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Abstract

Time series and their analysis are mainstream in many areas, from infrastructure moni-
toring (power grid, renewable energy generation, ...) to mobility data (self-driving cars,
plane safety systems, ...), from environmental sensors (weather monitoring, data-driven
architecture, ...) to factory automation (predictive maintenance, intelligent material
flow, ...). As the size of such datasets grows, in many such use cases, billions of data
samples and hundreds of sensors are already not uncommon, we need scalable, high-
performance approaches to process them.

The mining of such datasets is crucial for modern information retrieval, analytics, and
monitoring infrastructures. In particular, identifying similarities within and across large,
multi-dimensional time series poses computational challenges and opportunities. Matrix
profile [YZU+16] is a well-established indexing approach for the explorative analysis of
time series data and serve as a promising technique for similarity indexing, creating a
generic structure that encodes correlations among records and dimensions. This ap-
proach was introduced in 2016 by Yeh et al. in a series of papers [YZU+16, ZZS+18,
YHK16] and has been successfully applied to mine similarities and patterns in datasets
from various fields, such as seismology [SSFZ+18] and medical science [DK17], as well
as used for various data mining and machine learning tasks, such as semantic segmen-
tation, clustering, and anomaly detection [ZGS+20]. Since its introduction, due to its
various performance, scalability, accuracy, and practicality advantages, it has gained
significant momentum in the research community as a fundamental approach for time
series mining. However, generating a matrix profile can be computationally intensive.
At the same time, the modern hardware resources in HPC and the capability to scale up
the resources in HPC systems can help to cope with these intensive computational costs
and, therefore, significantly boost the performance, hence the throughput of explorative
data science built on it.
However, the existing approaches have not widely undergone investigation on modern

HPC hardware, and no extreme scalability tests, especially under High-Performance
Computing (HPC) systems, have been conducted. Therefore, leveraging modern HPC
hardware and petascale HPC systems remain challenging, especially for large and multi-
dimensional time series.
In response to these challenges, we introduce a set of novel approaches targeting dif-

ferent HPC platforms—CPU-based HPC systems and GPUs—to address the efficient
calculation of matrix profiles for multi-dimensional and single-dimensional time series.
These approaches range from schemes for cluster-level multi-node computation and op-
timizations, multi-GPU computation and kernel design, reduced- and mixed-precision
computation schemes, as well as algorithmic alternative methods leveraging tree data
structures and schemes to ensure scalability on HPC systems.
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Abstract

The CPU-based approach demonstrates a sustained performance of 1.3 petaflop/s on
the SuperMUC-NG system and effectively handles 128-dimensional time series datasets
containing one billion records. Meanwhile, the GPU-based approach leverages reduced-
and mixed-precision floating point arithmetic modes for computation and achieves sig-
nificant performance improvement over the optimized single-node CPU-based approach
while maintaining sufficient accuracy. This approach also scales on nodes with multiple
GPUs very efficiently. The tree-based approach also shows a huge potential for matrix
profile computation on HPC systems, and with the proposed optimization methods, can
scale up to 1,000 nodes on the SuperMUC-NG system.
Overall, these advancements not only confirm the feasibility and scalability of the

matrix profile approach for single and multi-dimensional time series mining but also pave
the way for its application in large-scale, real-world scenarios. We provide comprehensive
evaluations, demonstrate synthetic and real-world case studies, and discuss trade-offs
between accuracy and performance, offering a multi-faceted perspective on time series
analysis on HPC systems.
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Zusammenfassung

Zeitreihen und ihre Analyse sind in vielen Bereichen gängig, von der Infrastrukturüberw-
achung (Stromnetz, erneuerbare Energieerzeugung, ...) bis zu Mobilitätsdaten (selbst-
fahrende Autos, Flugzeugsicherheitssysteme, ...), von Umweltsensoren (Wetterüberwac-
hung, Data-driven Architektur, ...) bis zur Fabrikautomatisierung (vorausschauende
Wartung, intelligenter Materialfluss, ...). Da die Größe solcher Datensätze zunimmt, in
vielen Anwendungsfällen sind Milliarden von Daten und hunderte Sensoren bereits keine
Seltenheit, benötigen wir skalierbare, leistungsstarke Ansätze, um sie zu verarbeiten.

Das Mining solcher Datensätze ist für moderne Information Retrieval-, Analyse- und
Überwachungsinfrastrukturen von entscheidender Bedeutung. Insbesondere die Identi-
fizierung von Ähnlichkeiten innerhalb und zwischen großen, mehrdimensionalen Zeitrei-
hen stellt eine rechnerische Herausforderung dar und eröffnet neue Möglichkeiten. Ma-
trixprofil [YZU+16] ist ein etablierter Indexierungsansatz für die explorative Analyse von
Zeitreihendaten und dient als vielversprechende Technik für die Ähnlichkeitsindizierung,
die eine generische Struktur schafft und Korrelationen zwischen Datensätzen und Di-
mensionen kodiert. Dieser Ansatz wurde im Jahr 2016 von Yeh et al. in einer Reihe von
Veröffentlichungen vorgestellt [YZU+16, ZZS+18, YHK16] und wurde erfolgreich ange-
wandt, um Ähnlichkeiten und Muster in Datensätzen aus verschiedenen Bereichen, wie
der Seismologie [SSFZ+18] und Medizin [DK17], und für verschiedene Data-Mining- und
Machine-Learning-Aufgaben wie semantische Segmentierung, Clustering und Anoma-
lieerkennung [ZGS+20] eingesetzt. Dieser Ansatz hat verschiedenen Vorteile in Bezug
auf Leistung, Skalierbarkeit, Genauigkeit und praktische Anwendbarkeit. Deshalb wurde
er in der Forschungsgemeinschaft als grundlegender Ansatz für die Auswertung von Zeit-
serien einen erheblichen Aufschwung erfahren.

Die Erstellung eines Matrixprofils kann jedoch sehr rechenintensiv sein. Gleichzeitig
können die modernen Hardwareressourcen im HPC sowie die Möglichkeit, die Ressourcen
in HPC-Systemen zu skalieren, dazu beitragen, diese rechenintensiven Kosten zu bewälti-
gen und dadurch die Leistung und damit den Durchsatz der explorativen Datenwis-
senschaft erheblich zu steigern.
Die bestehenden Ansätze wurden jedoch nicht umfassend auf moderner HPC-Hardware

untersucht. Es wurden keine extremen Skalierungsteste, insbesondere unter High-Perfor-
mance Computing HPC-Systemen, durchgeführt. Daher bleibt die Nutzung moderner
HPC-Hardware und HPC-Systeme im Petascale eine Herausforderung, insbesondere für
große und mehrdimensionale Zeitreihen.
Als Antwort auf diese Herausforderungen stellen wir eine Reihe neuartiger Ansätze

vor, die auf verschiedene HPC-Plattformen – CPU-basierte HPC-Systeme und GPUs –
abzielen, um die effiziente Berechnung von Matrixprofilen für mehrdimensionale sowie
eindimensionale Zeitreihen zu ermöglichen. Diese Ansätze reichen von Methoden für
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Zusammenfassung

Berechnungen auf Clusterebene mit mehreren Knoten und Optimierungen, Berechnun-
gen mit mehreren GPUs und Kernel-Design, Schemata mit reduzierter Genauigkeit
sowie alternative algorithmische Methoden, die Baumdatenstrukturen und Schemata
zur Gewährleistung der Skalierbarkeit auf HPC-Systemen nutzen.
Der CPU-basierter Ansatz zeigt eine anhaltende Leistung von 1,3 petaflop/s auf dem

SuperMUC-NG-System und verarbeitet effektiv 128-dimensionale Zeitreihendaten mit
einer Milliarde Datensätzen. Der GPU-basierte Ansatz nutzt reduzierter- und gemichte-
Präzision Fließkomma-Arithmetik-Modi für die Berechnung und erzielt eine erhebliche
Leistungssteigerung gegenüber dem optimierten CPU-basierten Ansatz mit nur einem
Knoten, wobei eine ausreichende Genauigkeit erhalten bleibt. Der Ansatz skaliert auf
Multi-GPU-Knoten sehr effizient. Der Baum-basierter Ansatz zeigt auch ein großes
Potenzial für die Berechnung von Matrixprofilen auf HPC-Systemen und kann mit den
vorgeschlagenen Optimierungsmethoden bis zu 1,000 Knoten auf dem SuperMUC-NG-
System skalieren.
Insgesamt bestätigen diese Fortschritte nicht nur die Machbarkeit und Skalierbarkeit

des Matrixprofil-Ansatzes für das Mining von ein- und mehrdimensionalen Zeitreihen,
sondern ebnen auch den Weg für seine Anwendung in groß angelegten, realen Szenarien.
Wir bieten umfassende Auswertungen, synthetische und reale Fallstudien und disku-
tieren Kompromisse zwischen Genauigkeit und Leistung, um eine facettenreiche Per-
spektive auf die Zeitreihenanalyse auf HPC-Systemen zu bieten.
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1 Introduction

We are living in the Age of Data, where data is generated at a huge rate by modern
digital and cyber-physical systems, and it is stored in and processed by information
systems. Many scientific research areas, e.g., health care, weather prediction studies,
and astronomy, rely on growing historical datasets. Also, a vast amount of data is
generated by monitoring and data collection systems, which are equipped with many
sensors. Moreover, social media platforms and online services store large amounts of
data about the interaction of users and their transactions [Pfe19].

In many cases, this vast amount of data includes valuable information about the
operation of systems and services, which is often stored in raw form as it arrives from
sensors, without incorporating further processing to extract patterns and insights. In
many cases, only through various explorative analyses and applying information retrieval
methods (e.g., statistical, analytical, machine learning) this raw data can be turned into
insights and knowledge, and therefore, the majority of such insight and knowledge is
kept hidden in such raw data. Consequently, nowadays, Data Science, Data Analytics,
and Knowledge Discovery in data play an important role in shaping our understanding
and knowledge and in driving science and technology.

One of the main reasons behind the lack of further processing steps to extract in-
sights from data is that many systems are not yet equipped with fully automated online
data analysis pipelines. In fact, the development of such automated analytics-capable
pipelines, in many cases, requires the offline explorative analysis of raw data in the first
place to begin with. Also, some systems equipped with automated online data analysis
still only store data in raw form, enabling fallback analysis scenarios and allowing for a
more detailed (non-automated) offline analysis in case online analysis fails or does not
provide sufficient insights in a certain scenario. Additionally, in many research areas,
the development of such automated online analysis pipelines is almost impossible, as
the systems are designed to store data in raw form with the main intention of enabling
researchers to conduct explorative data analysis.

Overall, the lack of such automated online analytic pipelines highlights the importance
of offline and on-demand analysis. Therefore, research on the corresponding concepts for
offline analytics helps to extend the information retrieval technologies and capabilities
of modern computer systems.

1.1 Time Series Data and their Mining

Researchers and businesses are especially interested in explorative analysis to get insights
in temporal data records, often referred to as time series. Time series are collections
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of real-valued records arranged in chronological order. Temporal information embedded
in time series associated with data records helps to analyze systematic trends, intrinsic
seasonal and repeating patterns, and understand their causes [Cha04]. In particular,
time series include raw information about temporal trends and correlations in data
sources, which can potentially be used to create historical and predictive models as
well as diagnostic insights. Therefore, in modern knowledge discovery and information
retrieval, time series mining plays an important role. The term mining in this context
mainly refers to the extraction of patterns, e.g., frequently repeating patterns (sometimes
referred to as motifs), groups of correlated records (often referred to as clusters), and
unusual records (often known as anomalies) in time series data. Especially with the
ever-growing presence of the Internet of Things and surveillance systems in industry,
the time series mining topic is gaining a rising momentum, however, despite the recent
increasing interest, extracting meaningful insights in time series is not limited to the
modern information age; time series analysis has contributed to human knowledge for
a few centuries: In the 17th century, even before there was a significant record-keeping
and analysis infrastructure in health care and medical practices, John Graunt [Gra62]
published the first life table, which includes a statistical analysis on top of the historical
data about the age of people at the time of death in the city of London [Nie20].

While John Graunt’s life table includes only simple statistical analysis of time series
data, later, in the 1920s, the first autoregressive models were applied to real-world time
series data in astronomy [Nie20].

However, it was only after the dawn of the computer age that time series analysis
was extended beyond such simple statistical modeling. Major progresses in time series
analysis and mining appeared after the introduction of the concept of general-purpose
computers as Universal Machine by Alan Turing in 1936 [Tur50], followed by the inven-
tion of the Turing-complete Z3 computer by Konrad Zuse in 1941 [DBp23], after the
appearance of the Von Neumann architecture in 1945 [vN45], all of which started and
drove the architecture and computational model of today’s computers. In particular, the
first fundamental contribution to time series analysis appeared in 1970 in the statistics
textbook Time Series Analysis, Forecasting and Control, where the Autoregressive Inte-
grated Moving Average (ARIMA) models were introduced, enabling time series modeling
and forecasting [BJ70].

Still today, advances in computer systems in the information age are major drivers
and enablers in time series analysis and mining. In particular, exponential growth in
compute power of computer systems, as predicted by Moore’s law (Figure 1.1 left), as
well as parallel architectures and high performance computing (HPC) systems, enable
more complex analyses and modeling, e.g., using classical analytic and modern machine
learning methods. Moreover, the advances in data collection and database, data man-
agement, and handling systems enable the storage of large historical data for data-driven
modeling and analysis as well as more structured collection and representation of time
series datasets.
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1.2 Parallel Computer Architectures and High Performance
Computing

The performance of computer systems directly correlates with the technological advances
in processors, memory, accelerators, networking, and storage technologies. As predicted
by Gordon E. Moore, a co-founder of Intel Corporation, technological advances were
expected exponential [Moo06]:

“The complexity for minimum component [per integrated function, i.e., integration
circuitry] cost has increased at a rate of roughly a factor of two per year (Figure 1.1
left).”

This corresponds to the number of transistors in an integrated circuit (IC) doubling
every two years, which is reflected in the performance of computer systems at all levels.
This trend has remained in place for more than 40 years and is known as Moore’s
law. Although the growth rate has been slowed down only recently due to technological
limitations and challenges, the growth trend still remains exponential.

While the concepts of parallelism in hardware and the corresponding technologies have
been around much longer, especially since 2005, one major factor that has contributed
to realizing the exponential growth in compute power is parallelization. This consists
of parallelization both in hardware (at various architectural levels) and software. With
respect to hardware, this includes instruction level and memory parallelism, vectorization
and data parallelism, multi-core multi-processing, and multi-node computing. Therefore,
to benefit from the computing power of modern computer systems, in particular, to push
the edges of time series mining, we need to address parallelism at various levels and
aspects of computer systems (e.g., in software and hardware).

Similar exponential growth in the compute power of the world’s fastest supercom-
puters is observed (Figure 1.1 right) over the last 29 years, as reported in the TOP500
list [SDSM23]. This infamous list was established in 1993 by Hans Meuer, Erich Strohmaier,
and Jack Dongarra to list the fastest 500 supercomputers around the world based on
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Figure 1.1: Moore’s law, the original graph predicted by Moore [Moo06] (left), Performance of
world’s fastest supercomputers [SDSM23] (right).
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the performance of High Performance LINPCK HPL benchmark [DMBS79]. This list
is updated twice a year at the two major HPC venues, the International Conference
for High Performance Computing, Networking, Storage and Analysis and the Interna-
tional Supercomputing Conference. Recently, this exponential growth has led to exas-
cale systems: the world’s fastest supercomputer and the first system ever to break the
exaflop/s barrier, i.e., 1,000,000,000,000,000,000 floating point operations per second
(flop/s), Frontier, was installed in US DOE Oak Ridge National Laboratory by Hewlett
Packard Enterprise, which is a massively parallel computer consisting of 9,400 compute
nodes equipped with AMD Instinct MI250X GPUs.

1.3 Motivation

Similar to many other workloads, large-scale supercomputers can be beneficial for time
series analysis and mining by allowing massive parallelization through leveraging hori-
zontal scaling of the compute resources, which is defined as adding additional resources,
e.g., compute nodes. Such scaling increases the throughput for explorative data analytics
(i.e., analysis and mining of time series), by leveraging lots of compute nodes, memory,
and networking bandwidth, as well as storage through parallelism. An example of such
analysis workloads, which is also the time series mining method targeted in this thesis,
is the matrix profile approach. Matrix profile is a similarity indexing approach based
on nearest neighbor analysis of time series windows. There exist several methods to
address matrix profile computation that can benefit from extreme scaling on large-scale
supercomputers. However, despite the potential, there is little research in the literature
in this direction. Additionally, extreme scaling of an application on a large-scale super-
computer is not a trivial task and requires addressing various challenges in high-level and
low-level programming interfaces, managing parallelisms, and overcoming scaling over-
heads. Often, these challenges are specific to the particular application at hand, and
therefore, scaling challenges specific to time series mining applications require special
consideration.

Exploiting systems with architectures and hardware features that could suit time series
mining is another promising aspect. Specifically, an increasing portion of the TOP500
systems exploit Graphics Processor Units (GPU) as accelerators. For instance, seven out
of the top ten systems in the latest list are GPU-based systems. Also, GPUs are proven
efficient and, therefore, are widely used in the context of artificial intelligence AI and
machine learning (ML), as they provide a vast number of compute cores, large memory
bandwidth, and special hardware support for reduced-precision arithmetics suitable for
AI and ML applications. A similar growing interest in using the power of GPUs for data
analytics and mining can be observed. Therefore, exploring GPUs and their capabilities
to bring efficiency and performance to time series mining is another promising research
direction.

Improving the scaling efficiency of time series mining on supercomputers is another
viable research direction. In fact, such improvements are required to time series mining
workload to efficiently use the massive parallelism and abundant resources of HPC sys-
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tems. In the context of parallel computing, the speedup is defined as the ratio of sequen-
tial to parallel elapsed time for computation. The theoretical limits for the maximum
speedup and, therefore, the parallel efficiency of applications relate to the portion of the
run time that does not benefit from parallelization. The theoretical limits are calculated
using the two well-known Amdahl’s [Amd67] and Gustafson’s Lawson’s laws [Gus88]
related to strong and weak scaling limits, respectively. In strong scaling, the number of
resources (e.g., compute cores) is scaled to compute a fixed problem size, while in weak
scaling, the problem size scales with the number of resources. For efficient scaling, we
need to inspect the scaling bottlenecks and overheads where the mining codes cannot
benefit from parallelism. In such cases, novel algorithmic mitigations can help to address
these bottlenecks.

1.4 Problem Statement and Research Questions

The main challenges addressed in this work are around enabling and quantifying high-
performance and efficient time series mining at a large scale for large time series datasets.
The rationale behind scoping this work around these challenges is the need to process
growingly larger time series datasets in real-world applications. Therefore, we employ
various large-scale supercomputers and accelerators as well as investigate various code
optimizations and HPC techniques applied to time series mining.

We focus on time series with uniform time stamps, as they prominently appear in many
monitoring and research scenarios. We consider the growing size of time series datasets
in real-world scenarios a central challenge and address this challenge by improving the
parallel efficiency, performance, and scalability of the time series mining methods.

We consider single- and multi-dimensional time series data and the methods dealing
with mining them. In particular, we focus on the offline analysis and mining of time series
using the matrix profile approach as a representative workload for the offline time series
mining domain. The Matrix profile approach long serves as a fundamental data mining
method to investigate time series [YZU+16, Keo23, JRY+22], and provides a way to de-
tect similar structures (patterns) when comparing two input time series. Matrix profile is
widely accepted in the data science community and has been successfully applied to vari-
ous application domains, including the investigation of earthquake foreshocks [SSFZ+18],
analysis of power system events in synchrophasor data [SYK+19], music information re-
trieval (MIR) [SYBK16], similarity searching of bacteria’s DNA [YZU+18], and others.

We investigate variants of matrix profile computation approaches and highlight their
efficiency, performance, and scalability. We specifically investigate the benefits of GPU
architectures as accelerators, leveraging large-scale supercomputers and HPC techniques
for matrix profile computation. All these investigations are aligned with the general
scope of this work in extending computational capabilities to address growingly larger
time series datasets in real-world applications.

We structure the research in this work around three main high-level research questions
(here represented with Q) that form the foundations of the main three contributions of
this work:
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• Q1: how to compute the matrix profile on large-scale HPC systems with high
performance, e.g., at petaflop/s rate?

• Q2: how modern HPC compute nodes, that are commonly equipped with multiple
GPUs, can be used for matrix profile computation with high efficiency, allowing to
exploit hardware features like reduced-precision arithmetic capabilities of modern
hardware.

• Q3: how the conventional HPC computation, parallelization, and optimization
techniques, such as the use of efficient algorithms and data structures, commu-
nication latency hiding, and controlling the communication granularity, can be
leveraged for the computation of matrix profile.

We structure this work based on new methods and approaches and conduct experi-
mental evaluations to address these questions, covering various aspects of the application
domain, hardware domain, and optimizations. For each research question, we select a
specific time series mining problem, i.e., matrix profile computation for a certain type-
/category of time series. We then develop new concepts and implement corresponding
solutions on top of a certain hardware architecture or HPC system and conduct eval-
uations on HPC systems. In particular, the Leibniz Supercomputing Centre (Leibniz
Rechenzentrum) (LRZ) is an institute of the Bavarian Academy of Sciences and Hu-
manities [dW23] (Bayerische Akademie der Wissenschaften, BAdW) in Garching near
Munich, Germany, houses several clusters, including the LRZ AI systems, LRZ BEAST
systems, and the flagship system, the SuperMUC-NG. The various architectures and
hardware available at different systems in the LRZ are the core enablers for the devel-
opment of this thesis. Specifically, the flagship system has significant importance as it
allows for investigating and addressing time series mining challenges for larger datasets
at larger scales. At the time of writing this thesis, as of November 2023 TOP500, it is
standing at the 29th position in the TOP500 list of the fastest supercomputers with 19.4
petaflop/s Linpack [DMBS79] performance.

1.5 Contributions

Figure 1.2 provides an overview of the key contributions of this thesis. We illustrate the
contributions as three pillars on top of the computer architecture and HPC foundations
as the key enablers to efficient and high throughput time series mining.

Contribution #1: we develop a novel approach for calculating the matrix profile
for large multi-dimensional time series in parallel on HPC systems at large scale.
We provide a scalable implementation of this method and study its performance
on a petascale system.
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Figure 1.2: Three contributions represented as pillars on top of computer architecture and HPC
to enable high performance and efficient time series mining.

State-of-the-art algorithms for the computation of a matrix profile mostly target one-
dimensional time series, i.e., a single time series covering one sensor input. Only recently,
the first approach targeting multi-dimensional time series appeared in the work of Yeh et
al. [YKK17] offering detailed insights into repeating patterns across different time series,
significantly increasing the ability to understand multi-dimensional time series. However,
these approaches are significantly more compute-intensive than one-dimensional matrix
profile algorithms and, hence, are no longer feasible on standard systems for realistic
workloads. Existing approaches have not been shown to scale to larger systems, nor can
they be used on anything but relatively small datasets. In our work, we present the
first scalable solution—(MP)N, stands for (Mult-dimensional Parallel Matrix Profile)—
for the mining of large-scale multi-dimensional time series targeting CPU-based HPC
systems. This approach enables the computation of large matrix profiles—as a modern
data mining approach—on an HPC system. Through leveraging the HPC system, this
approach is proved to be applicable to large-scale real-world problems, providing highly
scalable throughput and accuracy.

Contribution #2: we introduce the first method (and its implementation) to com-
pute the matrix profile for multi-dimensional time series on GPU(s). We discuss
several reduced- and mixed-precision modes for computing multi-dimensional ma-
trix profiles on GPUs and evaluate them based on their performance and accuracy.

While the state-of-the-art approach for computing multi-dimensional matrix profiles
targets CPU-based systems [RKY+20], exploiting GPU systems for this workload is
promising: previous studies show that this workload is memory-bound [Pfe19], suggest-
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ing that leveraging the High Bandwidth Memory (HBM) of GPUs promises performance
improvements. Additionally, as this workload is not communication bound, the through-
put is expected to scale with multiple GPUs. However, the use of GPU requires redesign-
ing the parallelization scheme (i.e., the parallelization scheme introduced in (MP)N) and
the underlying data layouts. On top of that, the problem of finding similar (and not
necessarily exactly identical) patterns in muti-dimensional time series offers the door
to reduced- and mixed-precision calculation schemes, which have not been investigated
before. Reduced- and mixed-precision schemes, aside from improving performance, can
also reduce the memory footprint, resulting in an even more efficient usage of the GPU
memory bandwidth and the ability to support larger problems. However, they natu-
rally lead to more numerical errors and, hence, new challenges to preserve acceptable
numerical accuracy. In this work, we extend the state-of-the-art approach for the multi-
dimensional matrix profile computation and introduce a new algorithm for GPUs that
addresses the mentioned data management, kernel, and arithmetic design challenges.

Contribution #3: we develop a new approach for approximate computation of
matrix profiles that is based on the iterative nearest neighbor approximation. This
approach leverages tree-based data structures and targets the single-dimensional
matrix profiles. We extend the state-of-the-art iterative nearest neighbor scheme
with new optimization mechanisms to better scale the computation on large HPC
systems.

The matrix profile is often computed using the well-known classical exact approach to
compute the underlying nearest-neighbor problem. These approaches rely on exhaustive
exact search operations to find the nearest neighbors [YZU+16, YZU+16, HHvW+20].
Due to the costs of exact search operation, these approaches are generally inefficient for
large datasets as the computational costs for addressing these search operations scale
quadratically with the size of the datasets (i.e., the number of records). Additionally,
these approaches typically rely on mitigating the computational costs for the search oper-
ations by extensive arithmetic optimizations of compute kernels [ZYZ+18], or use accel-
erators in computation [ZZS+18, JRY+22], and deploying on a cloud-based [ZKS+19] or
HPC systems [RKY+20, Pfe19]. On the other hand, approximate approaches [SZSF+19,
ZYZ+18] (i.e., methods to compute a solution that approximates the matrix profile) are
drawing increasing attention as they can provide solutions that are much more efficient to
compute while also being accurate enough in practice. However, all existing approaches
still suffer either from excessive computational costs [ZYZ+18], are restricted to spe-
cific settings [SZSF+19] and application scenarios [LWM+22], or lack parallelization. No
research in the literature focuses on classical nearest-neighbor approaches for the com-
putation of matrix profiles to prune the search space and reduce computational costs.
In this work, we focus on these approaches, specifically on the family of the iterative
approximate nearest-neighbor [Cla83] exploiting tree data structures and randomized
approximate nearest neighbor approach [Ben75, AMN+98] in distributed memory set-
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1.6 Structure of this Thesis

ting on HPC systems [XB16] as state of the art. We address computation for large
datasets and target large-scale CPU-based HPC systems. We demonstrate that, when
applied to matrix profile computation at a large scale, the state-of-the-art method suf-
fers from excessive communication and, therefore, scaling overheads. We address these
scaling overheads and, with that, introduce a new alternative approach for matrix profile
computation.

1.6 Structure of this Thesis

We provide an overview of the structure of this thesis in Figure 1.3. This thesis is
structured in thee main Parts, where each part includes two to four chapters covering
the main contents of this work.

The first Part includes three chapters and covers an introduction to the context of the
time series mining problem, specifically matrix profile computation, in the realm of HPC.
This Part includes various introductory topics, from background on time series and their
mining to an overview of existing methods and approaches in the literature. Additionally,
we cover basic concepts from computer architecture and HPC in this chapter.

The second part includes four chapters introducing the contributions of this work. The
first three chapters introduce the main methodological contributions of this work and
their evaluations. Each of these three chapters starts with a short motivational descrip-
tion followed by a section discussing research questions running through the chapter.
After presenting the methods, the evaluations are proposed to answer the research ques-
tions. The last chapter in this part includes illustrative examples and practical use cases
of the presented methods.
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1 Introduction

Finally, the last part includes discussion and conclusion chapters.

1.7 Summary

In this chapter, we provided an introduction to the context of this thesis. We highlighted
the importance of time series data and their mining in modern information retrieval. We
then emphasized the importance of exponential development in the capabilities of com-
puter systems and how modern HPC systems could play an important role in advancing
the mining of large time series datasets. We provided an overview of the motivations
of this work and the research questions driving this thesis. We also briefly discussed an
overview of the contributions of this work.
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2 Background and Technical Foundations

2.1 Time Series

A time series represents measurement records of variables or sensors at regular times, for
example, the temperature levels of a city. Time series data is one of the most common
data types that capture activity records involving temporal measurements across a wide
range of domains. Especially modern digital, cyber-physical, and surveillance systems
store data in some sort of time series data and at ever-increasing huge rates.

2.1.1 Time Series Definition

Time series can be defined as a collection of real-valued numbers with timestamps
[JRY+22], often related to historical data records corresponding to values reported by a
sensor. More formally, a tuple of <timestamp, sensor value> represents an individual
record and the collection of these records is defined as time series. Such representation
of historical data indexed by timestamps provides valuable insight into the past, trends,
and evolution of records [DS21]. Table 2.1 shows an example of a time series dataset
from a real-world application [KWFH+19]. The sensor values are readings of a temper-
ature sensor (in °C) ordered according to the date when the sensor reading was done.
Timestamps are typically represented as UNIX timestamps [Int], here in nanoseconds
passed since January 1st, 1970, at UTC. Each row in this table corresponding to a single
sensor reading is called a sample or record.

nanosecond timestamp corresponding date sensor value

1546435499657996160 2019-01-02 13:24:59.657996160 53.759998

1546435501405997760 2019-01-02 13:25:01.405997760 53.790005

1546435501736996160 2019-01-02 13:25:01.736996160 53.790005

1546435503814993920 2019-01-02 13:25:03.814993920 53.790005

1546435505892991680 2019-01-02 13:25:05.892991680 53.759998

1546435507217996160 2019-01-02 13:25:07.217996160 53.759998

Table 2.1: Example of time series data from a temperature sensor.

2.1.2 Time Series with Uniform Timestamps

Similar to the majority of work on matrix profile and time series, in this work, we work
on time series with uniform timestamps, which rely on consecutive timestamps with
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2 Background and Technical Foundations

constant differences. In some scenarios, similar to the data presented in Table 2.1, we
deal with non-uniform timestamps, where the time interval between two consecutive
records is not constant. In such cases, the timestamp itself or its progression should
be present in the dataset to allow for meaningful representation, storage, and later-on
analysis. Similar to some sources, we make a distinction for time series with non-uniform
timestamps and call it temporal data instead of time series. However, most commonly, in
many use cases, the timestamps are uniform, meaning that the time interval between two
consecutive records is constant. In such cases, the time series representation, storage,
and analysis are simpler and can mainly be represented by the sensor values and sampling
rate (or sampling frequency). More specifically, in this case, the representation of the
time series can be reduced from the collection of tuples <timestamp, sensor value>

to just a vector of <sensor value> annotated with the sampling rate as an additional
meta information. As we are focusing on time series with uniform timestamps, from
hereon, we use time series to refer to the case with uniform timestamps.

2.1.3 Multi-Dimensional Time Series

In a more general setting, a time series can consist of data records corresponding to mul-
tiple variables, often related to values reported by multiple sensors, which are represented
in multiple dimensions. In this setting, the individual records can be represented as tu-
ples of <timestamp, val sensor1, val sensor2, ..., val sensord>, where each of
val sensori represent the value reported by sensori at the particular timestamp. In the
common case, these d dimensions (or variables) often correspond to sensors for monitor-
ing/observing different aspects of the same process simultaneously, and therefore, they
might be interrelated, structured, or correlated. For example, consider the sequence of
temperature and pressure levels in a city, reported by the corresponding sensors, to form
a two-dimensional time series. Based on the number of sensors (or variables) in the time
series, we use terms single-dimensional (univariate) with a single sensor (or variable) and
multi-dimensional (multivariate) time series with two or more sensors (or variables).

Table 2.1 provides an example of a single-dimensional time series, and Table 2.2
presents an example of the multi-dimensional case. More specifically, Table 2.2 pro-
vides a two-dimensional time series gathered from the real-world operation of a gas tur-
bine [KWFH+19]. The sensor readings correspond to the speed of the turbine (sensor1)
and the generated power by the turbine (sensor2) represented by 1 HZ sampling rate.

timestamp (seconds) power (MW) speed (RPM)

0.00 11.36 300.100006

1.00 11.39 300.100006

2.00 11.39 300.100006

3.00 11.41 300.000000

4.00 11.41 300.000000

Table 2.2: Example of a multivariate (multi-dimensional) time series.
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2.1 Time Series

The multi-dimensional time series presented in Table 2.2 has uniform timestamps, and
therefore, specifying 1 HZ as the sampling rate is sufficient here and can be used as an
alternative representation to omit the timestamp column in Table 2.2.

2.1.4 Temporal and Spatial (Dimensional) Structures in Time Series

One of the main reasons to store time series data is to keep historical records of the
behavior of processes and systems and potentially later gain valuable insights from the
data. This historical data can be used to analyze, model, predict, and understand the
processes. Such analyses and modeling often come down to understanding structures,
repetitions, and correlations within data, which we refer to as temporal and spatial
structures here.

One important intrinsic feature of data, when represented in the form of time series,
is the presence of temporal relations, information, and structures (features) encoded
in the sequence of samples. Analyzing these temporal structures can provide valuable
information about trends, seasonality, and other features in historical data. On the
other hand, in the case of multidimensional time series data, analyzing the structures
and correlations among various dimensions (sensors) can provide valuable insight as well,
e.g., into the relations and correlations among various phenomena and sensors.

2.1.5 Time Series Windows

When analyzing temporal features within the time series, the time series windows play
a key role as temporal feature primitives. Time series windows can be employed to
represent local features, temporal patterns, and repeating structures and, therefore, are
commonly used in time series analysis scenarios. These are slices of the time series
that bundle a group of consecutive records that are considered for analysis. Formally,
a time series window of length m is an ordered set of m consecutive samples (records)
from the time series. Unique windows can be identified based on their first samples (or
equivalently based on the timestamp of their first samples (see Figure 2.1).

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Window 0 Window 1 Window 2

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Window 0

Window 1

Window 8

Tumbling windows

Sliding windows

Figure 2.1: Illustration for tumbling and sliding windows. Each black box represents a sensor
value, and a group of m = 4 consecutive are highlighted to represent a window.
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2 Background and Technical Foundations

Depending on the target analysis and what needs to be inspected within the time series
data, two main methods to create time series windows are relevant: Tumbling Window,
and Sliding (aka Rolling, Hopping and Overlapping) Window. Tumbling windows are
created out of m samples over consecutive disjoint time intervals of the time series.
For a time series with N samples, N/m disjoint tumbling windows can be created. A
sliding window is derived by rolling a window of size m over the samples of time series.
Therefore, a time series with N samples includes N −m+1 sliding windows where each
two consecutive windows overlap by m− 1 samples. Figure 2.1 illustrates an example of
tumbling and sliding windows of size four over the samples of a time series of length 12.

2.1.6 Time Series Data Types and Formats

An important aspect of the systems dealing with storing, processing, and analyzing time
series data is the data types and formats these systems use to represent and store time
series data. This is related to the representation of the individual components in each
record (tuple) of the time series. Specifically, this aspect relates to how the timestamp
values and real-valued sensor data are represented.
For the representation of timestamps, often fixed point formats, specifically, the time

stamps are typically stored as INT64 data type(i.e., as UNIX timestamp). Other formats
like INT8, INT16, and INT32 are used less in the realm of time series analysis. As
discussed before, in the case of uniform timestamps, a dense representation of timestamps
can be achieved by just providing sampling rates.
Sensor values are often intrinsically real-valued, and therefore, floating point formats

are often used to represent them. Specifically, the standard IEEE 754 floating point
format [IEE19], which was established as the technical standard for floating point arith-
metic in the 80s and was revised recently in 2019, is used as the de-facto standard to
represent sensor values in time series. This standard includes various data formats for
representing, storing, and processing real-valued data.
FP64, double-precision, and FP32, single-precision, are the most widely used standard

floating point formats and are mainly used in the context of scientific computing. FP80
extended-precision format was used in Intel 8087 math co-processor [IC80] and is natively
supported by x86 CPUs (its x87 instruction subset). However, this data format is not
used today in data analytics and time series mining contexts. Many systems process
and store monitoring data in FP64 and FP32 due to ease of use and wide support across
various hardware platforms. Therefore, many time series data mining research works
and frameworks typically exploit these formats and natively support them.
The use of FP16, half-precision, and BFLOAT16, Brain floating point Format, is

not very common in scientific computing due to the small dynamic range; however,
as this issue is less of a problem in machine learning applications, there is a growing
trend in using these type of data for training neural networks. Also, Recently, FP8 was
introduced. However, its application is mainly limited to deep learning training and
inference for the same reasons. TF32 TensorFloat-32 [Kha20] is a reduced version of
FP32 with only 19 bits, where there are only ten precision bits instead of 23. TF32
was first introduced together with NVIDIA Ampere GPUs [Kha20], and NVIDIA tensor
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2.1 Time Series

cores support this format natively. This format is also well suited for the precision
requirements of Machine Learning workloads, not commonly used in the time series
mining context.

2.1.7 Time Series Storage Layouts

Storing a single-dimensional time series is a straightforward issue as it requires storing
(potentially encoding and compressing) a single data stream. Still, this issue becomes
more complex when storing the main data stream together with timestamps. For exam-
ple, the two streams, i.e., timestamps and the data series, can be stored independently,
or the two streams can be laid out as a single stream of tuples of <timestamp, sensor

value> where each record corresponds to a timestamp and the corresponding value of a
target sensor (often real-valued). While the benefits of this scheme for storage might seem
unintuitive, it can provide better performance for some time series analysis algorithms
where both timestamp and sensor value might be loaded for processing [KRR+21].

Storage Layouts are typically more challenging for multi-dimensional time series. In
this case, the collections of all sensor streams (dimensions) can be thought of as a table
where each column corresponds to a sensor, and rows specify values of all sensors corre-
sponding to a particular time stamp. While in some applications, storing the data row
by row is efficient (e.g., in real time scenario on a data acquisition system), in other use
cases, e.g., in data processing pipelines, column-by-column storage is more efficient. Such
layouts also have direct implications on encoding, compression, and storage [KRR+21].

We highlight the importance and relevance of uniformity of time stamps in the con-
text of time series storage layouts. Uniformity eliminates the need to store time stamps
together with the data streams regardless of the dimensionality of the time series. It
reduces the single-dimensional time series and, therefore, its storage to only deal with a
single data stream, resulting in better storage efficiency. In the case of multi-dimensional
time series, similar benefits are present for the storage. However, the challenges associ-
ated with the layout (e.g., column-wise vs. row-wise layouts) still remain.

In this work, we mainly focus on processing time series data in offline batch settings
using algorithms with rather large computational complexity compared to I/O require-
ments. Therefore, we commonly use data stored in column-by-column format. For this,
we often rely on custom binary formats suitable for parallel access with functionalities
in common HPC environments.

2.1.8 Representative Examples

We use two representative domain examples to better demonstrate the time series con-
cepts introduced earlier. At the same time, these examples serve as running examples
throughout the thesis to describe the benefits of presented methods and optimizations.
These two real-world examples motivated this work in the first place.
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2 Background and Technical Foundations

2.1.9 Use Case 1: Operational Data from Heavy-Duty Gas Turbines

This first use case is motivated by the project Gas Turbine Optimization using Big Data
(TurbO) [TS] funded by the Bavarian Research Foundation (2017-2020) to investigate
and establish the capabilities for optimization of the operation of heavy-duty gas turbines
through the explorative analysis of operational and dynamic sensor data. The central
goal was to explore the effect of optimizing the operation of gas turbines to achieve more
stable operation, better fuel consumption, and higher efficiency, and, consequently, to
cause less air pollution for power generation. The main optimization approach in TurbO
was based on gathering and analyzing data collected from the sensors and monitoring
infrastructure deployed in power plants in Germany. In particular, heavy-duty gas tur-
bines are equipped with a variety of sensors to monitor and enable feedback data to
control their operation, which are leveraged for such explorative analysis. For example,
the combustion process in a typical gas turbine is monitored with multiple sensors mea-
suring dynamic pressure at a frequency of around 25 kHz. This data is often stored as
single precision floating point numbers summing up to a huge volume of nine GB per day
raw sensor data per sensor. Considering tens of power plant sites deploying heavy-duty
gas turbines, the presence of multiple turbines per site, and the deployment of multi-
ple sensors per turbine, the total amount of collected data easily exceeds petabytes per
year. At that scale, even simple analysis and filtering on single or collections of multiple
sensors is challenging and computationally demanding.

Conducting explorative data analysis on this amount of data requires the use of high-
end powerful computer systems, similar to those available in HPC centers. Figure 2.2
illustrates the data collection from gas turbines in power plants for the purpose of explo-
rative data analysis. After the collection of data from turbines, the data is transferred
to a compute center for analysis.

The operational and dynamic sensor data collected in this use case are naturally in
time series format. Figure 2.3 provides an example of a plot for pressure data from the
combustion process inside the gas turbine. The data is presented as a spectrum in the
frequency domain, and the pressure values are color-coded as a heat map representing the

Figure 2.2: Data generation and processing concepts in project TurbO. Time series data gen-
erated from monitoring of gas turbines is stored on disk and sent to a data center
for processing.
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Figure 2.3: Frequency spectrum of a sensor monitoring combustion process.

pressure amplitude at various frequencies over four days of operation. This visualization
corresponds to 12 GB of data. While this visualization provides an overview and detailed
picture of the pressure sensor values, analyzing this data is very challenging. In many
cases, values at limited frequency bands are considered for analysis, which significantly
reduces the processing, storage, and computational costs. In this case, the analysis/min-
ing scenario can be mapped to single- or multi-dimensional time series analysis/mining
problems.

In Figure 2.4, we illustrate an example of such mapping. We visualize the amplitude of
the pressure signal at only the frequency of 160 Hz over the period of 21 months as a time
series. This plot data also includes the data corresponding to a severe incident, which
caused significant damage to the turbine, costing 10s of 1000s of Euros. By inspecting
the data using time series mining and analysis techniques, we can gain insights, model,
detect, and, with those, even prevent further incidents similar to the one depicted in
Figure 2.4.

The monitoring data is also augmented with low-frequency data sampled at 1Hz, which
includes the various conditional and operation data, for example, inlet temperature and
pressure to the turbines. When considering 10s of such operational sensors per turbine
and again 10s of sites, even this data quickly adds up to TBs of data per year.

While processing this data with advanced analytical methods can potentially bring
valuable insights to the designers of gas turbines as well as to the operators of power
plants, the processing of such amounts of data for fleets of turbines remains challenging.
State-of-the-art approaches (before the start of the project TurbO) typically rely on var-
ious methods [RHP16] to estimate and project the analysis to a smaller problem. For
example, in many cases, analysis is conducted on a limited time span, it relies on down-
sampling, or it is based on filtering data on a specific frequency band [RHP16]. This
is typically due to the limited computing resources available for such analyses since,
traditionally, such analyses are conducted on workstations with limited memory and
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Figure 2.4: Timeline for the amplitude of combustion sensor at 160 Hz. The gaps in the data
(e.g., after months seven until 17) are the result of missing monitoring data, which
can have various reasons, including shutdown or maintenance.

computing. We introduce HPC systems into this picture and take advantage of the com-
puting power of these systems. this can help to apply more complex time series analysis
and mining methods at scale through HPC. With HPC in the picture, we increase the
capabilities of analyzing larger amounts of data, enabling us to extract thorough insights
from the data. Additionally, glshpc systems enable looking into time series data sampled
at higher resolutions (higher frequencies) and potentially providing more details about
the underlying physical processes (e.g., details of combustion processes). By employ-
ing various optimization techniques, as well as exploring reduced- and mixed-precision
methods, the limits of computation capabilities are pushed forward.

2.1.10 Use Case 2: Operational Data Analytics in HPC Centers

The second use case is motivated by the HPC Operational Data Analytics (ODA)
concepts [NSO+21] and cases in DEEP (“Dynamical Exascale Entry Platform - Soft-
ware for Exascale Architectures”) project (2017-2021) funded by the European Com-

Figure 2.5: HPC monitoring (time series) data stored in a database for further (e.g., offline)
processing.
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2.1 Time Series

mission [Gmb21a]. By leveraging the operational data collected through monitoring
systems to optimize the operation of HPC systems (see Figure 2.5), operational data
analytics has gained huge momentum in HPC sites over the last decade. The opera-
tion data includes various components of the systems, such as compute nodes, storage
subsystems, and networking infrastructure, and it is not only limited to application
performance data; its extent goes from the whole system to even full infrastructure op-
erational data, including outbound power distribution units (PDUs) and the operation
of cooling distribution units (CDUs). Such operational data are typically managed and
stored by monitoring system tools, such as DCDB [NMA+19] and LDMS [AAB+14] in
the shape of time series.

HPC operational data can be processed and analyzed to gain valuable insights into the
details of the operation of the system, e.g., to identify potential performance bottlenecks
or issues of the systems or applications running on the system. This consists of a vari-
ety of analytic tasks, such as workload characterization, fault detection, and diagnosis,
with the intention of various optimizations of system operation, including performance
optimization, energy efficiency improvement, better resource allocation, and job schedul-
ing. One particular example of operational data analytics in HPC within the context
of time series analysis is analyzing recurring patterns, trends, and anomalies in system
behavior, as well as building predictive models to provide actionable insights to system
administrators and HPC infrastructure operators.

Figure 2.6 presents an example of operational data from the HPCODAdataset [Net20],
which is a collection of datasets acquired on production HPC systems and is represen-
tative of several real-world use cases in the field of Operational Data Analytics (ODA)
for the improvement of reliability and energy efficiency. This data is presented and
illustrated as a multi-dimensional time series.

In this particular example, we use the data collected from benchmark jobs on a single
SuperMUC-NG compute node when running various CORAL-2 [VdSB+18] benchmarks,
which is a benchmark suite developed in Collaboration of Oak Ridge, Argonne, and
Livermore (CORAL) for joint-procurement activities among three of the US Department
of Energy’s national laboratories. The data encompass a variety of performance counters,
such as branch instructions, cache misses, and others, all collected using DCDB. Various
shapes and patterns can be observed in the presented data in Figure 2.6. Analysis of
such patterns can be crucial to gaining insights that can help in optimizing the operation

Figure 2.6: A sample from the operational data in HPCODA dataset [NMA+19] corresponding
with the collection of various performance metrics from compute nodes of LRZ
systems when running HPL.
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of supercomputing centers. For instance, dynamic behaviors and patterns observed in
user code execution can be analyzed, and with that, better statistics about applications
running on HPC systems can be collected. Such statistics help to gather highly beneficial
insights about the operation of HPC systems, e.g., to support both better operation of
the systems and co-design of future systems. Another example is the analysis of energy
consumption patterns by the HPC systems to achieve better scheduling schemes to
achieve more efficient and cleaner operation.

2.2 Time Series Analysis and Mining

Analysis of time series is a broad field with a long history. The extent of methods in this
field varies from statistical exploratory to recent machine learning-based prediction and
modeling methods. Specifically for the context of this work, we can rely on the high-level
classification of time series analysis methods presented by Pfeilschifter [Pfe19, Cha04]
based on existing textbooks and literature reviews [Cha04, Kle15]: we can classify the
existing methods into two non-mutually-exclusive classes of traditional methods which
heavily rely on statistical methods and data mining methods with knowledge and insight
discovery in perspective.

Traditional methods are often simple, intuitive, and popular. In many cases, these
methods offer valuable insights into the data with minimal effort. These methods often
consist of various basic approaches to the analysis of time series, including seasonalities,
trends, and similarity characteristics. Analyzing these characteristics within time series
provides a high-level description [JAV23] of the behavior embedded within data. Addi-
tionally, traditional methods include various classical explanatory and predictive [JAV23]
modeling approaches, including curve fitting, ARIMA (autoregressive integrated mov-
ing average) modeling approach [BJ70]. The core idea in these types of approaches is to
use sufficiently accurate models to explain the behaviors embedded in the data as well
as to use these models to make predictions about the behavior of underlying systems
generating the data.

More recent analysis methods, often considered as time series mining methods, include
various schemes with knowledge discovery perspectives, often targeting large time series
data volumes. These mining methods employ analysis methods and techniques from
various disciplines, including statistics, but also extend to pattern recognition, machine
learning, and neural networks [Col13]. The scope of time series mining is considered
broader pattern discovery and can be extended to covering the discovery of hidden
information or insights from time series data. Data mining methods and approaches
often include analyzing correlations, similarities, irregularities, and patterns within time
series data with the intention of gaining insights from the data that does not exist a
priori [Col13]. Gaining insights from time series datasets can be the result of analyzing
the raw time series sample points or other (potentially reduced) representations of time
series datasets. Additionally, such methods are often used to conduct classical machine
learning tasks such as clustering, classification, segmentation, and anomaly detection
on time series data to achieve data-driven descriptive and predictive actionable insights
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from data. Also, recently, more modern machine learning models and methods such
as deep neural networks have been employed in time series mining[SZSF+19] to gain
insights.

2.2.1 Time Series Similarity Indexing and Similarity Join

One of the primary goals of time series mining is to uncover previously unknown patterns
in the time series datasets [Col13]. In many cases, time series mining approaches rely
on analyzing similarities within time series data to achieve that. While naive statistical
analyses of time series samples, as described in Section 2.2, can be utilized to provide
valuable summaries and even insights into data, detailed similarity analysis of time series
subsequences based on a particular similarity measure (e.g., correlation measure [FV17])
provides an even richer key representative similarity feature for analysis. Often, the sim-
ilarity of time series subsequences based on correlation factor (or conversely distance
metric, e.g., Euclidean distance) is used to characterize the patterns, similarities, or
irregularities in the data. Various similarity measures [KK], such as Pearson’s Correla-
tion (PC) [Kir08], and dissimilarity measures, including Euclidean Distance (ED) and
Dynamic Time Warping (DTW) [Keo02].

The problem of characterizing and analyzing similarities is often represented by sys-
tematically searching and indexing time series subsequences (within one or multiple
dimensions), as is common database management systems (DBMS). In the context of
DBMS, this process is often referred to as similarity search, which is defined as the task
of finding objects similar to a given query in a set of objects [Ech22]. Since in time
series analysis and mining, often the target is to analyze the similarity of time series
subsequences (i.e., local patterns), the set of these subsequences is considered as the
relevant set of objects for indexing.
In DBMS, data structures known as index [Nat19] are constructed and maintained to

serve the necessary information required to access and query data quickly and efficiently.
The task of computing and maintaining such data structures is known as indexing.
Specifically in the context of similarity mining, the index includes similarity association
of the objects, e.g., pointers to the ID of similar objects.
Going beyond single queries, indexing similarities in time series, and maintaining a

similarity index structure for time series subsequences can boost the query and analysis
performance, as well as productivity for developing applications that rely on similarity
association of time series subsequences. Similarity indexing in time series is referred to as
creating and maintaining a similarity index for fast and efficient processing of similarity
queries. Since such an index data structure typically encodes similarity correspondence
among collections of time series subsequences, it enables various sophisticated analyses
and mining tasks on the time series data and paves the path to gaining even more
valuable insights, e.g., finding complex hidden recurring patterns, trends, and anomalies.
Examples of such time series data mining tasks include motif discovery, novelty discovery,
discord discovery, shapelet discovery, and so on. Typically, these tasks try to identify
time series motifs (frequent patterns), outliers (rare patterns), or novelties (surprising
patterns) as representative similarity features (primitives) that can be used for more
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complicated analyses. With such a time series similarity index in hands, acquiring
these analysis primitive is straightforward, and therefore, computing similarity indexing
renders various knowledge discoveries, data science, and machine learning tasks, e.g.,
classification, clustering, and semantic segmentation trivial [Keo23].

A commonly used index is for the nearest neighbor matching index, which stores the
nearest neighbors association of objects (time series subsequences). Such indexing can
boost analysis and data science that requires nearest neighbors in time series. This
indexing provides a powerful view over the similarities among subsequences within a
time series across multiple (typically two) time series [YZU+16]. For instance, we can
consider an application that requires finding and processing a similarity query, i.e., to
find the most similar (i.e., nearest neighbor) subsequence within the time series to the
query. In such cases, in the presence of a pre-calculated nearest neighbor index, the task
of calculating the similarity for the query falls down to a lookup.

Overall, time series similarity indexing and, specifically, nearest neighbor indexing
play an important role as a key representative similarity index feature for time series
analysis and mining.

So far, we established similarity indexing as a powerful approach to organize and
represent similarities of time series subsequences within and across time series. Now,
we introduce the similarity joins as abstract operations between time series to create
and compute a so-called time series all-pair similarity index. Time series similarity join
is defined as the operation between two input time series, i.e., a query and reference
time series, in which the similarity of all possible pairs of subsequences within the two
input time series is computed. To give a better picture, one can consider the task of
computing a similarity matrix between all the subsequences of the two input time series
and then finding the best matches (i.e., most similar) to each subsequence by scanning
each row (or column). The output of this join operation is an index that identifies
the similarity association of all pairs of the two input series. With this index at hand,
finding subsequence similarity queries coming from the query time series, i.e., searching
for similarities in the reference time series, boils down to simple lookups.

Time series join operations can be performed on two distinct input series, known as
a cross-join, or between a time series and itself, which is known as self-join. In the case
of the self-join, often, special treatments are considered to mitigate trivial similarity
matches, i.e., retrieving a subsequence as the most similar to itself. In both cases, the
amount of computation required to compute the index grows linearly with the size of
the two input series (in the case of the cross-join). Therefore, in the case of self-join, the
amount of computation grows quadratically with the size of the input series.

2.3 Foundations of Matrix Profile

One prominent, well-established method for time series join operation, and the corre-
sponding indexing scheme is the matrix profile approach. A matrix profile provides a
similarity index (profile) based on the nearest neighbors join operation between two input
time series, often called query and reference time series. Having such a similarity index
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(profile), one can lookup the nearest neighbor corresponding to a given subsequence in
the query time series inside the reference time series. To highlight the importance and
power of matrix profile, we can consider a use case where the reference time series is
a well-known historical time series dataset that is used as a reference to help identify
the motifs and patterns in an unknown query time series by leveraging the similarity
indexing provided by matrix profile with cheap lookups.
The concept of similarity index (profile), in principle, also applies to multi-dimensional

time series. However, for a multi-dimensional time series, the notion of similarity is
generalized so that the analysis takes the correlation among subsequences in multiple
dimensions into account. Also, multiple index (profile) structures are often required to
represent the similarities for various dimensions, e.g., one index for each dimension.
Since matrix profile is the core time series mining concept in this work, we will provide

a deeper background on it. We start by introducing the term matrix profile as the
similarity indexing join operation for time series. Therefore, depending on the context,
we often use the term matrix profile to refer to the similarity join operation. Also,
we use the term matrix profile computation to refer to the calculations and operations
associated with conducting the join operation that are required to be executed to get the
similarity index. On the other hand, the outputs of the matrix profile computation are
two index data structures called matrix profile and matrix profile index. Therefore, in
some contexts, we use the term matrix profile to refer to these output index structures
as well.
As discussed before, the join operation, therefore computing the matrix profile, be-

tween the input series, is associated with a distance matrix, which includes the distance
among all the subsequence pairs of the input series. In fact, that is where the term
matrix in the name “matrix profile” is coming from. The whole idea behind the matrix
profile approach is to summarize a complete distance matrix (or equivalently, correlation
matrix) of all the subsequences of input time series into two index data structures:

• the matrix profile (denoted as P ), which is a real-valued vector encoding the dis-
tance of a subsequence to its nearest neighbor, and

• the matrix profile index (denoted as I), which is an indexing vector storing pointers
to the nearest neighbor of a subsequence to identify the location (index) of its
nearest neighbor.

This definition can be applied to all cases of cross-join and self-join in single and multi-
dimensional time series mining. Based on this definition, the matrix profile is associated
with the nearest neighbors join operation between input series. Therefore in this work,
we refer to the task performing this nearest neighbor join operation, i.e., calculating the
matrix profile and matrix profile index (P and I), as “matrix profile computation” or
“computing the matrix profile”.
We provide an illustration for the matrix profile by presenting a simple analysis sce-

nario in Figure 2.7. In this illustration, we intend to visually demonstrate the matrix
profile and show how it can be used for semantic segmentation of a multi-dimensional
time series. The goal of such segmentation is to partition the time series into regions
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Figure 2.7: Illustration of matrix profile and its use for semantic segmentation of a multi-
dimensional time series by finding motifs through matrix profile analysis.

(segments) where each region consists of similar structures. Our intention here is to show
the capabilities of the approach without binding it to a specific domain, and therefore,
we present a synthetic example. For more illustrative real-world examples, we refer to
Yeh et al. [YHK16, YZU+16] and Gharghabi et al. [GYD+].

In our synthetic example, we consider a three-dimensional time series representing
three sensors, each providing 20 000 samples. The first carries sin(x)-pulse starting at
+20 seconds. The second carries square-pulse starting at time +40 seconds. Finally, the
third sensor carries a sawtooth-pulse starting at +70 seconds; all wavelets are recurring
every 10 seconds. This introduces unique phases (segments) in the presented sensor data
during which the structure of sensor data is unique. Here, by structure, we refer to the
patterns embedded in the sensor data in each dimension separately (e.g., the sine waves
on the first sensor) or the combination of the patterns embedded in all three dimensions
(e.g., the combination of the sine wavelet shapes on the first sensor together with the
flat shapes on the other two sensors, i.e., highlighted in orange). We call the multi-
dimensional structures (here three-dimensional structures) motifs. Motifs are patterns
with a unique correlation structure among all the sensors that might recur over time.
For instance, we observe four motifs in Figure 2.7, each highlighted with a separate
color (red, orange, green, and blue). Note that when looking at individual sensor data,
we might find different (single-dimensional) motifs. For instance, by only looking at
the first sensor, we only detect two motifs (sine wavelets and flat regions). However,
the three-dimensional motifs consider the structures of all three sensors together. The
multi-dimensional motifs detected are also closely related to semantic segmentation of
the time series, where the presented time series can be segmented into four regions with
similar sensor structures.
We can conduct a self-join matrix profile to identify the similarity structure of three-

dimensional subsequences1. The matrix profile is computed by constructing the distance
matrix for all the three-dimensional subsequences in the time series and finding the best
match (i.e., the nearest neighbor) for each individual three-dimensional subsequence.
We illustrate the matrix profile at the bottom of Figure 2.7 in black color. At each

1The subsequence length, which is a parameter in matrix profile analysis and will be introduced later
in this chapter, is set to four seconds.
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point, the value of the matrix profile corresponds to the distance of the three-dimensional
subsequence to its best match in the series. We observe that the matrix profile highlights
and distinguishes the four phases by summarizing the correlation structure among the
sensors in the time series.
To further illustrate the power of the matrix profile in practice, we feed the computed

matrix profile to a clustering method to find distinct groups (clusters) with similar matrix
profile values. This helps to identify phases of the time series according to the segments
on the matrix profile with similar values. Specifically, we use the k-means algorithm with
k, the number of groups set to four, to find four groups of values of this matrix profile.
This helps to group the corresponding classes as similar motifs based on their distances
in the matrix profile (see Figure 2.7, color-coded time series segments). This analysis
results in meaningful segments corresponding to the respective phases (and motifs) in
the original data.
Contributions of this work, which are introduced in the next chapters, heavily rely

on understanding the details of matrix profile computation. Therefore, we continue this
chapter by introducing detailed mathematical foundations of the matrix profile.

2.3.1 Matrix Profile Notations and Formulations

We mainly follow the notations and formulations introduced in the work of Yeh et
al. [YZU+16], Raoofy et al. [RKY+20], and Pfeilschifter [Pfe19]. We first start by intro-
ducing the terminology for the single-dimensional time series denoted as T .

Definition 1. A time series, T , is a sequence of real-valued numbers ti ∈ R : T =
t1, t2, ..., tn , where n is the number of records or the length of T .

As discussed earlier in Section 2.2.1, in the context of time series similarity join matrix
profile, we rely on comparing time series subsequences. These are local chunks of time
series, also known as time series segments. By definition, subsequences are also time
series themselves. These subsequences are derived from rolling a window of a certain
size (subsequence length) over the time series. Especially in the context of matrix profile,
only overlapping subsequences are considered.

Definition 2. A subsequence, Ti,m, of length m in the time series T , is a continuous sub-
set of m ∈ N, m ≤ n values in T starting from position i. Ti,m = ti, ti+1, ..., ti+m−1, 1 ≤
i ≤ n−m+ 1.

Moreover, the matrix profile is commonly computed based on the z-normalized Eu-
clidian distances (standardized distances) among subsequences of a time series. This
way, the subsequences are normalized in a scale-invariant fashion (i.e., subsequences are
normalized by their standard deviation and shifted to have zero means).

Definition 3. The z-normalized Euclidean distance between two subsequences T q
i,m and

T r
j,m of length m, denoted as δ(T q

i,m, T r
j,m), is defined as the Euclidean distance δ : m ×

m→ N+
0 between the two subsequences after each is z-normalized, i.e., rescaled to zero-

mean and unit-variance.
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While it is possible to extend the definition of distance matrix to metrics beyond the
z-normalized Euclidian distance, we still rely on this metric in the spirit of the original
work introducing the matrix profile concept [YZU+16], as well as to simplify correctness
and verify the accuracy of results. Additionally, the usage and advantage of z-normalized
distances in the context of time series similarity indexing (and therefore matrix profile)
is empirically justified in existing studies [KK, WMD+13, RCM+12].

Definition 4. Let T r and T q be two time series of lengths n ∈ N and l ∈ N, which can
potentially be identical. Given a query length m ∈ N, 2 < m ≤ min(n, l) the distance
matrix of size(l −m + 1 × n −m + 1) is defined as Drq = [di,j ] where each element of
this matrix is determined as di,j = δ(T q

i,m, T r
j,m).

This is the formal definition for the distance matrix that we discussed in Section 2.2.1.
In more detail, the element di,j sitting on i-th row and j-th column of the distance

matrix Drq corresponds to the z-normalized Euclidean distance (δ) between i-th sub-
sequence in T q to the j-th subsequence in T r. This implies that the i-th row of the
distance matrix contains the distances of i-th subsequence in T q to all the subsequences
in T r. Therefore, by scanning the i-th row of the distance matrix, one can identify the
subsequence in T r with minimal distance to i-th subsequence in T q. This particular
subsequence in T r represents the best match (most similar or nearest neighbor) to i-th
subsequence in T q.
The distance matrix Drq, contains all pairwise distances between subsequences from

T r and T q. Consequently, the distance matrix can be used to identify the nearest
neighbors for all subsequences T q in T r.
We now define time series similarity join (or nearest neighbor join) based on the

distance matrix.

Definition 5. Given a query length m, the time series similarity join operation between
T r and T q is defined as the joining (processing) the input series to get the set of l−m+1
subsequence index tuples (i, j), where j refers is the index of a subsequence in T r that is
nearest neighbor of the subsequence i in T q. This join operation is denoted as T r ⋊⋉m

1nn

T q.

The distance matrix Drq can be used in computation of T r ⋊⋉m
1nn T q. In particular,

T r ⋊⋉m
1nn T q[i] = min

j
Drq[i, j].

Note that in the general case, Drq is not equal to Dqr. and therefore T r ⋊⋉m
1nn T q is not

the same as T q ⋊⋉m
1nn T r. However, in the special case, where the two input time series are

the same, i.e., T r = T q = T , the distance matrix D is symmetric D = Dqr = Drq. This
property can be used to reduce computation costs in such special cases. This special
case is called the self-join operation (T ⋊⋉m

1nn T ) and is a common setup in many of
the matrix profile computation scenarios and problems in literature. Note that, in this
case, the diagonal entries di,i are equal to 0, as they measure the z-normalized distance
between a subsequence and itself. These cases are considered trivial matches and should
be ignored from the computation. Furthermore, close to the diagonal, typically, all
distance values are small and are also considered trivial matches and are ignored in
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similarity computation since the similarity of windows that are in close affinity typically
are not interesting. We denote these trivial matches with Ei. For subsequence i in T q, Ei

is the set of indices (j|j ⊂ [1;n−m+ 1]) of all the subsequences in T r that are assumed
or known to be trivial matches a priori.

With all the above definitions provided, we can now move forward and introduce the
formal definitions of the matrix profile and matrix profile index.

Definition 6. Let T r and T q be the reference and the query time series of lengths n ∈ N
and l ∈ N, which can potentially be identical (i.e., T r=T q). Let Ei ⊂ [1;n − m + 1]
denote the set containing the indices of all trivial matches (or any matches that need
to be excluded for any reason) of the subsequence T q

i,m in T r. The matrix profile
P rq is defined as the vector of real valued distances P rq = (p1, p2, ..., pl−m+1) where
pi = min

j
(di,j) | j ∈ [1;n−m+ 1]\Ei.

In simple words, the matrix profile is a vector whose elements represent the minima
of the rows in the distance matrix. This translates to the following: the entry pi of the
matrix profile is the distance of subsequence Tqi,m to its nearest neighbor among all the
subsequences of T r with length m.

The definition of matrix profile index follows the definition of matrix profile with a
small modification. For the matrix profile index, we compute argmin in each row of the
distance matrix instead of min. argmin is defined as the operation that, when applied
to a vector, returns the integer value, index, in which the vector has the minimum value
(i.e., it returns the location of the minimum value in the vector).

Definition 7. Let T r and T q be the reference and the query time series of lengths n ∈ N
and l ∈ N, which can potentially be identical (i.e., T r=T q). Let Ei ⊂ [1;n − m + 1]
denote the set containing the indices of all trivial matches (or any matches that need to be
excluded for any reason) of the subsequence T q

i,m in T r. The matrix profile index Irq is
defined as the vector of integers Irq = (q1, q2, ..., ql−m+1) where qi = argmin

j
(di,j) | j ∈

[1; l −m + 1]\Ei. In the special case of several minimizer indices j, the smallest one is
chosen.

In simple words, the matrix profile is a vector whose elements represent the minima
of the rows in the distance matrix. The matrix profile entry at location i (qi) includes
the index, j, associated with the nearest neighbor subsequence T r

j,m for the subsequence
i in T q.

With the definitions presented for the matrix profile and matrix profile index, we
reiterate the fact that the matrix profile concept is built on top of the nearest neighbor
similarity indexing and provides a similarity index for analyzing time series.

In the case where the two input series are equal, i.e., T r = T q = T , most implementa-
tions use a homogeneous and symmetric exclusion zone (E). Here, symmetricity refers to
the exclusion of the e samples from both left and right of the index i, i.e., Ei = [i−e; i+e].
Also, homogeneity refers to using the same value of e for all the reference indices i. In
particular, most implementations exclude trivial matches Ei = [i − m/4; i + m/4] or
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Ei = [i − m; i + m], where an exclusion zone equal to the size of subsequence length
m or a quarter of it is chosen. In such cases, often, the length of the exclusion zone
is defined by a parameter e, which in the above cases is set to either m/4 or m. This
exclusion setting ignores the fact that, in theory, the size of the trivial matching zone is
data-dependent, as illustrated by Yeh et al. [YHK16].

However, this is still a practical approach and is aligned with the fact that, in prac-
tice, the matches in close affinity are too trivial to be interesting. Besides, the studies
empirically show that this choice is sufficient and safe [YZU+16, YHK16].

2.3.2 Matrix Profile Illustration – Operational Data from HPC centers

We revisit the second use case introduced in Section 2.1 and illustrate the above def-
initions with the intention of creating a better intuition about matrix profile and its
computation. In this illustration, from the HPCODAdataset, we use the application clas-
sification segment corresponding to labeled operational data corresponding to CORAL-2
benchmark suite [VdSB+18] runs (We introduced this benchmark suite in Chapter 2).
We use the cache miss values on a single node and plot it as a time series (plotted in
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Figure 2.8: Illustration of the distance matrix, matrix profile, and matrix profile index.
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Figure 2.9: Illustration of similarity associations between two time series when the matrix pro-
file index is used to create the red arcs.

green on the top and left side in Figure 2.8). We use the same time series for both
the reference and query time series (self-join). The distance matrix whose entries corre-
spond to z-normalized Euclidean distance of subsequence pars in the two input series is
also illustrated. The matrix is color-coded with values of the distance matrix such that
similar subsequence pairs have blue colors and dissimilar ones have red colors.

The window size considered in this case is depicted with the color yellow in the graph.
For the purpose of this text and generating intuitive visualizations, we use fairly large
window sizes, while in general, smaller window sizes are equally valuable and insightful.

While the matrix profile concept is general in the sense of applying to two distinct time
series, here, for the sake of illustration, we consider the case of self-join. As required
in the self-join case, we apply an exclusion zone to exclude trivial matches along the
diagonals (entries in the distance matrix with white color).

As discussed before, the matrix profile can be computed by finding the minimum
values along the columns of the distance matrix. We highlight these minimum values
with black on the distance matrix. The matrix profile is computed using these minimum
values and their locations. We illustrated the matrix profile (the minimum value and its
location along the columns of the matrix) at the bottom in Figure 2.8.

While interpreting the plotted matrix profile and matrix profile index seems unintuitive
at first, they provide valuable insights: for instance, minimum values on the matrix
profile graph correspond to subsequences in T q that have a similar counterpart in T r.
For better intuition for the matrix profile index, in Figure 2.9, we provide a visualization
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for the corresponding similarity indices computed in the previous example. We illustrate
the two input time series on the two sides. We use the matrix profile index to create
association lines between the query and reference series. In simple words, we follow
the values of the matrix profile index to find the location of the nearest neighbors of
subsequences of T q in T r. We use a so-called arc graph to represent these associations,
and the illustrated arcs show the nearest neighbors association between T q and T r,
which helps to visually grasp the similarities of the two time series. In particular, this
illustration helps to visually associate the cache miss patterns (subsequences) in the
query input time series T q to the corresponding matches in the reference input time
series T r using the red arcs.

2.3.3 Multi-Dimensional Matrix Profile – Notations and Formulations

Next, we introduce notations and formulations for multi-dimensional time series and
extend the concept of matrix profile for this type of time series. In particular, we use
the terminology introduced by Yeh et al. [YZU+16] and Raoofy et al. [RKY+20].

Definition 8. A multi-dimensional time series T ∈ Rd×n is a set of coevolving time
series, T = [T (1), T (2), ..., T (d)] where, d, denotes the dimensionality of T and, n, rep-
resents the length of T . Each T (x) ∈ Rn is a single-dimensional time series and is
associated with one dimension.

Definition 9. A multi-dimensional subsequence Ti,m ∈ Rd×m of a multi-dimensional
time series T is a multi-dimensional time series of length m starting from position i in

T : Ti,m = [T
(1)
i,m, T

(2)
i,m, ..., T

(d)
i,m].

The above definitions are a straightforward generalization of the Definition 1 and
Definition 2 provided in the single-dimensional case. One can think mining subsequence
similarities with such definitions for multi-dimensional time series might be a straightfor-
ward extension of single-dimensional cases. However, the extension of the matrix profile
concept case is more general to consider similarities across different dimensions as well as
similarities of multi-dimensional subsequences. This means that the multi-dimensional
matrix profile case considers the matching of subsequences with dimensionalities smaller
than d, e.g., 1-dimensional, 2-dimensional, . . . , and d-dimensional subsequences where
the dimensions of the subsequence span only a subset of the d dimensions. The reason
for this design in the case of multi-dimensional matrix profile case is that typically, more
than only d-dimensional subsequence matches are of interest in practice. In fact, as dis-
cussed in detail in the work of Yeh et al. [YZU+16], using d-dimensional matrix profile
analysis for motif discovery is generally guaranteed to fail, and therefore, in general, only
a subset of all dimensions must be used for multi-dimensional motif discovery.

Definition 10. A sub-dimensional subsequence Ti,m(X) ∈ Rk×m is a multi-dimensional
subsequence for which only a subset of d dimensions in T is selected. k ≤ d is the number
of dimensions included in Ti,m(X), and X is an indicator vector with the cardinality of
k (∥X∥0 = k) which shows the dimensions that are included.
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This definition allows generalizing the distance matrix and matrix profile concepts such
that the distances among all sub-dimensional subsequences are considered in the analysis.
In other words, this definition allows us to consider k-dimensional distances between k-
dimensional sub-dimensional subsequences in the case of multi-dimensional time series.
The definition of multi-dimensional matrix profile introduced by Yet et al. [YKK17]
covers similarities for all the 1-dimensional, 2-dimensional, . . . , and d-dimensional sub-
dimensional subsequences. This introduces a combinatorial search space to mine all the
sub-dimensional spaces.

Definition 11. The k-dimensional distance measure, δ(k), represents the distance be-
tween two multi-dimensional subsequences Ti,m ∈ Rd×m Tj,m ∈ Rd×m by using only the
k out of d dimensions, where δ(k) is the minimum distance value for all possible combi-
nations of k out of d dimensions (i.e., for any vector X). Formally, δ(k)(Ti,m, Tj,m) =

min
X

δ
(
Ti,m(X), Tj,m(X)

)
, where ∥X∥0 = k. δ is usually considered to be the z-normalized

Euclidean distance.

This definition provides the distance between sub-dimensional subsequences. This
helps to represent similar sub-dimensional subsequences as the “best matching” subse-
quences (with minimal distance) in the combinatorial space. This notion of distance
allows us to mine similarities in all the k-dimensional sub-dimensional subsequences in
combinatorial space of sub-dimensional subsequences.

Definition 12. Let T r and T q be two d-dimensional time series of lengths n ∈ N and
l ∈ N, which can potentially be identical. Given a query length m, multi-dimensional
time series similarity join operation between T r and T q is defined as computing sub-
dimensional subsequence pairs with k <= d, when the distance is computed by using
the k-dimensional distance function. Formally, it translates to computing the pairs
(Ti,m(Xk), Tj,m(Xk))|∀i ≤ n, j ≤ l,∀Xk, where Tj,m(Xk) is the nearest
neighbor of Ti,m(Xk) in T r assuming the indicator vector Xk considered all combina-
torial sub-dimensional subsequences with dimensionality of k. This join operation is

denoted as T r ⋊⋉k m
1nn T q.

With this definition, multi-dimensional time series similarity join corresponds to find-
ing the matches in the combinatorial space of sub-dimensional subsequences.

Definition 13. Let T r and T q be two d-dimensional time series of lengths n ∈ N and
l ∈ N, which can potentially be identical. The multi-dimensional matrix profile P rq

is defined as the set of d (single-dimensional) matrix profiles P rq = [ρ1, ρ2, ..., ρd], each
corresponding to the individual sub-dimensions, where ρk is the vector of k-dimensional

distances of all pairs computed with T r ⋊⋉k m
1nn T q.

Definition 14. Let T r and T q be two d-dimensional time series of lengths n ∈ N and
l ∈ N, which can potentially be identical. The multi-dimensional matrix profile P rq

is defined as the set of d (single-dimensional) matrix profiles Indices Irq = [ι1, ι2, ..., ιd],
each corresponding to the individual sub-dimensions, where ιk is the vector of indices of

all k-dimensional pairs computed with T r ⋊⋉k m
1nn T q.
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Definition 15. A k-dimensional matrix profile subspace S ∈ Nk×(n−m+1) is a multi-
dimensional meta series that stores the k dimensions associated with subsequences com-

puted in T r ⋊⋉k m
1nn T q.

With this definition, the matrix profile approach offers a powerful data structure to
encode multi-dimensional motifs and similarity indices within the sub-dimensions of
time series that may not be apparent when considering each dimension individually.
This enables the discovery of complex hidden structures across different sub-dimensions,
which offers valuable insights into the dynamics and interdependencies of sub-dimensions.

2.3.4 Background on Matrix Profile Computation and its Costs

We start by introducing the task of matrix profile computation in the single-dimensional
case. The multi-dimensional case will be covered in the following chapters. We provide a
Pseudocode 1 adapted from the original work of Yeh et al. [YZU+16] to show how matrix
profile can be computed naively and demonstrate the computational costs involved. We
work on the cross-join case with two input time series, T r ∈ Nnr×1 as the reference and
T q ∈ Nnq×1 as the query. Also, we consider a subsequence length of interest of size m
(see Figure 2.10).
Pseudocode 1 starts with a loop nest to compare all the subsequence pairs in T r and

T q. We iterate (i loop) through the query subsequences (T q[i,m]), in Line 1. We then
iterate through (j loop) the reference subsequences (T q[j,m]) in Line 2. In Line 3,
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Figure 2.10: Illustration the distance matrix and naive matrix profile computation.
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we compute the z-normalized Euclidean distance between subsequences T q[i,m] and
T q[j,m]. Overall, Lines 1-5 compute the whole distance matrix. With the distance
matrix at hand, for each row of the distance matrix (loop in Line 6 and Line 6 ), we
compute the min and argmin and store them to output vectors at location i, i.e., P rq[i]
and Irq[i]. This computation matches the Definition 6 and Definition 7, and therefore,
the i-th element of P rq corresponds with the distance of T q[i,m] to its most similar
subsequence in T r. Likewise, the i-th element of Irq corresponds with the index of the
most similar subsequence to T q[i,m] in T r.

Pseudocode 1 and Figure 2.10 illustrate that the main cost in the computation of
the matrix profile is related to calculating the distances of subsequence pairs, i.e., the
elements of the distance matrix. For time series T r and T q of lengths nq ∈ N and nr ∈ N,
this corresponds to computing a distance matrix of size (nq − m + 1) × (nr − m + 1)
(i.e., O(nq × nr)). Therefore, in the case of self-join (i.e., T r = T q, and nq = nr), the
computational cost is quadratic, O(n2).

For the naive (brute-force) approach described above, the computation associated
with each element of the distance matrix includes a z-normalized Euclidean distance
calculation of cost O(m). Therefore, the overall computational cost in the case of brute
force computation described above is O(n2 × m). Note that these costs also match
the expected costs associated with the family of all-nearest-neighbor problems (nearest-
neighbor joins). In fact, the matrix profile is a special case for the general all nearest-
neighbors problems for time series, and therefore, their brute force computational costs
match.

Overall, the core part of matrix profile computation is to calculate elements of the dis-
tance matrix D ∈ R(nq−m+1)×(nr−m+1). Therefore, state-of-the-art methods for matrix
profile computation often rely on optimizing the computation of the distance matrix.
For instance, one promising front is to use mathematical formulations such as streaming
dot product formulation [Nes23] with improved computational costs for distance compu-

Pseudocode 1 The naive scheme to matrix profile computation for single dimensional
time series.
Input: The reference and query time series T r ∈ Nnr×1 and T q ∈ Nnq×1, and subsequence length m.

Output: The matrix profile P rq and index Irq, associated with T r ⋊⋉k m
1nn T q.

1: for i← 0 to nq −m+ 1 do

2: for j ← 0 to nr −m+ 1 do

3: D[i, j] = δ
(
T r[i,m], T q[j,m]

)
▷ compute the distance between query (j) and reference (i)

4: end for

5: end for

6: for i← 0 to nq do

7: P rq[i]← min
(
D[i, :]

)
▷find the minimum distance for subsequence query i

8: Irq[i]← argmin
(
D[i, :]

)
▷find the argmin for subsequence query i

9: end for
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tation that are optimized for computing the (z-normalized) Euclidean distance for time
series. The idea behind such formulations is to identify the common factors contributing
to distance computation and avoid their redundant computation. For instance, such
ideas can bring in math formulations to compute the distance of two subsequences when
the distance between their immediate neighboring subsequences is evaluated. This can
effectively eliminate the O(m) computational cost for each element in the distance ma-
trix. With such enhanced mathematical formulations, the computation of the matrix
profile can be reduced by a factor of O(m). Still, the overall computational cost, even
when leveraging such optimizations, remains at O(n2). This is slightly better than the
costs for the naive approach and still grows quadratically with the number of records
(n) in the input time series.
Another front in optimizing matrix profile computation is to avoid huge memory

consumption demands. The memory utilization for the naive approach is O(n2) to
store the distance matrix. This quadratic demand for storing the matrix in memory can
become punishing in various hardware. Therefore, state-of-the-art methods avoid storing
the full distance matrix. These approaches rely on computing the distance matrix row-
by-row (or equivalently column-by-column) and updating the best so-far matrix profile
and matrix profile index computation. This is achieved by fusing the two loops in
Lines 1 and Line 6 in Pseudocode 1. This eliminates the need to store the full distance
matrix and only requires storing one row (or column) of the distance matrix at a time.
This approach can be interpreted as an iterative scheme in which the values of the
matrix profile and matrix profile index are iteratively updated as the rows/columns of
the distance matrix are progressively computed. We discuss such iterative approaches
in more detail in the following section.

2.3.5 Iterative In-Place Matrix Profile Computation with Enhanced
Distance Formulation

We describe the STOMP (stands for Scalable Time series Ordered-search Matrix Profile)
method for computing the matrix profile, which follows the kind of iterative scheme to
compute the matrix profile described in the previous subsection. We start with STOMP
since it can be considered the mother of similar iterative methods called STOMPopt in
the literature. We also rely on this approach for most parts of our work; however, for
convenience, we refer to it as STOMP.
This approach leverages an iterative distance matrix computation. This means that

the computation of the distance matrix happens iteratively, where in each iteration,
the resulting matrix profile and matrix profile index are updated (see the description
in the previous section again). Additionally, STOMP leverages in-place distance matrix
computation. This means that in each iteration, only one row of the distance matrix is
computed and stored in an in-place manner. Some works use alternative computation
and update schemes where, in each iteration, one row or one diagonal is computed.
See Figure 2.11 for a better illustration of this scheme. This figure shows the distance

matrix and computation associated with a self-join problem where the distance matrix is
symmetric and computing half of the elements of the distance matrix is sufficient. Also,
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Matrix Profile

Matrix profile index

Distance matrix

i-th row corresponding to i-th iteration

Figure 2.11: Illustration of STOMP method to compute the matrix profile. We highlight the
relation between the distance matrix and the matrix profile and the corresponding
elements updated in each iteration (highlighted in green and blue).

note that in the case of self-join problems, an exclusion zone (which was introduced
and discussed in Section 2.3.1) needs to be considered, and its corresponding distance
computations need to be ignored. This eliminates the need to compute the elements of
the matrix around the diagonals of the distance matrix that are colored in pink.

In Figure 2.11, the row computation corresponding to a running iteration is highlighted
in green. STOMP scheme stores and updates a vector of distances associated with a
single row of the distance matrix in an in-place fashion. This vector is not illustrated
in the image, but one can imagine it as a vector storing the elements in green which
represent the target elements of the distance matrix that are computed in each iteration.
The computed distances in each iteration (green elements) are then compared against the
best-so-far computed matrix profile and matrix profile index to update them accordingly
(elements colored in blue).

So far, we have described STOMP as an iterative in-place method for matrix profile
computation, which improves memory utilization compared to the naive approach. How-
ever, STOMP is more powerful than only that. For cost-efficient computation, STOMP
relies on a variation of the so-called streaming dot product formulation [ZKS+19] that
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is introduced in Table 2.3. At the core, this approach relates the computation of the
elements of the distance matrix D between two subsequences to the distances between
subsequences in their immediate neighborhood (see this relation in Equation 2.7). This
formulation reduces the computational costs for calculating the distance between two
subsequences by a factor ofm (i.e., the subsequence length), as discussed in Section 2.3.4.

Before digging deeper into the details of streaming dot product formulation, we fur-
ther clarify the rationale behind it by looking at the pieces of the term “streaming dot
product”:

1. dot product: in signal processing, often cross-correlation of signals is used as a
means to measure similarity. Often, cross-correction factors can be formulated
based on computing a dot product between the signals. For example, the Pearson’s
Correlation (PC) factor [Kir08] can be computed from the dot product between the
input signals (see Equation 2.6). Also, commonly, the correlation factors (similarity
measures) in such analyses can be related to distance measures, such as Euclidean
distance (see Equation 2.7). Therefore, for matrix profile computation, there is a
natural path to compute the similarity between a pair of subsequences based on
the dot product between them. Streaming dot product formulation does exactly
that, but in a highly efficient manner (Equation 2.8).

2. streaming: again, in signal processing, we often deal with sliding windows. In
such cases, streaming formulations are often highly efficient. A simple example
is the computation of moving (sliding) average illustrated in Figure 2.12. In this
case, when the average of values associated with the first (old) window is given,
the average for the new window can be computed by only two operations: by first
eliminating the contribution of the first element of the old window to the average
(x0 in Figure 2.12), and next adding the contribution of the last element of the
new window (x6 in Figure 2.12). This is much cheaper compared to the naive
computation of the average for the new window, which requires 5 operations in the
example of Figure 2.12 (i.e., O(m)). Streaming dot product applies the same sort
of enhancement for computing the dot products (Equation 2.8).

Figure 2.12: Illustration of cross-correlation of signals (left) [Dau23] and streaming formulation
for moving average (right) [Nes23].
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We discuss more details by showing a variation of streaming dot product-based in
Table 2.3 to address self-join matrix profile computation. This formulation relies on
a streaming dot product to compute Pearson’s correlation between subsequences and
transform this correlation to z-normalized Euclidean distance.
The streaming dot product works as follows: first, the vectors µ, d−1, df , and dg (see

Equations 2.1- 2.4) for the input time series are computed. This is a cheap computation
and can be done in O(n). These vectors, in essence, represent the means, inverse of norm-
1, and difference of the first and last sample in subsequences, and the sum of deviations
from the mean in the first and last samples in each subsequence. We skip describing the
semantics of these vectors, but they are used to compute QT (Equation 2.5), which is
a form of dot product between the subsequences of the input series. The values of QT
can be easily translated to Pearson’s correlation factors using Equation 2.6 as well as to
the z-normalized Euclidean distances using Equation 2.7.
We put the equations presented in Table 2.3 into a Pseudocode 2 to show how they

are used to compute the matrix profile in a self-join setting. Under this setting, the
distance matrix is symmetric, and computing the upper triangular part of it is sufficient
(see Figure 2.11).

Average of samples in the subsequence
starting at record index i

µi+1 = µi + (Ti+m − Ti)/m (2.1)

Inverse of norm-1 of samples in a subse-
quence starting at record i d−1

i = (
m∑
z=0

Ti+z − µi )
−1 (2.2)

Intermediate values used in mean-
centered streaming dot product formu-
lation 2.5

dfi+1 = ( Ti+m − Ti ) / 2 (2.3)

Intermediate values used in mean-
centered streaming dot product formu-
lation 2.5

dgi+1 = (Ti+m − µi+1) + (Ti − µi) (2.4)

Streaming dot product of samples in

subsequences i and j [ZKS+19]
QT i+1,j+1 = QT i,j + dfi × dgj + dfj × dgi

(2.5)

Pearson correlation among subsequences
starting at records i and j

ρi,j = QT i,j × d−1
i × d−1

j (2.6)

Euclidean distance among subsequences
starting at records i and j Di,j =

√
2×m× (1− ρi,j) (2.7)

i-th distance profile δi = Di,∗ (2.8)

Matrix profile and its index Pi = min(δ′i), Ii = argmin(δ′i) (2.9)

Table 2.3: Streaming dot product formulation in STOMP.
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Here are the steps to compute the matrix profile:

1. The first step is to (pre-)compute vectors µ, d−1, df , and dg, using Equations 2.1–
2.4 in Line 1 of Pseudocode 2.

2. In Line 2, Pseudocode 2, a streaming dot product, is initialized with the distance
between the first subsequence in the time series and all other subsequences. This
initialization is done by a brute force computation of the dot product (similar to
Line 3 in Pseudocode 1)

3. Next, the upper triangular part (Lines 3–4, Pseudocode 2) of the distance matrix
(except for the exclusion region e, i.e., a region in Figure 2.11 highlighted in pink)
is computed and is used to iteratively compute the matrix profile and index (Lines
3–10, Pseudocode 2):

• The Equations 2.5 is employed to iteratively—and in-place—update the dot
product vector (Line 5, Pseudocode 2).

• Next, the computed dot product values are converted to Euclidean distance
(δ—Lines 7, Pseudocode 2).

• Finally, the computed distance vector is used to update the matrix profile and
index values. This is done by a) finding the minimum value in the distance
vector δ and merging it to the results (Lines 8, Pseudocode 2), and b) merging
all values of δ to the resulting matrix profile and index by using element-wise
minimum (Lines 9, Pseudocode 2. Again visit Figure 2.11.).

Pseudocode 2 Procedure for computing the multi-dimensional matrix profile based on
STOMP.
Input: d-dim. time series T r ∈ Rnr , T q ∈ Rnq and subsequence length m ∈ N.
Output: Matrix profile P ∈ Rn−m+1 and matrix profile index I ∈ Zn−m+1.

1: µ, d−1, df , dg ← precompute statistics (T r, m) ▷Equations 2.1– 2.4

2: QT ← initialize streaming dot product() ▷see Pseudocode 1

3: for i← 1 to n−m do

4: for j ← i+ e to n−m do

5: QT [j] ← QT [j − 1] + df [i− 1] ∗ dg[j − 1] + df [j − 1] ∗ dg[i− 1] ▷see Figure 2.11

6: end for

7: δ ← convert to euclidean distance (QT )

8: P[i], I[i] ← minimum (δ)

9: P, I ← element wise min(P, δ) ▷vector updates

10: end for
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2.4 Background on Computer Architecture and High
Performance Computing

To better understand the methods and experiments discussed in this work, we first
provide a general overview of computer architecture, parallelization as a core concept,
and high-performance computing. We mainly adopt and discuss the concepts from the
textbook on computer architecture by Hennessy and Patterson [HP11] and dissertation
with similar backgrounds [Yan20, Eng21, Net22, Mai21].

The Von Neumann architecture [vN45] is a fundamental concept in computer archi-
tecture that describes a computer design consisting of a memory system that holds both
program instructions and data, which can be fetched and operated on by a central pro-
cessing unit. This architecture was introduced by mathematician and computer scientist
John von Neumann in the 1940s, and while modern computer systems rely on the Von
Neumann’s architecture in many aspects, they introduce architectural enhancements to
improve performance and efficiency, and therefore, they deviate from it, e.g., by incor-
porating caching, pipelining, and parallelism. This applies to both CPU and GPU plat-
forms. Historically, various architectural innovations, including a boost in clock speed,
execution optimization, and caching, contributed to the development and progress of
computer systems. However, since 2005, parallelization has played an important role
as the “free performance lunch” provided by chip manufacturers boosting clock speeds
in mainstream systems started to fade due to reaching the hard physical limits [Sut13].
Since then, various parallelization technologies, including hyper-threading, multi-core,
and multi-threading, have been the driver of the performance in computer systems.
These technologies, in essence, rely on four types of parallelism in hardware [HP11,

Yan20]:

1. Instruction-Level Parallelism, corresponding to techniques to increase instruction
throughput within a single cycle and includes concepts like pipelining and su-
perscalarity and Very Long Instruction Word (VLIW). Consider a program as
an instruction stream where each instruction can be split into multiple stages on
modern processors: instruction fetch IF, instruction decode ID, execution EXE,
memory access (MEM), and writeback (WB). With pipelining, the executions of
multiple instructions are overlapped to hide instruction latencies.

2. Vector Parallelism, which is a type of parallelism often abundantly used in Vector
Architectures (such as accelerators and vector machines) and Graphic Processor
Units (GPUs). Often, in classifications like this, vector parallelism is considered
part of instruction-level parallelism. However, we are elevating it to a separate
class as it is often more explicitly exposed to the compilers and applications. Vec-
tor parallelism relies on the Single Instruction applied to Multiple Data entries
(SIMD) loaded into a vector register. The concept originated from the vector pro-
cessors developed in the 1970s (STAR-100 [Sch87] and Cray-1 [Rus78]), allowing
for processing vector instructions. Modern processors are equipped with special
vector units for enabling data parallelism. Examples are Advanced Vector Exten-
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sions with 512-bit wide vector registers and instructions (AVX512) [Rei13] used
initially in Intel’s Xeon Phi (Knights Landing) and later in Intel’s X86 proces-
sors (and recently EPYC 4th generation server processors). Other examples of
SIMD are the Advanced SIMD Extension (NEON) and Scalable Vector Extension
(SVE) in the Arm architecture featuring variable-length vector registers from 128
to 2048 bits wide used in Fujitsu’s A64FX processor. GPUs also exploit this type
of parallelism.

3. Thread-Level Parallelism, where each thread executes an independent instruction
stream. Threads can run in parallel on different physical CPU cores of a multi-core
processor or hyper-threads of a CPU core exposed by Simultaneous Multithreading
(SMT). GPUs also heavily rely on thread-level parallelism: the threading model
in GPUs is based on Single Instruction Multiple Thread (SIMT), where groups
of threads in the so-called thread block execute the same instruction stream, but
each apply it on a different data element.

4. Process-Level Parallelism exploits parallelism among multiple compute resources
typically at a coarse level (e.g., among multiple machines). This level of parallelism
is often enabled by the mechanisms provided in operating systems, e.g., by running
multiple Linux processes. This includes multi-processing on a single (or multi-
socket) multicore system, multi-processing on multi-socket processors that share
the memory subsystem, or multiple (potentially even) physically disjoint computers
(nodes). We can also include parallelism among multiple accelerators (GPUs)
accelerators that are commonly sitting the nodes and are connected via PCIe
(Peripheral Component Interconnect Express) or, in recent designs, connected via
CXL (Compute Express Link) and are driven by multi-processing schemes in this
category.

Application Programmers (e.g., in HPC) typically are exposed to the parallelism in
hardware in two parallelization patterns:

• Data-Level Parallelism: this parallelization appears in applications where many
data items can be operated on in parallel.

• Task-Level Parallelism: in this parallelization pattern, the problem at hand can
construct a sufficiently large of (ideally) independent tasks that can be operated
on in parallel.

These patterns in applications and parallelism in hardware, and in general parallel
computing, were classified by Michael Flynn [Fly] based on the parallelism in the in-
struction and data streams. This classification scheme is called Flynn’s Taxonomy: This
taxonomy defines four categories: SISD (Single Instruction stream, Single Data stream),
SIMD (Single Instruction stream, Multiple Data streams), MISD (Multiple Instruction
streams, Single Data stream), and MIMD (Multiple Instruction streams, Multiple Data
streams). In SISD architectures, a single instruction stream operates on a single data
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stream, typical of traditional sequential computers. However, instruction-level paral-
lelism techniques such as superscalar and speculative execution can be employed. SIMD
architectures use a single instruction stream to process multiple data streams simultane-
ously, often seen in vector processors, multimedia extensions to ISAs, or GPUs to facil-
itate vectorization parallelism. MISD architectures involve multiple instruction streams
operating on a single data stream concurrently; however, they are very uncommon,
with mainly fault tolerance use cases: the Space Shuttle flight control computer [Yan20]
is worth mentioning here. Finally, MIMD architectures support multiple instruction
streams operating on multiple data streams concurrently, as found in most parallel com-
puters and clusters. Each processing element fetches its own instructions and operates
on its own data. MIMD is flexible and can cover various Data/Thread/Process level
parallelism.

2.4.1 Architecture of Modern and Emerging HPC Systems

Modern top-tier High-Performance Computing (HPC) systems are designed and opti-
mized for processing large and complex computational tasks, including simulations in
physics, material science, astronomy, energy, climate, weather and environmental simu-
lations, nuclear and fusion, as well as biomedical research—recently, the deployment of
AI use cases in HPC has also gained a large momentum. These systems are large clus-
ters of individual compute nodes tightly coupled together to a high-performance storage
layer through a high-performance network fabric. These nodes work together to execute
complex calculations in parallel. These systems are built to deliver high computational
power in terms of flop/s rates, high memory bandwidth, and massive throughput, as
well as low latency communication between components, allowing the application to
scale horizontally on top of them.

Each compute node typically includes a high-end data-center class server (i.e., a high-
end multi-core processor) designed for parallel processing and is potentially equipped
with one or many accelerators (e.g., GPUs). In CPU-based HPC systems, the bulk of
performance is delivered by multiple multi-core processors, while in accelerated-based
HPC systems, the accelerator brings in the bulk of performance. The interconnect fabric
is a key component in HPC systems as it glues all the components and enables fast
communication between them. It allows message passing and synchronization between
nodes, as well as fast I/O to the storage nodes. Modern HPC systems often employ
high-speed interconnect technologies like InfiniBand and Omni-Path with Remote Direct
Memory Access (RDMA) capabilities for low-latency, high-bandwidth communication.

On the storage side, HPC systems require high-capacity and high-performance storage
solutions to handle large datasets and provide low-latency and high bandwidth parallel
access to data during computation. Parallel File Systems (PFS) like Lustre and Spec-
trum Scale (GPFS) are commonly used to spread data across multiple storage backbones,
enabling parallel access from multiple compute nodes [SKJJ16, Bra05, IBM07].

HPC clusters consume a significant amount of power, in order of one to tens of Mega
Watt, and produce a significant amount of heat due to the density of computing com-
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ponents. Direct liquid cooling mechanisms are increasingly employed and are crucial to
prevent overheating of hardware components and chips and to ensure stable operation.

HPC clusters are typically shared among multiple users running various jobs simulta-
neously. Users interact with the systems through job scheduling resource management by
providing computational resource allocations, e.g., with the granularity of nodes. Users
need to employ specialized software stacks to exploit the parallelism and performance
features of the hardware. This includes parallel programming models and libraries,
like the Message Passing Interface (MPI) [WD96] for distributed memory programming,
OpenMP [DM98, Ope08, CDK+01] for shared memory (primarily), and CUDA [NVF20]
and HIP (for GPU acceleration), as well as optimized numerical libraries, such as
BLAS [BDD+02, vdGG11] and LAPACK [ABB+99], and more high-level performance li-
braries such as PETSc [BGMS98]. Additionally, proper use of tools [ABF+10, BGB+16,
SGM+08], compilers and code generation techniques [LA04, Eng21], runtime libraries,
and debugging utilities [NS07] are essential for the development and efficient execution
of applications on HPC systems.

Despite the recent trends in the shift of architectures of HPC systems towards extensive
use of accelerators, CPU-based systems are abundant. Three out of the top ten in the
TOP500 list are CPU-based systems. A worthy mention is the Fugaku supercomputer
installed at RIKEN Center for Computational Science in Japan in 2020, which uses
Fujitsu A64FX Arm-based processors. This system is highly praised by the community
for paving the path to the exascale era, as well as serving as the number one system for
four TOP500 rounds and the number two on the list to this day.

Specifically relevant to this work is the SuperMUC-NG installed by Lenovo at the
Leibniz Supercomputing Centre in Munich, Germany, in 2018. This system appeared in
place number eight in TOP500 with 19.48 petaflop/s Rmax performance. This system
is currently ranked 31 worldwide and is the second fastest HPC system in Germany.
SuperMUC-NG [Bay20] comprises 6,336 compute nodes with an aggregated main mem-
ory capacity of 719 TB and a peak performance of 26.9 petaflop/s. SuperMUC-NG has
a homogeneous architecture in which all the compute nodes include two Intel Skylake
Xeon Platinum 8174 processors. The interconnect is an Omni-Path network with 100
Gbit/s bandwidth, with a fat tree network topology consisting of eight islands connected
with a blocking factor (pruning factor) of 1:4.

SuperMUC-NG consumes around 3 Mega Watt and uses direct warm water cooling. It
uses IBM Spectrum Scale [IBM07] as its Parallel File System with 50 petabytes capacity
and 500 GB/s aggregated bandwidth. SuperMUC-NG runs SUSE Linux (SLES) and
SLURM [YJG03] job scheduler. See the link to the specification of SuperMUC-NG in
Appendix A5, where more details about this system are covered.

At the same time, considering the trends in the extensive use of accelerators and,
specifically, GPUs in HPC, it is very important to cover the type of HPC systems that
use accelerators. In these systems, compute nodes are often equipped with multiple
GPUs that are potentially connected to each other through fast communication buses
(NVIDIA NVLink or AMD Infinity Fabric) to enable high-bandwidth and low-latency
communication. The bulk of performance is delivered by the GPUs. Two out of the top
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three systems in the TOP500 list are GPU-based: Frontier, which is the first exascale
system installed in US DOE Oak Ridge National Laboratory by HPE, has nodes con-
sisting of one AMD 3rd Generation EPYC processor, and four AMD Instinct MI250X
GPUs. Frontier uses a Slingshot 11 network fabric in a three-hop dragonfly topology to
connect the compute nodes.

In particular noteworthy for the work presented in this thesis are the Raven-GPU
system at the Max Plank Computing and Data Facility (with four NVIDIA A100-SXM4
per node) and the Selene supercomputer at NVIDIA Corporation (with 8 GPUs per
node and NVLink), including NVIDIA V100 and NVIDIA A100 GPUs, which are the
dominant data center GPUs in the market at the time of development of this work.

Emerging HPC systems employ more heterogeneity and comprise special-purpose com-
ponents and accelerators such as GPUs and SmartNIC in addition to general-purpose
CPUs. Modular supercomputers [Gmb21a, Gmb21b] and the integration of quantum
accelerators [MSR22, RTL+22] and AI accelerators [Lav22] are also new architectural
trends. Also, another influential trend that is impacting HPC architecture is the ap-
pearance of desegregated memory [GKB+23].

Also architectures to enable domain-specific hardware for time series analysis, e.g.,
FPGAs, and special purpose hardware such as AI accelerators like TPUs [JYP+17],
Graphcore’s IPU [Res22] and Cerebras WaferScale Engine [Lav22] are also interesting
for investigation of time series mining workloads

2.4.2 Scalability in HPC

A core concept in the acceleration of application on HPC systems is leveraging the
horizontal scaling of the resources available to the application. With horizontal scaling
of resources, two main scaling paradigms for HPC applications are often considered.
Scaling by throwing more resources to work on the set of tasks associated with a problem
of a fixed size in parallel. This is known as strong scaling. However, usually, performance
improvement, e.g., the latency of execution or throughput of processing, does not scale
linearly with the number of resources that collaborate to solve the problem. Often,
communication and synchronization among the processing elements are required for the
correct execution of an application. This imposes performance overheads that are not
present in a sequential execution. Related to strong scaling, Amdahl’s law [Amd67,
CSG98] is a well-known principle for calculating the maximum theoretical speedup for
the parallel execution of a given task (e.g., a problem with a fixed size) and the potential
speedup based on the portion of the task that can be parallelized. Amdahl’s law states
that the overall speedup, s, that can be achieved by parallelizing a computational task
is limited by the sequential fraction, 0 ≤ f ≤ 1, of the task that cannot be accelerated
through parallelization (e.g., with p processes). The law mathematically reads:

s(p) = 1/[f + (1− f)/p] (2.10)

The law implies that, as the number of processors increases, the potential speedup of
a computation task becomes limited by the sequential portion related to the so-called
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critical path of the task, which is sequential and cannot be parallelized. In other words,
no matter how many processing elements are used, there will always be a maximum
speedup that can be achieved due to the nature of certain parts of the task that cannot
benefit from parallelization. Therefore, Amdahl’s law provides a simple model for parallel
performance optimization and potential performance gains.

The second scaling paradigm for HPC applications is called weak scaling. While strong
scaling focuses on fixed problem sizes, weak scaling considers scaling the problem size
proportional to the increase in compute resources.

Gustafson’s Lawson’s Law [Gus88] is the reincarnation of Amdahl’s law to the weak
scaling perspective. Gustafson’s Lawson’s law describes how the performance of ap-
plications improves when scaling the problem size proportional to the computational
resources. It also shows that the fraction of non-parallel parts, 0 ≤ f ≤ 1, reduces linear
scalability by a factor of 1− f . The law mathematically reads:

s(p) = f + (1− f)p (2.11)

2.4.3 Performance Optimization in HPC

Running applications on large HPC systems typically involves interacting with various
subsystems, including compute, network, and storage components. Performance opti-
mization in HPC targets coordinating the resources and efficient use of the components.
HPC applications are designed and optimized for efficient execution at the node level
as well as at scale. Therefore, various aspects of optimization contribute to overall
application performance.

At the node level, various aspects and challenges, including memory access patterns,
data locality, caching, parallelism and vectorization, node-topology awareness, and affin-
ity and load balancing, are often investigated and addressed. Additionally, reduced- and
mixed-precision computation methods are drawing increasing attention. These meth-
ods often intend to leverage the hardware support for computation with fewer bits and
can significantly impact various aspects of application performance, including memory
footprint and cache utilization, and boost the flop/s rates. Overall, low-precision compu-
tation allows for better and more efficient use of hardware resources. However, they often
come at the price of reduced accuracy. Therefore, an important aspect of employing such
methods is to understand the overall impact on the accuracy and performance of appli-
cations. In other words, the main challenge here is to quantify the performance-accuracy
trade-offs.

On the system level, typically after algorithmic considerations, various optimization
and tuning techniques are employed, including the use of non-blocking communication
and overlapping communication and computation, topology-aware communication, and
collective and layout optimization, as well as enabling RDMA. Load balancing is also
an important optimization aspect at large scale. Overall, the target for investigation of
such optimization techniques is to maximize network bandwidth utilization as well as
minimize synchronization and communication latency.
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On the storage side, the use of parallel I/O, e.g., to access single or multiple files in
parallel, object storage, and data compression are often explored, with the intention to
exploit high bandwidth to storage and minimize disk utilization.

In addition to the above-discussed optimizations, algorithmic redesign and improve-
ments play an important role in HPC. Such algorithmic optimizations can include var-
ious aspects of numerical schemes, spacial and time integrations, and communication-
avoiding algorithms, as well as exploiting acceleration data structures, e.g., redesigning
algorithms to exploit hashing mechanisms or tree data structures to improve search and
sort operation within the core of existing algorithms.

2.4.4 Performance Optimization Tools in HPC

The process of optimizing applications in HPC at various levels often involves using
profiling, tracing, and instrumentation tools to acquire detailed data about application
performance, bottlenecks, and overheads. This data is combined with performance mod-
els (roofline [WWP09] or LogP[CKP+93]), as well as performance visualization tools to
provide insights to the application developers. Application developers use the insights to
improve the performance of applications iteratively. While this process is often manual,
HPC sites try to incorporate systematic application performance monitoring, instru-
mentation, and introspection to support production runs on HPC systems with minimal
and acceptable performance penalties; such approaches can also assist developers by
providing key performance metrics automatically.

At the node level, modern CPUs are equipped with performance monitoring units
(PMUs) that provide hardware performance counters for measuring hardware events such
as cache misses and branch mispredictions. Tools such as GNU perf, PAPI [BDG+00,
TJYD09], and Likwid [THW10] can facilitate accessing these counters. In addition,
on Intel CPUs, tools such as Intel VTune provide similar statistics combined with
visualization and some hints on optimizations. Similar tools for GPUs exist (e.g.,
NVIDIA Nsight Compute), which can provide statistics about the activities of run-
ning GPU kernels. On the system level, various tools, including Profiling Tool for
MPI (MPIP) [VC06] for lightweight profiling of communication, Intel Trace Analyzer,
and Collector (ITAC) for message tracing, are often used. Score-P is a code instru-
mentation and run-time measurement framework supporting communication tracing.
Scalasca [KRM+12], TAU [SMM06], and HPCToolkit [ABF+10] offering similar tracing,
and profiling capabilities for parallel applications.

Manual source code instrumentation (with user-defined markers as well as marker
APIs in PAPI [BDG+00, TJYD09], LIKWID [THW10], and Caliper [BGB+16]) helps
developers to instrument specific regions/sections in the code, e.g., to read counter values
associated only with the specific regions of the code. In this work, we heavily rely on
this type of instrumentation to get insights about hotspots, bottlenecks, and overheads.
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2.4.5 Programming Models in HPC

On node level, in addition to vendor-specific libraries, e.g., CUDA [NVF20], HIP [Adv],
and SYCL [KRH15], OpenMP [DM98, Ope08, CDK+01] plays an important role in
HPC applications as a portable standardized model for programming multi-core systems
and accelerators. Message Passing (MPI) [WD96], Partitioned Global Address Space
(PGAS) [Alm], e.g., GASPI [ABB+13], and OpenSHMEM [CCP+10], and Task-based
models (e.g., Charm++ [KK93]) are well-established programming paradigms in HPC.
Among these models, MPI is the defacto model that is widely used in classical HPC
codes.

MPI is a standardized communication protocol and a prominent programming model
in HPC. MPI was introduced in the 90s, and, since then, the MPI Forum has been
responsible for its standardization.

MPI follows the MPMD (Multiple Program Multiple Data) model (close to MIMD in
Flynn’s Taxonomy). To facilitate message passing and MPMD paradigms, MPI speci-
fies a number of concepts and abstractions, including process, group, and communicator.
Although MPI can be used in MPMD (Multiple Program Multiple Data) modes, it is
commonly used for Single Program Multiple Data (SPMD), where execution of a sin-
gle binary is spawned by an MPI launcher as multiple MPI Processes (which are often
operating system processes) on single or multiple compute nodes. MPI defines a group
of processes and communication context (communicators) for message passing among
the members of the group. Each MPI process acquires a unique identifier within a com-
municator, which is called the rank. Ranks are used by the application as IDs, e.g.,
in workload distribution, and partitioning. Through these functionalities, MPI facili-
tates efficient and scalable communication on high performance interconnects, such as
Intel Omni-Path and NVIDIA Infiniband networks. MPI standard specifies a wide range
of functionalities for message passing. Specifically, it defines syntax and semantics for
functions in C, and FORTRAN. These include so-called peer-to-peer (P2P) communi-
cation, e.g., send and receive between a pair of processes, as well as so-called collective
communication among a set of processes, e.g., reductions.

MPI also defines functionalities to enable non-blocking communication modes, where
processes can initiate a communication (e.g., P2P, collectives ...) without blocking the
control for the completion of the communication. Non-blocking communication allows
for overlapping of communication and computation, thereby potentially improving the
performance and scalability of parallel applications. Exploiting non-blocking MPI oper-
ations in HPC applications is also a well-established technique to enable the overlapping
of communication and computation phases of applications, offering better scalability.

In this work, we rely on using such non-blocking operations to improve the scalability
of time series mining.

2.4.6 GPUs in HPC and Reduced- and Mixed-Precision Computation

GPUs are specialized processors designed originally for processing graphic rendering.
Due to the inherent needs of graphic processing (e.g., operating on many pixels in par-
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allel), these devices are designed for large amounts of parallelism among many cores.
GPUs evolved beyond this initial purpose through significant academic contributions in
the late 1990s and early 2000s. Pioneers like Hanrahan at Stanford University influenced
their use in general-purpose computing, as evidenced by Ian Buck’s Brook project in 2001
and Mark Harris’s research in 2003, both focusing on employing GPUs for non-graphic
parallel computing tasks [BFH+04]. The concept of running a general computation on
GPUs was brought to the mainstream by NVIDIA Corporation with the introduction of
their CUDA (Compute Unified Device Architecture) platform [NVF20].
On the architectural level, unlike CPU cores which are optimized for minimal latency,

GPU cores are designed for high throughput. Additionally, compared to modern CPUs,
GPUs benefit from high bandwidth memory (GDDR), which can bring performance
advantages to HPC applications. Also, GPU cores are typically running at lower fre-
quencies compared to CPU cores, resulting in relatively high energy efficiency for running
many HPC and AI applications.
GPUs employ SIMT (Single Instruction Multiple Thread) as the execution model, in

which groups of threads, called thread blocks, execute the same instruction on various
data entries. GPUs include so-called streaming multiprocessors (SMs2), each consisting
of processing units called GPU cores that are capable of arithmetic and logic operations
called. Through a so-called warp scheduler, SMs execute collections of threads called
warps in lockstep, allowing for per-SM instruction-level parallelism and maximizing tem-
poral and spacial locality with respect to the instruction and data pipelines.
NVIDIA GPUs also include tensor cores that support reduced-precision arithmetics,

i.e., FP32, FP16, and TF32. Additionally, these GPUs support a concept called CUDA
streams to declare and later trigger a sequence of operations that will be executed in
issue-order on the GPU. In many cases, HPC applications require the incorporation of
tiling or batching schemes for data locality reasons or lack of enough GPU memory. In
such cases, CUDA streams are highly beneficial to enable a coarse-grained pipeline and
tile scheduling schemes for moving data and launching GPU kernels.

2.5 Scope of this Work

Time series mining, especially similarity indexing and matrix profile computation, re-
quires an intensive computational effort and often large data volumes (see Sections 2.2.1
and Section 2.3.4). Leveraging the capabilities of HPC systems, including the abun-
dance of compute resources, with high memory capacity and bandwidth as well as high
speed interconnects, are highly relevant to data mining, particularly time series mining,
allowing for faster, more efficient analysis (see Section 2.4.1). Additionally, HPC sys-
tems allow for running parallel time series mining algorithms at large scale with high
efficiency by providing the high-speed interconnect and overall reducing the time to solu-
tion (see Section 2.4.3). In this thesis, we investigate approaches and techniques that are

2We are following NVIDIA terminology. Compute Unit (CU) is often used in the context of AMD’s
GPU architecture
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overall related to the optimization techniques discussed in Section 2.4.3, in particular,
node-level, system-wide, and algorithmic optimizations.
Additionally, in an orthogonal direction, investigating the capabilities of GPUs, their

massive parallelization, and their built-in reduced-precision capabilities (as discussed in
Section 2.4.6) in the context of time series mining is another interesting research avenue.
In the context of this work, we are mainly focusing on NVIDIA data center GPUs with
the Tesla architecture, which are commonly used in HPC. While Intel GPUs and AMD
GPUs, as well as other AI accelerators, are interesting to investigate, we limit the scope
of evaluations to NVIDIA GPUs. However, the concepts presented in this work can also
be applied to the GPUs of other vendors. Of all data formats discussed in Section 2.1.6,
this thesis considers FP64, F32, and FP16 relevant for reduced- and mixed-precision
investigations as they are typically supported in mainstream HPC hardware. While all
the other formats, especially those specific to machine learning, are also interesting to
investigate, we consider them out of the scope of the studies in this thesis.
Overall, approaches intend to leverage the advantages of HPC systems for time series

mining. For that, we highly rely on the mainstream HPC environments discussed in
Section 2.4.5 and the various tools for performance debugging, optimization, and tuning
that are discussed in Section 2.4.4. Finally, This work focuses on today’s dominant
architectures based on GPUs or general-purpose CPUs, and the investigation of the
emerging system designs and architectures discussed in Section 2.4.1 fall out of the
scope of this work.

2.6 Summary

We started this chapter by providing a brief background on time series, multi-dimensional
time series, and their definitions and concepts like time series windows and subsequences
that are essential for the rest of this thesis. We introduced various formats and storage
layouts. We then provided illustrative examples, which we will revisit in the next chapter
to apply the methods introduced in this thesis. We introduced the concept of matrix
profile and described the foundation of matrix profile computation methods.
Additionally, we covered various concepts from computer architecture and HPC that

are essential for understanding the topics in the rest of this thesis. Specifically, we
provided an overview of the architecture of modern CPU- and GPU-based HPC sys-
tems. We covered various fundamental aspects of scalability, optimization techniques,
programming models, and tools in HPC. Finally, we briefly discussed the fundamentals
of reduced- and mixed-precision computation in HPC.
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In this chapter, we provide a brief overview of the relevant existing literature and re-
search. Specifically, we look into the following topic: we cover the general methods for
scalable time series mining, high performance computing, and approaches for efficient
large-scale data mining. We look at the brief history of matrix profile emergence and
review the methods and approaches to compute the matrix profile for single and multi-
dimensional time series. Finally, we look at the exact and approximate methods for the
computation of the matrix profile.

3.1 Scalable Methods for Time Series Mining

There is extensive literature on mining time series, including several survey papers [RS02,
Fu11, EA12]. In particular, in the context of scalable and offline processing of time series
data, there are a number of studies on scalable solutions in the literature to review:
Huang et al. [HZM+16] target the use of Apache Spark for speeding discord discovery in
time series. Moreover, the conducted experiments in this work are limited to 10 nodes.
Berard et al. [BH13] scale time series similarity search to 20 nodes on a Hadoop cluster.
Sart et al. [SMN+10] and Zhu et al. [ZZS+18] use accelerators for speeding time series
mining workloads. Movchan et al. [MZ15] study time series similarity search on the Intel
Many-core Accelerators, utilizing OpenMP. However, none of the above studies address
mining on large-scale HPC systems, and analyses are very limited to specific targets of
similarity search. Overall, there is a large gap in the investigation of scalable time series
mining methods, especially on HPC systems.

3.2 History of Matrix Profile

Matrix profile was first introduced by Yeh et al. [YZU+16] as a new general approach
that is capable of generating comprehensive similarity annotations for time series index-
ing in order to simplify many data mining tasks. This approach generates annotation
vectors that are encoded with the similarity of windows of time series with a high density
of similarity information. The similarity index generated by matrix profile has impli-
cations for many, perhaps most, time series data mining tasks [Keo23]. Matrix profile
computation can benefit from the use of inertial properties of time series, e.g., the simi-
larity of neighboring windows, for efficient computation of similarity annotations. Also,
the computation of matrix profile exposes a high degree of parallelism, allowing for the
use of parallelism in modern processors and accelerators. For these reasons, the matrix
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Method Accuracy Model Environment

STAMP [YZU+16] Exact Matlab CPU
STOMP [ZZS+18] Exact CUDA GPU
SCRIMP++ [ZYZ+18] Both C++ CPU
ScrimpCo [RVR+20] Exact OpenCL CPU&GPU
SCAMP [ZKS+19] Both Google Cloud GPU

offline

MP-MPI [Pfe19] Exact HPC CPU
LAMP [SZSF+19] Approx. Keras CPU
FA-LAMP [KZB22] Approx. HLS FPGAonline

single-dim

DAMP [LWM+22] Exact Matlab CPU
offline multi-dim mSTAMP [YKK17] Exact Matlab CPU

Table 3.1: Overview of methods to compute the matrix profile.

profile has gained significant momentum in the data mining community, and various ap-
proaches for efficient computation of the matrix profile have been proposed and studied.
These approaches and their characteristics are listed in Table 3.1.

3.3 Methods to Compute the Matrix Profile

Yeh et al. [YZU+16] proposed the STAMP algorithm that uses a series of FFT operations
to compute the distances needed for matrix profile computation. This algorithm takes
O
(
n2 log n

)
time to compute for a time series of length n (assuming self-join matrix

profile under Euclidean distance). The paper also introduced the Scalable Time series
Anytime Matrix Profile (STAMP) method to compute the matrix profile. Following
this approach, various algorithms have been proposed to improve the efficiency of the
computation, including Scalable Time series Ordered Matrix Profile STOMP [ZZS+18]
and Time Series Motif Discovery at Interactive Speed (SCRIMP++) [ZYZ+18], which
introduced novel algorithmic and arithmetic manipulation of the kernels for efficient
computation. STOMP uses an ordered search scheme and introduces a streaming-dot-
product [Nes23] that benefits from the locality of searches in matrix profile computation,
which, in the end, results in cheap similarity distance computation among time series
windows. This reduces the computational costs of STOMP to O

(
n2

)
(see the discussions

in Chapter 2). Despite this improvement in computational costs compared to STAMP,
STOMP sacrifices the so-called anytime property in STAMP, where an algorithm with
the anytime property is able to provide a close approximation to the exact matrix profile
during computation (STAMP has this property). This property can be very useful in case
an interactive user experience is required. SCRIMP++ resolves this issue. It first creates
an approximation of the matrix profile using an algorithm (PreSCRIMP) that exploits
Consecutive Neighborhood Preserving of time series to get a fast initial approximation.
It then iteratively refines the approximation towards the exact solution, using the same
tricks in STOMP. Overall, SCRIMP++ has a similar computational cost to STOMP.
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The above algorithms solidified the foundation of methods for computing the matrix
profile with a cost of O

(
n2

)
, which is a quadratic growth of computational costs with

the length of time series n. Therefore, computing the matrix profile for large time
series demands high computational power. To target this high demand, Zimmerman et
al. extended the STOMP approach and developed SCAMP [ZKS+19], a cloud-based
framework for the parallel calculation of matrix profiles on multiple GPUs. SCAMP
is known as the most efficient method to compute (single-dimensional) matrix profiles.
On the same timeline, and as part of the development of this work, Pfeilschifter [Pfe19]
developed MP-MPI, which is the first approach targeting matrix profile computation on
HPC systems exploiting MPI model. We will elaborate further on this work in the next
chapters.

3.3.1 Streaming (Online) and Approximate Methods

All the above-mentioned algorithms target one-dimensional time series and batch com-
putation. Also, except for PreSCRIMP (and SCRIMP++ before full convergence), all
compute an exact matrix profile. LAMP [SZSF+19] uses a neural network model to ap-
proximate matrix profile. Although this approach achieves significant speedups in com-
parison to exact solutions, it targets computation of matrix profile for data streams in
real-time settings and, therefore, is not ideal for batch processing of large-scale datasets.
Moreover, the authors clarify that the accuracy (e.g., false-positive rates) significantly
depends on the quality of a reference dataset used to train the model, which is not ideal
for real-world use cases. Recently, Lu et al. [LWM+22] developed the DAMP method,
which targets anomaly detection use cases in time series streams. DAMP exploits the
special case of anomaly detection to estimate bounds for matrix profile computation and
prunes the computation, resulting in an approximate matrix profile that still accurately
encodes anomalies.

3.3.2 Reduced- and Mixed-Precision Approximate Methods

Also, there have been a few research items about the approximate computation of the ma-
trix profile using reduced-precision computation: Zimmerman et al. [ZKS+19] investigate
single-precision computation for single-dimensional time series, and Fernandez [Fer19]
investigate matrix profile computation using FlexFloat [TMB20].

3.3.3 Multi-Dimensional Methods

In 2017, Yeh et al. [YKK17] extended the matrix profile concept to multi-dimensional
time series and developed the mSTAMP algorithm. mSTAMP is built on top of previous
algorithms and is an iterative method involving streaming dot products (inherited from
STOMP) to reduce computational costs. mSTAMP is also included in the powerful and
scalable Python library, STUMPY [Law19].
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3.3.4 Matrix Profile on Accelerators

STOMP and SCAMP are designed to utilize GPUs as their primary platform target-
ing the computation of the matrix profile for single-dimensional time series. Recently,
Romero et al. [RVR+20] introduced a new approach called ScrimpCo for matrix profile
computation on FPGA-based heterogeneous systems. This approach also targets single-
dimensional time series. Recently, Kalantar et al. introduced FA-LAMP [KZB22], which
aims at deploying the LAMP method on Alveo FPGAs for cloud settings as well as low-
cost Xilinx Ultra96 at Edge.

3.3.5 Key Implications of Reviewing the Work in Literature

Most of the methods for computing the matrix profile in the literature are based on
the solidified formulations presented in STOMP, and SCRIMP++ algorithms leading
to O

(
n2

)
computational costs. Also, there has been little attention to computational

methods targeting the matrix profile for multi-dimensional time series, and no compre-
hensive studies on various computation aspects in multi-dimensional cases exist either.
Finally, only a few works address the aspects of computation with approximation and
reduced- and mixed-precision. The contributions of this thesis address these topics.

3.4 Summary

In this chapter, we covered an overview of work in the literature. We took a step back
and looked at existing work on sable methods for time series mining. We then looked
at the history of the evolution of the matrix profile concept and methods to compute it.
We also covered the various aspects of methods to compute the matrix profile, including
approximation, reduced- and mixed-precision, and multi-dimensionality. In the end,
we discussed the key implications achieved by reviewing the work in the literature and
highlighting the research gaps.
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Methods and Evaluations
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4 Time Series Similarity Mining at Extreme
Scale on HPC Systems

The approach described in this chapter was previously published in ISC High Per-
formance’20 [RKY+20], where the author of this thesis made major contributions
to the contents, including supervising the development of a master thesis, the de-
velopment of prototype codes, and evaluations. This chapter is a revised version of
the aforementioned article reproduced with minor corrections and improvements.

4.1 Motivation

One important aspect in understanding multi-dimensional time series, and therefore get-
ting insights into the physical systems behind the data, is the explorative discovery of
similar and repeating patterns in a (potentially large) dataset [CEF+]. Recent advances
in data mining approaches and techniques, specifically the matrix profile approach, en-
able the extraction of complex pattern structures and similarities in multi-dimensional
time series. Yeh et al. [YKK17] extended the matrix profile approach for motif discovery
in multi-dimensional settings. They also presented the first algorithm (mSTAMP) to
compute the matrix profile for multi-dimensional time series, offering detailed insights
into repeating patterns within and across dimensions of multi-dimensional time series.

Similar to the single-dimensional case, the mSTAMP approach is also compute-intensive,
but the dimensionality adds another costly factor. Computational costs for multi-
dimensional case scales with the number of dimensions. Therefore, for time series with a
large number of records and high dimensionality (which is common in realistic scenarios),
the matrix profile computation is no longer feasible on commodity systems. Addition-
ally, the multi-dimensional matrix profile approach has not been shown to scale to larger
systems, nor can it be used on anything but small datasets with low dimensionality.

However, multi-dimensional time series with large numbers of records in each time
series are typical in many disciplines. One example is the operation of industrial gas
turbines (Use Case 1 described in Section 2.1). Such systems are monitored by more than
100 different sensors and generate millions of records per month [KWFH+19]. Another
real-world example is the monitoring of HPC infrastructures (Use Case 2 described in
Section 2.1). Netti et al. [NMA+19] use up to 3176 sensors per node to monitor multiple
production HPC systems at the Leibniz Supercomputing Centre and have shown that the
collected monitoring data contains valuable information on the system’s behavior, and
can be used, e.g., in the characterization of applications running on the supercomputers.
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To apply the concept of the matrix profile to large-scale multi-dimensional time series
and hence to such real-world problems, we require new approaches to scale the compu-
tation of matrix profiles both to larger computational resources and to larger datasets.
In this chapter, we first take one step back and introduce a novel approach to compute

the matrix profile in parallel on HPC systems, targeting large time series, for both single
and multi-dimensional cases.
This approach is motivated by the basic observation that the calculation of a matrix

profile is highly memory bound [Pfe19], and therefore, it can benefit from horizontal
scaling of memory bandwidth. This approach addresses the complete computation of
the matrix profile, including I/O, initialization, workload distribution, computation, and
aggregation of final results. We demonstrate that parallel computation of the matrix
profile can exploit the capability of high-performance interconnects and remain highly
scalable. However, in order to achieve efficiency, a series of algorithmic advances and
optimization steps are needed, which we introduce in this work and verify with an
analytical performance model.

4.2 Research Questions

In particular, we are interested in addressing the following research questions (RQs):

• RQ: how can we characterize the matrix profile computation for multi-dimensional
time series? Is it an I/O-, network-, memory-, or compute-bound computation?

• RQ: how can we design and apply efficient partitioning schemes for parallel com-
putation of multi-dimensional time series?

• RQ: how far does the matrix profile computation scale on HPC systems? How
can we characterize the benefits of HPC systems and hardware for matrix profile
computation?

To answer these questions, in this chapter, we . . .

1. . . . introduce a new highly-parallel approach called, (MP)N to compute the multi-
dimensional matrix profile on HPC systems based on MPI. We use (MP)N as the
vehicle to answer the research questions posed above.

2. . . . provide an analytical analysis for the computational costs and performance of
this approach on HPC systems.

3. . . . use experimental evaluations to demonstrate the scalability and efficiency of
matrix profile computation on the SuperMUC-NG system.

4.3 Multi-Dimensional Parallel Matrix Profile: (MP)N

We introduce a new approach for computing the multi-dimensional matrix profile in par-
allel. Building on top of the existing mSTAMP and STOMP approaches (see Chapter 2
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and Chapter 3), we introduce (MP)N, which stands for Multi-dimensional Parallel Matrix
Profile. Similar to STOMP (described in Section 2.3.5), (MP)N computes the distance
matrix (in fact, the Pearson’s correlation factors) in an iterative in-place computation
scheme (using the streaming dot product shown in Equation 4.5).
(MP)N adopts mSTAMP formulations for parallel processing, allowing the distribu-

tion of computational workload among multiple workers with minimum communica-
tion during the computation phase. (MP)N partitions the time series along the records
and distributes the workload across multiple processing elements, e.g., cores of a mul-
tiprocessor. (MP)N leverages MPI for communication and parallel I/O to utilize the
high-performance interconnect and I/O capabilities of HPC systems. With that, it
exploits the computational power of HPC systems to compute the matrix profile for
multi-dimensional datasets efficiently.
For a time series with d dimensions, each of length (number of records) n, and con-

sidering a subsequence length m, (MP)N computes a total of d distance matrices, one
for each dimension. The distance matrix can be considered 3D, and it embeds the Eu-
clidean distances for all subsequence pairs of the input time series in separate planes of
a 3D matrix, one plane for each dimension. In the case of self-join settings, the distance
matrix is symmetric. (MP)N explicitly takes the symmetric structure of the distance
matrices into account to avoid redundant computations. Further, (MP)N complies with
the semantics of the multi-dimensional matrix profile presented by Yeh et al. [YKK17]:
In the multi-dimensional setting, sub-dimensional subsequences can correlate with any
other subsequence in any k-dimensional (k ≤ d) subspace across all dimensions (see
Section 2.3.3). Therefore, similar to mSTAMP, (MP)N finds the minimum value of each
column in the 3D distance matrices after sorting and partially aggregating the resulting
distance values of the d dimensions. (MP)N sorts the distances across the dimensions for
all records in the distance matrix using an optimized memory layout combined with a
high-performance sorting kernel. Note that similar to other STOMP-based approaches,
(MP)N avoids storing the full 3D matrix.
The resulting matrix profile represents the nearest neighbors of a subsequence with

the best matching k (k ≤ d) dimensions (see Section 2.3.3).

4.3.1 Mathematical Formulations of (MP)N Approach

We adapt the formulations of the STOMP approach presented in Table 2.3 to the multi-
dimensional case and combine it with the mSTAMP approach. Table 4.1 presents this.
We avoid repeating the description of the details of individual formulas in Table 4.1 since
we already covered most of them in Section 2.3.5 for the single-dimensional case. Here,
we mainly discuss the extensions to the multi-dimensional case. One difference between
Table 4.1 and Table 2.3 is that here we have a 3D indexing, which corresponds to the
multi-dimensional case (the third dimension is to index the different dimensions). More
importantly, here we have additional formulas (Equation 4.8 and Equation 4.9) to sort
the distance matrix along the dimensions.
In the multi-dimensional case, the streaming dot product works as follows, starting

with an initialization step: for a multi-dimensional input time series, for each dimension,
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Average of samples in a subsequence
starting at record i in dimension k

µi+1,k = µi,k + (Ti+m,k − Ti,k)/m (4.1)

Inverse of norm-1 of samples in a subse-
quence starting at record i in dimension
k

d−1
i,k = (

m∑
z=0

Ti+z,k − µi,k )−1 (4.2)

Intermediate values used in mean-
centered streaming dot product formu-
lation 4.5

dfi+1,k = ( Ti+m,k − Ti,k ) / 2 (4.3)

Intermediate values used in mean-
centered streaming dot product formu-
lation 4.5

dgi+1,k = (Ti+m,k − µi+1,k) + (Ti,k − µi,k)
(4.4)

Streaming dot product of samples in
subsequences i and j in k-th dimen-

sion [ZKS+19]

QT i+1,j+1,k = QT i,j,k + dfi,k × dgj,k + dfj,k × dgi,k
(4.5)

Pearson correlation matrix among sub-
sequences starting at records i and j in
dimension k

ρi,j,k = QT i,j,k × d−1
i,k × d−1

j,k (4.6)

Euclidean distance matrix among sub-
sequences starting at records i and j in
dimension k

Di,j,k =
√
2×m× (1− ρi,j,k) (4.7)

i-th distance profile in dimension k δi,k = Di,∗,k (4.8)

Sort i-th distance profile along dimen-
sions

δ′i = sort(δi) (4.9)

Average based on prefix sum of i-th dis-
tance profile along dimensions

δ′′i = prefix avg(δ′i) (4.10)

Matrix profile and its index Pi,k = min(δ′′i,k), Ii,k = argmin(δ′′i,k) (4.11)

Table 4.1: Iterative STOMP formulation extended for multi-dimensional matrix profiles.

the vectors µ, d−1, df , and dg (Equations 4.1- 4.4) are computed. This computation
scales linearly with the number of records (i.e., O(n× d)) and, therefore, is a cheap part
of the computation. These vectors have the same semantics as in the single-dimensional
case (discussed in Section 2.3.5); however, here, they are computed for each individual
dimension.

After the initialization step based on Equations 4.1- 4.4, the (MP)N workload consists
of the following iterative steps:

1. computing the distance matrix in multiple dimensions using the streaming dot
product formulation (Equations 4.5- 4.7),
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Pseudocode 3 (MP)N (T, m): core procedure for computing the multi-dimensional
matrix profile.

Input: d-dim. time series T ∈ Rd×n and subsequence length m ∈ N, and exclusion parameter e = m.

Output: multi-dimensional matrix profile P ∈ Rd×n−m+1 and matrix profile index I ∈ Zd×n−m+1.

1: µ, d−1, df , dg ← precompute statistics (T,m) ▷Equations 4.1– 4.4

2: QT ← initialize streaming dot product (T,m) ▷see [ZKS+19]

3: for i← 0 to n−m do

4: for j ← i+ e to n−m do

5: for k ← 0 to d− 1 do

6: δj,k ← streaming dot product(µ, d−1, df , dg, QT ) ▷see Table 4.1

7: end for

8: end for

9: handle exclusions (δj,k) ▷see [YZU+16] and [YKK17]

10: for j ← i+ e to n−m do

11: δ′j,∗ ← sort (δj,∗) ▷Equation 4.9

12: end for

13: δ′′ ← dimension wise prefix sum and normalize(δ′) ▷see [YKK17]

14: for k ← 0 to d− 1 do

15: P, I ← element wise argmin (P, δ′′) ▷matrix updates

16: tmp ← row wise minimum (δ′′)

17: Pc[idx], Ic[idx]← element wise argmin (Pc[idx], tmp) ▷vector updates

18: end for

19: end for

20: P, I ← merge (P, I, Pc, Ic)

2. sorting and partially aggregating (using prefix sum1 and averaging) the values in
the distance matrices along the dimensions (Equation 4.9), and

3. updating the resulting matrix profile using element-wise min and argmin opera-
tions Equation 4.10.

In the case of a self-join, we also exclude the trivial matches corresponding to the prox-
imities of the diagonal entries in the distance matrices (similar to the single-dimensional
case as discussed in Chapter 2).
Pseudocode 3 puts the formulas in Table 4.1 into a concrete procedure for computing

the multi-dimensional matrix profile. This procedure can be summarized in the following
steps:

1Prefix sum, also known as the cumulative sum, and the inclusive scan, is the operation to compute
the sums of prefixes (running totals) of the input sequence.
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1. First, we (pre-)compute statistics of all subsequences using Equations 4.1—4.4 in
all d dimensions (Line 1, Pseudocode 3).

2. In Line 2, Pseudocode 3, we initialize the streaming dot product with the distance
between the first subsequence in the time series and all other subsequences. This
is performed for each individual dimension.

3. We use Equations 4.5– 4.8 (Lines 4–8, Pseudocode 3) to iteratively—and in-situ—
update the distance profile δ (Line 3, Pseudocode 3) to avoid full storage of the
distance matrices, by calculating the Euclidean distances between subsequence i
and all the other subsequences j. This is done for all d dimensions. Further, in
each iteration i of the main loop (Line 3), we. . .

a) . . . invalidate the entries of δ corresponding to the exclusion zone (Line 9,
Pseudocode 3),

b) . . . sort the distance profile δ in each record and across the dimensions (Equa-
tion 4.9 and Lines 10–12, Pseudocode 3),

c) . . . prefix sum and normalize the values of the sorted distances in δ′ (Lines 13,
Pseudocode 3), and

d) . . . find the distance profile using element-wise min and argmin operations,
i.e., the matrix profile and its index are updated according to the values of
δ′′ computed in this iteration (Equation 4.10, Lines 14–18, Pseudocode 3).

4.4 (MP)N for CPU-based HPC Systems

Targeting the (MP)N approach on modern CPU-based HPC systems requires addressing
various design and optimization issues at various levels (see discussions in Chapter 2).

First of all, we ensure that we use algorithmic formulations with the lowest compu-
tational costs, high parallelization potential, and scalability. Next, at the core level,
we prominently need to design data structures with suitable access patterns and data
reuse and expose parallelism to higher levels. At the multi-core level, we need to design
suitable, flexible, and tunable partitioning and tiling schemes to allow exploiting the
parallelism on the node with multi-threading or multi-processing. Finally, at the cluster
level, we prefer methods with minimal communication and synchronization operations
during the execution of the main iteration loop of (MP)N (i.e., Line 3 in Pseudocode 3).

Core Level Node Level Cluster LevelAlgorithmic Level

Figure 4.1: Design and parallelization of (MP)N at various levels.
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4.4 (MP)N for CPU-based HPC Systems

4.4.1 Algorithmic Design and Optimizations

(MP)N follows the established techniques for computation of matrix profile (mainly
applied to single-dimensional cases), extends and employs them for the multi-dimensional
case. For the case of self-join, we employ a similar approach used in SCAMP [ZKS+19]
and MP-MPI [Pfe19] to compute the upper triangular part of the distance matrices
avoiding the redundant computation of the lower triangular part. In Figure 4.2, we
illustrate these triangular distance matrices and their calculation (for a given iteration)
by placing the corresponding matrices for various dimensions next to each other to shape
a 3D upper triangular distance matrix (we remove the matrix profile index from the
illustration for simplicity, but its structures and calculations resemble the ones depicted
for matrix profile itself). This figure breaks down the distance matrix into three parts
. . . :

• The orange part on top illustrates the elements of the distance matrices that were
already computed (and thrown away) in previous iterations,

• The yellow part in the middle illustrates the elements of the distance matrices that
are being computed in the current iteration (δ in Line 11 of Pseudocode 3),

• The white cubes in the lower part illustrate the remaining values to compute and
cover in the remaining iterations.

The missing lower triangular parts can be compensated for by using the symmetrical
structure of the distance matrices (only in self-join). However, since we use an in-situ
computation and only store values corresponding to i-th iteration (i.e., the yellow ele-
ments in Figure 4.2 are stored, and the orange ones are dropped), we cannot explicitly
transpose the distance matrix. Therefore, instead, an additional set of matrix profiles,
Pc, and matrix profile indices, Ic, are introduced to capture partial computation of the
matrix profile (see Line 17 in Pseudocode 3). Pc and Ic are computed by implicitly trans-
posing the distance matrices employing the already computed distance values instead of
computing the lower triangular parts. Pc and Ic are computed using min and argmin
operations per dimension at each iteration on the distance profile δ. The partial matrix
profiles (P and Pc) that are iteratively computed are also illustrated in Figure 4.2. In
this illustration . . .

• the elements colored with red are computed in previous iterations,

• green elements get updated in the current iteration,

• and the blue elements are yet to be computed in the following iterations.

Pc and Ic represent column-wise (for column c) partial matrix profiles and indices,
and similar to their partial row-wise counterparts, they are multi-dimensional. The final
matrix profile and its index are constructed by merging the results of Pc to P , and Ic to
I (Line 20, Pseudocode 3).
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Matrix Profile (P)

Previously computed distance values

Active computation of this iteration

Remaining distance values
on the distance matrix to cover

M
atrix Profile (Pc)

Iterations

Dimensions

Figure 4.2: Illustration of 3D distance matrix (upper triangular part) and the iterative compu-
tation in (MP)N.

In a naive approach, one can compute (and store) the full distance matrix using the
nested loops in Lines 3-5 in Pseudocode 3. In such a naive computation, the order of the
loops can be exchanged. In that case, all the 6 permutations of the loops (ijk, ikj, jik,
jki, kij, kji) are valid (Figure 4.2 illustrates the ikj order). However, as we discussed
before, the streaming dot product formulation, where the distance matrix is only partially
stored (Lines 6 in Pseudocode 3), is often used in matrix profile computation to reduce
computational costs as well as memory consumption. As we are using the streaming dot-
product formulation, due to the data dependencies of this formulation, only a subset of
loop permutations is feasible. Specifically, the ijk and ikj permutations are feasible
(due to the symmetry of matrixes, we ignore jik and jki in discussions). The reason is
that the permutations starting k loop require full storage of the distance matrix, which
is both unwanted and infeasible—see the right-most sketch in Figure 4.3, where the full
triangular matrix needs to be computed and stored for all the dimensions. However, a
blocked version of these permutations (kij and kji) are dropped from the analysis due
to excessive memory footprint.
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ijk order - jk layout ikj order - kj layout kij order - ij layout

Figure 4.3: Selective combinations of the loop permutations and possible data layouts for stor-
age in memory.

4.4.2 Core-Level Design

An important issue to consider is the memory access pattern during the iterations.
Note that the essence of the Pseudocode 3 is the iterative computation of δ (again see
Figure 4.2, where the yellow elements are computed in a certain iteration) followed by
sorting and prefix sum, aggregation, and minimum computation. Therefore, the memory
layout for storing δ is the most important core-level design issue.

Having another look at Pseudocode 3, we notice that the loops in Lines 4 and 5 can
be exchanged, and therefore, the layout for storing δ is flexible from the point of view
of the streaming dot product kernel. However, the loops at Line 10 and Line 14 have
transposed-like access patterns.

We address the layout issue as follows: we select a layout that targets the most time-
consuming kernels (e.g., sort, or prefix sum or ...), i.e., we consider the more time-
consuming kernels to be more impactful for the selection of the layout, and, therefore,
we favor layouts that can help to improve these kernels. The other kernels, including
the distance computation kernels (streaming dot product), are adapted to follow the
selected layout. Our measurements show that regardless of the layout and choice of the
sorting method, the most expensive part of the computation is the sorting kernel, and
therefore, we always select a memory layout that provides stream access to the arrays
and data used in the sorting kernel.

Figure 4.3 shows the possible layouts for storing δ. The jk layout (Figure 4.3 left)
is preferred in comparison to the kj (Figure 4.3 middle) layout, as it provides the sort
kernels with stream-like access. As discussed before, the right-most one is not suitable
as it requires an excessive memory footprint.

With the jk layout settled as the most efficient iteration layout, the most efficient
iteration loop becomes the ijk order. We now look at the access patterns in various
steps of the computation, the ijk order: for the distance computation, the ijk order
results in stream-like access. Same for sorting, prefix sum, and normalization, where

65



4 Time Series Similarity Mining at Extreme Scale on HPC Systems

the ijk order has stream access. Finally, for the minimum computation, the ijk has a
stride access. Therefore, for the minimum computation, we can use a double buffering
scheme, where data is stored in a transposed fashion and allows for stream-like access.
Additionally, the above-mentioned loop orders allow for jamming multiple j loops, which
can improve data reuse.

4.4.3 Node-Level Design and Parallelization

Mainstream HPC compute nodes have high-end multi-socket, multi-core processors and
growingly more accelerators such as GPUs. In this section, we mainly focus on the
(MP)N design targeting multi-core processors.

To parallelize Pseudocode 3 on multiple cores, we need to address the i and j loop in
Lines 3 and 4. If we take a close look at the structure of the iteration space in i and j loops
(and ignoring the k look for now), based on this, it resembles a 2-dimensional triangular
iteration space. With this perspective, we can design a partitioning scheme for this
iteration space by splitting it into smaller triangular partitions of iteration subspaces.
Bringing the third dimension back to the picture, we end up with partitioning schemes
with triangular prism-like tiles as depicted in Figure 4.4.

Figure 4.4 provides an illustration for two possible partitioning schemes that can be
used in (MP)N by decomposing the problem into 16 independent subproblems. In this
illustration, we use a partitioning that splits the iteration space into 4x4 subproblems,
resulting in 16 tiles, where the computation of a single tile (e.g., one tile is highlighted
in red) can be done using the procedure (MP)N (T, m) described in Pseudocode 4. The
computation for all the omitted tiles can be eliminated due to the symmetry of the
distance matrix (in the case of self-join). The computation for the tile in magenta is
also omitted, similar to the rest of the missing tiles. However, we are highlighting it to
illustrate the symmetry associated with the tile illustrated in red. Once the red tile is
computed, the resulting partial matrix profile and index can also be used for the pink tile.
In Figure 4.4, on the left, we illustrate the first partitioning scheme, where the distance
matrix is split into smaller upper triangular prism tiles. On the right, in the second
partitioning scheme, the whole lower part of the distance matrix is omitted. While both

Figure 4.4: Illustration for the partitioning scheme of the distance matrix in (MP)N.
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schemes are equivalent in the sense of computational costs, the one depicted on the
left is slightly easier to implement as it does not require any change in Pseudocode 3.
It only requires the implementation of kernels for computing upper triangular distance
matrices, while the right scheme requires implementing and handling both upper and
lower triangular kernels. Therefore, for simplicity, in (MP)N we rely on the left scheme.
Regardless, in the case of cross-join, where the distance matrix is non-symmetric, we
would need to implement kernels to deal with both the upper triangular and lower
triangular tiles.

The aggregation step for the partial results from different tiles can be described as

Equation 4.12 (Figure 4.4), where to aggregate the partial result P
(0)
merged from the first

row of tiles, we combine the partial results associated with all the upper and lower
triangular tiles. Here, we use (i, j) as a logical 2D index to identify the tiles. For
example, the red tile in Figure 4.4 is located at index (1,2), and its symmetrical purple
counterpart is located at (2,1).

P
(0)
merged = merge(P (0,0), P (0,0)

c , P (0,1), P (0,1)
c , P (0,2), P (0,2)

c , P (0,3), P (0,3)
c ) (4.12)

Due to the symmetry, the following property for all resulting matrix profiles in the

tiles holds: P (i,j) = P
(j,i)
c and I(i,j) = I

(j,i)
c . Given this property, the partial matrix

profiles for the problem illustrated in Figure 4.4 are merged according to Equation 4.13,
which is equivalent to the Equation 4.12, only represented in terms of upper triangular
tiles.

P
(0)
merged = merge(P (0,0), P (0,1), P (1,0), P (0,2), P (2,0), P (0,3), P (3,0)) (4.13)

These tiling schemes can be used independently of the node architecture, and in gen-
eral, the tiles can be computed in parallel. Consequently, computing the matrix profile
in parallel is similar to Pseudocode 3, except that it requires additional logic for tiling
as well as extra logic to aggregate the partial matrix profiles computed in each tile as
shown in Pseudocode 4.

Except for the aggregation part, the workload in tiles is embarrassingly parallel.
Therefore, the computation of each tile can be assigned to a dedicated computing re-
source (e.g., a core). All the tiles can be computed in parallel using multi-threading or
multi-processing. Note that the number of tiles (t2) is a squared number and can be set
according to the available resources (e.g., cores) on the compute node.

In the case of multi-processing, the aggregation step requires handling of inter-process
communication, which is handled similarly to the cluster-level design that is discussed
in the upcoming section.

4.4.4 Cluster-Level Design

As discussed before, the iterative computation of the distance matrix and matrix profile,
based on the partitioning schemes introduced in Section 4.4.3 is an embarrassingly-
parallel workload (except for the merging of the partial results). A similar partitioning
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Pseudocode 4 (MP)N tiled (T, m, t2): procedure to compute the matrix profile
with tiling.

Input: The input time series T , the subsequence length m, and t2 number of tiles.

Output: The matrix profile P and its indexes I .

1: tile list← compute tile list (T , t2)

2: for each tile ∈ tile list do in parallel

3: P tile, Itile ← (MP)N (tile, m)

4: end for

5: for each tile ∈ tile list do

6: P , I ← merge (P tile, Itile)

7: end for

and aggregation scheme can be employed in the case of distributed memory and multi-
node computation: we use the same partitioning scheme and assign tiles to processes
on the same or different compute nodes, i.e., each rectangular prism tile in Figure 4.4
will be assigned to a separate process. For the illustration in Figure 4.4, 16 processes
running on 16 cores (or nodes) can run the computation in parallel.
In essence, each process has to compute partial matrix profiles by computing the first

iteration using a naive sliding dot product formulation [YZU+16] (Figure 4.2), followed
by sorting and prefix summation of distance matrix (again see Pseudocode 3 for details).
Note that (MP)N computes the matrix profile by evaluating only the upper triangular
prisms of the partitioned distance matrix (self-join).

The first step (Line 1 in Pseudocode 4) consists of generating a logical grouping of
processes for communication as well as creating the tiles and initializing their corre-
sponding local data for computation. This tile creation step, together with aggregation
step (Line 6 in Pseudocode 4), both require intra- or inter-node communication, which
in the former case is mostly realized using broadcast operations and in the latter case is
realized using reduction operations.

4.5 Putting it all Together – (MP)N Implementation in MPI

To fully utilize the resources of HPC systems, we implement (MP)N using an end-to-
end parallelization of all the steps from the setup phase to the final results steps(see
Figure 4.5). We implement the parallel version of (MP)N algorithm using the Message
Passing Interface (MPI), which allows us to exploit the high-speed interconnect in a
tightly coupled HPC systems2.
In particular, we avoid filesystem-based final aggregation [ZKS+19] and instead use

MPI reduction operations, exploiting the high-speed interconnect. Furthermore, we

2See Appendix A4 for pointers to the code.
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Parallel Read Data Distribution Matrix Profile
Kernels

Aggregation /
Reduction Parallel ReadSetup

Figure 4.5: Illustration of all phases in our approach on a distributed memory HPC system.

utilize parallel MPI I/O functionality for massively parallel pre- and post-processing,
and enable unprecedented scaling, all of which can be bottlenecks in HPC systems.

4.5.1 Phases of (MP)N

(MP)N implementation includes six phases (see Figure 4.5):

1. Setup Phase: We first build a virtual topology of processes (see Figure 4.6), in a 2D
grid. This topology is used to create the MPI communicators required for reading
and writing input and output time series from the file system, as well as the MPI
communicators required for the distribution of time series and the aggregation of
the resulting matrix profile. Finally, we distribute the data and workload among all
MPI processes according to the partitioning schemes introduced in Section 4.4.3.

2. File Read Phase: we structure the storage of time series data in a custom “row-
wise” layout (i.e., the data points from different data streams with a given times-
tamp are stored consecutively in the file), which is later on accessed by the processes
in parallel. This strategy allows for simple partitioning with minimal parallel ac-
cesses to the file system (i.e., preventing bandwidth saturation as well as metadata
bottlenecks), where only a subset of the processes (or nodes) perform I/O.

3. Data Distribution Phase: Processes that participate in the File Read Phase broad-
cast the input time series via the MPI communicators created during the setup.

4. Kernel Execution Phase: we execute the necessary kernels (i.e., (MP)N tiled) to
compute a local multi-dimensional matrix profile for partitions of the input series.

Figure 4.6: Illustration of the virtual topology of MPI processes in communicators (left-most).
Each triangle with a distinct color represents a separate MPI process working on a
distinct part of the distance matrix. The red boxes represent exclusive process sets
in communicators. The middle-left and middle-right figures represent communica-
tors used in Data Distribution and Aggregation phases, and the right-most figure
shows the communicator used in the I/O phases.
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5. Aggregation Phase: we aggregate and merge the local results in each process to
the final results (see Equation 4.12). This is done using reduction operations over
MPI communicators created in the Setup Phase. After this phase, the final results
are available on all processes that participate in the Write Phase.

6. Write Phase: finally, a subset of MPI processes (typically the processes located
on the diagonals of the 2D grid topology) responsible for parallel-write operations
outputs the final matrix profile and its index using MPI I/O (Figure 4.6).

4.5.2 MPI Communicators in (MP)N

We use three communicators in various phases presented in Figure 4.5. These commu-
nicators are illustrated in Figure 4.6 and are as follows:

• For reading and writing, we use only MPI processes responsible for the diagonals
on the virtual topology (Figure 4.6 right-most). This allows us to reduce the
pressure on the parallel file system caused by a large amount of I/O operations
(IOP), which would otherwise degrade the I/O performance.

• We use both column- and row-wise communicators on the 2D virtual topology of
processes for broadcasting data in the distribution step as well as the reduction of
the partial results in the aggregation phase. We further use a custom argmin3 MPI
reduction operation4, according to the merging scheme described in Section 4.4.4,
Equation 4.13 and Pseudocodes 3 and 4. This custom reduction is executed on
the row-wise and column-wise communicators in the Aggregation Phase.

4.6 Limitations

The implementation of (MP)N has two main limitations:

1. The flexibility of the partitioning scheme: in our implementation, the tile sizes are
coupled to the number of processes and the global problem size. This prevents
exposing the tile size as a tuning scheme. However, the same partitioning scheme
can still be adapted to work around this limitation to expose tile size as a tuning
knob.

2. Our implementation only targets the self-join case and does not address cross-join
between two distinct input time series. However, this is not a conceptual limitation,
and the implementation can be extended to cover this case upon need.

None of the above-mentioned limitations are due to a conceptual limitation: these are
rather limitations in the prototype implementation. In the next chapter, in the context
of GPU acceleration, we will discuss a more flexible and general implementation. We

3See Chapter 2 for more details.
4MPI operation to reduce values on all processes to a single value.
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will show that the same approach can be extended to support both flexible tiling and
cross-join.
Despite these limitations, our evaluations demonstrate acceptable performance and

high scalability of (MP)N.

4.7 Evaluation

We setup a set of experiments to address the following questions:

• given the core-, node- and cluster-level designs, which subsystems bound the com-
putation of the matrix profile? I/O, Network, memory, or compute?

• given the introduced partitioning schemes and the provided implementation, how
much does the matrix profile computation scale?

• is using special HPC hardware beneficial for matrix profile computation?

4.7.1 Node-Level Performance Characterization

In order to characterize the performance of the matrix profile computation, we first
look at single-node performance breakdown to identify the share of kernels from the
run time. We then look at the performance breakdown for the phases once scaling
beyond one node. The node-level performance breakdown helps us to discuss the main
bottleneck kernels as well as whether the node-level code is bound by memory or cores.
The larger experiments help to identify whether matrix profile computation is network-
or I/O-bound.

Single-Node Performance Breakdown We insert instrumentation points to identify
the time spent in various kernels. Specifically, we are interested in the most time-
consuming kernels. We run strong scaling experiments on an Intel Icelake system in
the LRZ BEAST testbed and show the breakdown of time spent in various kernels in
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Figure 4.7: Performance breakdown of (MP)N for a problem of size 64K and dimensionality of
128. The annotations show the percentage of time spent in sorting kernels. We
report average values achieved via five repetitions for each experiment.
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Figure 4.7. We consider a problem size with reasonable dimensionality (128) and number
of records (64K).
We observe that the sorting kernel is the dominant kernel in all the configurations.

While the distance kernel delivers the flop/s (and therefore, the flop/s rate is computed
from that), still the performance of the code is dominated by sorts. Sort kernels are
highly dominated by memory operations, and therefore, already at this point, we can
conclude that . . .

the matrix profile computation in multi-dimensional settings is memory-bound. Fur-
ther investigation of roofline models also confirms this (not shown here. Also see
work of [Pfe19]).

Note that the problem size certainly influences the plotted breakdown. For instance,
pushing the dimensionality towards to lowest edge (d=1) will eliminate the sorting por-
tion. However, we observe this pattern (dominance of sort), even in small dimensionality
(e.g., 16).
We also conduct another experiments to confirm this conclusion: we use LIK-

WID [THW10] to collect bandwidth utilization information and measured a maximum of
∼140GB/s using 36 cores (18 per socket) on a single node of the SuperMUC-NG system5.
This matches the achievable bandwidth reported by the STREAM benchmark [McC95]
previously obtained on this machine6.
For the sorting kernel constitutes the prominent portion of run time, we focus on the

sorting kernel and inspect alternative implementations of it. In particular, we compare
three leading libraries for their performance:

• AVX-512-bitonic, which is a high-performance sorting kernel based on the bitonic
scheme [GKKG03] in a library designed and implemented by Bramas [Bra17] tar-
geting the sorting of small- and mid-sized arrays and is optimized for the Intel
Skylake architecture,

• Intel Integrated Performance Primitives (IPP) [Tay], as a vendor-specific alterna-
tive library, and

• qsort from C++–stdlib-based [Jos12] as a basic Quicksort implementation.

We study the total run time of matrix profile computation, taking the sorting imple-
mentation and the dimensionality as parameters. We specifically look at the execution
time on a single-core setup, which is sufficient (see Figure 4.7). In particular, we analyze
the effect of the dimensionality parameter d. Figure 4.8 illustrates the result.

5(MP)N requires a quadratic number of MPI processes.
6We achieved a maximum bandwidth of 185.9 GB/s using STREAM benchmark for copy operation

using 48 cores.
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Figure 4.8: Comparing performance of various sorting kernels in (MP)N. With n = 4K samples
and m = 512. Each experiment is repeated 5 times, and we show the average result.

While all three kernels complete in similar time for smaller dimensionality, AVX-
512-bitonic provides the best performance with increasing dimensionality.

The superiority of AVX-512-bitonic is in accordance with the results of an existing
study by Bramas et al. [Bra17]. Also note that the y-axis on this graph is set to log scale,
and therefore, the difference between the different implementations is very influential in
practice. For this reason, we fix the AVX-512-bitonic kernel for all further experiments.
Even the experiments discussed earlier in this Chapter use this sorting kernel.
Furthermore, we confirm an expected linearithmic7 growth of execution time vs. in-

creasing dimensionality parameter d for the three kernels, which validates the expected
computational costs.

4.7.2 Characterizing Scalability

In order to characterize the scalability of the matrix profile computation, we first look
at single-node scaling. Later, we use multi-node experiments to identify computation,
network, and I/O loads.

Single-Node Scalability We present results from single-node execution on two systems.
Both systems are from the Intel Xeon Processor Scalable Family. The first is an Intel
Skylake (a single node of SuperMUC-NG), and the second one is an Intel Icelake (a single
node in LRZ BEAST). The former experiment helps to characterize the scalability on
SuperMUC-NG and the later helps us to validate the results on a more recent generation
of Intel processors.

We execute (MP)N with by enabling pinning the MPI processes within NUMA nodes8.
As shown in Figure 4.9, we can see the expected performance saturation pattern for a
memory-bound application in both systems. We further observe a performance increase

7O(d log d).
8Specifically for Intel MPI we use: I MPI PIN ORDER=scatter. For details on mapping

MPI processes to cores, see https://software.intel.com/en-us/mpi-developer-reference-linux-

interoperability-with-openmp.
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Figure 4.9: Saturation of performance in (MP)N when increasing the number of MPI processes
on a single Skylake node with 48 physical cores and (n = 10K, d = 128) vs. Icelake
node with 72 physical cores (n = 64K, d = 128). The structure of (MP)N requires
a squared number of processes. The bars with asterisks hatches run with hyper-
threading.

when increasing the number of cores on a single node, but hyper-threading does not
further improve the performance in both cases. The results in Figure 4.9 prove that the
performance of (MP)N is bound by memory bandwidth. Note that the iterations are
highly dominated by sorting kernels that are full of memory operations. Also, as access
to the underlying data is in a streaming fashion, there is little chance for optimizations,
such as cache-blocking and utilizing smaller tiles, due to the lack of reusability and
locality of the data.

Single node performance of multi-dimensional matrix profile computations (using
(MP)N) is bound by memory.

Cluster-Level Scalability – Strong Scaling We conduct strong scaling experiments on
the SuperMUC-NG system using 6 to 1 366 nodes (256 cores to 65 536 cores). This
corresponds to one-third of the full system. Figure 4.10 illustrates the speedup and
efficiency for these experiments. We use time series of size n = 524 288, d = 128, with
random contents and window size m = 512. We observe an acceptable scaling behavior
with 67.7% efficiency on one-third of the system. While this scaling behavior remains
acceptable, going to a larger number of cores will decrease the efficiency even more.
Therefore, we present a breakdown of time spent in different phases of matrix profile
computation.

Figure 4.11 presents this breakdown. We observe a linear speedup and throughput of
the kernel execution time using the 6-node configuration as the baseline. However, the
time for problem setup—mainly time for creating communicators—increases drastically.
While this is very counter-intuitive, as the communicators are only constructed once at
the beginning, still the communicator construction overhead grows drastically in com-
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Figure 4.10: Results of strong scaling experiments for computing the matrix profile using
(MP)N. Parallel efficiency is annotated on top of the bars.
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Figure 4.11: Detailed breakdown of time spent in various phases of matrix profile computation
in strong scaling.

parison to kernel execution time in the strong scaling scenario. This reduces the parallel
efficiency to 67.7% for the experiment with 1 366 nodes.

Cluster-Level Scalability – Weak Scaling Similarly, Figure 4.12 shows our results for
weak-scaling experiments. Here, we fix the workload per core ncore to 2 048. This results
in a global problem size of n = 2048 on 1 node with 1 core, scaling up to n = 1M
on 5 462 nodes with 262 144 cores. The results of our weak scaling experiments show
a kernel execution time of roughly 20 seconds. While in reality, we can have even
larger problems and kernel execution time, this setup is enough to characterize the
scaling behavior of (MP)N and to illustrate dominating overheads. Again, we observe
an ideal scaling of kernel execution time (remains roughly constant). However, we again
encounter a significant increase in time spent on the creation of communicators, and
therefore, the reduction of parallel efficiency to 63.7% on 64K cores (almost the same
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Figure 4.12: Detailed breakdown of time spent in various phases of (MP)N for matrix profile
computation in weak scaling. Parallel efficiency is annotated on top of the bars.

as strong scaling case) and down to 15.4% for the largest experiment, on almost 91% of
the full system.

Discussion on Scaling Overheads While the presented scaling overheads seem very
punishing, we can still justify them. As we observed, the main scaling overhead corre-
sponds to setup. We argue that, since the setup time is independent of problem size and
scales only with the number of MPI processes, for larger-scale problems, this overhead
is less of an issue, as the presented overhead shows essentially the worst-case overhead.
In reality, larger problems might be more of an interest, which results in larger kernel
execution time compared to the setup phase and, therefore, renders better scaling effi-
ciency. However, even though the run time can absorb the setup overheads in the more
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Figure 4.13: Weak scaling of (MP)N, illustrating the time spent in the kernels and the main
time-consuming step, i.e., Setup.
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common weak scaling scenario, it clearly represents a performance problem. Further, we
conduct more investigations to understand the reason for this performance issue.
Another argument for the acceptability of the scaling behavior of (MP)N is that we

are using (MP)N in MPI-only mode intentionally, as we aim at stressing the (MP)N im-
plementation to visit, investigate, and mitigate such issues. In MPI-only mode, utilizing
91% of the SuperMUC-NG translates to 262 144 processes over six islands in the fat tree
topology (see Chapter 2 and Appendix A5.2 for details of the SuperMUC-NG network
architecture) with a maximum of four hops distance between pairs. This setup, in fact,
can raise some inefficiencies in an MPI implementation. The alternative would be to
deploy the same algorithm using a hybrid mode (MPI-OpenMP). However, this might
have other performance tuning and considerations, which we do not discuss in this work,
as the current study can already justify the scalability of (MP)N.
By inspecting the (MP)N code, the measurements, and looking into the performance

model presented by Raoofy et al. [RKY+20], we trace the inefficiency in the Setup phase
to the implementation of vendor MPI functionalities rather than the implementation of
(MP)N itself or to hardware limitations. In particular, the overhead in this phase cor-
responds to the creation of communicators using MPI Comm split9. Subsequent experi-
ments with an alternative MPI implementation (see Figure 4.13) have shown significantly
better scaling for the MPI Comm split operation, indicating a non-scalable implementa-
tion by the initial MPI, which needs to be resolved. In addition to that, we can clearly
observe the effect of the network topology of the SuperMUC-NG on the performance of
the Setup step: we encounter a significant increase (∼58%) in time spent in the Setup
step when we use four network hops of the fat tree interconnect (see the areas with light
blue background color in Figure 4.13).
Overall, though, and despite the observed performance problem in MPI, the (MP)N ap-

proach, we can make the following statement:

Cluster-level performance of multi-dimensional matrix profile computations (using
(MP)N) is neither bound by file I/O nor network performance (assuming that the
setup issue discussed above would be addressed) and is highly scalable. Therefore,
(MP)N can benefit from the horizontal scaling of compute resources in HPC systems.

Also,

The presented (MP)N approach and its parallelization, including the partitioning
scheme and its MPI implementation, can scale on a large portion of SuperMUC-
NG. (MP)N can validate the claims in the literature regarding the scalability of the
matrix profile approach.

In particular, the (MP)N approach is able to compute the matrix profile of a 128-
dimensional time series dataset of one million records on the SuperMUC-NG petascale

9MPI Comm split partitions a group of MPI processes associated with a communicator into disjoint
subgroups and creates a new sub-communicator for the subgroups.
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system. This corresponds to a projected performance (with verified with measurements
from Intel Advisor and LIKWID) of 1.3 petaflop/s for (MP)N distance kernels [RKY+20].

4.8 Summary

In this chapter, we presented (MP)N, the first scalable solution for the mining of large-
scale multi-dimensional time series targeting CPU-based HPC systems. We discussed
how existing single-dimensional approaches, as well as earlier efforts to compute the ma-
trix profiles on large-scale HPC systems, are extended for this purpose. (MP)N enables
the computation of large matrix profiles—as a modern data mining approach—on an
HPC system and makes it thereby applicable to large-scale real-world problems. We
discussed that (MP)N can leverage the abundant resources in HPC systems through
horizontal scaling. We also demonstrated that this approach enables scaling up to 256K
cores, providing highly scalable throughput, Further, with the experiments presented,
we showed that the earlier claims in the literature regarding the scalability of the matrix
profile approach do extend to the mining of multi-dimensional time series.
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5 Time Series Similarity Mining on GPUs
with Reduced- and Mixed-Precision

The approach described in this chapter was previously published in
IPDPS’22 [JRY+22] and GTC’21 [JRS21], where the author of this thesis made
major contributions to the contents, including supervising the development of a
master thesis and guided research, and the development of the prototype codes,
and evaluations.

5.1 Motivation

In the previous chapters, we established the importance of time series and, in particular,
multi-dimensional time series that represent data captured by multiple sensor sources,
as they include collective information about many components at the same time, as
well as their mining in today’s technological advances. We established how modern
monitoring infrastructures provide scientists, data analysts, and developers with large
amounts of data, which must be analyzed using big data and high performance data
analytics techniques to better understand physical systems and phenomena. We also
established the importance of the matrix profile method in mining multi-dimensional
time series to enable cross-sensor correlations. Furthermore, we discussed the importance
of introducing new efficient approaches such as (MP)N to unlock the potential of modern
hardware as well as exploiting the power of HPC systems. In this chapter, we focus on
extending (MP)N to another hardware powering up modern HPC systems, i.e., GPUs.
This helps to push the technologies and capabilities in exploring the complex similarity
patterns within multi-dimensional time series through matrix profile analysis, which is,
in the end, crucial in extracting insights from the ever-growing deposit of datasets.

The previous studies in the literature, as well as our research on the computational
aspects of the matrix profile (e.g., including the discussions presented in the previ-
ous chapter) show that for large time series datasets, the matrix profile requires a
high computational power to evaluate the large distance (or equivalently correlation)
matrices [ZZS+18, Pfe19, RKY+20]. The multi-dimensional case exposes even more
computational costs: the computational costs scale with dimensionality, as each di-
mension requires the calculation of a separate distance matrix. Additionally, in the
multi-dimensional case, we require extra repeated sort and prefix average (see Table 4.1)
operations to connect the dimensions, which increases the computational cost further.
All these aspects of computational costs for matrix profile computation make a good case
for exploiting the parallelism and power of many cores in GPUs. In addition, we showed
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in the previous chapter that matrix profile computation is memory-bound [Pfe19], sug-
gesting that leveraging the High Bandwidth Memory (HBM) of GPUs promises perfor-
mance improvements. Additionally, as this workload is neither communication-bound
nor I/O-bound, the throughput is expected to scale with multiple GPUs.

However, the use of GPUs requires redesigning the parallelization scheme presented in
the last Chapter: while a GPU-based multi-dimensional matrix profile benefits from the
parallelization method used in the state-of-the-art GPU-based solution [ZKS+19] for the
single-dimensional case, due to the extra computational costs, the resulting bottleneck
shifts. Therefore, for the multi-dimensional case, significant changes in the parallelization
scheme, as well as the redesign of data layout, distance, and sorting kernels, are required.

On top of that, modern GPUs are equipped with huge computational power when
running/computing in reduced-precision arithmetic (see Chapter 2 for a brief introduc-
tion to such arithmetics). Therefore, the problem of finding similar-enough, but not
necessarily exactly identical, patterns offers the door to reduced- and mixed-precision
calculations, which have not been investigated before and can benefit from the capabil-
ities of modern GPU hardware. Reduced- and mixed-precision computation schemes,
aside from improving performance, can also reduce the memory footprint, resulting in
an even more efficient usage of the GPU memory bandwidth and the ability to support
larger problems. However, it does naturally lead to more numerical errors and, hence,
new challenges to preserve acceptable numerical accuracy.

In order to address both computational costs and accuracy aspects of multi-dimensional
matrix profile computation on GPUs, we, therefore, need . . .

1. a careful design of a solution targeting GPU hardware, including an efficient data
management design and careful design of compute kernels in various aspects such
as the data layout,

2. an efficient sorting scheme suitable for GPUs,

3. a flexible tiling scheme allowing for various optimization and efficient multi-GPU
parallelization and

4. a suitable arithmetic approach for efficient and sufficiently accurate reduced- and
mixed-precision computation.

In this chapter, we extend the (MP)N approach and introduce a new extension for
GPUs that addresses the mentioned data management, kernel, and arithmetic design
challenges. This approach targets multiple GPUs and efficiently utilizes the GPU hard-
ware features. We introduce reduced- and mixed-precision computation modes with
improved arithmetics to support a sufficiently accurate computation in practice using
single and half-precision arithmetics. We introduce an extension to (MP)N with a new
tiling scheme that not only enables parallelization of the workload on multiple GPUs
but also improves the accuracy of computation in reduced- and mixed-precision modes
by bounding the numerical error propagation.
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5.2 Research Questions

We are interested in addressing the following research questions (RQs):

• RQ: how much performance benefits do GPUs bring in compared to CPU-based
implementation ((MP)N) for matrix profile computation?

• RQ: how to extend the partitioning scheme in (MP)N to target nodes with mul-
tiple GPUs? Does the computation scale on multiple GPUs? Can matrix profile
computation for multi-dimensional data be efficiently deployed on multi-GPU sys-
tems?

• RQ: how can we characterize the accuracy of matrix profile computation in reduced-
and mixed-precision computation schemes for multi-dimensional time series in
terms of mathematical and practical accuracies? How accurate are our solutions
in terms of mathematical accuracy and also in practice?

• RQ: in practice, with reduced- and mixed-precision computation schemes, how
much reduction in the accuracy can be traded for performance gain and vice versa?
Does the tiling scheme play any role in the performance-accuracy trade-off?

To answer these questions, in this chapter, we . . .

1. . . . preset extensions of (MP)N to compute the matrix profile for multi-dimensional
time series on GPUs. For this, we extend the (MP)N partitioning scheme into a
more flexible tiling scheme to allow for further optimizations;

2. . . . introduce several reduced- and mixed-precision modes for multi-dimensional
matrix profile computation leveraging reduced-precision arithmetics on GPU hard-
ware.

5.3 GPU-based Approach with Reduced- and Mixed-Precision

Our main targets in this chapter are high-end multi-GPU systems that are common in
HPC centers and are growing in their attraction for High Performance Data Analytics
(HPDA). The core concept behind our work is to accelerate the computation with the
efficient exploitation of GPU hardware, multi-GPU parallelization, and reduced- and
mixed-precision computation modes. We, therefore, extend the solution we presented in
the previous chapter and refer to it as (MP)N-GPU. Figure 5.1 illustrates the overview
of this approach.

5.3.1 GPU-based Approach: (MP)N-GPU

We use the same equations listed in Table 4.1 and extend the Pseudocode 3. In fact, for
GPU acceleration, the primary target is the efficient deployment of sorting kernels (we
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Figure 5.1: An overview of single-tile matrix profile computation approach on GPU.

already established in the chapter that this is the dominant portion of the workload)
and distance computation kernels (see Figure 5.1).
Using the formulations in Pseudocode 3 has several advantages, including cheap dis-

tance matrix computation on GPUs through using highly efficient arithmetic for the
evaluation of distances between segments, i.e., streaming dot product formulation. Also,
this formulation enables using the scarce GPU memory resources by taking advantage
of partial computation and storage of distance matrix in GPU memory.
Figure 5.1 provides an overview of (MP)N-GPU, including the illustration of our

kernels running on GPUs and the corresponding optimizations. We exploit an opti-
mized data layout to enable coalesced memory accesses and optimized sort kernels.
Additionally, we exploit the hardware features in modern GPUs to achieve high perfor-
mance. Specifically, we tune the utilization of GPU Streaming Multiprocessors (SMs)
and scratchpad memory1 to achieve high bandwidth and low latency access in kernels.

5.3.2 GPU Approach (Single-Tile)

We start explaining our (MP)N-GPU, in Pseudocode 5, by providing a glimpse at a
single tile GPU approach computation of a single GPU.
Pseudocode 5 describes the core algorithm of (MP)N-GPU that targets a single tile

and single GPU. Note that (MP)N-GPU requires two input time series and works pri-
marily for cross-join (but an extension to self-join is straightforward and is just an extra
feature in the implementation). It starts with an asynchronous copy of the input time
series data from the CPU (host) to the GPU (device), followed by the invocation of the
compute kernels. precalculation kernel prepares the correlations QT associated with
the first row of the distance matrix using a naive (non-streaming) dot product formu-
lation. Additionally, this kernel computes the variables df , dg, . . . , used for the next
n iterations using cumulative summation operations (corresponding to Lines 1 and 2 in
Pseudocode 3). In more detail, each GPU thread computes one dot product (one ele-
ment of QT ) and the corresponding cumulative summations for each element, illustrated
in Figure 5.1 in purple.

1Scratchpad memory refers to a special high-speed memory used to hold small items of data for rapid
retrieval. For NVIDIA GPU, it is often used to refer to the so-called shared memory.
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Pseudocode 5 (MP)N-tile (T cpu
r ,T cpu

q , m): Single-Tile GPU approach

Input: The reference and query time series T cpu
r and T cpu

q .

Configuration: sblock and sgrid.

Output: The matrix profile P cpu and index Icpu.

Note: All data resides on GPU unless marked otherwise.

1: Tr, Tq ← input async cpy (T cpu
r , T cpu

q , m, H2D)

2: QTr, QTq, dfr, dgr, . . . ← precalculation (Tr, Tq, m)

3: for i← 0 to (n− 1) do

4: δ ←streaming dot product<<<sgrid,sblock>>>(QTr, QTq, dfr, dgr, . . . )

5: δ′′ ←sort and prefix average<<<sgrid,sblock>>> (δ)

6: P , I ←update matrix profile<<<sgrid,sblock>>> (δ′′)

7: end for

8: P cpu, Icpu ← output async cpy (P , I, D2H)

The main iteration loop consists of the following steps: in the ith iteration (Line 3
in Pseudocode 5), only one row (plane) of the distance matrices with size of O(n · d) is
computed (the highlighted red plane in Figure 5.1). Note that out of the whole distance
matrix, only the computation of the one row (plane) is active during an iteration, and
only this part of the distance matrix is stored, and the updates are in-place. In this
way, to process the time series with n subsequences and d dimensionality, only storing
O(n · d) bytes of memory on GPU is required. In more detail, the iteration i include the
following kernels:

• streaming dot product kernel uses the streaming dot product formulation (see
Equation 4.5) to compute ith rows of the distance matrix QT in-place. Each ele-
ment of the new row (plane) of the distance matrix (i.e., the row that is computed
in this iteration) is assigned to one GPU thread to compute it using Equation 4.5
in parallel. This effectively is the parallelization of Equation 4.5 in i (or j) and k.
This parallelization scheme and thread assignment are illustrated in Figure 5.1 in
purple and pink.

• sort and prefix average kernel sorts the distances in ascending order along di-
mensions. For this kernel, multiple sorts (one for each dimension) are performed
in parallel, where multiple threads cooperate on these sort operations: each indi-
vidual sort operation is assigned to a group of threads. Additionally, this kernel
performs the prefix averages (Equations 4.9 and 4.10 in Table 4.1) in parallel along
the dimensions, where threads in each group cooperatively perform a prefix aver-
age. Due to the advantages of the parallel bitonic sort [GKKG03] that we discussed
in the last chapter, we use this sort algorithm running in only Log2(d) step de-
lay. Also, for prefix average, we use a parallel fan-in approach in only O(log d)
steps. The parallelization for this kernel, the thread and group assignment, and
synchronization among threads for sorting are illustrated in Figure 5.1 in blue.
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• update matrix profile kernel merges the computed distances in the ith iteration
to the results in previous iterations using Equation 4.11. This kernel uses a similar
thread assignment as in the precalculation kernel, where all the threads update
the elements of the resulting matrix profile (e.g., a plane) in an embarrassingly
parallel fashion.

Optimizations: To achieve high efficiency on GPUs, we introduce the following opti-
mizations in the above steps:

Data Layout: For storing the active 2D rows (planes) of the distance matrix in GPU
memory, we use a lexicographical data layout with dimension-major (dimension-wise)
order. Here, by dimension-major, we mean placing the consecutive elements of each di-
mension to reside next to each other in memory (shown in Figure 5.1 in green). Although
this design primarily targets the sorting kernel, we employ this data layout for all the
data involved in the computations of the different kernels. While this layout resembles
the layout in the CPU implementation of (MP)N, it can still be used to leverage coa-
lesced memory access in streaming dot product, and update matrix profile kernels,
and partly in sort and prefix average kernels.

Grid-Stride Loops: We structure the iterations in kernels to exploit grid-stride loops to
ensure coalesced memory access. Moreover, the grid-stride loops enable more flexibility
by supporting arbitrary kernel launch configurations, i.e., sblock and sgrid. Through
this flexibility, our design promises a high performance through tuning kernel launch
configurations (i.e., the configuration settings in Pseudocode 5) that match the GPU
hardware architecture.

Coarse-Grained Synchronization: In sort and prefix average, we use the O(log2 d) paral-
lel sorting scheme based on bitonic sort [GKKG03] and O(log d) parallel fan-in approach
of prefix average, where many threads cooperatively sort and calculate the prefix aver-
ages. Compared to the more intuitive batch-based parallelization, where only one thread
performs a single sort and prefix average, our choice results in better utilization of the
GPU resources, hence achieving higher performance. However, the parallelization in this
scheme requires nested synchronization (for bitonic sort), which can potentially lead to
large overheads. To minimize the overhead, we apply coarse-grained synchronizations
among subsets of threads in groups.

5.3.3 Multi-Tile GPU Approach

While the GPU-based approach in Pseudocode 5 presents an all-inclusive scheme, i.e.,
starting from time series stored on the CPU and ending with the resulting matrix profile
in the CPU, still it has the following limitations:

• It is only targeting a single GPU, while in many HPC setups, nodes are equipped
with multiple GPUs.

• Despite the efficient memory capacity requirements of streaming dot product for-
mulation (O(n × d)), the problem size (i.e., tile size) can be still limited by the
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Figure 5.2: An illustration for the multi-tile matrix profile computation approach on GPUs.

amount of GPU memory capacity. This could impose severe limitations for cases
with high dimensionality.

To address these limitations, and specifically, to exploit parallelization on multiple
GPUs, and relax the memory requirements, we introduce a flexible tiling scheme ((MP)N-
GPU) that extends the partitioning scheme in (MP)N. This tiling scheme (illustrated
in Figure 5.2) is motivated by task-based programming models, where the computation
of each tile is a stand-alone task. Therefore, tasks associated with these tiles can be
computed in parallel: This scheme also decouples the size of the tile and, therefore, the
size of running intermediate allocated buffers on the device, e.g., for storing distance
matrices such as QT from the total size of the input series (TCPU

r and TCPU
q ) and the

corresponding distance matrix δ. Therefore, despite the limited device memory, this
tiling scheme can process arbitrarily large problems (in the sense of both the number of
segments and the number of dimensions) on a single or multiple device(s).
Figure 5.2 illustrates this tiling scheme. In this illustration, the total distance matrix

is split into four tiles, each of which computes one tile with (MP)N as presented in
Pseudocode 5. These tiles can be executed sequentially by a single GPU, e.g., if there
is only one GPU available on the node, or they can be assigned to multiple GPUs on
the node to run in parallel. Also, we want to highlight the resemblance between the
partitioning illustrated in Figure 5.2 and Figure 4.4. As we mentioned before, the main
difference is that here, the tiles are cubic (as we address cross-joins here), and multiple
tiles can potentially run on a single GPU, while there is a 1-1 relation between the
number of cores and tiles in (MP)N implementation for CPUs (Figure 4.4).
We describe the details of this tiling scheme in Pseudocode 6. We first split the distance

matrix into smaller tiles (compute tile list), where each smaller tile is later executed
on a GPU as a standalone matrix profile computation (task) with a smaller problem
size (i.e., tile size). We statically assign these tiles (assign tile) to ngpus GPU(s) in a
round-robin fashion, enabling a balanced load for parallel execution on multiple GPUs.
The computation of tiles is triggered asynchronously, and they run on GPUs in parallel
using the scheme presented in Pseudocode 5.1. After the execution of each tile, its results

85



5 Time Series Similarity Mining on GPUs with Reduced- and Mixed-Precision

Pseudocode 6 (MP)N-GPU: Multi-Tile Approach

Input: The reference and query time series T tile
r , T tile

q stored on CPU, and subsequence length m.

Configuration: sblock, sgrid, ntiles, and ngpu.

Output: The matrix profile P and its indexes I .

Note: All data resides on GPU unless marked otherwise.

1: tile list← compute tile list (ngpu, ntiles)

2: for each tile ∈ tile list do in parallel with implicit synchronization

3: dev ← assign tile (tile)

4: P tile, Itile ← (MP)N-tile (Trtile, Tctile, m, sgrid, sblock, dev)

5: end for

6: for each tile ∈ tile list do ordered

7: PCPU , ICPU ← merge (P tile, Itile)

8: end for

are merged (merge) on the CPU using the same merging scheme presented in Table 4.1.
Data transfer and kernel execution for tiles benefit from implicit synchronization (i.e.,
CUDA Streams), to exploit maximal concurrency in kernel execution as well as to hide
the communication latencies between CPU and GPU.

In addition to the kernel launch configuration itself, the number of GPUs (ntiles)
and tiles (ntiles) are used as configuration parameters (i.e., the configuration settings in
Pseudocode 6) for performance tuning.

5.3.4 Reduced- and Mixed-Precision Modes

Another approach to address the efficient computation of the matrix profile on GPUs
is using reduced-precision arithmetics. Especially as modern GPUs provide special sup-
port for reduced-precision arithmetics and instructions. However, the streaming dot
product formulation that is widely used in matrix profile computation methods (includ-
ing (MP)N and (MP)N-GPU), due to its suitable costs, can introduce challenges for
reduced-precision computation. This formulation uses prefix sums all over the place,

FP64 Precomputation FP64 Distance computation FP64 Sorting distances FP64 Update matrix profile

FP32 Precomputation FP32 Distance computation FP32 Sorting distances FP32 Update matrix profile

FP16 Precomputation FP16 Distance computation FP16 Sorting distances FP16 Update matrix profile
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FP64 mode

FP32 mode

FP16 mode

Mixed mode

Reduced precision modes

FP16 Compensated Precomputation FP16 Distance computation FP16 Sorting distances FP16 Update matrix profileFP16C mode

Figure 5.3: Overview of various precision modes for matrix profile computation provided in
(MP)N-GPU.
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which can suffer from numerical round-off errors. Therefore, a naive implementation
for the streaming dot product and the prefix sum can lead to very inaccurate results
when using reduced-precision computation. To investigate these challenges, we explain
various precision modes covered in (MP)N-GPU from full double-precision computation
down to half- and mixed-precision modes. Also, we investigate combining these modes
with a simple tuning technique for configuring tile sizes: we leverage the tiling scheme
in (MP)N-GPU to also limit the excessive propagation of numerical errors in reduced-
and mixed-precision modes.

(MP)N-GPU natively relies on double-precision (FP64) floating point operands to
ensure accuracy in multi-dimensional segment distances. To further improve the per-
formance while ensuring accuracy on a certain level, we consider leveraging reduced-
precision arithmetics in precalculation and streaming dot product kernels (see Fig-
ure 5.3). The reason for this choice is that these two kernels comprise the main compu-
tation costs that can be affected by reduced-precision computation. We introduce four
additional reduced- and mixed-precision modes that use single-precision floating point
arithmetic (FP32), half -precision floating point arithmetic (FP16), a mix of both, and
half -precision mode with improved arithmetic in the precalculation step.

Single precision (FP32): as FP32 is widely used in ML and HPDA. For this computation
mode, we use FP32 in all steps for both storage and arithmetic.

Half-precision (FP16): For the half-precision mode, we store all the data and conduct
all the computation in FP16. This mode promises the fastest computation, but the
numerical errors in this mode are the most severe compared to the other modes.

Mixed precision (Mixed): We also explore a mixed-precision mode that uses FP16
for storage and computation similar to the FP16 mode; however, it benefits from per-
forming precalculation in higher precision using FP32 arithmetic. This combination is
promising for achieving results with higher accuracies while maintaining the performance
benefits of half-precision computation since the run time of precalculation kernel is
a negligible portion of time to compute tiles, and therefore, executing this kernel with
higher precision does not result in tangible overheads.

Half-precision with improved arithmetics (FP16C): Finally, we explore another vari-
ation of half-precision computation, which again exploits a higher precision mode in
precalculation with an improved variation of arithmetic that uses Kahan’s compen-
sated summation [Kah65] in precalculation. The rest of the steps use FP16 similar to
mixed- and half-precision scenarios. With this compensated summation, we prevent the
error propagation from severe cancellations that arise in the precalculation in FP16
mode. Despite the additional computation to compensate for errors in summations, it
does not result in significant overheads as, again, the precalculation contributes a
negligible amount to the time spent to compute a tile and, therefore, contributes very
negligible to overall run time. Compared to the Mixed mode, this variation also promises
similar accuracy and performance benefits.
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5.4 Implementation on NVIDIA GPUs

We use C++ for our implementation2 and aim for NVIDIA GPUs, in particular, NVIDIA
V100, NVIDIA A100, and NVIDIA H100, as our target devices (see details for hardware
specification of these GPUs in Appendix A5). However, (MP)N-GPU approach can be
realized on other vendors’ GPUs as well. However, source-to-source translation tools
might not be able to completely port our implementation since, in some cases, we rely
on NVIDIA-specific API and functionalities.
For the experiments, we use GCC compiler v.8.0, together with CUDA v.11.2, which

supports all the required functionalities we need to realize (MP)N-GPU.
We choose our GPU implementation of Bitonic sort in the sorting step over the popular

libraries, such as CUB [NVI23b] or Modern GPU [NC23], as it provides much higher
performance for running many sort operations in parallel as needed by (MP)N-GPU. For
the same reason, we customize our prefix average implementation instead of relying on
CUB. We exploit NVIDIA’s Cooperative Groups API[NVI23a] for creating the coarse-
grained synchronization among the threads for the implementation of the bitonic sort
and prefix average operations and exploit GPU’s shared memory for storage.

For grid-stride loops, we use the kernel launch configuration that matches the hardware
architecture: on NVIDIA V100, we use 64 as grid size and 2560 as block size; on NVIDIA
A100, we also use 64 as grid size but use 3456 as the block size. Experiments validate
that these configurations provide the best performance.
We rely on the Stream Management API [NVI23d] in CUDA for implicit synchroniza-

tion (especially in the multi-tile code): all the data transfers and kernel executions rely
on CUDA streams. We use a maximum of 16 non-blocking streams on one GPU to avoid
running into memory consumption limits while keeping a high concurrency.
For FP64 and FP32, we only adopt the data format and simply use the same native

mathematical operators in C++. However, FP16, Mixed, and FP16C use the half

data type and corresponding intrinsics from the CUDA Math API [NVI23c], as there
are no native half-precision data types and operators in C++.

5.5 Practical Approach in Assessing Accuracy

Evaluation of reduced- and mixed-precision modes in (MP)N-GPU is a central piece of
this work, and therefore, we need to establish an accuracy assessment strategy. While in
classical HPC research and development, numerical accuracy is often considered, we also
consider the trends in the machine learning and data analytics world. We also consider
looking into what we call practical accuracy, i.e., to evaluate what the accuracy of a
given task (i.e., motif discovery) is when conducting matrix profile analysis using the
reduced- and mixed-precision modes. While in many cases, strict numerical accuracy
is necessary, in many applications, this is not the case, and having sufficient practical
accuracy could satisfy the needs (where we can successfully detect patterns and develop
accurate classifiers), despite the presence of numerical inaccuracies. We can argue the

2See Appendix A4 for pointers to the code.
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benefit of practical accuracy from the following angle: in the case that the repeating
patterns within a time series are perfectly identical, matching the patterns to any of the
identical patterns is sufficient. In this case, mathematical accuracy is overly strict. While
this argument applies to a very specific case, we cautiously state that the implications
can be general: application-specific accuracy (or simply practical accuracy) metrics can
better quantify the practicality of using reduced precision arithmetics compared to the
strict mathematical accuracy metrics.

We use the following accuracy metrics: the first set of accuracy metrics represents
the numerical accuracy of results, where to assess accuracy, we compare the numerical
differences (or better said, closeness) of results computed via an implementation, e.g.,
computed with a reduced- or mixed-precision mode, to the CPU-based reference:

• Relative accuracy (A ) [ZYZ+18]: the relative discrepancy between the matrix
profile computed with a reduced- or mixed-precision scheme and the reference FP64
calculation is considered as the relative error denoted as E , where 0 ≤ E ≤ 1. We
define A = 1− E as the relative accuracy, measured and reported in percentage.

• Recall rate (R) [CHP21, XB16]: we consider the ratio of the number of matching
(signum) matrix profile indices between the results computed by the approximate
method (ITi ) and exact computation (IEi ) divided by the total number of indices
(N −m+ 1) as recall rate.

R =
∑
i

signum(|IEi − ITi |)/(d× (n−m+ 1)) (5.1)

The second set of accuracy metrics provides the means for a practical accuracy eval-
uation. We specifically consider a specific use case of the matrix profile, e.g., motif
discovery or nearest neighbor-based classification of time series data. In these cases, we
focus on the actual accuracy in detecting target patterns or classification accuracy.

• Recall for embedded motif detection (Rpractical) [ZYZ+18]: for pattern detec-
tion cases, we quantify the number of successful matches of a specific pattern
retrieved by the matrix profile, e.g., when computed using our implementations
via a reduced- or mixed-precision mode.

• F-score for classification (Fclassification) [Tha20]: for classification, we further look
at the overall accuracy, F-score, of the classification when we use matrix profile
indices computed using our implementations via a reduced- or mixed-precision
mode. The F-score is the harmonic mean of precision and recall accuracy metrics.

5.6 Evaluation

We investigate accuracy and performance aspects and their trade-offs in various precision
modes.

The experiments are mainly conducted on a DGX-1 at Leibniz Supercomputing Cen-
tre [Cen23] with NVIDIA NVIDIA V100GPUs and nodes of the Raven supercomputer
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at Max Planck Computing and Data Facility [Max23], which includes NVIDIA Tesla
NVIDIA A100 GPUs. For the experiments, the configurations to launch all the ker-
nels are tuned to match the corresponding GPU hardware architectures: specifically, we
launch 163,840 threads on NVIDIA V100 (80 SMs · 64 warps · 32 threads), and 221,184
threads on NVIDIA A100 (108 SMs · 64 warps · 32 threads).
We use a synthetic dataset of multi-dimensional time series with 80 groups of param-

eter settings (different n, m, and d) for our performance and accuracy evaluation. We
observe that the execution time does not vary when based on the employed dataset and
stays consistent regardless of individual datasets; therefore, using synthetic datasets is
suitable as it allows us full control of the parameters. This dataset includes random noise
combined with injected repeating patterns at random locations, providing a reliable ba-
sis for pattern detection when we use practical accuracy analysis. See more details of
these patterns in the work of Ju et al. [JRY+22].
To ensure the stability and reproducibility of the experiments, we repeat each ex-

periment five times and analyze the arithmetic mean of the reported accuracy and
performance metrics. In fact, experiments show that (MP)N-GPU has stable numer-
ical performance and accuracy for every choice of the platform tested (NVIDIA V100,
NVIDIA A100, or H00) and for every tested precision mode. Therefore, we only report
the averages of measured metrics in this chapter.

5.6.1 Performance Evaluation

We conduct a number of experiments to evaluate the performance and accuracy of
(MP)N-GPUin order to answer the proposed research questions at the beginning of
this chapter.

5.6.1.1 Performance Overview

We start with examining the performance of (MP)N-GPU across different NVIDIA GPU
platforms and consider various generations of NVIDIA GPUs with Tesla architectures
for this purpose. These include NVIDIA V100 and NVIDIA A100 GPUs, as well as a
NVIDIA H100 GPU. We also compare the performance of the (MP)N-GPU code against
the SuperMUC-NG system. We conduct these experiments with FP64 mode to ensure
fair comparison among different implementations since not all of the implementations
support reduced-precision arithmetics.
We explore various configurations and parameters (e.g., number of records, dimension-

ality, and subsequence length), and discuss the total execution time as the performance
metric. The results of these experiments are summarized in Figure 5.4.
The first observation from Figure 5.4 is that configurations overall, (MP)N-GPU can

achieve about 3.9x, 6.5x, and 17.0x performance boost in double precision on a single
NVIDIA V100, NVIDIA A100, and NVIDIA H100 GPU cards, respectively, in compar-
ison to a single node of the SuperMUC-NG.
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Figure 5.4: Performance of multi-tile implementation with one tile across different generations
of NVIDIA GPUs in comparison to the CPU-based (MP)N.

Regardless of the explored size parameter settings, the GPU code provides faster
execution compared to CPU implementation. This statement is valid for the GPUs
and CPUs of roughly the same generations (ages).

The next observation is the performance behavior (characteristics) of the CPU and
GPU codes on different platforms, based on the angle of the lines on the log-log plots in
Figure 5.4: the execution time scales quadratically with the number of records (left plot
in Figure 5.4) and scales almost linear with dimensionality (in theory, the complexity of
the bitonic sort is d× log2(d) – middle plot in Figure 5.4). Moreover, the execution time
is independent of the subsequences’ length (Figure 5.4 right).

Overall, the performance characteristics of the CPU and GPU codes are similar,
preserving the characteristics in the family of matrix profile STOMP-based algo-
rithms.

Next, we look at the significance of each kernel based on its contribution to the total
run time of (MP)N-GPU.
Recapping Figure 5.4, we observe that both the number of records and dimensionality

in the input series have a direct influence on the total run time of (MP)N-GPU. Therefore,
we can assume that kernels that the distance computation (mainly influenced by the
number of the records) and sorting kernels (mainly influenced by the dimensionality),
might have different significance depending on the different configurations (e.g., different
number of the records and dimensionality). Therefore, in this experiment, we set the
number of records to a fixed value and investigate the significance of different kernels as
we increase the dimensionality.
Figure 5.5 demonstrates the results of this experiment. The first observation on this

plot is that for all the presented cases, the shares of distance computation kernel and
sorting kernel are fairly close as opposed to the CPU implementation where the run time
is highly dominated by sorting kernels (cf. Figure 4.7).
Next, as expected, we observe that the significance of the distance computation kernel

(streaming dot product) is higher in low-dimensional cases as opposed to the high-
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Figure 5.5: Kernel execution breakdown on NVIDIA A100 GPU.

dimensional cases where the performance starts to be dominated by the sorting kernels
(sort and prefix average). The reason for this behavior can be traced back to the
synchronization overhead in sort and prefix average, which increases with dimension-
ality, causing a slowdown in large dimensionality cases. However, it still outperforms
alternative sorting approaches due to the high utilization of the GPU hardware. This
argument is based on our previous work on the investigation of a primary version of
(MP)N-GPU for different implementations of the sorting kernels [JRS21].

We also look into the GPU utilization on an NVIDIA A100 GPU, and for that, we
again rely on NVIDIA Nsight Compute. All of the kernels running on the GPU show
memory-bound performance. For the large tiles (i.e., n ≥ 216), streaming dot product

and update matrix profile use over 80% DRAM and around 70% L2 cache bandwidth.
sort and prefix average uses over 80% L1/TEX cache bandwidth and around 70%
occupancy.

Similar to the CPU implementation, the performance of (MP)N-GPU is also bound
by memory bandwidth.

5.6.1.2 Reduced- and Mixed-Precision Performance

In the next experiment, we compare the performance of various reduced- and mixed-
precision modes and investigate how (MP)N-GPUin various precision modes scales on a
multi-GPU platform.

For this purpose, we run a set of experiments on the DGX-1 system precision mode as
parameters. Figure 5.6 shows the results of this experiment. As expected, lower preci-
sion modes show higher performance. However, the performance improvement does not
scale linearly with the number of bits used in corresponding data types. For instance,
going from FP64 to FP32 and from FP64 to FP16, the speedup are only 1.4x and 1.7x,
respectively. Looking at the details of the performance of each individual kernel, we
notice that all kernels scale almost linearly with the data type as expected, except for
sort and prefix average, whose performance is mainly dominated by repeating syn-
chronization overheads. Additionally, our implementation uses manual intrinsics and
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Figure 5.6: Execution time and efficiency of multi-tile implementations with 16 tiles on DGX-1
(n=216, d=28).

lacks the benefits of intensive automatic compiler optimizations. Finally, the perfor-
mance improvement for FP16, Mixed, and FP16C modes is similar, as their performance
difference that is mainly in precalculation is negligible.

The performance improvement in various reduced- and mixed-precision modes on
GPUs is limited to 1.7, while it can be, in theory, as large as 4.0 for FP16. This
limit is mainly due to the synchronizations within the bitonic sort kernels.

Resource utilization in FP32 modes is similar to FP64: in this mode streaming -

dot product uses around 60% DRAM bandwidth and update matrix profile uses
around 70% DRAM bandwidth and L2 cache bandwidth. sort and prefix average

uses around 40% L1/TEX cache bandwidth and around 70% compute (SM).
The hardware utilization in other reduced- and mixed-precision modes (FP16, Mixed,

and FP16C) is similar to each other: streaming dot product uses around 30% and up-

date matrix profile uses over 50% DRAM and L2 cache bandwidth. sort and pre-

fix average uses around 20% L1/TEX Cache bandwidth and around 70% occupancy.

Similar to the FP64 mode, the performance in reduced- and mixed-precision modes
stays memory-bound.

5.6.1.3 Scalability

On the same plot (Figure 5.6), we also look at the scalability of (MP)N-GPU on NVIDIA
A100 for various precision modes by the number of GPUs as the parameter. By looking
at the speedup values for different configurations, which are annotated on the bars in
Figure 5.6, we observe the linear scalability, although we also see inefficiencies when using
odd numbers of GPUs. We explain these inefficiencies based on the problem setup: since
in all these experiments, 16 tiles are used, maximum load balancing among the GPUs
and, therefore, perfect scaling is only possible when the number of GPUs is a factor
of the number of tiles. This inefficiency can be mitigated by increasing the number of
tiles assigned to all GPUs (i.e., reducing tile size). This comes with the potential extra
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overhead of tiling when the number of tiles gets large (we will elaborate on this in the
following subsections).
When one, two, four, and eight GPUs are used in double precision, our implementation

reaches over 88% parallel efficiency (speedup of 7.1). Also, the parallel efficiency stays
relatively high for the reduced- and mixed-precision modes (between 78% and 83%).

(MP)N-GPU has an acceptable speedup and efficiency when deployed to multi-GPU
systems.

5.6.2 Accuracy Evaluation

Next, we analyze the numerical accuracy and practical accuracy of multi-dimensional
matrix profile computation on GPUs using (MP)N-GPU according to the metrics intro-
duced in Section 5.5.

5.6.3 Numerical Accuracy

We run experiments on a single NVIDIA A100 card with various precision modes. As
we elaborate in the following paragraphs, the number of records directly impacts the
numerical accuracy; therefore, we also focus on the number of records as the main pa-
rameter in this experiment. A more detailed analysis of the influence of other parameters
(dimensionality and window size) on the numerical accuracy is reported in the work of
Ju et al. [JRY+22].

Figure 5.7 summarizes the results of this experiment. The FP64 mode on the GPU
can generate results identical to the CPU-based implementation. The FP32 mode also
results in a high accuracy of roughly 100%. Mixed and FP16C modes result in almost
the same accuracy compared to each other and twice the accuracy compared to FP16
mode. However, the numerical accuracy in all the reduced- and mixed-precision modes
lies below 60% for all the presented configurations, which is fairly poor.
As the FP16, Mixed, and FP16C modes cannot generate identical results compared

to the CPU-based code in the sense of numerical accuracy, we trace the inaccuracies in
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Figure 5.7: Numerical accuracy (Here only recall rate R) for the single-tile configuration of
(MP)N-GPU in processing synthetic datasets compared to the CPU-based imple-
mentation.
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the results to limited numerical accuracy of the half-precision for storage and arithmetic.
We take a closer look at the sources of these inaccuracies and attempt to mitigate them.
We have a look at the propagation of errors in streaming dot products. We can

describe the iterative computation of QT in Equation 4.6 over all the iterations (Line 3
in Pseudocode 3) as a large dot product and analyze its sensitivity to rounding errors,
based on the analysis provided by Yang et al. [YFS21]. In this analysis, the error bounds
for dot-product are proportional to the length of input vectors and machine precision:
e ∝ (n × ε). Therefore, by relying on this simple analysis, we can trace the numerical
inaccuracies in matrix profile computation in reduced- and mixed-precision modes to
machine error in floating point format and tile size.

• Machine error (ε): the single precision (ε32 = 2−23) and the half-precision (ε16 =
2−10) provide less accurate computation compared to the double precision (ε64 =
2−52). Since distance computation in matrix profile computation is performed in
a z-normalized domain, the distance values often have a limited dynamic range.
Therefore, accurate computation of the difference in distance of subsequence pairs
often comes down to having a small ε.

• Tile size: when employing the streaming dot product formulation, round-off error
in the computation of the distance matrix grows drastically with the size of the
tiles used. This effect is also visible in Figure 5.7. We observe that when reducing
the number of records in the time series (here, the number of records and tile size
are identical as we only have one tile), the accuracy of reduced and mixed-precision
modes increases (direction of arrows annotated on the bars).

Using smaller tiles can reduce the propagation of the numerical error for computing
the matrix profile with reduced- and mixed-precision.

This property can be combined with the tiling scheme in Pseudocode 6 to improve
the accuracy in reduced- and mixed-precision computation modes.

5.6.4 Practical Accuracy

So far, we only focused on the evaluation of the accuracy of (MP)N-GPU in the sense of
the mathematical difference between the approximate solution computed with (MP)N-
GPU and a canonical solution, i.e., computed on CPUs. However, as we discussed in
Section 5.5, in many applications, the practical accuracy can be sufficient.
We, therefore, focus on two illustrative examples to show the accuracy of (MP)N-

GPU in practice despite the mathematical inaccuracies. In the first example, we rely on
the accuracy for the detection of injected patterns, and in the second one, we rely on
the accuracy of classification.
We build the pattern detection example on top of the evaluation scheme proposed

and used by Zhu et al. [ZYZ+18]: we consider a predefined set of primitive shapes
and embed a predefined number of these primitives onto predefined random locations
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and dimensions. The practical accuracy evaluation quantifies the number of matching
primitives that are successfully derived from a matrix profile analysis, i.e., a recall value
Rpractical. For instance, in the simplest case, we consider a set of only one primitive, e.g.,
a sine pulse. Now let’s say we have a two-dimensional time series generated from white
noise, and we simply inject two of these sine pulses (P0 and P1) onto the two dimensions
and locate the start of these pulses at random locations, e.g., T0 and T1. This would
generate a two-dimensional time series, with a matching pair of one-dimensional motifs
located at T0 and T1. Now let’s assume that the canonical matrix profile computation
(i.e., on CPU with full precision) can successfully determine that the matching pair for
P0 is P1 and vice versa (both of them), which is most probably the case (that is, the
whole point of a matrix profile analysis in this scenario anyway). In the perfect case
where a reduced- or mixed-precision mode also detects the correct matches for both P0

and P1, it would have 100% accuracy (Rpractical = 100%) compared to the canonical
matrix profile analysis with full precision.

Now let’s describe the concrete scenario: we use a set of eight primitive patterns for
embedding, which are illustrated and marked with P0 − P7 in Figure 5.8. We inject
100 instances of one of these patterns (subsequence length is set to 64) into a random
multi-dimensional time series with 64K records and 64 dimensions at random locations.
With this setup, we compute the matrix profile of the canonical on CPU, which results
in 100% accurate detection of matching patterns for all of P0 − P7. Now we look at the
reduced- and mixed-precision computation modes: With the exception of P4 and P5,
where only 98% accuracy is achieved when employing FP16, Mixed, and FP16C modes,
all the reduced- and mixed-precision modes can achieve exact 100% practical accuracy,
i.e., they detect all injected patterns.

While this pattern embedding example is a simplified scenario, and in the real world,
the patterns, their shapes, and their embedding structure (e.g., in different locations
and dimensions) can be more complicated, we still consider this an illustrative example
to show: more exhaustive evaluation of practical accuracy for pattern detection goes
beyond the scope of this thesis, and we limit to this analysis.
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Figure 5.8: Practical accuracy (Rpractical) of single-tile implementation for pattern detection.
We plot the patterns with time as x-axis (x ∈ [0,m)) and the normalized values as
y-axis (y ∈ [−1, 1]).
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Figure 5.9: Accuracy (Fclassification) and performance of the nearest neighbor classifier with
respect to various precision modes on the HPC-ODA dataset.

In the second practical example, we look at the task of identifying (classifying) bench-
marks from operational data gathered from real-world monitoring of benchmark runs on
an HPC system. In this example, we employ a nearest neighbors classifier to the matrix
profile index and compare the classification accuracy in practice when the matrix profile
is computed with full or reduced precision arithmetics.

We exploit the Application Classification segment of a public HPC-ODA dataset
[Net20] (see Chapter 2 for more details on this dataset). This dataset includes labeled
performance data collected while running different benchmarks (HPL, AMG, etc.) on
16 compute nodes for one day with one HZ sampling rate. We select 16 distinct sensors
(performance metrics) on different nodes (e.g., cache miss rates, branch instructions) for
the multi-dimensional matrix profile analysis and split the dataset along time into two
portions, a reference set and a query set, each of which includes continuous operational
data for half a day. We conduct the matrix profile analysis with different precision modes
and build a simple classical nearest neighbor classifier on top of the matrix profile index:
the classifier identifies the matching subsequences using the matrix profile index and uses
the labels of the segments in the reference set to determine the application class of the
segments in the query set. In essence, this simple model only requires the computation
of the matrix profile (index) to work, and we can consider the matrix profile computation
as its training step.

As shown in Figure 5.9 left, while the accuracy of the classifier is reduced slightly with
reduced- and mixed-precision modes, for the Mixed and FP16C modes, it is still over
95%, and even FP16 also reaches almost 90%. In Figure 5.9 right, a slight performance
increase is visible when exploiting reduced- and mixed-precision modes despite the small
size of the HPC-ODA dataset. The reason for this minimal performance improvement
is that the HPC-ODA is relatively small, and therefore, the performance advantages of
reduced- and mixed-precision computation modes that we discussed before do not kick
in fully here.

Despite the numerical inaccuracies (i.e., in the sense of mathematical inaccuracy),
(MP)N-GPU, with reduced- and mixed-precision, can deliver precise pattern detec-
tion and classification in practice (i.e., in the sense of practical accuracy).
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5.6.5 Accuracy-Performance trade-off

In Section 5.6.2, we showed that the mathematical accuracy relates to the tile size. In
particular, increasing the tile size can lead to less accurate results. Additionally, the
tiling scheme can be used as an accuracy mitigation scheme. The idea is to use more but
smaller tiles on the GPUs. Also, the final merging of tiles in the current implementation
of (MP)N-GPU is executed by the CPU (see Pseudocode 6), which results in an overhead
increase when the number of tiles increases. This implementation (i.e., with merging on
CPU) would potentially also have extra overhead in the tiling mechanism: as the number
of tiles increases, more data movement rounds by the tiling scheme are performed. Also,
as tile sizes are reduced, the amount of work per tile and, thus, the time to compute a
tile is reduced. Although data movements are executed asynchronously to the kernel,
movement latencies and overheads can potentially show up as the tiles get smaller.

In the final experiment in this chapter, we take a look at these performance-accuracy
trade-offs. We conduct an experiment to study the Accuracy-Performance trade-off
(Figure 5.10) by increasing the number of tiles from 1 to 1,024 (and reducing the tile
size accordingly).

Using more tiles increases the numerical accuracy for FP16, Mixed, and FP16C modes.
This experiment is also in accordance with the results presented in Figure 5.7 and the
following discussion regarding the direct relation between the error propagation and tile
sizes. At the same time, ignoring the initial performance boost from 1 tile to 256 tiles
that is due to the concurrency invoked by using multiple streams in the implicit synchro-
nization scheme (i.e., CUDA streams), increasing the number of tiles has a slight negative
impact on the execution time (as expected). However, in a special configuration, using
256 tiles allows FP16, Mixed, and FP16C modes to have 2x accuracy improvement and
an even shorter total execution time compared to a one-tile run. With this configuration,
Mixed and FP16C modes reach almost 80% accuracy with 256 tiles. Also note that the
overhead of the merging step is negligible for large problems, leading us to an overall
more efficient configuration.
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Figure 5.10: Accuracy-Performance trade-offs of multi-tile implementations on one NVIDIA
A100 GPU with increasing number of tiles. (n=216, d=26, m=26). The size of
the markers indicates the number of tiles ntile. We annotate arrows next to the
data to indicate the direction of the increase in the number of tiles.
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5.7 Summary

Overall, using more tiles is a plausible setting due to the accuracy boost and the
insignificant performance drop.

5.7 Summary

In this chapter, we presented a GPU-based approach to accelerate multi-dimensional ma-
trix profile computation. We discussed the design and implementation of this approach
and introduced various reduced- and mixed-precision modes for multi-dimensional ma-
trix profile computation. We conducted extensive accuracy and performance measure-
ment experiments and demonstrated performance, characteristics, accuracy of reduced
and mixed-precision computation schemes, and their performance-accuracy trade-off.

While other data formats, such as TF32 and BFLOAT16, might sound interesting to
investigate (we also extended (MP)N-GPU with BFLOAT16), our further investigations
(not reported in this work) suggest that these formats are not beneficial for matrix profile
computation. Relying on the discussion in Section 5.6.2, these formats do not provide
a wider mantissa, and the wider dynamic range compared to FP16 in these formats is
not often helpful in multi-dimensional matrix profile computation. At least they do not
make any improvement to the results of the experiments we presented in this chapter.
Overall, the solution presented in this chapter (multi-GPU + reduced precision arith-

metics + tiling) demonstrates efficient and accurate data mining with reduced precision
arithmetics. This solution is a significant step towards more efficient HPDA for time
series analysis and pushes the limits of state-of-the-art significantly.
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6 Other Tackling Point; Algorithmic
Approach for High-Performance
Similarity Mining

The approach described in this chapter was previously published in [ISC’23], where
the author of this thesis made major contributions to the contents, including the
development of the prototype codes, and evaluations.

6.1 Motivation

In the previous chapter, we focused on (MP)N and (MP)N-GPU to enable time series
mining using matrix profiles on modern HPC systems with high performance. The
approaches we discussed in the chapters (i.e., (MP)N and (MP)N-GPU) are built on top of
the existing well-established methods for matrix profile computation, e.g., STOMP and
mSTAMP. In particular, they mainly use streaming dot product formulation [Nes23] at
their core. These approaches mainly focus on scalability and performance improvements
using well-established HPC methods and techniques.

However, the HPC community is well aware of the critical role that software inno-
vations and algorithmic improvements play in moving HPC applications forward while
settling in the exascale era [Pod]. This highlights the importance of using suitable parallel
algorithms and tools on large-scale HPC systems to meet the processing speed, efficiency,
and memory requirements, e.g., in matrix profile computation, for large datasets as they
appear in real-world use cases. This importance also drove us to revisit the problem
of computing the matrix profile on HPC systems from a different angle. We already
discussed in previous chapters (e.g., in Chapter 2) that matrix profile computation, in
essence, is nothing different from solving the nearest neighbors problem associated with

the subsequence similarities (i.e., T r ⋊⋉k m
1nn T q, see Definition 15). The nearest neigh-

bors computation problem has been around for a while and has been visited by the HPC
community in various works. This includes various approaches for addressing large-scale
nearest-neighbor problems and approximate tree-based methods (see Chapter 2). To the
best of our knowledge, no research in the literature focuses on investigating and applying
such approaches and techniques to matrix profile computation. In particular, no research
has been conducted to employ data structures like trees to prune the search space as-
sociated with the nearest neighbor search operations during matrix profile computation
to reduce computational costs and to target large-scale problems on HPC systems.
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6.1 Motivation

In this chapter, we take one step back and look at the matrix profile computation
in a single-dimensional case to establish a base for employing existing methods and
techniques in the HPC community for computing the matrix profile. With this, we
move away from the streaming dot product, i.e., STOMP-based formulations that have
both benefits and shortcomings: specifically, we observe in the last chapter that the
streaming dot product formulation is the source of the presence of error propagation
in reduced and mixed-precision computation schemes. However, we are also aware that
this formulation reduces the computational costs significantly. Therefore, as a first
step in the investigation of alternative methods, we leverage an approximate tree-based
method for the computation of matrix profiles to look into the performance benefits and
performance-accuracy trade-offs for such alternatives.

The state-of-the-art STOMP-based methods for computing the nearest-neighbors prob-
lem associated with matrix profile computation are based on exhaustive search opera-
tions [YZU+16, YZU+16, HHvW+20]. In these approaches, the computational costs
scale quadratically with the size of the datasets (i.e., the number of records). These
methods typically try to mitigate these computational costs by extensive arithmetic opti-
mizations of compute kernels [ZYZ+18], the use of accelerators in computation [ZZS+18,
JRY+22], and deployment on a cloud-based [ZKS+19] or an HPC system [RKY+20,
Pfe19]. However, these exact solutions are generally inefficient for large datasets due
to the quadratic scaling of computational costs. On the other hand, approximate ap-
proaches [ZYZ+18, SZSF+19] are drawing increasing attention as they can provide solu-
tions that are much more efficient to compute while being also accurate enough in prac-
tice. SCRIMP++ [ZYZ+18] relies on estimating the solution by computing the matrix
profile index on a subset of the input dataset and refining the solution. LAMP [SZSF+19]
computes a prediction of matrix profile index using a pre-trained deep neural network
model. DAMP [LWM+22] is a special solution designed for the computation of time
series discords. All these approaches [ZYZ+18, SZSF+19, LWM+22] still suffer from
various limitations, including excessive computational costs, being restricted to specific
application scenarios, or lacking a suitable parallelization scheme.

In this chapter, we build and expand on the family of iterative approximate nearest-
neighbors [Cla83] algorithms relying on tree data structures and randomized schemes
[Ben75, AMN+98] to prune the search space and reduce computational costs. This al-
lows for an approximate solution that its computational costs scale sub-quadratically
with the size of the input time series while keeping the general applicability to differ-
ent application scenarios of matrix profile methods. We address computation for large
datasets, target large-scale CPU-based HPC systems, and use weak scaling as the relevant
scenario to scale to larger datasets. We demonstrate that, when applied to matrix profile
computation in weak scaling, the state-of-the-art nearest neighbor approach [XB16] suf-
fers from massive communication overheads. We address these scaling challenges arising
from these communication overheads as the core contribution in this chapter.

We specifically introduce two optimizations to address scaling challenges: 1) we stager
the stages of the nearest neighbor computation algorithm in consecutive iterations in a
pipeline fashion to overlap the construction of the parallel tree data structure and the
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6 Other Tackling Point; Algorithmic Approach for High-Performance Similarity Mining

follow-on search operations; and 2) we enable control over the granularity of parallelism
by constructing a forest of parallel trees on smaller ensembles of resources.
Overall, our tree-based solution enables us to exploit and explore the logarithmic

nature of tree-based nearest-neighbor schemes for the first time in matrix profile com-
putation. Combined with the scaling so optimizations, we achieve a scalable solution
capable of solving large-scale real-world use cases on HPC systems.
We therefore consider the following research questions (RQs) to structure the discus-

sions in the rest of this chapter.

6.2 Research Questions

• RQ: can we quantify the benefits and trade-offs for the tree-based approach in
comparison to the existing approximate approaches?

• RQ: how does the tree-based approach scale on HPC systems, and what are the
sources of scaling overheads?

• RQ: how do the proposed optimization mechanisms affect the overheads, and how
do they interplay?

• RQ: how does the tree-based approach scale overall?

To answer these questions, we make the following contributions:

1. We develop and apply an iterative tree-based nearest neighbor algorithm for the
approximate computation of the matrix profile.

2. We perform a detailed analysis of the performance, accuracy, and scaling behavior
of the iterative tree-based approach and demonstrate its benefits.

3. We extend the state-of-the-art iterative nearest neighbor with a combination of
a pipelining mechanism and creating a forest of trees to scale the matrix profile
computation on the HPC systems.

4. We demonstrate the region of benefit where the tree-based approach is superior to
alternatives when applied to real-world datasets and scenarios.

We further demonstrate that, when compared to the prior art, the proposed opti-
mizations improve the scalability of the tree-based matrix profile computation on HPC
systems by boosting the parallel efficiency significantly. In particular, when increasing
the resources by three orders of magnitude on the SuperMUC-NG system, the prior
art suffers drastically from scaling bottleneck, and our optimizations double the parallel
efficiency for this setting.
We also showcase the performance of our approach for large-scale problems by com-

puting the approximate matrix profile for a time series with one billion records on 48K
cores of the system with 99% accuracy in under 20 minutes, which is 3-100 times faster
than other alternative approaches.
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6.3 Taxonomy of Methods for Computing the Matrix Profiles

6.3 Taxonomy of Methods for Computing the Matrix Profiles

To better understand the relationship between the tree approach we are presenting in
this chapter and the existing work in the literature, we provide a taxonomy of methods.
We identify four main categories of approaches in the literature that relate to this work:
Figure 6.1 illustrates various approaches and visualizes these categories on a schematic
accuracy-efficiency trade-off graph.

6.3.1 Exact Methods

The state-of-the-art exact method ( Blue Region in Fig 6.1) for computing the ma-

trix profile, the SCAMP [ZKS+19] algorithm, offers O(n2) complexity. SCAMP exploits
GPUs for accelerated computation and targets Cloud environments. Zhu et al. [ZYZ+18]
propose SCRIMP, which is also an exact approach and has similar computational proper-
ties to SCAMP. This approach is further extended and deployed on HPC systems [Pfe19].
Approximate approaches (such as the tree-based approach) suggest reasonable alterna-
tives to reduce computational costs.

6.3.2 Approximate Methods

Zhu et al. propose the approximate methods ( Red Region in Fig 6.1), PreSCRIMP,

and SCRIMP++ [ZYZ+18]. Although PreSCRIMP is introduced as a preprocessing step
for the SCRIMP++ algorithm, it stands as a standalone approximate solution as well.
SCRIMP++ itself is both an exact and approximate solution that iteratively refines an
initial approximate solution computed using PreSCRIMP. However, despite the promis-
ing results and properties, none of them accomplish sub-quadratic computational costs.
LAMP [SZSF+19] uses a neural network model to approximate matrix profile indices.
Although this approach achieves significant speedups in comparison to exact solutions, it
targets computation of matrix profile for data streams in real-time settings and, there-
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Figure 6.1: Overview of various methods representing their trade-off in accuracy vs. computa-
tional efficiency
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fore, is not ideal for batch processing of large-scale datasets. Moreover, the authors
clarify that the accuracy (e.g., false-positive rates) significantly depends on the quality
of a reference dataset used to train the model. Finally, Zimmerman et al. [ZKS+19]
investigate the approximation of a matrix profile using reduced-precision computation
and conclude that a single-precision computation suffers from a significant loss of ac-
curacy. Our investigations suggest that this loss mainly stems from the propagation of
numerical errors in the streaming dot product formulation used as the core in all existing
methods [JRY+22]. None of the above-mentioned limitations applies to the tree-based
approach.

6.3.3 Tree-based Nearest Neighbor Methods

Tree data structures traditionally are used to accelerate ModSim computations in HPC:
Barnes-Hut [BH86] and Fast Multipole Methods [Rok85] are examples of such algorithms
that have been used to mainly speedup force computations in N-body problems. These
algorithms constantly attract attention in other fields, e.g., in the field of data analytics,
where, for instance, Van Der Maaten [VDM14] exploits a Barnes-Hut method to acceler-
ate the t-SNE method. The family of nearest-neighbors problems has also benefited from
tree data structures for many years [AMN+98]. These problems are proven to gain “sub-
stantial speedups” [VDM14] by exploiting tree data structures, such as KD-trees [Cur15].
Xiao et al. [XB16] use parallel randomized KD-trees to solve nearest-neighbors problems
with approximation targeting high-dimensional datasets and show that, in case of low
intrinsic dimensionality in the dataset, their approach can solve nearest-neighbors in an
exact fashion in linearithmic time. Although the dual-tree algorithms are the “fastest
known way to perform nearest-neighbor search” [Cur15], their distributed memory sup-
port is limited, and studies are restricted to smaller dimensionalities [SHWG15]. Further,
a distributed memory approach based on dual-tree methods would result in similar over-
heads (e.g., overheads in tree construction and not only search overheads), which we
address in our work. Overall, the tree approaches ( Green Region in Fig 6.1) remain
viable to be employed for matrix profile computation.

6.3.4 Methods Targeting HPC Systems

Among all the approaches discussed, only SCRIMP is deployed on large-scale HPC
systems (Encircled in dashed ellipses in Fig 6.1). However, it is still implemented as
an exact approach with O(n2) computational costs.

Despite the long history, there are limited nearest neighbor methods that leverage
tree data structures while targeting the deployment on HPC systems: main approaches
are FLANN [ML14], PANDA [PSS+16], and RKDT [XB16, YHA+15]. Among these,
RKDT approach [XB16, YHA+15] is well-studied on distributed memory systems and
works well on large datasets with fairly high dimensionality (which is a requirement
in the case of matrix profile computation), and therefore is used as the base of the
work presented in this chapter. However, as we discuss later, this approach still suffers
from various efficiencies in the scope of matrix profile computation. In this chapter, we
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experimentally demonstrate these inefficiencies and provide algorithmic redesigns and
optimizations to enable a more scalable tree-based matrix profile computation on HPC
systems.

6.4 Benefits of Employing Approximation and Trees for Matrix
Profile Computation

Computing the matrix profile for two input time series, each including n records (n) re-
quire O(m · n2) computation corresponding to the cost to compute the distance matrix.
However, state-of-the-art methods (e.g., SCRIMP++ [ZYZ+18]) achieve this in O(n2)
by using the streaming dot product formulation for distance computation. Tree-based
methods cannot benefit from this formulation; however, they can prune parts of the com-
putation of elements in the distance matrix that are less likely to be needed, rendering
sub-quadratic costs in n while keeping the linear cost in m. Therefore, based on subse-
quence length (m) as a parameter, the tree-based approach has a performance trade-off
that is not present in the state-of-the-art exact methods: in STOMP-based methods,
the run time does not scale with the subsequence lengths, which is a beneficial feature
for the analysis of arbitrarily large sequences and patterns. The tree-based approach
trades this property in favor of enabling fast analysis of larger time series. With such a
trade-off, this method becomes beneficial for the cases where the number of records n is
large (e.g., n > 1, 000, 000), and the window size is relatively small (also see the problem
settings in the work of Lu et al. [LWM+22]). Additionally, problems with large window
sizes are not the ideal setting for tree-based approaches, and the efficiency of the tree
data structure might be suboptimal due to the curse of dimensionality [JOR11, XB16]:
trees are known to degenerate for high dimensional cases and, hence, are less effective
for nearest neighbor computations in high dimensional settings. Still, commonly, ap-
proximate methods [XB16] remain effective even in relatively high dimensional settings
(depending on the properties of datasets), where this dimensionality can grow and reach
100s to 1,000s. This is sufficient to cover many use cases appearing in real-world sce-
narios. Additionally, we still argue that cases with extremely large window sizes, e.g.,
m > 10, 000 (e.g., scenarios reported in this work of Zhu et al. [ZYZ+18]), are typically
over-sampled scenarios and can be downsampled and mapped to problems with much
smaller window sizes, where the tree-based approach can still be advantageous. We shed
light on this trade-off in practice in this chapter.

Moreover, in the approximate case, only parts of retrieved neighbors match the exact
reference segments; an approximate method sacrifices the accuracy of retrieved results in
favor of computational efficiency. Consequently, there is a trade-off between the accuracy
and computational efficiency of methods (see Figure 6.1 – more details in Section 6.8.2).

6.4.1 Potentials of Tree-based Methods

In real-world cases, we are increasingly dealing with larger datasets, and billions of
records in these time series are becoming common. In such scenarios, it is increasingly
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Figure 6.2: Tree-based approach compared to the classical SCRIMP++ method, both itera-
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important to provide the community with algorithms that can facilitate the analysis of
such a large number of records. Tree-based approaches can be particularly beneficial in
these cases and can provide sufficiently accurate approximate solutions with much better
computational efficiency compared to the state-of-the-art. No method in the literature
exploits tree-based nearest-neighbors in the context of matrix profile computations, and
our work demonstrates the benefits (see Figure 6.2). In particular, in Figure 6.2, we
observe the rapid convergence of a tree-based approach employed for matrix profile
computation compared to SCRIMP++.

Additionally, the state-of-the-art tree-based method [XB16] suffers from inefficiency
in weak scaling when applied to matrix profile computation (See Figure 6.3). Conse-
quently, when exploiting these methods, computing the matrix profile for larger time
series becomes inefficient as we increase the size of input datasets along with the num-
ber of resources. In our work, we explicitly focus on the scalability issues and provide
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Figure 6.3: Weak scaling of the forefront tree-based nearest-neighbor method used for matrix
profile computation.
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optimization methods to improve the scalability of tree-based approaches. With these
optimizations, we are able to compute the matrix profiles for large datasets more effi-
ciently.

Nevertheless, as we are targeting large time series, the tree-based method is demand-
ing with respect to compute, memory, and networking resources, and therefore we are
targeting HPC systems. However, given accuracy, and computational efficiency, the
tree-based approach is highly beneficial and competitive.

6.5 Parallel Tree-based Approach

In this section, we move to a parallel setting targeting distributed memory systems.
We will regularly use underlined words similar to “parallelization” to highlight when
a scheme or term only applies to this setting (i.e., it is only applicable in the case of
the parallel scheme). Additionally, we highlight parts in text or Pseudocodes that are
affected and mitigated by our optimization schemes in red. Finally, we highlight regions
of codes (Phases) in different text blocks with background colors in green, red, and blue.
This helps to infer correspondences between the text and the elements in pseudocodes
more easily.

However, before discussing the parallelization scheme, we first elaborate on the ap-
proach tree approach itself. We consider reference and query time series TR ∈ Rr and
TQ ∈ Rq, and subsequence length m.

Pseudocode 7 Computation of matrix profile based on randomized KD-tree in parallel .

Input: The reference and query time series TR and TQ.

Output: The matrix profile P and index I.

1: I ← {-1}, P ← {∞}
2: R, Q = sliding window and znormalize distribute (TR, TQ)

3: for i ←0 to T do in parallel on pipes and on ensembles

4: S0 = random direction broadcast () ▷ Phase 1 (P1)

5: Rrot0 , Qrot0 = random transform parallel (R, Q, S0)

6: for l←0 to L do on ensembles

7: medl = max var quick select (Rrotl , Sl) ▷ Phase 2 (P2)

8: Sl+1,R
rot
l+1, Qrotl+1 = split redist balance (Rrotl , Qrotl , medl)

9: end for

10: for leaf in tree leaves do eagerly

11: Ii Pi = NN parallel (Qrotleaf ,Rrotleaf) ▷ Phase 3 (P3)

12: end for

13: I, P = merge iteration results all2all (I, Ii, P, Pi)

14: end for
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The first step is to address matrix profile computation with Nearest Neighbor (NN)
join formulations. For that, we represent the time series windows (subsequences) as a set
of objects for the nearest neighbor join operation. Therefore, we derive two datasets R ∈
Rr×m and Q ∈ Rq×m (corresponding to the reference and query time series, respectively)
by sliding windows of size m on each time series (Line 2 in Pseudocode 7). We include
all the generated subsequences in R and Q and run the nearest neighbor computation

to solve the corresponding nearest neighbor join (R ⋊⋉1 m
1nn Q). The output of this

join operation is the matrix profile (see Chapter 2 for more details).

This computation can be addressed using an iterative and pruned method instead of
directly solving NN (R,Q) by computing pairwise distances and streaming dot product
formulation. For that, often KD-tree data structures are employed. In Pseudocode 7, we
provide a method based on the approach by Xiao et al. [XB16] adopted to compute the
matrix profile. In this approach, in each iteration, nearest neighbors are computed at
the leaves of the tree in a greedy fashion (Line 11), and the partial iteration results are
iteratively updated (merged) to shape the resulting matrix profile and index (Line 13).
This iterative process continues for a predefined number of iterations or until a certain
accuracy level estimation is reached.

This approach starts with initializing the resulting matrix profile (P and I) to neutral
values (Line 1). Next, the two input datasets R and Q are computed by applying sliding
windows on the input series and z-normalizing each sample (Line 2). In multiple itera-
tions (Line 3), the input datasets (Rrot and Qrot) are randomly (actually “reflected” as
we employ a householder transformation instead of a rotation matrix) rotated (Phase 1).
Specifically, a householder transformation is applied to both the reference and query sets
(Lines 4-5). In each iteration, a tree is constructed (Lines 6-8, Phase 2) on top of the
rotated datasets, where at each level of the tree (Line 6), Rrot and Qrot are partitioned
(Line 8) into smaller subsets based on the median (Line 7) of the principal direction (i.e.,
the direction with maximum variance). After building the tree, a pruned nearest neigh-
bor in each leaf of the tree is solved, which exploits BLAS (DGEMM) operations (i.e.,
greedy search on leaves – Line 10). At the end of each iteration, the partial results of
iterations are merged (Line 13, Phase 3) using element-wise minimum and arg-minimum
operations (refer to Chapter 2 for a brief background on these operations).

From hereon, we move to a parallel setting where we realize the same scheme pro-
posed by Xiao et al. [XB16] to leverage, e.g., multi-processing and message passing. We
improve this approach with extra optimization mechanisms. In this approach, a dis-
tributed tree data structure is constructed to collocate the reference and query points
with the most similarity in the leaf in each node/process. The reference and query
sets (Q and R) are statically partitioned and distributed accordingly among different
nodes/processes initially. During the iterations, these sets are repartitioned and shuffled
around in parallel to construct the tree, i.e., to bring similar reference and query data
in the same nodes/processes of the tree (Lines 7 and 8 in parallel). Then, the matrix
profile computation is reduced to a series of BLAS operations (DGEMM) in the leaves
of the tree running on different nodes/processes in parallel (Line 11).
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6.6 Scalability Challenges and Overcoming Them

The parallel approach requires static partitioning of reference and query sets (distribute
in Line 2), broadcasting the transformation direction (in Line 4), a series of reductions
and pair-wise data exchanges as part of distributed approximate quick select method
used to compute medians (Line 7). The reference and query sets are split according
to the median value and reshuffled (redistribute and balance) using a series of pair-
wise exchanges during the construction of the tree (Line 8). Furthermore, an additional
all-to-all operation in Line 13 is used to merge iteration results Pi and Ii. This brings
the resulting Pi and Ii to the right process/node, where the original reference sets are
residing according to the static partitioning in the first step, and finally, it merges the
results using element-wise comparisons.
All these mechanisms add extra communication overhead at scale. These overheads

under the matrix profile setting running on a large number of nodes are extreme. In such
settings, communication overheads dominate the run time, in comparison to the time
spent on transformation and DGEMM operations that run fully in parallel. In more
detail, in large scenarios (at scale), the run time of the all-to-all collectives in merge -

iteration results all2all grow drastically and dominate the overall run time. Ad-
ditionally, the pairwise exchanges in split redist balance, as well as the reductions
in max var quick select, are another major scaling bottleneck. For instance, our eval-
uations show that these overheads combined comprise ≈50% of the run time for large
jobs (see Section 6.8 for a detailed analysis of the overheads).
We provide two complementary mechanisms to mitigate these extra overheads:

1. Based on the analysis of these overheads (see Section 6.8), we identify three Phases
(see Section 6.5), denoted as P1, P2, and P3, in Pseudocode 7 (highlighted from
top to bottom in green, red and blue) and introduce a scheme to stager the phases
of iterations in a pipelining fashion (by adjusting Line 3 in Pseudocode 7).
This allows for concurrent and partial execution of multiple iterations, resulting in
the overlap of communication and computation of multiple phases and, therefore,
hiding the communication latencies of the phases. This approach is, in particular,
effective in reducing the latencies of all-to-all collectives.

2. Complementary to the pipelining mechanism, we create a forest of trees on mul-
tiple exclusive ensembles of resources (by adjusting Line 3 in Pseudocode 7).
Overall, this allows to coarsen the granularity of parallelism and therefore re-
duces the communication overheads. This approach is particularly effective in
reducing the communication costs in the series of pairwise exchanges in split -

redist balance, and the series of reductions in max var quick select.

6.6.1 Pipelining Mechanism

We introduce a pipelining mechanism [CCGV19] to stagger the communication within
the phases in iterations of Pseudocode 7. This pipelining mechanism enables commu-
nication/computation overlap for multiple (enough) iterations. The intention is not to
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Figure 6.4: Pipelining the iteration phases (P1, P2, and P3) in Pseudocode 7. Blocking wait

operations for phases are annotated with WP1 , WP2 , and WP3 .

introduce more compute parallelism but rather optimize the existing parallelization by
hiding communication latencies.

Such pipelining mechanisms are well-known techniques for hiding communication la-
tencies of phases in parallel SPMD applications. Specifically, the shallow pipeline with
a length of one, i.e., staggering a computation and a communication phase is a straight-
forward optimization in parallel programs and is typically enabled through non-blocking
communication calls. In the case of the tree-based matrix profile computation, lengthier
(i.e., deep enough) pipelines are required to enable latency hiding on a larger setup: for
the runs on large portions of the HPC systems, the network latency become the bottle-
neck (e.g., in a fat-tree network topology of the target system). In this case, staggering
multiple phases and/or deeper pipelines is beneficial.

Figure 6.4 provides a simplified schematic representation for this pipelining scheme.
We illustrate how the phases of Pseudocode 7 are pipelined, where the benefit of deeper
pipelines is visible. While this pipelining mechanism applies to an SPMD program, for
simplification, we are only sketching the pipeline for the phases spawned by a single
execution process (i.e., a single MPI process). We use the parameter l to represent
the pipeline length (depth), as the main configuration setting for the pipelining mech-
anism, allowing for flexible pipelining of multiple (l) iterations. l is set to three for the
sketch in Figure 6.4. The value of l is set according to the experimental setup and tuned
based on the overall scale of the problem and the performance behavior on the system.
Each phase consists of a blocking wait call (annotated with WP in Figure 6.4) to ensure
the completion of communications of a phase at the start of its successive phase.

Figure 6.5 provides more details about this pipelining mechanism: in fact, the pipelin-
ing mechanism can have a potential drawback in the performance of the phases that are,
in the end, co-scheduled for concurrent execution on the same computing resources. An
example of such a scenario is illustrated in Figure 6.5 left A . We are explicitly pre-
venting this scenario to avoid the concurrent execution of multiple phases on the same
resource. Moreover, in our evaluations, we observe that the all-to-all communications
(i.e., wait operations corresponding to MPI Ialltoall) cause major communication bot-
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Figure 6.5: A : a scenario with potential performance drawbacks due to concurrent execution
of P1 and P2 on the same resource. B : more realistic sketch of the pipeline and
latencies.

tlenecks at large scale. Therefore, at this stage, we end up with a pipeline that looks
like the sketch in Figure 6.5 right B . Overall, the pipelining mechanism staggers the
all-to-all communication latencies along with the computation of other phases. This
allows the overlapping of computation and the aforementioned all-to-all communication
latencies and prevents the run time from being dominated by the all-to-all latencies in
large jobs.

Pseudocode 8 describes the pipelining mechanism in more detail. However, for con-
ciseness, we only present the pipelining mechanism for Phase 3, i.e., merge iteration -

results all2all. Specifically, we discuss the non-blocking all-to-all communications
and their corresponding wait operation (the same can be applied to other phases as
well). In Line 1, we initialize the wait handles as well as separate buffers to enable con-
current execution of l iterations. In Line 2, we start the main iteration loop in which the
iterator i is incremented by the pipeLine length l. A nested loop triggers the concurrent
execution of l iterations (Line 7). In particular, in the j loop in Line 7, after calling to
merge iteration results, the asynchronous communications are spawned (l times).
We then call the corresponding wait operations wait all pipes (wait handles p3) in
the next iteration of the i loop at the latest point possible.

Pseudocode 8 Pipeline mechanism to stagger the all-to-all communications

Configuration (l) represents the pipeline depth.

1: wait handles p3 = Initialize pipeline ()

2: for i←0 to T+l with step l do in pipes

3: ... ▷End of P1

4: wait all pipes (syn handles p3) ▷Wait WP3

5: ... ▷End of P2

6: ... ▷(Details are removed) P3

7: for j ← 0 to l do concurrently

8: merge iteration results()

9: launch comms async (wait handles p3[j]) ▷Trigger Comm P3

10: end for
11: end for
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As we target HPC systems, the pipelining mechanism described in Pseudocode 8 is
realized using MPI, leveraging non-blocking all-to-all communication, i.e., in Phase 3,
MPI Ialltoall and MPI Waitall operations are used.

6.6.2 Forest of Trees on Ensembles of Resources

While pipelining is promising for improving the performance of Phases 2 and Phase
3, it is not suitable for the optimization of the communication in Phase 2, namely
staggering the communications in the series of reductions and pair-wise data exchanges
(redistribute and balance) during the tree construction and embedding phase (2):
the main reason is that pipelining the tree construction loop in Line 6 in Pseudocode 7,
requires another level of nested pipelining due to the dependency of the iterations of
this loop. However, creating another pipeline level would be infeasible in practice due to
excessive memory consumption overheads of nested pipes, as each level of the pipeline
requires the allocation of extra buffers.

We take a different approach to address these overheads. The key idea here is to utilize
the parallelism in the outermost loop at Line 2 of Pseudocode 7. Therefore, instead of
using all the resources for constructing a single tree (Figure 6.6 left), we construct a
forest of multiple trees of a certain size (four in Figure 6.6 right) which works in parallel
on exclusive ensemble of resources (nodes/processes). Each tree is built on an (exclusive)
subset of resources (nodes/processes) and runs in parallel to other trees. For example,
in Figure 6.6 right, the illustrated work corresponds to four iterations, each assigned to
one of the four ensembles, which then run independently in parallel. The idea resembles
the class of parallel in-time [HSM20] methods, where the time dimension in solvers
(main iteration loop) is used as an extra knob for parallelization. However, since there
is no explicit time discretization applied here and the iterations are randomized, there
is no dependency between iterations, and therefore, the parallelization is even simpler.
Therefore, when employing the forest mechanism, the math and underlying structure of
the computation approach presented in Pseudocode 7 stays the same.

ensemble 0 ensemble 1 ensemble 2 ensemble 3
B: Forest of parallel treesA: Single parallel tree

Figure 6.6: Single parallel tree vs. forest of trees. Pink circles represent the resources, e.g.,
processes. Rectangular enclosures with unique colors represent the communication
contexts (i.e., MPI communicators) at different levels of a parallel tree. Each par-
allel tree is represented by a hierarchy of boxes with a unique color.
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Pseudocode 9 Forest of trees on ensembles of resources

Configuration (e) represents the number of ensembles.

1: C ensemble, C trans = create ensemble comm context (e)

2: Part = partition iterations (e)

3: for itere = Part.start to Part.end do on ensembles

4: ... ▷Run P1 on C ensemble

5: ... ▷Run P2 on C ensemble

6: Ie, Pe = P3 (C ensemble) ▷Run P3 on C ensemble

7: end for

8: I, P = merge partial results ({Ie ,Pe}, C trans)

Since nodes/processes in each ensemble work on a specific logical tree, the communica-
tions remain local in each ensemble. Therefore, the nodes/processes sitting in different
ensembles do not communicate across (i.e., communication only happens among the
nodes/processes in the same ensemble). For this reason, this scheme reduces the overall
communication overheads.
Also, this scheme allows coarsening the parallelism in the inner computations and

communications (Lines 4-13 in Pseudocode 7), including the partitioning involved in the
KD-tree (Phase 2 of Pseudocode 7). Specifically, it allows the reductions and pair-wise
data exchanges in redistribute and balance as well as the collectives in other phases
to run on coarse-grained parallelism in smaller communication contexts (i.e., communi-
cators). This can also be observed in the example in Figure 9: the largest communication
context (at the top of the tree) in Figure 9 left includes eight processes/nodes, while the
forest approach uses only two processes/nodes, at the top level of the tree. The main
caveat for this approach is the high memory consumption, which scales with the number
of ensembles.
Pseudocode 9 provides the details of the forest of trees approach. We split the available

resources into smaller sets, i.e., ensembles (Line 1 in Pseudocode 9). Ensembles have
the same amount of resources (processes/nodes). Assuming fairly uniform iterations, we
statically partition the iterations of the loop in Line 2 of Pseudocode 7 and assign them
to these ensembles (Lines 2 and 3 in Pseudocode 9). We then run the iteration phases
on these ensembles (Lines 3-7). We perform a final merging step across the ensembles
(Line 8) to aggregate partial matrix profiles in ensembles. This is optionally done during
the iterations to estimate the overall accuracy among all ensembles.
We implement this approach in MPI by splitting MPI’s default communicator using

MPI Comm split1, where the resulting communicators represent the corresponding en-

1MPI Comm split partitions a group of MPI processes associated with a communicator into disjoint
subgroups and creates a new sub-communicator for the subgroups.
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sembles and the communication context for each tree. The aggregations in the final
merging step (Lines 8) are realized using MPI Allreduce.

6.7 Scaling Behavior and Limitations of Tree Approach

To better understand the performance characteristics of the tree-based method, we reuse
the complexity analysis of Xiao et al. [XB16] and adapt it according to the pipelining
and forest mechanisms in Appendix A2.

According to this analysis, Phase 1 is the least problematic part; it only includes the
parallel transformations of data as well as a broadcast. The pipelining mechanism has the
capability to stagger and eliminate the overheads of the reduction (the term highlighted
in red) in this phase, and the forest mechanism can reduce the size of the communication
context of the reduction operation. In Phase 2, only the forest mechanism affects the size
of the communication contexts and slows down the growth of the overheads by a factor
e, which is defined as the size of the forest. In Phase 3, the pipelining mechanism
staggers the overheads of all-to-all operations into other phases. Also, similar to the
other phases, the forest mechanism has a similar effect on reducing the communication
context for the all-to-all operations (factor e).

Also, note the time to run the iterations of the tree-based approach, with optimiza-
tions plugged in, is similar to its parent randomized KD-tree method, i.e., regardless of
the parameters chosen for the pipelining and forest mechanisms, the costs of the iter-
ations of the tree-based method is sub-quadratic. This results in overall sub-quadratic
costs in the number of records of input time series, unlike SCRIMP++, which overall
scales quadratically with problem size. However, the randomized tree-based approach
requires multiple iterations, i.e., multiple rounds of creation of trees and searching in
them. Therefore, there is an additional multiplier in the overall time complexity and
overheads of the tree-based approach. With some assumptions on the distributions of
the z-normalized subsequences, similar to those made in [RS19], we can assume that
running the tree-based approach in a certain number of iterations can reach a certain
accuracy level and eventually converge to the exact solution. Analyzing these conditions
falls out of the scope of this chapter, but what we want to highlight here is that the over-
all performance of the tree-based method relies on the content of the time series dataset,
as well as the required accuracy level. If the exact solution is needed, the tree-based
approach would not be the right scheme.

Also, note that, unlike SCRIMP++, the tree-based approach cannot benefit from the
affinity of neighboring subsequences in the evaluation of distances and does not allow
the use of the streaming dot-product formulation [ZKS+19]. Therefore, there is a linear
growth in the run time of the tree-based approach with windows size m. This suggests
that the tree approach is more suitable for large time series (large N) and mining of fine-
grained patterns (small m). This, however, is a frequent problem setup in analysis use
cases where the subsequence length is much smaller than the time series length m≪ N .
We summarize a list of such use cases from literature in Table 7.2, which we will discuss
later.
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6.8 Evaluation

We evaluate the suitability of the tree-based approach and assess its accuracy when it is
used to compute the matrix profile index in real-world datasets. We look at the scaling
overheads of tree approaches and show how the optimization schemes presented in this
chapter improve scalability.

6.8.1 Experimental Setup

We briefly describe our prototype implementation for the tree-based matrix profile ap-
proach introduced in the chapter and further elaborate on the experimental setup used
for the evaluations presented.
We implement the tree-based matrix profile approach in C++ using pure MPI for

parallelization2. Our implementation targets CPU-based HPC systems, and it relies
on vectorized sorting and searching kernels as well as optimized DGEMM kernels in
the Intel MKL for distance computation. In all experiments, we use the Intel OneAPI
package v21.2.0, including the Intel C++ compiler v21.2.0, with the highest optimization
level (-Ofast) for compilation, and the Intel MPI v21.2.0. Our targeted system for the
experiments of this chapter is again the SuperMUC-NG system at the LRZ.
In all the evaluations presented in this chapter, we quantify of the quality of the results

by comparing the matrix profile index against the exact computation, i.e., brute force
computation. For this comparison, we use recall (R) on the matrix profile index, and
reuse the same definition presented in Section 5.5. Note that other metrics are also used
in the literature, and some might be subjective to particular practical use cases, but
here, we rely on a generic accuracy metric. An investigation of such alternative metrics
is beyond the scope of the present work.
In all the cases, we report the performance or accuracy metrics for the average of 5

repeated runs, and do not present statistical errors where they are insignificant.

6.8.2 Baseline Comparison and Benefit Margin for Tree Approach

We use the C++ implementation of SCRIMP++ [ZYZ+18] as the baseline to compare
the tree-based method. Due to the limitations of other approximate approaches, dis-
cussed in Section 6.3, we are limiting these comparisons to SCRIMP++. In particular,
in all these implementations, the parallelization support is limited, and often, the analy-
sis of large datasets is at least an order of magnitude slower in comparison to the parallel
tree-based method [LWM+22]. We are also excluding the downsampling of the input
time series as an approximation method in our evaluation, as it is out of the scope of ma-
trix profile computation methodologies. Finally, we are not comparing the performance
of the tree-based method to any exact method but SCRIMP++, as the performance
characteristics of all these methods are similar to SCRIMP++.
Looking back at the discussion in Section 6.4 and, the performance advantage of the

tree-based method directly depends on the size of the two input time series n, and the

2See Appendix A4 for pointers to the code.
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Figure 6.7: Illustration for the benefit margin for the tree approach compared to SCRIMP++.
Red dots (and region) represent the areas where SCRIMP++ has better perfor-
mance, while the green dots (and region) represent the areas where the tree-based
method is superior.

windows m. Therefore, we use random walk datasets with different combinations of
n and m parameters to compare the two methods. For a fair comparison, we fix the
accuracy level and compare the time to get to at least R = 99.99% accuracy for both
methods. Finally, for fairness, we compare the single-thread performance of the two
methods.

Figure 6.7 illustrates the results of this experiment, providing a visual representation
to quantify the benefits of the tree approach. Each dot on this graph represents one
combination of the input parameters (n and m), and it is color-coded as green if the
combination results in faster computation using the tree approach and red if SCRIMP++
is faster. Therefore, we clearly see the region where the tree approach is more beneficial,
and the dashed line shows its limits.

We observe that as the size of the input datasets increases relative to the window size
(towards the right side in the graph), the tree-based approach becomes more beneficial
as the green region becomes wider. This is also in accordance with the discussions in
Section 6.4.

While the tree method cannot benefit from the streaming dot product, in practice,
it might outperform other methods that employ this formulation, depending on the
problem configurations (i.e., the configuration lies on the region of benefit).
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Note that to keep this region of benefit relevant for large input time series, the parallel
efficiency of the tree-based method should be high. One of the main contributions of
our work is to address the high parallel efficiency of the tree-based method through the
approaches discussed in Section 6.6 and to maintain the region of benefit consistent for
large time series.

6.8.3 Performance of the Tree Approach

We start by running a set of weak scaling experiments on a single node of the SuperMUC-
NG system. Figure 6.8 summarizes these experiments. We present four different cases
where the pipelining and forest optimizations are either enabled or disabled. On the top
left graph, we show the run time and overheads of the tree-based method when scaling on
a single node. We observe large overheads (≈100%) even on such a single node. Digging
further into the overheads, we notice that the sources of them are mainly in Phase 2
and Phase 3 of Pseudocode 7. Specifically in all the cases max var quick select and
merge iteration results all2all comprise at least 60% of the run time. However,
merge iteration results all2all is only responsible for a small portion of it, and as
we will show, this overhead only appears in larger setups.
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Figure 6.8: Single-node performance of the tree approach, with (✓) and without (✗) pipelining
or forest mechanism (n = 6K per core, m = 512, random walk dataset). Configu-

rations annotated with ✗ mark are algorithmically not supported.
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We repeat the experiment and enable the pipelining mechanism with a depth of four
(top right). We observe almost negligible improvements. Therefore, the pipelining mech-
anism does not seem to bring any advantage to single-node runs.
However, we observe on the graph at the bottom left that when enabling the forest

mechanism and setting the size of the forest (the number of ensembles) to eight overheads
significantly reduce. Finally, when we combine the two mechanisms (bottom right), we
almost completely overcome the overhead and reach ≈ 100% parallel efficiency on a
single node.

Overall, the proposed optimization schemes are able to eliminate the scaling over-
heads on a single node of the SuperMUC-NG system.

We continue the performance evaluation of the tree approach by going beyond a single
node and looking into the system-wide scaling overheads.
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Figure 6.9: Breakdown for the time spent in various phases, with (✓) and without (✗) pipelining
or forest mechanisms, in weak scaling on SuperMUC-NG. (n = 4K per core, m =
256, and random walk dataset).

118



6.8 Evaluation

We run a set of weak scaling experiments on the SuperMUC-NG system with a con-
figuration starting from a single node up to 1024 nodes. On the Top graph in Figure 6.9,
we present the breakdown for the time spent in different phases of Pseudocode 7 for
computing the matrix profile. As we scale the problem and resources, the overhead in
max var quick select, merge iteration results all2all, and split redist bal-

ance scales drastically; When we use 1,024 nodes, the overheads comprise more than
75% of the run time, where the largest overhead is associated with the all-to-all opera-
tions in merge iteration results all2all.

We repeat the same scaling experiments and switch the two mechanisms on, one at a
time. Once the pipelining mechanism is switched on (middle graph in Figure 6.9), the
overhead of all to all operations is removed. However, this optimization alone only has
around 9% performance improvements. On the other hand, once the forest mechanism
is enabled (bottom graph in Figure 6.9), the overheads of all the phases are shrunk much
more, i.e., by ≈55%.

Overall, the proposed optimization schemes are able to reduce the scaling overheads
in a system-wide weak scaling on the SuperMUC-NG system.

To better understand the effects of the two optimization mechanisms and their in-
terplay, we conduct a series of weak scaling experiments on the SuperMUC-NG system
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Figure 6.10: Effect of pipelining and forest mechanisms on scaling overheads (n = 65K per
node, m = 256, 32 iterations, and random walk dataset).
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with various pipeline depth (l) and forest size (e) configurations. Figure 6.10 summa-
rizes the results of these experiments: in Figure 6.10 Top, we revisit the overhead of the
all-to-all operations in split redist balance, which only appears in the setups larger
than 64 nodes. We observe that in all the cases, enabling the pipelining mechanism is
highly beneficial, and increasing the depth of the pipeline can help to almost completely
eliminate the all to all overheads. In Figure 6.10 Bottom, we focus on the overhead of
split redist balance, which was the main target for enabling the forest mechanism.
We observe that increasing the size of the forest in all the experiments improves the
performance. Also, similar to the results shown in Figure 6.9, we also observe positive
effects on other overheads (not present in Figure 6.9).

Also, note that in Figure 6.10 Bottom, the pipeline depth l is set to 2. Our further
experiments suggest enabling them simultaneously and tuning e and l parameters is
beneficial.

The two optimization mechanisms have a complementary effect on performance
improvements.

Finally, we conduct a weak scaling experiment on the SuperMUC-NG system to illus-
trate the overall scaling performance of the tree-based matrix profile approach. In this
experiment, we use two cases; in the first case, we disable all the optimization mecha-
nisms and in the second case we enable the pipelining mechanism with depth l = 4 as
well as a forest of size e = 4. Figure 6.11, illustrates the results of this experiment: again,
we observe that the tree-based approach results in scaling bottlenecks if no optimization
is used. In this case, starting from one node and increasing the number of MPI processes
by three orders of magnitude on SuperMUC-NG, i.e., going beyond a single island, re-
sults in 14% parallel efficiency, which is also in accordance with the experiments of Xiao
et al. [XB16].
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Figure 6.11: Weak scaling results with (✓) and without (✗) optimizations (n = 65K per node,
m = 256, 32 iterations, random walk).
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Overall, applying the two pipelining and forest optimization mechanisms improves
efficiency to 31%, which is a 2x improvement on the SuperMUC-NG system.

However, this efficiency shrinks the region of benefit (see Figure 6.7), however overall,
the tree method stays beneficial for larger time series, as discussed in Section 6.8.2.
Finally, we trace the remaining scaling overheads to the series of pairwise exchanges
in split redist balance. Although the forest mechanism improves the overheads of
data shuffling and load balancing in Phase 2 of Pseudocode 7, it still does not entirely
eliminate the latencies of the blocking calls in this phase.

In the end, we showcase the capabilities of the tree-based approach by running a
matrix profile computation on a billion-record random walk dataset (n = 1 billion) with
a window size m = 128, using 48K cores of the SuperMUC-NG to 99% accuracy in 19
minutes, which is 3-100 times faster than existing approaches. This run reaches ≈338
teraflop/s maximum kernel performance. This run also demonstrates the significant
improvement of the tree approach over existing approaches for the computation of the
matrix profile. More details on this experiment are presented in Appendinx A3.

6.9 Summary

In this chapter, we presented an approximate parallel iterative tree-based approach for
the computation of matrix profiles, targeting CPU-based HPC systems. We analyzed the
scaling bottlenecks state-of-the-art tree-based approach for matrix profile computation
in our work. We provided pipelining and forest mechanisms to improve the scalability
of the tree-based approach. Our optimizations improved parallel efficiency on 32K cores
by a factor of 2. The optimization mechanisms presented can be generalized and ap-
plied to similar problems (e.g., nearest neighbor computations or randomized iterative
algorithms).
With the presented work, it is feasible to compute the matrix profile for large time

series, which previously required days to compute, in just a few minutes. We showed
the capabilities of this tree approach by presenting a billion-scale experiment with up
to 99% accuracy in 19 minutes, which is 3-100 times faster than existing approaches.
This provides a competitive computation time compared to the alternative, in particular,
exact approaches.
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Examples

The examples described in this chapter were previously published in
IPDPS’22 [JRY+22] and ISC’23 [RKS+23], where the author of this thesis made
a major contribution to the contents, including the development of the prototype
codes, evaluations.

In this chapter, we delve into several illustrative use cases and examples to demonstrate
how the concepts and experimental methodologies introduced throughout this thesis
translate into practical applications. Building upon the foundation laid out in Chapter 2,
we revisit the representative examples presented there as case studies to showcase the
versatility and power of the methodologies proposed in this thesis.

These practical scenarios include the analysis of patterns within the operational data
from heavy-duty gas turbines, and analysis of application patterns in HPC operation
data, as well as the accuracy of the tree method introduced in Chapter 6 on a repre-
sentative number of real-world datasets and analysis configurations. These examples
offer a practical perspective on the real-world impact and significance of our research.
Moreover, these examples help to explore the intricacies of applying matrix profile com-
putation techniques introduced in this thesis in different contexts, shedding light on the
flexibility and robustness of the proposed methods.

We start with the first use case on the analysis of patterns in the operational data
of heavy-duty gas turbines, which helps to better understand the benefits of (MP)N-
GPU approach in practice.

7.1 Use Case 1: Patterns in Operational Data of Heavy-Duty
Gas Turbines

In the first use case, we look at the operational data from the surveillance systems for
large-scale heavy-duty gas turbines and investigate the accuracy of pattern detection
based on the matrix profile approach when (MP)N-GPU is used for computation.

With the increasing growth of renewable energy sources in power grids, heavy-duty gas
turbines are often operated as a backup source for power generation. Consequently, they
are exposed to more dynamic operation settings and, therefore, potentially to frequent
startups and shutdowns cycles. This dynamic setting imposes extra operational pressure
on the infrastructure, which it was not necessarily designed and optimized for. Therefore,
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Figure 7.1: Startup patterns in heavy-duty turbine datasets. We apply min-max normalization
to avoid overflow in reduced- and mixed-precision computation.

inspecting these patterns within the operational data of turbines is interesting for domain
experts, as it helps to identify similar startup and shutdown events appearing as unique
patterns. Furthermore, it helps them to look into the corresponding high-frequency
dynamic monitoring data that is collected from the combustion surveillance sensors for
a better understanding of the combustion process under extra stress. This helps to
protect the infrastructure with predictive control schemes and improve future designs.

In order to better detect and later predict such events, we investigate turbine speed
data collected directly from the machine in a real-world power plant with all its real-
world limitations. We represent the data as a time series and especially focus on the
detection of startup events. This use case is a special case where the dimensionality of
input time series, d is one, but using reduced- and mixed-precision in (MP)N-GPU is still
a key to improving the performance. We look at recall rate (Rr

practical) as an accuracy
metric when applying the matrix profile analysis approach to pattern detection.

We exploit a dataset derived from the actual operation of two instances of gas turbines,
here labeled GT1 and GT2, installed and operated by a large municipal power provider.
Figure 7.1 illustrates examples of the startup events (annotated with P1 and P2) in our
dataset, each corresponding to a specific operation initiation mode. We use a matrix
profile on the combinations (pairs) of small time series that include such startup patterns.
Specifically, we prepare 65 single time series (n = 216, m = 211 and d = 1) that include
either P1 or P2, respectively, and five single time series that include both.

We run a matrix profile analysis between the combinations of these input series struc-
tured in four classes (i.e., P1-P1 and P2-P2, both-P1, and both-P2, as highlighted in Ta-
ble 7.1). The numbers of input time series pairs in each class are listed in Table 7.1.

P1-P1 P2-P2 both-P1 both-P2

GT1 or GT2 4160 4160 325 325
GT1 and GT2 4225 4225 650 650

Table 7.1: Categories of time series pairs, and the numbers of input time series pairs in each
category in the gas turbine use case.

123



7 Practical Use Cases and Real-World Examples

P1 vs P1 P2 vs P2 P1&P2 vs P1 P1&P2 vs P2
Experiment

0

20

40

60

80

100

A
cc

u
ra

cy
%

GT1 signals

FP16C

Mixed

FP16

FP32

FP64

P1 vs P1 P2 vs P2 P1&P2 vs P1 P1&P2 vs P2
Experiment

0

20

40

60

80

100

A
cc

u
ra

cy
%

GT2 and GT1 signals mixed

FP16C

Mixed

FP16

FP32

FP64

Figure 7.2: Recall rate (Rr
practical) for (MP)N-GPU with various precision modes for detecting

startup events in the gas turbine dataset.

This experimental setup is sufficiently large and diverse to analyze the startup pattern
detection accuracy within one or across the two turbine instances.
Following the above experiment settings, we compute the success rate of pattern de-

tection according to the definitions provided in Section 5.5 for computing the practical
accuracy.
For the P1-P1 case, we run 65 × 64 = 4, 160 individual matrix profile computations

(corresponding to the first row in Table 7.1) and identify the success rate (practical
accuracy) in detecting P1, e.g., for the data from either GT1 or GT2. In the same way,
we analyze P2-P2 on either the data from GT1 or GT2 data to identify the practical
accuracy (Rpractical) for detecting P2. The experiments labeled with both-P1 and both-
P2 analyze the five prepared time series data that include both the P1 and P2 patterns
against those that exclusively include either P1 or P2, respectively.
We observe that both FP64 and FP32 exhibit Rpractical = 100% accuracy in all the

cases. Mixed and FP16C provide higher accuracy compared to FP16, Overall, this use
case demonstrates a satisfying pattern detection accuracy for FP64, FP32, Mixed, and
FP16C, showcasing the capabilities of (MP)N-GPU.

7.2 Use Case 2: Application Classification on HPC-ODA

Next, we explore extending the applicability of matrix profile analysis with reduced-
and mixed-precision modes to another interesting practical use case. In Section 5.6.2,
we looked at the matrix profile analysis on the HPC-ODA dataset. Please also refer to
Chapter 2, where we present a couple of more illustrative examples to introduce matrix
profile concepts). We look at the HPC-ODA dataset, which is introduced in Chapter 2,
and use the application classification example. We leverage the (MP)N-GPU approach
in computing the matrix profile on the way to build a nearest neighbor classifier.
Various telemetries and application performance data are continuously collected in

HPC centers. Analyzing the collected data can provide valuable insights into the opera-
tion of the supercomputers, as discussed in detail in Chapter 2. Such analyses are highly
relevant for HPC center operators since they provide insights to further optimize the
operation of the HPC center based on the characteristics of applications that frequently
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7.2 Use Case 2: Application Classification on HPC-ODA

run, e.g., via improved scheduling or preventing unwanted applications, just to name a
few examples. One such approach to classify applications relies on gathered performance
metrics, such as resource hardware counters or utilization patterns, collected during the
application runs. Such data is often stored as large multi-dimensional time series (see
Figure 5.9).

Specifically, to test the use of reduced- and mixed-precision computation modes and
employing GPUs in (MP)N-GPU, we construct a nearest neighbor classification model on
top of HPC-ODA data to enable the classification of HPC applications for the CORAL
benchmarks [VdSB+18]. As discussed in Section 5.6.2, we use the Application Classi-
fication segment of a public HPC dataset [Net20]. This dataset includes labeled per-
formance data collected while running different CORAL benchmarks (HPL, AMG, etc.)
on 16 compute nodes for one day with one Hz sampling rate. We select 16 distinct sen-
sors (performance metrics) on different nodes and split the resulting multi-dimensional
matrix profile dataset along time into two portions, a reference set and a query set, each
of which includes continuous operational data for half a day. More details of how the
classification model works, as well as the details of its accuracy and run time.

Figure 7.3 shows an illustrative visualization of the HPC-ODA dataset, including a
timeline for various sensor data collected. This visualization graphically shows a sample
of the query dataset, and we highlight the application classes with distinct colors in
the timeline. This visualization helps us to better grasp the high accuracy of the matrix
profile computed with (MP)N-GPU in FP16C modes in practice. We are only presenting
a subset of data used in this use case, both in the sense of the sensors involved and the
time span. The sensor data (in the top four rows) are color-coded with the classifier’s
predicted labels, and we use a color bar (lowest row) with consistent colors to annotate
the ground-truth labels in the HPC-ODA dataset. Although the computation is per-
formed in FP16C mode, the F1 score of more than 99.4%. This represents a high-quality
classification, which is also clearly visible in the presented timeline in Figure 7.3.

This use case proves that reduced- and mixed-precision schemes, such as FP16C mode,
can achieve accurate results in practice while offering performance improvements as
demonstrated in Chapter 5.
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Figure 7.3: A timeline of HPC-ODA data color-coded with the classes determined from the
nearest neighbor classifier.
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7 Practical Use Cases and Real-World Examples

7.3 Real World Example for the Tree Approach: Benefits of on
Real-World Datasets

Next, we take a look at the benefits of the tree approach compared to existing approaches
when applied in real-world datasets and settings derived from real-world applications
and scenarios. We extract these datasets and their corresponding configurations (in the
sense of the size of datasets and subsequence lengths used in matrix profile analysis)
from various sources in the literature and compare the performance of the tree approach
using the implementation we presented in the previous chapter.

The datasets used in this example are listed in Table 7.2. We selected these diverse
datasets carefully to cover a wide range of use cases and configurations (dataset size
and subsequence lengths used in the analyses) to better illustrate the benefits of the
tree approach presented in Chapter 5 based on the analysis provided in Section 6.8.2.
Table 7.2 also illustrates a short snapshot of these datasets.
While various window sizes can be configured for matrix profile computation, we

mainly use the configurations listed in Table 7.3, which reflects analysis scenarios com-
monly used in the literature. We present examples of such scenarios from literature in
Table 7.3, together with the recommended subsequence length in the mentioned sources.
We compare the sequential1 performance of our tree approach against SCRIMP++

and PreSCRIMP. We specifically look at the time to reach a certain accuracy level as the
performance metric and set this level to R = 99.9% accuracy. Table 7.4 summarizes the
results of this experiment. Measurements suggest that our tree-based approach is overall
faster than SCRIMP++, i.e., in eight out of eleven cases in Table 7.4 (highlighted in
green) the tree approach outperforms SCRIMP++. The remaining three cases are excep-
tions where SCRIMP++ achieves better performance compared to our tree approach.
Note that these cases do not lie on the region of benefit for the tree-based methods
that we demonstrated before in Chapter 6 in Figure 6.7 (compare the parameters listed

Dataset Description Dataset Source Sample plot

HPC-ODA HPC monitoring [Net20]

Earthquake Earthquake vibrations [ZKS+19]

Penguin Penguin behaviour [ZINK17]

ASTRO Celestial objects [LZPK18]

PSML Energy grid [ZXT+21,
LWM+22]

GT Gas Turbine [KWFH+19,
KRR+21]

GAP Power consumption [LZPK18]

EMG Electromyography signal [LZPK18]

InsectEPG Insect behaviours [ZYZ+18]

ECG Electrocardiogram signal [Eam22]

MGAB Synthetic anomalies [TKB20, LWM+22]

Table 7.2: List of datasets used for the experiments and their sources.

1Note that it is very hard to set up a fair experiment to compare parallel implementations given the
fact that at the time of conducting this research, no parallel implementation of PreSCRIMP existed.
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7.3 Real World Example for the Tree Approach: Benefits of on Real-World Datasets

Dataset n (number of
records)

m (subse-
quence length)

Similar scenario in literature

HPC-ODA 34K 64 [JRY+22] Figure 8
Earthquake 100.00K 200, 100 [ZKS+19] Section 5
Penguin 1.000M 28 [ZINK17] Figure 10
ASTRO 1.100M 512 [LZPK18] Section 6.2
PSML 1.500M 200 [LWM+22] Figure 9
GT 1.900M 64 [KWFH+19] Figure 4
GAP 1.950M 512 [LZPK18] Section 6.2
EMG 2.860M 512 [LZPK18] Section 6.2
InsectEPG 6.400M 50, 256 [GYD+] Section E
ECG 19.2M 421, 256, 94,

128
[Eam22],[RCM+12] Table 5 & [YZU+16] Ta-

ble 7, [LWM+22] Figure 13, [MAA+21] Figure 16
MGAB 112.5M 40 [LWM+22] Figure 4

Table 7.3: Problem settings associated with each dataset used in our experiments.

in Table 7.3 to regions depicted in Figure 6.7). Therefore, the better performance of
SCRIMP++ in these cases is expected. Furthermore, we observe that for none of the
datasets, PreSCRIMP is able to achieve 99.9% accuracy. Another observation is that
the tree-based approach is superior for the datasets with a larger number of records,
which are shown in the lower rows of Table 7.4. This is again in accordance with the
results presented in Figure 6.7, and proves the superiority of our tree-based approach
in various problem settings. However, real-world cases exist, similar to the first rows of
Table 7.3 or the experiments in [ZYZ+18], where our tree approach is not superior.

Overall, the presented results validate that when applied to real scenarios, the tree
approach can achieve high accuracy in a reasonable time, and it is superior to existing
approximate methods in many cases, in particular against SCRIMP++ and PreSCRIMP
for most of the considered datasets.

Time (s) To 99.9% Accuracy
Dataset

PreSCRIMP SCRIMP++ Tree

HPC-ODA ✗ 8.96 16.88

Earthquake ✗ 13.47 32.62

Penguin ✗ 7070.79 245.15

ASTRO ✗ 1156.18 2615.70

PSML ✗ 5936.69 303.60

GT ✗ 7875.80 3104.13

GAP ✗ 3320.65 2482.38

EMG ✗ 7648.17 2874.43

InsectEPG ✗ 9474.30 1282.58

ECG ✗ 6060.12 1240.75

MGAB ✗ 10749.50 20.67

Table 7.4: Time to 99.9% accuracy among various methods (single-core execution).

127



7 Practical Use Cases and Real-World Examples

7.4 Summary

In this chapter, we briefly discussed a number of illustrative use cases and examples.
In particular, we demonstrated the benefits of our (MP)N-GPU and our tree approach,
which were discussed in previous chapters, in practice. These presented schemes have
been put to the test in real-world scenarios to demonstrate their practicality.
We revisited the use cases from large-scale industrial operational data analytics and

demonstrated how the methods presented in this thesis can help conduct practical tasks
such as pattern detection and classification in practice with sufficient accuracy. We also
illustrated the benefits of the tree approach in comparison to the existing methods and
demonstrated its superiority when applied to many datasets from real-world scenarios.
In summary, the schemes presented in this work offer a significant leap forward in the

realm of state-of-the-art time series mining using the matrix profile.
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Part III

Discussions, Wrap-Up and Prospects
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8 Discussions and Lessons Learned

In this thesis, we explored the mining of time series datasets within the realm of HPC
and supercomputing. We embarked on a journey that revolved around the matrix profile
as a central component. The concepts discussed in this work, the prototypes, and ex-
periments helped to unlock the potential of HPC in the computation of matrix profiles,
encompassing key facets such as scalability, GPU utilization, reduced-precision arith-
metics, and alternative iterative approximate solvers. In this chapter, we discuss the key
insights achieved by investigating the presented approaches. Furthermore, we discuss
how these individual aspects come together as a whole and how they can work together
in practice. Finally, we enumerate constructive lessons learned from conducting research
on these aspects.

8.1 Synthesis of Key Insights

This work looked at various aspects of matrix profile computation, encompassing dis-
tinct approaches to enhance its efficiency and applicability. These key aspects include
considerations for the scalability of matrix profile computation on High-Performance
Computing (HPC) systems, computation using Graphics Processing Units (GPUs), ex-
ploration of reduced- and mixed-precision schemes, and the leveraging of an approximate
tree method. Also, we covered both the single and multi-dimensional time series mining
cases in our exploration. We also carefully investigated the practicality and limitations
associated with each of these approaches, drawing insights from real-world use cases and
examples. Through systematic experimentation, we showcased the tangible effects of
our methods and provided a nuanced understanding of their implications.

We characterized the performance behavior of matrix profile computations, in partic-
ular, on high-end HPC systems. Our findings illuminated a crucial aspect: the primary
bottleneck in this computation of matrix profiles lies in memory-bound operations. This
is mainly due to the streaming dot product formulation, which is present in most ap-
proaches for computing the matrix profiles. Additionally, in multi-dimensional cases,
sorting operations also add extra memory-bound operations, and they have an even
more severe impact compared to the operations of streaming dot product formulation.

Among the various elements we investigated, the role of GPUs emerged as particu-
larly instrumental. GPUs equipped demonstrated a significant capability in accelerating
matrix profile calculations, providing a substantial overall performance boost, as their
high memory bandwidth (due to their High Bandwidth Memory) improves the perfor-
mance bottlenecks stemming from memory-bound operations mentioned in the previous
paragraph.
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8 Discussions and Lessons Learned

We also investigated the realm of reduced- and mixed-precision schemes for the com-
putation of matrix profiles. While these schemes enable enhanced performance, they
come at a trade-off—sacrificing the level of mathematical accuracy. Nevertheless, we
discovered that in practical applications, the results can still remain acceptable despite
mathematical inaccuracies, making exploration of reduced- and mixed-precision schemes
a valuable avenue for deployment in practice, especially when speed is of the essence.

We also investigated alternative tree-based approaches, which present a viable pathway
for matrix profile computation. However, adopting a matrix profile to this alternative
meant accepting solutions that were approximate in nature. However, this is what
the tree-based approach and reduced- and mixed-precision schemes have in common.
Despite this, the tree-based method shows promise, especially when enhanced for large-
scale High-Performance Computing (HPC) systems. Our studies suggest leveraging the
pipelining mechanism (introduced in Chapter 6) helps to mask communication latencies
effectively. Furthermore, employing the forest mechanism (also introduced in Chapter 6)
to manage the granularity of parallelization and communication allows for approaching
a larger number of nodes in HPC systems. Together, these mechanisms can significantly
mitigate the scaling bottlenecks of tree approaches on large-scale HPC systems. These
improvements make the tree-based approach not only efficient but also an attractive
option for matrix profile computation in practice.

Across the spectrum of concepts we investigated, the common thread that emerged
was scalability as a central tenet. Our analysis of these various methods, problems, and
setups reaffirms the claims made in the existing literature: the matrix profile is indeed
a highly scalable approach, and the concepts we introduced in this thesis leverage this
inherent property and make it feasible to scale matrix profile computation on large-
scale HPC systems. This allows for employing the power of HPC for matrix profile
computation for large-scale datasets. This also verifies the significance of scaling compute
resources for matrix profile computation exploiting through HPC, where the main avenue
of scalability hinges on the horizontal scaling of memory bandwidth. Overall, due to the
scalable nature of matrix profile computation, the use of HPC resources has proven to be
a game-changer for matrix profile computation in practice, offering a high throughput
computation for real-world use cases.

8.2 Collective Effect of Presented Approaches

We underscore that the improvements in computational approaches and resulting effi-
ciency improvements from the seemingly distinct aspects of matrix profile computation
(that were investigated in this work) are naturally synergistic. In fact, they are rather
additive and accumulative in their impact. Overall, by expanding our understanding of
these interrelated dimensions, we contributed to the evolving landscape of matrix profile
computation and its potential applications in HPC environments.

In Chapter 5, we demonstrated how the scaling approach introduced in Chapter 4
can be seamlessly combined with computation on GPUs and with reduced- and mixed-
precision schemes. Although our focus was initially on a small scale, i.e., the single-node
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multi-GPU scenario, extrapolating from our scaling results on the SuperMUC-NG sys-
tem and taking the broader studies on matrix profile scalability into consideration, we
anticipate similar favorable scaling behaviors on a larger scale. The tree-based approach,
another significant aspect of this work, also exhibits the potential for further optimiza-
tion when coupled with reduced- and mixed-precision computation. This integration
not only can reduce data traffic over high-performance networks but also can alleviate
computational demands. We, therefore, anticipate analogous computational efficiency
improvements for the tree-based approach when leveraging reduced- and mixed-precision
computation. On another front, considering the increasing presence of GPUs in Tier-0
HPC centers opens up new avenues for investigation. Particularly, the exploration of
tree-based approaches on systems equipped with GPUs at a larger scale represents an
intriguing research direction.

8.3 Lessons Learned

In the following, we list a number of lessons we learned and experiences gained through
research on and the development of the various aspects of this work.

• Conceptual and Methodological Development Lessons: one of the key lessons
learned during the development of this thesis is the versatility and effectiveness
of the matrix profile concept in the data science community. The concept of the
matrix profile has undergone numerous extensions and special flavors, thereby
widening its scope of applications. In this context, this work contributes to the
vital aspect of the evolution of computational methods for the matrix profile. It
includes the capabilities of leveraging large supercomputers, the versatility of hard-
ware used for matrix profile computation, and employing diverse and rich methods
and techniques that are common in the HPC world, including approximate methods
and tree data structures. Additionally, this work helped to employ reduced- and
mixed-precision methods and hardware support, which is already commonplace in
machine-learning-driven applications but not in matrix profile computation. These
evolutions help to make the matrix profile concept more practical and robust for
real-world applications.

• Technological Aspects Lessons: from the technological point of view, a variety of
hardware resources have been exploited for the computation of the matrix pro-
file. Our work specifically contributes to leveraging various hardware, including
CPUs, GPUs, and even FPGAs1. Furthermore, we observe that analytics work-
loads are increasingly deployed in the cloud environments to take advantage of the
ease of access, ease of provisioning, and elasticity, making the cloud environment
a natural choice for many data analytics tasks. The cloud-based frameworks like
SCAMP have been specifically designed to facilitate matrix profile computation in
the cloud environment and take advantage of the points listed above. Additionally,

1our efforts around leveraging FPGAs for matrix profile computation are not discussed in this work.
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special flavors of matrix profile computation methods (e.g., online schemes) exist
that are suitable for real-time data stream processing, where cloud computation
models (e.g., serverless and FaaS) could become a better fit naturally. However,
we learned that time-series mining and, specifically, matrix profile computation
are computationally demanding tasks, which is a clear distinction from common
big data analytic workloads. Therefore, there is a natural need for leveraging the
abundance of resources scaling the computation in HPC. It is important to note
that High-Performance Computing (HPC) systems still hold a significant role in
this realm. This remains particularly valid when dealing with explorative time
series mining tasks that involve large datasets. The reason behind this suitability
lies in the nature of these workloads. Such workloads often involve batch process-
ing, where the mining of massive datasets is performed in bulk. HPC systems
with their parallel processing capabilities and dedicated hardware, combined with
the approaches leveraging systems (like the ones introduced in this work) excel in
handling such workloads efficiently.

• Limitations and Practical Implications: While the methods and evaluations pre-
sented in this work target matrix profile computation, the developed approaches
can be applied to other fields. Similar scaling methods and optimizations, as well
as GPU computation, can be applied to data mining with different data types.
Furthermore, the presented pipelining and forest mechanisms can be applied to
applications with similar scaling bottlenecks. Also, these mechanisms can eas-
ily plugged into any tree-based method, e.g., generic tree-based nearest neighbor
solvers, to improve scaling efficiency.
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9 Outlook and Conclusion

In this work, we presented new methods and schemes for the scalable offline analysis and
mining of time series data. In particular, we focused on multi- and single-dimensional
matrix profile computation across various HPC platforms, specifically targeting CPUs to
provide the bulk computational power as well as GPU for acceleration. Our innovations
can be summarized across three main thrusts:

Scalability on HPC Systems: we pioneered a scalable prototype for matrix profile
computation, (MP)N, that leverages CPU-based HPC systems and targets large-scale
multi-dimensional time series analysis. We demonstrated that matrix profile computa-
tions could scale up to 256K cores on large-scale HPC systems, in particular SuperMUC-
NG. This capability significantly enhances the matrix profile approach’s applicability
to large-scale, real-world problems, achieving unprecedented kernel performance of 1.3
petaflop/s.

GPU Acceleration and Reduced- and Mixed-Precision: we introduced the
first GPU-based scheme specifically designed for accelerating multi-dimensional matrix
profile computations. Our optimized data layout, reduced- and mixed-precision modes,
and novel tiling scheme capitalize on GPU hardware features to achieve high performance
and accuracy.
Approximate Parallel Schemes for HPC: finally, we addressed the computation

of matrix profiles by developing an approximate parallel iterative tree-based approach,
also targeting CPU-based HPC systems. We introduced and leveraged optimization
schemes mitigating the scaling issues to improve the parallel efficiency by a factor of two
on 32K cores, enabling the computation of large time series matrix profiles that were
previously infeasible in just a matter of minutes.
The strides we’ve made in matrix profile computation and time series analysis form a

solid ground for future work. Future research can aim at developing a unified framework
that evaluates various matrix profile methods not just on accuracy and performance but
on a range of holistic metrics like energy consumption, memory footprint, and robustness.
As computational solutions become more complex, their energy consumption needs are
rising. Investigating the energy consumption of these methods alongside traditional
performance metrics can offer a better picture of their operational efficacy. Moreover,
the investigation of various computational models and paradigms is highly interesting. In
our work, we mainly adopted the native programming models; however, investigation of
models with higher levels of abstraction can be very beneficial as most users tend to rely
on such models growingly. The development of libraries that leverage hardware-specific
features for these new methods can make it easier for practitioners to take advantage
of these advances without needing to understand the underlying hardware intricacies.
At the same time, the use of new special accelerators, such as wafer scale processors
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that allow leveraging large amounts of on-chip memory bandwidth, is a viable option
for future research.
Despite these exciting avenues for research, the presented approaches have been eval-

uated practically and extensively, and multiple real-world examples and scenarios for
applying the methods are demonstrated. These methods substantially reduce the com-
putation time and efficiency in the computation of matrix profiles. These works coa-
lesce to demonstrate that matrix profiles can be computed at an unprecedented scale
and speed without sacrificing accuracy, courtesy of tailored algorithmic advances and
hardware-specific optimizations. Overall, these methods are geared towards more ef-
ficient large-scale High-Performance Data Analytics (HPDA) leveraging HPC for time
series analysis, representing a huge leap in the feasibility of applying matrix profile tech-
niques for large-scale data mining and setting new benchmarks for the state-of-the-art.
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A1 List of Publication

This appendix lists the author’s publications, divided into two sections: those that
directly contributed to the development of this dissertation and those that provided
indirect or distant contributions.

A1.1 Works with Direct Association to this Dissertation

• Amir Raoofy, Roman Karlstetter, Martin Schreiber, Carsten Trinitis, Martin Schulz;
Overcoming Weak Scaling Challenges in Tree-based Nearest Neighbor Time Series
Mining; ISC High Performance 2023.

• Yi Ju, Amir Raoofy, Dai Yang, Erwin Laure, Martin Schulz; Exploiting Reduced
Precision for GPU-based Time Series Mining; IPDPS 2022.

• Roman Karlstetter, Amir Raoofy, Martin Radev, Carsten Trinitis, Jakob Hermann,
and Martin Schulz; Living on the Edge: Efficient Handling of Large Scale Sensor
Data; CCGrid 2021.

• Amir Raoofy, Roman Karlstetter, Dai Yang, Carsten Trinitis, Martin Schulz; Time
Series Mining at Petascale Performance; ISC High Performance 2020 (Winner of
the Hans Meuer Best Paper Award).

• Roman Karlstetter, Robert Widhopf-Fenk, Jakob Hermann, Driek Rouwenhorst,
Amir Raoofy, Carsten Trinitis, Martin Schulz; Turning Dynamic Sensor Measure-
ments From Gas Turbines Into Insights: A Big Data Approach; ASME Turbo-Expo
conference 2019.

• Amir Raoofy, Bengisu Elis, Vincent Bode, Minh Thanh Chung, Sergej Breiter,
Maron Schlemon, Dennis-Florian Herr, Karl Fuerlinger, Martin Schulz, Josef Wei-
dendorfer; The BEAST LAB: A Practical Course on Experimental Evaluation of
Diverse Modern HPC Architectures and Accelerators; Tenth Workshop on Best
Practices for HPC Training and Education, SC’23 Workshop.

A1.2 Other Works

• Mohak Chadha, Eishi Arima, Amir Raoofy, Michael Gerndt, Martin Schulz; Sus-
tainability in HPC: Vision and Opportunities; Proceedings of the SC’23 Workshops
of The International Conference on High Performance Computing, Network, Stor-
age, and Analysis.
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• Julian Scheipl, Amir Raoofy, Michael Ott, Josef Weidendorfer; Phase-aware System-
Side Sampling for HPC; CF ’23: Proceedings of the 20th ACM International Con-
ference on Computing Frontiers.

• Andreas Koch, Gabriel Dax, Michael Petry, Harvey Gomez, Amir Raoofy, Urvij
Saroliya, Max Ghiglione, Gianluca Furano, Martin Werner, Carsten Trinitis, Mar-
tin Langer; Reference Implementations for Machine Learning Application Bench-
mark; First European Data Handling & Data Processing Conference – EDHPC
2023.

• Andreas Koch, Michael Petry, Max Ghiglione, Amir Raoofy, Gabriel Dax, Gian-
luca Furano, Martin Werner, Carsten Trinitis, Martin Langer; Machine Learning
Application Benchmark; Proceedings of the 20th ACM International Conference
on Computing Frontiers.

• Amir Raoofy, Josef Weidendorfer, Michael Ott; Always-On Instrumentation for
Application Introspection in HPC; Proceedings of the 19th ACM International
Conference on Computing Frontiers.

• Max Ghiglione, Vittorio Serra, Amir Raoofy, Gabriel Dax, Carsten Trinitis, Martin
Werner, Martin Schulz, Gianluca Furano; Survey of Frameworks for Inference of
Neural Networks in Space Data Systems; Data Systems in Aerospace (DASIA).
Eurospace.

• Amir Raoofy, Gabriel Dax, Vittorio Serra, Max Ghiglione, Martin Werner, Carsten
Trinitis; Benchmarking and Feasibility Aspects of Machine Learning in Space Sys-
tems; Proceedings of the 19th ACM International Conference on Computing Fron-
tiers.

• Max Ghiglione, Amir Raoofy ,Gabriel Dax, Gianluca Furano, Richard Wiest,
Carsten Trinitis, Martin Werner, Martin Schulz, Martin Langer; Machine Learning
Application Benchmark for In-Orbit On-Board Data Processing; OBDP 2021.

• Amir Raoofy, Gabriel Dax, Max Ghiglione, Martin Langer, Carsten Trinitis, Mar-
tin Werner, and Martin Schulz; Benchmarking Machine Learning Inference in
FPGA-based Accelerated Space Applications; MLBench 2021.

• Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis and Martin Schulz;
Enabling Malleability for Livermore Unstructured Lagrangian Explicit Shock Hy-
drodynamics using LAIK; PARS Workshop 2019.

• Arash Bakhtiari, Dhairya Malhotra, Amir Raoofy, Miriam Mehl, Hans-Joachim
Bungartz, George Biros; A Parallel Arbitrary-Order Accurate AMR Algorithm for
the Scalar Advection-Diffusion Equation; SC ’16.
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A2 Complexity of Tree-based Approach,
with Pipelining and Forest Optimization

To better understand the performance characteristics of the tree-based method, we reuse
the complexity analysis of Xiao et al. [XB16] and adapt it according to the pipelining
and forest mechanisms.
For this complexity analysis, the following assumptions and simplifications are made:

(1) We assume that the size of the reference and query sets are equal (i.e., m=n). (2) We
that the tree data structure is fully parallel and the depth of the tree is equal to log(p).

We split the time for the execution of a single iteration into smaller chunks (Equa-
tion (1)) based on the phases that we introduced in Section 6.5.

TIteration = TPhase1 + TPhase2 + TPhase3 (A2.1)

TPhase1 = Ttransformation + Tbroadcast =

O
(
n · d/(p/e)

)
+O

(
log(p/e)

) (A2.2)

TPhase2 = Tmax variance reduce + Tsplit redistribute balance =

O
(
log(p/e) · log(n) + n/(p/e)

)
+O

(
log(n) · log2(p/e)

)
+

O
(
n · d/(p/e)

)
+O

(
n · d · log(p/e)/(p/e)

) (A2.3)

TPhase3 = Tsolve NNJ + Tmerge =

O
(
nc

2 · d
)
+O

(
n · d log(p/e)/(p/e)

)
+O

(
p/e

) (A2.4)

The mathematical terms that are highlighted in red are removed by the optimizations
proposed in Chapter 6.
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A3 Billion Scale Experiment using Tree
Approach

To showcase the capabilities of the tree-based approach, we run a matrix profile com-
putation on a billion-record random walk dataset (n = 1 billion) with a window size
m = 128, using 48K cores of the SuperMUC-NG to 99% in 19 minutes. This run reaches
≈338 teraflop/s maximum kernel performance. There are only two previous works that
conduct experiments at this scale: 1) in 2019, Zimmerman et al. [ZKS+19] performed
matrix profile computation for a time series with 1-billion-record on AWS spot instances
using the SCAMP algorithm, which took between 10.3 hours to 2.5 days. Compared to
that, the tree-based approach reaches one to two orders of magnitude faster speed. 2)
in 2022, Lu et al. [LWM+22] conducted anomaly detection using the DAMP algorithm
on one-billion-record in around one hour on a commodity desktop system in a single
run. While the tree-based method is still 3x faster, it is highly inefficient compared
to DAMP. However, the matrix profile computed with the tree-based method can be
applied to various data mining and machine learning tasks, while DAMP only targets
anomaly detection.
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A4 Link to Prototype Codes

The prototype codes developed for this work are available on GitHub in the following
repositories! For access, contact the author.

• https://github.com/amir-raoofy/mpn

• https://github.com/amir-raoofy/mpngpu

• https://github.com/amir-raoofy/kdmp
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A5 System and Hardware Specifications

This appendix provides an overview and pointers to the specifications of the systems
and hardware used in this work.

A5.1 NVIDIA GPUs

In this Appendix, we list the specification of NVIDIA GPUs are utilized in our work.
The specs, summarized in Figure A5.1, cover various aspects, including their computing
resources, memory capacity and bandwidth, and energy consumption. The studies in
this work all use PCIe-based variation of the NVIDIA GPUs.

Figure A5.1: Specification of NVIDIA V100 (left), NVIDIA A100 (middle), and NVIDIA H100
(right) GPUs.

A5.2 Systems and Supercomputers

We list the following links for accessing the specifications of supercomputers used in this
work.

• SuperMUC-NG: https://doku.lrz.de/hardware-of-supermuc-ng-phase-1-

11482553.html
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A5.2 Systems and Supercomputers

• MPCDF Raven: https://docs.mpcdf.mpg.de/doc/computing/raven-

details.html

• NVIDIA Selene: https://www.nvidia.com/en-us/on-demand/session/

supercomputing2020-sc2019/

• LRZ BEAST: No public specification is available. We only rely on the press
page: https://www.lrz.de/presse/ereignisse/2020-11-06_BEAST/2020-11-

06_BEAST/
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Acronyms and Abbreviations

AI Artificial Intelligence. 6, 8, 43, 45, 49

AMG Algebraic Multigrid. 97, 125

ARIMA Autoregressive Integrated Moving Average. 4, 22

ASTRO Celestial Objects Dataset. 126, 127

AVX512 512-bit Advanced Vector Extension. 41

BAdW Bayerische Akademie der Wissenschaften. 8

BFLOAT16 16-bit Brain Floating Point Format. 16, 99

BFS Bayeriche Forschungstiftung. x

BLAS Basic Linear Algebra Subprograms. 44, 108

CDU Cooling Distribution Units. 21

CPU Central Processing Unit. iii–vi, 9, 11, 16, 41–45, 47–50, 52, 62, 63, 65, 67, 78, 81,
82, 84–86, 89, 91, 92, 94, 96, 98, 101, 115, 121, 133, 135

CU Compute Unit. 49

CUDA Compute Unified Device Architecture. 44, 47–49, 52, 86, 88, 98

CXL Compute Express Link. 42

DAMP Discord Aware Matrix Profile. 52, 53, 101, 142

DBMS Database Management Systems. 23

DCDB Datacetner Database. 21

DEEP Dynamical Exascale Entry Platform - Extreme Scale Technologies. 20

DGEMM Double-precision General Matrix Multiply. 108, 109, 115

DNA Deoxyribonucleic Acid. 7

DRAM Dynamic Random Access Memory. 92, 93

DTW Dynamic Time Warping. 23

ECG Electrocardiogram SignalDataset. 126, 127

ED Euclidean Distance. 23

EMG Electromyography Signal Dataset. 126, 127
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Acronyms and Abbreviations

ESA European Space Agency. x

EU-JU European High-Performance Computing Joint Undertaking. x

EXE Execution. 41

FA-LAMP FPGA-Accelerated Learned Approximate Matrix Profile. 52

FFT Fast Fourier Transform. 52

FLANN A Fast Library for Approximate Nearest Neighbors. 104

flop/s Floating Point Operations Per Second. 6, 43, 46, 72

FP16 16-bit Floating Point. 16, 49, 87, 88, 92–94, 96–99, 124

FP16C Floating Point 16 with Compensated Prefix Sum. 87, 88, 93, 94, 96–98, 124,
125

FP32 32-bit Floating Point. 16, 49, 87, 88, 92–94, 124

FP64 64-bit Floating Point. 16, 49, 87–90, 92–94, 124

FP8 8-bit Floating Point. 16

FP80 80-bit Floating Point. 16

FPGA Field-Programmable Gate Array. 45, 52, 54, 133, 140

GAP Power Consumption for households Dataset. 126, 127

GASPI Global Address Space Programming Interface. 47

GCS Gauss Centre for Supercomputing. x

GDDR Graphics Double Data Rate. 49

GNU Gnu’s Not Unix. 47

GPFS General Parallel File System. 43

GPU Graphics Processing Unit. iii–vi, 6–10, 41–45, 47–50, 52, 53, 66, 70, 79–94, 96–100,
103, 122–125, 128, 131–135, 139, 144

GT Gas Turbine. 123, 124, 126, 127

HBM High Bandwidth Memory. 10, 80

HIP Heterogeneous-compute Interface for Portability. 44, 47

HLS High Level Synthese. 52
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Acronyms and Abbreviations

HPC High Performance Computing. iii–vi, 4, 6–12, 17, 18, 20–22, 30, 42–53, 57–60,
62–72, 74, 76–79, 81, 84, 88, 97, 100–105, 107, 110, 112, 115, 121, 122, 124–126,
131–136, 139, 140

HPC-ODA HPC Monitoring Dataset. 97, 124–127

HPDA High Performance Data Analytics. 81, 87, 99, 136

HPE Hewlett Packard Enterprise. 44

HPL High-Performance Linpack. 6, 21, 97, 125

HZ Hertz. 14, 15, 97

I/O Input/Output. 17, 43, 46, 58, 59, 68–71, 73, 77, 80

IC Integrated Circuit. 5

ID Instruction Decode. 41

IEEE Institute of Electrical and Electronics Engineers. 16

IF Instruction Fetch. 41

InsectEPG Insect Behaviours Dataset. 126, 127

INT16 16-bit Integer. 16

INT32 32-bit Integer. 16

INT64 64-bit Integer. 16

INT8 8-bit Integer. 16

IOP I/O Operations. 70

IPU Intelligence Processing Unit. 45

ITAC Intel Trace Analyzer, and Collector. 47

L1/TEX Level 1 Texture Cache. 92, 93

LAMP Learned Approximate Matrix Profile. 52–54, 101, 103

LDMS Lightweight Distributed Metric Service. 21

LIKWID Like I Knew What I’m Doing. 47, 72, 77

MEM Memory access. 41

MGAB Synthetic Anomalies Time Series Dataset. 126, 127
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Acronyms and Abbreviations

MIMD Multiple Instruction Streams, Multiple Data Streams. 42, 43, 48

MIR Music Information Retrieval. 7

MISD Multiple Instruction Streams, Single Data Stream. 42, 43

MKL Intel Math Kernel Library. 115

ML Machine Learning. 6, 87

MP-MPI MPI-enabled Matrix Profile. 52, 53, 63

MPI Message Passing Interface. 44, 47, 48, 53, 58, 59, 68–70, 72–74, 76, 77, 110, 112,
113, 115, 120

MPIP A Lightweight Message Passing Interface Profiler. 47

mSTAMP Multi-dimensional Scalable Time Series Anytime Matrix Profile. 52, 53, 57–
59, 100

MW Megawatt. 14

NN Nearest Neighbor. 108

NUMA Non-Uniform Memory Access. 73

OpenMP Open Multi-Processing. 44, 47, 51, 77

PANDA Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures. 104

PAPI Performance Application Programming Interface. 47

PC Pearson’s Correlation. 23, 38

PCIe Peripheral Component Interconnect Express. 42, 144

PDU Power Distribution Units. 21

PFS Parallel File Systems. 43

PGAS Partitioned Global Address Space. 47

PMUs Performance Monitoring Units. 47

PreSCRIMP Pre-Subsequence Correlation-based Time Series Matrix Profile. 52, 53,
103, 126, 127

PSML Energy Grid Dataset. 126, 127

RKDT Randomized KD Tree. 104
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Acronyms and Abbreviations

RPM Revolutions Per Minute. 14

RQ Research Questions. 58, 81, 102

SCAMP SCAlable Matrix Profile. 52, 53, 63, 103, 133, 142

SCRIMP Subsequence Correlation-based Time Series Matrix Profile. 103, 104

SCRIMP++ Subsequence Correlation-based Time Series Matrix Profile. 52–54, 101,
103, 105, 106, 114–116, 126, 127

ScrimpCo Matrix Profile on Commodity Processors. 52, 53

SIMD Single Instruction Stream, Multiple Data Streams. 41, 42

SIMT Single Instruction Multiple Thread. 42, 49

SISD Single Instruction Stream, Single Data Stream. 42

SLES SUSE Linux Enterprise Server Distribution. 44

SLURM Simple Linux Utility for Resource Management. 44

SmartNIC Smart Network Interface Card. 45

SMs Streaming Multiprocessors. 49, 82, 90

SMT Simultaneous Multithreading. 42

STAMP Scalable Time Series Anytime Matrix Profile. 52

STOMP Scalable Time Series Ordered-search Matrix Profile. 36, 37, 39, 40, 52–54,
58–60, 91, 100, 101, 105

SVE Scalable Vector Extension. 42

TAU Tuning and Analysis Utilities. 47

TF32 TensorFloat-32. 16, 49, 99

TPUs Tensor Processing Units. 45

WB Writeback. 41
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Glossary

A64FX The Fujitsu-designed 64-bit ARM microprocessor is employed in the Fugaku
system, a supercomputer developed collaboratively by RIKEN and Fujitsu. This
microprocessor powers up the Fugaku supercomputer. 42, 44

Alveo AMD Xilinx Alveo FPGAs is a PCIe-based FPGA card targetting data center
and cloud. 54

AMD Instinct AMD Instinct is AMD’s brand of data center GPUs.. 6, 44

Barnes-Hut The Barnes-Hut algorithm is an efficient computational method for simu-
lating the motion of large systems of particles, like galaxies, by approximating the
influence of groups of nearby particles as a single entity. 104

C++ C++ is a high-level programming language known for its versatility and efficiency.
It was developed as an extension of the C language to include object-oriented fea-
tures like classes and inheritance, which help in organizing and managing complex
programs.. 52, 72, 88, 115

CAPS Chair of Computer Architecture and Parallel Systems at technological University
of Munich. ix

Cerebras Cerebras Systems is an American artificial intelligence company. Cerebras
builds computer systems including its special perpose Wafer Scale Engine (WSE)
which is an AI chip targetting intelligence deep learning applications. 45

CORAL CORAL stands for Collaboration of Oak Ridge, Argonne, and Lawrence Liv-
ermore. It is a consortium is a joint initiative involving three of the United States’
most prominent national laboratories: Oak Ridge National Laboratory (ORNL),
Argonne National Laboratory (ANL), and Lawrence Livermore National Labora-
tory (LLNL). The primary objective of this consortium is to accelerate the de-
velopment and deployment of high-performance computing (HPC) systems in the
United States.. 21, 30, 125

DGX-1 The DGX-1, built by NVIDIA, is an integrated system tailored for deep learning
and AI tasks. It is powered by multiple Tesla V100 GPUs with Tensor Cores.. 89,
92, 93

EPYC EPYC is a brand of high-performance x86-64 server processors designed and
manufactured by Advanced Micro Devices (AMD). 42, 44

exaflop/s One quintillion floating point operations per second.. 6

exascale Exascale systems refers to computing systems capable of calculating at least
one quintillion IEEE-754 double precision (64-bit) operations per second.. 6, 20,
44, 100
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Flynn’s Taxonomy Flynn’s Taxonomy, introduced by Michael J. Flynn in 1966, is a
taxonamy for computer systems. 42, 48

FORTRAN FORTRAN, is a high-level programming language developed by IBM in the
1950s. Primarily designed for numerical and scientific computing. 48

Frontier As of December 2023, Frontier is the world’s fastest supercomputer, and it is
the world’s first Exascale supercomputer.. 6, 44

Fugaku The system Fugaku, established as the flagship High-Performance Computing
(HPC) system at RIKEN Center for Computational Science RIKEN, stood the top
position in the TOP500 list as of June 2020 until June 2022. Comprising 158,976
compute nodes, the system boasts an aggregate core count of 7,630,848 cores while
operating at a power consumption rate of 28 megawatts. At its computational core
lies the Fujitsu A64FX CPU architecture. 44

Google Cloud Google Cloud Platform is a suite of cloud computing services offered
by Google that provides a series of modular cloud services including computing,
data storage, data analytics, and machine learning, alongside a set of management
tools.. 52

Gustafson’s Law Gustafson’s Law, proposed by John Gustafson in 1988, is a theoretical
about weak scaling limits in parallel computing. 7, 46

Hewlett Packard Enterprise Hewlett Packard Enterprise (HPE) is a multinational in-
formation technology company that specializes in providing a wide range of hard-
ware, software, and services. HPE delivers products and solutions for data storage,
networking, servers, and cloud computing.. 6

Icelake Ice Lake is Intel’s codename for its 10th generation Core processors, featuring a
10nm process.. 71, 73, 74

KD-tree KD-trees (K-dimensional trees) are hierarchical structures designed for efficient
multidimensional data partitioning and retrieval, commonly employed in spatial
applications such as nearest neighbor searches and range queries. 104, 107, 108,
113, 114

Keras Keras is a popular open-source neural networks API in Python.. 52

LAPACK LAPACK, or Linear Algebra PACKage, is a library of routines for solving
linear algebra problems, including linear equations, linear least squares problems,
eigenvalue problems, and singular value decomposition. LAPACK provides a col-
lection of highly optimized and portable routines written in Fortran and is widely
used for numerical computations in scientific computing applications. 44
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LINPCK LINPACK is a set of Fortran subroutines designed for the analysis and res-
olution of linear algebra systems. The LINPACK benchmark specifically tackles
systems with a predetermined number of operations in 64-bit floating point arith-
metic, enabling the measurement of practically achievable Floating Point Oper-
ations Per Second (FLOPS) for a High-Performance Computing (HPC) system.
The present implementation of this benchmark is known as HPL (Pet+). 6

LogP LogP is a theoretical model proposed by Culler and Singh in 1993 for analyzing
the performance of parallel algorithms in distributed computing. 47

LRZ LRZ stands for Leibniz Supercomputing Centre. It is a high-performance com-
puting (HPC) center located in Garching near Munich, Germany. LRZ provides
advanced computing resources, services, and supports for researchers and scientists
in various fields, including physics, chemistry, life sciences, and engineering. The
center is known for hosting and operating tier-0 supercomputers, such as Super-
MUC and SuperMUC-NG.. x, 8, 21, 115

LRZ BEAST BEAST stands for Bavarian Energy, Architecture, and Software Testbed
which is an experimental system at Leibniz Supercomputing Centre to enable re-
search on state-of-the-art HPC hardware.. 8, 71, 73, 145

Matlab MATLAB is a high-level programming language and numerical computing en-
vironment developed by MathWorks.. 52

Max Planck Computing Max Planck Computing and Data Facility is a cross-institutional
competence centre of the Max Planck Society to support computational and data
sciences.. 90

MI250X AMD Instinct MI250 is a GPU from Instinct Family Instinct, manufactured
by AMD.. 6, 44

Mixed-precision Mixed precision combines different numerical precisions for solving
parts of a problem, like 16-bit and 32-bit floating point formats, to balance com-
putational efficiency and numerical accuracy. This technique is commonly used in
applications such as deep learning and scientific computing for faster processing
while maintaining acceptable accuracy levels. iii, iv, 9, 10, 20, 46, 49, 50, 54, 80,
81, 87–89, 92–97, 99, 101, 123–125, 131–133, 135

Moore’s law Moore’s Law, as articulated by Gordon E. Moore in 1965 (Moo65), posits
that the complexity, measured in terms of the number of components per integrated
circuit, has been doubling approximately every year.. 4, 5

NEON A SIMD extention for Arm systems. 42
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NVIDIA A100 NVIDIA A100 GPU based on the Ampere architecture. It is part of
NVIDIA’s Tesla GPUs family of GPUs that is designed for data center and high-
performance computing as well as artificial intelligence applications. 45, 88, 90,
92–94, 98, 144

NVIDIA Ampere GPU The NVIDIA Ampere GPU refers to the graphics processing
units (GPUs) based on NVIDIA’s Ampere architecture. This architecture, intro-
duced by NVIDIA, is the successor to the Volta architecture and is designed to
provide significant advancements in performance and efficiency for a range of com-
puting tasks, including graphics rendering and artificial intelligence (AI) workloads.
16

NVIDIA H100 NVIDIA H100 GPU based on the Hopper architecture. It is part of
NVIDIA’s Tesla GPUs family of GPUs that is designed for data center and high-
performance computing as well as artificial intelligence applications. 88, 90, 144

NVIDIA Nsight Compute NVIDIA Nsight Compute is a performance analysis tool for
profiling and optimization of NVIDIA GPU. Specifically designed for CUDA ap-
plications running on NVIDIA GPUs.. 47, 92

NVIDIA V100 The NVIDIA V100 is a high-performance graphics processing unit (GPU)
designed for data center and high-performance computing applications. It features
a large number of CUDA cores, tensor cores for deep learning, high memory band-
width, and NVLink interconnect technology for efficient multi-GPU configurations.
45, 88–90, 144

NVLink NVLink is a wire-based communications protocol for near-range semiconductor
communications developed by NVIDIA. 44, 45

ODA The utilization of techniques focused on enhancing data center operations by ana-
lyzing monitoring and log data, aiming to optimize performance and functionality.
20, 21, 30

Omni-Path Omni-Path is a high-performance, low-latency interconnect technology de-
veloped by Intel for use in high-performance computing (HPC) environments. 43,
44, 48

OneAPI OneAPI is an open programming model led by Intel to simplify development
across diverse computing architectures, including CPUs, GPUs, and FPGAs.. 115

OpenCL OpenCL, or Open Computing Language, is an open standard for parallel pro-
gramming across various platforms, including CPUs, GPUs, and other accelera-
tors.. 52

OpenSHMEM OpenSHMEM (Open Symmetric Hierarchical Memory) is a parallel pro-
gramming interface and communication library for high-performance computing
(HPC) systems. OpenSHMEM supports one-sided communication, has a global
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address space model, and is designed for portability across different parallel com-
puting platforms. 47

P2P P2P stands for ”peer-to-peer,” describing a decentralized communication model
where end-points interact directly without relying on a central server. 48

petabyte One quadrillion bytes.. 18, 44

petaflop/s One quadrillion floating point operations per second.. iv, vi, 8, 44, 77, 135

petascale Peta systems refers to computing systems capable of calculating at least one
quadrillion IEEE-754 double precision (64-bit) operations per second.. iii, v, 8, 77,
139

RIKEN RIKEN is a scientific research institute in Japan. It hosts the Fugaku system
at RIKEN Center for Computational Science. 44

roofline The roofline model is a visual performance analysis tool in high-performance
computing. It locates the operational intensity and throughput on a graph and
helps to dentify bottlenecks and optimization opportunities. The roofline chart
shows a performance ceiling based on hardware limitations. 47, 72

self-join A self-join is a relational database operation that combines rows within the
same table, treating it as if it were two separate instances of the same table. In the
context of time series data, a self-join is performed on a single time series, allowing
for comparisons and analyses within the same sequence. Special treatments are
often applied to address trivial similarity matches, ensuring meaningful results
when identifying patterns or relationships within the time series itself. 24–26, 28,
31, 35–37, 39, 52, 59, 61, 63, 66, 68, 70, 82

SensE SensE stands for Sensors on the edge. It is a Research project funded by Bay-
erische Forschungsstiftung (2021-2024), cooperation between TUM and IfTA Inge-
nieurbüro für Thermoakustik GmbH.. ix

Skylake Skylake refers to Intel’s 6th generation Core processors. These processors, are
built on a 14nm process.. 44, 72–74

STREAM STREAM is a benchmark program designed to measure sustainable memory
bandwidth and the corresponding computation rate for simple vector kernels. 72

STUMPY STUMPY is a Python library that Efficiently Computes the Matrix Profile.
53

SuperMUC-NG SuperMUC-NG is the latest flagship supercomputing system hosted
at Leibniz Supercomputing Centre, featuring 6480 Lenovo ThinkSystem SD 650
Direct Water Cooled nodes powered by the Intel Skylake Xeon Platinum 8174
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CPU. The system employs a fat tree topology interconnect, linking 311050 cores,
and achieves a theoretical peak performance of 26.7 petaflop/s. With a total main
memory capacity of 719 terabytes, SuperMUC-NG was installed in September
2018. iv, vi, 8, 21, 44, 58, 72–74, 77, 90, 102, 115, 117–121, 133, 135, 142, 144

teraflop/s One trillion floating point operations per second.. 121, 142

TOP500 The TOP500 is a semiannual event that identifies and ranks the 500 fastest su-
percomputers globally. The ranking is determined based on the High-Performance
Linpack (HPL) benchmark.. 5, 6, 8, 44

TurbO TurbO stands for Gas Turbine Optimization using Big Data. It was a Research
project funded by Bayerische Forschungsstiftung (2017-2020), cooperation between
TUM and IfTA Ingenieurbüro für Thermoakustik GmbH.. ix, 18, 19

Ultra96 Ultra96 refers to the Ultra96 Arm-based, Xilinx Zynq UltraScale+ MPSoC
development board board. It is a product of Avnet, designed in collaboration with
Xilinx. 54

UNIX Unix is a family of multitasking, multi-user computer operating systems that
derive from the original AT&T Unix, whose development started in 1969 at the
Bell Labs research center.. 13, 16

US DOE Oak Ridge National Laboratory The Oak Ridge National Laboratory (ORNL)
is a multipurpose research institution located in Oak Ridge, Tennessee, United
States. It is managed by the U.S. Department of Energy and is renowned for its
contributions to various scientific and technological domains, including materials
science, nuclear science, and high-performance computing. 6, 44

WaferScale WaferScale involves integrating an entire silicon wafer into a single semi-
conductor device, maximizing computational power and efficiency. 45

z-normalized ”Z-normalization” refers to transforming a dataset so its mean is zero and
standard deviation is one. This involves subtracting the mean from each data point
and dividing by the standard deviation. It’s used to bring different datasets to a
common scale, aiding in comparisons and processing in various models. 27, 28, 31,
33, 35, 36, 39, 95, 114
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[KK93] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA’93, pages 91–108. ACM Press, September 1993. doi:10.1145/

165854.165874.

170

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/363707.363723
http://dblp.uni-trier.de/db/conf/vldb/vldb2002.html#Keogh02
http://dblp.uni-trier.de/db/conf/vldb/vldb2002.html#Keogh02
https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1023/A:1024988512476
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874


[Kle15] Caroline Kleist. Time Series Data Mining Methods. Master’s thesis,
Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät,
2015. doi:http://dx.doi.org/10.18452/14237.

[KRH15] Ronan Keryell, Ruyman Reyes, and Lee Howes. Khronos sycl for opencl:
A tutorial. In Proceedings of the 3rd International Workshop on OpenCL,
IWOCL ’15, New York, NY, USA, 2015. Association for Computing Ma-
chinery. doi:10.1145/2791321.2791345.
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