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Abstract

Compact electronic devices that interact with the physical world, so-called edge devices, are
essential for a wide range of applications that advance e [ciehcy, convenience and well-being.
Their cost and power consumption must be low because they are deployed in large quan-
tities and often run on batteries. This constrains the available resources on edge devices
tightly, especially for memories, which contribute significantly to cost and power consump-
tion. This motivates the need for more research to optimize software that is deployed on
microcontrollers, which are the computer chips at the heart of most edge devices.

The contributions presented in this thesis focus on the code optimization and code
generation for the deployment of machine learning tasks on single and multiple cooperating
devices as well as on the generation of device drivers at the interface between hardware
and software. Modern compilers have largely exhausted the potential for optimization from
the high-level programming language to machine code. Therefore, this work explores the
translation from a domain-specific representation to the high-level programming language.
Code generation automates, simplifies and generalizes this manual software development
process.

In this thesis a novel method to partition neural network layers is developed. It could
be used to reduce the memory usage of certain machine learning models by up to 76.2%
without introducing significant run time overhead. Additionally, this method was used to
improve a distributed machine learning inference flow so that it can fully scale memory
usage by incorporating more cooperative devices, while reducing communication demand
by up to 28.8% compared to previous methods. Automated optimization of driver code was
able to reduce the number of memory accesses by 36%, the estimated run time by 52% and
the code size by 22%.
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Chapter 1

Introduction

even more important in the future. A microcontroller (or MCU for microcontroller

unit) is an integrated circuit that contains all the essentials of a programmable com-
puter: memory to store program instructions and working data, at least one processor core
that executes instructions, and interfaces to the outside world through peripheral devices.
The advantages of MCUSs over larger computers are their low size, cost and power consump-
tion. These properties allow to easily embed MCUs into other devices responsible for a raised
standard of living, such as medical, industrial, communication, transportation, home and
consumer applications [32, 17, 29, 74, 40, 2]. When added to a system that would normally
not be programmable, MCUs can improve safety, e ciency, functionality and exibility.
To achieve these improvements, the system requires software, that is, instructions for the
MCU to execute. Such software is running in a tightly constrained environment because the
available resources in terms of computing capability and amount of memory are extremely
limited. The topic of this thesis is the optimization and automated generation of software
that is suitable for deployment on resource-constrained devices. Optimization is desired be-
cause MCUs are often produced in large quantities and have long lifetimes. Therefore, even
small improvements can yield large total savings. While there has been massive research
progress since the inception of MCUs and their software, this thesis presents advances of
the state-of-the-art in the following speci c areas.

M icrocontrollers are ubiquitous in the world today and are expected to become

Machine Learning Inference on MCUs
Distributed Machine Learning Inference

The Interface between Hardware and Software

1.1 Motivation

The following presents the challenges addressed with the approaches presented in this thesis.
Solutions are proposed in the subsequent section.
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Chapter 1. Introduction

1.1.1 Machine Learning Inference on MCUs

Machine learning applications on self-su cient devices o er superior possibilities over cloud
computing approaches in terms of communication demand, latency and data privacy. Such
devices have a wide range of computation classes, and it was shown that certain machine
learning workloads can be performed even on tiny, low-power microcontroller-type devices.
MCUs have become su ciently capable to run machine learning applications such as key-
word spotting, visual wake-up, anomaly detection or radar-based gesture recognition. In
these applications, a machine learning model that has previously been trained on a larger
machine is deployed and computes a prediction for new input, a process also calléadfer-
ence Machine learning inference is heavily constrained by the limited resources on MCUSs,
which spawned a large eld of research known aginyML or Extreme Edge Al [104, 55].
This thesis will focus on reducing the memory demand of TinyML applications. There are
a number of TinyML solutions that tackle this issue by sacri cing some model accuracy to
reduce the memory demand, such as quantization, pruning and neural architecture search.
Although there also exist methods that are able to reduce memory demand without degrad-
ing model accuracy, they may increase inference run time signi cantly or are limited in their
applicability to di erent types of models.

1.1.2 Distributed Machine Learning Inference

On top of the challenge of limited working memory, the huge number of pre-trained model
parameters of modern machine learning models require su cient storage memory. One pos-
sible solution is to run the machine learning inference task in a distributed fashion, where
the pre-trained model parameters are partitioned and distributed across multiple devices
to reduce the amount of data on each individual device [22, 64, 106]. Furthermore, many
deployments of devices already match such a system architecture when they are connected
to each other via a local network, for example, a cluster of surveillance cameras. Distributed
inference also lends itself to applications in which participating devices are mostly idle be-
cause new inputs arrive rarely. Thus, their unused processing power can support the devices
that receive the input. The challenges addressed in this thesis are optimal partitioning of
the data of the machine learning model and optimization of the communication demand
imposed by device cooperation.

1.1.3 The Interface Between Hardware and Software

The peripheral devices, or shortperipherals of an MCU are its connection to the outside
world [75, 60]. Sensors and actuators can be connected to such peripherals through pins.
The control of peripherals is enabled by low-level hardware interfaces that are usually im-
plemented as memory-mapped registers. Write accesses to special addresses may induce
behavior in the peripheral, and read accesses to them can return data to the processor. The
way in which the hardware registers are mapped to memory locations is commonly dictated

by what is most convenient for the hardware design. It follows that the software accesses
to these memory-mapped registers are not optimized with regard to software metrics, such
as code size and the number of necessary accesses. However, since the amount of memory
and compute time on MCUs is tightly constrained, it is desirable to optimize the interface
between hardware and software. Another important resource in the life cycle of an MCU is
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1.2. Contribution of this Thesis

the cost of software development. To reduce it, parts of the development ow have to be
simpli ed and automated whenever possible. Instead of being able to focus on just driver
behavior, developers are challenged by having to additionally consider the register layout
of the peripheral, performance of their accesses and the resulting memory footprint. On
top of that, using low-level interfaces directly in driver and application code may pollute
the source code with macros and bit manipulation operations, decreasing readability and
maintainability. While this can be alleviated by using idioms like a Hardware Abstraction
Layer (HAL) that hides low-level code, such layers of abstraction prevent behavior-speci c
optimization, causing inferior performance and memory footprint [30]. The challenges of
optimization and e ort of software development are addressed in this thesis by a method
for optimized code generation of driver interface software.

1.2 Contribution of this Thesis

For all identi ed challenges, this thesis proposes to solve them using a similar approach.
Each problem is rst mathematically modeled so that the desired metrics can be optimized.
In all cases, the developed methods are implemented within a design automation software
tool to demonstrate its applicability and e ectiveness in a wide range of test cases.

1.2.1 Fused Tiling for Optimized ML Inference

The inference task for a trained machine learning model can be described as a directed graph
with nodes representing high-level operations and edges representing intermediate bu ers. If
the lifetime of two such bu ers do not overlap, their memory storage may overlap, allowing
to reduce the overall memory demand. A previously existing method to further reduce the
memory demand isfused tiling, which will be described in this thesis [4, 106, 24, 13, 67, 68,
57, 25]. Fused tiling is a process in which the size of the intermediate bu ers is reduced by
calculating them in tiles, while also decoupling their lifetimes byfusing multiple consecutive
operations. A new contribution of this thesis is Fused Depthwise Tiling that applies fused
tiling in novel ways to enable new tiling opportunities without any run time overheads that
would be induced by existing fused tiling methods. These new opportunities come from a
wider applicability to more types of operations compared to existing methods that focus
solely on convolutions. Combined with existing fused tiling, TinyML memory optimization
could be improved signi cantly by expanding the available design space. To demonstrate
the e ectiveness of fused tiling and the improvement achieved by the new method, this
thesis describes an end-to-end deployment ow that automatically determines where and
how to apply fused tiling optimally on any given machine learning model. This ow also
requires suitable memory-aware scheduling of operations and memory bu er layout planning.
Hence, these two steps are also automated and e ciently implemented to conduct a fast
exploration. Optimized tiling opportunities are found quickly through a method called path
discovery, which analyzes any given machine learning model and explores possible fused
tiling con gurations. Expanding the fused tiling design space with Fused Depthwise Tiling
improved the average memory reduction of sampled models from 32.8% to 46.3% with an
unchanged run time overhead of 12.8%. When targeting performance-aware designs, the
overhead could be eliminated while still achieving 28.8% average memory reduction.
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Chapter 1. Introduction

1.2.2 Optimized Distributed ML Inference

In distributed machine learning inference, fused tiling also helps reduce the memory demand
of each individual device, with the added bene t that tiles can be computed in parallel by
all cooperating devices. Additionally, it is possible to apply fused tiling for the reduction
of the storage memory required by each device, which is presented rst in this work. This
thesis describes a process that simultaneously optimizes for computation, memory and com-
munication demands of a distributed deployment. The approach includes joint optimization
of computation and the memory demands for both working memory and storage memory
by distributing data evenly over all cooperating devices. This allows to run an application
in the distributed scenario that would be too demanding for a single device. Furthermore,
communication demand is minimized by nding an optimized con guration of the fused
tiling. A fully distributed deployment of di erent machine learning models is demonstrated
on a Raspberry Pi cluster to explore trade-o s between run time, memory requirements
and communication overhead for di erent network bandwidths and device counts. For six
devices on 100 Mbit/s connections, the integration of fused tiling additionally leads to a
reduction of communication demands by up to 28.8%. This results in run time speed-up
of the inference task by up to 1.52x compared to partitioning without fusing. Automatic
optimization of the partitioning con guration could reduce the memory footprint per device
by 25% over a handpicked con guration from previous work.

1.2.3 Automated HW/SW Interface De nition and Optimization

The smallest unit of a peripheral interface is calledbit eld. A bit eld is a value that

the processor can read or write to interact with the peripheral. Each bit eld consists of
one or more bits that are accessed atomically, that is, all at once. The rst step toward a
more optimized interface between hardware and software is the design and de nition of a
new speci cation format for the bit elds that enables new opportunities for optimization.

An extension for the C programming language is described in this thesis, which allows one
to de ne a exible hardware/software interface, where the mapping between bit elds and
memory addresses is not yet predetermined. This language extension allows developers to
focus on desired software behavior using special features such as bit eld array and hierarchy,
while not having to consider performance implications imposed by the low-level interface.
An optimized mapping of the bit elds to a register layout is determined by a heuristic
method. Finally, a code analysis and generation approach that takes advantage of this
optimized layout is shown. The approach is able to combine accesses to di erent bit elds
to reduce the total number of accesses, and it inserts base pointers systematically to reduce
memory usage through code reuse. In simple examples of driver code, the number of memory
accesses is reduced by 36%, the estimated run time is reduced by 52% and the driver code
size is reduced by 22%. This could be achieved at the cost of an 8.7x larger register map.
The complexity of the source code is reduced by 39% when measured by Halstead e ort.

1.3 Structure of this Thesis and Previous Publications

The remainder of this thesis is organized as follows. Additional background on MCUs and
deep neural networks is given in Chapter 2. The state of the art prior to the publications

16



1.3. Structure of this Thesis and Previous Publications

associated with this thesis is presented in Chapter 3. The description of the technical con-
tributions is split into three chapters that are based on the following previous publications.

The use of fused tiling for memory optimization in deep learning inference is presented
in Chapter 4 and is based on: Rafael Stahl, Daniel Maller-Gritschneder and UIf Schlicht-
mann: "Fused Depthwise Tiling for Memory Optimization in TinyML Deep Neural Network
Inference”, in "TinyML Research Symposium 2023" [91]. This conference paper proposes
a new tiling method that reduces memory usage without inducing any run time overhead
compared to previously existing methods. It improves TinyML memory optimization signif-
icantly by reducing memory of models where this was not possible before while additionally
providing alternative design points for models that show high run time overhead with exist-
ing tiling methods. Furthermore, an automated end-to-end ow with a new path discovery
method is proposed that ensures all compared tiling methods are applied optimally for a
fair comparison.

In Chapter 5, contributions to distributed deep learning inference on edge devices are dis-
cussed. These are based on: Rafael Stahl, Alexander Ho man, Daniel Maller-Gritschneder,
Andreas Gerstlauer and UIf Schlichtmann: "DeeperThings: Fully Distributed CNN Infer-
ence on Resource-Constrained Edge Devices", in "International Journal of Parallel Program-
ming", volume 49, 2021 [89]. This journal paper proposes an approach that supports a full
distribution of CNN inference tasks by partitioning commonly used layer types along with
a holistic optimization across layers. Memory, computation and communication demand is
jointly optimized with techniques that combine both feature and weight partitioning with
a communication-aware layer fusion method. The journal paper is an extension of the fol-
lowing conference paper: Rafael Stahl, Zhuoran Zhao, Daniel Mdller-Gritschneder, Andreas
Gerstlauer and UIf Schlichtmann: "Fully Distributed Deep Learning Inference on Resource-
Constrained Edge Devices", in "Embedded Computer Systems: Architectures, Modeling,
and Simulation: 19th International Conference (SAMOS) 2019" [92].

Chapter 6 details the driver generation for optimizing memory-mapped register interfaces
and is based on: Rafael Stahl, Daniel Mdller-Gritschneder and Ulf Schlichtmann: "Driver
Generation for loT Nodes with Optimization of the Hardware/Software Interface", in "IEEE
Embedded Systems Letters", volume 12, no. 2, 2019 [90]. This journal paper proposes a hew
method to reduce memory size, performance and development e ort for device drivers. This
is achieved by describing the driver behavior with a new C-like domain-speci c language.
The layout of the driver register interface is optimized so that register accesses can be
combined. The required source code for the driver software is generated in an automated
ow.

This thesis is concluded in Chapter 7.
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Chapter 2

Background

this chapter covers the foundation and introduces terminology used throughout the
remainder of this thesis. Core concepts are the hardware platform of a microcontroller
and deep neural networks used in machine learning.

Before going into the details of the existing work and the contributions of this thesis,

2.1 Microcontrollers

A MicroController Unit (MCU) is a small computer on a single integrated chip [75, 60].
The common components of an MCU are shown in Figure 2.1. All communication between
components is facilitated by one or morebusses A program and any static data are stored
in storage memory also called read-only memory (ROM), which is nowadays typically im-
plemented as ash memory. The instructions of a program are read and executed by one or
more processor cores A core has a few internal registers for temporary working data, but an
MCU also incorporatesworking memoryto store larger amounts of data. Working memory is
almost always implemented as random-access memory (RAM) - usually SRAM. Also on the
bus, although often on a secondary lower-speed bus, are the peripheral devices. Peripherals
that are present in almost every MCU are timers, interrupt controllers, input/output pin
controllers (General Purpose Input/Output (GPIO)) and converters between analog and
digital signals (Analog Digital Converter (ADC), Digital Analog Converter (DAC)). The
interface between hardware and software is predominantly implemented through memory-
mapped registers. This means that the processor core is executing regular memory load
or store instructions and the system bus will redirect certain prede ned address ranges to
peripheral devices instead of the system memories. The smallest logical unit of a peripheral
interface is a device parameter that can be read or written by the processor. In this thesis,
the device parameters are calledit elds. The behavior of the individual bit elds within
the memory-mapped registers is de ned by the peripheral hardware speci cation. Typically,
an MCU is provided to customers along with device driver code that abstracts this low-level
interface to a more intuitive user-oriented one. An additional abstraction layer, called the
hardware abstraction layer (HAL), may be introduced to separate driver behavior from low-
level primitives [30]. Instead of accessing a raw memory address and performing shift and
mask arithmetic, a bit eld is accessed by its name through a HAL function. Chapter 6
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Chapter 2. Background

Figure 2.1: Common components of an MCU.

will present contributions toward an optimized hardware/software interface supported by
automatic code generation.

The performance of a program running on an MCU is determined by the properties
of all the mentioned components. First, the processor frequency limits the speed at which
instructions can be executed. Its instruction set architecture dictates how many instructions
are required to perform a desired computation. Bus and memory speeds and dynamic
congestion activities can also have a great impact on overall performance. Many details of
the microarchitecture, such as caches and branch prediction, in uence program performance
to a great extent as well. The focus of this thesis lies on the memories of an MCU. They
limit the size of programs and data that can be stored on the device and are a major factor
in the cost and energy consumption of the system because they take up a large portion of
the chip area. For example, a popular microcontroller STM32F051R8T6 has been analyzed
for its components [71] and the memories occupy more chip area (23%) than the core (22%)
or peripherals (21%) with the remaining area dedicated to interconnects and I/O pads.
Optimizing the memory usage of an application therefore either reduces cost and energy
consumption or allows one to deploy a more advanced functionality that requires more
memory.

The size and computation class of MCUs is at the very low end after servers, desktop
computers, mobile and embedded devices. Compared to specialized hardware that has its
function xed, MCUs o er the ability to be programmed exibly because they have a general
purpose processor. Specialized hardware also requires a great deal of e ort into chip design,
while MCUs are available "o -the-shelf". These properties make MCUs a suitable platform
for the Internet of Things (loT) that connects huge amounts of tiny devices for applications
such as smart cities, smart homes and industrial automation [8]. The devices in the outer
layer of the 10T that interact with the physical world are called edge device®r edge nodes
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2.2. Deep Neural Networks

Figure 2.2: Example machine learning model architecture.

2.2 Deep Neural Networks

As MCUs became more capable, they could be established as a viable platform even for
one of the most demanding application classes of machine learning [14, 95]. Although many
machine learning applications run on large server farms or thecloud, such a deployment
has various disadvantages compared to directly running an application on the device that
senses new input and needs to act on it. The additionally required communication limits
the bandwidth at which data can be exchanged between a device and its backend, also
a ecting the economics of a cloud solution. Since the two communication partners are often
physically distant and have to communicate over the internet, the connection may have
signi cant latency or be unreliable. Furthermore, the data to be processed must leave the
device, raising concerns about privacy. These points motivate the deployment of machine
learning applications on the 10T edge or completely o -grid. Terms for such a deployment
have only recently been established as TinyML or Extreme Edge Al [104, 55].

A machine learning model is de ned primarily by its model architecture It describes
which input arguments are accepted by the model, how these arguments are processed by
the model computationally, and nally, what outputs are returned by the model. Com-
putations are carried out on entities called tensors Their primary attributes are their
dimensionality and data type. While some modern model architectures include tensors of
dynamic shape, they are typically not implemented dynamically in TinyML to avoid dy-
namic memory allocation and the increased complexity of dynamic operators. Instead, a
static upper size bound is chosen and any unused data are dropped during inference. An
example model architecture is shown in Figure 2.2. The top graph represents tensors as
nodes of the graph, in contrast to the alternative notation on the bottom, which represents
tensors as the graph edges or special properties of the operation nodes. Both notations are
common and will be used in this thesis. The upper one is more clear about the fact that
tensors may be reused by multiple successor nodes, while the lower notation is more concise
and is more compatible with graph algorithms since there is only one type of node.

Besides the model architecture, a machine learning model also comprises trained static
parameters, called weights and biases, or jusiveights They are arguments of the operations
within the model architecture and are determined by training the model. Figure 2.3 shows
a generic end-to-end TinyML ow from the dataset and model architecture to the model
deployed on a target device. Training takes a dataset and the model architecture and
adjusts its weights so that the performance of the model on new unseen input is optimized.
Optionally, the model can be re ned with neural architecture search (NAS), a process that
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Chapter 2. Background

Figure 2.3: Generic TinyML ow.

automatically optimizes the model architecture. After the training stage, the model is
deployed to its target device, where it can be fed with new input to predict the output
values in a process callednference.

A model architecture with more than one operation is called a deep neural network
(DNN). Since all modern practical machine learning models ful ll this criterion, the term
DNN is used as an umbrella term for all neural networks in this thesis.

2.2.1 Dense Layer

Figure 2.4 shows an example DNN consisting of threlyers. Layers are equivalent to the op-
erations described above and operate on tensors, which are shown here as individuaurons.
A layer that connects all input neurons with all output neurons is called fully-connected layer
or alsodenselayer. Given the number of input neurons M, and output neurons K, for layer
[, the computational operation of a fully-connected layer can be expressed as follows [95].
! !
h.dl
by = f am Wmk *Vvik ; k2f1:::5;Kig (2.2)

m=1

arm is the m-th element of the input neurons vectora; 2 RM', b is the k-th element of
the output neurons vector by 2 RX', wim is the m;k-th element of the weight matrix
W, 2 RMi Ki vy is the k-th element of the bias vectorv; 2 RX' and f is an activation
function. An activation function is a nonlinear function that is essential for the operation
of a DNN. If there were no activation functions, a DNN would only be able to model
linear relationships between inputs and outputs. Common activation functions are sigmoid,
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2.2. Deep Neural Networks

Figure 2.4: Example DNN with three layers.

hyperbolic tangent and recti ed linear unit (ReLU), with the latter being most suited in
the context of TinyML, because it can be computed quickly and is meaningful for quantized
integer types.

Aside from dense layers, any common mathematical operation can be included in a
neural network. The addition of bias values was already included in Equation 2.1, but can
also be de ned as an individual operation that represents element-wise addition. Di erent
combinations of operations and how they are connected to each other de ne di erent types
of DNN. Widely used ones are the standard feed-forward DNN presented here, auto-encoder
networks, recursive neural networks and transformer networks. Almost all modern DNNs
are convolutional neural networks, which will be described in more detail in the following
section.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNSs) are of special interest for the contributions of this
thesis due to their structure and because they are the most widely used model architecture
in popular neural networks [84, 99, 57]. CNNs are motivated by classi cation tasks that take
images as input. Images are represented as three-dimensional tensors for image pixel width,
image pixel height and the number of color channels. The third dimension is often named
channels or especially for tensors other than the input tensor,feature maps In later layers

of a model and in use cases other than image recognition, the channels do not represent
colors. Processing such large three-dimensional tensors with fully-connected layers would
have extreme computational and memory requirements. This motivates a new type of layer
that does not connect all input neurons with all output neurons. This new layer type called
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Chapter 2. Background

convolutional layer takes advantage of the property of images that their data are spatially
correlated. A DNN that contains any type of convolutional operation is also a CNN. A
convolutional layer takes three-dimensional tensors as input, which corresponds to a set of
feature maps. For example, an initial RGB input image consists of three feature maps,
one for each color channel. The operation then applies a set ofters to this tensor, and
each lIter produces a single feature map of the output tensor. A lter consists of multiple
two-dimensional kernels one for each input feature map. The lters with their contained
kernels are trainable parameters and are also called weights. As such, the computational
operation of a convolutional layer can be expressed as follows [95].
¥
Bio=f corr(Ae;Wieo) 5 02f1,:::;00 (2.2)
c=1

The matrix A, is the c-th feature map of the input tensor A; 2 R*' Y1 €1 the matrix
B, is the o-th feature map of the output tensor By 2 R*' ' ©' and the matrix W |.c.o
is the kernel that connects the c-th feature map of the input with the o-th feature map
of the output. The kernels are contained in the four-dimensional weight tensorW, 2
RY Vi G O whereU, and V, are the width and height of the kernels, respectively. The
activation function is again f. The function corr(A ;W) computes the two-dimensional
cross-correlation, for which thex; y-th element is computed with the following formula.

COI’I’(A;W)X;y = Ax+uy+v Wuyv (2.3)

(u=b Yc)(v=b %c)

Note that there may be additional properties of a convolution that are not considered in
these de nitions. For example, a stride refers to a step size at which the feature maps are
read, and a padding can be de ned in di erent ways that expands the input feature map
borders to produce larger output feature maps.

Figure 2.5 shows a CNN consisting of two layers with kernel dimension&); = V; =
U, = V, = 3. The input tensor has dimensionsA; 2 R® & 3 and is processed by the rst
convolution with O; = 8 output channels, resulting in the intermediate tensor B1; A, 2
R® 8 8 The second convolution with O, = 2 output channels produces the nal output
B, 2 R® 8 2. Note that, as highlighted with a few examples, each output neuron depends on
all input neurons at the same x and y coordinates across all input channels, with additional
neighboring input neurons being included for kernel dimensions larger than 1x1. A padding
of one pixel was added around the input edges in the width and height dimensions of the
input to obtain the same feature map dimensions in the output.

Aside from this base case of a convolutional layer, there are many variations. A depthwise
convolution refers to a variant that comprises a single Iter, of which each kernel produces an
individual output feature map instead of summing their results. In pointwise convolution,
the kernel sizes are constrained to 1 1, acting as a weighted sum over the channels of each
input pixel. The combination of depthwise and pointwise convolution is called depthwise
separable convolution and is a common technique to reduce the number of parameters
while keeping the neuron dependencies of the standard convolution. Due to their high
dimensionality, convolutional operations usually are the most computationally and memory-
intensive in many CNNs. Given the focus of resource-constrained MCUSs in this thesis, it is
important to consider convolutions in any optimization method.
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Figure 2.5: Example CNN with two layers.

2.3 Deep Learning Frameworks

As DNNs drove advances in many di erent elds by employing more sophisticated models
and larger datasets, the need for software frameworks that support the end-to-end deploy-
ment from the source model to the target hardware has increased. Deep learning frameworks
let the user de ne a model architecture and automatically generate optimized executable
code for training or inference. The machine learning implementations for the contributions of
this thesis use deep learning frameworks to achieve competitive results that are comparable
to existing work. Many popular deep learning frameworks like TensorFlow [1], PyTorch [73]
and MXNet [19] use an intermediate representation (IR) to implement graph-level opti-
mizations on high-level deep learning operators. These operators are then implemented
with target-speci c libraries to accelerate them. TensorFlow Lite is a framework specif-
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ically targeted at "mobile and edge" devices, providing only a subset of operators and a
reduced runtime environment [35]. TensorFlow Lite for Microcontrollers (TFLM) is an even
smaller subset that is suitable for MCUs, reducing runtime memory overhead to values be-
low 50 kB [28]. DarkNet is a deep learning framework that stood out because it achieved
state-of-the-art results with the YOLO object detection models [78, 80]. For this reason, it
was used in the existing work on which the contributions in Chapter 5 are based.

A more advanced approach to model optimization is introduced with machine learn-
ing compilers such as Apache TVM [20], Glow [81] and XLA [82]. Instead of treating
each operator individually, these tools have a global view of operators that enables cross-
operator optimizations like operator fusion and global memory planning. New platforms
can be targeted with less engineering e ort, because not every operator needs a handwrit-
ten implementation. An IR of a machine learning compiler can lower directly to operations
that are available for the specic target platform, e.g. matrix/vector multiplications for
Accelerators/GPUs or scalar multiplications for simple MCUs.

Apache TVM is used for the implementation of the contributions in Chapter 4 because
the presented optimization method requires complex cross-operator transformations and
TVM provides the appropriate tooling to implement them. TVM is a state-of-the-art ma-
chine learning compiler capable of transforming various input formats of DNN models into
various deployable output formats. All the deep learning frameworks mentioned above can
provide a DNN model format that is recognized by TVM as input. The compilation ow
is divided into two major steps with their respective IRs that are aware of the machine
learning domain. First, TVM transforms the input model graphs into the Relay IR where
graph-level transformations can be applied. Relay has a human-readable representation that
is structured as follows.

1 def @main(%input_1: Shape(l, 32, 32, 3)) -> Shape(1l, 5) {

2 %0 = nn.conv2d(%input_1, Const[0]: Shape3, 3, 3, 10), padding=[1, 1, 1, 1],
3 channels=10, kernel_size=[3, 3]) -> Shape(l, 32, 32, 10);

4 %1 = add(%0, Const[1]: Shape(10)) -> Shape(l, 32, 32, 10);

5 %2 = nn.relu(%1l) -> Shape(l, 32, 32, 10);

6 %3 = nn.max_pool2d(%2, pool_size=[2, 2], strides=[2, 2], padding=[0, 0, 0, 0]
7 ) -> Shape(l, 16, 16, 10);

8 %4 = reshape(%3, newshape=[-1, 2560] -> Shape(l, 2560);

9 %5 = nn.dense(%4, Const[2]: Shape5, 2560), units=5) -> Shape(1l, 5);

10 nn.relu(%5) -> Shape(l, 5);

1}

Functions are de ned with the def statement and take a number of runtime parameters
and return a return value. Every tensor value is annotated with a Shape that declares
the dimensions of that tensor. Arguments namedConst represent the weights and biases.
Expressions can either be nestedf@ncl(func2(x)) ) or aliased with a variable name, here
%0- %5 The example code describes a toy functiommain that takes the 32x32 3-channel
image namedinput 1 as input and returns a vector of ve oat values. It rst applies

a 3x3 convolution (hn.conv2d) with bias addition ( add) and RelLU activation (nn.relu ),
followed by a 2x2 max pooling operation in.max_pool2d) and nally a fully-connected
layer (nn.dense) with ReLU activation. After all optimizations have been applied on the
Relay level, the model is transformed to the second IR, calledlIR. TIR is a low-level
representation that only acts on the scope of fused operations and is the direct input to
various backends that are able to produce output for di erent deployment scenarios. For
example, C code for deployment on microcontrollers or CUDA code for deployment on
Nvidia GPUs. TVM was chosen as the basis for the implementation because its Relay IR
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is very suitable for adding complex transformation passes. To achieve competitive results
compared to widely-used frameworks likeTensorFlow Lite for Microcontrollers , the Ahead-
of-Time (AoT) TVM backend was chosen for the work presented in Chapter 4 because it
generates static code that is able to run the DNN inference without the full TVM run-time
libraries. In TVM, many DNN operations are fused to completely eliminate intermediate
bu ers. For example, a convolution with bias addition and activation function is carried out
by adding the bias and applying the activation function while calculating each individual
convolution output value. All intermediate bu ers between such fused operations do not
contribute to the peak memory usage of the deployed model.

2.4 Summary

Microcontrollers are integrated circuits with a focus on low price and power consumption,
dictated by the chip area, of which a large part is dedicated to memory sizes. These
devices are often used to perform smart functionalities, for example in loT applications.
One increasingly popular approach for processing large amounts of data collected by edge
devices is machine learning, typically with deep neural networks containing some form of
convolutional layer. Deep learning frameworks and compilers are software tools that support
the development and deployment of DNN models.
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State of the Art

a clear baseline for the contributions of this thesis. Existing optimization approaches
for memory-constrained devices in the area of deep learning inference and device
drivers are reviewed.

T his chapter presents a comprehensive review of the current state of the art to establish

3.1 Deep Learning Inference on Edge Devices

As already outlined in the Introduction and Background, machine learning is valuable for
many applications on constrained devices. DNNs can be fed with large, complex and noisy
sensory input data and transform them into an output that is easy to interpret, e.g., a
classi cation result. The focus of this thesis lies on the inference side, assuming that a
trained model already exists. DNN inference is demanding in terms of computation, energy
and memory resources.

A widely used solution to overcome the limited resources in low-power devices is to
0 oad computation to other infrastructure, such as cloud or fog devices [47, 87]. Although
this typically allows for much more powerful models, the input and output data need to
be transferred over a network. Transferring raw data requires high bandwidth between
the edge device and the cloud backend. The physical distance between the two introduces
network latency, which can be a dealbreaker for real-time applications. The network and
backend infrastructure add signi cant cost and reduce the overall reliability of the entire
inference solution. Furthermore, the inference input and result may be sensitive data that
must not leave the edge device. Due to inferior latency, bandwidth, privacy and cost, there
is a strong push to move DNN inference to edge devices with the TinyML paradigm. A load-
aware approach presented in [100] focuses on partitioning and distributing parts of a model
between di erent levels of processing power. During inference, the model can stop at an
intermediate layer if it has high con dence in a result. Although such a model would execute
edge-only for certain inputs, it still carries all the downsides of the full cloud o oading for
the others.

Of course, it is challenging to run DNN inference on constrained edge devices, but
even demanding applications such as keyword spotting, visual wake-up, anomaly detection
and radar gesture recognition were shown to be deployable to tiny MCUs with only a
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few hundred kilobytes of working memory [12, 102]. One core challenge is the limited
RAM available for intermediate storage of run-time bu ers. During training of a model,

all data are typically represented as 32-bit oating-point values. This level of precision
is not necessary for accurate inference, and therefore, various quantization methods have
been developed [33, 52, 27]. Today's machine learning frameworks support quantization of
all weight and activation data to at least 8-bit integers with low e ort. This reduces the
model size up to 4x in both ROM and RAM and additionally makes it faster and more

e cient to execute. Post-training quantization is applied on an already trained model and
does not require retraining, while quantization-aware training refers to a process in which
the model is quantized during training. Another related model compression technique is
pruning [15, 103, 9]. Here, weights that have a negligible impact on the model result are
removed completely. On its own, this would result in sparse data structures that introduce

a signi cant performance penalty on general purpose hardware. A more advanced pruning
technique is structured pruning, in which whole rows of a dimension are systematically
dropped [41, 37]. Quantization and pruning are both e ective methods to reduce the size
of the deployed model at the cost of some model accuracy. There exist various device-local
methods to optimize performance and memory usage on a single device, such as shrinking
and compressing the DNN [54, 42, 15, 69]. Applying these methods can reduce the output
accuracy, thus no longer making the model a viable solution. As such, there will always be
models that are too complex for a single device.

Another approach to bring deep learning inference to constrained devices is the design of
model architectures speci cally for constrained devices [43]. More generally, NAS is another
method that is able to nd compromises between the core metrics of memory usage, run
time (or power consumption) and accuracy. Given a dataset and a method for evaluating
tness, many di erent network architectures are systematically searched to nd the most
suitable one [98, 58, 12]. Often, this will be a multi-objective optimization on the Pareto
front across the core metrics. NAS has enormous search spaces, but in the TinyML domain,
these become more manageable.

All memory optimization methods mentioned so far have in common that they change
DNN parameters and, therefore, the DNN's behavior and inference results. One method to
reduce memory usage without changing any DNN behavior is fused tiling, which is the basis
for the contributions of Chapter 4 and is discussed in the following section.

3.2 Fused Tiling

It is observed that many DNNs have an architecture where only a single or very few inter-
mediate bu ers dominate the memory requirements of the entire model. Figure 3.1 shows
four popular models where this observation can clearly be seen [28, 50, 72, 84].

Fused tiling is a method that reduces the required memory of such large intermediate
bu ers by changing the order of computation across operators. Tiling by itself refers to
the splitting of DNN operations into multiple tiles, or also calledpartitions, which can then
be computed independently of each other. It is used primarily within a single operation
to accelerate execution through parallel computation, for example, in processor cores or
processing elements of a hardware accelerator [58, 4]. Another application of tiling is the
partitioning of DNNs so that they can be run distributed over several devices [106]. This
will be discussed in more detail in Section 3.3. Fusing by itself refers to the process of
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(a) Magic Wand (b) Text Classi cation

(c) PoseNet (d) SSDLite

Figure 3.1: RAM usage of DNN intermediate bu ers.

combining multiple operations into a single one that intersperses their low-level operations.
For non-tiled operations, this usually refers to the fusion of all element-wise operations that
are part of the tensor operations. For example, after a dense layer, it is trivial to fuse the
bias addition and activation function into the computation of each output element. Fused
tiling is the combination of both ideas, where the tiled operations are fused together. Since
fusing element-wise operations is trivial, this thesis is particularly concerned with the fusion
of multiple commonly used high-level operations, such as dense and convolutional layers.
These notably have wider input dependence than element-wise operations, which makes
their fusion non-trivial. Fused tiling, as presented in existing literature, will be referred to
as Fused Feature Map Tiling (FFMT).

FFMT refers to the fusion of convolutional layers when they are partitioned along their
feature maps. Figure 3.2 illustrates FFMT on two consecutive convolutional operations
as part of a DNN. The three sets of feature maps are the input of the rst operation, an
intermediate bu er and the output of the second operation. Since the intermediate bu er
is larger than the input and output, calculating it in a tiled manner could reduce the mem-
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Figure 3.2: FFMT applied to two consecutive CNN layers.

ory requirements of their computation. FFMT does this by splitting all feature maps of
the intermediate tensor bu er into partitions. Convolution operations have spatial locality,
which allows one to produce output feature maps from split inputs mostly independently.
However, convolution kernels larger than 1x1 cause awoverlap in the input partitions that
accumulates additively over all fused operations. Overlap refers to data that must be cal-
culated by multiple partitions redundantly. More generally, overlap is introduced by an
operation if its kernel size is larger than its stride size in the dimension that is partitioned.
For example, a convolution with kernel size 6x2 and stride size 2x2 introduces overlap when
partitioned along the rst dimension, but not when partitioned along the second dimension.
The example in Figure 3.2 shows how two operations are split into two partitions and their
overlap caused by 3x3 convolutions is highlighted. Since the goal is a reduced working mem-
ory usage, the order of operations is important. After calculating the rst partition of the
large intermediate bu er, the fused second convolution must be executed directly afterward
to free the memory usage of the partitioned intermediate bu er. Only then can the second
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partition of the bu er be calculated. In this way, the large intermediate bu er must never

be kept in memory in its entirety. In FFMT there is no inherent limit to the number of
consecutive convolutions until the overlap becomes too large to achieve memory savings or
the run time overhead becomes impractical. The convolutional operations tiled with FFMT
may be interleaved with other operations, such as simple element-wise operations such as
bias addition and activation functions. Convolutions are often interleaved with pooling op-
erations, but even these may be part of the partitions as long as their input size does not
introduce constraints that are too restrictive. Notably, the partition boundaries must not
split the input of a pooling operation or overlap must be introduced.

FFMT is not a nhew concept introduced in this thesis and is described in more detail in
the related literature [4, 106, 24, 13, 67, 68, 57, 25]. FFMT was rst employed for reducing
peak memory usage in [24], but their path discovery requires partially manual e ort from
the user. Other works that use FFMT with automated path discovery are [13, 67, 68, 57, 25].

3.2.1 Memory-aware Scheduling

For many DNNSs, scheduling is trivial because their graphs do not contain any branches.
The operation nodes are scheduled in the order in which they are located on the single path
of the graph. In other words, there is only a single possible topological sort of the graph.
However, with tiling, parallel paths are introduced in the DNN graph and di erent schedules
become possible that determine the lifetime of the intermediate bu ers and, hence, peak
memory. It then becomes a challenge to nd the schedule that minimizes peak memory.
Scheduling for optimal run time has been widely studied and has also been applied in the
context of machine learning [93]. A simple approach to memory optimization is to iterate
all possible topological sorts of the DNN graph [56]. The run time of this enumeration can
quickly become unmanageable for more complex DNN graphs. While optimal memory-aware
scheduling has been achieved before in [3] using a dynamic programming approach with
adaptive canceling, tiled graphs with large number of partitions and many split operations
can still quickly cause unmanageable run times. Tiled DNNs resemblseries-parallel graphs
(SP-graphs), that is, graphs that only consist of series and parallel compositions of other SP-
graphs and the base case of a single node. Optimal memory-aware scheduling of SP-graphs
has been solved with a polynomial-time algorithm by [48] based on [61].

3.2.2 Memory Layout Planning

After a schedule has been determined, all intermediate bu ers of the DNN graph have to
be mapped to concrete memory locations. Optimizing this mapping for minimal memory
usage is a nontrivial task because bu ers can overlap in memory, as long as they are not
live at the same time. Thus, many bu ers can be placed at overlapping memory locations
to save total memory space. Determining optimal placement is an NP-complete resource
allocation problem. TensorFlow Lite for Microcontrollers (TFLM) employs a greedy heuris-
tic to approximate the optimal solution [77][86][6]. When the bu ers are movable between
operations, the problem becomes trivial, because they can then be packed as compactly
as possible after each operation [56]. But this requires copy operations, which negatively
impact performance. The Apache TVM machine learning framework implements a heuris-
tic approach based on hill-climbing and simulated annealing that outperforms the TFLM
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heuristic in many cases [20].
This thesis contains contributions to methods for scheduling and layout planning for the
fused tiling approach presented in Chapter 4.

3.3 Distributed Inference

For many applications, the overall performance of the system can be greatly improved by
distributing more computation to other devices [22]. An orthogonal solution is therefore
the utilization of multiple cooperative devices to carry out the DNN inference task in a
distributed and cooperative fashion. In many existing applications of edge devices, a large
number of them are available and already connected with each other via a local network,
for example, a cluster of surveillance cameras. This means that many existing installations
already have the required system architecture for performing distributed inference. Another
advantage of distributed inference is that, when inputs arrive, most devices are idle, given
the low duty cycles of common sensor devices. Thus, a low-cost but e cient solution can
be established by utilizing the idle time of other edge devices. Fully distributed inference
has previously been achieved by the approach of MODNN [64]. MODNN distributes a DNN
across multiple mobile phones connected via a wireless network. The approach distributes
both the input and output data of the layers, as well as the weight data across devices.
While this approach is able to partition weights, it focuses mainly on sparse fully-connected
layers, i.e. fully-connected structures, where some weights are zero. The approach does not
take the communication between fully-connected layers into account, and weight-intensive
convolutional layers are not addressed. Furthermore, the approach proposes to process
networks in a layer-by-layer fashion, requiring all devices to synchronize by exchanging data
after each layer. Another way to achieve fully distributed inference is layer pipelining [65].
However, this method is unable to evenly distribute the memory demand for typical models.

Model distribution has previously been researched in the context of hardware acceler-
ators. The work in [4] presented such a method, with the central idea of fusing the rst
few layers of the network to reduce the total transfer of data to and from the chip. In con-
trast to this thesis, the fusion method in [4] targets memory-constrained accelerators instead
of similarly constrained individual edge devices. Fusing optimization for the accelerator is
only investigated for the feature-intensive layers, while the fusing approach presented in this
thesis additionally targets the weight-intensive layers. Other works on accelerators have fo-
cused on aggressive parallelization and do not apply to single/few core devices [7]. Another
related topic is the distribution of tasks within a network of collaborative edge devices.
Several methods are proposed on how this should be done [83, 18], but these works handle
general tasks and focus on the network parameters. In contrast, the work presented in this
thesis deals with internals of fully-connected and convolutional operations to remove depen-
dencies between tasks, which would have had to be respected by more general approaches.
The use of larger-scale edge devices to share work was explored in [49], but this has the
disadvantage that a more powerful device is added to the network along with its additional
power requirements.

Table 3.1 contrasts the existing work with the work presented in this thesis. Pipelining
is a simple method for distributed inference, but it cannot evenly partition the data. FFMT
is only capable of partitioning convolutional layers, cannot partition weights, and introduces
overhead from overlapping partitions. MoDNN also uses a one-dimensional variant of FFMT
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Table 3.1: Comparison of Inference Partitioning Methods

Work Layer Types Able to Split Restrictions
Pipelining [65] FC & Conv Features & Weights  Uneven partitions
FFMT [4, 106, 24, 13, 67, 68, 57, 25] Conv Features Overhead of overlap
MoDNN [64] Sparse FC Features & Weights No layer fusion
Chapter 4 [91] FC & Conv Features -
Chapter 5 [92, 89] FC & Conv  Features & Weights -

to partition feature maps of convolutional layers, but it is additionally capable of splitting
the weights of sparse fully connected layers. It does not involve any layer fusion beyond
trivial element-wise operations. In Chapter 4, the primary goal of fused tiling is to reduce the
required working memory (RAM) for the storage of large intermediate bu ers. A novel fused
tiling method is introduced to achieve this without the overhead of overlaps. Chapter 5 will
demonstrate another application of the novel fused tiling method for distributed inference
that reduces static memory usage (ROM).

3.4 Driver Software on Edge Devices

The development of driver software for edge devices requires signi cant engineering e ort
as part of the product development cost. This has previously been addressed with improved
ways of specifying driver behavior. Devil [66] and HAIL [94] are domain speci ¢ languages
(DSLs) that provide mechanisms to describe the relationships between bit elds in a more
granular way. Their description format consists of so-called triggers that de ne side e ects
that de ne how accesses to one eld might a ect another. HAIL allows one to de ne logical
and sequential dependencies between bit elds and includes a mechanism to access multiple
parameters together in a single block. In Devil, the de ned register layout has a xed
register layout, which prevents optimization of that layout. For HAIL, the register layout is
not speci ed in the language itself, but must be provided as con guration input. The central
issue with these languages is that they are completely new languages that are unfamiliar to
driver developers. Laddie [105] is an extension to Devil with the same issue. NDL [26] is a
DSL that builds on top of Devil by extending it with a driver state-level function, which is
beyond the scope of the work presented here.

On tightly constrained edge devices in the MCU class, driver software can occupy a
signi cant share of the available storage memory. Optimizing the way bit elds are mapped
to registers is a possible way to reduce this memory demand. Register layout optimiza-
tion was investigated in [59]. The work de nes costs for the di erent con gurations of bit
elds in registers, while also considering combined accesses. The objective function includes
the total code size and a performance metric de ned as instruction costs weighted by the
number of occurrences during pro ling. The user needs to choose whether the optimization
should focus on code size or performance. The authors de ne a hardware cost as the total
number of registers that are occupied after register allocation. They present an integer
linear programming (ILP) formulation which can optimize for either software or hardware
cost, but admit that such an ILP cannot be solved in a reasonable amount of time. As a
practical solution, they provide two heuristic approaches.

Chapter 6 presents an approach that combines optimization of the register layout with
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a novel way to specify driver behavior.

3.5 Summary

This chapter provided an overview of the existing work that the contributions of this thesis
build upon and extend. Deep learning inference on edge devices has been achieved with
cloud o oading, model compression techniques and complex neural architecture search.
Fused tiling is a method to reduce peaks in memory usage to reduce the overall memory
requirements of DNN inference. Distributed inference is yet another way to reduce memory
requirements by sharing the inference work across multiple cooperating devices. Finally,
optimized driver software is vital to reduce memory overhead from other sources than the
DNN itself.
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software [104]. General hardware improvements and the introduction of specialized

hardware accelerators for machine learning operations bridged the gap on one side [46]
and on the other, compression techniques, as introduced in the background chapter, closed
that gap [95, 99, 27]. Although even training on MCUs is possible [36], this chapter focuses
on inference and how it can be optimized e ectively, especially in terms of memory demand.

T inyML is a eld that has recently been enabled by advances in both hardware and

4.1 Introduction

Section 3.2 introduced fused tiling and the existing Fused Feature Map Tiling (FFMT)
method. Quantization and pruning techniques are orthogonal to fused tiling because tiling
can always be applied additionally to such compression techniques. Neural architecture
search is also an orthogonal optimization method. It can be applied along with the meth-
ods described in this chapter and might even interact symbiotically, because architectures
that would have been rejected for their large memory usage could also be considered as
candidates. Fused tiling is especially e ective for models that have a single or very few
intermediate bu ers that dominate the memory usage. This chapter explores how fused
tiling is applied e ectively to reduce memory usage.

The main contribution of this chapter is the introduction of a so-far unexplored fused
tiling method for the memory optimization of DNNs. This method, called Fused Depthwise
Tiling (FDT), enables new tiling opportunities that reduce peak memory usage without
any run time overhead that would be introduced by existing methods. Additionally, FDT
can be applied to a wider variety of layer types than existing methods that focus solely
on convolutions. A model can be tiled with existing methods and FDT in conjunction so
that the design space for TinyML memory optimization is overall expanded. To explore this
expanded tiling design space, an end-to-end deployment ow is described that automatically
determines where and how to apply fused tiling optimally on any given DNN. Exploiting
tiled graphs for memory reduction additionally requires a suitable memory-aware scheduling
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Figure 4.1: Automated tiling exploration ow.

of operations and an optimized mapping from memory bu ers to a memory layout. Hence,
these two steps are also automated and e ciently implemented to conduct a fast exploration.
To quickly nd optimized tiling opportunities, a process called path discovery is run that
analyzes the DNN graph and explores possible tiling con gurations. This thesis is the rst
work to present FDT and this chapter details its application to memory optimization of
DNN inference.

In summary, the contributions are as follows.

1. The tiling method FDT applied for the memory optimization of DNNs to expand the
design space by reducing memory further or eliminating run time overheads.

2. An automated exploration with a new block-based path discovery to nd suitable tiling
con gurations, a memory-aware scheduling and optimal memory layout planning.

This chapter will describe an optimization ow using both mentioned fused tiling meth-
ods to reduce memory usage in DNNs. Figure 4.1 gives an overview of the steps involved in
this ow. Firstly, the operations of the given DNN graph G, are scheduled in a memory-
optimized order S. After the schedule has been xed, all required intermediate bu ers are
placed into a linear memory space such that the total required peak memory is minimal.
The resulting memory layout L is analyzed to extract a list of intermediate bu er candidates
B; that may reduce total memory usage if they were to be tiled. These bu er candidates are
passed to thepath discoveryin descending order sorted by their size. The path discovery
step identi es tiling con guration candidates C; for the rst bu er candidate. If no con g-
uration could be found that reduces the memory usage, the next bu er candidate is tested.
All con guration candidates are passed to the actual graph transformation pass that applies
tiling on the DNN graph to produce graph candidates G;. These are again evaluated by
scheduling and memory layout planning. If the memory size of the smallest found layout
Lmin is smaller than the current layout L, the corresponding tiling con guration improved
memory usage and the currently best graph candidateG, is updated. The optimization
ow works iteratively. The newly generated tiled DNN graph G is evaluated again as
new input beginning with scheduling. The ow terminates when no bu er candidate B;
produces a tiling con guration that reduces the layout size further. Each step of this ow
is described in detail in this chapter.
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Figure 4.2: FDT applied to two consecutive dense layers.

4.2 Fused Depthwise Tiling (FDT)

Fused Depthwise Tiling (FDT) is a novel fused tiling method proposed by this thesis. In
Chapter 5 it will be applied as a means of partitioning DNN weights of fully-connected layers
and convolutional layers that have a large number of weights. This chapter will discuss the
application of FDT for the optimization of working memory, i.e. RAM, whereas the work
presented later targets the static parameters, i.e. ROM.

The primary goal of fused tiling for memory optimization is the splitting of large inter-
mediate tensor bu ers so that their partitions can be computed independently with reduced
memory demand. As shown in Figure 4.3, FDT does this in the depthwise dimension instead
of along the feature maps as with FFMT (compare Figure 3.2). Switching to the depth-
wise dimension avoids any overlap in the intermediate bu er. However, it requires that the
input and output bu ers are fully available to every partition, because every single output
feature map is the result of summing all input feature maps after applying a convolutional
Iter. Figure 4.2 helps explain this concept with two consecutive dense layers tiled into two
partitions. Half of the original six output neurons of the rst layer ( FDT Fan-Out) are
computed in each partition using all input neurons. For the second layer EDT Fan-In) , the
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Figure 4.3: FDT applied to two consecutive CNN layers.

original four output neurons can only be computed patrtially, because not all input neurons
are available to every partition. However, since a dense operation is a sum of products,
all partial values of all partitions can be recombined by summing them element-wise and
applying the activation function afterwards in a new appended Merge operation. Since ac-
tivation functions are nonlinear, this imposes a limit of two FDT-partitioned operations for
each tiled sequence.

Whereas FFMT requires spatial locality of all operations, FDT can be applied to a wider
range of operations where all output elements depend on all input elements as long as there
is no interdependence between the output elements. Examples of operations that can only
be tiled by FDT are dense operations and pairs of embedding lookup (e.g. TensorFlow
gather function) and axis reduction (e.g. by taking the mean).
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Figure 4.4: Architecture of the running example.

Figure 4.5: Example DNN graph for scheduling.

4.3 Automated Tiling Exploration

It is not meaningful to demonstrate the theoretical memory usage of fused tiling methods
in isolation, because the practical memory usage is heavily a ected by the entire end-to-
end deployment ow with the interdependent problems of tiling con guration, operation
scheduling and layout planning. Each of these problems will be addressed in this section.
The ow in which these steps are embedded is already shown in Figure 4.1.

Running Example:

The entire automated tiling exploration ow will be demonstrated on a running
example of a simple DNN. Its architecture is a simpli ed version of the Key Word
Spotting DNN of MLPerf Tiny [11] and is shown in Figure 4.4. The box-shaped
nodes of the graph represent layer operations and the nodes with rounded corners
represent the intermediate tensor bu ers that store the tensor data. The input
tensor represents a two-dimensional spectrogram with length 32 and eight frequency
bins. The architecture consists of three convolutional layers with widely varying
characteristics, followed by an average pooling layer and a fully-connected layer.

4.3.1 Memory-aware Scheduling

Figure 4.5 introduces an example DNN graph with two parallel paths, as might be produced
by fused tiling. Although the goal of tiling is to produce evenly sized partitions, this cannot
always be achieved due to various constraints of the involved DNN operations. For example,
convolutions partitioned by 2x2 tiles using FFMT cause very uneven partitions when their
feature map size is small and even more so if they are fused with pooling operations. The
example demonstrates that the optimal schedule is not trivial. The optimal schedule rst

41



Chapter 4. Fused Tiling for Memory Optimization in DNN Inference

Figure 4.6: Example DNN graph transformed as task graph.

walks via OpAl to OpB1 but then continues on the lower branch with OpA2, OpB2 and
OpC2 before scheduling OpC1 and nally OpD. This optimal schedule has a peak memory
of 110: keeping the output of OpB1 (30) alive while computing OpC2 (40 + 40). Simple
depth- rst scheduling has a peak memory of 120, because it needs to keep the output of
OpC1 or OpC2 (40) alive while computing OpC2 (40 + 40) or OpB1 (50 + 30).

Section 3.2.1 introduced existing methods for memory-aware scheduling of DNN graphs.
The algorithm of [48] is implemented in the proposed ow because it nds optimal solutions
for SP-graphs. However, in contrast to typical task models in distributed computing, the
output of a DNN operation can be used by all subsequent operations without distinct bu ers
for each edge. The DNN graph needs to be adjusted to the model compatible with the
algorithm. This adjustment is achieved by duplicating each node and transforming all
weights into the cumulative weight model(see Section 4 of [48]). The example in Figure 4.5
is transformed into a task graph as shown in Figure 4.6. After duplicating each operation
node, the weight of each edge of the original graph is added positively onto the edge source
node and negatively onto the duplicated edge sink node. If there are nested parallel graphs,
this transformation does not accurately represent the original graph, because each forking
node has all accumulated weights of its outgoing edges. An alternative would be to divide
all outgoing edge weights of the forking nodes by the number of successors. The underlying
issue is that the cumulative weight model cannot represent the fact that the cumulative
weight can only be reduced once the last successor edge is scheduled. In these cases, the
algorithm may not nd the optimal scheduling.

For non-SP-graphs, a mixed integer linear programming (MILP) formulation is given,
because it was deemed easier than the method by [3]. The MILP is given as follows.

MiN mt:H maxx()r(nx) (4.1)

sit: 8x=1::N my = Hyi W, (4.2)
i2N

8i =1::N 1 t N (4.3)

tiét 8 =1l 1 (4.4)

ti>t, 8p2 pred(i) (4.5)

ti<ts 8s2 sucqi) (4.6)

Hyi 2f0;1g (4.7)

ti = X —8) Hyxi =1 1 (4.8)

t<x @ T tg xA =) Hy =1 (4.9)

s2succ (i)
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The objective function (Eqg. 4.1) minimizes the largest sum of bu er sizesw; that are live
(Eg. 4.2) which is equal to the peak memory usage of the schedule. The indexrepresents
the position of execution during the schedule and is an index for all nodes to be scheduled.
To represent when each bu er is executed, the variable vectott is introduced, with each
nodei assigned an integer corresponding to its position in the schedule (Eg. 4.3). Ensuring
that all indices are di erent from each other (Eg. 4.4) and respecting their nodes' topological
order (Eq. 4.5)(Eq. 4.6), enforces a valid execution order.H is a Boolean matrix that is
forced to true if the bu er i is live during the execution stepx. This is the case if a node is
currently executed (Eg. 4.8) or if it was already executed and not all of its successors have
been executed, yet (Eg. 4.9).

Converting the problem into inequalities and disjunctions yields the following.

minmmax smitiH S Z Mmax X (4.10)
sit: 8x=1::N Mmax My, My = Hyi W, (4.11)
i2N
8i =1::N 1 t N (4.12)
8 =1 1 L <tj_ti>t; (4.13)
8p 2 pred(i); 8s2 sucdi) tp <tj <tsg (4.14)
ti XMt x! Hy =1 (4.15)
8s 2 sucdi) ts x! Zy =0 (4.16)
<X (1 Zyg)! Hg =1 (4.17)

The implications are resolved witha! b,: a_band all comparisons converted to less-
than inequalities. The matrix Z was introduced as Boolean helper variables for converting
the conjunction into a disjunction in the next step. The last three equations can then be
written as the following.

o ox 1 x 1 _ Hy:i 1 (4.18)
ts X 1 _ Zy O (4.19)

The disjunctions can be modeled through theBig M Method as given in the following [10].

Aixi U 8i 2 1.::N (4.21)
i2N X
hi =1 h; 2f0;1g (4.22)
i2N
Mhi + Aix; U + M M 2N  AjX (4.23)

A; are the constraint coe cients, Xx; the variables and U; their upper bound. h; are
Boolean helper variables. This nal MILP formulation is now suitable to be plugged into a
solver.
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Figure 4.7: Flow of the memory-aware scheduling.

The entire ow of the memory-aware scheduling is shown in Figure 4.7. If the graph can
be split into two connected components by removing a single edge, it is a series graph and
both split graphs can be scheduled independently to reduce computational complexity. If
the graph is series-parallel it is solved with the algorithm presented in [48] and an adjusted
task model. Whenever timeouts are hit, the ow progressively falls back to the MILP,
a heuristic approach and nally a random schedule. Non-SP-graphs are attempted to be
solved with the MILP and fall back to a random schedule on timeout.

The heuristic approach is based onhill-valley segmentsintroduced in [61], but com-
promising optimality for trivial run time complexity. For each parallel path, the heuristic
determines the nodeN;nax With the maximum memory usage and the nodeNmin With
the minimum memory usage, which is also a descendant dfl;nax - The paths are now
scheduled in their descending order oNi.gitt = Nimax Nimin and used as is, instead of
merging them as in the optimal algorithm.

Running Example:

The running example is a trivial linear graph, so its only possible schedule is the
only topological sort of the graph: Convl, Conv2, Conv3, Pool, Flatten, Dense

4.3.2 Memory Layout Planning

The next step of the proposed automated tiling exploration after scheduling is memory
layout planning. Section 3.2.2 introduced existing methods for memory layout planning
of DNN graphs. To avoid any compromise of existing methods, a new MILP to optimize
memory layout planning is introduced. The DNN graph describes the dependencies between
bu ers and operations, and the schedule indicates in what order these operations are exe-
cuted. Together, these two determine the exact lifetime and, therefore, con icts that exist
between any bu ers. The following MILP is formulated to provide optimal memory layout
planning.
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(&) TFLM Heuristic (b) Presented MILP

Figure 4.8: Example of memory bu er planning.

mineg max;(g) (4.24)

st & S 2N 8iz1:N (4.25)
& Su & _6& S &

(U; V) 2 C] 8j =1:C (4-26)

The i-th of a total of N bu ers has the ending o set g and the sizes;. The j -th of a total
of C conicts is described by ¢; and contains the indicesu and v that refer to the bu er list.
The objective function (Eqg. 4.24) minimizes the largest ending o set of all bu ers, which is
equal to the peak memory usage of all mapped bu ers. The constraint (Eq. 4.25) ensures
that all bu ers can only start after the address zero. Finally, the constraint (Eq. 4.26)
ensures that there are no address overlaps in the list of conicting bu ers. The nonlinear
disjunctions are modeled with the Big M Method as already shown for scheduling in the
previous section. The nal o sets of each bu er are obtained trivially by e s;. For very
large DNNs, the run time can become prohibitively high, so that a fallback mechanism is
required if a timeout is encountered. The selected fallback mechanism uses a method based
on hill-climbing and simulated annealing as implemented in Apache TVM [20].

Figure 4.8 shows a simple example in which the presented MILP provides a better so-
lution than the TFLM heuristic [77]. The x-axis contains all operations in their scheduling
order and spans their entire required lifetime. The location of a bu er in memory is de-
scribed on the y-axis by a starting o set and spanning the bu er size upward. The shown
example is a linear graph operating on bu ers of sizes 5, 3, 2 and 4 units. The only possible
schedule produces trivial conicts between each neighboring bu er. By greedily placing
the two largest bu ers of the Input and the output bu er of Op3 at the same o set, the
TFLM heuristic is forced to place the two remaining con icting bu ers without any further
opportunity of sharing memory locations with other bu ers, while the MILP nds such a
solution. This reduces the peak memory usage from 10 to 8 units.
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Figure 4.9: Memory layout of the running example.

Running Example:

The running example has a memory layout as shown in Figure 4.9. The total memory
usage is 24576 bytes, which is, in the case of a trivial linear schedule, the largest sum
of two adjacent buers: (16 4 32+16 4 64) 4 bytes. By inspection, the layout
indicates that tiling the operations Conv2 or Conv3 could reduce memory usage. In
the following, a systematic approach to identify such tiling opportunities for complex
DNN graphs is presented as next step of the automated tiling exploration.

4.3.3 Block-based Path Discovery

Path discovery has the goal of proposing optimized fused tiling con gurations that dictate
where and how DNN operations are tiled. The process starts at aritical bu er and walks
the DNN graph up and down to nd suitable split and merge points to discover a tiled path
where the critical bu er is split into multiple partitions. After memory-aware scheduling
and memory layout planning, the critical bu ers are identi ed by selecting bu ers from
the memory layout that would reduce the total layout size if their size were to be reduced.
This is achieved by checking whether a bu er is actively contributing to the nal layout
size. In the approach presented in this chapter, the input or output bu ers of the model
cannot be tiled because they are assumed to be written and read as a contiguous unit by
the application. The method can be adapted easily if this requirement would be lifted. All
critical bu ers are considered for path discovery, but the largest ones are checked rst.
Figure 4.10 shows an example memory layout that will be used to describe the algorithm
used in the automated tiling exploration ow. First, all bu ers that end at the total layout
size are the starting point of this search. Here, the layout ends at o set 100 with the bu ers
B1, B5and B8 For each of these starting points, all bu ers are collected that end at the
exact o set that they start at and are associated to the starting point as a chain. If there are
no further bu ers at the starting o set, the entire chain up to the starting point is discarded.
This step is repeated until there are no chains left or the o set zero is reachedB1 starts at
o0 set 40, but there is no bu er that ends at this o set, so this chain is discarded. B8 starts
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Figure 4.10: Example layout for critical bu er selection.

at o set 80, where B9 ends. SinceB9 starts at o set zero, this chain is complete and its
bu ers de ned as critical bu ers. B5 starts at o set 70, where B4 ends. But sinceB4 does
start at o set 50, the search must continue. At o set 50, two di erent buers B3and B6
end, so the chain is forked intoB5-B4-B3 and B5-B4-B6. B3 starts at o set 10, where only
B2 ends andB6 starts at o set 30, where only B7 ends. Since bothB2 and B7 start at o set
zero, two additional chains are completed at all their bu ers are added as critical bu ers.
Finally, all bu ers collected in all chains that reached the o set zero are collected. Here,
these areB8 B9 B5 B4, B3 B2 B6and B7. These are the critical bu ers and are reported
in descending sorted order by their size. In this case, the path discovery would start by
considering B9 rst because it is the largest critical bu er.

It is not detrimental if too many bu ers are identi ed during this step because the only
conseqguence is an increase in run time of the exploration ow. In fact, it is practical to
implement a cuto size (e.g., 5% of the largest bu er) to prevent testing tiny bu ers that
are extremely unlikely to reduce peak memory if they were tiled.

Running Example:

For the running example layout from Figure 4.9, the critical bu ers are the output
bu ers of Conv2 and Conv3. Reducing the size of any other bu er in isolation would
not a ect the total memory usage. Since the output of Conv3 is the largest of the two
bu ers, it is selected as the rst critical bu er. Bu ers that are inputs or outputs to

the model are assumed to be user-provided bu ers and, therefore, must be excluded
because they would not be able to be split.

The next step of path discovery is the formation of paths by associating DNN graph
operations to di erent types of blocks and tracking all possible con gurations. Figure 4.11
shows all blocks of the presented block-based path discovery along with their supported
operations. Each block has two terminals representing the way their input and output
tensors are split. The terminal types are de ned as follows.

Path start (1): This marks the start of any path where a bu er is split into multiple
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Figure 4.11: Path discovery building blocks and supported operations.

partitions that can be executed independently.
Path end (O): This marks the end of any path where a bu er is recombined.

Bu er partitioned depthwise ( PDp): These bu ers are split along their depth dimen-
sion. For three-dimensional tensors that would be the axis representing the channels.
However, this type may also be applied to tensors of other dimensions.

Bu er partitioned by feature maps ( PDgy ): These bu ers are split along their feature
maps for three-dimensional tensors. The two-dimensional feature maps may be split
along one or both of their axes.

The blocks themselves are de ned as follows.

Explicit split ( SPLIT ): A trivial operation that divides its input into the chosen num-
ber of partitions along a given axis. This operation is not required if an implicit split
is realized through FDT. This block may produce depthwise partitioned values (PDy)
or feature map partitioned values (PDgy ).

FDT Fan-Out ( FDTO ): The operation is split by only computing some of the output
values for each partition. For convolutions, only the depthwise (or channel) dimension
is split to support the operator fusion of FDT. Serves as an implicit split operation.

Partitioned operations (PART ): Some output values are computed by using their
respective input values. Applicable to any element-wise operation, because all values
can be computed independently.

Concatenation operation (CONCAT ): This operation concatenates multiple inputs
from partitioned operations back into the original non-partitioned bu er O.

FDT Fan-In ( FDTI ): The operation is split by using only some of the input values to
compute all of the output values. This results in output values that are only a part
of the total sum of the actual output and which must be combined into the original
non-partitioned bu er O again. Therefore, this operation also includes the nal merge
operation that performs an element-wise summation as discussed in Section 4.2.
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Fused Feature Map Tiling (FFMT ): Only applicable to convolutional operations. The
partitions form tiles that have the same size on every feature map. Each such tile can
be computed independently of the others. If the kernel size is larger than 1x1, the
input tiles need to be larger and overlap with each other, because the convolution has
data dependencies into neighboring tiles. Recomputing these values also introduces a
computational overhead.

FDT Fan-Out, PART, FDT Fan-In and FFMT replace their original operation with the
tiled variant, while SPLIT and CONCAT are additionally inserted operations to build a
valid path.

At the critical bu er, multiple candidate paths are proposed for type PD p or PDgy if
possible. One proposal is created for each number of partition®l 2 f 2;:::; 259 with the
upper limit chosen to reduce overheads while observing that higher limits rarely provide
additional memory savings. For FFMT , quadratic two-dimensional tiling con gurations are
added asN 2 f 2x2; 3x3; 4x4; 5x5g. Next, the path is discovered starting from the critical
bu er in both directions, where any compatible block can be chosen. Whenever thé=DT
Fan-In method is used, one version of the path withoutFDT Fan-In is kept, because a
CONCAT could require less memory than continuing with partial values. Whenever an
FFMT -partitioned operation that has overlap is encountered, one version that stops before
that operation is kept and nalized with SPLIT or CONCAT . This is done because overlaps
that become too large may cause inferior paths compared to shorter ones. The discovery has
to stop at any operation that is incompatible with fused tiling (e.g. softmax, slice, concat).
For each of the proposed path candidates, the operation before the critical bu er with the
lowest input bu er size is selected as start of the path and the operation after the critical
bu er with the lowest output bu er size is selected as end of the path. If no such operation
could be determined before and after the critical bu er, the path is discarded and if no valid
paths are left, the discovery fails. In the nal step, path discovery determines the path that
is expected to cause the lowest memory usage. As mentioned in the overview, this is done
by evaluating the memory size with memory-aware scheduling and memory layout planning.
The best con guration is the one with the lowest memory size.

Running Example:

The steps of path discovery will be exempli ed with the model in Figure 4.4. Since
the output bu er of Conv3 was selected as the rst critical bu er, this is the starting
point of the path discovery. The following candidate paths will be created from this
16x4x64 bu er.

PDp along the third axis with N=2 to N=25
PDgyv along the rst axis with N=2 to N=16
PDgyv along the second axis with N=2 to N=4

PDgyv along the rst and second axis with N=2x2 to N=4x4

Moving upward in the data ow, the Conv3 operation must now be mapped to a
compatible block type. Since this is a convolutional operation, the only possible
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choice for all PDp candidates is FDT Fan-Out which has an input terminal of type

I, signifying the start of the path. For all PD gy candidates, FFMT is the only
choice for the Conv3 operation, and this continues up until the 32x8x1 input bu er

of the model. However, as already mentioned, every time afFMT operation with
overlap is encountered, another path candidate is created that terminates the path
with SPLIT. Overlap is caused by operations whose kernel size is larger than the
stride size in the dimensions that are partitioned. This is the case forConv2 and, if
split along the rst axis, Convl At this point, the following path candidates have
been created.

~ [FDTO] along the third axis with N=2 to N=25

[SPLIT,FFMT] along the rst axis with N=2 to N=16, along the second axis
with N=2 to N=4 and along both axes with N=2x2 to N=4x4

~ [SPLIT,FFMT,FFMT] along the rst axis with N=2 to N=16 and along both
axes with N=2x2 to N=4x4

~ [SPLIT,FFMT,FFMT,FFMT] along the same axes as in the second bullet

Note that, for example, for the path candidates of the last bullet, the input is not
simply split by the number of partitions, but has accumulated overlap. For example,
with N=2 along the second axis, the rst partition ranges from row 1 to 6 and
the second partition ranges from row 3 to 8. Moving downward in the data ow,
for the FDTO paths, the Pool and trivial Flatten operations are matched with the
PART block and the nal Denseoperation is matched to the FDT Fan-In block that
nalizes the paths. All FFMT paths encounter an issue when processing thePool
operation, because its output is of size 1x1. Feature maps of size 1x1 cannot be split
by FFMT and all FFMT paths are discarded because they are unable to tile the
critical bu er. The nal remaining path candidates are therefore the following.

" [FDTO,PART,PART] along the third axis with N=2 to N=25
" [FDTO,PART,PART,FDTI] along the third axis with N=2 to N=25

Path pruning will reduce the paths from the rst bullet to [FDTO,PART] because
Pool and Flatten have the same output size. Next, the memory layout of all paths is
evaluated, and the shortest path with the least number of partitions is selected as the
best path. In this case, once N reaches 3, the critical bu er is no longer relevant for
the maximum memory usage and all layout sizes are the same. Therefore, the path
[FDTO,PART] with N=3 is selected as the best path. Figure 4.12 shows the nal
DNN architecture of the running example after applying the transformation given
by this path. Figure 4.13 shows the nal memory layout that is obtained after the
transformation. The total layout size is given as the sum of the output bu ers of
Convl and Conv2 as (16 4 32+16 4 32) 4 =16384 bytes. As can be seen, due
to the split critical bu er, the memory demand could be signi cantly reduced.
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Figure 4.12: Architecture of the running example after transformation.

4.3.4 Automated Graph Transformation

Once the best path con guration has been determined, it is applied by transforming the DNN
graph with the given parameters. At the start of the split path, either an explicit or implicit
split has to be realized. For an explicit split, a new operation has to be inserted that slices the
input into partitions according to the tiling con guration. An implicit split is implemented

by replicating the convolutional or dense layer by the number of partitions and splitting
their weight dimension that is responsible for producing outputs. Any following operations
are also replicated on each partition and need their parameters changed to match their new
input dimensions. For example, a bias addition no longer adds its original constants, but only
the ones corresponding to the respective partition. Another example are padding operations
where their padding needs to be eliminated at split boundaries to preserve the original DNN
behavior. Depthwise convolutions can be split trivially along the channel dimension as tiling
method PART , since every output channel only depends on its respective input channel. The
associated Iter weights must still be split accordingly. The exact splitting logic for every
operator has to be determined on a case-by-case basis. However, it is possible to de ne
categories with similar splitting logic. FDT Fan-In operations are split equivalently to FDT
Fan-Out ones, just that the input channel dimension of the weight tensor is split. Care has
to be taken to prohibit automatic fusing of the last operations on the split paths with the
CONCAT or FDT Fan-In operation, because that would lead to keeping their inputs alive
on multiple split paths. After all transformations have been applied to the graph, the ow
goes back to scheduling it as shown in Figure 4.1.
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Figure 4.13: Memory layout of the running example after transformation.

Running Example:

Figure 4.12 shows multiple aspects of the automated graph transformation. The
Conv3 operation is replicated three times to realize an implicit split. All weights
and biases are split along the depthwise axis to process 22, 21 and 21 channels
respectively. ThePool operations can be replicated as is because they do not have any
parameters relevant to the split dimension. Their only di erence from the original
operation is that they operate on a reduced number of channels. The automated tiling
exploration would now continue by analyzing this new transformed graph again for
critical bu ers. However, in the running example, the ow stops because the output
bu ers of Convl and Conv2 cannot be tiled further since they do not have a straight-
line successor bu er with smaller size.

4.3.5 Implementation

The complete end-to-end ow to compare FDT to FFMT has been implemented in Apache
TVM [20] which was introduced in Section 2.3. As mentioned, TVM fuses many DNN
operations to completely eliminate intermediate bu ers. Therefore, when analyzing a DNN
for critical bu ers, only the bu ers of non-fused operations are taken into consideration.
However, during path discovery, all fused operations are transformed into ne-grained op-
erations because they may contain operations that are suitable as terminals of the split
path. Otherwise, a single operation that would not be supported or bene cial in the split
path, would cause the entire operation to not be eligible for the path, even when large parts
of it could have been valid. For example, there might be an operation that is tiled with
FFMT that is preceded by a fused operation that would not improve the FFMT partitioned
section. However, when that preceding fused operation has a widening cast fused as the last
individual operation, that widening cast could become a bene cial inclusion to the FFMT
partitioned section. By including the cast in the split path, it possibly contributes to a
con guration with a smaller memory layout than without its inclusion. Another consider-
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ation with fused operations should be respected while deciding the optimal path split and
merge positions. In case there are any ties in operation sizes, it may be bene cial to respect
the original boundaries between fused operations to eliminate the need for an additional
intermediate bu er. After the tiling transformation is applied, the model representation is
fused again for the next round of analysis, starting with scheduling. Operations that could
be carried out as simple in-place operations without any intermediate bu er do not need
special treatment, because they will always be fused with neighboring operations with more
complex data ow.

Some models that were imported into TVM contain reshapeoperations that do not have
any computational behavior beyond an exact copy. They are either inserted for reasons of
type system integrity or leftovers from optimization passes. Since they introduce unwanted
and unnecessary intermediate bu ers, the implementation removes or ignores them.

When concatenating tensors in TVM, the arguments of the concatenation operation need
to be given as a data type called tuple. After applying the nal operator fusion pass again,
this resulted in an issue with prolonged lifetimes of intermediate bu ers. By making the
entire tuple object a parameter of the fused function, the entire tuple was kept alive until all
partitions had been merged. The remedy was a special transformation pass that hoists the
extraction of tuple elements out of the fused function, so that the parameter of the fused
function can instead be just the tuple element. In this way, each nished partition reduces
the amount of tuple data that needs to be kept alive.

Another consideration for the implementation is where in the machine learning com-
pilation ow to apply the analysis and transformations. Early in the ow, the Relay IR
is very abstract, high-level and not optimized. Although this simpli es the analysis and
transformation, it is also farthest from the actual low-level machine code deployed. Any
optimizations made at this stage could be less relevant or e ective for the nal memory
usage. Late in the ow, the TIR IR is very target-speci c, low-level and highly optimized.
Therefore, the memory optimizations will be more accurately mapped to the nal memory
usage, but the analysis and transformation become exceedingly complex and intricate. The
implementation of the ideas in this chapter tries to nd a good trade-o between these
two extremes to produce accurate results with manageable e ort. That is, all analysis and
transformations are applied after high-level graph optimizations, but before target-specic
optimizations. In TVM terms, this is just before the lowering from the Relay IR to the TIR
IR.

Running Example:

The following code shows the Relay IR of the running example.

1 def @main(%input_1: Shapel, 32, 8, 1)) -> Shape(1, 6) {

2 %0 = nn.conv2d(%input_1, Const[0]: Shape6, 2, 1, 32),

3 strides=[2, 2], padding=[2, 0, 2, 0], channels=32,

4 kernel_size=[6, 2]) -> Shape(1, 16, 4, 32);

5 %1 = add(%0, Const[1]: Shape(32)) -> Shape(l, 16, 4, 32);

6 %2 = nn.relu(%1) -> Shape(l, 16, 4, 32);

7 %3 = nn.conv2d(%2, Const[2]: Shape(3, 3, 32, 1), padding=[1, 1, 1, 1],
8 groups=32, channels=32, kernel_size=[3, 3]) -> Shape(l, 16, 4, 32);
9 %4 = add(%3, Const[3]: Shape(32)) -> Shape(l, 16, 4, 32);

10 %5 = nn.relu(%4) -> Shape(l, 16, 4, 32);

11 %6 = nn.conv2d(%5, Const[4]: Shape(1l, 1, 32, 64), padding=[0, 0, 0, O],
12 channels=64, kernel_size=[1, 1]) -> Shape(l, 16, 4, 64);
13 %7 = add(%6, Const[5]: Shape(64)) -> Shape(l, 16, 4, 64);
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14 %8 = nn.relu(%7) -> Shape(l, 16, 4, 64);

15 %9 = nn.avg_pool2d(%8, pool_size=[16, 4], strides=[16, 4],
16 padding=[0, 0, 0, 0]) -> Shape(1, 1, 1, 64);

17 %10 = reshape(%9, newshape=[-1, 64]) -> Shape(l, 64);

18 %11 = nn.dense (%10, Const[6]: Shape(6, 64), units=6) -> Shape(l, 6);
19 nn.relu(%11) -> Shape(l, 6);
20 }

The DNN model is de ned as a function main that takes the input input 1 with
shape 1x32x8x1 and produces an output with shape 1x6. It is not shown for sim-
plicity, but all sequences ofnn.conv2d (convolutional layer), add (bias addition) and
nn.relu (ReLU activation function) are fused. As already shown in Figure 4.12, the
desired split occurs at the third convolution (lines 11-12) and merges just after the
pooling operation (lines 15-16). The following code shows the example model after
the optimization transformations have been applied.

1 def @main(%input_1: Shapel, 32, 8, 1)) -> Shape(l, 6) {

2 %0 = nn.conv2d(%input_1, Const[0]: Shape6, 2, 1, 32),

3 strides=[2, 2], padding=[2, 0, 2, 0], channels=32,

4 kernel_size=[6, 2]) -> Shape(1, 16, 4, 32);

5 %1 = add(%0, Const[1]: Shape(32)) -> Shape(l, 16, 4, 32);

6

7

8

9

%2 nn.relu(%1) -> Shape(l, 16, 4, 32);
%3 nn.conv2d(%2, Const[2]: Shape3, 3, 32, 1), padding=[1, 1, 1, 1],

groups=32, channels=32, kernel_size=[3, 3]) -> Shape(1, 16, 4, 32);
%4 = add(%3, Const[3]: Shape(32)) -> Shape(l, 16, 4, 32);
10 %5 = nn.relu(%4) -> Shape(l, 16, 4, 32);

11 %6 = nn.conv2d(%5, Const[4]: Shape(l, 1, 32, 22), padding=[0, 0, 0, O],
12 channels=22, kernel_size=[1, 1]) -> Shape(l, 16, 4, 22);
13 %7 add (%6, Const[5]: Shape(22)) -> Shape(l, 16, 4, 22);

14 %8 = nn.relu(%7) -> Shape(l, 16, 4, 22);

15 %9 = nn.avg_pool2d(%8, pool_size=[16, 4], strides=[16, 4],

16 padding=[0, 0, 0, 0]) -> Shape(1, 1, 1, 22);

17 %10 = nn.conv2d (%5, Const[6]: Shape(l, 1, 32, 21), padding=[0, 0, 0, O],
18 channels=21, kernel_size=[1, 1]) -> Shape(1, 16, 4, 21);

19 %11 = add(%10,Const[7]: Shape(21)) -> Shapel, 16, 4, 21);
20 %12 nn.relu(%11) -> Shapel, 16, 4, 21);

21 %13 nn.avg_pool2d(%12, pool_size=[16, 4], strides=[16, 4],

22 padding=[0, 0, 0, 0]) -> Shape(l, 1, 1, 21);

23 %14 = nn.conv2d(%5, Const[8]: Shape(l, 1, 32, 21), padding=[0, 0, 0, O],
24 channels=21, kernel_size=[1, 1]) -> Shape(l, 16, 4, 21);
25 %15 = add(%14,Const[9]: Shape(21)) -> Shapel, 16, 4, 21);
26 %16 = nn.relu(%15) -> Shape(l, 16, 4, 21);

27 %17 = nn.avg_pool2d (%16, pool_size=[16, 4], strides=[16, 4],

28 padding=[0, 0, 0, 0]) -> Shape(1, 1, 1, 21);

29 %18 = annotation.stop_fusion(%9) -> Shape(l, 1, 1, 22);

30 %19 = annotation.stop_fusion(%13) -> Shape(1, 1, 1, 21);

31 %20 = annotation.stop_fusion(%17) -> Shape(1, 1, 1, 21);

32 %21 = (%18, %19, %20) ->Tuple (

33 Shape(l, 1, 1, 22), Shapel, 1, 1, 21), Shape(l, 1, 1, 21));
34 %22 = concatenate(%21, axis=3) -> Shape(l, 1, 1, 64);

35 %23 = reshape(%22, newshape=[-1, 64]) -> Shape(l, 64);

36 %24 = nn.dense (%23, Const[10]: Shape(6, 64), units=6) -> Shape(1, 6);
37 nn.relu(%24) -> Shape(l, 6);

38 }

The convolution is replicated in lines 11-12, 17-18 and 23-24. Note that the weight
tensor argument is split along the output channel axis into sizes 22, 21 and 21. The
channels argument is also changed accordingly. The fuse@dd and nn.relu , and

the nal nn.avg pool2d (average pooling layer) are also replicated in lines 13-16,
19-22 and 25-28. Note that the bias vector arguments of the broadcasting additions
are also split into three parts. Lines 29-31 are annotations that prevent fusion of its
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input and output operations. Finally, lines 32-34 concatenate all partitioned values
back together before the unmodi ed remainder of the model nishes execution.

4.4 Experimental Results

From a wide range of models, the following subset was identi ed that bene ts from fused
tiling.

1. Audio Wake Words (AWW) : Detection of keywords from audio. Part of the MLPerf
Tiny benchmark [11].

N

Text Sentiment Analysis (TXT) : [34, 63].

Magic Wand (MW) : TinyML gesture recognition with an accelerometer [28].

W

PoseNet (POS) Pose estimation [72].
5. MobileNet V2 SSDLite (SSD). COCO classi er [84].
6. Cifarl0 classier (CIF) : Own CNN [50].

7. Radar Gesture Recognition (RAD): Own TinyML CNN for gesture recognition with a
radar sensor [45].

The target architecture for all experiments was RISC-V in the RVv32GC con guration.
The GNU toolchain at version 11.1.0 was used with the optimization ag set to -Os and
options to prune all unused code and data. RAM and ROM usage is determined from the
section sizes in the compiled binary. The run time is estimated by counting the number of
MAC operations required in their nal optimized DNN graph. This is not equivalent to the
run time after deployment, but is su cient for a comparison. The MILPs were implemented
in OR-Tools 9.3 [76] using the Gurobi 9.1.2 solver [38].

4.4.1 Automated Tiling Exploration

The presented optimal memory layout planning algorithm using an MILP was compared
to the best-performing heuristic approach in TVM that uses hill-climbing and simulated
annealing. The heuristic nds the optimum for most models, but in one case (the TXT
model), the presented MILP approach achieved a memory reduction of 16.8%.

The presented MILP memory-aware scheduling solution is optimal, as de ned by its cost
function. The work in [3] reports a run time of 37.9 seconds for the SwiftNet model [21].
When running the presented MILP scheduling with the same SwiftNet model, a run time
of 37 seconds was measured on akMD Ryzen 9 3900X processor. Although these results
are not directly comparable because di erent machines were used, they show comparable
performance.

The presented path discovery is able to traverse a large variety of models and selects the
optimal solution within its search space. This search space ranges from zero to hundreds
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Table 4.1: Memory reduction of FDT compared to FFMT

Mem [kB] [%] MACs [1 million] [%]

(2] (2]

—_ (=] [e)] e)

g S . |55 5E| £ 5

[T [a) WL © L ® = L

= =) [ [T L wn n =) [

AWW 65.6 | 65.6 53.7 0.0 18.1 || 266 | 2.66 2.66| 0.0 0.0
TXT 18.6 | 18.6 4.4 0.0 76.2 || 0.00| 0.00 0.00| 0.0 0.0
MW 17.6 6.8 11.3 | 61.3 355 | 0.06| 0.08 0.06| 32.5 0.0
POS
SSD
CIF
RAD

FDT

9.35k | 5.11k 8.94k| 45.3 4.4 837 | 1215 837 | 45.1 0.0
14.3k | 8.66k 12.2k| 39.4 146 || 313 | 314 313| 0.2 0.0
157 60 148 | 61.8 5.7 || 455| 5.09 4.55| 12.0 0.0
35 27 28 22.0 19.6 || 0.09| 0.09 0.09| 0.0 0.0
Avg. 32.8 24.9 12.8 0.0

depending on the critical bu er dimensions and operations used to create a path. Fur-
ther factors are variants with early path stops and the iterative application of tiling. The
innermost operations of graph transformation, scheduling and layout planning have to be
executed that number of times. For the evaluated models, the entire ow has a run time of
3 minutes for the RAD model (38 tiling con gurations) up to an hour for the POS model
(172 tiling con gurations). [13, 67, 68, 57, 25] do not provide run times of their ow. The
work of [24] reports 82 to 375 seconds to search nine con gurations, while still having to
manually select the number of partitions and their axes. This shows that the implemented
ow runs e ciently and, in contrast to existing work, does not require a manual choice for
the tiling con guration.

4.4.2 Fused Depthwise Tiling

The results in Table 4.1 show the working memory (RAM) usage and the estimated MAC
operations for each untiled network and the improvements by applying FFMT or FDT
individually. The rst two models can only be tiled by FDT. In the case of AWW, the
critical bu er is involved in a sequence of convolutions that reduce the size of the feature
map to 1x1, which cannot be split by FFMT. The critical bu er of the TXT model exists
within an embedding lookup followed by a mean axis reduction that can only be tiled
by FDT. The remaining models are all CNNs with su cient feature map sizes such that
either method is applicable. FDT eliminates run time overheads at the cost of lower memory
reduction compared to FFMT. The average memory savings are 32.8% for FFMT and 24.9%
for FDT, with the highest savings achieved for the TXT model with FDT at 76.2%. The
average run time overhead is 12.8% for FFMT when including the models where it did not
achieve any memory savings, whereas FDT requires no overhead as expected.

Enhancing an FFMT-only TinyML deployment ow with FDT expands the tiling de-
sign space for memory and performance goals, which is shown in Table 4.2. In the case of
a memory-optimized design, the fused tiling method with the highest memory savings was
selected. This selection results in an improvement of average memory savings from 32.8%
to 46.3% with an unchanged run time overhead of 12.8% compared to an FFMT-only ow.
In the case of a performance-optimized design, the highest memory savings were selected
with the constraint that the run time overhead may not exceed 1%. This still resulted in an
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Table 4.2: Tiling Design Space Exploration with FFMT and FDT

Memory Optimized Performance Optimized

Model | Method Mem Savings Perf Overhead| Method Mem Savings Perf Overhead
AWW FDT 18.1 0.0 FDT 181 0.0

TXT FDT 76.2 0.0 FDT 76.2 0.0

MW FFMT 61.3 325 FDT 355 0.0

POS FFMT 45.3 45.1 FDT 4.4 0.0

SSD FFMT 394 0.2 FFMT 39.4 0.2

CIF FFEMT 61.8 12.0 FDT 5.7 0.0

RAD | FFMT 22.0 0.0 FFMT 22.0 0.0

Avg. 46.3 12.8 28.8 0.0

Table 4.3: ROM usage of FDT compared to FFMT.

ROM [kB] Overhead [%)]

Model | Untiled FFMT FDT FFMT FDT
AWW 126 126 124 0 -1.8
TXT 698 698 699 0 0.1
MW 73.7 79.0 75.6 7.3 2.7
POS 13.6k  13.4k 13.4k| -1.2 -1.1
SSD | 6.44k  6.38k 6.38k| -0.8 -0.8
CIF 546 548 548 0.4 0.4
RAD 226 234 226 3.2 -0.3

average memory savings of 28.8% and FDT is selected for ve of seven models. The explo-
ration also found tiling con gurations, in which FFMT and FDT are applied in conjunction.
However, in the best case the results were as good as the best con guration with a single

tiling method. Still, for possible new models, the combination could also yield bene ts.

As can be seen in Table 4.3, the ROM overhead of FDT is negligible with the highest
increase of 2.7%. The increase is caused by an increase in code size due to the increased
number of operations in the DNN graph, but often the ROM usage of FDT is also lower
because TVM may choose simpler schedules than for the untiled variant.

4.5 Summary

This chapter presented the novel fused tiling method FDT for memory optimization in DNN

inference. FDT can be applied to more layer types than FFMT and does not introduce over-
head from overlapping partitions. The method is evaluated in a complete end-to-end DNN
deployment ow for an accurate evaluation. The ow combines memory-aware scheduling,
memory layout planning and block-based path discovery to a fully automated deployment.
New MILP formulations have been presented for scheduling and layout planning that can
e ectively nd optimal solutions.
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Chapter 5

Optimization of Memory and
Communication in Distributed
DNN Inference

tributed inference refers to the splitting of the inference task across distinct compute

devices with separate processor cores and memories. This chapter presents contribu-
tions that enable fully distributed inference on constrained devices with a focus on memory
limitations.

n nother eld that can greatly bene t from fused tiling is distributed inference. Dis-

5.1 Motivation

As already outlined in the previous chapters, DNN inference is heavily constrained by mem-
ory sizes because it must store a large amount of input, parameter and intermediate data.
Fused tiling, as presented in the previous chapter, is able to reduce the amount of interme-
diate data, but can not help with the parameters if executed on a single device. To perform
the entire inference task, a single device must have all of the model parameter data avail-
able to it. Therefore, given an application that requires a model with a su ciently large
amount of parameter data, that application cannot be run on a single device. While this
could be solved trivially by deploying the application on a more powerful device, the cost of
such a solution is prohibitive and may not be appropriate for the target application. If the
system is battery-powered, the increase in energy consumption could exceed the specied
energy budget. Another issue with this approach is the cost of upgrading as soon as existing
hardware falls below the required memory threshold for an updated application.

Section 3.3 already introduced existing work on distributed inference. The most closely
related work is MODNN [64] which partitions both feature and weight data. Their method
for partitioning weights is, however, limited to sparse fully-connected layers. It would be
possible to combine their method with the layer fusion and optimization methods presented
in this chapter. With additional constraints, the communication overhead could be further
reduced by the approaches presented in this chapter.
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(a) VGG [88] (b) VWW [23]

(c) YOLOv2 [80] (d) Inception [97]

Figure 5.1: Memory requirements for the computation of individual model layers.

The work presented in this chapter builds on the previous DeepThings approach [106],
which addressed adaptive distributed deep learning inference for systems with dynamic
availability of edge nodes. A fusing approach for multiple layers, which focuses on data
partitioning in feature-intensive layers, was the main contribution of that work. However,
it did not consider weight partitioning. This is an important consideration because, given
a su ciently deep DNN, it is no longer possible for the presented approach to store a large
volume of weight data on a single resource-constrained device after a certain layer depth.
DeepThings requires that weight-intensive network layers are evaluated on a central powerful
gateway edge device that has su cient memory. This constraint is removed by the approach
presented in this chapter, enabling fully distributed inference on a set of memory-constrained
edge devices.
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5.2 Contribution

A typical DNN structure starts with input data that has large width and height dimensions
and few channels, for example, an image. The inputs are processed by a number of con-
volutional layers that apply multiple lters to produce a set of feature maps. These lters
are typically trained to extract certain features or characteristics that are then represented

in the feature maps. With a high number of lters in each layer, the number of feature
maps grows with each convolutional layer. At the same time, interspersed pooling layers
shrink the width and height of feature maps to keep the total size of the intermediate ten-
sors manageable. Figure 5.1 shows the memory requirements of typical DNNs and outlines
the share of memory that is working memory (RAM) and storage memory (ROM) for each
individual layer. The layers on the x-axis are sorted in topological order. Working memory
is occupied by input/output data and intermediate bu ers, collectively also called feature
data. The storage memory holds the weights and biases associated with each layer. The
typical model architecture starts out with large feature data that is progressively reduced
in size by consecutive convolutional and pooling layers. The latter layers either consist of
fully-connected layers or convolutional layers with a large number of weights. Because of
this structure, the feature data dominate the memory usage for the rst layers of a DNN,
while in the latter layers, the weights dominate.

The previous DeepThings work introduced a method for memory- and communication-
aware partitioning and fusing of feature-dominated convolutional layers [106]. DeepThings
is extended with methods to partition and fuse convolutional and fully-connected layers
whose weight data size dominates their feature data size. This extended comprehensive
approach for the distributed inference of complete DNNs considers all layer types while
simultaneously optimizing for computation, memory and communication demands. The
computation and memory footprint of processing and storing feature and weight data is
evenly distributed across all devices, so that the DNN inference task can be scaled down
for resource-constrained edge devices. The full distribution is achieved by combining the
existing DeepThings approach for partitioning the feature-dominated layers with a new
partitioning method for partitioning the weight-dominated layers, no matter whether they
are convolutional or fully-connected layers. Both partitioning methods make use of fused
tiling in the form of FFMT and FDT that were described in the previous chapter. In the
context of distributed inference, the fusing aspect is used to reduce the communication
demand between the cooperating devices. In addition, an approach that is capable of
minimizing the memory footprint of a full DNN model by nding the optimal point at which
to switch from feature partitioning to weight partitioning will be presented. Furthermore,
an approach is presented that minimizes the communication overhead by nding the optimal
con guration for partitioning the weight-partitioned layers. These methods are deployed and
evaluated on a real-world edge device setup that performs DNN inference. Four di erent
DNNs are explored in a case study on a Raspberry Pi cluster with regard to the trade-o s
between run time, memory requirements and communication overhead for di erent network
bandwidths and device counts.
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5.3 Methods for DNN Partitioning

To formulate optimal methods to partition a DNN, the following metrics are rst formu-
lated on top of the notation introduced in Chapter 2. The number of weights Q, denotes
the number of parameter data values required by a layed. The number of multiplication
operations of a layerl is denoted asR, and serves as an approximate metric for the com-
putation time. For fully-connected layers with input size M, and output size K, these two
metrics are simply de ned as follows.

Q=R =M K, (5.1)

For convolutional layers with input size X, Y, C,, output size X, Y, O, and kernel
sizeU, V,, the metrics can be calculated as follows.

M =X Y G Ki=Xi Y1 O
Q=U VI G O, R=X Y U V C O

(5.2)

The sum of all weights and the total computational load are trivially de ned as follows.

X X
Qi R (5.3)
| |

Given resource-constrained edge devices that are not able to handle either of these sums,
it is required that one or more fully-connected or convolutional layers are distributed to en-
able execution of such a DNN. As was already pointed out, for fully-connected layers and
latter convolutional layers, the number of weights dominates the total memory require-
ments of those layers. To explore di erent distributed inference schemes, the metrid-,
is introduced, which denotes the number of weights to be stored on the-th device. The
computational load in distributed inference results predominantly from the multiplications
R, performed on these weights. However, distributing the inference across multiple devices
introduces potential for parallel execution. The longest path of execution, given by the
number of sequential multiplications on the slowest path across all devices, is denoted.

Distributing the work over multiple nodes requires some form of coordination that incurs
a communication load. This load, denotedC with the unit number of feature data valuesis
the result of the exchange of feature data between devices. The value Gfis only an estimate
of the exact communication impact on a real DNN inference implementation because it does
not take into account any protocol overhead from the application layer distributed inference
protocol down to the physical layers. Nonetheless, the experimental results show thaC
signi cantly contributes to the run time of the inference task. As such, the communication
overhead and the parallelization factor impact the overall run time in opposite ways, as
most edge devices are bandwidth-constrained. Therefore, the use of a larger number of
devices generally leads to a lower memory footprint per devicé, in exchange for higher
communication overheadsC.

5.3.1 Baseline

The trivial baseline of distributed inference is the execution of the entire DNN on a single
device without any cooperation. Considering a DNN with L layers mapped to one device,
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Figure 5.2: 4-Layer example on a single device.

Figure 5.3: 4-Layer example with sequential layer mapping.

the following metrics can be calculated.

X X
FM =" @; TM=" R; cM=0 (5.4)
=1 =1

Running Example:

To illustrate the partitioning schemes more clearly, a simple example DNN is in-
troduced. Figure 5.2 shows this example DNN consisting of four fully-connected
layers. Each layer is represented by a box labeled L1 to L4, and each edge rep-
resents the feature data between layers and is labeled with the feature data size.
In this simple example, the relevant metrics can be easily read from the gure:
FINV =4 8+8 16+16 4+4 4=240, T™N) =240, cN) = 0.

5.3.2 Pipelining

Layer pipelining as in [65] can be applied to the same example to distribute layers between
two devices, reducingF,. Layers 1 and 2 can be mapped to Device 1 and Layers 3 and 4 to
Device 2, as shown in Figure 5.3. Intuitively, the new metrics arr:Fl(DL ) =4 8+8 16 = 160,
FPY) =16 4+4 4=280, T(°L) = 160 + 80 = 240 and C(°-) = 16. The two devices
have di erent memory footprints because there is no way to evenly distribute the memory
between the two devices. When determining the required memory for each device, the
maximum partition size must be used, in this caseFl(DL). Moreover, this method does
not utilize any parallelism for a single input, leading to the same high run time as for
running on a single device, now with additional communication overhead. This mapping
can be improved by using layer partitioning, which will be the focus of the remainder of this
section.
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