Path (between d and d’) Pd,d′

Same Device (mapped to operation a and operation b) SDa,b

Original Operation Dependency (between parent p and child c) OODp,c

Operation-Device-Mapping o_di,j

Auxiliary Variable q0, q1, q2...

Integer Variables

Operation Occupation Start Time (ost) oi.ost

Operation Start Time (st) oi.st

Operation End Time (et) oi.et

Operation occupation End Time (oet) oi.oet

Layer of operation Li

Transportation Time (from parent p to child c) Tp,c

Results Summation

total execution duration sumt

area cost
ring (r) suma,r

chamber (ch) suma,ch

total area cost suma

processing cost
container (con) sumpr,con

accessory (acc) summ,acc

total proccesing cost sumpr

total transportaion paths sump

Very large integer M

41

3 Method

Unlike the parent/child relationship from the original operation dependency,

the set of the modified parent/child relationship (oi.modi f ied_children/oi.modi f ied_parents)

represents the operation dependency after the input processing and the feasibility

checking procedure.

∀oa ∈ O, ob ∈ oa.modi f ied_children ∧ ob ∈ oa.upper_bound La = Lb (2)

∀oa ∈ O ∧ oa ∈ IO, ob ∈ oa.modi f ied_children ∧ ob ∈ oa.upper_bound La ≤ Lb − 1 (3)

∀oa ∈ O ∧ oa /∈ IO, ob ∈ oa.modi f ied_children ∧ ob ∈ oa.upper_bound La ≤ Lb (4)

Operation Dependency: a child operation can only start after receiving all its

inputs from its parent operations. However, one of the inputs can be imported into

the device for input storage and therefore occupies the device. In addition, if the

parent and the child operations are mapped to different devices, the transportation

time that delays the start time need to be considered. Furthermore, the start time of

the parallel operation must be the same.

∀oi ∈ O, oi.parents ⊆ ∅ oi.ost ≤ oi.st (5)

∀oa ∈ O, ob ∈ oa.parallel_operation, oa.st = ob.st (6)

∀op ∈ O, oc ∈ op.modi f ied_children, oc.ost ≤ Tp,c + op.trans ·OODp,c · SDp,c (7)

∀op ∈ O, oc ∈ op.modi f ied_children, oc.st ≥ Tp,c + op.trans ·OODp,c · SDp,c (8)

42

3 Method

Upper Bound Limitation: for the child operations with upper bound limitations,

which means that the child operation must be executed within the given time after

the end of the parent operation, I introduce the following constraints:

∀op ∈ O, oc ∈ op.upper_bound, op.et + Upper_Boundp,c ≥ oc.st (9)

Similarity, the device occupation ends after the operation execution and the export

of the entire operation product for the input collection of all its child operations. The

end time of an operation equals its start time plus the execution duration.

∀oi ∈ O ∧ oi /∈ IO, oi.et = oi.st + oi.duration (10)

∀oi ∈ O, oi.children ⊆ ∅ oi.et ≤ oi.oet (11)

∀op ∈ O, oc ∈ oc.modi f ied_children, op.et ≤ Tp,c (12)

∀op ∈ O, oc ∈ op.modi f ied_children, op.oet ≥ Tp,c (13)

Indeterminate Execution: since I place the indeterminate operations at the end

of the sub-schedules, the end time of an indeterminate operation equals the maximum

of the end time of all operations in the same layer of the indeterminate operation.

∀oi ∈ O ∧ oi ∈ IO, oi.et ≤ oi.st + oi.duration (14)

∀oa ∈ IO, ob ∈ O ∧ ob /∈ IO,

La ≤ Lb − 1 + q0 ·M (15)

oa.et ≥ ob.et − (1− q0) ·M (16)

43

3 Method

Device Conflict Prevention: if two operations are mapped to the same device,

their occupation time has to be without overlapping, since an operation needs to

monopolize exactly one device during its execution. In other words, operations with

overlapping occupation time must be assigned to different devices.

∀oa, ob ∈ O, dj ∈ D

oa.ost + (1− q1) ·M ≥ ob.oet (17)

ob.ost + (1− q2) ·M ≥ oa.oet (18)

o_da,j + o_db,j − q3 ≤ 1 (19)

q1 + q2 = q3 (20)

Same Device Detection: it is essential to check whether or not two operations

with operation dependency are mapped to the same device since such mapping can

avoid operation product transportation time, and save a physical channel between

two devices. I first introduce the constraint like inequation (19) to calculate the lower

bound of the boolean variable SDa,b:

∀oa, ob ∈ O, dj ∈ D

o_da,j + o_db, j− SDa,b ≤ 1 (21)

Different from the variables in inequality (19) that only need to determine the

lower bound, I need to determine the upper and lower bounds of SDa,b at the same

time. Therefore, I propose the following constraints:

∀oa, ob ∈ O, dj ∈ D

o_da,j + o_db,j + (1− qd) ·M ≥ 2 (22)

SDa,b ≤ ∑
d∈D

qd (23)

44

3 Method

Device Configuration: the following constraints are proposed by [19] to define

the container and accessories as the components of the devices. As defined in

the Component-oriented Device Concept, a component-oriented device consists of one

container, which is either a ring or a chamber, and several accessories including

pump, heating pad, optical system, sieve valve, and cell trap :

∀dj ∈ D, dj,r + dj,ch = 1 (24)

∀dj ∈ D, dj,cl + dj,cm + dj,cs + dj,ct = 1 (25)

∀dj ∈ D, dj,cl + dj,cm + dj,cs = dj,r (26)

dj,cm + dj,cs + dj,ct = dj,ch (27)

∀oi ∈ O, dj ∈ D,x ∈ {r, ch}, y ∈ {p, h, p, s, c}, z ∈ {cl, cm, cs, ct}

∑
dj∈D

o_di,j = 1 (28)

dj,x − o_di,j + 1 ≥ oi,x (29)

dj,y − o_di,j + 1 ≥ oi,y (30)

dj,z − o_di,j + 1 ≥ oi,z (31)

3.5.2 Objective Configuration

The objective of my modeling method is to minimize the total assay execution

time, the chip area cost, the chip processing cost, and the number of transportation

paths. The proposed objective is similar to [19].

45

3 Method

Total Assay Execution Time: it is decided by the last completed operation in the

schedule, which is formulated as follows:

∀oi ∈ O, sumt ≥ oi.et (32)

Chip Area Cost: it is decided by the size of devices integrated on the chip. I

introduce the following constraints to describe the area cost:

suma,r = ∑
dj∈D,dj,r=1,x∈cl ,cm,cs

Ax · dj,x (33)

suma,ch = ∑
d′j∈D,d′j,r=1,y∈cm,cs,ct

A
′
y · d

′
j,x (34)

suma = suma,r + suma,ch (35)

Chip Processing Cost: it is decided by the cost to integrate device containers

and accessories on the chip. Namely, it is so-called "manufacturing cost" of device

containers and accessories.

sumpr,acc = ∑
dj∈D,z∈p,h,p,s,c

Prz · dj,z (36)

sumpr,con = ∑
dj∈D,x∈r,ch

Prx · dj,x (37)

sumpr = sumpr,con + sumpr,acc (38)

Transportation Paths: the number of paths is calculated by the following con-

straints:

46

3 Method

∀oi ∈ O, oj ∈ {child operations o f oi}, d, d
′ ∈ D

o_di,d + o_di,d′ − pd,d′ ≤ 1 (39)

sump = ∑
d,d′∈D

pd,d′ (40)

Objective Configuration: the objective of my model is formulated as the sum of

the above configurations:

Minimize : Ct · sumt + Ca · suma + Cpr · sumpr + Cp · sump

The weight coefficient Ct ,Ca ,Cpr ,and Cp are defined by users.

3.6 Output Refinement

Since the constraints are carefully formulated to avoid being trapped into the

local optima, the result should be the theoretically best solution of these binding

and scheduling problems under the given coefficients. However, the fact, that some

conditions that the schedule depends on could be changed by a physical design,

can influence the scheduling and binding performance. During the physical design

process, device placement and channel routing could change the length of channels

and the distance between devices. Thus, the changes in transportation time of

input/output samples can change the optimization result.

Although the physical design is the sequencing step of binding and scheduling

for chip design automation, the solution of binding and scheduling problems can still

be refined to gain fault-tolerance.

The transportation time according to potential chip layout can be re-estimated.

The lengths of the transportation paths depend on the frequency of their usages. If

a path p1 is used more often than another path p2, the length of the transportation

47

3 Method

path p1 should be designed shorter than the length of transportation path p2 to

reduce the transportation time of p1 and increase the resource utilization. Using the

re-estimation method, each time I get a result of the ILP model, the transportation

time can be refined based on the result.

48

4 Result

The program is implemented in C++ and run on a computer with 2.9GHz CPU1.

The ILP model is solved by the ILP solver Gurobi2(version 7.5.2). Gurobi is one of the

most popular ILP solver supporting multiple programming languages such as C++,

Java, Python, MATLAB, and R. Besides, Python is used as a glue language to process

and analyze data more efficiently and conveniently.

The assays ChIP[20] and kinase[29] are used to generate the test cases. Moreover,

to test the performance of my method with large cases, the operations with the same

protocol of the original assays are replicated. Since the time for sample storage, which

will increase the total assay time, is first introduced by my work, the comparison

with the solutions generated by the conventional synthesis methods is not made.

4.1 Test Cases

The details about test cases are shown in table 4.1. The original test case for [29]

is a fairly easy problem since the corresponding operations are without any execution

limitation. However, on the opposite, the original [20] test case contains all execution

limitations and thus becomes more complex.

The number of operations includes both the number of normal operations and

indeterminate operations. If an operation does not require any specified container,

1MacBook Pro 13-inch, 2016, macOS Mojave 10.14, 8 GB 2133 MHz LPDDR3
2Gurobi Optimization: http://www.gurobi.com/

49

4 Result

Table 4.1: Test case details

ChIP replicated ChIP 2X Kinase replicated Kinase 2X replicated Kinase 4X

of operations 19 36 8 16 32

of indeterminate operations 2 4 0 0 0

of pump valves required 8 16 3 6 12

of sieve vales required 7 14 5 10 20

of cell traps required 0 0 0 0 0

of heating pads required 4 8 0 0 0

of optical systems required 0 0 1 2 4

of total accessories required 19 38 9 18 36

of rings required 8 16 3 6 12

of chambers required 0 0 0 0 0

of total accessories required 8 16 3 6 12

of dependencies 18 36 7 14 28

of upper bound limitations 1 2 0 0 0

of parallel limitations 4 8 0 0 0

neither the number of rings nor the number of chambers required containers will be

increased.

4.2 Performance

The performance of my method in both input processing and ILP modeling

phases is recorded to analyze the efficiency of the method.

4.2.1 Input Processing

In order to show the efficiency of my method, the test cases were replicated up

to 16 times. Moreover, each program was run five times to calculate their average

runtime.

As shown in table 4.2, the average running time of ChIP test case with 19

operations is much longer than that of the kinase2X text case with 16 operations. The

50

4 Result

Table 4.2: Performance of input processing
of operations # of indeterminate operations runtime (in ms) min. duration max. duration avg. duration

ChIP 19 2 1084.80

60 7200 2197.89

ChIP2X 38 4 2268.40

ChIP4X 76 8 6615.60

ChIP8X 152 16 23997.20

ChIP16X 304 32 90774.40

ChIP16X duration/10 304 32 75142.00 6 720 219.79

kinase 8 0 343.60

5 30 14.38

kinase2X 16 0 573.60

kinase4X 32 0 1531.00

kinase8X 64 0 4354.40

kinase16X 128 0 15013.60

kinase16X duration/10 128 0 15111.40 0.5 3 1.44

reason may lie in that they have different numbers of indeterminate operations. The

program may need more time to process indeterminate operations. Nonetheless,

the relationship between the number of operations and the required runtime is

approximately linear.

Moreover, the results show that the running time may depend on the execution

duration of the operations. The test case ChIP16X duration/10 contains the same

operations as in the test case ChIP16X, but the execution duration of these operations

is divided by ten. As a result, the runtime of processing ChIP16x duration/10 is

significantly reduced. However, at the same time, the runtime of kinase16X duration/10

and kinase16X is of not much difference. The reason may be that the program needs

more time to process large numbers.

4.2.2 Variables and Constraints generated by Model

As shown in table 4.3, an increase in the number of both operations and devices

causes a boost in the number of both variables and constraints. However, since the

number of operations is fixed by the assay protocols, and the number of devices

is given by the user, accurate estimation of the number of devices can significantly

51

4 Result

Table 4.3: Variables and Constraints generated by Model

of operations # of indeterminate operations # of variables # of boolean variables # of constraints

of devices = 7

ChIP 19 2 1229 1087 5328

ChIP2X 38 4 3501 3241 14379

kinase 8 0 469 396 1799

kinase2X 16 0 938 816 4047

kinase4X 32 0 2452 2232 10463

of devices = 15

ChIP 19 2 1825 1667 13080

ChIP2X 38 4 4425 4149 32563

kinase 8 0 865 776 4599

kinase2X 16 0 1462 1324 9951

kinase4X 32 0 3232 2996 24111

reduce the number of constraints and therefore improve the efficiency of the method.

4.2.3 Modeling Result

Some representative test cases are executed twice with different device numbers

(such as 7 and 15, respectively) to show the different runtime and solutions. However,

for example, if a test case needs only one device to get its optimum, the replicated

test case only needs two devices theoretically. After the solver gets its optimum, the

path transportation time will be re-estimated.

kinase: As shown in the table 4.4, this test case is executed four times. The

total execution time of the assay remains at 115, while the runtime of the program

fluctuates between 0.08s and 0.15s. All operations are assigned into two layers by the

model. However, there is actually only one valid layer, since this test case contains a

series of operations, which connect each other in a chain, and a layer can be inserted

between any dependency edge according to the definition of the layer. The fluctuation

in runtime may be caused by the changes in the operating efficiency of the CPU.

Because the case where the container of the device is a ring or a chamber is mutually

52

4 Result

Table 4.4: kinase case result

D7

round 1 round 2

D15

round 1 round 2

runtime in second 0.15 0.10 0.08 0.14

execution time 115 115 115 115

of operations 8 8 8 8

of indeterminate operations 0 0 0 0

of devices 7 1 15 1

of layers 2* 2* 2* 2*

ring/chamber pump valve sieve valve cell trap heating pad optical system

device details round 1

device 1 0 1 1 0 0 1

device details round 2

device 1 0 1 1 0 0 1

exclusive, the result indicating that the container type of the device is integrated into

a cell, where 0 means that the type of the container is a ring, and 1 means chamber.

kinase2X: As expected, the number of devices shown in table 4.5 is two in this

case. The total execution time of the assay is slightly reduced in the second round by

adding an extra device. However, whether or not to use additional devices depends

on the coefficients of my target function. The current coefficients are chosen at

random.

kinase4X: As shown in table 4.6, the runtime explodes while the increase of

the operation numbers stays linear. This result shows that it is still a challenge to

solve binding and scheduling problems with a large number of operations using my

method. However, the total execution time remains 180s, which means all sub-assays

are performed in parallel. Furthermore, this indirectly proves that my solution to the

original test case is optimal.

ChIP: This test case contains 19 operations, two of which are indeterminate

operations. Compared with the kinase2X test case containing 16 operations, the total

runtime required by ChIP is much longer than kinase2X.

ChIP2X: As shown in table 4.8, the runtime is 2162.19 seconds. Compared to

53

4 Result

Table 4.5: kinase2X case result

round 1 round 2

runtime in second 8.34 2.16

execution time 180 174

of operations 16 16

of indeterminate operations 0 0

of devices 2 3

of layers 2* 2*

device details round 1

ring/chamber pump valve sieve valve cell trap heating pad optical system

device 1 0 1 1 0 0 1

device 2 1 1 1 0 0 1

device details round 2

device 1 0 1 1 0 0 1

device 2 1 1 1 0 0 1

device 3 1 1 1 0 0 1

Table 4.6: kinase4X case result

runtime in second 960.04

execution time 180

of operations 32

of indeterminate operations 0

of devices 4

of layers 2*

device details

ring/chamber pump valve sieve valve cell trap heating pad optical system

device 1 0 1 1 0 0 1

device 2 1 1 1 0 0 1

device 3 0 1 1 0 0 1

device 4 1 1 1 0 0 1

54

4 Result

Table 4.7: ChIP case result

runtime in second 160.22

execution time 12460

of operations 19

of indeterminate operations 2

of devices 4

of layers 4*

device details

ring/chamber pump valve sieve valve cell trap heating pad optical system

device 1 0 1 1 0 1 1

device 2 0 1 1 0 1 1

device 3 0 1 1 0 1 1

device 4 0 1 1 0 1 1

the test case kinase4X which containing 32 operations, this test case contains the

similar number of operations which is 38 but requires 125% more time than that

of the test case kinase4X. The possible reasons might be the additional operations

and the increased complexity to process indeterminate operations related constraints.

However, these results prove that the input processing is meaningful for saving the

required time to detect the feasibility of inputs using the ILP model directly.

ChIP4X: As an extra test case, the ChIP4X test case is also performed. However,

the program terminates when the given time limit, which is defined as 60000 seconds,

is exceeded.

4.2.4 Heuristic

Since the transportation time can be modified after the optima are solved by re-

estimation, if two operations are mapped to a device, the corresponding transportation

time can be set to 0 and the constraints to check whether the operations are mapped

to the same device can be neglected.

As shown in table 4.9, the runtime is reduced significantly while the total

55

4 Result

Table 4.8: ChIP2X case result

runtime in second 2162.19

execution time 12460

of operations 38

of indeterminate operations 4

of devices 8

of layers 3

device details

ring/chamber pump valve sieve valve cell trap heating pad optical system

device 1 0 1 1 0 1 1

device 2 0 1 1 0 1 1

device 3 0 1 1 0 1 1

device 4 0 1 1 0 1 1

device 5 0 1 1 0 1 1

device 6 0 1 1 0 1 1

device 7 0 1 1 0 1 1

device 8 0 1 1 0 1 1

execution time is increased slightly.

56

4 Result

Table 4.9: Heuristic result

original method heuristic

runtime execution time runtime execution time

kinase 0.15 115 0.04 150

kinase2X 8.34 180 0.55 195

ChIP 160 12460 1.26 12760

57

5 Conclusion

In this work, I have proposed a method to solve binding and scheduling problems

with execution limitations and upper bound limitation using a component-oriented

device and operation concept. My approach tries to formulate an integer-linear-

programming model to solve these problems comprehensively without being trapped

into local optima. Besides, an algorithm to check the feasibility of the inputs is also

proposed to improve the robustness of my method.

The experimental results show that my approach is feasible with all execution

limitations considering storage usage and on-chip-resource-related costs. However,

the runtime of my program exploded when the number of operations is very large.

I am confronting with the difficulty that it is still a challenge to make the method

scalable. The bottleneck of my method is to detect whether the operation is assigned

to the same device. The number and complexity of the constraints have increased

significantly in this step. In the future, heuristics might be applied to reduce the

complexity of these problems.

58

Bibliography

[1] P. Wang, L. Robert, J. Pelletier, W. L. Dang, F. Taddei, A. Wright, and S. Jun.

“Robust growth of Escherichia coli”. In: Current biology 20.12 (2010), pp. 1099–

1103.

[2] V. Chokkalingam, J. Tel, F. Wimmers, X. Liu, S. Semenov, J. Thiele, C. G. Figdor,

and W. T. Huck. “Probing cellular heterogeneity in cytokine-secreting immune

cells using droplet-based microfluidics”. In: Lab on a chip 13.24 (2013), pp. 4740–

4744.

[3] J. Liu, C. Hansen, and S. R. Quake. “Solving the “world-to-chip” interface prob-

lem with a microfluidic matrix”. In: Analytical chemistry 75.18 (2003), pp. 4718–

4723.

[4] C. L. Hansen, S. Classen, J. M. Berger, and S. R. Quake. “A microfluidic device

for kinetic optimization of protein crystallization and in situ structure deter-

mination”. In: Journal of the American Chemical Society 128.10 (2006), pp. 3142–

3143.

[5] J. Liu, B. A. Williams, R. M. Gwirtz, B. J. Wold, and S. Quake. “Enhanced

signals and fast nucleic acid hybridization by microfluidic chaotic mixing”. In:

Angewandte Chemie International Edition 45.22 (2006), pp. 3618–3623.

[6] S. Haeberle and R. Zengerle. “Microfluidic platforms for lab-on-a-chip applica-

tions”. In: Lab on a Chip 7.9 (2007), pp. 1094–1110.

59

Bibliography

[7] J. Melin and S. R. Quake. “Microfluidic large-scale integration: the evolution of

design rules for biological automation”. In: Annu. Rev. Biophys. Biomol. Struct.

36 (2007), pp. 213–231.

[8] K. S. Elvira, X. C. i Solvas, R. C. Wootton, et al. “The past, present and potential

for microfluidic reactor technology in chemical synthesis”. In: Nature chemistry

5.11 (2013), p. 905.

[9] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E. Araci, and

U. Schlichtmann. “Columba 2.0: A co-layout synthesis tool for continuous-

flow microfluidic biochips”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 37.8 (2018), pp. 1588–1601.

[10] D. Roberge. “Lonza–hazardous flow chemistry for streamlined large scale

synthesis”. In: Green Processing and Synthesis 1.1 (2012), pp. 129–130.

[11] D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle. “Microfluidic

lab-on-a-chip platforms: requirements, characteristics and applications”. In:

Microfluidics Based Microsystems. Springer, 2010, pp. 305–376.

[12] G. T. Kovacs et al. “Micromachined transducers sourcebook”. In: (1998).

[13] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake. “Monolithic

microfabricated valves and pumps by multilayer soft lithography”. In: Science

288.5463 (2000), pp. 113–116.

[14] Y. Xia and G. M. Whitesides. “Replica molding with a polysiloxane mold

provides this patterned microstructure”. In: Angew. Chem. Int. Ed 37 (1998),

pp. 550–575.

[15] I. E. Araci and S. R. Quake. “Microfluidic very large scale integration (mVLSI)

with integrated micromechanical valves”. In: Lab on a Chip 12.16 (2012), pp. 2803–

2806.

60

Bibliography

[16] J. S. Marcus, W. F. Anderson, and S. R. Quake. “Microfluidic single-cell mRNA

isolation and analysis”. In: Analytical chemistry 78.9 (2006), pp. 3084–3089.

[17] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann. “Sieve-valve-aware

synthesis of flow-based microfluidic biochips considering specific biological

execution limitations”. In: Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2016. IEEE. 2016, pp. 624–629.

[18] H.-P. Chou, M. A. Unger, and S. R. Quake. “A microfabricated rotary pump”.

In: Biomedical Microdevices 3.4 (2001), pp. 323–330.

[19] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann. “Component-oriented

high-level synthesis for continuous-flow microfluidics considering hybrid-

scheduling”. In: Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE.

IEEE. 2017, pp. 1–6.

[20] J. F. Zhong, Y. Chen, J. S. Marcus, A. Scherer, S. R. Quake, C. R. Taylor, and

L. P. Weiner. “A microfluidic processor for gene expression profiling of single

human embryonic stem cells”. In: Lab on a Chip 8.1 (2008), pp. 68–74.

[21] J. Liu, M. Enzelberger, and S. Quake. “A nanoliter rotary device for polymerase

chain reaction”. In: Electrophoresis 23.10 (2002), pp. 1531–1536.

[22] D. Di Carlo, N. Aghdam, and L. P. Lee. “Single-cell enzyme concentrations,

kinetics, and inhibition analysis using high-density hydrodynamic cell isolation

arrays”. In: Analytical chemistry 78.14 (2006), pp. 4925–4930.

[23] Y. Marcy, T. Ishoey, R. S. Lasken, T. B. Stockwell, B. P. Walenz, A. L. Halpern,

K. Y. Beeson, S. M. Goldberg, and S. R. Quake. “Nanoliter reactors improve

multiple displacement amplification of genomes from single cells”. In: PLoS

genetics 3.9 (2007), e155.

61

Bibliography

[24] A. R. Wu, J. B. Hiatt, R. Lu, J. L. Attema, N. A. Lobo, I. L. Weissman, M. F. Clarke,

and S. R. Quake. “Automated microfluidic chromatin immunoprecipitation

from 2,000 cells”. In: Lab on a Chip 9.10 (2009), pp. 1365–1370.

[25] O. Flores, Ö. Deniz, M. Soler-Lopez, and M. Orozco. “Fuzziness and noise in

nucleosomal architecture”. In: Nucleic acids research 42.8 (2014), pp. 4934–4946.

[26] A. R. Wu, T. L. Kawahara, N. A. Rapicavoli, J. Van Riggelen, E. H. Shroff, L. Xu,

D. W. Felsher, H. Y. Chang, and S. R. Quake. “High throughput automated

chromatin immunoprecipitation as a platform for drug screening and antibody

validation”. In: Lab on a Chip 12.12 (2012), pp. 2190–2198.

[27] D. C. Ku and G. De Mitcheli. “Relative scheduling under timing constraints:

Algorithms for high-level synthesis of digital circuits”. In: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 11.6 (1992), pp. 696–718.

[28] J. E. Kelley Jr. “Critical-path planning and scheduling: Mathematical basis”. In:

Operations research 9.3 (1961), pp. 296–320.

[29] C. Fang, Y. Wang, N. T. Vu, W.-Y. Lin, Y.-T. Hsieh, L. Rubbi, M. E. Phelps, M.

Müschen, Y.-M. Kim, A. F. Chatziioannou, et al. “Integrated microfluidic and

imaging platform for a kinase activity radioassay to analyze minute patient

cancer samples”. In: Cancer research (2010), pp. 0008–5472.

62

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	High-Level Components
	Micromechanical Valve
	Pump
	Sieve Valve
	Mixer
	Cell Trap
	Heating Pad
	Optical System

	Operation properties and execution limitations
	Operation properties
	Execution limitations

	Component-oriented Synthesis Concept
	Microfluidic Components
	General Device and Component-oriented operation Definition

	Problem formulation

	Method
	Input Processing
	Modified weighted sequencing graph
	Cycle in sequencing graph
	Exceedance of upper bound

	An Intuitive Approach
	Hybrid-Scheduling Approach
	Visualization of pre-generated schedule and indeterminate gaps
	Operation Layering

	Storage Usage
	Storage Usage Strategy
	Modified Schedule Visualization Graph
	Transportation Strategy

	Mathematical Modeling Method
	Model Construction
	Objective Configuration

	Output Refinement

	Result
	Test Cases
	Performance
	Input Processing
	Variables and Constraints generated by Model
	Modeling Result
	Heuristic

	Conclusion
	Bibliography

