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Abstract

The building design process becomes increasingly complicated every year, but employing
digitised tools enables designers to consider diverse requirements for a project. For an
architect, considering the relationships between different objects in the building model is
as essential as it gets. These relationships are defined as conceptual ideas or specific
requirements for a building and can be formalised as design constraints. Currently, design
constraints are manually set by the user within the Building Information Modelling (BIM)
authoring tools with a limited number of constraint types. Besides identifying design
constraints, the appropriate representation is needed because not all information can
be intelligibly displayed. To address these issues, the thesis presents a semi-automated
approach for identifying and representing design constraints in the building model. The
identification process employs statistical analysis. Constraint representation is based
on a graph approach. The approach provides an automated tool to formalise design
constraints according to the extracted design knowledge in the design model. Afterwards,
the graph-based representation is employed and allows one to select a design constraint
and display an explicit representation of the constraint. The developed methodology is
tested in a case study. The constraints identification and representation processes are
tested for several types of geometric constraints. The proposed method increases the
efficiency of the design process and guides better application and interpretation of design
constraints with digitised modelling methods.
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Zusammenfassung

Der Gebäudeentwurfsprozess wird von Jahr zu Jahr komplizierter, aber der Einsatz dig-
italisierter Tools ermöglicht es Entwerfer, vielfältige Anforderungen an ein Projekt zu
berücksichtigen. Für einen Architekten ist es äußerst wichtig, die Beziehungen zwis-
chen verschiedenen Objekten im Gebäudemodell zu berücksichtigen. Diese Beziehun-
gen werden als konzeptionelle Ideen oder spezifische Anforderungen an ein Gebäude
definiert und können als Entwurfsbeschränkungen formalisiert werden. Derzeit werden
Entwurfsbeschränkungen manuell vom Benutzer in den BIM(Building Information Model-
ing) Software mit einer begrenzten Anzahl von Beschränkungstypen festgelegt. Neben
der Identifizierung von Entwurfsbeschränkungen ist auch die entsprechende Darstellung
erforderlich, da nicht alle Informationen verständlich dargestellt werden können. Um
diese Probleme anzugehen, stellt die Arbeit einen halbautomatischen Ansatz zur Iden-
tifizierung und Darstellung von Entwurfsbeschränkungen im Gebäudemodell vor. Der
Identifizierungsprozess nutzt statistische Analysen. Die Darstellung von Beschränkungen
basiert auf einem Graph-Ansatz. Der Ansatz bietet ein automatisiertes Tool zur For-
malisierung von Entwurfsbeschränkungen entsprechend dem extrahierten Designwissen
im Entwurfsmodell. Anschließend wird die graphbasierte Darstellung verwendet und
ermöglicht die Auswahl einer Entwurfsbeschränkung und die Anzeige einer expliziten
Darstellung der Beschränkung. Die entwickelte Methodik wird in einer Fallstudie getestet.
Die Prozesse zur Identifizierung und Darstellung von Beschränkungen werden für ver-
schiedene Arten geometrischer Beschränkungen getestet. Die vorgeschlagene Methode
erhöht die Effizienz des Entwurfsprozesses und ermöglicht eine bessere Anwendung und
Interpretation von Entwurfsbeschränkungen mit digitalisierten Modellierungsmethoden.
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Chapter 1

Introduction

1.1 Motivation

The building design process is complex and involves project participants being active
during all design phases. Design must fulfil various requirements, regulations, and building
codes and satisfy project goals and tasks. This is processed iteratively through all project
phases, where each iteration makes improvements and corrections in the design (ZAHEDI

et al., 2022). Nowadays, building models become increasingly complex, thus necessitating
efficient methods and tools to verify the current design phase from the point of view of the
requirements. In addition, the process of inspecting a project significantly influences the
quality of the design (ABUALDENIEN and BORRMANN, 2021,LUO et al., 2022).

While designing the building, an architect or a project manager needs to have an overview
of and control of relationships among objects in a building. The specific rules (such as the
ones coming from governmental requirements or architectural concepts) that design must
satisfy are called design constraints. Design constraints can describe not only regulations
but also design ideas. Understanding these relationships is a complex problem. One
crucial design constraint type is geometrical constraints, which define the component
orientation and location information, including mutual positions.

Commonly, such constraints are manually set by designers with Building Information
Modelling BIM authoring tools (NIEMEIJER et al., 2010). Sometimes, a designer needs to
have an overview of the design constraints for the model without applying them. It allows
management constraints or guides new participants into the design code, resulting in a list
of project constraints or a project guide. Therefore, an automated identification kernel and
representation of design constraints can save time and improve design accuracy. Correctly
identifying and representing the constraints helps to avoid potential conflicts or design
flaws and mitigate errors that might be unnoticed during the manual setup of constraints.
This ensures greater design precision and contributes to a more coherent architectural
outcome.

Currently, there are different methods to identify and represent the design constraints
in the building model. A significant portion of research aims at identifying constraints
using spatial query (BORRMANN and RANK, 2010,DAUM and BORRMANN, 2014,ISMAIL

et al., 2017). Another instance is using a declarative spatial reasoning framework to
generate geometrical constraints (BHATT et al., 2011). A more advanced identification
approach invokes artificial intelligence (AI) techniques (SACKS et al., 2022). For example,
ZAHEDI et al. (2022) proposed using the building code to set regulatory constraints
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on the properties of an object in a model (a wall). LUO et al. (2022) invokes deep
learning to classify BIM objects and consider the geometrical and spatial information. The
representation of constraints is an essential part of every approach. The most common
representation is a graph representation. ABUALDENIEN and BORRMANN (2021) proposes
a Parametric Building Graph (PBG) for capturing design constraints (patterns), which
allows one to select one of the patterns and transfer to another model based on the
Graph Rewriting System (GRS). VILGERTSHOFER and BORRMANN (2017) uses graph to
represent parametric constraints in the model and GRS to modify model. The highlighted
identification and representation approaches can solve complex challenges of design
constraints within the building model. These methods have the potential to recognise
non-standard design patterns for guiding the building design.

1.2 Problems and goals

Understanding design constraints is a complicated problem. This results from the abstract
definition of constraint and the geometrical complexity of the building model. Below, three
major problems relevant to this work are described.

Problem 1: Studies primarily focus on geometric constraint identification (G. LEE et al.,
2006) but not on capturing specific design constraints such as design ideas and concepts.
Another research direction concentrates on the problem of capturing design knowledge in
the form of geometrical and semantic information (LANGENHAN et al., 2013,ABUALDENIEN

and BORRMANN, 2021,ZAHEDI et al., 2022). A design constraint can be expressed as
elements’ dimensions, position, or semantic information (e.g. material). However, the
available BIM authoring tools support only basic usage of predefined constraints such as
equality constraints.

Problem 2: One notable area of research addresses the representation of constraints.
One interesting technique is the topological approach, which includes graph-based rep-
resentation. In ARORA et al. (2021), graphs formalise semantic spatial configurations
for further consistency checking. KIRCHNER and HUHNT (2018) use the interval method
in a constraint graph to enable user’s modifications. SCHULTZ et al. (2017) generates a
parametric sketch that contains all constraints and allows improvement of the existing
model based on the declarative spatial reasoning system called CLP(QS)1. Although such
works are numerous, there is no universal approach to design constraints representation.
The appropriate solution should fulfil a specific design task and represent a building
model in an abstract way (i.e. abstract from irrelevant numerical details, see SCHULTZ

et al. (2017)). It means the more detailed the geometry, the more complex the abstract
constraints representation.

Problem 3: Other works are related to the complications of a database implementation.
Organising data properly and choosing an appropriate database based on the design
problems is essential. Few studies focused on the relational structured query language

1http://hcc.uni-bremen.de/spatial-reasoning/index.php/systems-1
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(SQL) databases, and others focused on the object-oriented or even object-relational
database, which is more stable and efficient and supports object-oriented queries (ZHOU

et al., 2020). The latest research concentrates on cloud-based solutions such as non-
relational (NoSQL) databases that provide quick access to building model elements.
However, ZHOU et al. (2020) noticed that no efficient algorithm can work with complex
spatial data models to prevent missing data.

The solution presented in this thesis aims to fill the gap in automatically identifying
design constraints in a given model and representing it in an efficient manner. Improved
identification and representation allow designers to easily manage the project’s constraints,
guide new participants into the project regulations, and increase the overall accuracy of
the design during all phases.

The main goals of this work:

1. Conduct a literature review of state-of-the-art research articles and industrial reports
to investigate and classify the design constraints from an architectural perspective
(e.g., from basic design knowledge, general user requirements, and building codes).

2. Develop a methodology that enables the graph representation of constraints in
building design.

3. Create a prototype to support customised design constraint extraction and applica-
tion.

Thesis structure

The thesis introduces a method and an automated tool to identify and represent design
constraints. The methodology of constraint identification lies in the statistical analysis of
geometrical data, whereas the graph database approach handles the representation part.
The methods implemented are condensed in an automated solution (tool) based on a BIM
authoring tool that can accurately identify and afterwards represent design constraints.

The rest of this thesis is organised as follows:

- Chapter 2 presents state-of-the-art methods and related works. This chapter high-
lights the different methods and approaches of constraint identification and repre-
sentation.

- Chapter 3 explains the methodology to develop and evaluate algorithms to identify
and represent constraints in the building model.

- Chapter 4 describes the workflow of the proposed approach in detail.

- Chapter 5 is dedicated to the experimental setup and simulation results.

- Chapter 6 discusses the simulation results and the limitations of the proposed
approach.
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- Chapter 7 summarises the findings and presents an outlook for future research.

5



Chapter 2

State of the art

The BIM paradigm was introduced into the industry a few decades ago (EASTMAN et
al. (2008)). It proposes numerous advantages to designers, architects, and engineers.
To name a few related to this thesis, BIM is a framework in which one works with the
object-based parametric design system. It allows one to quickly verify the consistency of
design intent (requirements) and discover design errors early in the planning and building
process (BORRMANN, HYVÄRINEN, et al., 2009; MARCOS ALBA, 2017; TAKIM et al., 2013).
Still, there are several open research questions. One is the performance problem in data
extraction from the BIM model, e.g., geometrical data. Other issues include efficient data
storage and analysis methods and tools (ZHOU et al., 2020).

Design constraints constitute relationships between building objects that may satisfy the
design intentions. Constraints play a significant role in architectural design. A building’s
purposes and functions may include requirements for different types of spaces, such
as offices, classrooms, laboratories, or residential units (EASTMAN et al. (2008)). The
design must consider the specific needs of the occupants, such as accessibility, safety,
and comfort. Local building regulations (e.g. zoning requirements, fire codes, and mobility)
can influence the building design (EASTMAN et al., 2009). The design must balance the
requirements with the practical needs of the building. Therefore, design constraints must
be carefully checked and addressed during the design process to create a successful
building project.

The following sect. 2.1 provides a comprehensive literature review about constraint
classification. Constraints from the architectural perspectives presented in the sect.
2.2 and summarised constraints classification, which can be useful during the design
process. The constraint analysis is described in the sect. 2.3 and includes constraint
identification and evaluation. In the following sect. 2.4, constraint representation is
described. Constraints can be represented differently, but the main focus of this thesis lies
in the graph representation approach.

2.1 Constraint classification

Since constraints play a significant role in research, this section reaches an up-to-date
classification of design constraints. Design constraints in the building model can be
divided into several groups (fundamental types). BORRMANN, HYVÄRINEN, et al. (2009)
distinguishes two fundamental constraints: consistency and requirement constraints. The
former results from geometric or topological references in the BIM model. The latter
represents regulations (norms and rules) and user requirements. KIRCHNER and HUHNT
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(2018) proposed detailed types of requirements constraints such as architect and engineer
requirements, client requirements, and administrative regulations (limited permission).

Other building constraints have an abstract meaning, including design ideas and semantic
information. Designer’s ideas (or patterns) are classified by BISKJAER et al. (2014) as
“creativity constraints” (conceptual). Creativity constraints are defined as a designer’s
decisions during the design process. Creativity constraints can be used to manoeuvre
and transform the design space. Spatial constraints can include semantic information
of the building (BORRMANN, HYVÄRINEN, et al., 2009). By ’semantic’ one means the
non-geometric relationships (e.g., ’X is above Y,’ ’X if made out of Y’). Spatial constraints
indicate relations between building components and not only can be semantic ("below,"
above", etc.) but also describe geometric relationships (min, max values of distance, etc.).
In BORRMANN, HYVÄRINEN, et al. (2009), spatial constraints are divided into distance,
directional, and topological constraints.

As mentioned above, spatial constraints also describe geometrical relationships between
building components. These relationships are so-called geometric constraints. Geomet-
ric constraints are part of the spatial constraints and represent relationships between
geometric objects. SCHULTZ et al. (2017) uses geometrical constraints to encode the
high-level (semantic) relationships. Geometric constraints can be classified into paramet-
ric, non-parametric, and algebraic constraints. Parametric constraints require parameter
values to create and edit the model’s shape and define its dimensions. On the other hand,
non-parametric constraints specify structural relationships between geometric objects and
can be considered fixed-parameter parametric constraints. Algebraic constraints indicate
relationships among parameters from different parametric constraints (TANG et al., 2022).
Examples of algebraic constraints include topological, distance, dimensional, polynomial,
numerical, placement, movement, parallel, perpendicular, point on the line, point on the
segment, and many others (see SCHULTZ et al., 2017 ). KIRCHNER and HUHNT (2018)
uses the interval constraints as a type of geometric constraint. Interval constraints enable
a less restrictive way of modelling.

Constraints are additionally defined and classified in many BIM authoring tools. In Au-
todesk Revit 2023, there are three types of constraints: explicit (locked alignments and
dimensions), looser (no locked alignments and sizes), and implied (such as a wall attached
to a roof)1. Autodesk AutoCAD 2024, on the other hand, indicates two types of constraints:
geometric and dimensional2. These constraints are typically user-defined and improve the
design quality. The constraints enforce requirements when making changes (i.e. AutoCAD
prohibits changes in the constrained geometry - distances and angles). Constraints enable
the maintenance of design, include formulas within dimensional constraints, and change
design by changing the value of a constraint. According to the official documentation, the
design can be defined in three states: unconstrained (no restrictions in geometry), under-
constrained (few constraints are applied), and fully constrained (all relevant constraints
are applied). These states provide methods for working with constraints in the model

1https://help.autodesk.com/view/RVT/2023/ENU/?guid=GUID-91CBCCF3-66D1-496B-80B3-D893065D1A50
2https://help.autodesk.com/view/ACDLT/2024/ENU/?guid=GUID-899E008D-B422-4DF2-AC8D-1A4F5701ED4E
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depending on the design practices and the requirements of the discipline. The methods
include working with underconstrained drawings or creating fully constrained drawings.

The Industry Foundation Classes Industry Foundation Classes (IFC) model constraints
are presented as part of a non-standardized representation schema. Constraints
(IfcConsraints) are divided into qualitative (IfcObjective) or quantitative (IfcMetric)3

types. Constraints in the project may be subdivided into user-defined and system-defined
constraints. IfcConstraints can be specified by the user-defined grades such as hard,
soft, advisory, or undefined. The entity IfcConstraintAggregationRelationship enables
one to relate to the individual constraints by applying the logical operators (BORRMANN,
HYVÄRINEN, et al., 2009).

Another entity to define constraints in the IFC is IfcResourceConstraintRelationship.
This entity enables the constraints to be related to one or more resource-level objects
and applies constraints to the properties. Therefore, property helps to control, identify
and fulfil requirements 4. BORRMANN, HYVÄRINEN, et al. (2009) also integrated spatial
constraints into IFC. They proposed IfcSpatialControl (a subtype of IfcControl) with
subtypes IfcDirectionalControl, IfcTopologicalControl and IfcProximityControl.
New entities allow the control requirements and represent constraints in detail.

2.2 Constraints from architectural perspective

Every building project contains an array of design constraints. It is essential to manage
constraints to prevent cost increases. On the one hand, the project should fulfil clients’
requirements; on the other hand, too many constraints increase the occurrence of risk
associated with a project delay, costs increase, and reduction in the quality of the project.

LAU and KONG (2022) studies the constraints and their impact on different projects. The
paper classifies project constraints into categories:

- Economic constraints - the budget limit.

- Legal constraints - building regulations, fire safety, etc.

- Environmental constraints - air protection, traffic limit, noise control.

- Technical constraints - restrictive site area (storage space, transportation, equip-
ment.)

- Social constraints - public concern, media pressure.

All these categories affect project performance, quality, and progress. LAU and KONG

(2022) summarise their result in a scoring system and conclude that the legal constraints
3https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/lexical/IfcConstraint.htm
4https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/lexical/

IfcResourceConstraintRelationship.htm
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Figure 1: Design constraints from an architectural perspective

have a higher impact on the project, the technical - lower. The economic, legal, and
environmental constraints are mainly used during the project.

Constraints from the architectural perspective can be classified into requirement (or
requirements) (BORRMANN, HYVÄRINEN, et al., 2009) and conceptual (BISKJAER et al.,
2014); see also the scheme in Fig. 1. "Requirements" are regulations or restrictions
such as building codes, financial restrictions, and client requirements. “Conceptual”
comes from architectural ideas or concepts. Conceptual constraints contain ergonomics &
anthropometrics, zones, and style constraints. Conceptual constraints are often not readily
identifiable with logical approaches and require intelligent algorithms such as machine
learning (ML)(see JUNG and LEE, 2019, LUO et al., 2022,EMUNDS et al., 2022) and
natural language processing (NLP) (see NIEMEIJER et al., 2014, ZAHEDI et al., 2022). The
subdivision of those constraints is shown below.

Ergonomics & anthropometrics constraints concentrate on the comfortable design that
fits the user. An example to consider may be the difference in people’s height across
the world5. Another instance, described in FONSECA et al. (2012), illustrates how the
avoidance of the ergonomic rules can affect the work performance using two laboratories
as examples.

Zones constraints require efficient connectivity between spaces in the building. How the
spaces are grouped depends on several factors, such as usability, comfort, and building
shape. Usually, spaces are grouped by functionality (working, eating, relaxing) and can
form zones, e.g., a working zone containing working and meeting rooms, a kitchen,
and sanitary space. The furniture can be connected to the specific zone, e.g., sanitary

5https://ehs.oregonstate.edu/sites/ehs.oregonstate.edu/files/pdf/ergo/ergonomicsanddesignreferenceguidewhitepaper.
pdf
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installation needs to be placed in the sanitary zone. For example, in KRAFT and WILHELMS

(2005), the zone (referred to in the paper as the room class) contains different rooms as
sections (room). The section connects with the semantic objects corresponding to design
rules. EISENSTADT et al. (2021) define spatial information from the architectural plans as
a "relation map," a set of semantic information. They create a graph where rooms are part
of specific zones and have relationships, such as a type of connection.

Style constraints are formed from style elements such as form, construction method,
design pattern, and material. For example, high-tech architecture requires aluminium,
steel, glass, and concrete as materials in the building. In the design, open floor plans are
dominant, and such elements as ducts, electrical equipment, and mechanical components
are visible for users6.

2.3 Analysis of constraints

Constraint analysis is a complex task that includes constraint identification and evaluation.
Constraints can be analysed differently depending on the geometrical data representation
and task.

Geometric data is presented in various ways, e.g., bounding box approximation, octree
decomposition, and topological surface boundary representation (ZHOU et al., 2020).
ZHOU et al. (2020) inferred three widely used types of representation of spatial data:
Point Clouds, Boundary representation model (so-called BRep(see e.g. BORRMANN,
SCHRAUFSTETTER, et al., 2009,DAUM and BORRMANN, 2014)), and Solid Model. These
types help to increase performance in spatial queries and constraint identification.

The first type, Point Clouds, presents geometry as point clouds. The second, BRep
Model, works with triangulated meshes and handles complex geometrical situations more
effectively. Solid models, in turn, use information about an object’s inner and outer surface
and can analyse simple primitive combinations such as union, intersection, and difference.

After retrieving spatial data from the model, the constraint identification and analysis can
be processed. Identification is a process of recognising relationships between building
components. These can be done with the spatial query such as Spatial Query language
introduced in BORRMANN and RANK (2010). Spatial queries are used for model abstraction
and need to label spatial relationships. By applying spatial operators, the user can easily
query different information from the model. Spatial operators (BORRMANN and RANK,
2010) were developed to analyse the model and used to identify building components that
fulfil requirements. They include metric, directional, and topological operators.

Another example of a spatial query is the Query Language for Building Information
Models (QL4BIM, DAUM and BORRMANN, 2014), created for filtering specific objects and
relationships, which provides metric, directional, and topological operators for expression
with spatial semantics. The authors proposed an integrated mechanism (LINQ) to optimise

6https://www.dezeen.com/2019/11/20/anthony-hunt-high-tech-architecture-engineer/
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performance and object networks. They also conclude that BRep representation for
topological operators works more effectively with spatial data.

Focusing on the IFC7 representation, there is a standard for supporting filtering in the
IFC model with the data modelling language EXPRESS (NIEMEIJER et al., 2009). EXPRESS
language operates efficient algorithms to process spatial operators (constraints) based
on the geometric representation of building elements and space objects. The essential
geometrical representations are expressed by: IfcFacetedBRep, IfcAdvantagedBRep,
IfcTriangulatedFaceSet. ISMAIL et al. (2017) converts IFC EXPRESS schema and IFC-
SPF8 files into graph and stores it in Neo4j graph database. Using Cypher language, one
can query building data for topology analysis.

Instead of focusing on the IFC data structure, SOLIHIN et al. (2017) introduce BIMRL,
a data warehouse-like schema for the BIM data. The approach is user-oriented, and
the information stored in the database is most spatial related, such as information about
building objects, their property, location, and how objects interact. The schema is defined
using a relational database structure. The approach uses standard SQL, integrated with
spatial operators, to access data and enable support of spatial queries.

A substantial part of the research is aimed at spatial rule-checking approaches. Rule-
checking applies rules, constraints, or conditions to a project and identifies design errors
and mistakes (EASTMAN et al., 2009). Spatial rules play an essential role in the design of
the building. Since several rules/constraints in the model are already defined, the problem
is how to validate the compliance and consistency of these elements. BORRMANN and
BEETZ (2010) introduces spatial calculus. Based on the topology, orientation, shape, size,
and distance, constraints can be expressed differently (for example, as a graph) and then
applied for consistency or compliance checking. NIEMEIJER et al. (2010) also highlights
constraint solving. Constraint solving means taking the constraints as input and finding an
appropriate design. The solving approach generates possible variations of the design. The
appropriate combination needs to meet all given constraints. Usually, the solving method
results in more computational time because the process needs to check all combinations
and validate them (NIEMEIJER et al., 2010).

Since the research scope of this paper lies in the design constraints, it is important to
understand how to identify these constraints out of the design model, e.g. building code,
from the user, artificial Intelligence (AI) -based techniques (SACKS et al., 2022).

The understanding of design from the building code and the user can be processed with
natural language (understandable by a human). Two possibilities exist to convert natural
language into a machine-readable format: deterministic parser and natural language
processing (a machine learning technique). The first is the simplest to implement and
is used in several domains. The parser can recognise simple sentences with familiar
structure and syntax. Typically, the parsing process consists of three steps: lexical,
syntactic, and semantic analysis. Lexical analysis splits the input sentence into separate

7https://ifc43-docs.standards.buildingsmart.org/
8https://technical.buildingsmart.org/standards/ifc/ifc-formats/
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elements (tokens). Then, in the syntactic analysis, each token will be converted into a data
structure to check the syntax and grammar. In the last step, the resulting data structure is
evaluated (NIEMEIJER et al., 2010).

Another option is natural language processing (NLP). NLP provides a computer-readable
representation of a natural text. In contrast to deterministic parses, NLP can check the
context of a word and choose the correct interpretation. NLP can work with complicated
tasks but is limited in ambiguous word meaning, computational complexity, and linguistic
and non-linguistic content (e.g. tacit knowledge, information about stakeholders) (NIEMEI-
JER et al., 2014). Constraints can be extracted from regulation texts such as a building
code or norm and translated in a computer-readable way.

Several pieces of research cover constraint identification with NLP. ZAHEDI et al. (2022)
proposed an approach based on the BIM and NLP to meet client requirements and
regulations in the design concept. A particular requirement can link to specific properties
or constraints of a selected element in the model. JUNG and LEE (2019) use NLP and
machine learning techniques to analyze BIM-related tasks. The natural language parser
was presented in NIEMEIJER et al. (2014), recognising and transforming natural language
into computable constraints. The recognised constraints can be applied to the building
model. As a result, the number of elements that match the given constraint will be
highlighted. YIN et al. (2023) present ontology-a ed semantic parser to automatically
map comprehensive queries into computer-readable code for querying complex building
models.

AI-based technique as a design constraint identification option is novel in BIM applications.
It requires a large dataset of building models to recognise design patterns. For example,
LUO et al. (2022) uses a deep learning framework (a subset of machine learning) to
classify BIM objects and utilise geometrical and semantic information. Another research
presents a neural network model based on sparse convolution for classification building
IFC-based geometry and semantic enrichment (making implicit information explicit) of BIM
model (EMUNDS et al., 2022).

2.4 Representation of constraints

After the identification process, design constraints should be prepared for representation.
By representation, one means the form of information ready to be digested by a human
(e.g., an architect) or a machine (e.g. a table or a graph). This is essential because
the relationships in the building models are very complex, and not all information can
be presented in an easy-to-understand manner. There are several ways to represent
constraints. The standard methods include mathematical expression, expression using
data formats, e.g., XML, JSON, EXPRESS, natural language, and graph representation
(ARORA et al., 2021; BORRMANN and RANK, 2010; NIEMEIJER et al., 2009).
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The universal representation is mathematical equations and inequalities (BORRMANN and
RANK, 2010; NIEMEIJER et al., 2009). The example of constraint distance between two
objects (O1 and O2) has the following representation:

distance(O1, O2) : = 1000 mm (2.1)

This representation means "The distance between object 1 and object 2 is equal to
1000 mm". Considering representation, this meaning can be interpreted as a natural
language representation of constraints. Regarding the data formats expression Y.-C. LEE

et al. (2016) introduce the ontology framework based on the XML9 schema. Ontology
knowledge is used to represent object properties and relationships. To verify relationships
and accuracy from the ontology, semantic reasoning is used.

The graph is a standard method to represent complex data structures. A graph consists of
nodes and edges. In our case, nodes represent objects, and edges display relationships.
The nodes can have different labels, attributes, and types. Edges can also have individual
properties. Both nodes and edges have a unique identifier. The graph structure can be
used as a database (graph database) to represent and store data. There are three generic
use cases for graphs (POKORNÝ, 2015):

- CRUD (create, read, update, delete) possibility

- data querying, warehousing, and analysis

- data discovery (collection and evaluation)

The Database Management System (DBMS) manages the graph databases. There is a
host of graph DBMSs. POKORNÝ (2015) define general and special (e.g. Web, InfoGrid)
graph purpose databases. Examples of general databases are:

- Neo4j 10

- Sparksee 11

- GraphDB 12

Regarding the constraints representation of the BIM model, the graphs are a suitable
way to manage and visualise constraints, store and update information, and analyse and
discover data (BRAUN et al., 2015, VILGERTSHOFER and BORRMANN, 2017, SCHULTZ

et al., 2017). Neo4j or GraphDB graph databases would be a relevant solution to serve
these goals (POKORNÝ, 2015,LÓPEZ and CRUZ, 2015KOTIRANTA et al., 2022). Such a
database efficiently stores, manages, and edits graphs (SASAKI et al., 2018).

9https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/
10https://neo4j.com/
11https://www.sparsity-technologies.com/#sparksee
12https://www.ontotext.com/products/graphdb/
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There are a lot of works about building data representation in a graph way, e.g., represen-
tation of constraints, semantic information, requirements, geometry (LANGENHAN et al.,
2013,VILGERTSHOFER and BORRMANN, 2017,SCHULTZ et al., 2017, ABUALDENIEN and
BORRMANN, 2021). The graph approach helps to understand the complex data structure
of the building, identify objects, modify the parametric model, or even evaluate spatial
information.

The graph representation of building information can be classified as follows (ABUALDENIEN

and BORRMANN, 2021):

- Space connectivity graph. A space connectivity graph is used for space allocation
problems (LANGENHAN et al., 2013,SCHULTZ et al., 2017)

- Navigation graph. The navigation graphs are used for navigation in the building
(DUBEY et al., 2020) or for routing simulations (KNEIDL et al., 2012).

- IFC model graphs.These graphs represent building model from IFC and contain geo-
metrical representation and attributes related to the objects (EXNER et al., 2019,YIN

et al., 2023)

- Knowledge representation graphs. The knowledge representation graph is based on
a combination of multiple types of data structures, such as geometrical and semantic
information (VILGERTSHOFER and BORRMANN, 2017,SOLIHIN et al., 2017).

The conceptual design information is presented as a graph in KRAFT and WILHELMS

(2005). Here, the design rules are offered in a graph as relationships. BRAUN et al.
(2015) introduce the approach to compare actual and target states of the building from
photogrammetry. The graph helps to identify objects that are on the site but are temporarily
occluded in a photo. ABUALDENIEN and BORRMANN (2021) uses graphs to capture design
patterns (geometrical and semantic information) and automatically transfer those patterns
to new projects. The proposed solution benefits architects and engineers in sharing
regulations and design patterns for new projects.

VILGERTSHOFER and BORRMANN (2017) create an automation mechanism for building
two-dimensional sketches into a 3D procedural geometry model. The research uses
graph and graph rewriting methods (GRS) to represent and modify the model. The nodes
presented in a graph correspond to geometric elements (point, line, spline, circle, arc). At
the same time, the edges display the parametric constraints (geometric and dimensional
constraints) and procedural dependencies (workplane, extrusion, sweep). They mentioned
the advantages of graph representation and graph rewriting in capturing design knowledge
and enabling model maintenance.

ARORA et al. (2021) introduces an automatic constraint-based approach that enables
the evaluation of the consistency of the constraint graph. The spatial configuration is
represented as a graph, where nodes are room types, and the edges are connection types.
As a result, each arrangement obtains a consistency score, which helps the architect
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to decide and approve the configuration. This approach can evaluate the coherency of
semantic spatial configuration and use this information in further deep-learning algorithms.
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Chapter 3

Methodology

The proposed methodology involves developing and evaluating algorithms to identify and
represent the design constraints in the building model. The methodology aims to create an
automated solution to accurately identify and represent design constraints systematically
and efficiently.

Fig. 2 describes the constraint identification and representation process. The process
contains several steps: collection and calculation, analysis, constraint recognition and
improvement, and representation in a graph database. The steps are presented in detail
below in the following sect. 3.1 describes the building structure, data collection, and
calculation processes. Sect. 3.2 presents data analysis methods, including separation
and aggregation. Sect. 3.3 and 3.4 presents constraint identification and representation
respectively.

3.1 Design interpretation

The data structure plays an essential role in collecting the data from the building model. The
IFC schema ensures a neutral environment for the multi-platform exchange of BIM models.
According to the official IFC1 documentation, the building contains a spatial hierarchy of
the building components (Fig. 3). The objectified relationship IfcRelAggregates connects
the spatial elements. The building can be divided into levels (IfcBuildingStorey) and
can have components (elements) presented by the IfcProduct.

Data in BIM can be defined by a domain layer2. Domain layer includes domain schemes
containing entity definitions that are specific to a certain product, process or discipline. It
consists of the following domains:

- Building Controls Domain (IfcBuildingControlsDomain) 3 represent concepts of
building automation, control, instrumentation, and alarm.

- Plumbing Fire Protection Domain (IfcPlumbingFireProtectionDomain)4 includes
plumbing and fire protection services for a building.

1https://ifc43-docs.standards.buildingsmart.org/
2https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/content/introduction.htm
3https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcbuildingcontrolsdomain/content.html
4https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcplumbingfireprotectiondomain/content.html
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Figure 2: Process of constraint identification and representation.

Figure 3: IfcBuilding hierarchy a

ahttps://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/lexical/IfcBuilding.htm
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- Structural Elements Domain (IfcStructuralElementsDomain)5 contains structural
components of the building such as foundation, different kinds of explicit reinforce-
ment parts.

- Structural Analysis Domain (IfcStructuralAnalysisDomain) 6 defines structural
analysis model. This includes elements specification and model definition (spatial
or/and planar).

- HVAC Domain (IfcHvacDomain)7 supports objects and concepts required for inter-
operability within the heating, ventilating and air condition systems.

- Electrical Domain (IfcElectricalDomain)8 defines objects and systems for the
building’s electrical equipment (inc., data, telephone, audio-visual system, etc.). The
domain contains methods for supporting and carrying cables.

- Architectural Domain (IfcArchitectureDomain)9 defines basic objects used in ar-
chitectural domain. Most elements from the architectural domain are shared with
other domains.

- Construction Management Domain (IfcConstructionMgmtDomain)10 is used to ex-
change information between construction management applications (it may take
place in a single application or on a set of products). This domain uses specific
information (e.g., cost, time, productivity) and resources (e.g., material, product,
crew) to improve management within the project.

- Ports And Waterways Domain (IfcPortsAndWaterwaysDomain)11 contains objects
and types of ports and waterways infrastructure.

- Rail Domain (IfcRailDomain)12 supports specific rail elements such as rails, sleeper,
derailer, etc.

- Road Domain (IfcRoadDomain) 13 defines concept specific to road infrastructure.

In this thesis, the information is used primarily from the architectural domain. Data from the
architectural domain contains core information for further operations and can be defined
as a core database. Each building component should have the following information:

- Identification number

- Location (level and room/space)
5https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcstructuralelementsdomain/content.html
6https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcstructuralanalysisdomain/content.html
7https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifchvacdomain/content.html
8https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcelectricaldomain/content.html
9https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcarchitecturedomain/content.html

10https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcconstructionmgmtdomain/content.html
11https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcportsandwaterwaysdomain/content.html
12https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcraildomain/content.html
13https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/ifcroaddomain/content.html
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- Category (walls, windows, doors, etc.)

- Name and Type of the element

The next step after data collection is data calculation. Calculations provide information
that cannot be extracted from the BIM and needs to be calculated by accessing element
geometry. An example of this information contains:

- Component dimensions (width, height)

- Horizontal and vertical distances (between components)

- Semantic information (parallelism and perpendicularity)

A new database geometrical data is extracted based on the calculations above. The
database collects geometrical data and includes distances, sizes, angles, and other spatial
relationships of objects. The data is organised in a structured manner to facilitate the
analysis process.

3.2 Design constraint analysis

The next step is the analysis of design constraints. There are different options to extract
design constraints from the building data. The novel option uses machine learning
(ZABIN et al., 2022), allowing intelligence constraint recognition. ML algorithms can
recognise design patterns from a building model and work with semantic information.
Design constraint analysis with machine learning is accurate but requires a large data
set containing building projects for training models. Another option is the usual statistical
analysis (e.g. BORRMANN, HYVÄRINEN, et al., 2009,NIEMEIJER et al., 2010,BORRMANN

and RANK, 2010). Statistical analysis can analyse the constraints with classical statistics
descriptive tools (such as min, mean, max, standard deviation, quantiles, and mode).
Statistical methods do not require computer-heavy calculations and provide necessary
information about measurements in the building model. Typically, design constraints are
specified by min and max values, whereas mean helps an architect to understand the
expected value of a given building dataset. Mode presents the value that appears most
often.

This thesis analyses building data with statistical functions (second approach). This
requires separating geometrical data into several groups and aggregating min, mean,
max, and mode (Fig. 4). Data separation is accomplished by clustering data by common
characteristics. The arranged groups are based on architecture logic and may be an
element category (Windows, Walls, etc.), a geometrical location (level, room/space), or
a building component name ("M_Desk", etc.). In the next step, a dataset is built from
the aggregated element of the building. The statistical values are computed, and the
result is translated into natural language (human-readable text). The results are marked
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Figure 4: Data formation and aggregation statistics

as “recognised trends.” An example of a recognised trend is “ All windows of the family
M_Fixed have [min, mean, max, mode] [0.193, 2.595, 10.215, 0.6] horizontal distances to
the edges.”

3.3 Customised constraint validation

The analysis may reveal several potential constraints that should be translated into design
constraints. The potential constraints are called ’trends’. And there are a few options
to formulate design constraints. First is natural language parsing. The regulations or
design prescriptions can be translated into a machine-readable format and compared with
statistical data to automatically validate and identify potential constraints as real design
constraints. The second option is ML techniques, which take advantage of the historical
data (from previous building projects). Machine learning also provides constraint validation
automatically. The third option, which is used in this thesis, is the manual selection. By that,
a user is expected to choose an appropriate design constraint for a given candidate from
the list of trends. Since the aggregated data presents only statistical values and cannot
display design patterns, manual selection accurately translates recognised constraint
candidates. The manual selection allows one to specify constraints by characteristic and
by type. The types are:

- Requirements

- Conceptual

The Requirement type refers to building codes and regulations or requirements. Require-
ments constraints are often obligatory and describe the design that must be achieved.
Conceptual constraints (’Conceptual’ above) are ideas or design intent that represent the
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conceptual solutions of an architect. Conceptual constraints are not obligatory but are
recommended.

Characteristics are defined by an interval that describes possible constraint values. For
example, the constraint “All windows in the rooms called “Breakout space” have min 0.00
m and max 11.00 m horizontal distance to the edges” can have values in the interval [0.00,
11.00] in case of closed interval or [0.00,11.00) in case of half-closed interval.

3.4 Constraint representation

Design constraints can be represented differently. The proposed representation in this
thesis is a graph representation (Fig. 5). The building data is presented in the graph
database. This process is accomplished by transferring the data into a graph’s nodes
(building components) and edges (relationships between them). The graph database
allows the manipulation and analysis of the building information more efficiently compared
to traditional databases due to the large number of connections between building com-
ponents. The constraint representation in a graph database helps one to understand the
complex data structure of the building and evaluate spatial information.

After recognition and validation, a design constraint will be converted into a machine-
readable format. This conversion is needed to translate constraint into a graph. Commonly,
the translation is done with the declarative query language. The declarative graph query
language allows efficient data querying in a property graph.

The constraints are presented in a graph format as edges between vertices. The designer
can visually convey complex information with the data representation in a graph format.
This information can capture design knowledge, identify potential errors, and create
transparency in the project life cycle.

Figure 5: Types of design constraint. The design constraint as natural language is
translated into the machine-readable format and then presented in a graph.
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Chapter 4

Approach

This chapter explains the retrieval of geometrical information from a building model and the
interpretation and representation of design constraints in a property graph. In this thesis,
design constraints are requirements or design intentions. The focus lies on geometrical
design constraints such as distance, angles, and dimensions.

As mentioned above, the core processes are interpretation/identification and representa-
tion of design constraints. Interpretation involves geometrical analysis of the BIM model,
including calculations and data evaluation. The geometrical analysis includes estimating
distances, angles, dimensions, etc., and collecting elements’ properties in a geometrical
data set. Data evaluation comes after, which is done by statistical aggregation and manual
user selection. A property graph provides a representation of design constraints. These
steps are done within an automated tool (plugin) based on PyRevit1 and Revit API (ap-
plication programming interface)2 within Autodesk Revit 2022. Building components and
their relationships, including design constraints, are written in a Neo4j graph database 3

using the Cypher declarative query language 4.

The following chapter is organised as follows. Section 4.1 explains the instruments
(Autodesk Revit, Revit API, PyRevit) for developing an automated tool to interact with BIM
model and to represent design constraints in a graph (Neo4j). Section 4.2 illustrates the
automated tool structure - collection, constraints, and graph panels.

4.1 Instruments

4.1.1 BIM authoring tool

The data collection processes the existing Revit model directly and involves accessing
the Revit API. Data collection includes retrieving necessary information to calculate
geometrical and semantical relationships, which can be further recognised as constraints.
To collect information from Revit, the approach should be selected. There are several
possible ways:

- Visual programming using Dynamo5 script in a combination with python scripts
1https://github.com/eirannejad/pyRevit/releases
2https://www.revitapidocs.com/
3https://neo4j.com/
4https://neo4j.com/developer/cypher/
5https://dynamobim.org/
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- Traditional programming using C#, .NET, C++, or Python languages

The former approach is the most common. Dynamo is easy to use and comes preinstalled
with Revit as a plug-in. However, unlike traditional programming, Dynamo needs more
flexibility to efficiently solve problems stated in this work. According to the official Autodesk
Revit documentation, C# is the best option to develop plugins for Revit. On the other hand,
Python is more suited for scientific computing and, most importantly, data analysis. In this
thesis, Python with the PyRevit environment is used.

Next, it is essential to understand the structure of the Revit API. API is a set of namespaces,
classes, methods, and properties provided by Autodesk for the developers to interact
with and extend the functionality of Autodesk Revit. Revit API contains namespaces that
organise programs into logical groups. Examples of some of the namespaces include:

- Autodesk.Revit – the root namespace.

- Autodesk.Revit.DB - the common namespace in Revit to interact with building
elements. Elements in Revit are single components and abstract categories such as
view or floor type.

- Autodesk.Revit.UI – the namespace to create the custom user interface.

- Autodesk.Revit.ApplicationServices – the namespace to manage the Revit ap-
plication.

Classes in Revit represent various objects, elements, or concepts. Important classes
include:

- Document – represents a project or a document.

- Element – a base class for the elements in Revit.

- Parameter – represents a parameter associated with an element.

- Transaction – manages operations in Revit.

Each class has methods and properties to interact with and manipulate elements, parame-
ters, and other components. Fig. 6 shows an example of class structure.

PyRevit

In this thesis, PyRevit6 rapid application development (RAD) environment for Autodesk
Revit is used to create plugins. PyRevit enables one to quickly and comfortably create
plugins using Python.

To create a plugin, it is important to follow the folder structure7 (Fig. 7):
6https://github.com/eirannejad/pyRevit/releases
7https://pyrevitlabs.notion.site/Create-Your-First-Command-2509b43e28bd498fba937f5c1be7f485
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Figure 6: Element class structure with methods and properties inside the class

Figure 7: PyRevit folder structure to create plugin

PyRevit supports two types of Python interpreters: CPython8 and IronPython9. CPython
is the standard Python interpreter. Due to their limitations within the PyRevit environment,
both are used. Most notably, IronPython allows data analysis libraries such as pandas,
whereas CPython is suitable for creating user interfaces.

4.1.2 Graph database

In this thesis, Neo4j was chosen as a graph database to store building data and represent
design constraints. Neo4j10 is a native graph database to store and manage data. The
graph database is a property graph. The data elements are nodes and edges (relation-
ships) with attributes. The elements are nodes, and relationships between elements
(including attributes) are edges of the graph. Nodes and edges can be labelled and used
to narrow the search.

To write/query data to/from Neo4j graph Cypher language11 query language is used.
Cypher uses an ASCII-art type of syntax. The nodes in queries are expressed in rounded
brackets, and relationships are shown in squared brackets. Cypher, as a programming
language, has keywords for specific actions. The most common are:

- MATCH: searches for existing nodes, relationships, labels, or properties in the
database.

8https://github.com/python/cpython
9https://ironpython.net/

10https://neo4j.com/
11https://neo4j.com/developer/cypher/
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- RETURN: returns nodes or relationships.

4.2 Development of a constraint identifier

The plugin will be presented in Revit as a separate tab called "Super-Constraints" (Fig. 8).
The tab contains panels related to processes such as data interpretation, constraint identi-
fication, and representation. Each panel includes one or more push buttons. Pushbutton,
in turn, consists of the script with Python code, icon image, and additional information,
such as tables or text files. The structure is presented in Fig. 9.

Figure 8: Tab representation in Autodesk Revit 2022

The collection panel ( described in sect. 4.2.1) is responsible for the analysis process.
Here, the data will be collected and interpreted as tables. In the constraints panel (sect.
4.2.2) constraints will be identified and applied to the project constraints. Graph panel
(sect. 4.2.3) is the representation part of the plugin. Elements and their relationships
including applied constraints will be represented in a Neo4j graph database.

4.2.1 Collection panel

The collection panel contains a button called “CollectAll.pushbutton”. Besides the script
and icon image, the pushbutton includes the table “Revit-Categories-2022-arc.csv” (Fig.
10) with Revit categories filtered for an architectural discipline by a user. Types supported
by our plugin should be marked by a user as “Yes” in the column “Support.” Additionally,
the column “Furniture” includes categories related to the furniture. In the current thesis,
constraint identification is only supported for specific groups. The support of other types is
in future work.

The main script has a structure presented in Fig. 11. In the first step, elements from the
Revit model will be collected and sorted. The building is divided into groups of elements
(rooms) to find relationships within groups. In the next step, each group’s geometrical data
will be processed. Finally, all data will be saved into tables.

The script starts with the collection of rooms and elements from the model. After that the
elements are separated into groups. These groups are:

- Windows

- Doors
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Figure 9: Tab representation in Autodesk Revit 2022

- Floors

- Walls

- Furniture

Once the rooms are defined and elements are separated into one of the groups above,
the process of sorting elements into rooms starts. There are several options to find a room
for a certain element:

- Find the location point of the element and call the method GetRoomAtPoint12 of the
class Document. The methods return the room containing the point.

- Find the location curve of the element and check the intersection between this curve
and the room solid.

- Find the intersection between element solid and room solid.

- For walls, floors, and other elements that bound the room, the room can be defined
from the room boundary information (method GetBoundaryFaceInfo13 of the class
SpatialElementGeometryResults.

12https://www.revitapidocs.com/2022/656d34c2-1e53-7278-ab83-fefaff7f40a4.htm
13https://www.revitapidocs.com/2022/150ca07e-90b0-506f-9b9c-fd39d194a7ea.htm
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Figure 10: Part of Table “Revit-Categories-2022-arc.csv” with supported Revit categories
from architectural discipline

An appropriate method will be used for each element depending on its type (e.g., a wall or
a piece of furniture).

Once the elements are sorted into rooms, the calculation process starts. The calculation
will be described separately for each group of elements.

Walls

Walls belong to the class Wall and have curves as locations. Before calculating distances,
it is essential to separate walls into parallel and perpendicular pairs. In this thesis, the
distances between parallel elements and angles between nonparallel are calculated. An
example setup is shown in Figure 6. The location curve of wall #1 (Figure 6, left) has the
start and end points, and the direction is shown as an arrow. The first step is determining
whether other walls (#2,3,4) are parallel or perpendicular to wall #1. To find this the method
Intersects14 from Curve class is used. This method has one of the following outputs:

- Overlap – one or more intersections occur.

- Subset - two curves are parallel and have one intersection point.

- Superset – the input curve is entirely within another curve.

- Disjoint – no intersections found.

- Equal – the curves are identical.

If two walls are potentially perpendicular (#1 and #3 in the left panel of Fig. 12) the result
of the method Intersect returns “Overlap”. Additionally, the angles between the two walls
need to be checked.

If two walls are parallel (#1 and #3, Fig. 12) , right panel) the output is “Disjoint” with
the angle between them 0 degrees. To exclude the case when two disjoint walls are
perpendicular (walls #1 and #4, right panel in Fig. 12) ), two unbounded lines will be

14https://www.revitapidocs.com/2017/90e86110-9bce-6e43-c18a-4d67380008bb.htm
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Figure 11: Structure of the CollectAll button

created (from the curves of walls #1 and #4) and checked the intersection and angle
between them.

Finally, to find the distance between two parallel walls one point from the first location
curve needs to be projected into the other location curve. The points can be accessed
from the Curve class as start or endpoints. The curve is converted into an unbound line
for projection. Before calculating the distance, the projection point should correspond to
the selected point on the first curve (start or end point). If the points do not match, then
the direction of the second line needs to be changed (Fig. 13).

Floors

Floor elements belong to the classes Floor and Ceiling. From floors, it is impossible to
extract the location, neither the location point nor the location curve; therefore, finding a
suitable way to calculate distances is necessary. There are different options:

- Use room bounding box properties.

- Convert floors into solid geometry and calculate distances between floors and room
location points.

- Convert floors into solid geometry and extract endpoints from edges. Then, calculate
minimal distances between opposite floors.
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Figure 12: Walls with the location of lines in the middle of each wall (blue line). The start
and endpoints are marked with blue circles. Arrows in the left figure display directions from
a line’s start to the endpoint. Dotted lines in the right figure present unbound lines from
the origin point in the given direction (walls #1 and #4)

Figure 13: Projection endpoint (in green circle) on line #2. On the left figure, the projection
point corresponds to the start point on line #2 and cannot be used for distance calculation.
The direction (dotted blue line) of the line #2 was changed on the right figure. The
projection point is now in the right place (green arrow).

The first method is the simplest and is suitable if the room has one floor and one ceiling.
In this case, converting a room into a bounding box is necessary, and then using the
bounding box properties “Min” and “Max” to find the room’s minimum and maximum z
points. The method enables calculation for tilted surfaces (roofs). The distance between
two elements is the difference between minimum and maximum points ( Fig. 14).

The second method suits a room with multiple floors, such as false floors or ceilings. The
method transforms each floor or ceiling into a solid geometry, creating a normal vector
from the floor surface to the room location point. The distances between opposite floors
should be added, and the distances between parallel floors (with the same normal vectors)
should be subtracted. The calculated distances are presented in Fig. 15.

The third method is the combination of previous methods. The method gives more accurate
results and will be used as a primary method in the calculation. For this method, only the
z coordinate of each edge of the floor/ceiling face can be extracted, and the minimum
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Figure 14: Minimum and Maximum points of the room bounding box.

and maximum values can be found. The distance is the smallest difference between two
points. Fig. 16 presents an example of the calculation.

Doors and Windows

The calculations for windows/doors and nearby elements involve extracting the opening
cut, as shown in Fig. 17. There are two options to extract the opening cut. The first
option is to access the class ExporterIFCUtils15 which contains several methods such
as GetInstanceCutoutFromWall16. This method gets the curve loop corresponding to the
hole in the wall made by the element.

Another option is to extract cut edges directly from the intersection between the wall solid
and the window or door solid.

The closest distance from the opening cut to the nearest elements can be found as follows:

- For the nearest walls distance is calculated with the method ComputeClosestPoint17

of class Curve. The method returns the closest points between two curves and,
correspondingly, can be used only with walls. Then, the distance between the two
points can be calculated

- The nearest floor distance is calculated with the floor’s solid geometry. The distance
is found between the curve point and the nearest solid face.

Furniture

Because of the geometrical complexity of the furniture, the distance to be found is the
distance from the furniture element location point to the room-bounding elements (Fig.
18). Other constraints for furniture are not implemented in this thesis.

15https://www.revitapidocs.com/2018/e0e78d67-739c-0cd6-9e3d-359e42758c93.htm
16https://www.revitapidocs.com/2018/07529283-96a7-8aca-5edf-906d8ddd3b7d.htm
17https://www.revitapidocs.com/2022/04ab73d1-bc85-9b87-aace-4272a0c7c3e4.htm
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Figure 15: Calculation process for Floor type elements. On the left panel, the room location
point is displayed. The faces normal to the room location point are presented on the right
panel.

Data storage

After collecting geometrical information, it is important to save all data for further operations.
All data will be converted into tables using CSV (Comma-Separated Values) format. The
output is in the following tables:

- "room-elements-bounds.csv" - contains room bounding elements

- "room-elements-walls.csv" - contains calculated distances between parallel walls,
perpendicular walls id, and nearest walls ids.

- "room-elements-floors.csv" - contains distances between nonparallel and parallel
floors and ceilings

- "room-elements-doors.csv" - contains distances from the door opening cut to floors
and walls

- "room-elements-furniture.csv"- contains distances from window opening cut to floors
and walls

- "room-elements.csv" - the main dataset.

The main dataset contains information about the level, room location, element name, type,
and category (Fig. 19). Each component has an identification number, such as an ID and
a unique ID. The rest of the data files contain query information about the room location
and geometrical data (Fig. 20).

31



Figure 16: An example of the distance calculation with the floor’s minimum and maximum
z coordinate.

Figure 17: Window and door opening cut marked in blue with dimensions to the nearest
walls and floors.

4.2.2 Constraint Panel

The Constraint panel consists of two pushbuttons ComputeTrends and CreateConstraints.
This panel analyses geometrical information and recognises trends that allow users to
choose and apply constraints.

ComputeTrends pushbutton performs analysis of the geometrical information. The script
converts all tables into two-dimensional tabular data. For the conversion and further
analysis, pandas18, NumPy19, and built-in statistics package for Python are used. The
data is grouped by certain values. Usually, in architectural practice, elements can be
grouped depending on their position (e.g., floor, meeting room), object name (e.g., brick
wall or concrete wall), and category (e.g., walls, windows). The groups are:

18https://pandas.pydata.org/
19https://numpy.org/
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Figure 18: Floor plan (left) and section 1-1 (right) with dimensions of the chair.

- Category(as listed above)

- Room name

- Family name

Each category of data needs to be analysed separately. This analysis aims to apply
statistical functions (e.g. min, mean, max and mode) to the building components. For
example, it is important to calculate the windowsill’s possible minimum and maximum
height. As shown in Fig. 21, the room has windowsills of three different windows on
different heights, and interpreting only the minimum and maximum values from these three
windowsills can be incorrect. In this case, it is better to group all windows not by room
but by window family name (in our case, the names are 1,2,3) and calculate the value of
the windowsill. Design patterns can be recognised by calculating the most common value
(mode). The most common value can be the distance between the neighbour’s window or
the windowsill height.

Geometrical interpretations of windows and doors are similar. They build an opening
cut in the wall, and the distances between this cut and other elements (walls, floors and
nearest window) must be calculated. The distance between the window cut and the
wall is horizontal distance ("Distance_to_edges_hor"), and the distance between the cut
and floor/ceiling is vertical distance("Distance_to_edges_vert"). The distance between
the following windows is defined as "Distance_to_next." While grouping data into the
abovementioned groups uses global minimum, mean, maximum, and mode values.
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Figure 19: An example of the data table "room-elements.csv"

Figure 20: An example of the data table with windows geometrical information "room-
elements-windows.csv"

The furniture, walls and floors are calculated with distances or angles between surfaces.
In the case of furniture, the spaces ("Distance_to_nearest") can be calculated between
the furniture location point and the nearest wall or floor surface. The distances between
walls are measured between parallel walls. Knowing the narrowest and widest distances
between parallel walls is vital for an architect. Examples may include the corridors (the
narrowest is essential) and the gym (the largest distance is essential). Those distances
are defined in the analysis as "Distance_to_parall_walls". Additionally, angles between
walls are calculated. On the other hand, the ceiling height is fixed within a room or level.
The parallel distance is "Distance_to_parallel" and nonparallel (e.g. a sloping roof) is
"Distance_to_nonparallel". New tables with aggregated data will be created after analysing
all categories and grouping them into specific groups.

The CreateConstraints pushbutton has the primary information (script, icon image) and
also user interface data in the form of the “XAML” script. The user interface is presented in
Fig. 22.

The main script starts with loading data (element 1 in Fig. 22). The data should be
aggregated and computed in the previous script ComputeTrends. After loading data, the
algorithm reads the selected table and converts each row into human-readable form (2 in
Fig. 22). The user is allowed to choose one of these recognised trends and move (3 in
Fig. 22) it into the design constraint section (8 in Fig. 22). In this section, the user can
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Figure 21: An example of different windowsill heights in one room.

correct values in the brackets if needed. Then constraint should be characterised (4 in Fig.
22). Mathematical intervals are used as characteristics. Interval describes the limits of the
constraint. Intervals are:

- Closed interval includes all limit points and is denoted with square brackets.

- Half-open interval contains only one endpoint and is denoted by square and round
brackets.

In element 6 from Fig. 22, there is a selection for the first and second limit points. The
possible limits are:

- "min" – minimum value.

- "mean" - mean value.

- "max" - maximum value.

- "mode" - mode value.

- "inf" - infinity.

Element 5 in Fig. 22 sets the type of constraint. In this thesis, there are two defined types:
requirement and conceptual. After adding characteristics, limits, and types of constraint,
the constraint needs to be applied to the list of project constraints and transformed into a
query language (7 in Fig. 22). Since Neo4j is a graph database, the query language is
Cypher (Fig. 23).
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Figure 23: Design constraint transformation into Cypher query language

4.2.3 Graph Panel

The Graph panel contains pushbutton ExportToNeo4jDirect. Within the button’s folder
is an additional text file with Neo4j logging information (login, password) for the Neo4j
database, which the user should put in. This pushbutton is responsible for the represen-
tation part. Here, elements from the Revit model will be presented as nodes with labels
(e.g., Window, Furniture) and geometrical information in relationships between nodes (e.g.,
horizontal or vertical distances). After running the script, the user has two options: merge
new information or delete all existing nodes from the graph. The merging process updates
existing nodes and adds new data from the model. The deletion removes old data and
inputs new nodes and vertices.

The main script starts with collecting all elements directly from the model with the category
filter as described in the 4.2.1. The elements structure is presented in Fig. 24.

While creating new (or updating existing) nodes in Neo4j, properties of nodes are added.
For the Document node, the properties are the document name and path. All other
elements have category name, identification number (Id), unique identification number
(UniqueId), and additional information for each type as properties.

Once the collection is completed, relationships can be defined. The first relationships are
created between rooms and levels, then between documents and levels.

The next step is to load all data from the CollectAll pushbutton. From the "room-
elements.csv" file, the relationships "CONTAINS" (Fig. 25) and "BOUNDS" are defined.
The relationships between windows and doors are presented as "DISTANCE_VERT"
and "DISTANCE_HOR". The distances between parallel walls create "DISTANCE_PAR",
"PARALLEL", and "PERPENDICULAR" vertices. Floors have "DISTANCE_PAR" and
"DISTANCE_NONPAR" relationships, and additional relationships "PARALLEL" and "NON-
PARALLEL". Relationships between the nearest walls/floors and furniture are explained in
the "DISTANCE_NEAREST" vertex.

The constraint creation occurs while copying the transformation from the project constraints
file directly to the graph. Neo4j database is presented in Fig. 26. In the "request" field (see
element 5 in Fig. 26), the user can add transformed sentences, and a new constraint will
be created as shown in Fig. 26, (element 2).
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Figure 24: The elements structure from the model for representation in Neo4j graph.
Arrows present different relationships between model components.

This section describes the identification and representation process of design constraints.
These include analysis of geometrical data of the building model, calculation methods,
and evaluation process, which is done using statistical methods and tools. The design
constraint is presented as edges in a graph and can be specified and completed with
properties. These are done within the automated tool (plugin) based on the Autodesk
Revit 2022.

The plugin contains three panels: Collection, Constraints, and Graph. The Collection
provides geometrical data calculation and aggregation. Constraints panel allows users to
select potential constraints, specify them, and apply them to the list of project constraints.
The Graph panel includes a graph representation of the building model, which automatically
transfers building components and creates relationships within the graph. Finally, the
design constraints are created by adding the transformed query to the graph.
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Chapter 5

Case study

The main objective of the case study is to validate the effectiveness and viability of
the plugin described in Chapter 4. The building model will be analysed in detail, and
corresponding algorithms, methods, and tools will be presented. Each group of supported
building components will be given individually through the experiment. The proposed
solution aims to fill the gap in the implementation and representation of design constraints
using manual constraint handling and the automated process of constraint identification.

5.1 Experimental setup

Building model description

The experimental building model presented in Fig. 5.3 was created in Autodesk Revit 2022.
The model is a two-floor office building in the workplace environment. On the ground floor
are two office rooms, an administrative office, and a meeting room. The second level has
the same structure as the ground floor: two office rooms, a collaborative area with three
meeting rooms, and one administrative office. Additionally, the office building has a kitchen
with a small wellness area for employees’ well-being.

Figure 27: 3D representation of the experimental building model.

To use the plugin, several requirements are imposed on the model:

- Autodesk Revit version is 2022
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- Follow the instruction to install the plugin1

- The building model should have at least one room and one component

- Data collection takes place in the existing model and does not support collection
from linked models

- Neo4j database should be created, logging data need to be placed in the
/ExportToNeo4jDirect.pushbutton/neo4j_key.txt

All requirements are met by the case-study building.

5.2 Constraint identification and representation

The section describes the process of plugin application on a particular project. The process
is divided into three blocks: calculation and data aggregation, constraint identification,
and graph representation. Calculation and aggregation are done automatically and result
in tables with calculating data. The design constraint identification (Figures 28 - 31)
processes manually. Design constraint needs to be selected and specified manually. The
result is saved into a text file in the form of natural language and Cypher query. The
representation process is done partially within Revit. The building information, which
includes supported categories and calculated geometrical information, is transferred
automatically into a graph. After building the graph, the user can add design constraints
manually.

Steps:

1. Select categories and mark furniture components. Default categories are marked
with "Yes" in a table (see Fig. 10).

2. Start with the CollectAll button. The geometrical data will be processed only
for several categories: Windows, Doors, Walls, Floors, and Furniture. After
calculation, new tables are created and saved in the default destination folder
/super\-constraints/data/tables.

3. Press the ComputeTrends button. The geometrical data is converted into the aggre-
gated data

4. The CreateConstraints button allows one to select, modify, specify, and apply
design constraints to a list of project constraints. The implementation steps are
displayed in the Figures 28 - 31.

5. ExportToNeo4jDirect button creates new nodes and relationships from the com-
puted model. The user has an option between deleting or updating the graph. The
constraint creation comes manually by pasting the transformed sentence into the
Neo4j request field, as shown in Fig. 32.

1https://github.com/Elvira2227/super-constraints
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Figure 28: Selection one of the calculated tables to translate data into human language.
The user must select one of the calculated in the ComputeTrends table to translate
information into human-readable text. The target tables’ name starts with an element
category name such as "doors_", "windows_", etc.

5.3 Results and Interpretation

The design constraints were detected and represented in natural language, Cypher and
graph forms in the case study. Several groups of items are tested, and for each group,
different types of constraints are defined and presented as illustrated in appendix A.
Throughout the validation, the geometrical information was aggregated and transformed
into human-readable sentences, which allows us to alter or improve the constrained values,
set the necessary attributes, such as the type and characteristics of a constraint, and
apply said constraints to the list of project constraints. As a result, constraints with Cypher
transformation are created. The queries are successfully integrated into a Neo4j graph
and represented in a graph database.

The detailed evaluation of constraints will be described below. The assessment is done
manually by comparing the dimensions of evaluated elements in Revit with the results
from the calculation by finding minimum, maximum, and most common values. Below are
the tests for each item group. Every group will be tested for particular types of constraints
and room name, family name, or category (see sect. 4.2.2)

Windows

The constraints for Windows were tested for the following parameters:

- Distance to horizontal elements (walls)

- Distance to vertical elements (floors)

- Distance to the next window
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Figure 29: Selection one of the recognised trends and move into the design constraint
section.

Figure 30: Design constraint specification. Design constraint needs to be specified by a
user. It means that the user needs to assign interval limit points and type of constraint
(requirement or conceptual). The user is allowed to edit the values if needed.
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Figure 31: Design constraint is transformed into a Cypher language. After applying
changes, a new design constraint is created and saved as a text file.

Figure 32: Design constraint representation in a graph database. The design constraint
from the text file can be pasted directly into the request field of the Neo4j workspace.

45



The constraints are divided into:

- Constraints by room name (in this example - "Office")

- Constraints by category ("Windows")

- Constraints by family name ("M_Fixed)

The results are presented in the Appendix A. The validation of the constraints implementa-
tion will be described in detail only in the first and third cases. Note that the values for the
windows were not improved or edited while applying constraints to the model.

The constraint identification and representation start with grouping all windows by the
room name and selecting "Office." There are four rooms called "Office" in the building (two
on level 1 (Figure 34) and two on level 2 (Fig. 35). There are 12 windows in these rooms
overall. According to the constraints description, the horizontal distances have a minimum
of 0.361 m, a maximum of 3.745 m, and the most common value of 0.6 m; the vertical
distances have a minimum of 0.305 m, a maximum of 3.27 m, and the most common value
0.305 m. The distances between neighbouring windows have minimum and maximum
values of 0.2 m and the most common value of 0.2 m. The resulted constraints can be
validated in Figures 34, 35, and 36.

In appendix A, one can find the identification and representation of the "Office" room
windows constraints under the heading "Windows: Constraints by rooms name (Office)".
The visual table with both natural language and Cypher representation of the constraints
can be found under the heading "Windows: Constraints by rooms name (Office) - Identifi-
cation", while the graphs are shown visually under the heading "Windows: Constraints by
rooms name (Office) – graph representation". An example is in Fig. 33.

In the graph representation for the horizontal distance (Fig. 33), there are 12 windows and
six corresponding walls assigned. The windows and walls are divided into two separate
graphs resulting from the relationships within the level (one graph corresponds to one level).
The relationship is called "CONSTRAINT" and has minimum and maximum distances and
types of constraint in their properties. The next constraint is created for the vertical distance
parameter. Here, 12 windows with 3 floors and 2 compound ceilings are presented. On
the last graph in this category, 12 windows are shown. The relationships display how the
smallest distance to the room’s next window combines windows.

The following example presents constraints grouped by window name "M_Fixed". There
are 18 windows called "M_Fixed" (marked with a blue hexagon and number 18 in Figures
37,38,39) with dimensions 915x1830 mm and 8 windows called similarly with dimensions
1200x1830 mm (marked with blue hexagon and number 30 in Figures 37,38,39). Based on
the constraint description, the horizontal distances have a minimum of 0.193, a maximum of
10.215 m, and the most common value of 0.6 m—the calculated values present distances
between window edges and perpendicular wall surfaces. The dimensions are presented
in Figures 37,38,39 and marked with blue ellipses.
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Figure 33: The graph representation of design constraints which is created for horizontal
distances between window and walls in the rooms called "Office".

Correspondingly, the identified constraint with natural language and Cypher transformation
can be found in the appendix A under the heading "Windows: Constraint by family name
(M_Fixed) - Identification". The visual representation of the constraints is under the
heading "Windows: Constraint by family name (M_Fixed) - graph representation."

The graph representation of constraints based on horizontal distances has 26 windows
called "M_Fixed" and 20 Walls. The number of relationships called "CONSTRAINT" is
59. It means one window can be constrained to more than one wall, depending on a
building’s geometry. The next graph presents 26 windows called "M_Fixed", three floors,
and 4 compound ceilings. The graph is visually more complex than the previous one.
One window is connected to at least two floors and can have connections with compound
ceilings. The last graph represents distance constraints between the adjacent windows.
There are 26 overall windows called "M_Fixed" in a project, but only 24 are presented in
the graph. This stems from the building structure and calculation logic. Both windows on
floor 1 (between axes 2-3, on axis 6) and floor 2 (between axes 2-3, on axis 9) do not have
any neighbour windows in the wall they belong to.

Doors

The constraints for doors were tested for the following parameters:

- Distance to horizontal elements (walls)
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Figure 34: First level of the building. The office room is filled with a diagonal pattern. The
corresponding distances are displayed. The Figure is not to scale.
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Figure 35: Second level of the building. The office room is filled with a diagonal pattern.
The corresponding distances are displayed. The Figure is not to scale.
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Figure 36: Detail 1 of the building. The matching distances are marked with blue ellipses.
The Figure is not to scale.
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Figure 37: First level of the building. The windows "M_Fixed" are marked with a blue
hexagon. Number 18 within the hexagon is the window with dimensions 915x1830 mm;
number 30 is the window with dimensions 1200x1830. The matching dimensions are
marked with blue ellipses. The Figure is not to scale.
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Figure 38: Second level of the building. The windows "M_Fixed" are marked with a blue
hexagon. Number 18 within the hexagon is the window with dimensions 915x1830 mm;
number 30 is the window with dimensions 1200x1830. The matching dimensions are
marked with blue ellipses. The Figure is not to scale.
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Figure 39: Detail 2-2 of the building. The windows "M_Fixed" are marked with a blue
hexagon. Number 18 within the hexagon is the window with dimensions 915x1830 mm;
number 30 is the window with dimensions 1200x1830. The matching dimensions are
marked with blue ellipses. The Figure is not to scale.

53



- Distance to vertical elements (floors)

- Distance to the next door

The constraints are divided into:

- Constraints by room name ("Meeting room")

- Constraints by category ("Doors")

- Constraints by family name ("M_Window-Casement-Triple-Side-Transom")

Walls

The constraints for walls were tested for distances between parallel walls. The constraints
are divided into:

- Constraints by room name ("Meeting room")

- Constraints by category ("Walls")

- Constraints by family name ("M_Window-Casement-Triple-Side-Transom")

Floors

The constraints for floors were tested for distances between parallel floors. The constraints
are divided into:

- Constraints by room name ("Meeting room")

- Constraints by category ("Floors")

- Constraints by family name ("M_Window-Casement-Triple-Side-Transom")

Furniture

The constraints for floors were tested for distances to the nearest element (floor, wall).
The constraints are divided into:

- Constraints by room name ("Meeting room")

- Constraints by category ("Furniture")

- Constraints by family name ("M_Window-Casement-Triple-Side-Transom")

The natural language, Cypher and graph representation of all the above constraints can be
found in the appendix A under the appropriate heading. The validation results are similar
to what was explained in the case of Windows and discussed below.
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Several groups of items are tested, and for each group, different types of constraints
are defined and presented as illustrated in appendix A. Throughout the validation, the
geometrical information was aggregated and transformed into human-readable sentences,
which allows us to alter or improve the constrained values, set the necessary attributes,
such as the type and characteristics of a constraint, and apply said constraints to the list
of project constraints. As a result, constraints with Cypher transformation are created.
The queries are successfully integrated into a Neo4j graph and represented in a graph
database.

The information from the graph can be used in several applications. For instance, the data
obtained from the plugin’s calculations can be a project version control. Once new objects
are created, and the graph is updated, the information about current geometrical data
can be gathered by making a simple request directly to a graph. The resulting graph can
hint at how many objects match the project constraints and how many do not meet the
requirements. Another application is to store the geometrical information in a graph format.
The resulting graph representation and corresponding queries can be exported as table
files for further research.
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Chapter 6

Discussion

This thesis aims to identify and represent design constraints from the building model. As
described in the Sect. 4.2, the automated solution enables the calculation and aggregation
of geometrical information. It allows users to select and apply a recognised trend to the
building graph model. A graph approach is utilised to represent the constraints. The
graph enables not only to represent the relationships among building elements but also
the constraints. In the case study, the automated tool was tested on the experimental
office building model. The results of constraint identification and representation were
presented for the particular type of constraints in detail and compared with the actual
model dimensions.

This thesis, however, is a subject of three limitations. The primary limitations result in
design constraint identification. Identifying constraints provides only for several geometrical
constraints (distances, angles) and not for topological or parametric constraints. Some
spatial constraints with semantic meaning, such as design ideas, cannot be collected and
calculated with statistics and need more advanced algorithms.

Another limitation includes the restricted number of supported building components. The
calculation is done only for specific categories, such as windows, doors, walls, floors,
and furniture. For the windows and doors elements, design constraints are implemented
for vertical and horizontal distances to the perpendicular object surfaces (floors and
walls) and horizontal distances to the closest window/ door. The constraints for the walls
are presented in the distance to the parallel wall and the angle between nonparallel
walls. Constraints for the walls include distance between parallel floors and ceilings and
nonparallel elements such as floor and sloping roofs. Finally, the constraint for the furniture
takes into account only the distance between furniture and neighbouring elements such
as walls, floors, and ceilings.

Considering the geometrical data analysis, the limitation lies in the scarce functionality
of the applied statistical description. This thesis uses only min, mean, max, and mode
functions. For more complicated project tasks, the method may include other statistical
measurements, such as standard deviation, standard error, etc. In some cases, the
constraints will be none of the abovementioned functions.

The automated solution provides the geometrical data collection directly from the Revit
authoring tool. Data analysis is done using statistical methods and tools. The analysis
does not need complex calculations, algorithms, or datasets (unlike Machine Learning
techniques). The resulting output provides necessary information about the dimensions
of the building component. The calculated data can be used as a basis for the machine
Learning (ML) data sets and Natural Language (NLP).
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The design constraint identification is done automatically. The user decides the identified
design constraints and selects the appropriate ones to apply to the project constraints.
The design constraint can be specified and limited by the provided values. The list with
the project constraints can be used during the project. It allows one to manage changes,
get an overview of the building’s geometrical information, and control defined constraints.

In this thesis, design constraint representation is presented in various ways. First, the
representation with a deterministic parser was done. The parser translates aggregated
data into human-readable text, which makes information more understandable for the
user (architect). Second, the representation of constraint in the form of query language
to translate it into a graph database (DB). Finally, design constraint representation with
a graph. Representation of design constraints with a graph provides visual information
about connected building components. Design constraints in a graph are relationships
with properties. Searching, filtering, and querying data in a graph is very effective. Based
on the graph representation, the method opens a way to use graph databases in various
ways, such as storing, updating, rewriting, and managing building information efficiently.
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Chapter 7

Conclusion & outlook

The building industry has focused on transferring building projects into digital form. The
building model can contain numerous details and data. The 3D representation allows ar-
chitects and engineers to better understand the semantics of objects and the relationships
between building components. However, the solution for managing those relationships
and providing an overview of the designer’s ideas is currently not included in the ordinary
Building Information Modelling (BIM) authoring tools as a standard solution. The thesis in-
troduces an identification and representation of design constraints in a building model. The
approach analyses building geometry and translates this information in a human-readable
way. The translated text can be manually selected and defined as a design constraint.
A design constraint is translated into a query language ready to be applied to the graph
database (DB). The graph approach enables efficient design constraint representation and
specification. Due to the potential problems in data quality and consistency, the proposed
tool is an appropriate solution to collect geometrical information and summarise it in the
form of tables, reports, and graph representation.

The proposed automated solution (plugin) is tested for different design constraints in
the case study. The approach can handle multiple elements and constraints from the
model and select one by one to apply in a graph. The results are successfully integrated
into a graph DB and represented in the Appendix A. However, due to several limitations
discussed in Chapter 6, the automated tool supports only a limited number of elements
and design constraints. Currently, the tool does not provide semantic information from the
design and is limited to geometrical information.

The automated tool can successfully work with complex data structures of building models
and identify relationships between main building components (e.g., walls, windows, floors).
With the ability to translate the building data to the graph database, the user can overview
the building structure and add design constraints to a graph. The solution opens a space
for further research. The main topics for future research are:

- Application of design constraints to the model. This allows one to improve the model
according to the selected design constraints.

- Using ML techniques to capture semantic information automatically. ML techniques
retrieve design ideas more accurately.
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Appendix A

Design constraints implementation and
representation

This appendix shows the graph, natural language and Cypher representation of constraints
found during the case study.
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Windows: Constraints by rooms name (Office) - implementation 

Constraint Cypher query 
All windows in the room 
called Office 
have[min,mean,max,m
ode] [0.361, 2.065, 
3.745, 0.6] horizontal 
distances to edges., 
"conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-[:DISTANCE_HOR]-
>(w)  WHERE n.room_name = "Office" AND m.category = 'Windo
ws' SET m.constr_distance_horizontal_min= 0.361, m.constr_dist
ance_horizontal_max="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_hor_min:0.361,distance_hor_max:"inf",
 constraint_type: "conceptual"}]->(w)  RETURN k,w,m 
 

All windows in the room 
called Office 
have[min,mean,max,m
ode] [0.305, 1.601, 
3.27, 0.305] vertical 
distances to edges., 
"conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-[:DISTANCE_VERT]-
>(w)  WHERE n.room_name = "Office" AND m.category = 'Windo
ws' SET m.constr_distance_vertical_min= 0.305, m.constr_distan
ce_vertical_max="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_vert_min:0.305,distance_vert_max:"inf
", constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

All windows in the room 
called Office 
have[min,mean,max,m
ode] [0.2, 0.2, 0.2, 0.2] 
distance to next 
windows., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-[:DISTANCE_NEXT]-
>(w)  WHERE n.room_name = "Office" AND m.category = 'Windo
ws' SET m.constr_distance_next_min= 0.2, m.constr_distance_ne
xt_max="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_next_min:0.2,distance_next_max:"inf",
 constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Windows: Constraints by rooms name (Office) – graph representation  

Constraint Property graph 
All windows in the room 
called Office 
have[min,mean,max,mode
] [0.361, 2.065, 3.745, 0.6] 
horizontal distances to 
edges., "conceptual" 
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All windows in the room 
called Office 
have[min,mean,max,mode
] [0.305, 1.601, 3.27, 
0.305] vertical distances to 
edges., "conceptual" 

 
All windows in the room 
called Office 
have[min,mean,max,mode
] [0.2, 0.2, 0.2, 0.2] 
distance to next windows., 
"conceptual" 
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Windows: Constraints by category (Windows) - implementation 

Constraint Cypher query 
All windows in the 
category Windows have 
[min,mean,max,mode] 
[0.193, 2.481, 10.215, 
0.6] horizontal distances 
to edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_HOR]-
>(w)  WHERE m.category = 'Windows' SET m.constr_distance
_horizontal_min= 0.193, m.constr_distance_horizontal_max=10
.215, m.constr_characteristics="closed interval" MERGE (m)-
[k:CONSTRAINT{distance_hor_min:0.193,distance_hor_max:1
0.215, constraint_type: "conceptual"}]->(w)  RETURN k,w,m 
 

All windows in the 
category Windows have 
[min,mean,max,mode] 
[0.305, 1.605, 3.27, 
0.305] vertical distances 
to edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_VERT]-
>(w)  WHERE m.category = 'Windows' SET m.constr_distance
_vertical_min= 0.305, m.constr_distance_vertical_max=3.27, m
.constr_characteristics="closed interval" MERGE (m)-
[k:CONSTRAINT{distance_vert_min:0.305,distance_vert_max:
3.27, constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

All windows in the 
category Windows have 
[min,mean,max,mode] 
[0.0, 0.499, 1.687, 0.2] 
distance to next 
windows., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_NEXT]-
>(w)  WHERE m.category = 'Windows' SET m.constr_distance
_next_min= 0.2, m.constr_distance_next_max="inf", m.constr_
characteristics="half-open interval" MERGE (m)-
[k:CONSTRAINT{distance_next_min:0.2,distance_next_max:"i
nf", constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Windows: Constraints by category (Windows) – graph representation 

Constraint Property graph 
All windows in the 
category Windows 
have 
[min,mean,max,mode
] [0.193, 2.481, 
10.215, 0.6] 
horizontal distances 
to edges., 
"conceptual" 
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All windows in the 
category Windows 
have 
[min,mean,max,mode
] [0.305, 1.605, 3.27, 
0.305] vertical 
distances to edges., 
"conceptual" 

 
All windows in the 
category Windows 
have 
[min,mean,max,mode
] [0.0, 0.499, 1.687, 
0.2] distance to next 
windows., 
"conceptual" 
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Windows: Constraints by family name (M_Fixed) - implementation 

Constraint Cypher query 
All windows of the family 
M_Fixed have 
[min,mean,max,mode] 
[0.193, 2.595, 10.215, 0.6] 
horizontal distances to 
edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_HOR]-
>(w)  WHERE m.family_name = "M_Fixed" SET m.constr_dista
nce_horizontal_min= 0.193, m.constr_distance_horizontal_max
="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_hor_min:0.193,distance_hor_max:"i
nf", constraint_type: "conceptual"}]->(w)  RETURN k,w,m 

All windows of the family 
M_Fixed have 
[min,mean,max,mode] 
[0.305, 1.622, 3.27, 0.305] 
vertical distances to 
edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_VERT]-
>(w)  WHERE m.family_name = "M_Fixed" SET m.constr_dista
nce_vertical_min= 0.305, m.constr_distance_vertical_max=3.2
7, m.constr_characteristics="half-open interval" MERGE (m)-
[k:CONSTRAINT{distance_vert_min:0.305,distance_vert_max:
3.27, constraint_type: "conceptual"}]->(w)  RETURN k,m,w 

All windows of the family 
M_Fixed have 
[min,mean,max,mode] 
[0.0, 0.614, 1.687, 0.2] 
distance to next windows., 
"conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_NEXT]-
>(w)  WHERE m.family_name = "M_Fixed" SET m.constr_dista
nce_next_min= 0.2, m.constr_distance_next_max="inf", m.con
str_characteristics="half-open interval" MERGE (m)-
[k:CONSTRAINT{distance_next_min:0.2,distance_next_max:"i
nf", constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Windows: Constraints by category (M_Fixed) – graph representation 

Constraint Property graph 
All windows of the 
family M_Fixed have 
[min,mean,max,mode
] [0.0, 0.614, 1.687, 
0.2] distance to next 
windows., 
"conceptual" 
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All windows of the 
family M_Fixed have 
[min,mean,max,mode] 
[0.193, 2.595, 10.215, 
0.6] horizontal 
distances to edges., 
"conceptual"" 

 
All windows of the 
family M_Fixed have 
[min,mean,max,mode
] [0.0, 0.614, 1.687, 
0.2] distance to next 
windows., 
"conceptual" 
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Doors: Constraints by room name (Meeting room) - implementation 

Constraint Cypher query 
All doors in the room 
called Meeting room 
have 
[min,mean,max,mode] 
[0.2, 3.648, 10.431, 0.2] 
horizontal distances to 
edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-[:DISTANCE_HOR]-
>(w)  WHERE n.room_name = "Meeting room" AND m.category =
 'Doors' SET m.constr_distance_horizontal_min= 0.2, m.constr_di
stance_horizontal_max="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_hor_min:0.2,distance_hor_max:"inf", c
onstraint_type: "conceptual"}]->(w)  RETURN k,w,m 
 

All doors in the room 
called Meeting room 
have 
[min,mean,max,mode] 
[0.666, 2.072, 3.575, 
2.134] vertical 
distances to edges., 
"conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-[:DISTANCE_VERT]-
>(w)  WHERE n.room_name = "Meeting room" AND m.category =
 'Doors' SET m.constr_distance_vertical_min= 0.666, m.constr_di
stance_vertical_max="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_vert_min:0.666,distance_vert_max:"inf
", constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

All doors in the room 
called Meeting room 
have 
[min,mean,max,mode] 
[0.0, 0.8, 3.301, 0.0] 
distance to next doors., 
"conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-[:DISTANCE_NEXT]-
>(w)  WHERE n.room_name = "Meeting room" AND m.category =
 'Doors' SET m.constr_distance_next_min= 0.8, m.constr_distanc
e_next_max="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_next_max:"inf",distance_next_min:0.8,
 constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Doors: Constraints by room name (Meeting room) – graph representation  

Constraint Property graph 
All doors in the room 
called Meeting room 
have 
[min,mean,max,mode] 
[0.2, 3.648, 10.431, 0.2] 
horizontal distances to 
edges., "conceptual" 
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All doors in the room 
called Meeting room 
have 
[min,mean,max,mode] 
[0.666, 2.072, 3.575, 
2.134] vertical distances 
to edges., "conceptual" 

 
All doors in the room 
called Meeting room 
have 
[min,mean,max,mode] 
[0.0, 0.8, 3.301, 0.0] 
distance to next doors., 
"conceptual" 
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Doors: Constraints by category (Doors) - implementation 

Constraint Cypher query 
All doors in the category 
Doors have 
[min,mean,max,mode] 
[0.065, 3.255, 10.938, 
0.1] horizontal distances 
to edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_HOR]-
>(w)  WHERE m.category = 'Doors' SET m.constr_distance_ho
rizontal_min= 0.065, m.constr_distance_horizontal_max=10.93
8, m.constr_characteristics="half-open interval" MERGE (m)-
[k:CONSTRAINT{distance_hor_min:0.065,distance_hor_max:1
0.938, constraint_type: "conceptual"}]->(w)  RETURN k,w,m 

All doors in the category 
Doors have 
[min,mean,max,mode] 
[0.6, 2.038, 3.575, 2.85] 
vertical distances to 
edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_VERT]-
>(w)  WHERE m.category = 'Doors' SET m.constr_distance_ve
rtical_min= 0.6, m.constr_distance_vertical_max="inf", m.constr
_characteristics="closed interval" MERGE (m)-
[k:CONSTRAINT{distance_vert_min:0.6,distance_vert_max:"inf
", constraint_type: "conceptual"}]->(w)  RETURN k,m,w 

All doors in the category 
Doors have 
[min,mean,max,mode] 
[0.0, 1.056, 4.194, 0.0] 
distance to next doors., 
"conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_NEXT]-
>(w)  WHERE m.category = 'Doors' SET m.constr_distance_ne
xt_min= 0.0, m.constr_distance_next_max=4.194, m.constr_ch
aracteristics="closed interval" MERGE (m)-
[k:CONSTRAINT{distance_next_min:0.0,distance_next_max:4.
194, constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Doors: Constraints by category (Doors) – graph representation 

Constraint Property graph 
All doors in the 
category Doors have 
[min,mean,max] 
[0.065, 
2.88425641025641, 
10.938] horizontal 
distances to edges., 
"conceptual" 
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All doors in the 
category Doors have 
[min,mean,max] 
[0.6, 
2.011461538461539
, 3.575] vertical 
distances to edges., 
"conceptual" 

 
All doors in the 
category Doors have 
[min,mean,max] 
[0.3, 
1.055641025641026
, 4.194] distance to 
next door., 
"conceptual" 
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Doors: Constraints by family name (M_Single-Flush) - implementation 

Constraint Cypher query 
All doors of the family 
M_Single-Flush have 
[min,mean,max,mode] 
[0.109, 2.759, 10.431, 
0.2] horizontal distances 
to edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_HOR]-
>(w)  WHERE m.family_name = "M_Single-
Flush" SET m.constr_distance_horizontal_min= 0.109, m.const
r_distance_horizontal_max=10.431, m.constr_characteristics="
closed interval" MERGE (m)-
[k:CONSTRAINT{distance_hor_min:0.109,distance_hor_max:1
0.431, constraint_type: "conceptual"}]->(w)  RETURN k,w,m 

All doors of the family 
M_Single-Flush have 
[min,mean,max,mode] 
[0.666, 2.045, 3.575, 
2.134] vertical distances 
to edges., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_VERT]-
>(w)  WHERE m.family_name = "M_Single-
Flush" SET m.constr_distance_vertical_min= 0.666, m.constr_
distance_vertical_max=3.575, m.constr_characteristics="closed
 interval" MERGE (m)-
[k:CONSTRAINT{distance_vert_min:0.666,distance_vert_max:
3.575, constraint_type: "conceptual"}]->(w)  RETURN k,m,w 

All doors of the family 
M_Single-Flush have 
[min,mean,max,mode] 
[0.0, 0.48, 3.301, 0.0] 
distance to next doors., 
"conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_NEXT]-
>(w)  WHERE m.family_name = "M_Single-
Flush" SET m.constr_distance_next_min= 0.0, m.constr_distan
ce_next_max=3.301, m.constr_characteristics="closed interval"
 MERGE (m)-
[k:CONSTRAINT{distance_next_min:0.0,distance_next_max:3.
301, constraint_type: "conceptual"}]->(w)  RETURN k,m,w 

Doors: Constraints by family name (M_Single-Flush) – graph representation 

Constraint Property graph 
All doors of the family 
M_Single-Flush have 
[min,mean,max,mode
] [0.109, 2.759, 
10.431, 0.2] 
horizontal distances 
to edges., 
"conceptual" 
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All doors of the family 
M_Single-Flush have 
[min,mean,max,mode
] [0.666, 2.045, 3.575, 
2.134] vertical 
distances to edges., 
"conceptual" 

 
All doors of the family 
M_Single-Flush have 
[min,mean,max,mode
] [0.0, 0.48, 3.301, 
0.0] distance to next 
doors., "conceptual" 
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Walls: Constraints by room name (Corridor) - implementation 

Constraint Cypher query 
All walls in the room 
called Corridor have 
[min,mean,max,mode] 
[0.109, 2.759, 10.431, 
0.2] distance to parallel 
walls., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_PAR]-
>(w)  WHERE n.room_name = "Corridor" AND m.category = '
Walls' SET m.constr_distance_parall_min= 0.109, m.constr_di
stance_parall_max=10.431, m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_parall_min:0.109,distance_parall_
max:10.431, constraint_type: "conceptual"}]-
>(w)  RETURN k,m,w 
 

Walls: Constraints by room name (Corridor) -graph representation 

 

Constraint Cypher query 
All walls in the room 
called Corridor have 
[min,mean,max,mode] 
[0.109, 2.759, 10.431, 
0.2] distance to parallel 
walls., "conceptual" " 
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Walls: Constraints by category (Walls) - implementation 

Constraint Cypher query 
All walls in the category 
Walls have 
[min,mean,max,mode] 
[0.109, 2.759, 10.431, 
0.2] distance to parallel 
walls., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_PAR]-
>(w)  WHERE m.category = 'Walls' SET m.constr_distance_pa
rall_min= 0.109, m.constr_distance_parall_max=10.431, m.co
nstr_characteristics="half-open interval" MERGE (m)-
[k:CONSTRAINT{distance_parall_min:0.109,distance_parall_
max:10.431, constraint_type: "conceptual"}]-
>(w)  RETURN k,m,w 
 

Walls: Constraints by category (Walls) -graph representation 

Constraint Cypher query 
All walls in the category 
Walls have 
[min,mean,max,mode] 
[0.109, 2.759, 10.431, 
0.2] distance to parallel 
walls., "conceptual" 
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Walls: Constraints by family name (Basic Wall) - implementation 

Constraint Cypher query 
All walls of the family 
Basic Wall have 
[min,mean,max,mode] 
[0.109, 2.759, 10.431, 
0.2] distance to parallel 
walls., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_PAR]-
>(w)  WHERE m.family_name = "Basic Wall" SET m.constr_di
stance_parall_min= 0.109, m.constr_distance_parall_max="inf
", m.constr_characteristics="half-open interval" MERGE (m)-
[k:CONSTRAINT{distance_parall_min:0.109,distance_parall_
max:"inf", constraint_type: "conceptual"}]-
>(w)  RETURN k,m,w 
 

Walls: Constraints by family name  (Walls) -graph representation 

Constraint Cypher query 
All walls of the family 
Basic Wall have 
[min,mean,max,mode] 
[0.109, 2.759, 10.431, 
0.2] distance to parallel 
walls., "conceptual" 
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Floors: Constraints by room name (Corridor) - implementation 

Constraint Cypher query 
All floors in the room 
called Corridor have 
[min,mean,max] [0.718, 
2.501, 3.575] distance to 
parallel floors., 
"requirements" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_PAR]-
>(w)  WHERE n.room_name = "Corridor" AND m.category = 'F
loors' SET m.constr_distance_parall_min= 0.718, m.constr_dis
tance_parall_max=3.575, m.constr_characteristics="closed int
erval" MERGE (m)-
[k:CONSTRAINT{distance_parall_max:3.575,distance_parall_
min:0.718, constraint_type: "requirements"}]-
>(w)  RETURN k,m,w 

Floors: Constraints by room name  (Corridor) -graph representation 

Constraint Cypher query 
All floors in the room 
called Corridor have 
[min,mean,max] [0.718, 
2.501, 3.575] distance to 
parallel floors., 
"requirements" 
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Floors: Constraints by category(Floors) - implementation 

Constraint Cypher query 
All floors in the category 
Floors have 
[min,mean,max,mode] 
[0.718, 2.756, 3.575, 
2.85] distance to parallel 
floors., "requirements" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_PAR]-
>(w)  WHERE m.category = 'Floors' SET m.constr_distance_p
arall_min= 0.718, m.constr_distance_parall_max=3.575, m.co
nstr_characteristics="closed interval" MERGE (m)-
[k:CONSTRAINT{distance_parall_min:0.718,distance_parall_
max:3.575, constraint_type: "requirements"}]-
>(w)  RETURN k,m,w 
 

Floors: Constraints by category (Floors) -graph representation 

Constraint Cypher query 
All floors in the category 
Floors have 
[min,mean,max,mode] 
[0.718, 2.756, 3.575, 
2.85] distance to parallel 
floors., "requirements" 
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Floors: Constraints by family name(Compound Ceiling) - implementation 

Constraint Cypher query 
All floors of the family 
Compound Ceiling have 
[min,mean,max,mode] 
[0.718, 1.759, 2.8, 0.718] 
distance to parallel 
floors., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_PAR]-
>(w)  WHERE m.family_name = "Compound Ceiling" SET m.c
onstr_distance_parall_min= 0.718, m.constr_distance_parall_
max=2.8, m.constr_characteristics="closed interval" MERGE (
m)-
[k:CONSTRAINT{distance_parall_min:0.718,distance_parall_
max:2.8, constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Floors: Constraints by family name  (Floor) -graph representation 

Constraint Cypher query 
All floors of the family 
Floor have 
[min,mean,max] [0.718, 
2.517, 3.575] distance to 
parallel floors., 
"requirements" 
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Furniture: Constraints by room name(Office) - implementation 

Constraint Cypher query 
All furniture in the room 
called Office have 
[min,mean,max,mode] 
[0.0, 2.2, 4.934, 0.0] 
distances to nearest wall 
or floor., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_NEAREST]-
>(w)  WHERE n.room_name = "Office" AND m.category = 'Fur
niture' SET m.constr_distance_parall_min= 0.0, m.constr_dist
ance_parall_max=4.934, m.constr_characteristics="closed int
erval" MERGE (m)-
[k:CONSTRAINT{distance_parall_min:0.0,distance_parall_ma
x:4.934, constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Furniture: Constraints by family name  (Office) -graph representation 

Constraint Cypher query 
All furniture in the room 
called Office have 
[min,mean,max,mode] 
[0.0, 2.2, 4.934, 0.0] 
distances to nearest wall 
or floor., "conceptual" 
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Furniture: Constraints by category (Furniture) - implementation 

Constraint Cypher query 
All furniture in the 
category Furniture have 
[min,mean,max,mode] 
[0.0, 1.986, 5.516, 2.782] 
distances to nearest wall 
or floor., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_NEAREST]-
>(w)  WHERE m.category = 'Furniture' SET m.constr_distance
_parall_min= -
0.069, m.constr_distance_parall_max="inf", m.constr_charact
eristics="half-open interval" MERGE (m)-
[k:CONSTRAINT{distance_parall_min:-
0.069,distance_parall_max:"inf", constraint_type: "conceptual"
}]->(w)  RETURN k,m,w 
 

Furniture: Constraints by category (Furniture) -graph representation 

Constraint Cypher query 
All furniture in the 
category Furniture have 
[min,mean,max,mode] 
[0.0, 1.986, 5.516, 2.782] 
distances to nearest wall 
or floor., "conceptual" 
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Furniture: Constraints by family name (M_Toilet-Commercial-Wall-3D) - 
implementation 

Constraint Cypher query 
All furniture of the family 
M_Toilet-Commercial-
Wall-3D have 
[min,mean,max,mode] 
[0.0, 1.51, 3.476, 0.076] 
distances to nearest wall 
or floor., "conceptual" 

MATCH (n)-[:CONTAINS]->(m) MATCH (m)-
[:DISTANCE_NEAREST]-
>(w)  WHERE m.family_name = "M_Toilet-Commercial-Wall-
3D" SET m.constr_distance_parall_min= 0.0, m.constr_distan
ce_parall_max="inf", m.constr_characteristics="half-
open interval" MERGE (m)-
[k:CONSTRAINT{distance_parall_min:0.0,distance_parall_ma
x:"inf", constraint_type: "conceptual"}]->(w)  RETURN k,m,w 
 

Furniture: Constraints by family name  (M_Toilet-Commercial-Wall-3D) -graph 
representation 

Constraint Cypher query 
All furniture of the family 
M_Toilet-Commercial-
Wall-3D have 
[min,mean,max,mode] 
[0.0, 1.51, 3.476, 0.076] 
distances to nearest wall 
or floor., "conceptual" 
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