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Abstract

Over the past decade high-throughput DNA sequencing approaches, namely

whole exome and whole genome sequencing became a standard procedure in

Mendelian disease diagnostics. Implementation of these technologies greatly

facilitated diagnostics and shifted the analysis paradigm from variant identifi-

cation to prioritisation and evaluation. The diagnostic rates vary widely

depending on the cohort size, heterogeneity and disease and range from

around 30% to 50% leaving the majority of patients undiagnosed. Advances in

omics technologies and computational analysis provide an opportunity to

increase these unfavourable rates by providing evidence for disease-causing

variant validation and prioritisation. This review aims to provide an overview

of the current application of several omics technologies including

RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling

for diagnostics of rare genetic diseases in general and inborn errors of metabo-

lism in particular.
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1 | INTRODUCTION

Historically, molecular diagnosis began with phenotype.
Clinical specialists catalogued multiple symptoms, per-
formed biochemical analyses and collected molecular
data in order to narrow down the number of potential
disorders and associated genes to screen for pathogenic
variants. In some conditions, a specific metabolic change
has a high sensitivity for a corresponding disease and is
indicative of a single gene molecular test, but this is the
exception rather than the rule. More comprehensive
genetic testing is often required. Since whole-exome

sequencing (WES) and whole-genome sequencing (WGS)
have become more affordable, they are routinely used in
many centres worldwide. The power of these methods is
particularly evident when there are no unique candidate
genes or when no pathogenic variants have been found
in disease-related genes. They enable genome-wide
screening for disease-causing variants, which changes the
diagnostic paradigm from variant identification to
interpretation.

However, in large cohorts that do not apply specific
case selection, the diagnostic yield of WES reaches
around 35% with an upper limit of about 50%.2 Given
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that WES profiles only �1% of the human genome and
has low performance in detecting structural variation, it
was expected that WGS would close the gap in diagnostic
yield. However, WGS provides only a modest 5%–10%
increase in diagnostic performance,2 suggesting that
advances in DNA sequencing alone are necessary but
mostly insufficient for molecular diagnosis. With novel
sequencing approaches there is almost no lack of variant
identification, rare variants can be detected in almost
every disease-associated gene. There is a lack of knowl-
edge of the functional consequence and clinical relevance
of these variants. Thus, there is a great need in clinical
genetics for robust high-throughput approaches for vari-
ant prioritisation and interpretation.

To address the diagnostic gap, researchers began
almost a decade ago to apply a variety of omics technolo-
gies to complement clinical characterisation and DNA
sequencing approaches. Omics methods provide high-
throughput and comprehensive profiling of various clini-
cal and molecular phenotypes, and some of them are
now being implemented in advanced diagnostic centres.
The systematic collection of patient signs and symptoms
or imaging data constitutes phenomics. It helps to under-
stand how specific a clinical presentation is for predicting
a particular disease gene or how closely the patient's phe-
notype matches the predicted phenotype of a genetic
finding. Molecular profiling of gene products using tran-
scriptomics or proteomics allows the reclassification of
potential splice variants or ambiguous missense variants
and the prioritisation of causal genes based on aberrantly
expressed gene products. Metabolomics and DNA meth-
ylation profiling are used to quantify thousands of
molecular biomarkers with applications in cohort stratifi-
cation, disease classification or disease gene prediction.
Although a number of other omics approaches such as
glycomics, fluxomics, metagenomics and others are being
used extensively to elucidate the pathomechanisms of
rare genetic diseases, this review focuses on the clinical
application of transcriptomics, proteomics, metabolomics
and methylation profiling. This review identifies diagnos-
tic challenges and discusses omics-based strategies cur-
rently in use to potentially overcome them.

2 | KEY OMICS DATA ANALYSIS
CONCEPTS

Although each omic method profiles a different molecu-
lar or physiological phenotype, the approaches to data
analysis are quite similar. The basis is the collection and
integration of large data sets to gain statistical power for
analysis. Two different global concepts of omics data
analysis can then be outlined: outlier detection and

differential analysis (Figure 1). The first, outlier detec-
tion, has been successfully applied to transcriptomic and
proteomic data. This approach is suitable for identifying
rare events with a large effect size. In clinical practice,
the most typical application of outlier analysis is the
interpretation of chemical test results to support a clinical
diagnosis. In this case, a standardised biochemical assay
has been applied to thousands of individuals to establish
a physiological (normal) range (distribution), and the
abnormal measurements for the affected individual
would appear as an outlier in this distribution. If the
assay targets a metabolite, the specific assay can be
replaced by metabolomics. Similarly, pathogenic variants
may affect gene expression or protein stability, resulting
in a significant reduction in the amount of gene product
that would appear as an outlier in transcript and/or pro-
tein expression values. Here, transcriptomics studies
replace individual gene expression assays and proteomics
replaces Western blotting. A substantial sample size is
required to detect outliers as statistical distribution must
be robustly fitted to estimate the physiological range.
Physiological parameters can differ drastically in healthy
individuals and only extreme changes indicate pathologi-
cal situations. For example, gigantism is defined as three
standard deviations above the mean of the normal distri-
bution, which has been determined by measuring the
height of millions of individuals worldwide.1 Omics stud-
ies have the advantage that thousands of analytes are
quantified in each experiment, that is, data for the nor-
mal distribution are generated for all analytes. The vari-
ance can be biological or technical. However, the cost of
omics analyses and the availability of biomaterials may
limit the sample size and lead to a false estimate of the
physiological ranges of analytes. The minimum sample
size depends on the type of omics and the statistical test.
However, an empirical ‘rule of thumb’ is that 50 samples
are required for a robust analysis. Ideally, the samples
should be healthy controls or clinically and genetically
highly heterogeneous. Cases with the same defect will
lead to an incorrect estimate of the physiological range,
which would be shifted towards abnormal values.

The second approach of differential analysis, such as
differential expression or signature detection, is more
conventional for modern bioinformatics. Its major pur-
pose is to identify features that are significantly different
between two or more groups (e.g., of patients). In the
context of rare genetic diseases, it relies on the availabil-
ity of retrospectively collected knowledge, such as gene-
phenotype associations, or pre-trained machine-learning
classifiers that could differentiate individuals with and
without a certain feature (e.g., with a defect in a certain
gene). In order to develop such a signature for molecular
diagnostics, the main requirement is to have a substantial
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number of individuals with a defect in the same gene,
healthy controls and a heterogeneous group of patients
affected by other diseases to ensure specificity. As this
method is supervised, it could be applied to any omics
type, however, it is limited to a prediction of a certain
known feature. Most of the signatures lack specificity, for
example, there are just a few conditions where a genetic
cause could be predicted purely from phenotype. Never-
theless, recent advances in omics data analysis allowed
the development of signatures specific to defects in indi-
vidual genes.

3 | PHENOMICS

Fundamentally phenomics is based on the systematic col-
lection and interpretation of high-dimensional phenotype

data, including physiological and morphological traits,
imaging data and some biochemical and biomarker evi-
dence. A major influence has been produced by the
development of a systematic and hierarchical system for
capturing patients' phenotypes—the human phenotype
ontology (HPO).2,3 HPO is a comprehensive, standardised
vocabulary of phenotypic abnormalities that can be used
to describe human diseases and their corresponding signs
and symptoms. The popularity of HPO facilitated the
development of a number of gene prioritisation algo-
rithms based on the similarity analysis of patient pheno-
types to clinical symptoms described for known disease
genes4–7 (Table S1). These methods provide a framework
for systematic reanalysis of genetic data.8–11 Because of
updates to variant pathogenicity records in databases
such as ClinVar, novel genotype–phenotype associations
and disease-genes discoveries, periodic reanalysis over

FIGURE 1 Overview of omics techniques and major approaches to their data analysis.
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some years can yield a diagnostic improvement of
approximately 14% ± 7%.12–15

Phenomics studies are particularly important for inborn
errors of metabolism (IEMs) to understand the natural his-
tory of these diseases. IEMs represent a heterogeneous group
of more than 1450 disorders displaying a broad phenotypic
spectrum.16 Almost every organ system could be affected
with neurological and muscular phenotypes being the most
common (Figure 2A). The phenotypic heterogeneity of
IEMs, coupled with overlapping clinical presentations, has
traditionally complicated the diagnostic process, leading to
diagnostic delays and uncertainty.15,17 This led to the devel-
opment of a number of resources focused on the curation of
clinical, biochemical and genetic properties of IEMs.18–22,15

Phenotypic complexity becomes especially pronounced
when looking at phenotypic similarity between conditions
listed in the international classification of inborn metabolic
disorders (ICIMD) (Figure 2B, Figure S1). The phenotypic
spectrum of diseases within a biochemically defined class is
broad and the biochemically clustered group rarely results
in strong phenotypic similarity. Only some clustering can be
seen for a subset of mitochondrial diseases or disorders of
nucleic acid metabolism, indicating that the phenotype in
itself is insufficient to make a specific diagnosis. Despite the
success of a combination of conventional diagnostic tools
such as biochemical analyses and exome or genome
sequencing,23 many challenges persist in diagnosing and
managing IEMs, necessitating ongoing efforts in technologi-
cal and methodological advancements.

4 | TRANSCRIPTOMICS

The transcriptomic approach is potentially one of the most
rapidly developing omics technologies for rare diseases in
recent years. It was successfully applied as a complemen-
tary approach to WES and WGS in more than 18 studies
(Table S2). There are multiple case reports in which
RNA-sequencing (RNA-seq) provided the necessary func-
tional evidence to support a molecular diagnosis.24–39 Tran-
scriptomics can be used for VUS reclassification and for
prioritisation of overlooked likely pathogenic variants. Due
to the high impact of pathogenic variation on gene expres-
sion, it also supports disease gene identification by focusing
on transcripts with extreme changes in expression and
functional relation to disease pathomechanisms. Alto-
gether, RNA-seq is leading to an increase in the diagnostic
rate over WES/WGS alone of 16% ± 3% (Table S2). A
meta-analysis of diagnosed cases from eight studies showed
that the highest value of RNA-seq is to provide clinical
interpretation of non-coding variants, a long-standing chal-
lenge in clinical genomics.40 Currently, three RNA pheno-
types are routinely analysed: aberrant RNA expression,
aberrant splicing and allele-specific expression (ASE) with
its extreme case of monoallelic expression (MAE; Figure 3).
However, the power of RNA-seq is not limited to the detec-
tion of these three phenotypes, as it can also be used for
variant calling, haplotype phasing, detection of gene
fusions or repeat expansions. Developments in long-read
RNA-seq approaches provided a novel phenotype called

FIGURE 2 Phenotypic properties of inborn errors of metabolism. (A) Frequency of organ system involvement for conditions included in

the international classification of inborn metabolic disorders (ICIMD). Percentages were calculated by counting ICIMD conditions with

affected organ systems as described in level 3 of human phenotype ontology (HPO). (B) t-distributed stochastic neighbour embedding (t-

SNE) of pairwise phenotypic similarity between OMIM disease genes, as encoded according to their HPO terms. For each disease gene,

colour coding indicates classification according to ICIMD, and grey dots represent other Mendelian disease conditions listed in OMIM.
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allele-specific transcript structure (ASTS) with potential
applications to variant classification tasks. In the following
chapter, we will discuss diagnostic evidence provided by
clinical transcriptomics as well as recommendations for the
selection of an appropriate biomaterial for the analysis.

4.1 | Clinically relevant molecular
events detected by transcriptomics

4.1.1 | Aberrant expression

Aberrant expression, or transcript expression outside
of the physiological range, can be caused by a wide range
of deleterious variants in coding and non-coding regions.
Therefore, the detection of expression outliers became a
useful diagnostic tool. In the meta-analysis of 120 cases
diagnosed with RNA-seq collected across eight studies,
aberrant expression identified the disease-causing genes
in 64% of cases, while aberrant splicing was helpful in
62% and ASE in 27%.40 Within the ACMG/AMP frame-
work for the interpretation of potential disease-causing
variants, the detection of underexpression outliers can be
considered functional evidence of pathogenicity (PS3)
and can reach strong evidence strength.40,41 Detection of
aberrant expression allows the prioritisation of candidate
genes for further investigation for deleterious variants. To
ensure robust identification of clinically relevant outliers
and consideration of multiple technical and biological

factors affecting gene expression readout, several specia-
lised tools were developed and are summarised in
Table S2.42–45

4.1.2 | Allele-specific expression

Another expression phenotype detected in RNA-seq data is
ASE. In the extreme case, when one allele is completely
silenced monoallelic expression can be observed. If only one
allele is expressed, for example, due to the imprinting of
another allele, a heterozygous variant can determine the
phenotype even in recessive diseases. Some variants are not
detected by WES such as larger deletions or epigenetic mod-
ifications; however, they can result in a significant imbal-
ance between the amounts of RNA transcribed from each
allele. To detect allele-specific expression both RNA-seq and
DNA sequencing data are needed to compare expression
levels from reference and alternative alleles with statistical
tests, like the negative binomial test24 or specialised tools
such as ANEVA-DOT.46 For autosomal dominant diseases,
the detection of significant allelic imbalance could be con-
sidered functional evidence of pathogenicity for the candi-
date variant (ACMG/AMP framework: PS3).40 In recessive
disorders, ASE supports the prioritisation of rare monoalle-
lic variants and serves as an indication of a deleterious vari-
ant on another allele that was not detected. In addition,
ASE provides supporting allelic evidence of pathogenicity
for expressed VUS (ACMG/AMP framework: PM3).40

FIGURE 3 Overview of outlier-based approaches applied to transcriptomics and proteomics for rare genetic disease diagnostics.
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4.1.3 | Aberrant splicing

Alternative splicing is a mechanism by which a single
gene can encode multiple transcript isoforms and conse-
quently several protein isoforms by combining different
exons at the post-transcriptional stage. Most human genes
(�95%) exhibit alternative splicing, frequently in a tissue-
specific manner.47 Aberrant splicing refers to changes in
the normal process of alternative splicing that lead to the
production of abnormal, non-functional or disease-
causing proteins. These changes can be caused by patho-
genic variation and a recent study by Jaganathan et al.
estimated that about 10% of pathogenic variants in Men-
delian diseases affect splicing.48 There are several types of
aberrant splicing events: exon skipping, exon extension,
exon truncation, exon creation and intron retention. In
RNA-seq data, they could be identified by the detection of
splicing outliers and several tools were developed for
aberrant splicing detection (Table S1).37,49–55

The ability of RNA-seq to robustly detect splice
defects has opened new possibilities for the development
of therapies that target these defects. The study by Hong
et al. demonstrated this by using RNA-seq data to facili-
tate the development of antisense oligonucleotides
(ASOs) as a personalised treatment approach for two
patients.35 By providing a comprehensive view of the
transcriptome, routine implementation of RNA-seq in
clinical practice is an important step towards a more per-
sonalised approach to the diagnosis and treatment of rare
genetic diseases.

4.1.4 | Gene fusion detection

Structural variants such as inversions, deletions, duplica-
tions and translocations can result in gene fusions, a
molecular event when two genes form a single hybrid
transcript.56 The majority of pathogenic gene fusion
events were described for cancer, several studies reported
this event in Mendelian diseases.57–63 Therefore, several
groups developed specific tools for the discovery of gene
fusion transcripts in RNA-seq data.64–66

4.1.5 | Repeat expansions detection

Another molecular event that could be detected in the
RNA-seq data is short tandem repeat (STRs) expansions,
also known as microsatellite repeat expansions. They rep-
resent one to six nucleotide-long motifs that could be
repeated hundreds of times and are involved in multiple
hereditary diseases.67–70 Due to their homopolymeric
structure, they are usually difficult to analyse with short-

read sequencing; however, Fearnley et al. recently devel-
oped superSTR, a method for repeat expansion detection
in NGS data.71 They applied superSTR to two indepen-
dent patients' RNA-seq datasets and obtained high-
quality results. The discovery of repeat expansions in
transcriptomic data holds a promise to additionally
increase diagnostic rates; however, the performance
should be additionally compared to the analysis in WGS
data or with southern blotting.

4.1.6 | RNA-seq variant calling

Being a sequencing technology, by its nature, RNA-seq
data allow variant calling and thereby can complement
WES data by the detection of non-coding variants. RNA-
seq variant calling yields around �45 000 variants per
sample, in comparison to �64 000 variants from WES.
This includes around 19 000 variants not detected in
WES, making it a useful complementary technology spe-
cifically to call deep intronic cryptic splice variants.31,35

4.1.7 | Haplotype phasing

In the absence of parental DNA samples and the detec-
tion of two variants within the same gene, the question
of mono- or biallelic variants becomes challenging.72 An
important feature that is carried out by short-read RNA-
seq is partial haplotype phasing. Castel et al. demon-
strated that by combining evidence from WES and RNA-
seq data phasing can be performed for variants in the
same gene up to hundreds of kilobases away.73 Their
approach was able to provide phasing to almost 30% of
rare coding variants and �6% of all rare variants, which
accounts for a �2-fold increase compared to WES alone.

4.1.8 | Allele-specific transcript structure
and long-read RNA-seq

Still, short-read sequencing has clear limitations in phasing,
gene-fusion calling and aberrant splicing analysis which can
be better addressed by long-read RNA-seq.74 Long-read
RNA-seq allows quantification of entire isoforms, providing
a better overview of physiological splicing.75–81 Glinos et al.
applied long-read nanopore sequencing to 88 samples from
14 tissues from GTEx82,83 and described ‘allele-specific tran-
script structure (ASTS)’ as a novel RNA phenotype.83 Simi-
larly to how ASE analysis examines differences in expression
between maternal and paternal alleles, ASTS detects changes
in splicing patterns by allele-specific isoform analysis.
Long-read RNA-seq also allows the detection of epigenetic
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modifications of transcripts that may serve as useful
diagnostic phenotypes in the future.84 Altogether, long-read
transcriptomics provides more information for future appli-
cations in rare genetic disease diagnostics; however, due to
the high price its routine clinical application is currently
limited.

4.2 | Selection of the source material for
clinical transcriptome

Though RNA-seq is an extremely versatile tool, the
tissue-specificity of the gene expression provides a limita-
tion for the quantification of the full spectrum of tran-
scripts related to the disease. While the affected tissue
most adequately represents pathogenic variant effects
and splicing patterns, the affected tissue could show sec-
ondary downstream effects that overlay the primary
cause. In clinical practice, diseased tissue specimens are
rarely available from patients and controls as they typi-
cally require an invasive biopsy. For these reasons, most
studies focussed on sequencing of clinically available tis-
sues (CATs). Fibroblast cell lines and blood are currently
the best resources for clinical RNA-seq and therefore
most frequently used for diagnostic purposes (Table S2).
However, several studies demonstrated that clinically rel-
evant genes had higher and more consistent expression
in fibroblasts (90% of OMIM genes and 85% of ICIMD
genes Table S3) than in blood (<50%).27,28,30 If the gene
of interest is not expressed in available tissue, transdiffer-
entiation into induced pluripotent stem cells (iPSCs) or
affected-tissue-related cell lines, such as T-myotubes, is
one way to overcome this limitation.26,33,82,85 If genes of
interest demonstrate low expression in available biosam-
ples, cycloheximide treatment can be applied in cell cul-
ture to increase the sensitivity for splicing defects which
cause nonsense-mediated RNA decay.37 In addition,
CRISPR/Cas9 technology could be used to increase
coverage of low-expressed genes by depletion of highly
abundant transcripts.86

Though blood samples and skin fibroblasts are rou-
tinely available in clinical practice, they still require a
minimally invasive procedure for sample collection.
Therefore, non-invasive biospecimens for transcriptomic
approach recently got more attention. Lee et al. examined
the potential of RNA-seq from amniotic fluid cells for
prenatal diagnostics.29 They identified a high similarity of
gene expression profiles to fibroblasts and provided a
diagnosis to 4 patients (8%). Martorella and colleagues
investigated the performance of RNA-seq in four fully
non-invasive CATs: buccal swabs, hair follicles, saliva
and urine cell pellets.87 Hair samples provided the high-
est detection rate of Mendelian disease genes (63%),

followed by saliva (53%), urine (43%) and buccal swabs
(33%). Analysis of non-invasive CATs holds great prom-
ise; however, a more in-depth assessment of the clinical
utility of transcriptomics in these tissues in larger patient
cohorts is still required.

To reach a sufficient sample size (>50) for outlier detec-
tion, internally sequenced data could be combined with
public datasets.27,43,49,88 Sharing of count data in public
repositories and raw RNA-seq data in restricted access
repositories is highly encouraged.82,89,90 Due to differences
in expression across tissues, it is not recommended to com-
bine data from different biological sources.88

Given the above-listed factors affecting the perfor-
mance of clinical RNA-seq, multiple tools were devel-
oped to support tissue selection (Table S1).26,82,91–94 To
assist the interpretation of RNA-seq data we provide
detection rates for ICIMD genes across 25 tissues using
RNA-seq and proteomics data from Kopajtich et al. and
Jiang et al. studies in Table S3.32,95

5 | PROTEOMICS

The power of RNA-seq to increase diagnostic rates of rare
genetic diseases has been proven by multiple studies;
however, transcript expression levels represent only a
proxy of protein abundance. Often low RNA expression
levels can be compensated at the protein level. This is
shown by the modest correlation of RNA and protein
levels (Spearman Rho = �0.4) in different tissues.95,96

Therefore, proteomics, which provides direct quantifica-
tion of protein levels, is a good complementary assay to
RNA-seq and DNA analysis. Moreover, pathogenic mis-
sense mutations rarely result in aberrant RNA pheno-
types but often affect protein stability. Strongly reduced
protein levels provide a valuable readout of functional
consequences of missense and regulatory variants.32,97

Proteomics provides an additional level of functional evi-
dence that validates and extends transcriptomic data and
so opens the perspective to increase diagnostic rates.

Currently, mass-spectrometry-based proteomics quan-
tifies fewer gene products compared to RNA-seq. In the
first study, integrating proteomics and RNA-seq in diag-
nostics using fibroblast cell lines Kopajtich et al. detected
�12 000 transcripts and �8000 proteins per sample and a
median of 85% and 76% of ICIMD disease genes, respec-
tively (Table S3). In the GTEx study of 32 different tis-
sues, authors identified �7500 proteins per tissue with
85% of them present in all tissues.95 A limiting factor in
mass spectrometry analysis is a relatively expensive and
long machine running time. Multiplexing approaches
such as quantitative tandem mass tag (TMT) labelling or
isobaric tagging for relative and absolute quantification
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(iTRAQ) allow the processing of up to 27 samples in par-
allel.98 Multiplexing proteomics approaches provide
homogeneous detection of peptides and proteins within
the batch, which is especially important for low-
expressed genes which suffer usually from widespread
missing values.

5.1 | Aberrant protein expression

Proteomics provides functional evidence through the
detection of protein expression outliers (Figure 3). Several
studies applied proteomics for the investigation of the
mechanism of disease, validation of findings in RNA-seq
data, reclassification of VUS and causal gene prioritisa-
tion.24,32,38,99,100 Dedicated methods for aberrant protein
expression detection were developed (Table S2).32,43

Forny et al. used proteomics in the cohort of 210 patients
diagnosed with Methylmalonic aciduria and 20 healthy
controls.38 They performed methylmalonyl-CoA mutase
(MMUT) enzyme activity assay and identified a signifi-
cant reduction of MMUT protein expression levels in
150 enzyme-deficient samples. They were able to identify
disease-causing variants in 148 samples, the majority of
which were missense (56%), and indicating that proteo-
mics can replace enzyme activity assays for some condi-
tions. Kopajtich et al. applied quantitative proteomics in
fibroblast cell lines from a cohort of 143 patients with
suspected Mendelian disease to investigate the diagnostic
potential of aberrant protein expression detection.32 Via
detection of protein expression outliers and investigation
of rare variants in corresponding genes, the proteomic
approach reached a genetic resolution of 21% and
allowed the discovery of two novel disease genes. They
also performed RNA-seq analysis in the same cohort that
reached a diagnostic rate only of 11%. The major advan-
tage of proteomics is to detect functional consequences of
in-frame indel and missense variants, the most frequent
types of VUS in ClinVar.101 This makes proteomics a
valuable complementary approach to DNA and RNA
sequencing.

5.2 | Aberrant protein complex
expression and complexomics

Proteins often function in large and dynamic protein com-
plexes. The function and stability of these complexes rely
on the presence of all their components. Therefore detec-
tion of aberrant protein complex expression can provide
additional evidence for VUS reclassification and give
insights into the mechanism of the disease.100,102 Lake
et al. demonstrated that defect in the small mitoribosomal

subunit MRPS34 caused a reduction in the expression of
all small subunits, while the expression of the large ribo-
somal subunits was not affected.100 In addition, this defect
consequently led to the downregulation of respiratory
chain complexes I, III and IV, and their enzymatic activity
correlated with protein complex levels, calculated as the
mean intensity of all subunits. Kopajtich et al. detected
aberrant protein complex expression in 39% of all diag-
nosed cases. In this way, proteomics detects not only
direct but also additional downstream functional conse-
quences of pathogenic variants increasing evidence of
measured proteins but also providing indirect evidence
for protein defects which have not been detected or for
which the interpretation is difficult.

While conventional proteomics can only provide esti-
mates of the abundance of protein complexes, a dedicated
complexome profiling technology has been developed to
study the stability, size and composition of protein com-
plexes and their subunits.103 Complexome profiling has
become particularly popular in mitochondrial research,
allowing the identification of novel protein interactions
and the study of subunit assembly in large structures
such as mitochondrial respiratory chain complexes and
ribosomes.104–107 Although several techniques have been
developed for complexome analysis, all methods share a
common concept and start with size separation of native
protein extracts, for example by blue native polyacrylamide
gel electrophoresis (BN-PAGE), followed by MS identifica-
tion.108,109 The overall composition and stability of a protein
complex depends on the availability of all its components.
Therefore, studying the assembly and functionality of these
complexes provides a valuable tool for VUS interpretation
and novel disease gene characterisation.103,110

6 | METABOLOMICS AND
LIPIDOMICS

Metabolite measurements have a long history of use in the
diagnosis of IMD and other genetic disorders and are essen-
tial in routine clinical practice.111–113 Metabolomics and lipi-
domics can provide a comprehensive and holistic view of
cellular metabolism and are able to detect the metabolic per-
turbations caused by pathogenic variants. By comparing the
levels of these molecular species with those of healthy indi-
viduals or the general population, it is possible to identify
characteristic metabolic biomarkers and signatures associ-
ated with specific genetic conditions. Metabolic biomarkers
and signatures can directly inform clinical diagnosis, guide
patient treatment and evaluate genetic findings.111,114 While
this review focuses on omics approaches to prioritise causal
genes and interpret candidate variants, several studies have
comprehensively reviewed advances in targeted and
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untargeted metabolomics and lipidomics approaches to pro-
vide clinical diagnosis, identify appropriate treatments and
monitor disease progression.111–113,115–120

Traditionally, targeted metabolomics approaches and
enzyme assays have been used in the diagnostic setting.
They provide absolute quantification and allow comparison
across laboratories. Untargeted metabolomics and lipidomics
are emerging fields in the diagnosis of rare genetic diseases
and have shown promising results. Untargeted methods can
quantify tens of thousands of features, providing an unbi-
ased view of the human metabolome and can be used for
screening for novel biomarkers. Several studies have used
untargeted metabolomics to provide additional evidence to
confirm the pathogenicity of variants.17,24,38,114,121,122 The
application of metabolite set enrichment analysis on untar-
geted metabolomics data has also been shown to prioritise
relevant pathways for inherited metabolic disorders.120,123 In
addition, abnormal metabolite levels and biochemical mea-
surements could be encoded as HPO terms and, therefore,
integrated with phenotype-based prioritisation algorithms.23

Already in 2015, Guo et al. demonstrated the utility of inte-
grated WES and targeted metabolic profiling to assess vari-
ant pathogenicity using an outlier detection approach in a
cohort of 80 healthy individuals.124 In a systematic analysis
of WES and metabolomics data from 170 individuals with
predominantly neurological symptoms, Alaimo and col-
leagues were able to diagnose 21 patients, resulting in a
diagnostic rate of 12%.125 Webb-Robertson et al. further
demonstrated how metabolite outlier detection can facilitate
diagnosis by providing functional evidence necessary for
VUS reclassification.126,127 This validation was made possible
by a previously established functional association between
the candidate gene NADK2, 2,4-dienoyl-coenzyme A reduc-
tase deficiency and elevated urinary lysine.128 Pathway and
network-based approaches can facilitate causal gene identifi-
cation using metabolomics data. Kerkhofs et al. recently
developed a cross-omics pipeline that detects metabolic out-
liers and assesses their relevance to gene defects using path-
way information.129 Environmental factors such as dietary
preferences, medication use and exposure to toxins have a
significant impact on the metabolome of patients. Therefore,
advanced analytical methods and improved pipelines that
account for these and other known and unknown con-
founders are expected to further improve the accuracy of
metabolomics and lipidomics in the clinical setting.

7 | DNA METHYLATION
EPISIGNATURES AND
EPIVARIATIONS

Epigenetic modifications, such as DNA methylation and his-
tone modifications, have been extensively studied and have

been shown to play a critical role in the development and
manifestation of several rare diseases.130 In recent years, the
detection of DNA methylation episignatures has gained the
most popularity among epigenetic approaches for rare dis-
ease diagnosis. Several studies have shown that pathogenic
variants in disease-causing genes can induce stable changes
in DNA methylation patterns at multiple positions across
the genome, referred to as episignatures.131–141 They are typ-
ically detected by conducting epigenome-wide association
studies and then training binary or multi-class machine
learning classifiers.142 To date, episignatures have been
described for more than 65 Mendelian neurodevelopmental
disorders. Most of the affected genes encode proteins of the
epigenetic machinery (Table S4). Described signatures have
shown high specificity for clinical syndromes, protein com-
plexes, specific genes, protein domains and even single
nucleotide pathogenic variants.133 The main application of
episignatures is the functional evaluation of candidate vari-
ants and VUS reclassification. However, episignatures can
also support the identification of copy number variants and
the interpretation of mosaic variants.143,144 In addition, the
degree of hypermethylation of CpG sites underlying the
KMT2B episignature has been shown to correlate with dis-
ease onset and severity.138 In the context of causal gene
prioritisation, episignatures provide a diagnostic uplift of
approximately 10% in cases of neurodevelopmental disor-
ders.39,145 When used for VUS reclassification in a selected
cohort of patients, the validation rate can be as high as
35%.145 Although the number of episignatures detected is
substantial and still growing, the majority of Mendelian dis-
ease genes (�85%) have not yet been evaluated or do not
show a stable change in DNA methylation in blood. There-
fore, the specificity of the available signatures is still incom-
pletely defined. The results of epigenetic analysis, as with
other omics, should be evaluated in the context of all avail-
able evidence, for example using the ACMG/AMP frame-
work.41 As the detection of robust and generalisable
signatures depends on a large number of observations, data
sharing in public or controlled access repositories and the
implementation of federated learning approaches are essen-
tial to increase sensitivity, specificity and the number of
episignatures.

Methylation profiling in large cohorts allows the
detection of another clinically relevant event—epivaria-
tions. Similar to genetic variants, rare changes in DNA
methylation such as promoter hypermethylation may be
associated with Mendelian diseases.146 Epimutations are
detected as regions with outlier changes in DNA methyla-
tion and can have an effect on gene expression compara-
ble to loss-of-function mutations.97,146,147 A systematic
analysis of DNA methylation data from 23 116 individuals
identified 4452 autosomal epimutations.147 70% of epivar-
iations are segregated on specific haplotypes indicating
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potential genetic origin and more than �400 of them are
likely caused by rare variants.

Currently, episignatures and epivariations are typi-
cally analysed using DNA methylation microarrays.
Recent advances in long-read genome sequencing allow
the detection of DNA methylation. Wide application of
these technologies will greatly facilitate the discovery
of episignatures and clinical interpretation of epivariants,
as both genetic and epigenetic analysis will be performed
from a single sample, dramatically increasing the knowl-
edge of pathomechanisms involving epigenetic changes.

8 | MULTI-OMICS INTEGRATION

With the democratisation of high-throughput technolo-
gies, the exploration of multiple ‘omics’ layers has
become more feasible and is increasingly used in rare dis-
ease diagnostics. The integration of multi-omics data pro-
vides a more comprehensive understanding of the
molecular landscape of disease. It strengthens the identi-
fication of disease-causing variants through the accumu-
lation of evidence.

A conventional strategy for multi-omic integration is
the filtering approach, where a set of criteria is applied to
each individual omic dataset to narrow down the list of
candidate genes. Frésard et al. used this approach to sys-
tematically evaluate genetic, phenotypic and transcrip-
tomic data. It is also possible to integrate multi-omics
data using the ACMG/AMP framework and guidelines
for the clinical interpretation of RNA phenotypes have
recently been proposed.27,37,40,88 Kopajtich et al. (2021)
also integrated proteomics with genetic, phenotypic and
RNA-seq data and proposed a visualisation technique to
facilitate clinical interpretation.

Multi-omics integration could also be performed using
computational models. Çelik et al. showed that the inte-
gration of RNA-seq and genetic data in a model provides
a 5-fold increase in the accuracy of aberrant splicing pre-
diction compared to state-of-the-art computational tools
(SpliceAI and MMsplice).148 Unsupervised approaches,
such as multi-omics factor analysis, have been shown to
be powerful methods for increasing sensitivity.149 For
example, Forny et al. were able to identify mitochondrial
pathways enriched in MMUT-deficient samples only after
integrating multiple omic layers.38

Another powerful approach to multi-omics data inte-
gration is the use of knowledge graphs, such as the Clinical
Knowledge Graph. In this data-driven model, nodes repre-
sent entities (e.g., genes, proteins, diseases), and edges rep-
resent the relationships between these entities. By
integrating genomics, proteomics and metabolomics data
within the framework of knowledge graphs, researchers

can pinpoint affected metabolic pathways, identify poten-
tial biomarkers and even suggest potential therapeutic
strategies.150

9 | CONCLUSION

The application of complementary omics technologies for
the diagnostics of rare genetic disorders is a rapidly grow-
ing field. Transcriptomics, proteomics, phenomics, meta-
bolomics, lipidomics and methylomics are already
routinely implemented as a part of the molecular diag-
nostic workflow in multiple centres worldwide. Other
technologies and analyses such as epi-transcriptomics,
metagenomics, fluxomics, glycomics and other omics are
yet to be evaluated for the purposes of disease-gene
prioritisation.151–155 Currently, the main limitation of the
wide application of these approaches is the cost. How-
ever, falling costs, increasing democratisation and con-
stantly growing evidence of the diagnostic power of
multi-omics profiling pave the way for routine clinical
implementation of these technologies.

All the abovementioned omics analyses rely on the
systematic collection of well-annotated large-scale data-
sets. Therefore, sharing patient-level data in public and
controlled access repositories is highly relevant
and encouraged. However, an increasing number of
analysis pipelines results in frequent reanalysis of data
with usually arbitrary changes in performance and pro-
ducing serious ecological burden due to the high com-
puting times. To overcome this problem, the
establishment of reference, publicly available benchmark
datasets for each omics data type is essential. This will
also provide harmonisation of the data analysis steps
and may allow routine implementation of federated
learning approaches. Federated learning provides the
framework for the collaborative training of complex
algorithms on extremely large datasets while preserving
data security and privacy. For example, the federation of
phenotype-based prioritisation algorithms running in
parallel in a number of large diagnostic centres can
potentially prioritise novel disease variants overlooked
by multiple groups, which could be further connected by
matchmaking systems, and thereby enhance diagnostics.

We believe that increasing democratisation and appli-
cation of omics technologies together with continuous
improvements in analysis pipelines and algorithms will
be able to bridge the diagnostic gap and also facilitate the
discovery of personalised treatment options.
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