
Technische Universität München
TUM School of Computation, Information and Technology

Adapting and Optimizing High Order
Seismic Simulations for GPU-based

Supercomputers

Ravil Dorozhinskii

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen

Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Rüdiger Westermann

Prüfende der Dissertation:

1. Prof. Dr. Michael Georg Bader
2. Prof. Dr. Harald Köstler

Die Dissertation wurde am 19.12.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology
am 23.05.2024 angenommen.

Acknowledgements

Firstly, I thank my advisor, Univ.-Prof. Dr. Michael Bader, for his constant support,
mentoring, and guidance throughout my research. This project gave me an excellent
opportunity to expand my knowledge in several orthogonal directions and meet many
wonderful and inspiring people on my way.

My special thanks go to Lukas Krenz, Sebastian Wolf, Carsten Uphoff, and Thomas Ulrich,
with whom I have worked on SeisSol all these years. I thank them for those countless
hours of discussions and debates from which I learned a lot, especially at the beginning
of my research. Thanks to David Schneller, Mario Marc Marot-Lassauzaie, and Mario
Wille for their feedback on the drafts of this manuscript, and I wish them all the best
with their research.

I am grateful to Gonzalo Brito Gadeschi and Patrick Atkinson from Nvidia for sharing
their expert knowledge and experience in heterogeneous computing, which resulted in a
very productive collaboration between academia and industry. It is worth mentioning
that the results of some experiments presented in this work were conducted by Gonzalo
and Patrick on Nvidia’s Selene supercomputer. Additionally, I would like to thank Piero
Lanicara from the CINECA supercomputing center and Arnau Folch from the Spanish
National Research Council for their guidance, management, and support over the entire
ChEESE project, without which this research may not be possible.

Thanks to my family for their continuous support, patience, and encouragement. I also
thank Hasan Ashraf for listening to my endless ideas and complaints regarding my research
work and for his assistance in proofreading some of my manuscripts.

Lastly, I would like to thank Nehil Danış for her constant care and support. Nehil, “May
the wind always be on your back and the sun upon your face and may the winds of destiny
carry you aloft to dance with the stars”.

iii

Abstract

An in-depth study of a single extreme-scale earthquake event may involve multiple highly
resolved 3D numerical simulations, which may require immense supercomputing power. In
the past, most supercomputers were predominantly CPU-based machines, but this trend
has changed in recent years. GPU-accelerated heterogeneous supercomputers are gradually
replacing traditional homogeneous systems. This necessitates changes in software design
and algorithms to efficiently utilize the power of GPU-based supercomputing systems.

The goal of this study is to adapt and optimize an open-source, highly tuned CPU-based
scientific application designed for simulating seismic wave propagation and earthquake
dynamics for leading distributed multi-GPU supercomputers. The application consists of
multiple kernels and makes use of the discontinuous Galkerin method with cluster-wise
ADER Local Time Stepping (LTS) algorithm, and source code generation. Due to the
specifics of the software design, I address the source code and performance portability
differently for each kernel. I investigate performance bottlenecks and tuning parameters
of the adapted algorithms using the roofline model, as well as strong and weak scaling
studies. I demonstrate my final results by performing simulations of three real production
earthquake scenarios on the LUMI and Leonardo supercomputers.

In this study, I show how the original task decomposition needs to be changed to efficiently
utilize massively parallel processors. I demonstrate that the GPU performance of the
ADER-DG method can be significantly improved by fusing subsequent batched matrix
multiplication kernels, which I implemented as a part of the source code generation process.
I show that, on average, fusion results in 2-2.5x speed-up when comparing the GPU and
CPU versions of the code on a single HPC GPU and a single 48-core AVX512 CPU system.
I also compare the OpenMP and SYCL standards and conclude that the latter results in
better source code and performance portability for data processing on GPUs.

In addition, I show that the strong scaling parallel efficiency of the LTS algorithm drops
faster on distributed multi-GPU systems than on distributed-memory CPU machines. I
conclude that, in general, the performance depends on the computational throughput of a
computing device and the distribution of mesh elements between LTS clusters. I show
that the GPU throughput rapidly drops starting at a particular problem size, whereas
CPU performance stays almost flat within the entire test range. In the end, I share ideas
on how the LTS algorithm can be improved and hope that it can help other researchers
to continue the investigation and come up with an improved version of the algorithm.

v

Contents

1. Introduction . 1

2. Governing Equations for Earthquake Modeling 7
2.1. Elastic Wave Propagation . 7
2.2. Dynamic Rupture Process . 11
2.3. Kinematic Point Sources . 13
2.4. Off-fault Plasticity Model . 14

3. Discontinuous Galerkin Method in SeisSol 17
3.1. Numerical Fluxes . 18
3.2. Reference Element . 21
3.3. Basis Functions . 23
3.4. ADER . 24
3.5. Local Time Stepping . 27
3.6. Boundary Conditions . 29
3.6.1. Absorbing Boundaries . 29
3.6.2. Free-Surface Boundaries . 29
3.6.3. Dynamic Rupture . 30

4. HPC Concepts in SeisSol . 35
4.1. Data Layout and Macro Kernels . 35
4.2. Code Generation . 37
4.3. Multithreading . 40
4.4. Distributed-Memory Computing . 41

5. Graphical Processing Units . 47
5.1. Architectures . 47
5.2. Programming models . 51
5.3. Kernel Launching Mechanism . 53

6. Implementation of Elastic Wave Propagation 55
6.1. Memory Management . 56
6.2. Task Decomposition for Massively Parallel Systems 57
6.3. Code Generation . 59
6.3.1. GemmForge . 60
6.3.2. ChainForge . 67
6.3.3. Preliminary Performance Analysis . 74
6.3.4. Revisiting the Flux Matrix Decomposition 78
6.4. Concurrent Task Execution . 81

vii

Contents

6.5. Execution on Distributed Multi-GPU Systems 84
6.5.1. MPI Buffers Placement . 87
6.5.2. Graph-Based Task Execution . 97
6.5.3. Influence of LTS clustering on Strong Scaling 100
6.5.4. Enchanted Mesh Partitioning in SeisSol . 107
6.5.5. LTS Weak Scaling . 110
6.6. Source Code Portability . 111
6.7. Verification and Convergence Study . 114
6.8. Discussion . 117

7. Implementation of Dynamic Rupture . 119
7.1. Parallelization . 120
7.2. Portability . 122
7.3. Strong Scaling . 127
7.4. Verification . 129
7.5. Discussion . 129

8. Implementation of Off-fault Plasticity . 131
8.1. Parallelization and Portability . 131
8.2. Verification and Comparison . 133
8.3. Discussion . 135

9. Numerical Simulations and Supercomputing 137
9.1. 2023 Kahramanmaraş Earthquake . 137
9.2. 2019 Ridgecrest Earthquake Sequence . 141
9.3. 2018 Palu, Sulawesi Earthquake and Tsunami 144
9.4. Discussion . 152

10. Conclusions . 155

A. Appendices . 161

Bibliography . 165

List of Figures . 175

List of Tables . 179

Code Listings . 181

List of Algorithms . 183

viii

1. Introduction

Seismology is the science of earthquakes and the propagation of waves through the Earth.
An earthquake occurs due to the sudden release of the accumulated potential energy
at a particular location inside the Earth. Usually, the energy gets accumulated due to
elastic deformations caused by frictional forces resisting the movements of plates, which
the Earth’s lithosphere consists of, along their common boundaries - i.e., the faults. The
released potential energy converts to seismic waves, which travel through the Earth and,
eventually, some of them reach the Earth’s surface, causing ground shaking.

Ground shaking by itself is not as dangerous for the Earth’s inhabitants as the consequences
of it, especially when it occurs around densely populated areas like cities. The shaking
can 1) cause destruction of buildings, 2) trigger tsunamis, liquefaction, landslides, etc.,
3) lead to a fire in the case of broken power or gas supply lines, 4) contaminate the
water in the case of damaged sewage systems, or 5) result in various combinations of
the abovementioned events. Consequently, it may result in severe injuries, fatalities,
substantial economic losses, and even ecological catastrophes. Earthquakes of different
magnitudes happen more frequently than one might imagine. For example, Daniell and
Vervaeck in [21] listed 91 damaging earthquakes that occurred worldwide only in 2010,
ranging from Mw 4.3 to Mw 8.8.

Currently, seismologists cannot precisely predict locations, magnitudes, and the exact
timing of earthquakes. However, in-depth studies of past events can help to minimize
the consequences of upcoming quakes. For example, the results of such studies can
contribute to the designs of hazard maps, evacuation and rescue plans, early warning
systems, etc. An analysis of the history of seismic activities, fault zones, and ground
characteristics at a particular region can assist engineers in city planning, designing
buildings and infrastructure, selecting suitable construction materials, etc. Moreover, such
studies advance scientific knowledge and lead to a better understanding of fault behavior
and earthquake patterns, which help to anticipate earthquakes probabilistically. For this,
seismologists need proper tools to conduct such studies.

There exist many approaches for modeling earthquakes, which can be divided into two
broad categories: kinematic and dynamic ones. Kinematic models are based on solving
data-driven inversion problems, which aim to closely fit observational data. Such models
result in a vast free parameter space, which must be constrained to obtain physically
plausible results. Dynamic models aim to reproduce the yielding and sliding processes
of the rupture during an earthquake; they help to reveal how earthquakes start, evolve,
and stop. In contrast to kinematic models, dynamic ones consider mechanical interactions
between the rupture processes and seismic waves, which result in solving complex, coupled,

1

1. Introduction

non-linear problems; the propagating rupture generates seismic waves, which travel through
the Earth, causing other parts of the fault to rupture. Therefore, dynamic models are well-
suited for in-depth research and studies of earthquakes. Both approaches involve complex
and computationally intensive numerical simulations, often requiring supercomputing
power.

In May 2022, the first exascale computer, Frontier1, was put into service, which opened a
new era in High Performance Computing (HPC). During acceptance tests, the aggregated
performance measured on the supercomputer exceeded 1.1 DP-EFLOP/s while running
the High-Performance Linpack (HPL) benchmark, making it the current world record
holder. The engineers managed to achieved such outstanding results by incorporating the
latest advances in heterogeneous computing technologies. Each Frontier node is equipped
with four AMD MI250x GPUs. The peak performance of each accelerator is approximately
47.9 DP-TFLOP/s. Thus, the theoretical peak of each supercomputing node is close to
192 DP-TFLOP/s.

Heterogeneous computing refers to data processing on a system consisting of multiple
kinds of processing units, which usually operate on different sets of instructions. Such
systems typically contain a single host processor, which controls and manages computa-
tional or service tasks, and several accelerating devices, which execute them. In general,
CPUs, GPUs, FPGAs, or a custom-designed ASIC circuits can be used as accelerators.
However, nowadays, the most commonly used ones are GPUs designed for general-purpose
programming.

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

2

4

6

8

10

Year

GPU-based supercomputers homogeneous supercomputers

Figure 1.1.: Evolution of the top 10 faster supercomputers in the world according to the
TOP500 list over the last ten years.

The number of GPU-based supercomputers has noticeably increased over the last decade.
Fig. 1.1 shows how distributed multi-GPU systems have been gradually replacing the
leading homogeneous CPU-based supercomputers since 2013. Today, seven out of ten
of the most powerful supercomputers are GPU-accelerated, whereas ten years ago, the
ratio was only one to nine. By extrapolating the data, one can assume that the number
of heterogeneous computing systems will keep growing. If the trend remains and no

1 https://www.olcf.ornl.gov/frontier/

2

https://www.olcf.ornl.gov/frontier/

particular measures are taken, many important scientific applications and libraries will
not be able to take advantage of the top tier of supercomputers in a few years. Thus,
it becomes worth investing time, effort, and resources in adapting HPC applications for
heterogeneous computing environments. In some cases, it is not possible to determine
in advance whether a particular scientific application, which usually consists of many
different algorithms, will perform well on accelerators or not. Sometimes, a certain answer
can be obtained only after exhaustive research, which may involve considerable changes
in the source code of an application.

This work sits at the intersection of two scientific domains: dynamic earthquake modeling
and heterogeneous computing. The former is represented by the open-source software
SeisSol2, designed for simulating seismic wave phenomena and earthquake dynamics. The
latter concerns only GPU computing platforms. At this moment, it is unclear whether
GPUs will preserve their leadership in heterogeneous computing or whether a new type
of accelerator will replace them in the future. However, the heterogeneous programming
principles will likely stay the same.

SeisSol operates on unstructured tetrahedral meshes, which are well-suited for discretizing
geometrically complex 3D structures, for example, high-resolution topography, complex
fault networks, curved subduction interfaces, etc. The main computational core of the
application is based on the Discontinuous Galerkin (DG) method and the Arbitrary
high-order DERivatives (ADER) explicit time integration scheme. SeisSol allows users
to set almost an arbitrary convergence order for spatial and time numerical integrations,
which can be used to obtain either fast approximations or more accurate numerical
results for a given problem. The application features a cluster-wise Local Time Stepping
(LTS) scheme, which reduces redundant computations and, thus, results in algorithmic
speed-up. SeisSol allows users to set heterogeneous material properties for each part of a
computational domain and provides a wide range of models: 1) elastic and viscoelastic wave
propagation, 2) off-fault plasticity, 3) elastic-acoustic coupling, 4) kinematic point sources,
5) dynamic rupture, and 6) multiple friction laws of rocks. SeisSol is a homogeneous
HPC application that efficiently utilizes SIMD units, cache hierarchy, multithreading,
asynchronous communication, and parallel I/O features. The application scales up to
several thousands of CPU nodes, reaching 40-50% of the peak CPU performance on each
running process (for example, see [117, 116, 68, 123]).

In the last ten years, several outstanding results have been achieved with SeisSol. For
example, in 2014, Heinecke et al. [50] presented simulations of the 1992 Landers earth-
quake, which involved a complex fault system consisting of multiple overlapping fault
segments. The simulations revealed highly detailed rupture evolution and ground motion
at frequencies up to 10 Hz. The work included a full-machine run on the Stampede
supercomputer - i.e., the 7th fastest supercomputer in 2014 according to the TOP500
list - resulting in about 2 DP-PFLOP/s, which was equal to approximately 23.4% of the
peak machine performance. As mentioned by the authors, the numerical results obtained
during their study helped them to gain a better understanding of the rupture transferring
mechanisms between adjacent fault segments during the earthquake.

2 https://seissol.org

3

https://seissol.org

1. Introduction

Another example is the simulation of the 2004 Sumatra-Andaman earthquake, as presented
by Uphoff et al. in their 2017 work [117]. According to the authors, it was one of the largest
and longest dynamic rupture simulations at the time. The simulation took approximately
13.9 hours and utilized all 3072 nodes of the SuperMUC Phase 2 supercomputer, which
was ranked as the 28th most powerful machine in the world in 2016, according to the
TOP500 list. This full-machine run resulted in 0.94 DP-PFLOPS - i.e., approximately 35%
of the HPL benchmark performance. The authors said that the high-resolution seafloor
displacement obtained during that simulation served as the input data for their follow-up
research focused on studying time-dependent tsunami generation and propagation caused
by the earthquake.

Another example worth mentioning is the simulation of the 2018 Palu, Sulawesi earthquake
and tsunami presented by Krenz et al. in 2021 [68]. The authors contributed to SeisSol
by adding ocean dynamics, elastic-acoustic coupling, and a gravitational free-surface
boundary condition. The extensions allowed the authors to develop a fully-coupled
scenario, which revealed the dynamics of the entire tsunami-genesis in a single run. As
noted by the authors, such simulations open up possibilities to fundamentally improve
the understanding of earthquake-tsunami interaction in its full complexity. The final
simulation included a half-billion element mesh and was executed on 3072 nodes of the
SuperMUC-NG supercomputer - i.e., the 13th faster supercomputer in 2020 according to
the TOP500 list - resulting in approximately 3 DP-PFLOP/s.

The mentioned examples should convince the reader that SeisSol is an important and
very promising application in the field of computational seismology. This study has three
primary goals: 1) to adapt SeisSol to GPU computing platforms, 2) to explore possible
performance bottlenecks and tuning parameters, and 3) to evaluate the whole applica-
tion’s performance on distributed multi-GPU computing systems using real production
earthquake scenarios. This work has one major constraint: any software changes must
not deteriorate the original high CPU performance. Thus, performance portability is a
very important concern in this work. SeisSol has a huge configuration space, which needs
to be constrained to make the research feasible. Therefore, in this study, I consider wave
propagation through elastic isotropic materials, as well as dynamic rupture and off-fault
plasticity models.

SeisSol uses the YATeTo3 DSL for generating highly efficient micro-kernels for computa-
tional sub-tasks. In SeisSol, a sub-task is an element local computation, which can consist
of multiple tensor operations - i.e., a tensor expression. Data processing of an element can
follow one of many execution paths - e.g., due to different boundary conditions. Thus, a
CPU task can consist of different kinds of sub-tasks. The original software design delegates
1) sub-task scheduling and 2) dispatching data to a correct set of micro-kernels to the host
application - i.e., SeisSol. The computations resulting from the ADER-DG method involve
operations on small-sized tensors. Thus, data processing of a single sub-task on a GPU
cannot fully utilize all its available hardware resources - e.g., streaming multiprocessors.
Therefore, finding an optimal task decomposition for GPUs is the first and most important
step of this study.

3 https://github.com/SeisSol/yateto

4

https://github.com/SeisSol/yateto

There exist many publications investigating various GPU implementations of the DG
method applied to different systems of hyperbolic PDEs - e.g., different variants of 1)
compressible and incompressible Navier-Stokes equations [104, 39, 127, 58, 65, 15], 2)
shallow water equations [41, 122, 126], 3) wave equations [89, 88, 16, 87], and 4) Maxwell’s
equations [66, 43, 7]. Algorithmically, the method boils down to element local computations,
which operate on small-sized tensors. In this work, the maximum tensor rank equals 2 due
to the structure of the underlying system of PDEs of the elastic wave propagation problem;
thus, my primary focus is on sequences of small matrix multiplications. In contrast to the
above-listed works, where the authors had opportunities to invest time to manually tune
their GPU kernels, my solutions must be integrated into the code generation step, which
is a key part of SeisSol’s software design. This approach can have a potential advantage
because it can naturally address the portability aspects. By and large, the goal of this part
of the study is to find and implement an optimal code-generation technique to achieve
high-performance solutions for the ADER-DG method, considering the vast configuration
space of matrix multiplication kernels - e.g., data types, matrix sizes, etc.

According to the literature review performed during this study, there exist just a few
publications related to the strong scaling behavior of the LTS algorithm on distributed
multi-GPU systems. The most comprehensive results were obtained by Rietmann in [98,
97] and in his PhD thesis [96]. The author observed that the average GPU performance
dropped rapidly during scaling. Rietmann suggests that it happened due to a small
number of elements in the finest mesh refinement level, which could not keep the GPUs
adequately busy to mask the overhead of setting up and launching GPU tasks [97]. In this
work, I dive deeper and attempt to establish a dependency between the computational
throughput of a processing unit, which, in general, depends on the problem size and the
distribution of mesh elements between LTS clusters.

This thesis is structured as follows. In Chapter 2, I introduce the governing equations for
elastic wave propagation, dynamic rupture, and off-fault plasticity models. The discussion
also contains a brief explanation of the mathematical representation of kinematic point
sources. In Chapter 3, I explain the ADER-DG method, the LTS algorithm, and numerical
implementations of the most relevant boundary conditions. Chapter 4 describes the state
of SeisSol prior to this study. It includes several important discussions, such as 1) data
memory layout, 2) code generation, 3) multithreading, and 4) the implementation of
message-passing for distributed-memory computing systems. In Chapter 5, I explain the
most relevant details of modern GPU hardware architectures and list the most popular
GPU programming models in the field of HPC at the moment of writing. At the end, I
explain the mechanism involved in launching GPU tasks, which can help to understand
the associated overheads.

Starting from Chapter 6, I describe main contributions this work. In Chapter 6, I explain
the GPU implementation of SeisSol’s wave propagation solver in detail. The discussion
includes topics such as 1) memory management, 2) changes in task decomposition, 3) GPU
code generation, 4) concurrent and graph-based GPU execution, 5) changes in message-
passing, 6) extensions in mesh partitioning, 7) portability, etc. The most prominent and
worth-mentioning discussions are the implementation of the fused GEMM kernels and
the influence of clustering on the strong scaling performance of the LTS algorithm. The

5

1. Introduction

chapter also contains roofline model analysis of generated GPU kernels, as well as strong
and weak scaling studies. In Chapters 7 and 8, I explain the key details of the GPU
implementations of the dynamic rupture solver and the return-mapping algorithm. The
latter is used for modeling the plastic behavior of the material in the wave propagation
domain. Both chapters discuss decompositions of GPU tasks, explain how source code
portability was addressed, and present verifications of numerical results obtained with the
GPU version of SeisSol using several earthquake benchmark scenarios. Chapter 9 presents
numerical simulations of three production earthquake scenarios conducted on the LUMI
and Leonardo supercomputers, rated as the 3rd and the 4th most powerful supercomputers
in 2023 according to the TOP500 list, respectively. Both supercomputers are distributed
multi-GPU systems. LUMI is accelerated with the AMD MI250x GPUs, whereas Leonardo
uses custom-built Nvidia A100 graphics cards. In this chapter, I reproduce the 2023
Kahramanmaraş earthquake, the 2019 Ridgecrest earthquake, and the 2018 Palu, Sulawesi
earthquake and tsunami using the artifacts of several scientific publications.

Finally, in Chapter 10, I summarize the key results of this thesis and share my ideas,
which can be used as a basis for follow-up research and studies.

6

2. Governing Equations for Earthquake
Modeling

Earthquake modeling is a coupled problem. The energy released during local fault cracking
is converted to seismic waves which start traveling along the fault, causing other parts of
the fault to crack. The process repeats until the total energy released by an earthquake
completely dissipates, and thus no further local fault cracking occurs. In this chapter, I
establish the main governing equations required for earthquake modeling.

I only consider the elastic wave propagation in isotropic materials in this work. In Section
2.1, I derive a linear hyperbolic system of PDEs that describes the propagation process.
In Section 2.2, I focus on dynamic rupture modeling and mathematically describe it using
Coulomb’s model of friction. The sections also contains examples of the friction laws
widely used in computational seismology. The chapter proceeds with a discussion of
kinematic point sources commonly used as an alternative to the friction-based approach
(see Section 2.3). Finally, I describe the off-fault plasticity model in Section 2.4, which
takes into account inelastic energy dissipation. As mentioned by Dunham et al. in [33],
this limits unreasonably high slip velocities on the fault and thus results in more accurate
earthquake simulations.

2.1. Elastic Wave Propagation

Figure 2.1.: Components σij of the stress tensor resulting from the decomposition of ~T1,
~T2 and ~T2 forces (on the left) and the displacement of an infinitesimal cubic
element caused by deformation and a rigid body movement (on the right).

7

2. Governing Equations for Earthquake Modeling

Elastic wave propagation is governed by the time derivative of Hooke’s law (Eq. 2.1) and
the dynamic relationship between accelerations and stresses (Eq. 2.4) - i.e., Newton’s
second law.

∂σij
∂t

= Cijkl
∂εkl
∂t

(2.1)

where Cijkl is the stiffness tensor; σij are the normal and sheer components of the stress
tensor σ; εkl are the normal and sheer components of the strain tensor ε - i.e., displacements
of particles in a solid body relative to a reference point.

The stiffness tensor Cijkl takes a compact form for isotropic materials [79], namely

Cijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
(2.2)

where δij is the Kronecker delta function which is equal to 1 if i = j, and 0 otherwise; λ
and µ are Lamé parameters. In the general case, λ, µ and ρ are functions of space and
greater than zero at any point.

Therefore, Eq. 2.1 for an isotropic material can be written as

∂σij
∂t

= λδij
∂εkk
∂t

+ 2µ
∂εij
∂t

(2.3)

Newton’s second law written in the differential form is given by

ρ
∂uj
∂t

=
∂σij
∂xi

(2.4)

where ρ is the material density; uj is a particle velocity which is equal the a rate of the
infinitesimal particle displacement dj along xj direction i.e., (uj = ∂dj

∂t).

According to the theory of continuum mechanics (e.g., see [80]), the relation between
strains εkl and particle displacements di is given by

εkl =
1

2

(
∂dl
∂xk

+
∂dk
∂xl

)
∴
∂εkl
∂t

=
1

2

(
∂

∂t

∂dl
∂xk

+
∂

∂t

∂dk
∂xl

)
(2.5)

Assuming continuity of the second partial derivatives of dj with respect to both xi and t,
Schwarz’s theorem allows us to re-write Eq. 2.5 as follows

∂εkl
∂t

=
1

2

(
∂

∂xk

∂dl
∂t

+
∂

∂xl

∂dk
∂t

)
=

1

2

(
∂ul
∂xk

+
∂uk
∂xl

)
(2.6)

Considering the symmetry of stress components (i.e., σij = σji) resulted from Newton’s
third law, the elastic wave propagation problem can be written as a system of partial

8

2.1. Elastic Wave Propagation

differential equations, namely:

∂σ11

∂t − (λ+ 2µ)∂u1

∂x1
− λ∂u2

∂x2
− λ∂u3

∂x3
= s1

∂σ22

∂t − λ
∂u1

∂x1
− (λ+ 2µ)∂u2

∂x2
− λ∂u3

∂x3
= s2

∂σ33

∂t − λ
∂u1

∂x1
− λ∂u2

∂x2
− (λ+ 2µ)∂u3

∂x3
= s3

∂σ12

∂t − µ(
∂u2

∂x1
+ ∂u1

∂x2
) = s4

∂σ23

∂t − µ(
∂u2

∂x3
+ ∂u3

∂x2
) = s5

∂σ13

∂t − µ(
∂u1

∂x3
+ ∂u3

∂x1
) = s6

ρ∂u1

∂t −
∂σ11

∂x1
− ∂σ12

∂x2
− ∂σ13

∂x3
= s7

ρ∂u2

∂t −
∂σ12

∂x1
− ∂σ22

∂x2
− ∂σ23

∂x3
= s8

ρ∂u3

∂t −
∂σ13

∂x1
− ∂σ23

∂x2
− ∂σ33

∂x3
= s9

(2.7)

where s1, s2, s3, s4, s5, s6, s7, s8, s9 are right-hand sides of the corresponding equations,
added for generality.

System 2.8 can be also written as a linear PDE system in the first-order formulation
∂Qp
∂t

+Apq
∂Qq
∂x1

+Bpq
∂Qq
∂x2

+ Cpq
∂Qq
∂x3

= Sp (2.8)

where Q = Q(x, t) = (σ11, σ22, σ33, σ12, σ23, σ13, u1, u2, u3) is a vector of unknowns at a
point x = (x1, x2, x3) ∈ R3 and time t ∈ R; Sp = Sp(x, t) is the external point source.
Apq = Apq(x), Bpq = Bpq(x) and Cpq = Cpq(x) are the space-dependent Jacobian matrices
and are given by

Aqp =

0 0 0 0 0 0 −(λ+ 2µ) 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −µ
− 1

ρ
0 0 0 0 0 0 0 0

0 0 0 − 1
ρ

0 0 0 0 0

0 0 0 0 0 − 1
ρ

0 0 0

Bqp =

0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 0 −(λ+ 2µ) 0
0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 0 0 0 −µ
0 0 0 0 0 0 0 0 0
0 0 0 − 1

ρ
0 0 0 0 0

0 − 1
ρ

0 0 0 0 0 0 0

0 0 0 0 − 1
ρ

0 0 0 0

Cqp =

0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 −(λ+ 2µ)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 − 1

ρ
0 0 0

0 0 0 0 − 1
ρ

0 0 0 0

0 0 − 1
ρ

0 0 0 0 0 0

(2.9)

9

2. Governing Equations for Earthquake Modeling

Eigenvalue decomposition of Apq, Bpq and Cpq shows that all eigenvalues (κi) are real
numbers (see Eq. 2.10) and thus System 2.8 is hyperbolic.
κ1 = −cp, κ2 = −cs, κ3 = −cs, κ4 = 0, κ5 = 0, κ6 = 0, κ7 = cs, κ8 = cs, κ9 = cp

(2.10)
where cp =

√
λ+2µ
ρ and cs =

√
µ
ρ can be considered as propagation velocities.

Figure 2.2.: Control Volume V with its boundaries S.

The weak form solution inside a control volume (see Fig. 2.2) can be obtained by
multiplying Eq. 2.8 by test functions Φk = Φk(x) and integrating in space. A particular
choice of the test functions is explained in Section 3.3.ˆ

V
Φk
∂Qp
∂t

dV +

ˆ
V
Φk

(
Apq

∂Qq
∂x1

+Bpq
∂Qq
∂x2

+ Cpq
∂Qq
∂x3

)
dV =

ˆ
V
ΦkSp dV (2.11)

Assuming that Jacobin matrices Apq, Bpq and Cpq do not change within the control
volume, the second term of Eq. 2.11 can be integrated by parts as followsˆ

V

(
∂

∂x1
(ΦkApqQq) +

∂

∂x2
(ΦkBpqQq) +

∂

∂x3
(ΦkCpqQq)

)
dV

−
ˆ
V

(
∂Φk
∂x1

ApqQq +
∂Φk
∂x2

BpqQq +
∂Φk
∂x3

CpqQq

)
dV

(2.12)

The first term of Eq. 2.12 can be written in the vector notation using ~i, ~j, ~k standard
basis vectors and vector differential operator ~∇:ˆ

V

~∇ ·
[
Φk

(
Apq~i+Bpq~j + Cpq~k

)
Qq

]
dV =

ˆ
V

~∇ · ~G dV (2.13)

Using Gauss’s theorem, the volume integral in Eq. 2.13 can be replaced with the surface
one ˆ

V

~∇ · ~G dV =

ˆ
S
Φk

(
Apq~i+Bpq~j + Cpq~k

)
Qq · ~n dS =

ˆ
S
ΦkFp dS (2.14)

where ~n is a unit vector orthogonal to dS; Fp is a numerical flux function.

A more convenient form of the weak solution of Eq. 2.8 can be obtained by combining Eq.
2.11, Eq. 2.12 and Eq. 2.14.ˆ

V
Φk
∂Qp
∂t

dV +

ˆ
S
ΦkFp dS−

−
ˆ
V

(
∂Φk
∂x1

ApqQq +
∂Φk
∂x2

BpqQq +
∂Φk
∂x3

CpqQq

)
dV =

ˆ
V
ΦkSp dV

(2.15)

10

2.2. Dynamic Rupture Process

Figure 2.3.: Locked and unlocked states of the fault.

2.2. Dynamic Rupture Process

Faults are fractures in a volume of rock located in Earth’s crust. Compressional and thus
frictional forces lock two sides of the Earth and prevent them from a relative movement.
However, sudden slip of rocks along the fault occurs when external forces (e.g., resulted
form tectonic plates movements) exceed static friction. A rapid slip leads to an almost
instant release of mechanical energy, which transforms into seismic waves.

Sliding is a point-local process and it is determined by relations between shear traction τ ,
fault strength τs and slip rate vector ∆u, which is the time derivative of the correspond-
ing slip vector ∆d. The slip vector is the difference between fault-tangential material
displacements on each side (i.e., d+ and d−).

∆u = ∆d′
t = (d+ − d−)′t (2.16)

According to Coulomb’s model of friction, the shear traction τ is bounded by the fault
strength τs as follows:

τ ≤ τs = max(0,−µfσn) (2.17)

where σn is a normal stress at point x; µf ≥ 0 is a non-constant friction coefficient.

The model also assumes that the slip is changing only when the shear traction reaches
the level of the fault strength which can be mathematically expressed as

(|τ | − τs)|∆u| = 0 (2.18)

Moreover, the directions of the slip rate and the shear traction must be antiparallel. This
can be written as

∆u|τ |+ |∆u|τ = 0 (2.19)

Without loss of generality, Eq. 2.19 can be rewritten using Eq. 2.18 as follows

∆u τs + |∆u|τ = 0 (2.20)

Analyses of laboratory experiments of rock friction show that coefficient µf correlates
with the slip rate magnitude (see [101]) and can be modeled by a system of differential

11

2. Governing Equations for Earthquake Modeling

algebraic equations such as {
µf = f(U,ψ)
dψ
dt = g(U,ψ)

(2.21)

where U is the symbol representing the slip rate magnitude (i.e., |∆u|), which I use for
simplicity.

For example, Eq. 2.22 shows a mathematical representation of a so-called Aging friction
law [84, 76]. Fig. 2.4 shows a dependency between friction coefficient µf and the slip
displacement governed by Eq. 2.22 given a specific slip velocity profile and friction
parameters. µf = a sinh−1

[
U
2U0

exp
(
f0+b ln(U0ψ/L)

a

)]
dψ
dt = 1− Uψ

L

(2.22)

where a is the frictional evolution coefficient; b is the frictional state coefficient; L is
the characteristic slip scale; U0 is the reference slip velocity; f0 is the reference friction
coefficient.

Another example of friction is shown in Eq. 2.23 which is based on the Linear Slip-
Weakening (LSW) law [56, 23]. Because of a more simple form of g(U,ψ), this friction
law is computationally less costly in comparison to the Aging law.µf = C −

(
µs − µs−µd

dc

)
min(ψ, dc)

dψ
dt = U

(2.23)

where C is the cohesion coefficient; µs and µd are the static and dynamic friction coefficients,
respectively; and dc is the slip-weakening critical distance.

0 0.050 0.100 0.150
0.55

0.55

0.55

0.56

0.56

0.56

Displacment, m

Fr
ic
tio

n
co
effi

ci
en
t,
µ
f

Aging Law LSW

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

Time, sec

Sl
ip

ra
te
U
,m

/s

Figure 2.4.: Friction coefficients µf (on the left) computed according to 1) the Aging law
(see Eq. 2.22) using: a = 0.0085; b = 0.012; L = 0.01; U0 = 1e− 6; f0 = 0.6
and 2) the LSW (see Eq. 2.23) using: C = 0.56, µs = 0.5589, µd = 0.5225
and dc = 0.075. The used velocity profile is shown on the right.

12

2.3. Kinematic Point Sources

2.3. Kinematic Point Sources

Alternatively to Section 2.2, an earthquake at the hypocenter can be modeled using the
moment tensor rate functions m(t) which stem from the generalized force couples, shown
in Fig. 2.5. In practice, the most commonly used approach is to decompose the rate
functions into a time-invariant moment tensor M and one source time function. This
approach leads to a significantly fewer number of parameters for modeling while adequately
preserving an earthquake process [120]. The decomposition can be obtained by solving a
nonlinear inverse problem using the recorded displacement seismograms of an earthquake.
It is worth pointing out that this topic is beyond the scope of this thesis, and it is assumed
that the decomposition is given in advance.

Figure 2.5.: Force couples representing the moment tensor.

The moment tensor rate functions can be written as in [62], namely:

m(t) = RTprMrsRsq · µ ·A · s(t) (2.24)

where R is the transformation matrix from the fault-aligned system (defined by the strike,
dip, and rake angles) to the global coordinate system; µ is the rigidity of the material; A
is the area of the fault plane; s(t) is the source time function of the slip rate.

As shown below, the Dirac Delta distribution can be used to embed the moment tensor
into the right-hand side of Eq. 2.7.

Sp = sp(t) · δ(x− xs) (2.25)

where xs is the earthquake hypocenter location; sp(t) are the time-dependent source
components such that

sp(t) =
[
m11(t),m22(t),m33(t),m12(t),m23(t),m13(t), 0, 0, 0

]T (2.26)

where the symmetry of the moment tensor is preserved.

13

2. Governing Equations for Earthquake Modeling

2.4. Off-fault Plasticity Model

In contrast to elasticity, plasticity is associated with permanent and thus irreversible
deformations in solid bodies [14]. Transitioning from the elastic to plastic material state
is known as the yielding process - i.e., significant material stretching occurring at almost
constant stress. Wollherr, Gabriel, and Uphoff in [125] showed that off-fault plastic yielding
leads to more realistic dynamic rupture modeling in natural fault systems. This results in
limiting unreasonably high slip velocities around faults [6] and thus effects rupture speed
and style [31, 40].

Determining yielding criteria using just σij is complicated because values of the stress
tensor σ depend on the coordinate system orientation. Therefore, the plasticity analysis
is commonly performed using the stress tensor invariants because, by definition, they are
independent from the coordinate system orientation. The invariants are given by

I1 = tr(σ)

I2 =
1

2

(
σiiσjj − σijσji

)
=

1

2

(
σij − δijσm

) (
σji − δjiσm

)
I3 = det (σ)

(2.27)

where σm is the mean stress and equal to 1
3

∑3
i=1 σii.

Transitioning from elastic to plastic states is defined by a so-called yield function F which,
in general, depends on the stress tensor invariants. F (σ) = 0 determines the yield surface
which is usually convex in the 3-dimensional space and is defined by the eigenvectors
of σ, also known as principal stresses. Stress states on the yield surface become plastic
and thus the material becomes affected by irreversible deformations. The total strain εΣ
can be represented as the sum of the elastic ε and plastic εp strain components, where
the increment of the latter can be determined by the flow rule and the plastic potential
function g [79]. The flow rule and g(σ) establish a relation between the plastic strain and
stresses and thus to close the system of equations.

Among many proposed yielding functions, the most suitable for modeling frictional
materials (e.g., soil and rocks) is Drucker-Prager plasticity criterion [4], where the yield
and plastic potential functions are defined by

F (σ) =
√
I2 +

1

3
I1 sinφ− C cos(φ)

g(σ) =
√
I2

(2.28)

where C is the cohesion; φ is the internal friction angle of the material.

The flow rule determines the plastic strain increment as [125]

dεpij =
1

2µ

∂g(σ)

∂σij
=

1

2µ

σij − δijσm
2
√
I2

(2.29)

14

2.4. Off-fault Plasticity Model

Due to known ill-posedness of the aforementioned plasticity model, viscoplastic relaxation
is widely used to regularize the numerical implementation of plastic yielding in dynamic
rupture simulations [125]. In contrast to Eq. 2.29, the strain increment is given by

dεpij =
1

2µTv

(
σij − Pij(σ)

)
(2.30)

where Tv is the plastic relaxation time; Pij(σ) is the adjusted stress state such that

Pij(σ) =

 τc√
I2
σij + (1− τc√

I2
)δijσm, if F (σ) = 0

σij , F (σ) < 0
(2.31)

As shown by Dunne and Petrinic in [34], the stress state after an infinitesimal time
increment (i.e., at t+ dt) can be implicitly found using the radial return method which is
based on Hook’s law assuming no volumetric changes occur due to plastic yielding (i.e.,
dεpkk = 0). In the following, all quantities except for dεkk are considered to be at time
t+ dt.

σij = λδij (εkk + dεkk) + 2µ
(
εij + dεij

)
= λδij

(
εkk + dεΣkk − dε

p
kk

)
+ 2µ

(
εij + dεΣij − dε

p
ij

)
= λδij

(
εkk + dεΣkk

)
+ 2µ

(
εij + dεΣij

)
− 2µ dεpij

= σtrialij︸ ︷︷ ︸
elastic predictor

− 2µ dεpij︸ ︷︷ ︸
plastic corrector

(2.32)

The trial stress σtrialij is evaluated assuming purely elastic material properties. The plastic
corrector term imposes F (σ) ≤ 0. Wollherr, Gabriel, and Uphoff in [125] discussed that
dεpij at t+ dt could be evaluated by integrating the stress increment dσij arising from Eq.
2.32 assuming that Pij and Tv are constant between t and t+ dt. They showed that, in
that case, the plastic strain increment was given by

dεpij =
1

2µ

(
1− f∗

) (
σtrialij − δijσtrialm

)
(2.33)

where f∗ is the adjustment factor (see Eq. 2.34).

f∗ = (1− e−
∆t
Tv)

τc√
I2

+ e
−∆t
Tv (2.34)

where ∆t is the time step width arising from numerical time-integration.

15

3. Discontinuous Galerkin Method in
SeisSol

Figure 3.1.: Exemplary tetrahedral mesh comprising the wave propagation domain and a
vertical fault plane on the left and a tetrahedral element Tm on the right.

The numerical solution of Eq. 2.8 inside the computational domain Ω can be found in
the weak form using a conforming mesh consisting of tetrahedral elements T such that
Ω =

⋃
m T

m where m is a unique element index.

ˆ
Tm

Φk
∂Qp
∂t

dV +

flux term︷ ︸︸ ︷ˆ
δTm

ΦkF
h
p dS−

−
ˆ
Tm

(
∂Φk
∂x

ApqQq +
∂Φk
∂y

BpqQq +
∂Φk
∂z

CpqQq

)
dV =

ˆ
T
ΦkSp dV

(3.1)

where δTm are boundaries of a tetrahedron Tm; F hp is the flux of Qp through the h-th
face of a tetrahedron.

In this work, the Discontinuous Galerkin (DG) method is used. The method defines a
solution of the weak form inside each tetrahedral mesh element as a linear combination
of basis functions given by piecewise polynomials. In contrast to the Finite Elements
method (also known as the Continuous Galerkin method), the DG approach does not
require the global numerical solution to be prescribed by a continuous function over the
entire domain; the local solutions are allowed to be discontinuous on elements’ boundaries.
The discontinuities are resolved using numerical fluxes, which require a careful design to
ensure numerical accuracy.

17

3. Discontinuous Galerkin Method in SeisSol

This chapter starts with a discussion of the numerical fluxes and their implementations in
SeisSol (see Section 3.1). In Section 3.2, I explain how the weak form shown in Eq. 3.1
is mapped from the global to the reference-element coordinate system. This approach
is common for both the Finite Elements and Discontinuous Galerkin methods and it
leads to many simplifications and precomputations for the final numerical scheme. In
Section 3.3, I apply the basis functions to the weak form and thus obtain the semidiscrete
formulation of Eq. 3.1. Section 3.4 and Section 3.5 explain details of the numerical time
integration, namely: the Arbitrary high-order DERivatives and Local Time Stepping
schemes. Finally, in Section 3.6, I show how the most important boundary conditions,
required for earthquake modeling, are implemented as numerical fluxes in SeisSol.

3.1. Numerical Fluxes

The DG formulation assumes that the solutions Qp at element boundaries of adjacent
tetrahedral elements and, thus, F hp may be discontinuous. Therefore, the integral in Eq.
2.14 requires some approximations.

Figure 3.2.: Rotated faced-aligned coordinate system on the left. Discontinuities of a
solution between two adjacent elements Tm and Tmj on the right.

Taking into account the rotational invariance of system Eq. 2.8 (see [114]) caused by the
isotropic material properties, the problems can be conveniently solved in the corresponding
face-aligned coordinate system considering the wave propagation only along the face-
normal direction - i.e., x′1-direction. It is assumed that linear transformations Tpq of the
solution vector from the global (Qp) to the faced-aligned (Q̂q) coordinate systems are
given for each face of a tetrahedral element (see Eq. 3.2) and they are given by

Qhp = T hpq(n)Q̂
h
q (3.2)

where n is a face normal vector. For convenience of the follow-up discussion, I omit the
tensor notation that has been established so far.

18

3.1. Numerical Fluxes

Therefore, the following Initial Value Problem (IVP) needs to be solved for each tetrahedron
face neglecting any source terms at element boundaries (see [110]).

∂Q̂(x′1, t)

∂t
+A±∂Q̂(x′1, t)

∂x′1
= 0

Q̂(x′1, t0) =
◦

Q̂(x′1) =

{
Q̂+, if x′1 > 0

Q̂−, if x′1 < 0

A± =

{
A+, if x′1 > 0

A−, if x′1 < 0

(3.3)

where
◦

Q̂(x′1) is the initial solution at time t0; A− and A+ are the Jacobian matrices on
the left “−” and right “+” sides of a boundary, respectively.

The eigendecomposition analysis of the Jacobian matrices A±, discussed in Section 2.1,
shows that the eigenvalues (κ±i) are real and the corresponding eigenvectors (r±i) are
linearly independent. The corresponding right-eigenvector matrices of both the left and
right sides are given by

R± =

λ± + 2µ± 0 0 0 0 0 0 0 λ± + 2µ±

λ± 0 0 0 1 0 0 0 λ±

λ± 0 0 0 0 1 0 0 λ±

0 µ± 0 0 0 0 0 µ± 0
0 0 0 1 0 0 0 0 0
0 0 µ± 0 0 0 µ± 0 0
c±p 0 0 0 0 0 0 0 −c±p
0 c±s 0 0 0 0 0 −c±s 0
0 0 c±s 0 0 0 −c±s 0 0

(3.4)

This determines that the matrix is diagonalizable and, thus, System 3.3 can be decoupled
into n independent advection equations. Following [74], the solution can be written as a
linear combination of the right eigenvectors as

Q̂(~0, t) = Q̂− +
∑
i:κi<0

Wi = Q̂− +
∑
i:κi<0

αiri (3.5)

where Wi is a jump in solution Q̂(0, t) caused by a change in the solution of the i-th
advection equation; αi is the strength of the i-th wave.

Figure 3.3.: Solution structure of the Riemann problem for Eq. 3.3.

To correctly approximate fluxes between adjacent elements with different material proper-
ties (see Fig. 3.3), jumpsWi across each wave must be associated with eigenvectors related

19

3. Discontinuous Galerkin Method in SeisSol

to the appropriate materials. For this purpose, matrix R−+ is assembled. It combines
eigenvectors from left-going (negative) and right-going (positive) waves.

R−+ =

λ− + 2µ− 0 0 0 0 0 0 0 λ+ + 2µ+

λ− 0 0 0 1 0 0 0 λ+

λ− 0 0 0 0 1 0 0 λ+

0 µ− 0 0 0 0 0 µ+ 0
0 0 0 1 0 0 0 0 0
0 0 µ− 0 0 0 µ+ 0 0
c−p 0 0 0 0 0 0 0 −c+p
0 c−s 0 0 0 0 0 −c+s 0
0 0 c−s 0 0 0 −c+s 0 0

(3.6)

Following LeVeque et al. (see [74]), the wave strengths are give by

α = (α1, α2, . . . , αn)
T =

(
R−+

)−1 (
Q̂+ − Q̂−

)
(3.7)

To simplify the subsequent derivations, I introduce an auxiliary diagonal matrix X where
the i-th diagonal entry is equal to 1 if eigenvalue κi is less than zero; otherwise, it is set
to 0. Matrix X acts as a mask that helps to remove a non-trivial summation indexing in
Eq. 3.5. According to Eq. 2.10, only the first three eigenvectors must be considered while
applying Eq. 3.5 because their associated eigenvalues are less than zero. Therefore,

X = diag(1, 1, 1, 0, 0, 0, 0, 0, 0) (3.8)

The application of X and Eq. 3.7 to Eq. 3.5 results in

Q̂(~0, t) = Q̂− +
[
r−1 , r

−
2 , r

−
3 , 0, . . . , 0

]
α

= Q̂− +R−+X
(
R−+

)−1 (
Q̂+ − Q̂−

)
=

(
I −R−+X

(
R−+

)−1
)
Q̂− +R−+X

(
R−+

)−1
Q̂+

(3.9)

Following Eq. 2.14, the flux in the faced-aligned coordinate system can be obtained by
multiplying Eq. 3.9 by matrix A from the left. This yields

F̂ =

(
A−AR−+X

(
R−+

)−1
)
Q̂− +AR−+X

(
R−+

)−1
Q̂+ (3.10)

The flux in the global coordinate system is given by

F = T F̂ = T

(
A−AR−+X

(
R−+

)−1
)
T−1︸ ︷︷ ︸

A−

Q− + TAR−+X
(
R−+

)−1
T−1︸ ︷︷ ︸

A+

Q+ (3.11)

where A− and A+ are so-called flux solvers which can be pre-computed for all faces of
each tetrahedron.

20

3.2. Reference Element

Points Face
1 3 2 1
1 2 4 2
1 4 3 3
2 3 4 4

Figure 3.4.: Mapping tetrahedron Tm to the reference canonical element with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) on the left; and face numbering of a
tetrahedron on the right.

3.2. Reference Element

Unknowns of Eq. 2.15 can be efficiently found inside the canonical reference element TnE
(see Fig. 3.4). This approach is common for the Finite Element and DG frameworks and
leads to many simplifications and pre-computations. It expresses physical coordinates
x1, x2, x3 as functions of the reference coordinates - i.e., x1(ξ1, ξ2, ξ3), x2(ξ1, ξ2, ξ3),
x3(ξ1, ξ2, ξ3). The barycentric mapping is given by

x(ξ1, ξ2, ξ3) = (1− ξ1 − ξ2 − ξ3)a1 + ξ1a2 + ξ2a3 + ξ3a4 (3.12)

The change of variables from x1, x2, x3 to ξ1, ξ2, ξ3 entails the change of the differential
operator (shown in Eq. 3.13) and thus differentials in volume integrals i.e., dx1 dx2 dx3 =
|J | dξ1 dξ2 dξ3, where J is the Jacobian of the corresponding mapping function (see Eq.
3.12). ∂

∂x1
∂
∂x2
∂
∂x3

 =

∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3
∂x2

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3
∂x3

∂
∂ξ1
∂
∂ξ2
∂
∂ξ3

 (3.13)

Additional mapping is required for evaluating surface integrals - i.e., from surfaces of T e
to the canonical triangle T s. In contrast to the previous case, this entails a map from 3D
to 2D spaces, as shown in Fig. 3.5.

The mesh generation requirements enforce counter-clockwise vertex ordering; therefore,
vertices of the adjacent canonical triangles do not match. This leads to several possible
orientations of the triangles denoted by a parameter h and shown in Fig. 3.6.

To simplify the surface integration, χ̃2, χ̃1 coordinates within the canonical triangle of
a neighboring element can be expressed using coordinates of the canonical triangle in
question (i.e., χ2, χ1) as given in Table 3.1.

21

3. Discontinuous Galerkin Method in SeisSol

Face Mapping
1 ξ1(χ2, χ1) = χ1b2 + χ2b3
2 ξ2(χ2, χ1) = χ2b2 + χ1b4
3 ξ3(χ2, χ1) = χ1b3 + χ2b4
4 ξ4(χ2, χ1) = χ1b4 + χ2b3 + (1− χ1 − χ2)b2

Figure 3.5.: Mapping the 4th face of the reference tetrahedron T e to the reference canonical
triangle with vertices (0, 0), (1, 0) and (0, 1).

Figure 3.6.: Orientations of the adjacent canonical triangles.

Eq. 2.8, written in the reference element coordinate system with zero right-hand side,
becomes

∂Qp
∂t

+Apq

(
∂ξ1
∂x1

∂Qq
∂ξ1

+
∂ξ2
∂x1

∂Qq
∂ξ2

+
∂ξ3
∂x1

∂Qq
∂ξ3

)
+

Bpq

(
∂ξ1
∂x2

∂Qq
∂ξ1

+
∂ξ2
∂x2

∂Qq
∂ξ2

+
∂ξ3
∂x2

∂Qq
∂ξ3

)
+

Cpq

(
∂ξ1
∂x3

∂Qq
∂ξ1

+
∂ξ2
∂x3

∂Qq
∂ξ2

+
∂ξ3
∂x3

∂Qq
∂ξ3

)
= Sp

(3.14)

Re-arranging terms in Eq. 3.14 yields

∂Qp
∂t

+A∗
pq

∂Qq
∂ξ1

+B∗
pq

∂Qq
∂ξ2

+ C∗
pq

∂Qq
∂ξ3

= Sp (3.15)

where A∗
pq, B∗

pq and C∗
pq are defined as

A∗
pq = Apq

∂ξ1
∂x1

+Bpq
∂ξ1
∂x2

+ Cpq
∂ξ1
∂x3

B∗
pq = Apq

∂ξ2
∂x1

+Bpq
∂ξ2
∂x2

+ Cpq
∂ξ2
∂x3

C∗
pq = Apq

∂ξ3
∂x1

+Bpq
∂ξ3
∂x2

+ Cpq
∂ξ3
∂x3

(3.16)

22

3.3. Basis Functions

Table 3.1.: Transformations of χ2-χ1 coordinates of the canonical triangle to χ̃2-χ̃1 coor-
dinates of the neighbor triangle for all possible orientations defined by h (see
Fig. 3.6).

h 1 2 3
χ̃2

h(χ2, χ1) χ1 1− χ2 − χ1 χ2

χ̃1
h(χ2, χ1) χ2 χ1 1− χ2 − χ1

3.3. Basis Functions

Unknowns Qp(ξ, t) within the reference tetrahedron can be approximated using a linear
combination of space-dependent basis functions Ψl(ξ) multiplied by the corresponding
time-dependent coefficients Qlp(t) - i.e., Degrees Of Freedom (DOF).

Qp(ξ, t) = Qpl(t)Ψl(ξ) (3.17)

The accuracy of the DG method depends on a choice of basis functions. In SeisSol, the
orthogonal, hierarchical basis functions based on the Jacobi polynomials are used. The
details about constructing this polynomial basis are given in [13]. The required number of
basis functions B and the maximum polynomial degree N of the basis depends on the
desired convergence order O of the scheme and are given by

O = N + 1 (3.18)

B =
1

6
O(O + 1)(O + 2) (3.19)

After inserting the flux solvers derived in Section 3.1 and mapping Eq. 2.15 to the reference
element coordinate system, the weak solution can be written as

|J |
∂Qmpl
∂t

ˆ
T e

Φk(ξ)Ψl(ξ) dξ1dξ2dξ3+

+

4∑
j=1

|Sj |A−,m
pq Qmql

ˆ
δT ej

Φk(ξ
j(χ))Ψl(ξ

j(χ)) dχ1dχ2+

4∑
j=1

|Sj |A+,m
pq Q

mj

ql

ˆ
δT ej

Φk(ξ
j(χ))Ψl(ξ

i(χ̃h(χ))) dχ1dχ2−

|J |A∗,m
pq Qmql

ˆ
T e

∂Φk(ξ)

∂ξ1
Ψl(ξ) dξ1dξ2dξ3−

|J |B∗,m
pq Qmql

ˆ
T e

∂Φk(ξ)

∂ξ2
Ψl(ξ) dξ1dξ2dξ3−

|J |C∗,m
pq Qmql

ˆ
T e

∂Φk(ξ)

∂ξ3
Ψl(ξ) dξ1dξ2dξ3 = |J |

ˆ
T e

Φk(ξ)Sp dξ1dξ2dξ3

(3.20)

where δT e denotes boundaries of the reference element; Sj is the determinant of the space
Jacobian matrix resulting from mapping the j-th face of element Tm from the global to
the reference triangle coordinate systems; i is the face number of element Tmj adjacent to

23

3. Discontinuous Galerkin Method in SeisSol

the j-th face of element Tm; h is the orientation number of the i-th face of element Tmj

relatively to the j-th face of element Tm; and ξs is the location of a point source within
T e.

As mentioned in Section 2.1, the kinematic point source model, shown in Eq. 2.25, results
in a special form of the right-hand side. Therefore, the properties of the Dirac Delta
distribution need to be considered while performing the volume integration in Eq. 3.20.

ˆ
T e

Φk(ξ)Sp(t, ξ) dξ1dξ2dξ3 =
∑
s

sps(t)

ˆ
T e

Φk(ξ) δ(ξ − ξs) dξ1dξ2dξ3 = sps(t)Φk(ξs)

(3.21)
where sps(t) are time-dependent components of the point sources which happen to be
inside the Tm element - i.e., ξs ∈ T e.

Following the Galerkin approach [53], test functions Φ are chosen from the same set of
basis functions Ψ. This leads to the following element-local semi-discrete formulation.

∂Qmpl
∂t
|J |Mkl +

4∑
j=1

|Sj |A−,m
pq QmqlF

−,j
kl +

4∑
j=1

|Sj |A+,m
pq Q

mj

ql F
+,jih
kl −

|J |A∗,m
pq QmqlK

1
kl − |J |B∗,m

pq QmqlK
2
kl − |J |C∗,m

pq QmqlK
3
kl = |J |spsΨk(ξs)

(3.22)

where Mpr, Ki
kl, F

−,j
kl and F+,jih

kl are mass, stiffness, and flux matrices arising from the
following integrals.

Mkl =

ˆ
T e

Ψk(ξ)Ψl(ξ) dξ1dξ2dξ3

F−,j
kl =

ˆ
T ej

Ψk(ξ
j(χ))Ψl(ξ

j(χ)) dχ1dχ2

F+,jih
kl =

ˆ
δT ej

Ψk(ξ
j(χ))Ψl(ξ

i(χ̃h(χ))) dχ1dχ2

Ki
kl =

∂Ψk(ξ)

∂ξi
Ψl(ξ) dξ1dξ2dξ3

(3.23)

It is worth mentioning that all integrals, shown in Eq. 3.23, can be calculated beforehand
using computer algebra software systems like Maple [32].

3.4. ADER

The numerical time-integration of Eq. 3.22 can be performed using one of the Runge–Kutta
schemes with the same convergence order as the one selected for the spatial discretization.
However, as mentioned by Dumbser and Käser in [32], the computational efficiency of
Runge–Kutta methods decreases when the convergence order becomes greater than 5
due to a drastic increase of intermediate Runge–Kutta stages. The alternative approach

24

3.4. ADER

for numerical time integration is the Arbitrary high-order DERivatives (ADER) scheme.
Because the Cauchy–Kowalevski procedure applied to a linear hyperbolic system can
express time derivatives with spatial derivatives, a Taylor expansion of DOFs in time
(shown in Eq. 3.24) is used to compute high-order predictors for explicit time integration.

Qpl(t0, t) =

O−1∑
i=0

(t− t0)i

i!

∂iQpl(t0)

∂ti
(3.24)

where t0 is the point of expansion.

The second time derivative of the vector of unknowns can be written as
∂Q2

p

∂t2
= −Apq

∂

∂t

∂Qq
∂x1

−Bpq
∂

∂t

∂Qq
∂x2

− Cpq
∂

∂t

∂Qq
∂x3

+
∂sps(t)

∂t
δ(x− xs)

= −Apq
∂

∂x1

∂Qq
∂t
−Bpq

∂

∂x2

∂Qq
∂t
− Cpq

∂

∂x3

∂Qq
∂t

+
sps(t)

t
δ(x− xs)

(3.25)

Assuming that Q and s(t) are the i-th times differentiable, the i-th time derivative can be
recursively expressed as

∂iQp
∂ti

= −Apq
∂

∂x1

∂i−1Qq
∂ti−1

−Bpq
∂

∂x2

∂i−1Qq
∂ti−1

− Cpq
∂

∂x3

∂i−1Qq
∂ti−1

+
∂i−1sps(t)

∂ti−1
δ(x− xs)

(3.26)

Similar to Eq. 3.17, the time derivatives are represented as a linear combination of basis
functions multiplied by time-dependent coefficients Dilp.

∂Qip(ξ, t)

∂ti
= Dipl(t)Ψl(ξ) (3.27)

where, by definition, ∂0Qp(t)/∂t0 = Qp(t) = D0
pl(t)Ψl(ξ) and, thus, Qpl(t) = D0

pl(t)
according to Eq. 3.17.

Dilp coefficients can be recovered by inserting Eq. 3.27 into Eq. 3.26 and projecting the
result onto each basis function. The aforementioned procedure in the reference element
coordinate system yields

|J |Di,m
pl

ˆ
T e

Ψk(ξ)Ψl(ξ)dξ1dξ2dξ3 = −|J |AmpqD
i−1,m
ql

ˆ
T e

Ψk(ξ)
∂Ψl(ξ)

∂ξ1
dξ1dξ2dξ3−

−|J |Bm
pqD

i−1,m
ql

ˆ
T e

Ψk(ξ)
∂Ψl(ξ)

∂ξ2
dξ1dξ2dξ3 − |J |CmpqD

i−1,m
ql

ˆ
T e

Ψk(ξ)
∂Ψl(ξ)

∂ξ3
dξ1dξ2dξ3+

+|J |∂
i−1sps(t)

∂ti−1
Ψk(ξs)

(3.28)

The time-dependent part of a single point source can be represented in-time basis over
[t, t+∆t]. Similar to [61], the classical Legendre polynomials are chosen as basis functions
which are orthogonal by definition.

sp(t) = Splθl(t) (3.29)

25

3. Discontinuous Galerkin Method in SeisSol

Time-independent coefficients Spl can be retrieved by projecting Eq. 3.29 onto each basis
function θi(t). ˆ t+∆t

t
sp(t)θi(t)dt = Spl

ˆ t+∆t

t
θl(t)θi(t)dt︸ ︷︷ ︸
Mθ

li

(3.30)

Gaussian quadrature rules allow us to evaluate the left-hand side of Eq. 3.30 and, thus,
obtain the coefficients

Spl =

(ˆ t+∆t

t
sp(t)θi(t)dt

)(
M θ
li

)−1
=

 O∑
j=1

ωjsp(τj)θi(τj)

(M θ
li

)−1
(3.31)

where τj ∈ [t, t + ∆t] are the Gaussian integration points; ωj are the corresponding
weights.

Therefore, the last term of Eq. 3.28 can be written as
∂i−1sps(t)

∂ti−1
Ψk(ξs) = SpslΘ

i−1
l (t)Ψk(ξs) (3.32)

where Θi−1
l is the (i − 1)-th time derivative of θl, which can be computed beforehand,

similar to Eq. 3.23.

Finally, the time derivatives of DOFs can be expressed as follows

Di,mpl =
(
SpslΘ

i−1
l Ψk(ξs)−AmpqD

i−1,m
ql (K1

lk)
T −Bm

pqD
i−1,m
ql (K2

lk)
T − CmpqD

i−1,m
ql (K3

lk)
T
)
M−1
kl

(3.33)

High-order predictors Tpl, also called integrated DOFs, can be obtained by integrating Eq.
3.24 in time over [t, t+∆t] such that t0 < t and ∆t > 0.

T mpl (t0, t,∆t) =
ˆ t+∆t

t
Qmpl(t, t0)dt =

=

ˆ t+∆t

t

O−1∑
i=0

(t− t0)i

i!

∂iQmpl(t0)

∂ti
dt =

O−1∑
i=0

(t+∆t− t0)i+1 − (t− t0)i+1

(i+ 1)!
Di,mpl (t0)

(3.34)

The discrete form of the underlying system of PDEs can be obtained by integrating Eq.
3.22 in time over [t, t + ∆t], replacing DOFs integrals with Eq. 3.34, and applying a
Gaussian quadrature rule for evaluating the right-hand side. Therefore,[

(Qmpl)
t+∆t − (Qmpl)

t
]
|J |Mkl+

4∑
j=1

|Sj |A−,m
pq T mql (t, t,∆t)F

−,j
kl +

4∑
j=1

|Sj |A+,m
pq T

mj

ql (t, t,∆t)F+,jih
kl −

|J |A∗,m
pq T mql (t, t,∆t)K1

kl − |J |B∗,m
pq T mql (t, t,∆t)K2

kl

−|J |C∗,m
pq T mql (t, t,∆t)K3

kl = |J |

 O∑
j=1

ωjsps(τj)

Ψk(ξs)

(3.35)

26

3.5. Local Time Stepping

In contrast to the Runge–Kutta approach, Eq. 3.35 performs high-order time integration
in a single step.

3.5. Local Time Stepping

The explicit time-integration scheme in Eq. 3.35 is known to be conditionally stable.
In the Finite Difference framework, it is possible to derive a necessary condition for
convergence and, thus, stability of a linear hyperbolic problem using the von Neumann
stability analysis. This is known as the Courant–Friedrichs–Lewy (CFL) condition, which
gives the upper bound for ∆t regarding the advection velocity and the element size. For
the ADER-DG scheme applied to Eq. 2.7, the CFL condition for element Tm is given by

∆tm <
1

2N + 1

dm

cmp
(3.36)

where dm is the in-sphere diameter of the tetrahedron Tm; cp is its local seismic P-wave
velocity (see Eq. 2.10); N is the maximum polynomial degree of the basis functions.

To ensure convergence of a numerical solution within the entire domain Ω, the smallest
∆tm must be used in Eq. 3.35. This approach implies that all mesh elements are updated
at the same rate - i.e., Global Time Stepping (GTS).

∆tGTS = ∆tmin = min
∀Tm∈Ω

(∆tm) (3.37)

where tm denotes the time step width of the m-th tetrahedron.

GTS is suitable for numerical simulations which involve uniform meshes and isotropic
media - i.e., where all elements have more or less the same size and similar material
properties. However, many geophysical applications contain a limited number of zones
of interest (e.g., fault planes, surface topography, areas around kinematic point sources,
sedimentary basins, etc.) which may require high mesh resolutions (see Fig. 3.1 as an
example). The stability criteria inside such zones determine the global time step width
∆tGTS which is typically much smaller than the element-local ones in the bulk of a domain.
Therefore, GTS may result in excessive computations and, thus, in high computational
efforts. Alternatively, the Local Time Stepping (LTS) scheme updates each element
with its optimal time step width, which results in fewer overall computations. However,
good approximations of numerical fluxes are required to implement LTS. Fortunately, the
ADER-DG scheme, which involves solving the Generalized Riemann Problems (GRP) at
the element interfaces, allows us to evaluate flux contributions from neighboring elements
using their time derivatives of DOFs.

A straightforward, element-wise implementation of the LTS often results in low performance
on parallel computers due to serialized computations resulting from numerical time
integration. Therefore, a cluster-wise implementation of the LTS is commonly used in
practice. Given an adjacent time-cluster update ratio r ∈ N+, element Tm is defined to

27

3. Discontinuous Galerkin Method in SeisSol

belongs to a time-cluster Cl if the following condition holds

∆tm ∈
[
rl ·∆tmin, rl+1 ·∆tmin

)
(3.38)

Therefore, the total number of time-clusters L is given by

L =

⌈
logr

(
max(∆tm)
∆tmin

)⌉
(3.39)

Moreover, as shown in [13], an efficient cluster-wise LTS implementation requires to limit
the dependencies between time-clusters to a single time-level. This restricts a face neighbor
element Tmj of a tetrahedron Tm ∈ Cl to belong to a direct neighboring time-cluster,
namely: Tmj ∈ Cl−1 (if l > 0), or Tmj ∈ Cl, or Tmj ∈ Cl+1 (if l < L− 1). As mentioned
by Breuer in [13], this constraint simplifies the LTS algorithm and reduces the number of
possible sends and receives on distributed-memory computers.

The LTS algorithm can be illustrated using an element Tm and its neighbor Tmi , which
belong to neighboring time-clusters Cl and Cl+1, respectively. Let’s start with time-
iteration n when both Tm and Tmi elements are in sync i.e., tn | ∆tnm = ∆tnmi

. Time-
integrated DOFs of element Tm must update element Tmi according to Eq. 3.35. These
can be obtained after r time-iterations of element Tm as follows

T mpl (tn, tn,∆tnmi
) =

r−1∑
i=0

T mpl (tn + i ·∆tnm, tn + i ·∆tnm,∆tnm) (3.40)

Similarly, element Tm needs the time-integrated DOFs of element Tmi to perform its
time-updates. However, given derivatives of Tmi , the element Tm can evaluate them by
itself using Eq. 3.34 and thus perform its local time-update according to Eq. 3.35.

To summarize, the algorithm contains the following steps, namely:

1. At a sync-time tn, element Tmi saves its DOFs time-derivatives in a buffer Bki , while
element Tm zeros its associated buffer Bk.

2. r time-updates of elements Tm are performed using time-derivatives of element Tmi

stored in Bki , while time-integrated DOFs of element Tm are getting accumulated
in Bk at the end of each time-update.

3. Element Tmi performs its time-update from tn to tn +∆tnmi
using time-integrated

DOFs of element Tm accumulated in Bk.

Therefore, the LTS algorithm enforces data dependencies during the numerical time
integration, i.e., elements of a time-cluster Ci must be updated before the ones belonging
to a time-cluster Cj if i < j. This also entails extra memory consumption due to allocating

28

3.6. Boundary Conditions

additional memory buffers - e.g., Bki and Bki . Moreover, splitting elements into time-
clusters shrinks parallel regions, which may negatively affect the hardware performance of
some computing devices designed for massive parallelism - e.g., GPUs. Nevertheless, the
algorithm reduces redundant computations and, thus, the overall time required to obtain
the final numerical solution.

3.6. Boundary Conditions

Setting correct boundary conditions is not trivial in the DG method. In contrast to the
Finite Difference and Finite Element methods, there is no direct control over values at the
nodes along the domain boundaries. Therefore, boundary conditions must be imposed via
numerical fluxes, which can be found by designing and solving inverse Riemann problems.
In the following, the most important boundary conditions relevant to this study are
discussed.

3.6.1. Absorbing Boundaries

The absorbing boundary condition is used to model the wave propagation in the direction
of a surface-normal without reflections - i.e., without incoming waves. The flux form, given
in Eq. 3.11, has already been split into outgoing and incoming waves, where the latter
are influenced by the state only inside the neighboring element. The simplest approach
in simulating absorbing boundaries is to omit the second term in Eq. 3.11 from the
right-hand side. This yields

Fp = Tpj

(
Ajr −AjnR−

nmXml

(
R−
lr

)−1
)
T−1
rq Q

−
q (3.41)

However, as noticed by Dumbser and Käser and Hermann (in [32] and [52], respectively),
this approach still results in some reflections if waves do not perfectly hit a boundary
perpendicularly. Alternative and more sophisticated techniques (e.g., Perfectly Matched
Layer, see [11]) exist and can be used to eliminate such phenomena, but at the same time,
it entails performing some additional computations.

3.6.2. Free-Surface Boundaries

The free-surface boundary condition models a contact surface between the wave propa-
gation domain and the void. This requires the normal and shear stresses at the surface
boundary to be zero. The solution of the inverse Riemann problem can be found if one
assumes that each boundary element p has a virtually extrapolated state Qvq outside the
computational domain. The state Qvq is the same as Qp except for σ11, σ12, and σ13

29

3. Discontinuous Galerkin Method in SeisSol

components which are taken with the same magnitudes but with the opposite signs. This
can be expressed as follows in the mathematical notation

Qvq = diag (−1, 1, 1,−1, 1,−1, 1, 1, 1)Qp = ΓqpQp (3.42)

Therefore, the flux at a free-surface boundary is given by

Fp = Tpj

(
Ajr −AjnR−

nmXml

(
R−
lr

)−1
)
T−1
rq Q

−
q + TpjAjnR

−
nmXml

(
R−
lr

)−1
T−1
rs ΓsqQ

−
q

(3.43)

3.6.3. Dynamic Rupture

Figure 3.7.: 2D Gaussian points on the dynamic rupture interface (on the left), and the
solution structure of the Riemann problem for Eq. 3.3 (on the right).

Rupture processes can also be considered as a special boundary condition. As discussed
in Section 2.2, the process is point-local; therefore, the flux term needs to be numerically
integrated using some quadrature rules as proposed by de la Puente, Ampuero, and Käser
in [24].

F̂pk = Apr

ˆ t+∆t

t

ˆ
S
ΦkQ̂r dS dt ≈ Apr

O∑
l=1

(O+1)2∑
i=1

ωSi ω
T
l Φk(χi)Q̂r,il(χi, tl) (3.44)

where ωTl and ωSi are the temporal and spatial weights required for the Gaussian integration;
χi is a spatial Gaussian point written in the canonical reference triangle coordinate system;
tl is a temporal Gaussian point located within [t, t+ dt] interval.

First of all, the solution structure of the Riemann solver must be revisited to find
Q̂r,il(χi, tl) because, in contrast to Section 3.1, it must be assumed that states Q̂br,il(χi, tl)
and Q̂cr,il(χi, tl) are not necessarily equal due to a possible slip of the material along a
rupture surface. To find them, Q̂+

r,il(χi, tl) and Q̂
−
r,il(χi, tl) approximations are required,

which can be obtained by projecting their DOFs time-evolutions (i.e., T ±
rm(t, t, tl)) from

30

3.6. Boundary Conditions

the modal basis to the chosen Gaussian points (see Fig. 3.7).

Q̂−
r,il(χi, τl) = T−1

rp (n)T −
pm(t, t, tl)Φm(ξ

f (χi)) (3.45)

Q̂+
r,il(χi, τl) = T−1

rp (n)T +
pm(t, t, tl)Φm(ξ

g(χ̃h(χi))) (3.46)

where n is the normal of an element rupture face; f and g are the numbers of the rupture
faces within the elements adjacent to “−” and “+” sides, respectively; h is the orientation
number of the rupture face on the “+” side relative to the one on the “−” side.

In the following, I deliberately omit r, il-indices for simplicity - i.e., Q̂± = Q̂±
r,il(χi, tl).

Additionally, I re-scale right-eigenvalues column-wise using Υ diagonal matrix as shown
in Eq. 3.48. This helps to simplify derivations while preserving the correctness of the
analysis because this transformation does not affect directions of the right-eigenvectors.

Υ = diag

(
1

ρ−(c−p)2
,

1

ρ−(c−s)2
,

1

ρ−(c−s)2
, 1, 1, 1,

1

ρ+(c+s)2
,

1

ρ+(c+s)2
,

1

ρ+(c+p)2

)
(3.47)

R = R−+Υ =

1 0 0 0 0 0 0 0 1
λ−

λ−+2µ− 0 0 0 1 0 0 0 λ+

λ++2µ+

λ−

λ−+2µ− 0 0 0 0 1 0 0 λ+

λ++2µ+

0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
1
Z−
1

0 0 0 0 0 0 0 − 1
Z+
1

0 1
Z−
2

0 0 0 0 0 − 1
Z+
2

0

0 0 1
Z−
3

0 0 0 − 1
Z+
3

0 0

(3.48)

where Z−
1 , Z−

2 , Z−
3 and Z+

1 , Z+
2 , Z+

3 are called impedances which are equal to

Z−
1 = ρc−p , Z

+
1 = ρc+p

Z−
2 = ρc−s , Z

+
2 = ρc+s

Z−
3 = ρc−s , Z

+
3 = ρc+s

(3.49)

Q̂b and Q̂c states can be found by using the jump condition properties of a solution of the
Riemann problem applied to the wave propagation problem (shown in Eq. 2.7). This is
shown as follows

Q̂b − Q̂− = α1r
−
1 + α2r

−
2 + α3r

−
3 (3.50)

Q̂+ − Q̂c = α7r
+
7 + α8r

+
8 + α9r

+
9 (3.51)

where r±i is the i-th column vector of R.

Eq. 3.50 and the structure ofR can be used to find values of α1, α2, and α3 via components
highlighted in red in Eq. 3.48. Similarly, one can obtain α7, α8, α9 using Eq. 3.51 via

31

3. Discontinuous Galerkin Method in SeisSol

components highlighted in blue. Moreover, we are looking for a solution where stresses
across a fault are continuous and thus σ̂b1j = σ̂c1j , which I denoted as σ̂mj for simplicity.

σ̂m1 − σ̂−11 = α1, σ̂
+
11 − σ̂

m
1 = α9

σ̂m2 − σ̂−12 = α2, σ̂
+
12 − σ̂

m
2 = α8

σ̂m3 − σ̂−13 = α3, σ̂
+
13 − σ̂

m
3 = α7

(3.52)

The sum of Eq. 3.50 and Eq. 3.51 together is given by

JQ̂K− JδQ̂K = α1r
−
1 + α2r

−
2 + α3r

−
3 + α7r

+
7 + α8r

+
8 + α9r

+
9 (3.53)

where the following variables are introduced: JQ̂K = Q̂+ − Q̂− and JδQ̂K = Q̂c − Q̂b.

JQ̂K =

σ̂+11 − σ̂
−
11

σ̂+22 − σ̂
−
22

σ̂+33 − σ̂
−
33

σ̂+12 − σ̂
−
12

σ̂+23 − σ̂
−
23

σ̂+13 − σ̂
−
13

û+1 − û
−
1

û+2 − û
−
2

û+3 − û
−
3

=

Jσ̂11K
Jσ̂22K
Jσ̂33K
Jσ̂12K
Jσ̂23K
Jσ̂13K
Jû1K
Jû2K
Jû3K

, JδQ̂K =

0
σ̂c22 − σ̂b22
σ̂c33 − σ̂b33

0
σ̂c23 − σ̂b23

0
ûc1 − ûb1
ûc2 − ûb2
ûc3 − ûb3

=

0
Jδσ̂22K
Jδσ̂33K

0
Jδσ̂23K

0
Jδû1K
Jδû2K
Jδû3K

(3.54)

The substitution of Eq. 3.52 to Eq. 3.53 yields

JûiK− JδûiK =
αi

Z−
i

− α9−i+1

Z+
i

=
σ̂mi − σ̂

−
1i

Z−
i

−
σ̂+1i − σ̂mi
Z+
i

(3.55)

where i ∈ (1, 2, 3).

Re-arranging the terms in Eq. 3.55 allows to express σ̂mi as follows

σ̂mi = ηi

(
JûiK +

σ̂+1i
Z+
i

+
σ̂−1i
Z−
i

)
− ηiJδûiK (3.56)

where ηi =
Z+
i Z

−
i

Z+
i +Z−

i

.

In this model, fault opening cannot occur; thus, particle velocities from “+” and “−” sides
must be equal - i.e., Jδû1K = 0. Therefore, σ̂m1 can be directly computed as follows

σ̂m1 = ηi

(
Jû1K +

σ̂+11
Z+
1

+
σ̂−11
Z−
1

)
(3.57)

Therefore, one can evaluate the fault strength using Eq. 2.17 as follows

τs = max(0,−µf σ̂m1) (3.58)

32

3.6. Boundary Conditions

where µf = µf,il.

The slip rate ∆u discussed in Eq. 2.16 also equals the sum of the Jδû2K and Jδû3K vectors.
Therefore, the absolute value of the slip rate is given by

∆u =
√

Jδû2K2 + Jδû3K2 (3.59)

The antiparallel property of the shear stress and the slip rate of the Coulomb model can
be exploited as the closing equation for the inverse Riemann problem. The projection of
the vector Eq. 2.20 onto 2- and 3-directions in the fault-aligned system results in

Jδû2Kτs − |∆u|σ̂m2 = 0

Jδû3Kτs − |∆u|σ̂m3 = 0
(3.60)

Plugging Eq. 3.60 into Eq. 3.56 yields

JδûiK =
|∆u|ηi

τs + ηi|∆u|

(
JûiK +

σ̂+1i
Z+
i

+
σ̂−1i
Z−
i

)
=

|∆u|
τs + ηi|∆u|

θi (3.61)

where i ∈ (2, 3)

Combining Eq. 3.61 and Eq. 3.59 allows to evaluate the absolute value of the slip rate.

τs + ηs|∆u| =
√
θ22 + θ23 (3.62)

where ηs = η2 = η3 by definition (see, Eq. 3.49 and Eq. 3.57).

According to Eq. 3.58, the fault strength is a function of normal stress σ̂m1 and the friction
coefficient µf , where the latter is determined by a particular friction law. As shown in Eq.
2.21, the friction coefficient is a function of slip rate magnitude |∆u| and state variable
ψ. Therefore, Eq. 3.62 is generally non-linear and may require the Newton-Raphson
algorithm to be solved regarding the slip rate magnitude. However, in some special cases -
e.g., the Linear Slip Weakening (see Eq. 2.23) - the friction coefficient is a function of
only the state variable, which is defined as an ordinary differential equation for which the
value of the slip rate magnitude can be taken from the previous time step. In such cases,
the slip rate magnitude can be found as follows

|∆u| =
√
θ22 + θ23 − τs

ηs
(3.63)

The solution of Eq. 3.62 must be used to evaluate Jδû2K and Jδû3K using Eq. 3.61; thus,
σ̂m2 and σ̂m3 can be computed according to Eq. 3.56.

Using Eq. 3.50, Eq. 3.51, and Eq. 3.52, the velocity components on both sides of the
interface are given by

ûbi − û−i =
αi

Z−
i

∴ ûbi = û−i +
σ̂mi − σ̂

−
1i

Z−
i

û+i − û
c
i =

α9−i+1

Z−
i

∴ ûci = û+i +
σ̂mi − σ̂

+
1i

Z−
i

(3.64)

33

3. Discontinuous Galerkin Method in SeisSol

At this point, Q̂bil and Q̂cil vectors can be assembled and applied to Eq. 3.44 to compute
fluxes for adjacent elements in the face-aligned coordinate system.

34

4. HPC Concepts in SeisSol

It is important to discuss the state of the CPU implementation of SeisSol to better
understand the problems faced during this research, as well as implementational details,
achievements, and contributions. Therefore, this chapter lists the main HPC features
adapted in SeisSol prior to this work, which result in performing highly-efficient and
scalable earthquake simulations on distributed-memory CPU-based supercomputers.

Like many HPC applications, SeisSol had been originally designed and tuned for traditional
multicore and manycore x86 platforms [50]. It fully exploits the main capabilities of vector
processing units of modern x86 CPUs. SeisSol scales well on manycore shared-memory
systems because 1) coarse granularities of CPU tasks resulted from the element-wise
updates of Eq. 3.35, 2) abundant caching caused by small matrix sizes and intelligent
data pre-fetching, and 3) little synchronizations between CPU threads.

Among various distributed-memory programming models, e.g., Chapel, UPC, X10, etc.,
SeisSol utilizes the Message Passing Interface (MPI), which is the most popular one in
the field of scientific computing. Because asynchronous message-passing is well overlapped
with computations, SeisSol scales well on distributed-memory machines up to ≈ 8000
CPU nodes (for example, see [13] or [114]).

In Section 4.1, I discuss SeisSol’s main macro-kernels and the adapted memory layout.
In Section 4.1, I explain the main aspects of the code generation established in SeisSol,
resulting in 1) flexibility in implementing various wave propagation models and 2) high
single CPU core performance. Section 4.3 describes the original SeisSol’s task decomposi-
tion and the shared-memory multiprocessing of sub-tasks, which are implemented with
OpenMP. In Section 4.4, I discuss the LTS-specific tetrahedral mesh partitioning and the
main aspects of MPI-based parallelization.

4.1. Data Layout and Macro Kernels

SeisSol is based on the column-major layout for storing multidimensional arrays where
the leading dimension is preferred to be the longest one. Taking into account that the size
of polynomial basis B, dictated by the maximum polynomial degree N , is much larger
than the number of unknown physical quantities - i.e., 9 for the elastic wave propagation -
pl-indices of DOFs in Eq. 3.17 must to be swapped. This entails the appropriate changes
in Eq. 3.35 and Eq. 3.33, which can be achieved by matrix transpositions of their left-
and right-hand sides.

35

4. HPC Concepts in SeisSol

Eq. 3.35 can be split into entirely element-local and data-dependent parts, which can be
written as follows(

Qmlp

)t+∆t,∗
=
(
Qmlp

)t
− I localsurf

(
T mlp
)
+ Ivol

(
T mlp
)
+ Isrc (4.1)(

Qmlp

)t+∆t
=
(
Qmlp

)t+∆t,∗
− Inghbsurf

(
T mj

lp

)
(4.2)

where I localsurf , I
nghb
surf , Ivol and Isrc are local surface, neighbor surface, volume and source

terms integrals, which constitute the main computational macro-kernels in SeisSol; T mlp is
the time-integrated DOFs of the m-the tetrahedron (see Eq. 3.34).

Uphoff et al. in [117] proposed to decompose the flux matrices (i.e., F+,jih
tk and F−,j

tk)
by representing functions compositions involved into the corresponding integrals using
two-dimensional basis Ψ̃1 . . . Ψ̃Õ, where Õ = 1

2 (O) (O + 1). The authors show that this
approach 1) leads to fewer floating-point operations using an optimal matrix multiplication
ordering and 2) reduces data eviction from low-level CPU caches. The decomposition is
given by

F−,j
kl = Rjkm ·

ˆ
δT ej

Ψ̃m(χ)Ψ̃n(χ) dχ1dχ2 ·Rjnl = Rjkmf
−
mnR

j
nl (4.3)

F+,jih
kl = Rjkm ·

ˆ
δT ej

Ψ̃m(χ)Ψ̃n(χ̃
h(χ)) dχ1dχ2 ·Rinl = Rjkmf

+,h
mn R

i
nl (4.4)

where Rjkm and Riln matrices are projections from the three-dimensional basis onto the
two-dimensional one for j and i faces, respectively. The details regarding the projection
matrices are given in [117].

Therefore, the main macro-kernels are given by

I localsurf

(
T mlp
)
=

4∑
j=1

|Sj |R̃jlmf̃
−,j
nt T mtq A−,m

qp

Inghbsurf

(
T mj

lp

)
=

4∑
j=1

|Sj |R̃ilmf+,hnm RjmtT
mj

tq A+,m
qp

Ivol

(
T mlp
)
= −K̃1

ltT mtq A∗,m
qp − K̃2

ltT mtq B∗,m
qp − K̃3

ltT mtq C∗,m
qp

Isrc =M−1
lk

(
Ψk(ξs)

)T O∑
j=1

ωjssp(τj)

(4.5)

where R̃jlm = 1
|J |M

−1
lk R

j
kn; f̃

−,j
nt = f−,jnmR

j
mt; and K̃i

lt = M−1
lk K

i
tk, which can be pre-

computed in advance.

Similarly, Eq. 3.33 needs to be transposed and thus can be written as follows

Dm,ilp =M−1
lk

(
Ψk(ξs)

)T
Θm,i−1
l Slps − K̂1

ltD
m,i−1
tq Amqp − K̂2

ltD
m,i−1
tq Bm

qp − K̂3
ltD

m,i−1
tq Cmqp

(4.6)
where K̂i

lt =M−1
lk (Ki

kt)
T .

36

4.2. Code Generation

Table 4.1.: Matrix sizes for typical convergence orders.

Matrices Convergence Order
4 5 6 7

Q, D, T 20 × 9 35 × 9 56 × 9 84 × 9
M , K̂1, K̂2, K̂3, K̃1, K̃2, K̃3 20 × 20 35 × 35 56 × 56 84 × 84
A∗, B∗, C∗, A−, A+, T̂ 9 × 9 9 × 9 9 × 9 9 × 9
Vf , Vg,h 25 × 20 36 × 35 49 × 56 64 × 84
R̃ 10 × 20 15 × 35 21 × 56 28 × 84
f̃−,j 20 × 10 35 × 15 56 × 21 84 × 28
f+,h 10 × 10 15 × 15 21 × 21 28 × 28

Therefore, Eq. 4.6 and Eq. 3.34 constitute a so-called ader macro-kernel which is given
by

Iader

(
Qmlp

)
=

O−1∑
i=0

(t+∆t− t0)i+1 − (t− t0)i+1

(i+ 1)!
Dm,ilp (4.7)

where Dm,0lp is equal to Qmlp by definition.

Eq. 3.45 and Eq. 3.46 define so-called interpolation macro-kernels, which are used
to project a volumetric solution of element m or its neighbor mj to the f -th face of
tetrahedron m.

I localinter

(
T mlp
)
= VflkT

m
kp T̂

m
pr

Inghbinter

(
T mj

lp

)
= Vg,hlk T

mj

kp T̂
m
pr

(4.8)

where Vflk =
(
Φm(ξ

f (χi))
)T

and Vg,hlk =
(
Φm(ξ

g(χ̃h(χi)))
)T

are the Vandermonde

matrices; T̂mpr is equal to
(
T−1
rp (n)

)T
and pre-computed in advance for each face of element

m.

As a reference, Table 4.1 shows matrix sizes for the most commonly used convergence
orders in SeisSol. In practice, columns of many matrices are padded to a size multiple of
the vector register length of the underlying CPU architecture. Together with the memory
alignment, it allows SeisSol to utilize more efficient (i.e., low latency) load and store vector
instructions.

4.2. Code Generation

The macro-kernels, discussed in Section 4.1, mainly involve matrix multiplications and
additions in the context of elastic wave propagation. It is worth mentioning that the
kernels do not impose any particular matrix multiplications orders. Thus, the naïve

37

4. HPC Concepts in SeisSol

(i.e., right-to-left) multiplications may be sub-optimal regarding computational efficiency.
Moreover, other wave propagation models (e.g., viscoelastic one) may result in operating
on higher-order tensors. Some tensors/matrices may be vastly sparse, which needs to be
considered while implementing a computer-efficient ADER-DG scheme.

Uphoff and Bader addressed these problems in [116] while working on Yet Another Tensor
Toolbox (YATeTo) which is a Python-based Domain Specific Language (DSL) for the
discontinuous Galerkin methods. The language operates on scalar and tensor data types
and supports primary tensor operations, namely: 1) a linear combination of tensors and
2) a tensor product. YATeTo automatically performs a tensor contraction when a tensor
product contains repeating (dummy) indices. The main objective of the language is 1) to
provide flexibility and convenience for scientists while working on implementing numerical
schemes stemming from DG-like methods and 2) to generate a high-performance code for
a single CPU core. In the following, I describe the main concepts of the language and its
compiler, which is necessary for understanding the main contributions of this thesis.

In YATeTo, a tensor is defined by 1) a unique name, 2) its shape, and 3) its sparsity
pattern. YATeTo’s compiler front-end is based on the overloaded “+” and “*” Python-
operators, and thus the precedence and associativity of YATeTo’s operators are inherited
from Python. The language grammar does not support parentheses, meaning a user
cannot enforce a particular order of operations within a tensor expression. Finding an
optimal tensor ordering that results in minimal floating-point operations, also known
as Strength Reduction, is an NP-complete problem, which can be deduced from [72].
Therefore, delegating this problem to the compiler is one of the main design decisions
of the YATeTo DSL. Firstly, an optimal solution found by the compiler, based on the
algorithm described by Lam, Sadayappan, and Wenger in [72], results in a faster and,
thus, more energy-efficient implementation of a tensor expression. Secondly, it simplifies
writing YATeTo programs and reduces HPC software development time.

YATeTo can reduce the formal tensor sizes by excluding zero blocks which may appear
during a tensor chain evaluation. This idea is based on computing EQuivalent SParsity
Patterns (EQSPPs), which were initially introduced in [115] for matrices and later
extended for tensors in [116]. As a result, a formal size of a tensor, which is a dense block,
encompasses only those elements which guarantee to generate non-zero results during
an operation where the tensor gets involved. This reduces the required floating-point
operations and, thus, leads to a more efficient implementation.

As discussed in [105] and similar works, a tensor inner product can be implemented in
many different ways, e.g., Transpose-Transpose-GEMM-Transpose, GEMM-like Tensor-
Tensor Multiplication, Loops-over-GEMMs, etc. The performance of a particular algorithm
depends on the shapes of the involved tensors, and, in general, it is hard to predict the best
algorithm in advance. Tensor Contraction Code Generator1 contains several algorithms
for implementing an inner tensor product and uses a combination of a cost model and
an autotuning technique to find the best candidate. It is worth pointing out that almost
all algorithms, except the naïve nested loops approach, are designed to utilize a GEneral

1 https://github.com/HPAC/tccg

38

https://github.com/HPAC/tccg

4.2. Code Generation

Matrix Multiply (GEMM) as a micro-kernel. The GEMM kernel can be taken from
the BLAS library supplied by a hardware vendor (e.g., Intel-MLK, OpenBLAS, BLIS,
cuBLAS, rocBLAS, etc) to achieve the maximum performance.

Uphoff and Bader argued in [116] that Loops-over-GEMMs (LoG) algorithm is best suited
to the requirements of the domain for which YATeTo was designed. They list the following
reasons based on the fact that small tensors, which are typically arisen from the DG
methods, fit into the CPU caches. Firstly, the sparsity of the involved tensors can be
fully and trivially�exploited because the algorithm does not require splitting tensors into
patches and to perform/optimize packing, re-shaping and unpacking subroutines for them.
Secondly, the absence of such operations reduces the overall number of load and store
CPU instructions, making the algorithm to be more compute-intensive. Lastly, the code
generation for LoG becomes trivial once the looping dimensions and their orders are
found. However, the last condition is, in fact, a complex problem because many possible
configurations are possible. YATeTo employs dynamic programming to find the one which
is estimated to result in the minimal run time.

The compilation process starts by building an Abstract Syntax Tree (AST) for a tensor
expression. Afterward, YATeTo performs a semantic analysis by checking whether the
indices and shapes of the involved tensors constitute a valid tensor expression. Then,
EQSPPs are computed for each tensor. At this point, the AST is quite shallow because
no concrete evaluation order is imposed. This is done during Strength Reduction, which
follows immediately. This step results in a deep AST consisting of only tensor-assignment,
scaled-tensor-sum, tensor-product and tensor-contraction (called as IndexSum) nodes.
Then, YATeTo identifies sub-trees that represent inner tensor products and maps them to
LoG nodes. The first compilation stage finishes by computing optimal looping dimensions
and loops ordering for each LoG node. Afterward, the AST is transformed into a
linearized Intermediate Representation (IR), which resembles a three-address code. This
representation is more convenient for finding and optimizing temporary storage required
for saving intermediate results while evaluating the whole tensor expression. During
the last stage, YATeTo traverses the IR from top to bottom and generates C++ code
in memory, which later, together with the initialization code and other auxiliary data
structures, is written to text files.

Code generation for the LoG IR instruction is split into two steps. During the first one,
YATeTo generates C++ code for the outer for-loops if they exist. Otherwise, the step is
omitted. The second step can be performed in three different ways, namely: 1) YATeTo
can insert a function call to the GEMM subroutine taken from an optimized BLAS library;
2) YATeTo can invoke a hardware-aware code generator (if available), e.g., LIBXSMM [51]
or PSpaMM [102]; and 3) YATeTo can generate C++ code by itself. The last two variants
allow YATeTo to generate code for Dense×Dense, Dense×Sparse, and Sparse×Dense
matrix multiplications.

Memory alignment and data padding, discussed in Section 4.1, leads to a better vectoriza-
tion of GEMM micro-kernels. Intelligent data pre-fetching of small matrices into low-level
caches keeps the vector-processing units busy. As a result, the resultant arithmetic inten-

39

4. HPC Concepts in SeisSol

sity of the generated tensor expressions is quite high. As shown in [117] and [123], SeisSol
can reach up to ≈ 40-50% of the peak CPU performance of modern x86 processors.

As it can be seen from the discussion, YATeTo’s software design is CPU-centric. It mainly
focuses on binary tensor operations where the core of computations is built upon GEMMs.
Multithreading is delegated to the host application - e.g., SeisSol. Apart from explicit
data pre-fetching, no other explicit data manipulations are done - i.e., the generated code
relies on the hardware for moving data within the cache hierarchy.

4.3. Multithreading

By definition, a task is a unit of work for a computing device to execute. The term
is ambiguous, and the interpretation depends on a specific algorithm. In SeisSol, an
LTS-task is defined as a time-update of elements within a time-cluster. Splitting Eq. 3.35
into Eq. 4.1 and Eq. 4.2 generates two data parallel in-order tasks for a time-cluster. A
sub-task is determined as an execution of one or more tensor expressions defined by the
macro-kernels for a single mesh element. SeisSol employs the traditional OpenMP parallel
programming model for distributing sub-tasks between CPU cores within a shared-memory
system.

In general, sub-tasks are not equal. Firstly, a face of an element can belong to 1 out of 48
different flux matrices F+,jih which have different sparsity patterns and thus may entail
a slightly different number of floating-point operations within Inghbsurf macro-kernel (see
Algorithm 1). Secondly, an element face can belong to a boundary condition requiring a
different numerical treatment. Therefore, each sub-task may have a different execution
control flow determined by constraints imposed on a mesh element. Nevertheless, SeisSol
uses static OpenMP work scheduling, showing a little load imbalance between CPU cores
in practice.

Each LTS-task contains two parallel fork-join regions. The overheads related to threads
creations and synchronizations are negligible because 1) sub-tasks in SeisSol are quite
coarse-grained, and 2) each OpenMP thread is assigned to independently process a sub-set
of elements on a single CPU core. As shown in Fig. 4.1, SeisSol’s parallel performance
scales almost linearly on the shared-memory systems relative to the number of CPU
cores.

SeisSol-proxy is a set of benchmarks that contains the main SeisSol’s macro-kernels. The
proxy implements a single LTS time-cluster, which can also be viewed as the GTS scheme.
The proxy can run individual macro-kernels as well as combinations of them. Results,
shown in Fig. 4.1, were obtained by running all macro-kernels in the order given by Eq.
4.1 and Eq. 4.2.

40

4.4. Distributed-Memory Computing

Algorithm 1 CPU implementation of the Neighbor Surface Integral - i.e., Inghbsurf

1: procedure ComputeNSI(LtsLayer,PreComputedData)
2: M ← LtsLayer.getClusterSize()
3: for m from 1 to M do in parallel
4: Qmlp ← LtsLayer.getDOFs(m)

5: A+,m
qp ← LtsLayer.getF luxSolver(m)

6: ElementInfo← LtsLayer.getElementInfo(m)
7: for j from 1 to 4 do
8: FaceKind← ElementInfo.getFaceKind(j)
9: if FaceKind == Regular or FaceKind == Periodic then

10: h, i← ElementInfo.getParameters(j)

11: R̃ilm, f
+,h
nm , Rjmt ← PreComputedData.getF luxMatrices(i, h, j)

12: mj ← ElementInfo.getNeighbourElementIndex(j)
13: T mj

tq ← LtsLayer.getIntegratedDOFs(mj)

14: Qmlp = Qmlp − R̃ilm · f
+,h
nm ·Rjmt · T

mj

tq · A
+,m
qp . Generated Code

15: end if
16: end for
17: done
18: end procedure

0 5 10 15 20 25
0

5

10

15

20

25

Core Count

Sp
ee
d-
up

measured ideal

Figure 4.1.: Strong-scaling parallel efficiency of SeisSol-proxy on a single AMD EPYC
7402 CPU. The result were obtained with: O = 6, double-precision, 96000
elements.

4.4. Distributed-Memory Computing

Simulations of extreme-scale complex earthquake events involve highly resolved 3D geome-
tries, which result in processing dozens or hundreds of millions of mesh elements per time
step. Such simulations can be performed only on distributed-memory machines which
overcome the memory capacity limits of modern single-board computers. Moreover, the
increased data processing power reduces time-to-solution.

41

4. HPC Concepts in SeisSol

0 1 2 3 4 5
Time-cluster, l

T
im

e
st
ep

w
id
th
,∆

t l

Figure 4.2.: Cluster-wise time stepping scheme with the update ratio equal to 2.

Distributed-memory computing for the ADER-DG and similar methods is not straightfor-
ward because such numerical schemes involve data dependencies between elements and
their neighbors (see Eq. 4.2). In such circumstances, data exchange between computational
resources connected over a network is unavoidable. Therefore, intelligent mesh partitioning
is required to reduce overheads caused by communication between computers (nodes).
It is also necessary to alter the sub-tasks scheduling and intelligently use asynchronous
communication between nodes to overlap the data exchange with computations in order to
achieve better utilization of computational resources. Moreover, computational work needs
to be more or less equally distributed between nodes to minimize their load imbalance
and, thus, to increase the efficiency of parallel computations.

In SeisSol, a unit of work is defined as a time-update of an element. The LTS scheme
implies that some elements must be updated more frequently than others. Given an
update ratio r and the total number of LTS time-clusters L (see Section 3.5), the update
frequency w of an element m belonging to cluster l is given by

wm = rL−l−1 (4.9)

It is useful to reason about update frequencies relative to the time step width of cluster
L− 1. In this context, frequency wm is equal to the amount of work required to update
an element within a time interval [t, t+∆tL−1] (see Fig. 4.2). This metric is independent
of the simulation time imposed by an earthquake model, can be easily evaluated, and thus
is helpful for partitioning.

An unstructured mesh can be considered as an undirected graph whose vertices are located
in the elements centers, and whose edges connect elements with their direct neighbors.
Such mesh representation allows one to find a distribution of elements between nodes by
solving the graph partitioning problem. The problem belongs the NP-hard complexity
class. SeisSol uses the ParMetis [60] library, which partitions a graph using a multilevel
k-way algorithm, whose complexity is linear with respect to the number of vertices in the

42

4.4. Distributed-Memory Computing

graph [59]. ParMetis operates on weighted graphs, i.e., when vertices and edges have their
own associated k weights, where k ∈ N+. The algorithm successively coarsens a graph
until only a small number of vertices can be trivially distributed between N parts. Then,
the algorithm successively performs a graph refinement until it reaches the original graph.
During both steps, the algorithm utilizes different heuristics to balance vertex weights
between partitions while minimizing the edge-cuts, determined by edge-weights, at the
same time.

In SeisSol, single-constraint graph partitioning is used. The update frequencies wm are
considered as vertex weights. This approach only aims to distribute the computational
work equally between computing resources. SeisSol does not impose any particular
constraints on vertex edges; thus, all edge-weights are equal to 1. As mentioned by Breuer,
Heinecke, and Bader in [12], “this approach is simple but proves efficiency at scale up to
100 million elements”.

Figure 4.3.: Example of time-clustering and mesh partitioning in SeisSol.

Fig. 4.3 shows an example of partitioning a mesh, consisting of approximately 2.6 million
elements, into 8 sub-domains. The mesh is locally refined around a single kinematic point
source located approximately in the middle of the domain. Partition 1 is shifted on the
left on purpose to show time-clustering within a sub-domain. The computational work
is almost equally distributed between sub-domains, according to Fig. 4.4. The maximal
work imbalance, computed based on the data shown in Fig. 4.4, is about 0.1%.

Fig. 4.4 shows the resultant partitioning of time-clusters between sub-domains. In contrast
to a good work balance, one can observe that elements of time-clusters are not equally
distributed. Moreover, some of them are missing in some sub-domains. This results in a
complex communication pattern between nodes.

43

4. HPC Concepts in SeisSol

0 0.5 1

0

1

2

3

4

5

6

7

Relative work

Pa
rit

io
n,
p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·105

0

1

2

3

4

5

6

7

Number of elements

Pa
rit

io
n,
p

cluster 0
cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6

Figure 4.4.: Relative distribution of work between 8 partitions of the mesh shown in
Fig. 4.3, on the left. The corresponding distribution of elements between
time-clusters in each sub-domain, on the right.

The data processing speed of compute-units may vary between nodes, e.g., due to differences
in processors clocking. In this context, even a distributed-memory CPU-based computer
can be considered as a heterogeneous system. SeisSol uses topological weights for mesh
partitioning to assign less work to slower nodes. The weights are computed by measuring
the elapsed time t̂p of SeisSol-proxy running on each compute-unit p. The proxy executes
the macro-kernels defined by Eq. 4.1 with a pre-defined number of elements. The
computational speed ŝp can be estimated as the inverse of t̂p. Therefore, a topological
weight ŵcp can be considered as a fraction of the total data processing speed of a
distributed-memory computer and can be written as

ŵcp =
ŝp∑P−1
i=0 ŝi

(4.10)

where P is the total number of the involved compute units.

In each partition p, SeisSol splits each LTS time-cluster l into three layers, namely: 1)
interior layer contains elements which are completely independent of communication;
2) ghost layer contains replicas of the face-neighboring elements residing in adjacent
partitions m (i.e., m 6= p); and 3) copy layer which contains elements, residing in partition

44

4.4. Distributed-Memory Computing

p, which have face-neighbors located in neighboring partitions. Elements in copy and ghost
layers are sorted with respect to the partition numbers with which they are supposed to
communicate. These results in so-called communication regions, which form contiguous
blocks of data to be exchanged between computational units.

An update of each layer can be treated as an LTS sub-task which needs to be intelligently
scheduled. The scheduling is determined dynamically at run-time according to the
LTS constraints discussed in Section 3.5. The processes exchange DOFs and their time
derivatives over regions inside copy and ghost layers using asynchronous point-to-point
communication. SeisSol prioritizes time-updates of copy layers. Firstly, SeisSol finds
ready-to-schedule copy layers, updates them, and asynchronously sends the required data
to the corresponding neighboring processes. Then, SeisSol processes ready-to-schedule
interior layers. In between each sub-step, SeisSol checks for incoming messages, and if one
arrives, SeisSol updates the corresponding ghost layer. SeisSol’s LTS sub-task scheduling
is fully described in [13].

The MPI standard contains a sub-set of functions dedicated to non-blocking point-to-point
communication between processes, e.g., MPI_Isend, MPI_Irecv, MPI_Test, MPI_Wait.
The standard refers to “non-blocking” as a procedure that may return before a triggered
operation completes, and before the user is allowed to reuse resources [86] e.g., message
buffers. However, it does not enforce any particular implementation on the background
processes, leaving it free for the library implementers. Some MPI libraries do not progress
or complete a non-blocking data exchange, initiated between two processes, until the test or
wait MPI functions are called by the user program. To circumvent this potential problem,
SeisSol provides an option to spawn an auxiliary thread to repeatedly call MPI_Test for
all ongoing point-to-point communications to progress the message exchange.

45

5. Graphical Processing Units

Traditionally, Central Processing Units (CPUs) were designed for a wide range of tasks,
including: operating system, database, audio and video processing, interactive applications,
real-time tasks, etc. Graphics Processing Units (GPUs) are specialized hardware, designed
for massively parallel computing, and were originally invented as co-processors to accelerate
graphics rendering and image processing. In the early days, offloading those tasks to GPUs
considerably freed the CPU up and allowed it to focus on processing other workloads at the
same time. Such approach was and still is quite important for accelerating Computer-Aided
Design applications and computer games. However, the unique design and architecture of
modern GPUs made them well-suited in other fields, such as scientific computing, machine
learning, and data analysis.

Section 5.1 explains details and the main operational principles of modern GPU hardware
components such as streaming multiprocessors, caches, global and shared memory, etc. In
Section 5.2, I list the most popular GPU programming models and discuss similarities
and differences between them. Section 5.3 briefly describes the mechanism involved in
submitting GPU tasks to a device and its possible overheads.

5.1. Architectures

Many GPUs are discrete - i.e., separate extension cards installed in a motherboard as
dedicated hardware components. Such GPUs have their own memory and thus separate
address spaces with respect to the CPU (also known as the host). GPUs are usually
connected to the host via high-speed data buses, for example, PCI Express, Nvidia NVLink,
AMD’s Infinity Fabric, etc. The buses are used for transferring data before, after, or
during data processing on GPUs (devices). The host is responsible for managing and
controlling GPU activities and events. The host communicates with a device via a GPU
driver. The driver is a part of an operating system, and provides a set of instructions
and interfaces that enable the operating system to control a device. Traditionally, the
interaction between a user program and the driver is non-blocking which allows the host
and a device to work asynchronously.

The GPU design resembles a vector processor because it is highly optimized for performing
the same operation on multiple data elements simultaneously. However, in contrast to
the SIMD, GPUs use multiple threads to execute the same instruction on multiple data
elements in parallel. The GPU hardware groups threads into so-called warps which are

47

5. Graphical Processing Units

getting executed together in lock-step. The warps are further grouped into Cooperative
Thread Arrays (CTAs), known as blocks according to the Nvidia terminology.

Modern GPUs consist of many light-weight cores which are composed into Streaming
Multiprocessors (SMs). A GPU core usually consists of arithmetic-logical and single-
precision floating-point units. Some GPU models also have one or several double-precision
floating-point and/or special function units per multiprocessor. Each SM contains its
own L1 and instruction caches, a register file, a warp scheduler, a dispatch and multiple
load/store units. Multiprocessors usually share the same L2 cache from which a memory
read/write request is forwarded to the global GPU memory in case of an L2 cache miss.

GPU execution units are pipelined. To keep them busy and maximize throughput, a
user program creates more threads than available GPU cores. This results in scheduling
multiple blocks and thus warps to the same SM. The hardware divides warps into two
groups, namely: 1) ready-to-execute warps and 2) pending ones. The pending warps
are typically waiting for a completion of a long latency instruction - e.g., data-read.
Once an active warp hits a long latency instruction, the GPU scheduler immediately
saves the state of the running warp in memory, selects a ready-to-execute warp, loads
its state from memory and kicks off its execution. The GPUs use registers for saving
threads’ states to make the context switching as fast as possible. Therefore, register
files of modern GPUs are quite large containing up to 64 thousands 32-bit registers
per multiprocessor. Having enough ready-to-execute warps in a queue allows the GPU
hardware to partially or completely hide the long memory access latencies. However,
the GPU hardware always puts restrictions on the maximum number of threads and
blocks which can be simultaneously scheduled to a multiprocessor. Therefore, one of
the programmer’s optimization goals is to find such a block size that will maximize the
number of ready-to-execute warps.

Figure 5.1.: Nvidia GP100 Streaming Multiprocessor. The image was drawn according to
the description given in [91].

As an example, Fig. 5.1 shows the Nvidia GP100 Streaming Multiprocessor which consists
of 2 compute-tiles. In total, the multiprocessor contains 64 CUDA cores, 32 double-
precision units, 16 load/store units and 16 special function units. A CUDA core is

48

5.1. Architectures

comprised of both single floating-point and arithmetic-logical units. Nvidia defines a warp
as 32 consecutive threads. Therefore, all threads in a warp are going to be scheduled and
executed either on the left or right compute-tile. This configuration of GP100 allows the
multiprocessor to complete 64 (or 32, in the case of double-precision) instructions per
cycle, assuming that the corresponding pipeline is completely full. Nvidia restricts the
maximum block size to 1024 threads, the maximum number of simultaneously scheduled
blocks per SM to 32, and the maximum simultaneously scheduled threads per SM to 2048
for the GP100 architecture.

Figure 5.2.: AMD CDNA Compute Unit. The image was drawn according to the descrip-
tion given in [27].

Fig. 5.2 depicts the design of AMD’s CDNA Compute Unit (CU), which serves a similar
purpose as Nvidia’s Streaming Multiprocessor. In contrast to Nvidia, AMD defines a
warp as 64 consecutive threads, known as a wavefront. The hardware schedules each
wavefront to one out of four 16-wide SIMD engines; thus, a warp instruction takes 4 (or
8) cycles for to complete. Therefore, a single CU can theoretically execute 64 (or 32)
instructions per cycle. Another distinct feature of AMD’s CU is a scalar execution unit
and its own register file. The unit is used for executing instructions which manipulate
the data shared by all threads in the same wavefront - e.g., computing a base address
for a load/store operation. AMD restricts the maximum block size to 1024 threads, the
maximum number of simultaneously scheduled blocks per CU to 40, and the maximum
simultaneously scheduled threads per CU to 2560 for the CDNA architecture.

Global memory of modern HPC GPUs is often made of several High Bandwidth Memory
(HBM) chips and placed together with the multiprocessors and L2 cache on the same
package which are connected through an interposer. A single HBM chip consists of several
DRAM dies stacked on top of each other which are vertically interconnected. Each die has
two channels where each one is connected to 16 memory banks. In total, a single HBM
chip provides the 1024-bit wide data interface with the transfer rate up to 1 or 2 GT/s
per pin (depending on the HBM generation). This high-density memory design results in
low power consumption and provides significantly higher bandwidth in comparison to the
traditional memory systems.

Each GPU thread distinguishes two spaces in global memory: 1) the one shared between
all threads and 2) the local space, where the thread’s private data is stored and cannot be
accessed by other threads. A programmer is generally advised not to use thread’s local
memory because it entails long-latency memory access. However, sometimes it happens

49

5. Graphical Processing Units

implicitly; for example, the compiler can use the local space to store intermediate results
which occupy too many registers - i.e., register spilling.

Figure 5.3.: High Bandwidth Memory architecture. The picture is taken from [73].

Memory access requests issued by a warp of threads are sent to the load/store units,
from where it goes to the L1 cache. The access is called coalesced if all threads within
a warp access data which fall within a single L1 data cache block. In this case, only a
single memory access request will be generated and sent to L2 cache in the absence of
the corresponding cache block. Modern GPUs also provide a scratchpad (also known as
shared) memory, which is usually implemented as a part of L1 cache and is used by a
CTA for data sharing or/and threads communication. It is a programmer’s responsibility
to explicitly load/store data and synchronize threads while working with shared memory.
This gives a programmer an additional degree of freedom which can be used for further
tuning and optimizations of GPU programs. This is important because accessing data
from closer on-chip memory usually results in lower latency and, thus, higher performance.
It is worth pointing out that L1 and L2 GPU caches are set-associative, whereas shared
memory behaves as a direct-mapped cache [1].

L1 caches and, thus, shared memory are usually built from 128-byte blocks which are
subdivided into four 32-byte sectors [1]. This sector size matches the DRAM atom size, i.e.,
the minimum data size, which can be served in a single memory access. Each block consists
of 32-bit entries spread across 32 banks, which allows a warp of threads to read/write
data in 1 (or 2) cycle in the case of a pipelined and coalesced memory access. A bank
conflict happens when several warp threads access the same bank using different memory
addresses. In this case, the access is serialized; thus, the request is served in multiple
cycles. However, simultaneous data reading from the same address results in a broadcast -
i.e., no serialization happens.

The GPU L1 caches are not coherent. Instead, they are usually implemented using the
write-through cache policy. This results in a scalable hardware design and also reduces
the hardware cost. This restricts threads from different blocks to directly exchange data
between each other because the hardware logic may schedule the blocks to different SMs.
The atomic operations through global memory can be used for synchronizing threads
running in different blocks. In this case, the L2 cache, which is unified between all SMs,

50

5.2. Programming models

can help to mitigate high costs of such operations because it usually implemented using
the write-back cache policy.

To ease the GPU programming regarding copying data between the host and device,
modern GPUs provide a unified virtual address space, also known as unified (managed)
memory. The operating system and the hardware work together to ensure data coherency
between two disjointed memory spaces. The implementation of this concept is based on
the page-fault mechanism. When a fault happens during data access on one side, the
operating system detects and invalidates the corresponding page on the other side and
automatically copies data between the CPU and GPU. As one can expect, performance
of the automatic data migration is lower in contrast to the explicit one (e.g., see [67]).
A programmer can utilize memory pre-fetching or provide memory location hints to the
driver in order to improve performance of the automatic data migration. However, there
are scenarios where severe performance degradations are not avoidable; allocating more
memory than available on a device, or accessing data from the same page from the CPU
and GPU at the same time will result in page thrashing. Nevertheless, the use of the
unified virtual address space is well-suited as the first step toward porting an existing
software application to heterogeneous systems.

5.2. Programming models

The host and device belong to different Instruction Set Architectures (ISAs). Thus, the
corresponding parts of the source code need to be identified, separated, compiled using
either different compilers or compiler backends, and finally linked together. A computer
program can be viewed as a set of global variables and functions at a low level regardless of
the syntactic sugar of various high-level programming languages. The device functions are
commonly called kernels. Some GPU programming models - e.g., CUDA, HIP - require
a programmer to manually mark all device kernels using some sort of attributes (also
known as decorators). The others - e.g., SYCL - hide this process using C++ classes and
templates, making the source code portable for a wide range of accelerators.

GPU architectures, even from the same vendor, can vary significantly from generation
to generation and thus their ISAs may not be forward- or backward-compatible. The
problem is solved by introducing a new level of indirection via some stable intermediate
code representations - e.g., Nvidia’s PTX, AMD’s IL, SPIR-V, etc. The intermediate
code then needs to be processed by, usually a closed-source, optimizing assembler which
emits the machine code for a target architecture. This step is usually delegated to a
corresponding GPU driver and can be done during a program execution or ahead-of-time.
The intermediate code can be generated by vendor-specific (e.g., nvcc, hipcc, DPC++) or
open-source compilers such as clang, gcc, etc.

CUDA is a programming model developed by Nvidia for programming Nvidia GPUs. It
stands for both a language, a runtime library, and an API, which aim to provide maximum
control over the hardware. CUDA is a proprietary technology; thus, it is not bound to any

51

5. Graphical Processing Units

standard. Therefore, it allows CUDA developers to quickly extend the model as needed to
help programmers to achieve high performance on Nvidia GPUs. The model also provide
a set of high-performance libraries with the industry adopted interfaces, for example,
cuBLAS, cuSPARSE, cuDNN, cuTENSOR, etc. User-friendly profiling tools, supplied as
a part of the CUDA toolkit, make it easy for programmers to identify and optimize hot
spots in their programs. The dominance of Nvidia hardware on the GPU market and
access to general-purpose GPU programming, even for consumer graphics cards, made
CUDA popular among programmers. Today, it is common to see the use of tuned CUDA
implementations as the baselines when comparing various algorithms implemented with
different parallel programming models. Nevertheless, CUDA lacks portability to GPUs
from other vendors, - e.g., AMD, Intel - which is its major issue.

In 2016, AMD released a C++ runtime API and a language extension called HIP to
address the portability issue between Nvidia and AMD GPUs. The API and the language
closely resemble CUDA regarding its syntax and functionality. This makes it easy for
experienced CUDA developers to switch to AMD’s ROCm software stack. HIP can be
viewed as a software bridge between Nvidia and AMD GPUs, or as an attempt to establish
a new GPU-centric programming standard based on the CUDA programming model.

OpenCL was one of the first parallel programming models, developed by the Kronos Group
and expressed as an open standard, which tried to address the portability issue in a broad
sense. The standard is based on a vendor-neutral approach to write high-performance code
that can run on a wide range of accelerators, including CPUs, GPUs and FPGAs. This is
achieved by generalizing and abstracting various computational devices and their memory
systems. While OpenCL can provide high performance and portability for certain types of
computations, it may not always be the most efficient for a given hardware configuration
or an application. Moreover, because of a very high level of abstraction and low-level
C interface, the OpenCL API is verbose, error-prone, and thus inconvenient for many
programmers. To address this issue, the Kronos Group released the SYCL standard, i.e.,
a royalty-free, cross-platform abstraction layer that builds on the underlying concepts,
portability and efficiency of OpenCL [63]. SYCL is based on the single-source approach
and built on top C++17, which considerably improves programming productivity. The
latest version of the standard (2020) introduced new features, making the model even more
powerful and flexible for programmers, e.g., a unified shared memory concept, reduction
algorithms, improved vectorization support, improved device selection mechanism. Some
hardware design companies - e.g., Intel - decided to establish SYCL as the main high-level
programming platform for their hardware.

Apart from OpenCL and SYCL, there were other attempts to address challenges related to
developing portable applications for heterogeneous computing systems, e.g., Kokkos and
RAJA developed at the Sandia National Laboratories and Lawrence Livermore National
Laboratory, respectively. Kokkos and RAJA are C++ libraries that provide abstractions
for expressing parallelism. While Kokkos abstracts a wide range of parallel computing
scenarios, including shared-memory parallelism, distributed-memory parallelism, and GPU
computing, Raja is focused on abstracting the shared-memory parallelism on CPUs and
GPUs.

52

5.3. Kernel Launching Mechanism

Another approach to provide portability for various heterogeneous computing systems is
through language extensions, e.g., OpenMP and OpenACC. Both OpenMP and OpenACC
are standards, which are based on pragma directives. Directives can be viewed as special
instructions that pass auxiliary information to the compiler about how to process or
interpret a follow-up statement. In most cases, programmers target for-loops for offloading,
which usually contain regular parallelism and can be nested. During static analysis, a
compiler decides how to map loop iterations to the execution units of the underlying
hardware and whether or not to copy data from the host to a device, and vice versa, before
and after loop execution. A programmer can influence the compiler’s decision-making
by providing additional, more specific directives. In contrast to OpenMP, OpenACC is
considered to be a descriptive model [26] - i.e., the model describes how computations
should be parallelized without enforcing how it should be done.

To summarize, there exist many ways to program GPUs. Some are more abstract and
thus more portable. Certain algorithms expressed with these models may not perform well
on some hardware configurations due to the absence of access to some hardware-specific
low-level features. Other vendor-specific models may result in high performance but entail
maintaining several versions of the same code - i.e., one per vendor - which puts extra
pressure on developers. By and large, it is difficult to say, in advance, which model is well
suited for a particular software application. Programmers are encouraged to try as many
models as possible and select the best one based on their software requirements.

5.3. Kernel Launching Mechanism

The term “kernel launching overheads” appears too often in this thesis, and thus, it must
be clarified. The term can be explained by examining the kernel launching mechanism.
In this work, the Heterogeneous System Architecture industry standard is used for this
purpose since it is publicly available and well-documented.

Like OpenCL, the HSA standard establishes the queue concept - i.e., the software interface
between the host and a device. In HSA, a queue is defined as runtime-allocated, user-level
accessible virtual memory of a certain size containing packets defined in the Architected
Queuing Language (AQL) [121]. A packet can belong to one of several AQL types - e.g.,
kernel dispatch packet, agent dispatch packet, or vendor-specific packet. All packet types
have a fixed and pre-defined binary format [38]. A user application can allocate a queue
object using an HSA-compatible runtime system. The system uses the kernel-mode driver
to initialize and register a queue with a packet processor. The processor is a part of a
device, and it is responsible for detecting and scheduling kernels. It reads packets from a
set of queues attached to the device, checks dependencies, and dispatches GPU tasks on
available compute units [121]. The queue’s virtual memory is a shared resource between
the host system and the packet processor.

A queue object maintains a so-called write index, which is opaque to a user. When a user
application wants to create a new packet to submit a new computational or service task

53

5. Graphical Processing Units

to a device, it requests the HSA runtime to provide the index. Internally, the runtime
atomically increments the index by the AQL packet size and returns the previous value of
the index back, to where the user application can place a new packet. The application
adjusts the given space according to the task, appropriately filling all necessary packet
fields. The fields include information about launch dimensions, address to the instruction
code, address to kernel arguments, completion detection type, etc. According to the
standard, memory for the kernel arguments must be allocated through the HSA runtime,
which returns a pointer to a special memory type region. This memory type is read-only
from the device’s perspective. The user application copies the kernel arguments to the
allocated memory space and assigns the pointer to the corresponding packet field. Once
it is done, the application notifies the packet processor by signaling the queue doorbell
through the runtime system. Once the signal is received, the packet processor starts
dispatching the newly arrived packet to the computer units of the associated device. In
contrast to other legacy systems (e.g., OpenCL), this design minimizes switching between
user-mode drivers, kernel-mode drivers, and the operating system [121].

The packet processor views the queue’s memory as a ring buffer, which has separate
memory locations defining the write and read state information [121]. The main goal of
the processor is to efficiently manage the queues on behalf of the device [121]. When a
task, described by the associated AQL packet, is completed on a device, the processor
signals back to the host, notifying it about the task completion.

The HSA standard only describes the main operational logic of the packet processor,
leaving implementation details to hardware vendors. For example, the AMD CDNA2
architecture primarily distributes the logic between several hardware components: 1)
the command processor and 2) asynchronous compute-engines. The command processor
receives AQL packets and transforms them into computational tasks [29]. The four
compute-engines consume the tasks by dispatching wavefronts to the compute units and
managing the submitted tasks.

The hardware components are usually designed to hide the latency of the kernel launch-
ing mechanism. For example, this can be achieved by pipelining or internal buffering,
implemented on a device at the hardware level. When a series of coarse-grained tasks
are submitted in a row to an idle device, the user application will experience a delay
approximately equal to the time of the first kernel launch. When some compute units
complete processing their sub-tasks, the hardware (e.g., asynchronous compute-engines)
is ready to make them busy again by assigning new ones from the same or a next task.
However, when the workloads of submitted tasks become too small, it becomes challenging
to completely hide the overheads. For example, the speed of the packet processor can
limit the device’s throughput. In this case, the compute units become idle and simply
wait for a new task to get dispatched, resulting in low device utilization.

54

6. Implementation of Elastic Wave
Propagation

SeisSol’s wave propagation solver is based on the ADER-DG method, which generates most
of the computational workload during an earthquake simulation. Thus, the computational
efficiency of the method greatly impacts the entire application’s performance. In contrast
to many other works dedicated to accelerating the DG method with GPUs, SeisSol’s
implementation of the method is tightly bundled with code generation, which is inherited
from its highly optimized CPU design. In the beginning, the code generation approach
significantly complicates and slows the GPU development process. But, in the end, it
opens doors for many optimization opportunities. This chapter contains and explains the
main contributions of this thesis.

The first and foremost step in optimizing applications for heterogeneous computing systems
is to peel off long-latency GPU service tasks from the main computational loop (e.g.,
allocations and deallocations of the device memory). Ideally, all required data must be
allocated and initialized on a device before entering the loop. In Section 6.1, I explain
how it was achieved.

In Section 6.2, I discuss possible ways to perform task decomposition for the ADER-
DG method. In SeisSol, the decomposition is mainly constrained by the adopted code
generator. The outcome of this discussion highly reassembles the approaches discussed in
other works. At the end of the section, I return to the data management and explain the
code changes made in SeisSol to support new task decomposition.

In Section 6.3, I focus on generating high-performance GPU kernels, which result from
discretizing the elastic wave propagation system of PDEs using the ADER-DG method.
The discussion starts with a more straightforward approach, which was historically easier
to implement - i.e., binary GEMM GPU kernels. Then, I describe a more advanced
approach, which is considered one of the major contributions of this work - i.e., fused
GEMM kernels. I discuss the advantages and disadvantages of both methods, compare
them, and reveal challenges faced during this study. In this work, the efficiency of the
generated kernels is shown on various HPC GPUs using the roofline model analysis. In
the end, I revisit the flux matrix decomposition macro-kernels (i.e., Eq. 4.3 and Eq. 4.4),
show the inefficiencies of their high-level implementations inherited from the original CPU
design, and propose new variants that perform better on GPUs.

In Section 6.4, I investigate the concurrent execution of GPU tasks using multiple device
streams and discuss some important implementation details. The section also shows how

55

6. Implementation of Elastic Wave Propagation

the proposed changes affect the performance of the proxy application under low, medium,
and high workloads.

In Section 6.5, I investigate SeisSol’s performance on distributed multi-GPU systems.
The experiments in this part of the study were performed using different variants of the
Layer Over Half-space (LOH.1) test scenario because this setup mainly involves only the
wave propagation solver. I start the section listing majorly known GPU programming
models regarding distributed multi-GPU systems and select the best-fitting one for SeisSol.
Then, I describe the impact of the MPI buffer placements (i.e., on the device, host, and
unified memory) on the strong scaling performance of the application. After that, I
investigate the graph-based execution model (i.e., CUDA Graphs) and its impact on
performance. Then, I demonstrate the influence of the LTS clustering on the strong
scaling performance of SeisSol and present a simple mathematical model which highlights
the main performance limiter. After that, I show how the LTS-specific mesh partitioning
algorithm must be extended to accommodate SeisSol’s execution on distributed-memory
environments subjected to limited memory resources per process. In the end of this section,
I present the weak scaling study of SeisSol conducted on the LUMI supercomputer.

In Section 6.6, I focus on the portability aspects of SeisSol’s wave propagation solver.
The code verification and convergence analysis are shown in Section 6.7. In Section 6.8, I
summarize the main outcomes of this part of the study and conclude the chapter.

Due to a large configuration space of SeisSol, the results presented in this chapter were
mainly obtained with the single-precision floating-point format, convergence order equal to
6, and LTS ratio equal to 2. This is done for convenience for comparing experiments shown
in different chapters of the thesis. The results presented in this and the next chapters were
obtained on the LUMI, Leonardo, and Selene supercomputers. At the moment of writing,
LUMI is the third fastest supercomputer in the world, Leonardo is fourth, and Selene is
ninth, according to the most recently published TOP5001 list. The reader can find the
hardware architecture details of each supercomputer mentioned above in Appendix A.1.

6.1. Memory Management

The GPU implementation of SeisSol is built on the assumption that all data required for
computations and management fit into the device’s global memory. This assumption is
based on the experience gained from the previous work on optimizing SeisSol for Intel’s
Xeon Phi co-processor [50], where 8 GB per device had already proven to be enough
to hold the data required for a typical production earthquake scenario. Today, modern
GPUs, for example, Nvidia A100 or AMD MI250x, are equipped with 40-128 GB of HBM2
onboard memory. Therefore, in this work, I allocate and initialize the necessary data on a
device during the last initialization steps of SeisSol. Further data transfers in SeisSol are
then mainly related to writing final and/or intermediate results to disks.

1 https://www.top500.org/lists/top500/2023/06/

56

https://www.top500.org/lists/top500/2023/06/

6.2. Task Decomposition for Massively Parallel Systems

In this work, I use unified memory for DOFs and their time derivatives. This memory type
was convenient at the beginning of the research - i.e., during the first attempts of porting
SeisSol to GPUs. It helped to gradually port region by region to GPUs while leaving
error-free computations on CPUs. This approach increased the productivity of the GPU
code development at its early stage because no explicit memory copy operations were
required. Today, it is still convenient to use unified memory for DOFs in some cases in
SeisSol - e.g., to perform some non-trivial I/O operations, such as writing data captured
by point receivers arbitrarily scattered within a computational domain. However, the
use of this type of memory entails some overheads, which, as shown in Section 6.5.1, can
degrade the performance of distributed multi-GPU systems. Therefore, in the future, it is
worth considering switching to regular device memory for storing DOFs and their time
derivatives; however, it may entail considerable code refactoring.

Like many software applications, SeisSol requires fast-access memory for storing temporary
data - i.e., intermediate results. These data are usually a product of computations within
or between macro-kernels. Traditionally, the stack portion of the program is used for
these purposes. This approach results in programming flexibility and zero overheads with
respect to memory allocation and deletion. Many heterogeneous systems do not support
stack allocation in the context of a program execution. Therefore, memory for storing
temporary data must be allocated dynamically on a device.

A naïve implementation of the aforementioned problem would result in frequent com-
munications with the device driver and, thus, long latency between computations. This
could be avoided by allocating all necessary memory only once - i.e., before entering
the main computational loop. However, this approach would require a comprehensive
program’s static analysis to calculate the minimum amount of memory needed for handling
intermediate results. Moreover, the analysis should also account for memory reuse inside
the generated code. Therefore, this pre-processing step should be a part of the compilation
process to provide programming flexibility.

In this work, this problem is solved differently; 1 GB of the device memory is allocated
and reserved at the beginning of SeisSol’s execution by default. The resource management
is delegated to a global data structure, which implements the LIFO policy - i.e., the stack.
This helps to preserve the new/delete semantics and, thus, programming flexibility while
avoiding long latency overheads because of simple pointer arithmetics. The 1GB limit
is usually enough for many production scenarios. If necessary, it can be changed via an
environment variable.

6.2. Task Decomposition for Massively Parallel Systems

The sub-task definition in the context of elastic wave propagation is determined in Section
4.3 - i.e., an execution of one or more tensor expressions defined by the macro-kernels for a
single mesh element. As discussed in Section 4.2, the YATeTo DSL is used to generate the
source code for each tensor expression. Sub-tasks can have different execution control flow

57

6. Implementation of Elastic Wave Propagation

paths relative to each other - e.g., due to the presence or absence of boundary conditions
or differences in numerical flux solvers between elements - making the task decomposition
irregular (see Algorithm 1).

The size of the largest matrix multiplication determines the maximal parallelism inside a
sub-task, which, according to Table 4.1, is too small for modern GPUs, which are built
from several thousands of lightweight cores. Therefore, it is better to map each sub-task
to a single SM to efficiently exploit data parallelism inside and between each SM. This
task decomposition is similar to the ones used in other works focused on implementing
and optimizing the DG method for GPUs - e.g., [66, 43, 104, 89, 39, 127, 41, 88, 16,
87, 122, 58, 7, 65, 126, 15]. Some authors (e.g., [41, 2, 58]) even proposed to combine
data processing of several mesh elements into one sub-task to better balance the GPU
occupancy and data movement.

Changes in control flows are managed by SeisSol because, as expected, YATeTo’s software
design is mesh agnostic. Therefore, a direct map of SeisSol’s mixed sub-task execution
model from CPUs to GPUs should contain both the generated code and the application
logic. This approach is complicated because 1) it requires copying many non-trivial
data structures to GPUs to implement branching, and 2) it becomes difficult to estimate
computational resources (e.g., the number of threads per block, the shared memory size,
etc.) required for optimal executions of thread blocks and, thus, optimal warp scheduling
because an optimal block configuration for one sub-task can be sub-optimal for another.

Considering the problems listed above, a GPU task should be defined at least as an
execution of a single tensor expression on multiple mesh elements. This completely solves
the first problem because the code branching is delegated to the host application. Moreover,
in this case, the task decomposition becomes regular and, thus, manageable regarding
finding an optimal thread block configuration (see Algorithm 2 as an example). As a
disadvantage, this approach splits each original CPU task into multiple ones. However,
new GPU tasks are data-independent and, thus, can be executed concurrently on multiple
GPU streams (see Section 6.4). Therefore, this task decomposition is chosen as the basis
for this work.

It is necessary to group the required data into batches to supply them to each GPU task.
The grouping is based on the control flow path to which a task belongs. This process
can be done once per simulation because SeisSol is based on the static adaptive mesh
refinement. Therefore, I introduce a new pre-processing step that records batches of
all tensor expression operands along each possible execution path inside each LTS time-
cluster layer during a dry-run of SeisSol. The batches are stored in 2-level hash tables and
managed by the corresponding time-cluster layers. As shown in Algorithm 2, a key of the
outer table encodes a branch condition inside a macro-kernel, and points to an entry that
stores batches of all operands required for the execution path. A C-structure implements
a key of the outer table. The structure contains four binary encoded fields: a macro-kernel
name, a kernel type, a local face number (see Fig. 3.4), and the relation number of a
neighboring element face. The first field is compulsory because it uniquely identifies a
macro-kernel. The rest can be omitted if it is not needed for a particular case. Usually,
the last two entries of the outer table key are used to record batches for macro-kernels

58

6.3. Code Generation

involved in the computations of fluxes or boundary conditions. Binary encoding enables
the logical AND operation and, thus, helps to embed conditional statements inside the
keys of the outer table. Keys of an inner table are integer encoded names of operands,
which substitute their symbolic counterparts.

Algorithm 2 GPU implementation of the Neighbor Surface Integral - i.e., Inghbsurf

1: procedure ComputeNSI(Device, LtsLayer, PreComputedData)
2: OuterTable← LtsLayer.getBatchTable()
3: M ← LtsLayer.getClusterSize()
4: for j from 1 to 4 do
5: for f from 1 to 48 do
6: condition = Condition(FaceKind :: Regular, FaceKind :: Periodic)
7: key ← Key(KenelName :: NeighborF lux, condition, j, f)
8: InnerTable← OuterTable[key]
9: if not InnerTable.empty() then . defines a GPU task

10: h← f mod 3
11: i← f mod 12
12: R̃ilm, f

+,h
nm , Rjmt ← PreComputedData.getF luxMatrices(i, h, j)

13: Q1:M
lp ← InnerTable[InnerKey :: DOFs]

14: T 1:M
tq ← InnerTable[InnerKey :: IntegratedDOFs]

15: A+,1:M
qp ← InnerTable[InnerKey :: FluxSolver]

16: Q1:M
lp = Q1:M

lp − R̃ilm · f
+,h
nm ·Rjmt · T 1:M

tq · A+,1:M
qp . Generated Code

17: end if
18: end for
19: end for
20: Device.wait()
21: end procedure

6.3. Code Generation

As mentioned in Section 4.2, the source code for each tensor expression is generated
using the YATeTo DSL in SeisSol. To preserve the overall software design (and, thus, its
advantages) and to adapt SeisSol for GPU computing environments, the language needs
to be extended to generate GPU code for the whole task - i.e., to operate on multiple
data elements at once. To achieve this, I expand the DSL capabilities to generate tensor
expressions for batched data. In my implementation, a batch can be given 1) as an array
of pointers, 2) as a base pointer to stridden data, or 3) as a pointer to a single data
element, for example, a pointer to a mass or stiffness matrix. A stride between adjacent
data elements can be deduced from a tensor description given as an input to YATeTo.

A tensor expression consists of a sequence of binary tensor operations. Including an entire
sequence into a single GPU kernel is desirable to obtain a high arithmetic intensity of the

59

6. Implementation of Elastic Wave Propagation

generated code. However, it was challenging to achieve that, in practice, during the first
attempt to port SeisSol to GPUs because 1) the required software changes were significant
for the CPU-centric DSL, 2) the whole software requirements for a new version of YATeTo
were not entirely determined, and 3) the outcome - i.e., application’s GPU performance -
was still to be discovered. In Section 6.2, I mentioned that finding an optimal thread block
configuration was more manageable for a batched tensor expression because it resulted in
a regular task decomposition. However, it may involve a complex analysis during code
generation to account for the reuse of resources between operations - e.g., registers and
shared memory. Moreover, long GPU kernels tend to result in register spilling, which can
only be determined after compilation. To avoid spilling in favor of performance, a kernel
may require splitting into multiple parts. Finding optimal split locations may lead to a
large configuration space for an optimization problem that needs to be combined with
auto-benchmarking.

The first step of this work is based on generating binary batched operations (see Section
6.3.1), which helps to avoid the problems mentioned above. In Section 6.3.2, I extend
this approach by generating fused batched operations to obtain higher GPU performance.
Because this work is constrained to elastic wave propagation, which operates on low-rank
tensors (i.e., less or equal to 2), I restrict the code generation to only GEMMs and linear
combinations of matrices. In YATeTo, I implemented the GPU code generation through
backends - i.e., GemmForge2 and ChainForge3 - which are the key contributions of this
work. This approach follows the single responsibility principle and results in reusing the
contributions of Uphoff and Bader from [116] - e.g., EQSPP, operations ordering, etc.

6.3.1. GemmForge

In this work, a batched GEMM operation is defined as

Ce = α ·Op(Ad) ·Op(Bf) + β · Ce (6.1)

where e is a batch index; d and f are batch indices equal to either 1 or e; Ce ∈ Rm×n;
Ad ∈ Rm×k; Bf ∈ Rk×n; Op(X) can be either X or XT ; α and β are scalar values. Indices
d and f cannot be equal to 1 at the same time if e 6= 1 - i.e., at least one of them must be
equal to e in this case. Following the discussion given in Section 4.1, the column-major
matrix layout is only considered in this work.

Traditionally, hardware vendors supply their products with the software developing toolkits
containing optimized and highly tuned HPC libraries, which include many commonly
used scientific computing algorithms. For example, CUTLASS, MAGMA, and cuBLAS
are extended implementations of the BLAS library designed by Nvidia to provide the full
advantage of their GPUs. These and similar libraries (e.g., rocBLAS) support batched
computations and usually deliver performance close to the peak. However, as shown in
[83] and [35], some custom implementations can result in higher performance if some

2 https://github.com/SeisSol/gemmforge
3 https://github.com/SeisSol/chainforge

60

https://github.com/SeisSol/gemmforge
https://github.com/SeisSol/chainforge

6.3. Code Generation

Listing 6.1: Example of operands descriptions in GemmForge.

1 mat_a = DenseMatrix (num_rows=64,
2 num_cols=56,
3 address ing=" none " ,
4 bbox=[0 , 0 , 56 , 56])
5

6 mat_b = DenseMatrix (num_rows=64,
7 num_cols=9,
8 address ing=" s t r i d ed " ,
9 bbox=[0 , 0 , 56 , 9])

10

11 mat_c = DenseMatrix (num_rows=64,
12 num_cols=9,
13 bbox=[0 , 0 , 56 , 9] ,
14 address ing=" s t r i d ed ")
15

16 vm = vm_factory (backend=" cuda " ,
17 arch="sm_70" ,
18 fp_type= ' f l o a t ')
19

20 gen = GemmGenerator(vm)
21 gen . set (False , False , mat_a , mat_b, mat_c , alpha =1.1 , beta =1.1)
22 gen . generate ()

specific information - e.g., matrix structures or sizes - is known at compile time. To
test whether that was applicable to the ADER-DG method in the context of SeisSol,
I developed GemmForge - i.e., a Python library callable from YATeTo during the code
generation phase.

GemmForge’s input consists of operands descriptions required for the code generation. As
shown in Listing 6.1, each matrix is described using 1) the number of rows and columns, 2)
the formal size (see Section 4.2) specified as a bounding box, and 3) the batch addressing.
The batch addressing specifies how a batch of data will be passed to a generated kernel at
run-time: as an array of pointers, as a base pointer to stridden matrices, or as a pointer
to a single matrix. This results in a more flexible and convenient interface to the batched
GEMM kernels in contrast to libraries like cuBLAS or rocBLAS, where addressing of all
operands must belong to the same type. GemmForge also generates kernel launchers that
perform task decomposition - i.e., computing optimal thread block configurations based
on the estimated shared memory consumption and number of registers per thread.

Inspired by [17], the main GEMM logic of GemmForge is based on performing a single
matrix multiplication as a sum of outer products. Two or three consecutive warps, called
a team, are required per multiplication for matrices typical for the ADER-DG method (see
Table 4.1). The team size, ma, equals the number of rows of the first operand aligned to
the warp length. Any load or store operation of columns of A and C by the first m threads
of a team, called active threads, leads to coalesced memory access because of the adopted
column-major matrix layout. Each active thread allocates an array of registers of size
n, initialized with zeros, to hold the intermediate results of a matrix product. If Op(Ad)

61

6. Implementation of Elastic Wave Propagation

equals ATd , matrix A is loaded into shared memory using the transposition on-the-fly. In
this case, the matrix is padded with zeros to avoid shared memory bank conflicts.

During each iteration of the algorithm, an active thread loads a corresponding element of
a matrix A column from global device memory to a free register and computes n partial
updates using a row of matrix B. The matrix product is complete after n steps but
distributed row-wise between register arrays of active threads. Thus, n additional steps
are required to move the data from the register file to the destination, during which scaling
by α and β is performed. The algorithm is illustrated in Fig. 6.1.

Figure 6.1.: Matrix multiplication scheme in GemmForge - i.e., GEMM as a sum of parallel
outer products. Left: Coalesced memory read-access of matrix A. Right:
Work of a single active GPU thread per iteration.

In this algorithm, all active threads must simultaneously load the same elements of a
row of matrix B during each iteration. In [30], I propose to pre-load matrix B to shared
memory at the beginning of the kernel execution to avoid un-coalesced memory access
from global memory. In this case, no memory access serialization occurs because all
threads read data from the same memory address and, thus, from the same shared memory
bank. I will refer to this approach as Type-1.

GemmForge can generate a block of threads for several teams - i.e., for multiple matrix
operations per block - which may increase the number of ready-to-schedule warps per SM.
Therefore, a block can be two-dimensional if there are enough run-time resources. Given
matrix descriptions, the required amount of shared memory can be evaluated precisely,
whereas the exact number of registers per thread can be known only after compilation.
In GemmForge, I estimate the latter using a heuristic - i.e., a sum of the register array
length required for a matrix multiplication and an empirically derived constant specific
for each supported GPU model. The shared memory size and the register count are
combined with the hardware limits (see Section 5.1) to obtain an optimal number of
matrix multiplications per block.

62

6.3. Code Generation

Figure 6.2.: Example of the shared memory loading strategies implemented in GemmForge.
On the left, the exact strategy is chosen because it results in 24 warp-load
operations (versus 27) and stores 480 matrix elements in shared memory
(versus 864). On the right, GemmForge selects the extended strategy because
it results in only 27 warp-load operations (versus 48) despite consuming extra
shared memory space for 48 padded matrix elements.

GemmForge implements two strategies for loading matrices to shared memory, called exact
and extended. While selecting a strategy, the main objective is to generate code with the
least coalesced load operations using the maximum number of consecutive threads, which
aims at minimizing latency. A particular choice depends on a formal matrix size and its
padding. The exact strategy generates the code that loads only the bounding box of a
matrix in a column-by-column manner. The extended strategy loads a matrix as it is -
i.e., including padded rows. The selection logic is shown in Fig. 6.2.

Listing 6.2 shows the code generated according to the description given in Listing 6.1. In
line 6, all thread teams compute the batch indices on which they will operate. In lines
11-13, each thread team selects the associated A, B, and C matrices using its batched
index and the addressing type. GemmForge allows a user to optionally specify an extra
matrix offset. This can be convenient in some scenarios when only a few continuous
matrix columns are required for an operation (e.g., only velocity components of Qlp)
because an existing batch can be reused. The generated kernel also provides an option
to specify a batch mask, which can be computed in advance based on some conditions
known at run-time. This results in enabling/disabling specific batch indices - i.e., lines
8-10. The register and shared memory allocations are shown in lines 14 and 15. Lines
18-28 show the process of loading matrix B to shared memory. In this case, the entire
matrix, including the padded rows, is loaded to shared memory in 9 interactions using 64
threads. The matrix multiplication is performed between lines 32 and 43, which follows
the store operation shown between lines 46 and 54. The thread masks are used in both
cases to enable the first 56 threads of a team - i.e., active threads.

As can be seen from Listing 6.2, all loops inside the kernel are completely unrolled. This
results in a high number of machine instructions and may create pressure on the instruction
cache. However, at the same time, this approach creates many opportunities for better

63

6. Implementation of Elastic Wave Propagation

Listing 6.2: Generated batched GEMM kernel (56x56x9) for Nvidia sm70 model according
to the description given in Listing 6.1.

1 __global__ void __launch_bounds__(64)
2 kernel_sgemm(const float ∗ A, int A_extraOffset ,
3 const float ∗ B, int B_extraOffset ,
4 f loat ∗ C, int C_extraOffset ,
5 unsigned numElements , unsigned∗ f l a g s) {
6 unsigned batchID = (threadIdx . y + blockDim . y ∗ blockIdx . x) ;
7 i f (batchID < numElements) {
8 bool isFlagsProvided = (f l a g s != nul lptr) ;
9 bool allowed = isFlagsProvided ? static_cast<bool>(f l a g s [batchID]) : true ;

10 i f (allowed) {
11 const float ∗ const __restrict__ glb_A = &A[A_extraOffset] ;
12 const float ∗ const __restrict__ glb_B = &B[batchID ∗ 576 + B_extraOffset] ;
13 f loat ∗ const __restrict__ glb_C = &C[batchID ∗ 576 + C_extraOffset] ;
14 f loat reg0 [9] = {0.0 f , 0 .0 f , 0 .0 f , 0 .0 f , 0 .0 f , 0 .0 f , 0 .0 f , 0 .0 f , 0 .0 f } ;
15 __shared__ __align__(8) f loat totalShrMem [5 6 8] ;
16 f loat ∗ localShrMem0 = &totalShrMem [568 ∗ threadIdx . y] ;
17 f loat ∗ shrRegion0 = &localShrMem0 [0] ;
18
19 {
20 // load B to shared memory
21 #pragma unro l l
22 for (int i = 0; i < 8; ++i) {
23 shrRegion0 [threadIdx . x + i ∗ 64] = glb_B [threadIdx . x + i ∗ 6 4] ;
24 }
25 i f (threadIdx . x < 56) {
26 shrRegion0 [threadIdx . x + 512] = glb_B [threadIdx . x + 512] ;
27 }
28 }
29 __syncthreads () ;
30
31 // perform GEMM
32 i f (threadIdx . x < 56) {
33 f loat value ;
34
35 #pragma unro l l
36 for (int k = 0; k < 56; ++k) {
37 value = glb_A [threadIdx . x + k ∗ 6 4] ;
38
39 #pragma unro l l
40 for (int n = 0; n < 9; ++n) {
41 reg0 [n] += value ∗ shrRegion0 [k + 64 ∗ n] ;
42 }
43 }
44 }
45
46 // store r e s u l t s
47 i f (threadIdx . x < 56) {
48 #pragma unro l l
49 for (int n = 0; n < 9; ++n) {
50 glb_C [threadIdx . x + 64 ∗ n] = 1.1 f ∗ reg0 [n]
51 + 1.1 f ∗ glb_C [threadIdx . x + 64 ∗ n] ;
52 }
53 }
54 }
55 }
56 }

instruction scheduling inside the kernel, which GemmForge delegates to compiler backends
of nvcc, amdclang, etc.

64

6.3. Code Generation

0 1 2 3 4 5 6 7 8

Performance, SP-TFLOP/s

Nvidia V100-PCIE-32GB AMD MI100

Figure 6.3.: Performance of the GEMM kernel generated according to Listing 6.1 on Nvidia
and AMD GPUs using CUDA-11.5 and ROCm-5.4, respectively.

In [30], the roofline model analysis was used to show that the kernels generated by
GemmForge resulted in close to the maximum performance on Nvidia V100-SXM2 GPU
(approximately 94%), but were memory-bound and thus were limited by the global memory
bandwidth. It was determined that an operand - i.e., matrix A or B - would reside in
L2 cache if it was the same for the entire batched operation. In this case, the arithmetic
intensity of a kernel substantially increases. The work also compared the performance
of generated kernels against their cuBLAS counterparts, where the former resulted in
approximately 2.5 speed–up. It is worth pointing out that the ADER-DG method, applied
to the elastic wave propagation problem, results in multiplications of small matrices (see
Table 4.1). Thus, in this case, the use of special matrix multiplication hardware units (i.e.,
Nvidia’s Tensor Cores and AMD’s matrix cores) may not necessarily improve performance
because the amount of data is not enough to completely saturate the hardware units.
Moreover, special matrix instructions will add extra latency, particularly on modern
architectures, which may negatively affect performance.

GemmForge has been extended to generate CUDA, HIP and SYCL kernels since the
publication of work [30]. The original, template-based approach was substituted with the
instruction-based one; GemmForge defines a set of virtual instructions operating on the
matrix data type - e.g., loading a matrix from global to shared memory, storing a matrix
from registers to global memory, GEMM, etc. The new approach adds programming
flexibility once combined with the Builder and Factory design patterns. For example,
this helped to accommodate two GEMM algorithms in the current version of GemmForge
(0.0.207) - i.e., Type-1 and Type-2. The second algorithm (Type-2) is based on shuffle
instructions and aims to minimize shared memory consumption. Each warp of a team loads
a part of a matrix B row to registers, and at each iteration of the n-loop, a corresponding
thread broadcasts its value to others. Loading tiles of matrix B results in un-coalesced
memory access (if Op(B) equals B) due to the adopted column-major matrix layout.
However, this GEMM implementation assumes that loads of subsequent rows of matrix
B will result in L1 hits - i.e., the corresponding cache lines will stay in L1 cache. The
Factory method helps to encompass the empirical findings of this study regarding the
algorithm selection for a concrete device architecture. For example, Type-1 is well-suited
for Nvidia and AMD GPUs, while Type-2 results in better performance on Intel Ponte
Vecchio GPUs, which was determined during a preliminary study.

65

6. Implementation of Elastic Wave Propagation

0.00 0.05 0.10 0.15 0.20
Performance, SP-TFLOP/s

Nvidia V100-PCIE-32GB AMD MI100

Figure 6.4.: Performance of the generated linear matrix combination kernel on Nvidia and
AMD GPUs using CUDA-11.5 and ROCm-5.4, respectively.

Fig. 6.3 shows the performance of the kernel generated according to Listing 6.1. As
can be seen, both GPUs demonstrate similar performance. However, the global memory
bandwidth measured on MI100 GPU is approximately 32% higher than the one obtained
on V100. Considering that the operation intensity is the same in both experiments, one
may expect the kernel to perform better on MI100 - i.e., reaching about 8 SP-TFLOP/s.
It is difficult to determine the exact reason for the observed behavior due to the absence
of a unified profiling tool for AMD and Nvidia GPUs. However, I suspect that the
kernel’s performance on MI100 is mainly limited due to a relatively high L2 cache latency
which cannot be entirely overlapped by n interactions of the inner loop. An attempt to
software-prefetch one column of matrix A in advance did not help to improve performance
on MI100; thus, a better GEMM algorithm for AMD GPUs is yet to find.

A linear combinations of matrices in GemmForge is given by

Be = α ·Ae +Be (6.2)

where e is a batch index; Ae, Be ∈ Rm×n; and α, ∈ R.

It can be viewed as a stridden variant of the SAXPY operation. Therefore, the performance
of this kernel type is mainly limited by the global memory bandwidth. GemmForge
generates the code which performs each batch operation column-wise - i.e., using a team
of threads equal to the column size of a matrix. Like the GEMM algorithm, thread blocks
can be two-dimensional; thus, a single block can handle multiple batch operations. Each
active thread executes 2 arithmetic operations per 3 memory accesses. Therefore, the
arithmetic intensities of these kernels are bound to 1/6 and 1/12 regarding single- and
double-precision floating-point format, respectively.

Fig. 6.4 depicts the performance of the kernel generated according to Eq. 6.2 using
m = 56 and n = 9. As before, the results were obtained on MI100 and V100 GPUs. The
difference in performance strongly correlates with the measured global memory bandwidth
of the GPUs - i.e., ≈ 1021 GB/s and ≈ 770 GB/s on MI100 and V100, respectively.
The obtained results are close to the roofline model outline, reaching 86% and 95% of
the maximal performance of MI100 and V100 GPUs for the given arithmetic intensity,
respectively.

66

6.3. Code Generation

6.3.2. ChainForge

The task decomposition proposed in Section 6.3.1 - i.e., at the level of binary batched
operations - entails redundant data round trips between global device memory and compute
units. This is caused by storing and loading intermediate results between subsequent
data-dependent operations. Fusion of such GPU kernels results in holding intermediate
results in low-latency memory - e.g., registers or shared memory. This approach eliminates
redundant data movements and, thus, increases the arithmetic intensity of SeisSol.

Automatic fusion of GPU kernels is a known optimization technique used for accelerating
many scientific (e.g., [36, 118, 37]) and deep learning applications (e.g., [18, 77]), and is
always bound to some compiler technologies. Aggregating knowledge from other studies
(e.g., [119, 75]), I can formulate three distinct reasons for fusing GPU kernels: (1) to
achieve better instruction latency hiding by fusing two data-independent kernels that
require different kinds of GPU resources; (2) to eliminate intermediate data round trips by
fusing neighboring data-depended kernels; (3) to reduce energy consumption and thus to
improve GPU power efficiency. Reason (2) is the most popular because many applications
are memory-bound.

In general, an aggressive kernel fusion policy may worsen GPU performance because
fused kernels may require too many run-time resources (e.g., registers per thread, shared
memory per block, etc.) leading to low occupancy. All works listed above stick to the most
generalized approach based on building data dependency graphs from computations, which
are used to find candidates for fusion. This typically leads to many possible combinations.
The algorithms for finding the best substitution graph are different and can be based on
either some rules [18, 77], or empirical searches [36], or exhaustive searches coupled with
automatic benchmarking [75] and performance models for pruning search spaces [37], or
dynamic programming [119].

In SeisSol, the ASTs generated by YATeTo can be used as dependency graphs. As
mentioned in Section 4.1, SeisSol’s macro-kernels mainly consist of sequences of GEMM
operations in the context of elastic wave propagation. Therefore, I consider a greedy
approach - i.e., fusing the longest sequence of batched GEMM kernels without splitting
- because the run-time resources - e.g., shared memory - can be intelligently reused.
Moreover, in contrast to the other works, I also exploit the associative property of matrix
multiplications to find an optimal ordering of GEMMs within fused kernels. My approach
simplifies requirements for code generation. Below, I provide a list of problems that I
faced and had to address while working on kernels fusion in SeisSol.

Problem 1: One needs to find an efficient matrix-matrix multiplication template that can
be used as a high-performance micro-kernel. Here, I can reuse some ideas from GemmForge
- i.e., implementing a matrix multiplication as a sum of parallel outer products (see Section
6.3.1, the Type-1 algorithm).

Problem 2: A sufficient number of threads per block and the maximal register array
length must be found to generate an efficient code for a fused matrix-multiplication chain.

67

6. Implementation of Elastic Wave Propagation

The data can be estimated during an initial analysis while traversing all GEMM operations
within a chain. The largest column size within a chain determines the number of warps
required for a thread block, whereas the maximal contraction length defines the register
array size needed for a fused kernel. It is worth noting that some intermediate operations
may require fewer threads than allocated. In this case, redundant threads need to be
disabled by masking.

Problem 3: Multiple operands (matrices) may need to reside in shared memory simulta-
neously. This can be a result of a specific matrix multiplication order and/or required
transpositions of operands within a chain. Therefore, it is necessary to find an algorithm
that can estimate and reserve enough shared memory per thread block. Moreover, the
reserved memory should be split into blocks to/from where multiple operands can be
safely written/read, thus preventing potential race conditions. Additionally, the algorithm
should minimize the overall shared memory consumption to avoid scheduling fewer blocks
per SM than allowed due to hitting the hardware limits (see Section 5.1). This can be
achieved by reusing some memory blocks several times for different operands during the
“lifetime” of a fused kernel.

Problem 4: Some computations involve data stored in shared memory and, thus, must be
preceded by thread synchronization instructions, which should be automatically inserted
into the generated code. A naïve implementation could be quite conservative - i.e.,
inserting synchronizations before and after each read/write access to each shared memory
block. However, an intelligent algorithm should insert the instructions only where they
are practically needed.

Problem 5: Chains of matrix multiplications must be automatically identified within
the ADER-DG method. In general, this may require some context-free grammar, which
will define the structure and rules of a language that will be able to recognize subsequent
matrix multiplications within a tensor expression. In SeisSol, this can be achieved within
the existing code generation workflow - i.e., in YATeTo.

Problem 6: In YATeTo, the strength reduction step is designed to find an optimal order
of matrix multiplications inside a chain for a scalar processor. The algorithm may require
some adaptation for the SIMT execution model. Moreover, the algorithm should be aware
that the resources of a thread block (i.e., the number of threads, shared memory, and
registers) are allocated just before a kernel invocation and cannot be re-configured at
run-time.

As a contribution to this part of the work, I developed ChainForge - i.e., an open-source
Python library intended to be used as one of YATeTo’s backends - which addresses all
problems mentioned above. In the following, I discuss some important implementation
details, starting from Problem 3 onward.

68

6.3. Code Generation

Problem 3: Shared memory optimization

The optimal distribution of limited memory resources (e.g., registers) is a well-studied
problem in compiler design. It is solved as a variant of the graph coloring problem [3].
The key difference between the register assignment and the problem considered in this
study is that, in the former, the number of registers (colors) is strictly given and cannot
be increased if necessary. Register spilling occurs when the number of required colors
exceeds the number of available hardware registers. In my case, the number of shared
memory blocks can be freely adjusted as needed. Using the Liveness analysis [3], the
number can be obtained by counting how many blocks must live simultaneously. This will
determine the minimum number of blocks (colors) which, in my case, will prevent spilling
data from shared to global memory.

The register allocation and Liveness analysis algorithms operate on some low-level In-
termediate Representation (IR) of the code, which must be designed for ChainForge to
solve the problem. In my case, instructions primarily operate on matrices and arrays of
registers, which can be represented as variables. Apart from auxiliary instructions, the
most relevant ones for solving the allocation problem are 1) load/store to/from shared
memory from/to global memory, 2) store to shared memory from arrays of registers 3)
GEMM operations. From the Liveness analysis perspective, 1) and 2) populate a so-called
kill set, whereas GEMM operands are responsible for gen set.

In the following, I explain the details of my implementation using an example of a matrix
multiplications chain with some imposed evaluation order (see Eq. 6.3).

Ee =
((
Ae ·Be

)
·
(
Ce ·Be

))
·De (6.3)

where e is a batch operation index; Ee, Ae, Ce, De ∈ R32×12; and Be ∈ R12×32.

According to the Type-1 GEMM algorithm, matrices Ae and Ce will reside in global
memory, while matrices Be and De will be pre-loaded to shared memory. Intermediate
results (T 0

e = Ae ·Be, T 1
e = Ce ·Be, and T 2

e = T 1
e ·T 2

e) generated during a kernel execution
will also reside in shared memory, which prevents storing and loading them to/from global
memory. Fig. 6.3 shows a snippet of the resultant IR code; the graph coloring outcome
and the operands’ assignment to shared memory blocks are shown in Fig. 6.5. The block
size can be determined using Eq. 6.4 since there are no lifetime conflicts between operands
within a shared memory block.

|Bi| = max
(
|M1|, |M2|, . . . , |Mn|

)
(6.4)

where Bi is the i-th block of shared memory; Mj | 1 ≤ j ≤ n are matrices assigned to Bi;
and | · | represents the size of a matrix or a block.

Considering the single-precision floating-point format, this approach consumes only 8192
bytes of shared memory per thread block. This is approximately 1.9 times less than the
naïve implementation, which stores each matrix in a dedicated shared memory block - i.e.,
no shared memory reuse. It reduces the overall shared memory consumption per block,

69

6. Implementation of Elastic Wave Propagation

Listing 6.3: Low-level Intermediate Representation (IR) of Eq. 6.3 in ChainForge. The IR
instructions are shown using the bold dark green font; the register array - the
bold dark blue font; shared memory - the bold dark red font; the operands
residing in global memory - the bold light blue font; the operands residing in
shared memory - the normal black font prefixed with “%” symbol.

1 %0 = load_g2s shrmem, B;
2 regs = gemm A, %0;
3 %1 = store_r2s shrmem, regs ;
4 clear_regs regs ;
5 regs = gemm C, %0;
6 %2 = store_r2s shrmem, regs ;
7 clear_regs regs ;
8 regs = gemm %1, %2;
9 %3 = store_r2s shrmem, regs ;

10 clear_regs regs ;
11 %4 = load_g2s shrmem, D;
12 regs = gemm %3, %4;
13 E = store_r2g regs ;

B

T0 T1

T2

D Block 0
B (%0)
T1 (%2)
D (%4)

Block 1
T0 (%1)
T2 (%3)

Figure 6.5.: Graph coloring and the operands’ assignment to shared memory blocks for
Eq. 6.3.

which may result in scheduling more thread blocks per SM and, thus, may increase the
number of ready-to-schedule warps.

Another important aspect, which is worth mentioning, is that matrices move along the
memory hierarchy during a kernel execution, starting from global memory and going up
to registers. Therefore, each variable needs to be augmented with an attribute describing
the current level at which the associated matrix resides at a given time. In ChainForge,
scoping and nested symbol tables are used to track changes in the locations of all operands
between the levels. Because of generating C-like source code, each operand’s symbolic
name, which is bound to a specific matrix, must be changed at each memory hierarchy
level. Therefore, instead of variable names, descriptions of matrices are used as the keys
because they uniquely identify operands between multiple scopes.

The input to the code generator is given as a list of GEMM operations. Each operation in
the list contains descriptions of its operands. In ChainForge, a batched matrix is described
by: 1) the number of columns and rows, 2) the formal matrix size, given as a bounding
box, and 3) the addressing. Descriptions of intermediate results are deduced by analyzing
the corresponding GEMM operations. The initial symbolic names are assigned to all

70

6.3. Code Generation

matrices at the beginning of the code generation process. Matrices explicitly mentioned
in the input are labeled as “in global”; the deduced ones - i.e., intermediate results - are
marked as “in registers” because of their initial location within the memory hierarchy.

Problem 4: Threads synchronization

As mentioned, the code generator must prevent threads from simultaneous read/write
access to the same memory address. This requires inserting block-level synchronizations
into the correct places. A conservative, naïve approach would result in inserting synchro-
nizations before and after each use of shared memory, which could harm the performance
of a generated code.

Considering the example given in Fig. 6.3, the naïve approach would insert SyncThreads4

instructions before and after instruction 2. A more intelligent algorithm would recognize
that instruction 2 operates on shared memory of block 1, whereas the next GEMM
operation uses data only from block 0. Instruction 5 moves the intermediate result
(T 1
e = Ce · Be) from registers to block 0 and thus must follow synchronization. This

ensures that all threads in a block have finished reading data from block 0 while executing
instruction 4. Therefore, synchronizations surrounding instruction 2, imposed by the naïve
approach, become redundant and thus can be removed from the code.

To achieve the desirable result, I implemented a Data Flow Analysis (DFA), which requires
three forward passes during the optimization stage of ChainForge. The first pass removes
all previously inserted instructions of the naïve algorithm. While scanning IR, the second
pass appends a list of variables written to shared memory. If a gemm instruction is
encountered during the scan and one of its operands is in the list, then a SyncThreads
instruction is inserted before the gemm, and the variable list gets emptied. The meaning
of the second pass is to guarantee that all necessary synchronizations are performed before
executing a gemm instruction.

The purpose of the third pass is to ensure that all read operations are completed before
the next write operation to the same shared memory block occurs. This is implemented
as follows. The pass keeps track of a boolean list while scanning IR. The list size equals
the number of shared memory blocks. Here, the True value means that the corresponding
block requires synchronization before the next use. The pass starts with initializing all list
elements to False. Whenever a gemm instruction is encountered, the pass checks whether
any of its operands are labeled as “in shared”. If yes, it assigns True to the corresponding
item of the list and continues scanning the intermediate code. If a SyncThreads instruction
is encountered, which was inserted during the second pass, then the pass simply assigns
False to all list elements without any instruction manipulations, as in the previous case.
If a write operation to shared memory is encountered, the pass checks whether the
destination shared memory block has already been marked with the True value. If yes, a

4 italic font refers to particular instructions of ChainForge IR in this sub-section.

71

6. Implementation of Elastic Wave Propagation

Initial AST
=

Qlm +

Bli · Cik ·Dkp · EpmQlm

Strength Reduction
=

Qlm +

GEMM: T 2
lm

GEMM: T 0
lk

Bli Cik

GEMM: T 1
km

Dkp Epm

Qlm

Linearized IR
0: GEMM(Bli, Cik, T

0
lk, α = 1.0, β = 0.0);

1: GEMM(Dkp, Epm, T
1
km, α = 1.0, β = 0.0);

2: GEMM(T 0
lk, T

1
km, Qlm, α = 1.0, β = 1.0);

Figure 6.6.: Strength reduction in the YATeTo DSL and lowering to the linearized IR.

synchronization instruction gets inserted before the current one and the False value is
assigned to all list items.

The application of these passes to the example shown in Eq. 6.3 reduces the number of
thread synchronizations from 11 to 5 compared to the naïve approach.

Problem 5: Fused-GEMMs in the YATeTo DSL

As the first step, YATeTo builds an AST for a given tensor expression. Let’s consider Eq.
6.5 as an example, for which its AST is given in Fig. 6.6.

Qlm = Qlm +Bli · Cik ·Dkp · Epm (6.5)

As discussed in Section 4.2, YATeTo’s DSL syntax does not support parenthesized
expressions. Thus, the initial AST contains chains of matrix multiplications (as tree nodes)
which may not have an optimal evaluation order (see Fig. 6.6). YATeTo addresses this
problem during the strength reduction step - i.e., finding an optimal sequence of tensor
operations which results in minimizing the total number of floating-point operations under
a memory constraint [71, 116]. Once the step is finished, the matrices must be grouped
according to the found multiplication order and passed to ChainForge.

YATeTo maps a given tensor expression to a combination of several binary operations:
GEMM, Loop-over-Gemm, IndexSum, CopyScaleAdd, etc. In this work, I designed an
extra pass for the DSL, which recognizes only GEMM sequences from the linearized form
of YATeTo IR. The pass utilizes a simple 2-state Finite Automata (FA) shown in Fig.
6.7.

72

6.3. Code Generation

1start 2

GEMM

not GEMM

GEMMnot GEMM

Accumulate

Figure 6.7.: Pattern matching for chains of matrix multiplications in YATeTo.

GEMM operations, accumulated at state 2, are removed from the IR whenever the FA
returns to the accepting state - i.e., state 1. The removed GEMMs are replaced with a
FusedGEMMs operation, added to YATeTo as a contribution of this work, to hold the
accumulated sequence. During YATeTo’s code generation phase, every FusedGEMMs
operation builds GEMM descriptions, puts them into a list, and passes it to ChainForge.
In the end, ChainForge returns the generated code to YATeTo.

Problem 6: Optimal Chain Matrix Multiplication Order

Similar to [71], YATeTo finds an optimal evaluation order for a chain of tensor operations by
decomposing the operations into multiplication (fr[. . .] = X[. . .]×Y [. . .]) and summation
(fr[. . .] =

∑
iX[. . .]) formulae which form a binary tree. The total number of floating-

point operations for a tensor chain, which reflects a processor’s total work, can be obtained
by a post-order traversal of the tree and applying cost functions, as suggested in [71],
to each formula. Obviously, a chain may have multiple tree representations. Thus, this
optimization problem aims to find the tree with the minimal associated cost. Lam,
Sadayappan, and Wenger proved that the problem is NP-complete and developed an
efficient search procedure based on exhaustive search. As lengths of tensor chains and
tensor dimensions are typically small in SeisSol [116], this procedure does not result in a
considerable overhead in YATeTo.

The algorithm designed by Lam, Sadayappan, and Wenger (which is implemented in
YATeTo) only considers execution on a scalar processor. In my case, a formula evaluation
is supposed to be performed in parallel by several consecutive GPU threads. Therefore,
finding an optimal evaluation order may require an additional objective function or/and
a slight change of the cost functions for the formulae. A similar approach was made
for the MIMD version of the algorithm in [71], where N scalar processors were involved
in evaluating a single formula. The authors used an additional objective function to
minimize communication overheads. However, data exchange between threads through
shared memory is significantly faster in the SIMT model, and thus the MIMD approach is
not applicable for this work.

I modified the algorithm proposed in [71] as follows. I changed the cost evaluation to
reflect work done by a single GPU thread in the context of a single thread block execution.
This is achieved by dividing each intermediate result obtained during a tree traversal by

73

6. Implementation of Elastic Wave Propagation

the dimension size along which the thread-block parallelization is applied. My rationale
is based on the fact that a block configuration (i.e., the number of threads, the shared
memory size, etc.) is performed just before a kernel invocation and takes into account
all operations within a chain. This cannot be re-configured at run-time - i.e., during a
kernel execution. Therefore, some intermediate operations within a chain may need fewer
threads than allocated. However, two intermediate operations result in about the same
execution time if they have the same tensor contraction lengths but different sizes of the
dimensions along which parallelization is applied. This assumption is plausible because
each active GPU thread is given the same amount of work.

The thread-wise cost estimation results in more tree candidates for the final pruning step,
during which the candidate that results in the least number of loads to shared memory
is selected. The objective of the pruning step is not only to maximize the overall GPU
occupancy but also to minimize latencies involved in loading data from global memory to
shared one because it may help to reduce delays between computations within a chain.

The cost estimation and the pruning step are merged into YATeTo’s workflow. The
pruning is implemented by adding penalties to the cost functions equal to the size of
operands needed to be loaded from global to shared memory. Penalties are added only
once, even if an operand appears more than once in a chain. This helps to mimic the
liveness of an operand between multiple operations within a kernel.

6.3.3. Preliminary Performance Analysis

This section starts with a demonstration of the generated code performance using the
benchmark shown in Eq. 6.6. The benchmark is derived from SeisSol’s implementation of
the neighbor surface integral (see Eq. 4.5).

Qe = Qe +A ·B · C ·De · Fe (6.6)

where Q ∈ R56×9; A ∈ R56×21; B ∈ R21×21; C ∈ R21×56; D ∈ R56×9; and F ∈ R9×9.
In this example, the matrix sizes correlate to the convergence order 6 (i.e., 56 degrees
of freedom) and the number of physical quantities (i.e., 9) involved in the elastic wave
propagation problem. The batch size equaled to 105 was used for all experiments shown
below.

The original cost estimation functions result in the following matrix multiplication order:

Qe = Qe +A ·
((
B · (C ·De)

)
· Fe
)

(6.7)

In contrast, applying the modified cost estimation changes the chain evaluation order to:

Qe = Qe +A ·
(
B ·
(
C · (De · Fe)

))
(6.8)

74

6.3. Code Generation

Table 6.1.: Cost evaluation statistics.
Original
cost

Cost per
GPU thread Penalty

Eq. (6.7) 52605 2664 774
Eq. (6.8) 57960 1971 81

Table 6.1 shows that the order imposed by Eq. 6.7 results in a lower total cost compared
to Eq. 6.8 according to the original cost estimator - i.e., the total number of floating-point
operations required for evaluating a tensor expression. However, the total work per GPU
thread is lower for the order imposed by Eq. 6.8. Moreover, the order driven by Eq. 6.8
results in fewer explicit loads from global to shared memory, which can be observed from
the last column (“Penalty”) of Table 6.1.

Nvidia
V100-

PCIE-32

Nvidia
A100-

SXM4-80

AMD
MI100

AMD
MI250

(1x GCD)

0

2

4

6

8

SP
-T

FL
O
P/

s

Binary-GEMMs - Eq. (6.7) Fused-GEMMs - Eq. (6.7) Fused-GEMMs - Eq. (6.8)

Figure 6.8.: Performance of the benchmarks (Eq. 6.7 and Eq. 6.8) obtained on various
Nvidia and AMD graphics cards using binary and fused GEMM kernels.

Fig. 6.8 shows the results obtained on Nvidia and AMD GPUs while executing Eq. 6.7
and Eq. 6.8, implemented using the fused and binary batched GEMM operations. The
results obtained with GemmForge (i.e., binary batched operations) are considered the
baseline in this experiment. One can notice that the maximal performance increase was
obtained on V100 GPU - i.e., about 52%. The performance obtained on A100 and MI100
GPUs increased by approximately 30% on average, whereas the performance on MI250x
increased by only 17%. The ordering imposed by Eq. 6.8 resulted in approximately 6%
and 15% performance increase relative to Eq. 6.7 on all tested Nvidia and AMD GPUs,
respectively.

Fig. 6.9 demonstrates the roofline model analysis obtained with the Nsight Compute
profiler on Nvidia V100 GPU. The performance measured by the profiler slightly differs
from the one I manually calculated for Fig. 6.8 - i.e., using timers and manually counted
floating-point operations. The profiler shows that the generated kernels (Eq. 6.7 and
Eq. 6.8) reach close to the maximum achievable performance - i.e., approximately 83%
on average. I continue the roofline model analysis in Section 6.3.4, where I demonstrate
results obtained on Nvidia A100 and AMD MI250x GPUs.

75

6. Implementation of Elastic Wave Propagation

2 4 8 16
2

4

8

16

FLOP/byte

SP
-T

FL
O
P/

s

Eq. (6.7)
Eq. (6.7)
Roofline

Figure 6.9.: Roofline model analysis obtained on Nvidia V100-PCIE-32 using Nsight
Compute.

51
2

10
24

20
48

40
96

81
92

16
38
4

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

0

2

4

6

8

10

Number of Elements

SP
-T

FL
O
P/

s

AMD MI250x (1x GCD) Nvidia V100-PCIE-32
Nvidia A100-SXM4-80 Nvidia A100-C-64
CPU (48 cores + AVX512)

Figure 6.10.: Performance and elapsed time of SeisSol-proxy obtained on different single-
GPUs using fused GEMM kernels. The CPU performance obtained on a
dual-socket Intel Skylake Xeon Platinum 8174 is given as the baseline.

Fig. 6.10 shows the performance of SeisSol-proxy obtained on different GPUs using
convergence order 6 and the single-precision floating-point format. The results obtained
on AMD MI100 are excluded from the plot because this GPU model provides unified
memory support (required for the proxy) through zero-copy memory, which leads to very
low performance. From here onward, I refer to Nvidia A100-C-64 as the type of A100
GPU installed on the Leonardo supercomputer, which, according to [111], is custom-built
for the CINECA supercomputing center and equipped with approximately 20% more
SMs in comparison to the standard Nvidia A100-SXM4-80 - i.e., used on the Selene
supercomputer. As can be noticed, the performance measured on the A100-C-64 GPU
does not drop as drastically as the ones obtained with other tested GPUs under low- and
medium-sized workloads.

76

6.3. Code Generation

Table 6.2.: Maximum and average speed-ups computed for Fig. 6.10. Note, the x-axis of
the plot shown Fig. 6.10 is logarithmic.

Nvidia A100
C-64

Nvidia A100
SXM4-80

Nvidia V100
PCIE-32

AMD MI250x
(1x GCD)

Maximum 2.56 2.25 1.38 1.26
Average 2.48 2.19 1.34 1.20

The CPU performance obtained on Intel Skylake Xeon Platinum 8174 is added to the plot
as the baseline to reflect the overall speed-up of the GPU version of the proxy application.
As mentioned in Section 4.3, the proxy consists of a set of benchmarks containing the
main SeisSol’s macro-kernels. In this experiment, I used all macro-kernels executed in the
same order as in the main application - i.e., SeisSol. This reflects the overall performance
of SeisSol’s wave propagation solver in isolation. This experiment can also be considered
as strong scaling of a single LTS time-cluster on a single CPU/GPU.

Unlike CPU performance, which reaches the plateau almost immediately, GPU performance
strongly depends on the time-cluster size; it requires having at least 32768 elements in a
cluster to reach about 90% of the maximal computational throughput. A further decrease
in the time-cluster size leads to a rapid drop in GPU performance most likely because
kernels launching overheads get less and less overlapped with computations on a device
(see Section 5.3). This behavior was observed on all tested GPUs and can be considered
the main takeaway from this experiment.

The maximal and average speed-ups against the baseline are shown in Table 6.2. The
values were computed based on the elapsed time of SeisSol-proxy, and averaged between
500 repeats. I claim that the values given in Table 6.2 should be treated as the absolute
speed-ups because a highly optimized, vectorized, and multithreaded CPU version of
SeisSol-proxy was used as the baseline. Moreover, a 48-core AVX512 CPU server (i.e., a
single node of the SuperMUC-NG supercomputer) was used in the experiment.

All conducted experiments shown above highlight the following contributions of this part
of the study. Firstly, I showed that fused GPU kernels considerably improved the overall
GPU performance of the ADER-DG method. This establishes the primary direction for
the future development of SeisSol. Secondly, I showed and discussed the main challenges
and aspects related to the automatic fusion of GPU kernels using a single and very specific
tensor operation - i.e., GEMM. Extending the compiler-based approach for fusing other
chained tensor operations (e.g., tensor product, tensor contraction) or combinations of
them is challenging but worth trying to achieve higher GPU performance for other wave
propagation models - e.g., viscoelastic one. Thirdly, I extended the algorithm proposed by
Lam, Sadayappan, and Wenger in [71] for the SIMT model - i.e., using the thread-wise
cost estimation for the multiplication and summation formulae. Lastly, I showed that
optimal matrix multiplication ordering is hardware-dependent and must be considered
while working on performance portability.

77

6. Implementation of Elastic Wave Propagation

6.3.4. Revisiting the Flux Matrix Decomposition

1 2 4 8 16 32
1

2

4

8

16

32

64

FLOP/byte

SP
-T

FL
O
P/

s
Nvidia A100-SXM4-80

Eq. (6.7)
Eq. (6.8)
Eq. (6.9)
Eq. (6.10)
Roofline

1 2 4 8 16 32
1

2

4

8

16

32

64

FLOP/byte

SP
-T

FL
O
P/

s

AMD MI250x - (1x GCD)

Eq. (6.7)
Eq. (6.8)
Eq. (6.9)
Eq. (6.10)
Roofline

Figure 6.11.: Roofline model analysis obtained on Nvidia A100-SXM4-80 and AMD MI250x
(1x GCD) GPUs using Nsight Compute and Omniperf, respectively.

Fig. 6.11 shows the roofline model analyses obtained on Nvidia A100 and AMD MI250x
GPUs for the benchmarks defined by Eq. 6.7 and Eq. 6.8. One can observe that the
measured performance values significantly deviate from the roofline outline. For example,
the performance of Eq. 6.8 on MI250x GPU reached only 37% relative to the maximum.
Both Nsight Compute and Omniperfs identify significant stalls in the load/store pipeline
originating between L2 and L1 GPU caches. This probably occurs while reading columns
of the constant matrices - i.e., A, B, and C - because they are supposed to reside in L2
cache during the whole execution of the kernels due to the temporary locality. One way
to verify this hypothesis is to change Eq. 6.7 as follows

Qe = Qe +Ae ·
(
Be ·

(
Ce · (De · Fe)

))
(6.9)

In this case, matrices Ae, Be, and Ce are individual for each batch index e in contrast to
Eq. 6.7. In this example, there is no data reuse regarding L2 cache. Therefore, I expect
the total traffic between global memory and compute units to increase and, thus, the
arithmetic intensity of the kernel to drop. This reasoning matches the results obtained
during the experiment, shown in Fig. 6.11 (see solid black pentagons). In this case, the
generated kernels reached 72% and 76% of the maximum performance of A100 and
MI250x GPUs, respectively. This indirectly supports my hypothesis mentioned above.
Therefore, I conclude that the performance of the kernels generated according to Eq. 6.7
is primarily limited by the latency of L2 cache.

It is worth mentioning that the benchmark (see Eq. 6.6) is derived from the neighbor
integral macro-kernel (see Inghbsurf in Eq. 4.5), which is subjected to the flux matrix
decomposition (see Eq. 4.4). Uphoff et al. in [117] state that the flux decomposition
results in performing fewer floating-point operations at run-time in comparison to using

78

6.3. Code Generation

the original flux matrices in the case of an optimal matrix chain multiplication order. In
that work, the authors were focused on optimizing SeisSol for Intel’s Haswell and Knights
Landing CPU microarchitectures and pointed out that the approach led to occupying
less memory space and, thus, to fewer data evictions from the top-level CPU caches.
Considering differences between CPU and GPU microarchitectures, especially in the
design of L2 caches and their sizes, and differences in the task decompositions (see Section
4.3 and Section 6.2), one can assume that the flux matrix decomposition may be redundant
for GPUs. This assumption can be tested using the benchmark proposed in Eq. 6.10,
where multiplications of matrices A, B, and C are pre-computed in advance and stored in
matrix K.

Qe = Qe +K · (De · Fe) (6.10)

Looking at Fig. 6.11, one can observe about 1.5x speed-up of the kernels generated
according to Eq. 6.10 relative to the ones subjected to Eq. 6.7. The performance of the
former reached almost 70% on A100 and 63% on MI250x relative to their maximum based
on the estimated arithmetic intensities. In this experiment, the number of coalesced data
loads issued by a thread block is reduced from 128 to 56 relative to the implementation of
Eq. 6.7.

In this work, I identified two major differences between Nsight Compute and Omniperf
profilers while using them for making the roofline analysis. Firstly, Nsight Compute
reduces the clocking of SMs during profiling by almost 20%. As a result, the time of a
kernel execution becomes longer, which skews the real performance of a kernel. Omniperf
operates on timing data obtained from a dedicated kernel-run during which the original
clocking is used. Secondly, the hardware counters of Nvidia GPUs track the arithmetic
and logical operations per each CUDA core and each double-precision unit. This approach
gives the most precise information about the total number of executed floating-point
operations during a test. AMD GPUs, on the other hand, only track the arithmetic and
logical instructions issued per each SIMD unit - e.g., see [44]. While calculating the total
number of executed floating-point operations, Omniperf assumes that all threads in a
wavefront participate in computations. This approach can overestimate the performance
and arithmetic intensity values when thread-mask instructions are used in a kernel -
e.g., line 32 in Listing 6.2. This is shown in Fig. 6.12 where the hollow markers depict
values obtained from Omniperf, whereas the solid ones represent the adjusted results -
i.e., using manually counted floating-point operations based on matrix sizes. For example,
the difference between the reported and adjusted values reaches approximately 50% in
the case of Eq. 6.7 benchmark.

The adjusted values were used in Fig. 6.11 to compensate for the methodological differ-
ences between Nsight Compute and Omniprof profilers and, thus, to demonstrate a fair
comparison. Regarding A100-SXM4-80 GPU, the performance values were adjusted using
timing data obtained while executing the benchmarks with the original device clocking.
Regarding MI250x GPU, the performance and intensity values were obtained using the
number of floating-point operations counted manually. In both cases, the roofline model
outlines were taken as reported by the tools.

79

6. Implementation of Elastic Wave Propagation

1 2 4 8 16
1

2

4

8

16

32

FLOP/byte

SP
-T

FL
O
P/

s

Eq. (6.7) - adjusted Eq. (6.7) - estimated
Eq. (6.8) - adjusted Eq. (6.8) - estimated
Eq. (6.9) - adjusted Eq. (6.9) - estimated
Eq. (6.10) - adjusted Eq. (6.10) - estimated

Roofline

Figure 6.12.: Comparisons of the roofline model obtained with Omniperf and its adjusted
variant for AMD MI250x GPU.

51
2

10
24

20
48

40
96

81
92

16
38
4

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

0

2

4

6

8

10

Number of Elements

SP
-T

FL
O
P/

s

Split Flux - Nvidia A100-C-64 Fused Flux - Nvidia A100-C-64
Split Flux - AMD MI250x (1x GCD) Fused Flux - AMD MI250x (1x GCD)

Figure 6.13.: Performance of SeisSol-proxy obtained using the split and fused flux matrices.

As shown in Fig. 6.13, on average, the use of the fused flux matrices increases the
computational throughput of SeisSol-proxy by 3% and 16% on A100 and MI250x GPUs,
respectively. It is worth pointing out that I localsurf and Inghbsurf macro-kernels constitute about
23% and 20% of the total execution time of the computational scheme defined by Eq. 4.1
and Eq. 4.2.

80

6.4. Concurrent Task Execution

Main Stream

Stream 0

Stream 1

Stream N

Stream N-1

Event-Based
Syncronization

Figure 6.14.: Stream-based fork-join model.

6.4. Concurrent Task Execution

In Section 6.2, a GPU task is defined as an execution of a batched tensor expression. Some
GPU tasks are data-independent and thus can be executed concurrently. For example,
each face of a tetrahedron is parameterized with h, i, j values which define a flux matrix
that needs to be used in the neighbor surface integral macro-kernel - i.e., Inghbsurf . Each flux
matrix has its unique values and sparsity pattern, and thus, each combination of h, i, j
values defines a unique tensor expression. As shown in Algorithm 2, each iteration of the
outer most loop (line 4) can result in executing up to 48 data-independent GPU tasks.
Some of these tasks can contain just a few elements, which may lead to low utilization of
the GPU resources during the execution of such tasks. The same reasoning applies to the
local surface integral macro-kernel - i.e., I localsurf (see Eq. 4.5).

Modern GPUs support grid-level concurrency - i.e., launching multiple GPU tasks in dif-
ferent streams. GPU programming models refer to a stream as a sequence of asynchronous
operations that are executed on a device in the order issued by the host. Each stream is
mapped to a single device connection which binds submitted tasks to a specific hardware
work queue. Having multiple hardware work queues on a device allows control units to
retrieve and schedule several tasks simultaneously if enough computational resources are
available. Therefore, executions of independent tasks - i.e., taken from different queues -
can be partially or even completely overlapped, leading to better utilization of all hardware
components.

GPU programming models like CUDA and HIP allow users to create infinitely many
streams. However, their device runtime libraries always bind streams to a concrete number
of hardware work queues. This means that some streams may be bound to the same work
queue. Therefore, the tasks submitted to such streams will be executed in order, which
limits the concurrency specified by a programmer. The programming models also allow
users to inject events (time markers) into a flow of tasks. The event-driven model provides
fine-grain control on the execution of tasks. For example, scheduling tasks from one stream
can be postponed till the completion of an event injected into another stream. Frequent
allocations and deallocations of streams and events can introduce noticeable overheads at
run-time. Therefore, it is preferable to create all necessary resources only once - i.e., at

81

6. Implementation of Elastic Wave Propagation

Algorithm 3 Stream-based implementation of the Neighbor Surface Integral - i.e., Inghbsurf

1: procedure ComputeNSI(Device, LtsLayer, PreComputedData)
2: StreamManager ←Device.getStreamManager()
3: OuterTable← LtsLayer.getBatchTable()
4: M ← LtsLayer.getClusterSize()
5: for j from 1 to 4 do
6: StreamManager.fork()
7: for f from 1 to 48 do
8: condition = Condition(FaceKind :: Regular, FaceKind :: Periodic)
9: key ← Key(KenelName :: NeighborF lux, condition, j, f)

10: InnerTable← OuterTable[key]
11: if not InnerTable.empty() then
12: stream← StreamManager.nextStream()
13: h← f mod 3
14: i← f mod 12
15: F+,jih

kl ← PreComputedData.getF luxMatrices(i, h, j)
16: Q1:M

lp ← InnerTable[InnerKey :: DOFs]

17: T 1:M
tq ← InnerTable[InnerKey :: IntegratedDOFs]

18: A+,1:M
qp ← InnerTable[InnerKey :: FluxSolver]

19: Q1:M
lp = Q1:M

lp −F+,jih
kl · T 1:M

tq · A+,1:M
qp . Launch the task in stream

20: end if
21: end for
22: StreamManager.join()
23: end forDevice.wait()
24: end procedure

the beginning of a program’s execution - and destroy them at the end. Streams and events
(as software instances) can be reused multiple times during the life of an application. A
programmer is responsible for ensuring that an event has been completed before reusing
its software instance.

In this work, the creation, destruction, and management of streams are delegated to a
so-called stream manager, which is similar to the thread pool concept. The manager
allocates a pool of streams and events, and stores them in circular buffers. When a user
requests a new stream, the manager increments its internal counter and spins the buffers.
When the counter exceeds the number of the allocated streams, the manager resets the
counter and moves the iterators of the circular buffers to their heads. The manager also
provides a fork-join mechanism, shown in Fig. 6.14, to synchronize encapsulated streams
with the application’s default stream (also known as the main stream). The fork-join
model helps to abstract specific and low-level details of the steam-based synchronization -
e.g., events injection and polling - and to create a portability layer that can be used to
adapt other GPU programming models. Algorithm 3 shows the stream-based computing
applied to the neighbor surface macro-kernel in SeisSol. The streams are forked in each
iteration of the j-loop (line 5). Internally, the manager injects an event into the default
stream and forces other streams to wait for its completion. This guarantees that all tasks

82

6.4. Concurrent Task Execution

submitted to the main stream are finished before processing tasks submitted to the forked
ones. The algorithm fetches the next stream from the circular buffer if the condition in line
10 holds and submits the task shown in line 19 to this stream. The process continues till
the end of the f -loop, which follows the join command. At this point, the manager injects
events into each forked stream and forces the main stream to wait for their completions.
This ensures that all tasks submitted to the forked streams are completed before the next
use of the main stream occurs.

0 2 4 6 8 10 12

Lo
w

M
ed

iu
m

H
ig
h

Performance, SP-TFLOP/s

W
or
k
Lo

ad

Nvidia A100-SXM4-80
1 Stream 4 Streams
8 Streams 16 Streams

0 2 4 6 8 10 12

Lo
w

M
ed

iu
m

H
ig
h

Performance, SP-TFLOP/s

W
or
k
Lo

ad

AMD MI250x - (1x GCD)
1 Stream 4 Streams
8 Streams 16 Streams

Figure 6.15.: Comparisons of the stream-based implementations of the surface neighbor
macro-kernel on different GPUs relative to the number of concurrent streams
under different workloads. The workloads - i.e., the number of elements -
used in the experiments: “Low” - 1024, “Medium” - 16384, “High” - 262144.

In SeisSol, the stream-based execution was applied to all face-parameterized macro-kernels
(see Section 4.1), namely: I localsurf , I

nghb
surf , I

local
inter and Inghbinter. Fig. 6.15 shows how steam-based

computing affects the performance of the surface neighbor integral on different GPUs and
under different workloads. As expected, the single- and multi-stream implementations
are equally efficient under the “High” workload because each offloaded task is large
enough to utilize all compute resources completely. Noticeable differences can only be
observed under the “Low” and “Medium” workloads, which become relevant for the LTS
scheme, especially during strong scaling (see Section 4.4). The use of too many streams -
e.g., 16 - imposes considerable synchronization overheads, which may even lead to lower
performance relative to the single-stream implementation. According to the obtained
results, the optimal number of steams is equal to 4. Similar results were obtained for other
face-parameterized macro-kernels on Nvidia A100 and AMD MI250x GPUs. Therefore,
this value - i.e., 4 - was selected as the default circular stream buffer size in SeisSol.

Fig. 6.16 shows tracing results obtained on Nvidia A100 GPU. One can observe that the
executions of the kernels issued to different streams are almost completely overlapped
under the “Low” workload but the overheads, related to the stream synchronizations,
dominate. The situation completely changes under the “High” workload - i.e. the kernels’

83

6. Implementation of Elastic Wave Propagation

(a) “Low” workload.

(b) “Medium” workload.

(c) “High” workload.

Figure 6.16.: Tracing of the stream-based CUDA implementations of the surface neighbor
macro-kernel under different workloads obtained on Nvidia A100-SXM4-80
GPU using the circular stream buffer size equal to 4.

execution is almost fully serialized but the overheads become negligible. In all tests shown
in Fig. 6.16, only 3 streams were simultaneously active, even though the stream manager
was configured with the circular stream buffer size equal to 4.

6.5. Execution on Distributed Multi-GPU Systems

In this work, the GPU-Aware MPI is used to scale SeisSol across multiple GPU-accelerated
nodes. The GPU-Awareness adds an extra mechanism to an interface implementation to
directly transfer data between GPUs over a network without explicitly involving the host
systems. This results in bypassing unnecessary data movement through host memory and,
thus, reduces potential overheads associated with GPU-to-GPU data transfers.

The intra-node GPU communication can be implemented in multiple ways: Single Process
Multiple GPUs (SPMG), Single Thread Single GPU (STSG), Single Process Single
GPU (SPSG), or Multiple Processes Single GPU (MPSG). The SPMG approach may be
convenient for simple programs with straightforward sub-partitioning and data exchange.
STSG may suit well for executing coarse-grained data-independent tasks on multiple

84

6.5. Execution on Distributed Multi-GPU Systems

GPUs, especially when no data exchange between GPUs within a node is required. In
both cases, the number of overall MPI processes is equal to the number of the involved
GPU nodes, which may lead to lower communication overheads and, thus, to better
scaling. The MPSG model may benefit multiphysics simulation software in which solvers
communicate via an external coupling library. In this scenario, all solvers may be bound
to the same GPUs, and each solver may have no or little knowledge about the others
running on the same node. Similar to the stream-based execution model (see Section 6.4),
tasks offloaded from different processes to the same GPU run concurrently, which may
increase the overall GPU utilization if tasks are small.

In this study, I used the SPSG approach in SeisSol due to the irregular and complex
domain decomposition involved in the application. This allowed me to reuse many parts
of the existing mesh partitioning algorithm and MPI code. In contrast to the CPU version
of SeisSol, where a single process is used per node or NUMA domain, the SPSG model
increases the total number of MPI processes if a node contains more than one GPU. In
this case, the average message size becomes smaller, and the overall communication traffic
grows. Taking into account the LTS scheme, which splits each sub-partition into multiple
time-clusters, the application may become sensitive to network latency.

Hardware topologies of modern HPC nodes become complicated (e.g., see Fig. 6.17).
The use of multi-socket CPU systems allows hardware vendors to accommodate more
accelerators in a single node and, thus, increase its computational power. In this case, the
CPUs are interconnected through a high-speed interconnect fabric - e.g., Intel QuickPath
Interconnect, AMD Infinity Fabric, etc. A node can also be equipped with several Network
Interface Controllers (NICs) to increase its network throughput. In such a configuration,
GPUs and NICs are usually connected to different sockets. Controlling and managing
them from a process residing on a neighboring socket adds extra latency to an application
because the data needs to travel through the fabric, which connects sockets. Therefore,
correct process binding is very important for latency-sensitive applications. For example,
as shown in Fig. 6.17, a process needs to be bound to cores 48-55, belonging to the third
NUMA domain, to work efficiently with GPU 0 on a node of the Crusher supercomputer.
In this configuration, any message sent from the host initially moves to GPU 0, from
where it is transferred to GPU 1 through the GPU-to-GPU Infinity Fabric link and then
it moves down to NIC 0 attached to GPU 1 through the PCIe Gen4 ESM interconnect.

An automatic process binding within an HPC application can be difficult to implement
because a programmer needs to query and aggregate the locations of all CPUs, GPUs,
and NICs allocated for a job and distribute the binding decision to all running processes.
Moreover, the solution must be portable across various operating systems, which may
have different tools for querying resources. Modern workload managers - e.g., SLURM,
Torque, etc. - are supposed to perform an optimal process binding automatically during
job scheduling. However, this approach may still require some interaction with a user via
setting additional environment variables. In this work, I stick to the latter approach because
1) it does not require implementing and maintaining complex logic in the application,
and 2) many HPC data centers provide detailed descriptions of how to bind resources
optimally. Moreover, one can expect that commonly used HPC workload managers will

85

6. Implementation of Elastic Wave Propagation

Figure 6.17.: Topology of a single node of the Crusher supercomputer. The picture is
taken from [85].

be improved in the future regarding the automatic process binding due to a high demand
from the HPC community.

In this section, I demonstrate SeisSol’s performance on distributed multi-GPU systems
using the Layer Over Half-space (LOH.1) test scenario. The scenario aims to simulate
an earthquake event using a single kinematic point source located between two adjacent
regions with different material properties. Thus, almost all computational resources are
concentrated on the wave propagation solver. A detailed description of the scenario can
be found in [22]. The original geometry of the scenario is shown in Fig. 6.18, where one
can observe a local mesh refinement around the point source. Meshes with approximately
20 million elements were used in this part of the study to demonstrate scaling properties
of SeisSol. All reported experiments were performed on the LUMI, Leonardo and Selene
supercomputers (see A.1).

The key adjustments in the MPI part of SeisSol are shown and explained in Section 6.5.1.
In Section 6.5.4, I present new versions of the node-weights, which can balance both
work and memory between MPI processes during mesh partitioning. These enhancements
may be necessary to perform weak scaling studies of SeisSol on machines equipped with
GPUs with limited onboard memory - e.g., Nvidia V100-SXM2-16GB. Section 6.5.3
shows how distributions of elements between LTS time-clusters affect GPU strong scaling
performance.

86

6.5. Execution on Distributed Multi-GPU Systems

Z = 34 km

X = 58 km

Y = 58 km

Point Source

(0, 0, -2) km

Figure 6.18.: Geometry and a computational mesh of the LOH.1 test scenario.

6.5.1. MPI Buffers Placement

As discussed in Section 4.4, in SeisSol, MPI processes exchange DOFs and their derivatives
over continuous regions inside copy and ghost layers of time-clusters using point-to-point
non-blocking communication. In Section 6.1, I mentioned that memory for DOFs and
their derivatives are allocated using the unified memory type.

In [8], Banerjee, Hamidouche, and Panda proposed and implemented the initial and
very basic support for unified memory in MPI. Before sending or receiving a message,
the authors checked whether the MPI buffers had been allocated with unified memory
using cudaGetPointerAttributes(). In that case, the authors launched a small CPU kernel
performing dummy reads of that memory, which forced to migrate all necessary pages to
the host side. After that, a regular host-to-host data exchange was followed. Hamidouche
et al. in [45] pointed out that that approach was limited because it did not take any
advantage of Nvidia GPUDirect Peer-to-Peer and Remote Direct Memory Access (RDMA)
technologies, which could provide low-latency and high-bandwidth data exchange between
GPUs within and across nodes. In [45], the authors proposed and implemented a more
advanced design to support unified memory for intra- and inter-node communication.
The key idea was based on pre-allocating auxiliary buffers using regular device memory
and copying every unified MPI buffer there before sending or receiving a message. Once
combined with the CUDA Inter-Process Communication feature, GPU RDMA, and
software pipelining, the new design showed considerable improvements in point-to-point
and collective communications for all message sizes.

Manian, Ammar, et al. in [81] and later Manian, Chu, et al. in [82] performed a comparative
study of intra- and inter-node point-to-point communication on various Nvidia GPU

87

6. Implementation of Elastic Wave Propagation

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B10−1

100

101

102

103

104

105

La
te
nc

y,
us

Intra-Node

H-H MH-MH
D-D MD-MD

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B10−1

100

101

102

103

104

105

La
te
nc

y,
us

Inter-Node

H-H MH-MH
D-D MD-MD

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B101

102

103

104

105

106

B
an

dw
id
th
,M

iB
/s

Intra-Node

H-H MH-MH
D-D MD-MD

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B101

102

103

104

105

106

B
an

dw
id
th
,M

iB
/s

Inter-Node

H-H MH-MH
D-D MD-MD

Figure 6.19.: Results of the latency and unidirectional bandwidth tests conducted on the
Selene supercomputer.

platforms using different types of MPI buffers. The authors extended the OSU Micro-
benchmarks [70] by adding an option to allocate the MPI buffers using the unified memory
type. In that case, dedicated kernels were launched before sending and after receiving
each message to explicitly control page locations of the unified MPI buffers - i.e., either
on the host or device. That helped to mimic various scenarios that can happen in a real
user application. In those works, a CUDA-Aware MPI library - i.e., MVAPICH2- GDR
- was used with the advanced unified memory design proposed in [45]. Similar to [82],
the following abbreviations of the MPI buffers regarding their locations are used in this
study: H - host; D - device; MH - unified memory when pages reside on the host; and
MD - unified memory when pages reside on the device. Furthermore, I refer to a test
configuration using a pair separated by the hyphen - e.g., H-H, D-D - where the first
element denotes the buffer type of MPI process 0 (sender) and the second one refers to
the buffer type of MPI process 1 (receiver).

88

6.5. Execution on Distributed Multi-GPU Systems

According to the experiments conducted by Manian, Chu, et al. in [82], exchanging
large messages (more than 4 MiB) in the MH-MH and MD-MD configurations does
not entail considerable overheads for intra- and inter-node communication. However,
sending/receiving small (up to 1 KiB) and medium (between 4 KiB and 1 MiB) messages
using the unified MPI buffers results in higher latency and lower bandwidth in comparison
to the H-H and D-D configurations. Similar results can be observed in Fig. 6.19, where I
depict outcomes of the latency and bandwidth tests conducted on the Selene supercomputer
for intra- and inter-node communication. In contrast to [82], in my experiment, the latency
of intra-node communication of the MD-MD configuration is about 2.25 times higher
compared to the D-D setup, on average. At the same time, the bandwidth of the MD-MD
configuration is approximately 3.7 times lower relative to the corresponding baseline.
In the experiments shown in Fig. 6.19, the MH-MH and MD-MD configurations were
obtained by setting the UCX_RNDV_FRAG_MEM_TYPE environment variable of the
UCX layer [103] to the host and cuda values, respectively.

Fig. 6.20 shows the analysis of the average message sizes in SeisSol during strong scaling of
the LOH.1 scenario with a relatively good distribution of elements between time-clusters.
As can be seen, the median message size in SeisSol (16 KiB - 1 MiB) falls into the medium
message size range, determined above, while partitioning the problem from 8 to 512
sub-domains. Considering that a typical elements distribution is worse than the one given
in this experiment, one may expect to observe a poor performance of SeisSol under a
strong scaling scenario (see Fig. 6.22 as an example - i.e., the solid orange and pink lines).

The abovementioned problem can be alleviated using an algorithm similar to the one
proposed in [45]. As shown in Fig. 6.21 - i.e., b) and c), pre-allocated auxiliary buffers on
the device or host sides can be used to copy data from SeisSol’s MPI buffers before and after
each MPI_ISend and MPI_IRecv, respectively. In [45], the authors could only assume the
average message size and, thus, had to fragment messages. The implementation proposed
by Hamidouche et al. copied each fragment to the auxiliary buffers and transferred them
one by one using software pipelining. Because of the static mesh refinement, the sizes of
all communication regions in SeisSol can be calculated after the mesh partitioning step.
Therefore, I allocate all auxiliary MPI buffers for all time-clusters in advance. This can
help to avoid extra latency related to the software pipelining while transferring small and
medium messages. Moreover, data copies from the MPI buffers, allocated with unified
memory, to auxiliary memory can be done asynchronously and performed as a part of
non-blocking communication in SeisSol.

In the following, I explain the details of my implementations using the pseudo codes shown
in Listing 4 and Listing 5. The receiving process begins with a call to receiveGhostLayer
method, where the algorithm traverses all communication regions and posts MPI_IRecv
one by one, directing upcoming messages to the dedicated auxiliary MPI buffers. The
method returns a receiving queue, which is initialized to zero at the beginning and
gradually filled during the traversal (see lines 6-10). As can be seen, each element of the
queue is a compound data structure dedicated to each communication region and contains
1) a pointer to the auxiliary buffer, 2) the associated device stream, 3) the sender process
identifier, 4) the communication region identifier and 5) the MPI_Request handle returned

89

6. Implementation of Elastic Wave Propagation

0 1 2 3 4

101
102
103
104
105
106
107
108

Time-Cluster

El
em

en
t
C
ou

nt

(a) Distribution of 20 million elements used for the LOH.1 test scenario between 5 time-clusters.

8 16 32 64 128 256 512
1 KiB
4 KiB

16 KiB
64 KiB
256 KiB
1 MiB
4 MiB
16 MiB
64 MiB

256 MiB

Number of Partitions

M
es
sa
ge

Si
ze

cluster 0 cluster 1 cluster 2 cluster 3 cluster 4

(b) Median, maximal, and minimal MPI message sizes of all time-clusters resulted from partitioning
the test mesh from 8 to 512 sub-domains. The data were obtained for convergence order 6
using the single-precision floating-point format.

Figure 6.20.: Statistics of the MPI message sizes during strong scaling of the LOH.1
scenario in SeisSol.

GPUi GPUj

CPUi CPUj

(a) Direct.

GPUi GPUj

CPUi CPUj

(b) Device.

GPUi GPUj

CPUi CPUj

(c) Host.

Figure 6.21.: Point-to-point message-passing schemes between GPUs in SeisSol. The
green color denotes MPI buffers allocated in unified memory; the blue one -
regular device memory; the gray color - host memory.

90

6.5. Execution on Distributed Multi-GPU Systems

from the corresponding MPI_IRecv operation. Each element of a receiving queue can be
in one of two possible states: 1) RequiresMPI_Test and 2) RequiresAsyncCopy_Test. By
default, all elements are initialized with the RequiresMPI_Test state, indicating that the
data transfer for the associated communication region has not been completed yet. While
iterating over interior LTS layers, SeisSol periodically tests receiving queues of each ghost
layer, thus checking the completeness of the initiated asynchronous communications. The
test of a queue is implemented as a for-loop (see lines 24-42), where the state of each region
is checked, and the corresponding action is taken. If a region is in the RequiresMPI_Test
state, the MPI_Test function is called with the associated MPI_Request handle. If the
MPI test succeeds, the algorithm initiates an asynchronous data copy from the auxiliary to
the user MPI buffer using the attached device stream (see lines 15-21). Afterward, the test
region is immediately switched to the RequiresAsyncCopy_Test state (see line 31), and the
for-loop iterator shifts. If a region is in the RequiresAsyncCopy_Test state, the algorithm
checks whether the initiated asynchronous copy operation has been completed using the
associated device stream as the handle (see line 36). If the test succeeds, the region gets
removed from the queue. The testReceiveQueue function succeeds when a passed receiving
queue gets empty, indicating that the current process has fully received all pieces of a
ghost layer from its neighbors. It is worth noting that the proposed implementation can
completely hide overheads stemming from the communication and asynchronous data
copies on the receiving side if the interior LTS layers provide enough work.

The sending process starts with a call to the sendCopyLayer method, which immediately
calls the prefetchCopyLayer function. The function asynchronously copies the user data
of all communication regions to the dedicated auxiliary buffers using associated device
streams (see lines 4-12). While iterating over the regions, the function creates and fills the
compound data structure (see the description above) for each communication region and
pushes it to the prefetching queue (see lines 10-11). The queue is initialized to zero at the
beginning of the function execution and gets returned at the end, as shown in lines 2 and
13, respectively. Once the sendCopyLayer method receives a prefetching queue, it starts
repeatedly checking each region, using polling (see lines 19-20), regarding the completeness
of the associated copy operation using the attached device stream as the handle (see line
22). If a test succeeds, the method immediately sends the associated auxiliary buffer
to the destination using the non-blocking MPI_Isend method. The returned MPI_-
Request handle gets assigned to the corresponding field of the compound data structure
of the region. After that, the method removes the region from the prefetching queue
and immediately adds it to the sending one, initialized to zero at the beginning of the
method execution. The process repeats till the entire prefetching queue gets empty,
and the sending queue becomes full. When the method finishes, it returns the sending
queue to a callee. Afterward, the communication thread of a process can start testing all
elements of the queue for their completeness using the MPI_Test function. As discussed in
Section 4.4, this will force the underlying MPI library to progress the issued non-blocking
communications.

The key difference between the sending and receiving sides is that, in the former, the
asynchronous data copies cannot be overlapped with some computations. The polling
methods, shown in lines 19-20, will force the sendCopyLayer method to initiate all non-
blocking send operations for an entire copy layer, and, thus, the layer must be copied to

91

6. Implementation of Elastic Wave Propagation

Algorithm 4 Receiving Copy-Layer
1: procedure receiveGhostLayer(GhostT imeCluster)
2: ReceiveQueue ←∅
3: NumRegions ←GhostT imeCluster.getNumRegions()
4: for i from 1 to NumRegions do
5: AuxiliaryBuffer ←GhostT imeCluster.getAuxiliaryBuffer(i)
6: Stream ←GhostT imeCluster.getStream(i)
7: Source ←GhostT imeCluster.getNeighborRank(i)
8: Region ←newRegion(AuxiliaryBuffer, Stream, Source, i)
9: Region.Request ←MPI_Irecv(AuxiliaryBuffer, Source)

10: ReceiveQueue.append(Region)
11: end for
12: return ReceiveQueue
13: end procedure
14:
15: procedure prefetchGhostRegion(Device, Region, GhostT imeCluster)
16: UserBuffer ←GhostT imeCluster.getUserBuffer(Region.i)
17: AuxiliaryBuffer ←Region.AuxiliaryBuffer
18: Stream ←Region.Stream
19: Device.copyAsync(AuxiliaryBuffer, UserBuffer, Stream)
20: end procedure
21:
22: procedure testReceiveQueue(Device, ReceiveQueue, GhostT imeCluster)
23: for each Region in ReceiveQueue do
24: State ←Region.getCurrentState()
25: switch State do
26: case RequiresMPI_Test :
27: TestSuccess ←MPI_Test(Region.Request)
28: if TestSuccess then
29: prefetchGhostRegion(Device,Region,GhostT imeCluster);
30: Region.setState(RequiresPrefetchTest)
31: end if
32: break
33: end
34: case RequiresPrefetchTest :
35: if Device.isWorkDone(Region.Stream) then
36: ReceiveQueue.remove(Region)
37: end if
38: break
39: end
40: done
41: done
42: return ReceiveQueue.empty()
43: end procedure

92

6.5. Execution on Distributed Multi-GPU Systems

1 2 4 8 16 32 64

64

128

256

512

1024

2048

4096

Node Count

SP
-T

FL
O
P/

s

H-H (host) MH-MH (direct)
D-D (device) MD-MD (direct)
ideal

Figure 6.22.: Comparison of the strong scaling performance of the LOH.1 benchmark
using different message-passing configurations on the Selene supercomputer
using the mesh shown in Fig. 6.20.

the auxiliary buffers beforehand. However, due to the imposed concurrency, data copies of
large messages may be overlapped with instantiations of non-blocking sends of small and
medium ones. It is worth mentioning that a GPU-Aware MPI implementation would only
be able to start performing the copy to/from managed to non-managed device memory
when it begins the sending/receiving message procedure. However, this custom solution
allows the copies to happen as soon as possible and gives them longer time to complete.

Fig. 6.22 depicts the strong scaling results obtained on the Selene supercomputer using
the mesh shown in Fig. 6.20. The MD-MD and MH-MH configurations were obtained
using the original message exchange algorithm - i.e., direct (see Fig. 6.21) - and the
MPI buffers, allocated with unified memory, with fragments staging of messages on the
host and device, respectively. In both cases, parallel efficiencies are very low - i.e., 14%
on average. One can observe that the performance growth stops after 32 nodes. It is
worth noting that, on average, staging MPI buffers on the device results in about 13.5%
higher performance than staging on the host. A plausible reason for this is the GPUDirect
Peer-to-Peer and RDMA technologies used on all Selene nodes. The H-H configuration
demonstrates good scaling up to 32 nodes, on which the parallel efficiency reaches almost
51%. After that, the performance suddenly drops by approximately 40%. A detailed
profiling of SeisSol is required to determine the exact reason for this behavior, which
was difficult to perform at the moment of writing because of a need to directly access
Nvidia’s proprietary supercomputer - i.e., Selene. The best results were obtained with
the D-D configuration, which resulted in almost 38% of parallel efficiency on 64 nodes
(512 A100 GPUs) relative to the baseline (8 A100 GPUs), reaching approximately 1.58
SP-PFLOP/s.

Fig. 6.23 compares the strong scaling performance of SeisSol on Selene, Leonardo and
LUMI supercomputers using the D-D message-passing configuration. Selene has eight

93

6. Implementation of Elastic Wave Propagation

Algorithm 5 Sending Copy-Layer
1: procedure prefetchCopyLayer(Device, CopyT imeCluster)
2: PrefetchQueue ←∅
3: NumRegions ←CopyT imeCluster.getNumRegions()
4: for i from 1 to NumRegions do
5: AuxiliaryBuffer ←CopyT imeCluster.getAuxiliaryBuffer(i)
6: UserBuffer ←CopyT imeCluster.getUserBuffer(i)
7: Stream ←CopyT imeCluster.getStream(i)
8: Device.copyAsync(UserBuffer,AuxiliaryBuffer, Stream)
9: Destination ←CopyT imeCluster.getNeighborRank(i)

10: Region ←newRegion(AuxiliaryBuffer, Stream,Destination, i)
11: PrefetchQueue.append(Region)
12: end for
13: return PrefetchQueue
14: end procedure
15:
16: procedure sendCopyLayer(Device, CopyT imeCluster)
17: PrefetchQueue ←prefetchCopyLayer(Device, CopyT imeCluster)
18: SendQueue ←∅
19: while not PrefetchQueue.empty() do
20: for each Region in PrefetchQueue do
21: Stream ←Region.Stream
22: if Device.isWorkDone(Region.Stream) then
23: AuxiliaryBuffer ←Region.AuxiliaryBuffer
24: Destination ←Region.Destination
25: Region.Request ←MPI_Isend(AuxiliaryBuffer,Destination)
26: SendQueue.append(Region)
27: PrefetchQueue.remove(Region)
28: end if
29: done
30: end while
31: return SendQueue
32: end procedure
33:
34: procedure testSendQueue(SendQueue)
35: for each Region in SendQueue do
36: TestSuccess ←MPI_Test(Region.Request)
37: if TestSuccess then
38: SendQueue.remove(Region)
39: end if
40: done
41: return SendQueue.empty()
42: end procedure

94

6.5. Execution on Distributed Multi-GPU Systems

1 2 4 8 16 32 64
32
64
128
256
512

1024
2048
4096

Node Count

SP
-T

FL
O
P/

s

Selene ideal, Selene
LUMI ideal, LUMI
Leonardo ideal, Leonardo

(a) Strong Scaling.

1 2 4 8 16 32 64
0.0

0.2

0.4

0.6

0.8

1.0

Node Count

Effi
ci
en

cy

Selene LUMI Leonardo

(b) Parallel efficiency.

Figure 6.23.: Comparison of the strong scaling performance of SeisSol on the Selene,
Leonardo and LUMI supercomputers using the LOH.1 benchmark with the
mesh shown in Fig. 6.20 and the D-D message-passing configuration.

Nvidia A100 GPUs per node, whereas each Leonardo and LUMI node is equipped with
only four Nvidia A100 and AMD MI250x cards, respectively. However, each MI250x GPU
has two Graphics Complex Dies (GCD), which are considered as two single graphics cards
in the SPSG model (see the beginning of Section 6.5); thus, the number of MPI ranks and
message sizes between sub-domains remain the same during scaling on Selene and LUMI.
Differences in network characteristics between the used supercomputers are shown in Fig.
6.24. It is important to mention that, on LUMI, the latency and bandwidth of intra-node
communication were measured between graphics dies located in two different GPUs.

One can observe that the intra-node network characteristics of the Leonardo supercomputer
are in between the ones obtained on LUMI and Selene for the large and medium message
sizes. At the same time, Leonardo showed the worst results regarding the latency
and bandwidth for all tested message sizes in the case of inter-node communication.

95

6. Implementation of Elastic Wave Propagation

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B10−1

100

101

102

103

104

La
te
nc

y,
us

Intra-Node

Selene
Leonardo
LUMI

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B10−1

100

101

102

103

104

La
te
nc

y,
us

Inter-Node

Selene
Leonardo
LUMI

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B101

102

103

104

105

106

B
an

dw
id
th
,M

iB
/s

Intra-Node

Selene
Leonardo
LUMI

1 K
iB
4 K

iB
16
Ki
B
64
Ki
B

25
6 K

iB
1 M

iB
4 M

iB

16
Mi
B

64
Mi
B101

102

103

104

105

106

B
an

dw
id
th
,M

iB
/s

Inter-Node

Selene
Leonardo
LUMI

Figure 6.24.: Comparison of the latency and unidirectional bandwidth on the Selene,
Leonardo and LUMI supercomputers using D-D message-passing configura-
tion.

Nevertheless, as can be seen from Fig. 6.23, Leonardo demonstrated the best strong
scaling results for the LOH.1 test scenario, reaching almost 65% of the parallel efficiency
on 64 nodes, while the efficiency obtained on the Selene and LUMI supercomputers
was only around 40% at this scale. One can argue that better strong scaling results on
Leonardo were achieved due to its setup, which required two times fewer MPI processes
and, thus, resulted in fewer messages to exchange. However, despite having worse network
characteristics, Leonardo’s efficiency on 64 nodes was still almost 5% higher than the one
obtained on LUMI with 32 nodes.

The obtained results indicate that, apart from just the networking properties, there exist
other factors that limit the strong scaling performance of the ADER-DG method bundled
with the LTS scheme. In [96, 98, 97], Rietmann investigated strong scaling properties
of the Spectral Element Method applied to the wave propagation problem in an elastic
medium. The author observed that the parallel efficiency of his LTS implementation

96

6.5. Execution on Distributed Multi-GPU Systems

t

ti ti+1 tsync ti+2 ti+3

∆t ∆t′ ∆t ∆t

Figure 6.25.: Time integration steps with a synchronization point in between.

drastically dropped during strong scaling on the distributed multi-GPU system used in the
experiments (i.e., the Piz Diant supercomputer). Rietmann suggests that it happened due
to a small number of elements in the finest mesh refinement level, which could not keep
the GPUs adequately busy to mask the overhead of setting up and launching GPU tasks
[97]. Rietmann’s statement is too general and needs some supporting experiments. In the
following two sections, I aim to investigate Rietmann’s hypothesis. In the next section, I
examine the influence of GPU launching overheads on strong scaling performance. For
this purpose, I replaced the traditional kernel launching mechanism with the advanced one
- i.e., CUDA Graphs. In Section 6.5.3, I investigate how and to what degree strong scaling
efficiency depends on the computational throughput of a device and LTS clustering.

6.5.2. Graph-Based Task Execution

The LTS scheme can significantly shorten some parallel regions, especially under a strong
scaling scenario. Offloading such small tasks to GPUs can expose significant kernel
launching overheads (see Section 5.3). Concurrent data processing on multiple GPU
streams (see Section 6.4) can partially solve this problem, but it is only suitable for
processing data-independent tasks. The tasks defined by Iader, Ivol and Isrc macro-kernels
(see Section 4.1) are data-dependent and constitute about 65% of the total execution time
of the wave propagation solver.

The graph-based execution model aims to reduce overheads associated with launching
a sequence of operations on a device. In this model, device kernels are the nodes of a
graph, whereas edges encode dependencies between them. A graph can be built explicitly
using the corresponding API functions and data structures, or it can be captured by the
device driver. The latter is preferable while working with a generated code. Otherwise,
all necessary graph-building steps needs to be added to the code generation logic.

While capturing, the driver switches to the mode where it only records kernels with its
arguments without executing them. One can use stream-based programming to express
complex dependencies between nodes in a graph. Once captured, a graph, which may
contain dozens or hundreds of device kernels, is copied to the device, and the associated
graph handle is returned to a user. The handle allows the user to launch the entire captured
sequence within a single interaction with the device driver. If some kernel argument needs
to be changed at run-time, the corresponding graph node must be explicitly rebuilt. If it
is not possible, the entire graph must be captured again.

In SeisSol, the arguments of most kernels launched inside each time-cluster do not change
during a program’s execution because of the static mesh refinement and the recording

97

6. Implementation of Elastic Wave Propagation

Algorithm 6 Graph-based implementation of the ADER scheme without source terms
and when t = t0 - i.e., Iader.

1: procedure ComputeAder(Device, LtsLayer, PreComputedData, ∆t)
2: K̂1

lt, K̂2
lt, K̂3

lt ←PreComputedData.getStiffnessMatrices()
3: A1:M

qp , B1:M
qp , C1:M

qp ←PreComputedData.getJacobianMatrices()

4: T 1:M
lp ←LtsLayer.getIntegratedDOFs()

5: Q1:M
lp ←LtsLayer.getDOFs()

6: key ←GraphKey(KernelType :: ADER,∆t)
7: if not LtsLayer.graphHandleExists(key) then
8: Device.beginGraphCapturing()
9: LtsLayer.setF irstDerivatives(Q1:M

lp)

10: T 1:M
lp ←∆t ·Q1:M

lp

11: for i from 2 to O do
12: D1:M,i−1

tq ←LtsLayer.getDerivatives(i− 1)

13: D1:M,i
lp ←LtsLayer.getDerivatives(i)

14: D1:M,i
lp = −K̂1

ltD
1:M,i−1
tq A1:M

qp − K̂2
ltD

1:M,i−1
tq B1:M

qp − K̂3
ltD

1:M,i−1
tq C1:M

qp

15: scalar ←(∆t)i / i!
16: T 1:M

lp ←T 1:M
lp + scalar · D1:M,i

lp

17: end for
18: Device.endGraphCapturing()
19: handle ←Device.getGraphHandle()
20: LtsLayer.setGraphHandle(key, handle)
21: end if
22: handle ←LtsLayer.getGraphHandle(key)
23: Device.launchGraph(handle)
24: Device.wait()
25: end procedure

mechanism described in Section 6.2. However, the presence of synchronization points, such
as for saving intermediate results to disks, may force a local change in the time step width
∆t (see Fig. 6.25), which can be considered as a scaling factor within a tensor expression.
Instead of manually updating the corresponding graph nodes, a new graph is recorded
and launched. To further reduce the overhead, my implementation stores all graphs that
belong to a time-cluster in a hash table, where the key is a pair of a macro-kernel name
(encoded with an integer value) and ∆t. The concept is illustrated in Algorithm 6. The
algorithm checks whether a graph is in the table when entering a parallel region (line 6).
If not, it reruns the graph-capturing procedure (lines 8-18), adds the resulting graph to
the table (lines 19-20) and immediately launches it (lines 22-24).

Fig. 6.26 depicts the performance of SeisSol-proxy obtained on Nvidia A100 GPU using
the graph-based and stream-based (the baseline) execution models. As expected, the
former considerably increases the average GPU performance (by approximately 50%)
under low workloads - i.e., within the [512, 8192] range. However, starting from the
cluster size equal to 16384, the performance gain becomes indistinguishable relative to

98

6.5. Execution on Distributed Multi-GPU Systems

the baseline; the performance increased by only 0.5% within the [16384, 524288] range on
average.

51
2

10
24

20
48

40
96

81
92

16
38
4

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

0

2

4

6

8

10

Number of Elements

SP
-T

FL
O
P/

s

stream-based
graph-based

Figure 6.26.: Comparisons of the graph-based and stream-based execution models applied
to SeisSol-proxy on Nvidia A100 GPU.

In general, the graph-based execution model may benefit many applications in the context
of strong scaling because, in this case, all parallel regions become smaller at each scaling
step. In SeisSol, the model would additionally increase hardware performance because of
LTS, which entails the presence of small time-clusters (see Fig. 4.4).

1 2 4 8 16 32 64
64
128
256
512

1024
2048
4096

Node Count

SP
-T

FL
O
P/

s

stream-based
graph-based
ideal

Figure 6.27.: Comparisons of the graph-based and stream-based execution models during
strong scaling of the LOH.1 benchmark on the Selene supercomputer. The
mesh shown in Fig. 6.20 was used during the experiment.

Fig. 6.27 compares the strong scaling performance of the stream- and graph-based
execution models applied to SeisSol’s wave propagation solver. The D-D message-passing
configuration, discussed in Section 6.5.1, was used in the experiment as the best-performing
one on the Selene supercomputer. The experiment was conducted using the same mesh

99

6. Implementation of Elastic Wave Propagation

as in Section 6.5.1 to demonstrate the accumulative improvement of the strong scaling
performance of SeisSol on distributed multi-GPU systems. The obtained results match
the behavior observed in Fig. 6.26. No considerable differences in performance between
the two models can be observed during the first phase of the experiment - i.e., scaling
from 1 to 8 nodes - because time-clusters in each sub-domain have enough work to hide
kernel launching overheads. However, the two lines begin to deviate when the number of
nodes reaches 16. The most noticeable improvement can be observed at the last scaling
interaction - i.e., on 64 Selene nodes (512 A100 GPUs). The difference in performance
between the graph- and stream-based executions reaches approximately 40%. The parallel
efficiency of the former achieves about 53% at the end of the experiment.

At the moment of writing, the latest AMD ROCm software stack (i.e., version 5.4) provided
limited support for the graph-based execution model. Therefore, performing a similar
analysis was impossible on AMD GPUs.

6.5.3. Influence of LTS clustering on Strong Scaling

A cluster-wise LTS scheme splits mesh elements into sub-sets and updates each with its
optimal time integration step width. This approach may drastically reduce the time-to-
solution of a simulation by reducing redundant computations. However, as mentioned
in Section 3.5, this LTS scheme shrinks parallel regions. Some clusters may fall into a
low computational throughput region of a processor, affecting the overall performance.
The problem may intensify during strong scaling when more and more clusters fall to the
low throughput region due to mesh partitioning. As shown in Fig. 6.10, computational
characteristics of CPUs and GPUs significantly differ under SeisSol-specific workloads.
According to the experiment, the computational throughput of CPUs is almost independent
of the problem size compared to GPUs, which experience a prominent performance drop
under low workloads. In this section, I investigate the influence of LTS clustering on
strong scaling performance.

Eq. 6.11 gives the average performance P̄ of a processor for computing N in-order tasks.

P̄ =

∑N
i=1Wi∑N
i=1 τi

=

∑N
i=1 τi · Pi∑N
i=1 τi

(6.11)

where Wi - work of the i-th task; τi - time spent on computing the i-th task; Pi is the
computational throughput of a processor while operating on the i-th task;

The specifics of LTS tasking must be considered when applying Eq. 6.11. In the following,
I refer to any time instance when the last time-cluster gets updated as a synchronization
point because, at this moment, all time-clusters are guaranteed to be in sync (see Fig. 4.2).
The total time τ̄l spent on updating the l-th time-cluster between two synchronization
points can be computed as

τ̄l = rL−l−1 · τl (6.12)

100

6.5. Execution on Distributed Multi-GPU Systems

where τl is the time spent on a single update of the l-th time-cluster; r is the given update
ratio for the LTS scheme (see Section 4.4); and L is the total number of time-clusters.

The average performance of the LTS scheme can be obtained by applying Fig. 6.12 to Fig.
6.11, which yields

P̄ =

∑L−1
l=0

(
rL−l−1 · τl · Pl

)
∑L−1

l=0

(
rL−l−1 · τl

) =
L−1∑
l=0

ωl · Pl (6.13)

where Pl is the computational throughput of a processor resulting from processing the
l-th time-cluster; and ωl is the performance weight of the l-th cluster, which is given by

ωl =
rL−l−1 · τl∑L−1
l=0 r

L−l−1 · τl
(6.14)

Fig. 6.28 depicts an evolution of performance weights during strong scaling, computed
according to Eq. 6.14. The results were obtained by taking the LTS clustering from Fig.
6.20, and the computational throughput and timing data obtained using SeisSol-proxy
on AMD MI250x GPU (see Fig. 6.10). The data between measured points were linearly
interpolated. The partitioning is modeled by dividing each original time-cluster size by a
scaling factor, mimicking equal partitioning of the time-clusters between processors.

As can be seen, the performance of the last two clusters - i.e., clusters 3 and 4 - does not
noticeably impact the overall performance of the LTS scheme because of their less frequent
update rates and, as a result, low weights. The second cluster’s weight contributes the
most to the performance of LTS. However, once the scale factor exceeds a value of 32,
it begins to drop drastically while the weight of the first cluster starts increasing. At
this moment, all scaled time-clusters get shifted to the low throughput region. When the
scaling factor gets equaled to 512, the performance of the first cluster, which becomes
very low (i.e., approximately 0.4 SP-TFLOP/s), constitutes almost 20% of the overall
performance because of its significantly increased weight.

A combination of the obtained data (shown in Fig. 6.28) and Eq. 6.13 can be used to
estimate the Ideal Parallel Efficiency (IPE) of the LTS scheme during strong scaling for
a given clustering and characteristics of a processing unit. In Fig. 6.29, I compare it
with the Measured Parallel Efficiency (MPE) obtained during scaling the LOH.1 scenario
on MI250x GPUs (on LUMI). The scale factor 8 was chosen as the baseline for IPE to
match a single LUMI node which has 8 GPU dies and, thus, requires 8 MPI processes per
node. The IPE excludes the presence of a single kinematic point source, load imbalance,
communication, differences in partitioning, etc., in contrast to the real scenario; thus, it
should be considered the upper bound for the strong scaling LTS performance.

According to Fig. 6.29, even the IPE reaches only 62.5% on 64 nodes (scaling factor 512)
under the given conditions. The difference between IPE and MPE is approximately 19.5%
at this scaling level, or the same may be interpreted as if SeisSol’s parallel efficiency is
about 68.3% relative to the upper bound.

I continue the study using a set of wave propagation scenarios with different artificially
enforced LTS configurations using the LOH.1 setup as the basis. A single computational

101

6. Implementation of Elastic Wave Propagation

1 2 4 8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

Scale Factor

W
ei
gh

ts
cluster 0 cluster 1 cluster 2 cluster 3 cluster 4

51
2

10
24

20
48

40
96

81
92

16
38

4
16

38
4

32
76

8
65

53
6

13
10

72
26

21
44

52
42

88

0

1

2

3

4

5

6

Number of Elements

SP
-T

FL
O
P/

s

Scaling Factor - 32

cluster 0
cluster 1
cluster 2
cluster 3
cluster 4
measured
average

51
2

10
24

20
48

40
96

81
92

16
38

4
16

38
4

32
76

8
65

53
6

13
10

72
26

21
44

52
42

88

0

1

2

3

4

5

6

Number of Elements

SP
-T

FL
O
P/

s

Scaling Factor - 512

cluster 0
cluster 1
cluster 2
cluster 3
cluster 4
measured
average

Figure 6.28.: Evolution of performance-weights of LTS time-clusters during strong scaling.

mesh, consisting of 20 million elements, was used for all tests. The mesh was generated in
two steps. Firstly, an equidistant cartesian mesh was generated inside a cuboid domain
with the longest dimension along the z-axis. Secondly, each cubic element was split into
five almost equal tetrahedrons. An example of such a mesh is shown in Fig. 6.30. A
particular LTS clustering was enforced through the material parameters - i.e., λ, µ, and ρ
(see Section 2.1) - which affected the primary propagation velocities. That allowed me to
control the CFL condition inside each mesh element and, thus, helped to build 6 different
LTS configurations, depicted in Fig. 6.31. The clusterings are sorted in ascending order
relative to the amount of work required to simulate the wave propagation processes for 1
second in SeisSol using the convergence order equal to 6.

As can be seen, the LTS Type 1 configuration results in the least work because the largest
cluster - i.e., cluster 4 - which constitutes the bulk of the domain, has the lowest time
update rate. The first cluster is the smallest one, containing only 12500 mesh elements, and
is updated the most frequently. Therefore, this configuration should be the best regarding
time-to-solution. However, based on the outcome of the previous discussion, one may
expect that it will be the worst regarding strong scaling performance. The LTS Type 6 is
completely the opposite. The bulk of the domain is concentrated in the first time-cluster.

102

6.5. Execution on Distributed Multi-GPU Systems

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

Node Count

Pa
ra
lle

lE
ffi
ci
en

cy

ideal
measured

Figure 6.29.: Ideal and measured parallel efficiency during strong scaling of the LOH.1
scenario on AMD MI250x GPU.

Z

Y

X

Figure 6.30.: LOH.1 geometry with parametrized LTS clustering.

Sizes of subsequent clusters get gradually reduced while moving toward the right side.
Despite being the largest in terms of the required work, one may expect this scenario to
scale well because its first cluster will stay longer in the high computational throughput
region within the entire scaling range. Moreover, in this case, the low performance of
other individual clusters will contribute little to the resulting performance because of their
relatively small weights. The LTS Type 2 models a scenario when the first time-cluster
contains a tiny subset of elements while the rest are distributed equally among other
clusters. Type 4 is opposite to the second LTS configuration and was added just for the
symmetry. The LTS Type 3 models a scenario when the most significant part of the
domain is concentrated in the middle cluster and then gradually reduces towards both
ends. The last proposed scenario - i.e., Type 4 - equally distributes mesh elements among
all time-clusters. The results of scaling the GTS scheme applied to the Type 1 scenario
are added to the plots for comparison. As can be seen from Fig. 6.30, the GTS scheme
results in 6.2 times more work than the one produced by the cluster-wise LTS scheme.

103

6. Implementation of Elastic Wave Propagation

0 1 2 3 4
12500

2e+6

4e+6

6e+6

8e+6

10e+6

Time-Cluster, l

El
em

en
ts

C
ou

nt
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

(a) A test set of different elements distributions among LTS time-clusters.

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 GTS
0.0e+8
0.5e+8
1.0e+8
1.5e+8
2.0e+8
2.5e+8
3.0e+8
3.5e+8

LTS Configurations

To
ta
lW

or
k,

FL
O
P

(b) Total works required for performing a 1-second simulation in SeisSol for each LTS type.

Figure 6.31.: Tested LTS configurations.

Fig. 6.32 aggregates the results obtained while scaling the abovementioned scenarios on
the LUMI supercomputer. As expected, the simulation subjected to the GTS scheme
demonstrates the best scalability and the worst run-time performance. On 64 nodes, each
MPI process contains approximately 39062 elements in this single cluster configuration,
which results in about 92% of the maximal single GPU throughput obtained with SeisSol-
proxy. The GTS parallel efficiency is close to 70% at this scale, which results in almost
1.8 SP-PFLOP/s of the aggregated GPU performance. As predicted, the best-performing
LTS configuration belongs to the Type 6, which reaches close to 1.3 SP-PFLOP/s on
64 LUMI nodes due to relatively good parallel efficiency - i.e., 53%. The LTS Type 1
configuration demonstrated the worst strong scaling performance, reaching only ≈ 0.6
SP-PFLOP/s at the maximum scale. In this case, the parallel efficiency achieves only ≈
23.5%. Nevertheless, this scenario is still 2 times faster compared to the execution of the
same setup using GTS. Despite very low parallel efficiency, LTS significantly outperforms
the GTS scheme regarding time-to-solution because of its high algorithmic speedup.
However, this may not hold for other LTS configurations at a very large scale - e.g., Type
6. However, configurations like Type 6 are rare for many real earthquake scenarios.

104

6.5. Execution on Distributed Multi-GPU Systems

1 2 4 8 16 32 64
32

64

128

256

512

1024

2048

4096

Node Count

SP
-T

FL
O
P/

s

Type 1 Type 2
Type 3 Type 4
Type 5 Type 6
GTS ideal

(a) Strong scaling performance.

1 2 4 8 16 32 64
0.0

0.2

0.4

0.6

0.8

1.0

Node Count

Effi
ci
en

cy

Type 1 Type 2
Type 3 Type 4
Type 5 Type 6
GTS

(b) Parallel efficiency.

1 2 4 8 16 32 64
64

128

256

512

1024

2048

4096

8192

Node Count

El
ap

se
d
T
im

e,
se
c

Type 1 Type 2
Type 3 Type 4
Type 5 Type 6
GTS

(c) Time-to-solution.

Figure 6.32.: Strong scaling of different LTS clustering configurations on the LUMI super-
computer.

105

6. Implementation of Elastic Wave Propagation

The reader can observe two important correlations from the obtained results shown in Fig.
6.31 and Fig. 6.32. The first and the most obvious one is that time-to-solution positively
correlates to the imposed work. According to the experiments, this statement holds even
at a large scale when the parallel efficiency of some LTS configurations drastically drops.
The second one relates to the size of the most frequently updated time-cluster, which
positively correlates to the resultant strong scaling efficiency.

The outcome of this study suggests two possible approaches to improve SeisSol’s strong
scaling performance on distributed multi-GPU systems for real production scenarios. The
first one is related to the mesh generation process, which is a part of the pre-processing step.
For example, skewed tetrahedrons can be avoided if smoother mesh transitioning regions
are applied at the borders between refinement regions and the bulk of a computational
domain. Skewed elements tend to impose very small time integration step width due
to very small inner radiuses, which can negatively affect clustering. Additionally, the
user may consider rounding the used CAD geometry at places where two fault planes
merge into a single one. Usually, the planes meet at very sharp angles, which may force a
mesh generator to produce very small mesh elements in such zones. A slightly modified
geometry can still lead to realistic modeling of earthquakes and simultaneously result in
better LTS clustering and, thus, better performance. These techniques can also be applied
while dealing with complex topological geo-data applied to a free surface. Rounding and
smoothing a CAD geometry can remove sudden changes in elevation - e.g., due to steep
hills or sharp cliffs - and, thus, improve the resulting mesh quality. A relatively slight
increase in the element count and, thus, work can be compensated by better strong scaling
GPU performance if the abovementioned changes applied during the meshing process
result in better LTS clustering. However, generating a mesh consisting of several hundred
million elements is a challenging process that can only be done on distributed-memory
systems and typically takes considerable time and effort. Thus, the application of the
abovementioned ideas to a real problem can be cumbersome for the end users.

The second approach can take advantage of the specifics of the LTS time-clusters scheduling
in SeisSol. From Fig. 4.2, the reader can observe that, at some sub-steps, immediate
neighboring clusters reach intermediate sync points. In such situations, the corresponding
tasks become independent and, thus, may be executed concurrently. Such tasks could
be merged into a single one, which would be larger regarding the number of elements.
According to Fig. 6.28, the execution of such merged tasks would result in higher
computational throughput on GPUs - i.e., due to the increased size. The proposed
approach would also reduce the number of individual updates of the first time-cluster by
r
r−1 times and, thus, its resulting performance weight, which, as shown above, tends to
grow during strong scaling. However, an implementation of the proposed idea may entail
significant changes in SeisSol’s source code. Hence, it is not considered in this work, but
it is highly recommended for any follow-up study.

106

6.5. Execution on Distributed Multi-GPU Systems

6.5.4. Enchanted Mesh Partitioning in SeisSol

In [30], I could not perform the intended weak scaling analysis of the first GPU implemen-
tation of SeisSol on the Marconi 100 supercomputer, equipped with 4 Nvidia V100-SXM2
GPUs per node. Executions of some parallel processes got aborted because the requested
amount of memory exceeded the physical limit - i.e., 16 GB per GPU. The follow-up
investigation showed that the problem occurred because of the original mesh partitioning
approach, discussed in Section 4.4, which was focused only on LTS-specific work balancing.
The approach assumed that the high memory capacity of modern HPC CPU systems
could overcome any resulting memory imbalance. In this section, I present two extended
versions of the algorithm that can simultaneously balance both work and memory. The
enhanced versions helped to complete the weak scaling analysis of SeisSol on Marconi
100. Unfortunately, the Marconi 100 system was decommissioned at the moment of
writing; therefore, the results presented in this section had to be obtained on a different
supercomputer - i.e., LUMI.

Both enhanced versions are based on multi-constraint mesh partitioning applied to vertex
weights. The first one, called “Balanced Work and Memory” (BWM), adds a constant
value of 1 as the second vertex weight to Eq. 4.9. Together, it can be expressed as follows

wm =

[
rL−l−1

1

]
(6.15)

where wm ∈ R2.

The allowed load imbalance for the second weight is set to a higher value (i.e., 1.05) than
the imbalance for the first one (i.e., 1.01) to favor better work balancing and less constrain
the graph partitioner after uncoarsening steps.

The second version of the algorithm, called “Encoded” (E), sets a binary vector of length
L to each graph vertex, where L is the total number of time-clusters. All vector elements
are initially set to zero except for the one with index l. This vector element is set to 1
and relates to time-cluster l to which the corresponding mesh element belongs. This can
be written as follows

wim =

{
1, if i = l

0, otherwise
(6.16)

where wm ⊂ {0, 1}L; and i is the binary vector index such that i ∈ [0, L).

In this case, the allowed load imbalance for each constraint is set to 1.05. This mesh
partitioning approach aims to distribute all time-clusters equally between processors. It is
worth pointing out that this version does not operate on the definition of work in contrast
to Eq. 4.9 and Eq. 6.15.

The LOH.1 scenario with a 5 million elements mesh, taken from work [30], is used
to demonstrate the difference between the abovementioned partitioning versions. The
resulting LTS clustering is shown in Fig. 6.33a.

107

6. Implementation of Elastic Wave Propagation

0 1 2 3 4 5

101
102
103
104
105
106
107
108

Time-Cluster

El
em

en
t
C
ou

nt

(a) Distribution of 5 million elements used for the LOH.1 test scenario among 6 LTS time-clusters.

0 1 2 3 4 5 6 7
0

0.5

1

1.5
·106

Parition, p

El
em

en
ts

C
ou

nt

cluster 0 cluster 1

cluster 2 cluster 3

cluster 4 cluster 5

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

W
or
k,

%work

(b) Balanced Work.

0 1 2 3 4 5 6 7
0

0.5

1

1.5
·106

Parition, p

El
em

en
ts

C
ou

nt

cluster 0 cluster 1

cluster 2 cluster 3

cluster 4 cluster 5

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

W
or
k,

%work

(c) Balanced Work and Memory.

0 1 2 3 4 5 6 7
0

0.5

1

1.5
·106

Parition, p

El
em

en
ts

C
ou

nt

cluster 0 cluster 1

cluster 2 cluster 3

cluster 4 cluster 5

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

W
or
k,

%work

(d) Encoded.

Figure 6.33.: Comparison of different variants of the mesh partitioning algorithm applied
to the LOH.1 test scenario.108

6.5. Execution on Distributed Multi-GPU Systems

2 4 8 16 32 64 128

8
16
32
64

128
256
512

Number of Graphics Complex Dies (AMD MI250x)

SP
-T

FL
O
P/

s

balanced work balanced work & memory encoded

(a) Strong scaling.

2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1
·105

Number of Graphics Complex Dies (AMD MI250x)

Ed
ge
-C

ut

balanced work balanced work & memory encoded

(b) Edge-cut statistics.

Figure 6.34.: Influence of different mesh partitioning versions on SeisSol’s strong scaling
performance.

As shown in Fig. 6.33b, the original mesh partitioning approach, called “Balanced Work”
(BW), results in a very high deviation in distributing mesh elements between processors.
In this case, the third processor obtains approximately 2.8 times more elements than the
others, leading to a very high memory imbalance - i.e., approximately 2.3. The situation
drastically changes once the BWM version of the algorithm gets applied to the same
scenario (see Fig. 6.33c). The memory imbalance significantly drops and reaches a value
of 1.025. However, in this case, the mesh partitioner had to automatically increase the
imposed work imbalance by approximately 1.5% in order to succeed. As shown in Fig.
6.33d, the “Encoded” mesh partitioning version also results in good work and memory
balance. As in the previous case, the partitioner automatically raised the imposed work
imbalance (≈ 1.4%). The reader can observe that, in the last case, time-clusters get
equally distributed among all processors, which is very noticeable compared to the other
two cases.

Fig. 6.34 demonstrates how each abovementioned version of the mesh partitioning
algorithm affects the parallel execution of SeisSol on distributed-memory systems. The
most noticeable differences are observed in the median values of the edge-cut, which

109

6. Implementation of Elastic Wave Propagation

determine how well partitions are connected. Usually, a lower edge-cut value implies less
inter-process communication. As shown in Fig. 6.34b, the BW version leads to the lowest
edge-cut values within the entire scaling range. Then, the E version follows. In this case,
one can observe the smallest deviations of the metric from their corresponding median
values, which become very noticeable once the number of GPUs exceeds 32. The BWM
version demonstrates the highest edge-cut values in all conducted experiments. It means
that, in this case, the partitioner could not achieve good connectivity between sub-domains.
Moreover, according to the statistical data shown in Fig. 6.34b, one can determine that
the BWM version leads to high communication imbalances due to high deviations of the
edge-cut. Nevertheless, according to Fig. 6.34a, SeisSol’s strong scaling performance
does not change much while switching between different partitioning variants for the used
LOH.1 scenario. This could be a result of good communication hiding achieved using
asynchronous data exchange between processes while having enough work to process.

Apart from performing weak scaling studies of SeisSol, which are mainly used for per-
formance engineering, the outcome of this study can be used in practice to model larger
earthquake simulations on a limited number of CPUs or GPUs. It may be especially useful
when a user’s supercomputing project is restricted to a small subset of computational
resources. In this case, a user can switch to one of the enhanced versions of the mesh
partitioning algorithm and obtain the desired numerical results without re-meshing a
target domain, which may take several iterations and, thus, a lot of time and effort.

6.5.5. LTS Weak Scaling

This section presents the weak scaling study of SeisSol on the LUMI supercomputer, which
aims to assess the communication and synchronization overheads as the wave propagation
problem scales up. For this purpose, a set of computational meshes were generated using the
approach described in Section 6.5.3 - i.e., splitting each element of an initial cartesian mesh
into five tetrahedrons. This approach, combined with the “Encoded” mesh partitioning
strategy (see Eq. 6.16), helped to preserve almost equal work distribution between GPUs
during scaling and, thus, avoid computational or communication imbalance as much as
possible. The initial domain of the LOH.1 scenario was set to 25km × 25km × 400km,
which was doubled along only the x and y dimensions at each subsequent weak scaling
iteration. All generated meshes had the same relative LTS clustering inherited from the
experiment shown in Fig. 6.20a. In this experiment, the first scaling iteration involved
only intra-node communication because it was performed on 4 AMD MI250x GPUs located
on a single node. After that, slower inter-node communication between GPUs gradually
increased.

The results are depicted in Fig. 6.35 and show an excellent weak scaling performance
of SeisSol within the entire test range. The parallel efficiency on 256 nodes (2048 MPI
processes or 1024 AMD MI250x GPUs) achieves about 96%, resulting in approximately
10.5 SP-PFLOP/s. The average workload per GPU was enough to overlap the involved
communication well. However, the initial work imbalance, computed based on the elapsed

110

6.6. Source Code Portability

1
5e6

4
20e6

16
80e6

64
320e6

256
1280e6

32
64

128
256
512
1024
2048
4096
8192

16384

Node Count and Mesh Size

SP
-T

FL
O
P/

s

measured ideal

(a) Weak scaling performance.

1
5e6

4
20e6

16
80e6

64
320e6

256
1280e6

0.0

0.2

0.4

0.6

0.8

1.0

Node Count and Mesh Size

Effi
ci
en

cy

(b) Parallel efficiency.

Figure 6.35.: Weak scaling of the LOH.1 test scenario on the LUMI supercomputers.

time of each process and equal to 4%, gradually grows, reaching 6.3% in the end, despite
the used meshing technique and partitioning strategy discussed above.

6.6. Source Code Portability

As discussed in Section 6.3.2, higher performance of the generated GEMM kernels is
obtained using platforms’ native compilers - i.e., nvcc, amdclang. It is also preferable to
use the native SDKs to access some advanced GPU programming features to get better
control for managing GPU’s resources. This can be achieved by adding some portability
layer to SeisSol and abstracting some commonly used algorithms.

CUDA and HIP are C-APIs and are syntactically close to each other. For them, the
source code portability can be obtained using C-macros. However, SYCL - i.e., a native

111

6. Implementation of Elastic Wave Propagation

Client

<<interface>>
Device

- Device()
+ getInstance()
+ allocMem(...)
+ freeMem(...)
+ copyTo(...)
+ copyFrom(...)
...

CUDA
+ allocMem(...)
+ freeMem(...)
+ copyTo(...)
+ copyFrom(...)
...

HIP
+ allocMem(...)
+ freeMem(...)
+ copyTo(...)
+ copyFrom(...)
...

SYCL
+ allocMem(...)
+ freeMem(...)
+ copyTo(...)
+ copyFrom(...)
...

uses
1

contains

Figure 6.36.: The unified application programming interface in SeisSol - i.e., Device API.

programming model for Intel GPUs - is based on object-oriented programming and has
many differences regarding device representation, management, and control relative to
CUDA/HIP.

In SeisSol, I solved this problem by generalizing CUDA, HIP, and SYCL APIs and
providing a unified programming interface - called Device API. This approach combines
the advantages of the Adapter and Facade design patterns. As the Adapter, Device allows
the user - i.e., SeisSol - to work with incompatible interfaces in a unified manner and,
thus, seamlessly switch between GPU programming models if needed. As the Facade,
the unified interface includes only those components that are practically needed for the
client. This design helps to encapsulate and hide low-level details from the user - e.g.,
device selection, stack memory management (see Section 6.1), stream pool (see Section
6.4), error checking, etc. For APIs like CUDA/HIP, the wrapper adds a state that can
be used to collect statistical data. Moreover, Device can be extended with other GPU
programming models - e.g ., OpenMP, OpenACC - on demand if they provide the same
functionality as specified by the interface.

As shown in Fig. 6.36, each GPU programming model is implemented as a sub-class of the
abstract Device interface. A concrete implementation can selected only at compile-time.
In SeisSol, the Device interface is implemented as the Singelton, which provides a single
global access point to the unified API. This approach mimics CUDA and HIP C-APIs,
which can be called from any place of a source code without any object’s context.

The combination of code generation and Device API allows SeisSol’s users to seamlessly
switch between different programming models for the wave propagation solver. For

112

6.6. Source Code Portability

51
2

10
24

20
48

40
96

81
92

16
38
4

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

0

0.5

1

1.5

2

2.5

3

Number of Elements

SP
-T

FL
O
P/

s

CUDA (v11.6)
DPC++ (sha 09fb3424)
OpenSYCL-nvc++ (v22.11)
OpenSYCL-LLVM (v14.0.0)

Figure 6.37.: Performance of SeisSol-proxy on Nvidia RTX 3080 Turbo GPU using different
GPU backends.

example, Fig. 6.37 depicts results obtained with SeisSol-proxy on a single Nvidia RTX3080
Turbo GPU using CUDA and SYCL backends. In this experiment, I demonstrate how
different implementations of SYCL perform relative to CUDA. Because the experiment
was conducted on Nvidia hardware, CUDA implementation of the wave propagation solver
is considered the baseline. At the moment of writing, ChainForge did not support SYCL;
therefore, I used GemmForge as YATeTo’s GPU backend.

As can be seen, Intel’s implementation of SYCL (i.e., DPC++) shows much better
results compared to other implementations of the standard; the average performance
is only ≈ 12.4% lower than the baseline. The used open-source implementation of
SYCL (i.e., OpenSYCL5 [5] version 0.9.4) relies on a compiler backend for generating
intermediate GPU code, which is later translated to concrete machine instructions (see
Section 5.2). Regarding Nvidia GPUs, OpenSYCL can issue the intermediate PTX code
using either LLVM or nvc++, a proprietary Nvidia C++ compiler. The OpenSYCL-LLVM
configuration shows the worth results compared to the others, achieving only ≈ 57%
of the baseline performance within the entire test range. This may indicate that the
resultant PTX code generated by LLVM was less optimized during compilation than the
one produced by DPC++. The performance obtained with OpenSYCL-nvc++ is close to
the one obtained with DPC++ under high workloads. However, it beings to drop rapidly
when the workload gets reduced. The results of both OpenSYCL configurations become
indistinguishable within the [512, 2048] range. This outcome suggests that the OpenSYCL
implementation results in higher kernel launching overheads compared to DPC++, which
may be induced by its complex event-driven mechanism used in the SYCL Queue class.

5 The OpenSYCL project was renamed to AdaptiveCpp.

113

6. Implementation of Elastic Wave Propagation

The results shown in Fig. 6.37 were obtained using the same versions of SeisSol, Device,
YATeTo, and GemmForge compiled 4 times for different tested GPU configurations. The
experiment additionally shows the source code portability of SeisSol to different GPU
programming models and, thus, to different platforms. As shown in Fig. 6.10 and Fig.
6.11, the generated GPU code results in high GPU performance on both Nvidia and AMD
platforms. The introduced changes shown in this chapter do not degrade the original high
CPU performance of SeisSol. Therefore, it also demonstrates the performance portability
of SeisSol between CPU and GPU computing platforms.

It is worth mentioning the similarities of the resulting software architecture with the
key idea of the RAJA project [9, 69] - i.e., the separation of the computational and
device management abstractions. Similar to the RAJA library, YATeTo only acts as the
performance portable layer through which all computations are expressed in SeisSol’s wave
propagation solver. Meanwhile, the Device API abstracts the GPU resource management
in SeisSol and, thus, acts similarly to the Umpire library [10] in RAJA applications. In
general, the Device API can be replaced with RAJA and Umpire libraries, which may
reduce the cost of the source code maintenance in SeisSol. However, it can only be done
once SYCL support is added to RAJA, which is still under development at the moment
of writing. In this case, RAJA would be used to substitute some commonly used GPU
algorithms in SeisSol - e.g., parallel reduction - which are currently embedded into the
Device API.

6.7. Verification and Convergence Study

The analytical solution of plane waves can be found in the following form

Qp(x, t) = ape
i(ωt−k·x) (6.17)

where ap ∈ C9 is vector of amplitudes of the physical quantities - i.e., σ11, σ22, σ33, σ12,
σ23, σ13, u1, u2, u3; ω ∈ C is the angular frequency; k ∈ R3 is the wave direction; and i is
the imaginary unit.

Given the wave direction k and material properties, the vector of amplitudes ap and
angular frequency ω can be found by plugging Eq. 6.17 into Eq. 2.8, which yields the
following eigenvalue problem

Wpqaq = ωap (6.18)

where Wpq is a so-called plane-wave operator, equaled to k1Apq + k2Bpq + k3Cpq.

Thus, the plane wave solution at any arbitrary point in time t can be found using Eq.
6.17, taking an eigenpair of the plane-wave operator as the angular frequency and vector
of amplitudes. A solution found in this way is a vector of complex numbers which may be
difficult to compare with numerical results. However, due to the linearity of the underlying
system of PDEs, a new solution can be built using a linear combination of Eq. 6.17 with

114

6.7. Verification and Convergence Study

its conjugate (see Eq. 6.19).

Qp(x, t) =
1

2

(
ape

i(ωt−k·x) + ape
−i(ωt−k·x)

)
= Re

(
ape

i(ωt−k·x)
)

(6.19)

The substitution of Eq. 6.19 to Eq. 2.8 results in the same plane-wave operator as in Eq.
6.18 and, thus, requires the same eigenpairs. Each pair satisfies Eq. 2.8 and represents an
individual wave. As shown in Eq. 6.20, a complete analytical solution can be obtained as
a superposition of individual ones.

Qp(x, t) =
∑
j∈J

Re
(
vpje

i
(
ωjt−k·x

))
(6.20)

where J is a set of eigenpairs of the plane-wave operator Wpq; and (ωj , vpj) is the j-th
eigenvalue pair.

A solution to the plane wave problem implies the infinite domain. However, as shown in
[114], it can also be mapped into a unit cube domain using periodic boundary conditions
if the wave direction vector is scaled appropriately.

Comparisons of numerical and analytical solutions of the plane wave problem are shown
in Fig. 6.38. The experiment was conducted on a single AMD MI250x GPU, testing
the accuracy of numerical solutions using maximal polynomial degrees N ranging from 1
to 5 and the single- and double-precision floating-point formats. The following material
parameters were used: ρ = 1, µ = 1 and λ = 2. The wave vector k pointed to (π, π, π)
direction.

1
64

1
32

1
16

1
8

1
4

1e-0

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

Mesh Spacing, h

L
2
er
ro
r,
σ
2
2

Single-Precision (SP)

N = 1
N = 2
N = 3
N = 4
N = 5

1
64

1
32

1
16

1
8

1
4

1e-0

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

Mesh Spacing, h

L
2
er
ro
r,
σ
2
2

Double-Precision (DP)

N = 1
N = 2
N = 3
N = 4
N = 5

 3

Figure 6.38.: Convergence analysis of the GPU implementation of SeisSol’s elastic wave
propagation solver.

The convergence of numerical solutions was tested using a set of computational meshes,
gradually refined by a factor of 2 along each dimension for each subsequent iteration. The

115

6. Implementation of Elastic Wave Propagation

Table 6.3.: Average empirical convergence orders of the σ22 variable obtained while simu-
lating the plane waves with SeisSol on AMD MI250x GPU using the double-
precision floating-point format.

Maximum polynomial
degrees, N 1 2 3 4 5

Average empirical
convergence order, Oe

2.03 3.04 3.82 5.03 5.89

mesh generation process consisted of two steps. Initially, a cartesian mesh was generated
by dividing each domain edge into an appropriate scale factor - i.e., 4, 8, 16, 32, 64. Then,
each cubic element was split into five almost equal tetrahedrons. Analytical and numerical
solutions were compared after 0.5 seconds of each simulation at (N + 2)3 points in each
tetrahedron, defined by the conical product of the one-dimensional Gauss-Jacobi formula
(see [106]).

As can be seen, the most precise numerical solution was obtained with the double-precision
floating-point format and the imposed converge order 6. The L2 error of the σ22 variable
resulted in approximately 1.7e− 11 while using the mesh with the highest resolution.

Table 6.3 shows the empirical convergence order derived from Fig. 6.38 using Eq. 6.21
regarding the double-precision floating-point format. As can be seen, the order matches
N + 1, which is expected according to [53].

ÕL2 = log2

Errorhi−1

L2

ErrorhiL2

 (6.21)

where hi denotes mesh spacing such that higher values of i correspond to finer meshes.

In Fig. 6.38, one can also notice that the error is bound to approximately 5e− 06 when
the single-precision floating-point format is used regardless of the imposed mesh spacing
and the polynomial degree. This behavior matches the results obtained on x86 CPU
platforms by Uphoff and Breuer in [114] and [13], respectively.

Fig. 6.39 demonstrates the performance of SeisSol-proxy configured with different poly-
nomial degrees and the floating-point formats. The results were obtained using a fixed
number of elements. One can observe that the performance grows almost linearly relative
to the maximum polynomial degree because the resulting matrix sizes become larger, and,
thus, the generated code better exploits all GPU memory sub-systems. Combining the
outcomes shown in Fig. 6.38 and Fig. 6.39, one can conclude that a user may only benefit
from the single-precision format and high polynomial degree when using coarse meshes.
This configuration may be helpful while working on prototyping an earthquake scenario.
Otherwise, it wastes energy because, in this case, higher computational efforts do not
increase numerical accuracy.

116

6.8. Discussion

0 1 2 3 4 5 6

1

2

3

4

5

SP-TFLOP/s

Po
ly
no

m
ia
lD

eg
re
e,
N

performance

0 30 60 90 120 150

Elapsed Time, sec

time

(a) Single-Precision (SP)

0 1 2 3 4 5 6

1

2

3

4

5

SP-TFLOP/s

Po
ly
no

m
ia
lD

eg
re
e,
N

performance

0 30 60 90 120 150

Elapsed Time, sec

time

(b) Double-Precision (DP)

Figure 6.39.: Performance of SeisSol-proxy on AMD MI250x GPU regarding different max-
imal polynomial degrees N and the floating-point formats. The experiment
was conducted with a fixed number of mesh elements equaled to 524288.

6.8. Discussion

The chapter presents various implementation details of the GPU version of SeisSol’s wave
propagation solver. The discussion contains several major topics: 1) code generation of
high-performance GPU kernels, 2) source code and performance portability and 3) the
analysis of strong scaling performance of the LTS algorithm on distributed multi-GPU
systems.

The outcome of this study shows that the portability of HPC applications (e.g., SeisSol) can
be conveniently achieved through an intermediate software layer - i.e., code generation. The
layer establishes the separation of concerns, which, in general, enhances the maintainability
and modifiability of software. Theoretically, software can be re-targeted to a new platform
without any (or with little) changes in the high-level source code. If computations are
properly abstracted, re-targeting may be performed even by a different team of developers
who may have no or little knowledge about the main application domain. This approach
has proven itself in all major Artificial Intelligence (AI) frameworks (e.g., PyTorch,
TensorFlow) and resulted in many so-called graph compilers (e.g., TVM, XLA). However,
at this moment, the approach is not so common in scientific computing because the area
is too broad.

This work clearly shows that the original intermediate code representation, established by
the YATeTo DSL, was insufficient to handle massively parallel systems (e.g., GPUs). The
original DSL design aimed to generate highly efficient code for computational sub-tasks,
leaving task decomposition to the host application (e.g., SeisSol, tandem6). The CPU-like

6 https://github.com/TEAR-ERC/tandem

117

https://github.com/TEAR-ERC/tandem

6. Implementation of Elastic Wave Propagation

computing model is flexible because it allows users to perform a mixed sub-task execution
- i.e., to schedule and execute sub-tasks of different kinds. However, modern heterogeneous
programming models are more restrictive since they only consider the SIMD-like program
execution. In this model, a computational kernel describes all sub-tasks of a task, which
are applied to different pieces of data. This restriction forced me to reconsider the
original task decomposition in SeisSol and introduce batched computations in YATeTo to
accommodate heterogeneous computing.

The technique discussed in Section 6.3.2 extends the DSL further. As shown in this
study, the average GPU performance of the ADER-DG method can be improved by more
than 35% by fusing subsequent batched GEMM kernels. The idea of kernel-fusion is
not novel. Many graph compilers have successfully exploited this optimization method
for accelerating AI models for GPUs. The pattern-matching, similar to the one shown
in Section 6.3.2, is widely used for finding candidates for fusion. In contrast to the AI
graph compilers, which usually fuse a single explicit or implicit7 GEMM operation with
subsequent pointwise computations, the method proposed in this work tackles a bit more
complicated problem - i.e., a fusion of subsequent batched GEMM kernels. The outcome of
this study is limited to only GEMM operations; however, the work can be further extended
if needed. The ideas implemented in ChainForge can serve as a basis for follow-up research
and development.

Unified memory is convenient for programming heterogeneous systems. It allows a
programmer to focus solely on developing highly efficient device kernels without spending
time on writing, maintaining, and optimizing the code for host-to-device data transfers.
However, the results presented in this chapter show that it is better to use regular device
memory for MPI buffers for latency critical HPC algorithms (e.g., LTS). In this case,
the MPI runtime uses more efficient communication protocols that do not perform host-
to-device data transfers in the background. Such protocols result in minimal latency
and maximal bandwidth for point-to-point communication between accelerators (see Fig.
6.19).

Results presented in Section 6.5.2 and Section 6.5.3 suggest that computational throughput
characteristics can significantly impact the strong scaling performance of the LTS scheme
on distributed-memory systems. The parallel efficiency of the algorithm is very sensitive to
1) LTS clustering (see Fig. 6.32) and 2) the performance of a computational unit under low
and medium workloads (see Fig. 6.10). Section 6.5.3 demonstrates a simple mathematical
model that can only estimate the upper bound of the strong scaling performance for
a specific device and clustering. Because the computational throughput is non-linear
regarding the problem size, it is difficult to find a simple rule of thumb that users can utilize
to estimate the number of GPUs for a particular mesh. The conclusion of Section 6.5.3
suggests that the strong scaling performance of the LTS scheme can be algorithmically
improved by merging LTS tasks of neighboring clusters into a single one at common
synchronization sub-intervals (see Fig. 4.2). As mentioned, it will reduce the overall
number of small-sized high-frequency tasks, allowing the LTS algorithm to better exploit
the GPU hardware capabilities.

7 a variant of direct convolution through the implicit GEMM operation

118

7. Implementation of Dynamic Rupture

As discussed in Section 2.2, rock sliding along fractures in Earth’s crust generates seismic
waves that radiate in the media. The ability to simulate this process accurately is essential
for achieving realistic simulations of earthquakes. The sliding process involves friction,
which can be described by multiple friction laws.

The simulation of the dynamic rupture process is incorporated into the ADER-DG method
through a specially designed boundary condition. As shown in Fig. 3.6.3, it involves
projecting the volumetric solution inside each affected tetrahedron onto a set of Gaussian
points for which an inverse Riemann problem must to be solved at multiple time sub-
intervals. The relation between the friction coefficient and slip rate magnitude, defined
by a friction law, becomes necessary to close the resulting systems of equations. Some
models (e.g., Linear Slip Weakening) become cost-effective but require a careful choice
of parameters to achieve accurate results. Conversely, the others, which usually describe
the underlying physical process more precisely (e.g., Aging Law), results in significant
computational efforts. Finally, partial solutions at each sub-interval and each Gaussian
point must be aggregated into corresponding flux contributions and projected back to the
modal basis.

As can be seen from Eq. 2.22 and Eq. 2.23, the relations described by friction laws involve
non-linear functions. The YATeTo DSL cannot express such computations because it is
mainly designed to handle linear combinations of tensors and sequences of tensor products.
Therefore, the dynamic rupture code implementation relies on regular programming
techniques instead of code generation.

The previous attempts to adapt heterogeneous computing in SeisSol were summarized in
[50, 49], where the Intel Xeon Phi coprocessors were primarily used as accelerators. In
both works, the authors used only a single quadrature point in time, saying that it did not
negatively influence accuracy and convergence behavior. Therefore, the authors decided
to leave the dynamic rupture computations on the host, arguing that running such code
sections on the higher-clocked CPU cores was advantageous because they could better
handle 1) non-linear operations (e.g., square root, division, etc.) and 2) low computational
loads resulting from a small number of dynamic rupture elements. Moreover, in [49], the
authors admit that they could only support the dynamic rupture physics for the GTS
scheme.

This work extends the original approach in several directions. Firstly, as required by
Eq. 3.44, all O quadrature points in time are considered, which leads to more accurate
numerical results. This, however, increases the computational loads of the dynamic

119

7. Implementation of Dynamic Rupture

rupture tasks. Thus, the tasks are fully offloaded to accelerators. As a consequence, it
also eliminates the necessity of exchanging data between the host and device, which, as
mentioned in [50], can be difficult to fully overlap with other computations. Lastly, in
this work, the LTS scheme is used for the wave propagation and dynamic rupture solvers,
which adds additional acceleration to numerical simulations.

This chapter is structured as follows. Section 7.1 introduces the task decomposition
of the dynamic rupture solver. Then, in Section 7.2, I review various programming
models for heterogeneous computing and select more suitable ones to provide a portable
implementation of the dynamic rupture code in SeisSol. I test and compare different
implementations of the selected models on the same hardware. The results of the
comparisons determine the selection of a specific programming model, which is used for the
rest of this work. In this section, I also compare the run time of the Linear Slip Weakening
and Aging friction laws using the same computational mesh and test environment. Section
7.3 contains strong scaling results of the TPV-5 test scenario obtained on the Selene,
Leonardo, and LUMI supercomputers. In Section 7.4, I demonstrate verification of
numerical results obtained with the GPU implementation of the dynamic rupture code to
ensure its correctness. Finally, Section 7.5 summarizes the main outcomes of this part of
the study and concludes the chapter.

Due to the large configuration space of SeisSol, this chapter demonstrates the results
obtained mainly with the single-precision floating-point format and convergence order
equal to 6. This is done for convenience for comparing different experiments shown in
this work. Results shown in Fig. 6.39 can be used to compute the appropriate coefficients
to extrapolate the shown performance data to different floating-point data types and
convergence orders.

7.1. Parallelization

Theoretical and numerical aspects of the dynamic rupture process are explained in Section
2.2 and 3.6.3, respectively. The computations start with projecting the solutions from
two neighboring tetrahedrons, which share a dynamic rupture face, onto a set of 2D
Gaussian points, shown in Fig. 7.1. The number of Gaussian points is chosen to have
the same strength as the strength of the 3D polynomial modal basis used in the wave
propagation solver. The projections are defined by Eq. 3.45 and Eq. 3.45, and involve
the corresponding Vandermonde matrices - i.e., Φm(ξf (χi)) and Φm(ξ

g(χ̃h(χi))). In
SeisSol, the projections are considered to be a part of the wave propagation solver and,
thus, are implemented with the YATeTo DSL. The parameterization of the Vandermonde
matrices with f , g, and h values defines a set of unique tensor expressions, which, similar
to the local and neighboring macro-kernels (I localsurf and Inghbsurf , respectively), can be executed
concurrently and, thus, are implemented using the stream-based execution model (cf. Fig.
6.14).

120

7.1. Parallelization

0 1

0

1

Strength
Number
Gaussian
Points

4 25
5 36
6 49
7 64

Figure 7.1.: Left: Gaussian points within the canonical triangle required for the Stroud
quadrature rule of strength 6. Right: Dependencies of the strengths of the
Stroud rule on the number of Gaussian points.

After projecting the volumetric solution onto the fault, the inverse Riemann problem,
discussed in Section 3.6.3, must be numerically solved for each Gaussian point at each
time sub-interval (see Fig. 3.7). As in many scientific algorithms, computations between
time steps impose data dependencies and thus are not concurrent. For example, the
values of the state variables (see Eq. 2.21) determined at each Gaussian point get updated
between time sub-intervals. At the same time, computations between Gaussian points
within each time integration sub-step are mostly data-independent and can be done in an
embarrassingly parallel manner. However, there are a few exceptions regarding the SIMT
model, where threads’ cooperation is required - e.g., data resampling within a rupture
face followed by point-wise operations. In such rare cases, a programming implementation
of the model (e.g., CUDA, HIP, or SYCL) may need to use shared memory and block-wise
thread synchronizations. After updating the stress and velocity components according
to Eq. 3.56 and Eq. 3.64, solution vectors Q̂bil and Q̂cil can finally be assembled at all
Gaussian points. After that, the adjusted flux contributions can be computed for both
sides of the fault according to Eq. 3.44.

In SeisSol, the CPU parallelization of the dynamic rupture code combines both multi-
threading and vectorization. A sub-task is defined as a computation of flux contributions
from both sides stemming from a single dynamic rupture face; thus, a sub-task includes
updates of all Gaussian points enclosed by a rupture face (see Eq. 7.1). The CPU threads
are forked at the beginning of the dynamic rupture code and keep operating until the end
(Eq. 3.44), making sub-tasks coarse-grained. Sub-tasks are distributed between threads
using the OpenMP static scheduling policy. Higher sub-task performance can be achieved
by applying vectorization, for which the number of Gaussian points must be padded to a
multiple of the vector register length. In SeisSol, the OpenMP SIMD directives are used
to enable auto-vectorization, resulting in performance portability among various CPU
platforms.

On GPUs, many point-local computations can be performed by individual GPU threads,
which mostly operate on their local data. However, sometimes, GPU threads need to be
grouped into blocks to operate on individual rupture faces due to the abovementioned

121

7. Implementation of Dynamic Rupture

exceptions - i.e., when a thread’s cooperation is required. In such cases, the block size
can be equal to the number of Gaussian points, which is determined by the quadrature
rule. Thus, the GPU task decomposition can be directly inherited from the CPU version
of the code, in contrast to the discussed implementation of the wave propagation solver
(see Section 6.2). It is worth noting that, despite operating on small blocks regarding
their sizes, the GPU scheduler can still generate enough active warps by assigning several
blocks to each SM, which should lead to good GPU occupancy.

In contrast to the CPU version of the code, which opens the parallel region only once,
the GPU variant consists of a series of kernels, implementing one or several consecutive
dynamic rupture equations. This approach adds flexibility to the software design because
the main host thread changes the control flow and selects appropriate kernels based on
the chosen friction law, using the curiously recurring template pattern, so-called static
polymorphism. The asynchronous kernel execution adapted by many GPU programming
models (see Section 5.1) can help to overlap the associated kernel launching overheads
with computations if the workload is enough. However, due to the used LTS scheme in the
dynamic rupture code, added as a contribution of work [114] to SeisSol, the proposed GPU
implementation can experience problems similar to the one discussed at the beginning of
Section 6.5.2.

7.2. Portability

In contrast to SeisSol’s implementation of the wave propagation solver, where most of
the computations are generalized by the YATeTo DSL, acting as a performance portable
layer, the dynamic rupture code in SeisSol is written in a conventional manner - i.e.,
without code generation. Therefore, designing a portable solution, at least for the GPU
implementation, is necessary to reduce maintenance costs. Apart from the source code
portability, it is desirable to achieve a performance portable solution that can cooperate
with the one designed for the wave propagation solver, which, as discussed in Chapter 6,
is based on vendor-native GPU programming models - e.g., CUDA, HIP, SYCL.

As shown in [54, 64], the performance of some OpenACC device kernels can be close
to the one implemented with CUDA. However, the authors admit that it often requires
some manual code tuning. The OpenACC standard has limited compiler support. For
example, the LLVM implementation of the C/C++ compilers does not natively support
OpenACC. The support is provided by the Clacc extension [25] of the LLVM project,
which acts as a transpiler, converting OpenACC code to OpenMP in place. Another
example is the compiler suite from Cray, which only supports OpenACC for their Fortran
compiler. Moreover, at the moment of writing, no compiler implementors claimed to
support OpenACC for the upcoming Intel GPUs. Therefore, OpenACC was excluded
from the list of possible candidates.

The OpenMP standard excels in the HPC market; thus, it is widely adapted by many
compiler vendors. As shown in [92], in some cases, device kernels implemented with

122

7.2. Portability

OpenMP can outperform their OpenACC counterparts due to better use of team-local
(i.e., shared) memory and registers. In theory, the code written with OpenMP should be
portable to a wide range of accelerators without considerable code changes. In practice,
some compiler implementations contain only a subset of the standard. Thus, a programmer
may need to use C-macros and write different OpenMP statements for different compilers
or even their versions. The same holds for OpenACC. This fact seriously violates the
requirement to source code portability for both models. As an advantage, both OpenACC
and OpenMP have native compatibility with CUDA and HIP regarding the memory
models and the device selection mechanisms, making them convenient for mixed GPU
programming.

SYCL is a single-source programming model acting as a high-level C++ abstraction layer
to target various heterogeneous hardware accelerators. The known SYCL implementations
involve the compilation process. For example, Intel’s DPC++ compiler, a fork of the LLVM
project, must be used to compile the entire application; offloading to a particular device
is enabled using appropriate compiler flags. Another example is the OpenSYCL project,
formerly known as hipSYCL, which must be linked against an installed LLVM library.
During processing, OpenSYCL utilizes the LLVM library to build LLVM intermediate
representations of device kernels and then delegates the rest of the compilation process to
an appropriate compiler backend - e.g., NVPTX, AMDGPU. The Unified Shared Memory
(USM) model, adapted in the latest SYCL standard, allows a program to use raw C/C++
pointers inside device kernels. The standard delegates the responsibility to programmers
to ensure that memory is accessible on the device through provided pointers. Therefore,
it is theoretically possible to bundle SYCL with CUDA/HIP if both runtimes have their
contexts attached to the same device. However, in contrast to OpenACC and OpenMP,
the device selection mechanism in SYCL is generally incompatible with CUDA and HIP.
Therefore, it may be difficult to ensure that both runtimes operate with the same device.
Moreover, the latest standard version allows the implementors to interact directly with the
native runtimes to manage the state or memory of a device; before, the standard required
interaction only through the OpenCL runtime. Therefore, a SYCL implementation may
internally change the global state of the CUDA/HIP context used by a programmer,
which may lead to unexpected behavior of an application during run time. Regarding the
upcoming Intel GPUs, SYCL is a good candidate for SeisSol because, in this case, the
same GPU programming model will be used for both solvers - i.e., the wave propagation
and dynamic rupture.

Kokkos and RAJA may also be worth considering. However, the SYCL model already
covers many functionalities which Kokkos and RAJA can provide; therefore, these models
were not considered in this work.

Summarizing the above discussion, only the OpenMP and SYCL programming models
were chosen for implementing a performance-potable solution for the dynamic rupture
solver in SeisSol in this work. Regarding OpenMP, nvc++, clang, and gcc compilers were
used in this study. I selected DPC++ and OpenSYCL to assess the potential performance
of the SYCL model. The tests were conducted using the TPV-5 test scenario taken from
the SCEC benchmark collection [47].

123

7. Implementation of Dynamic Rupture

Z = 60 km

X = 120
km

Y
=
120 km

D = 15 km
W = 30 km

Figure 7.2.: Geometry and mesh refinement of the TPV-5 test scenario.

As shown in Fig. 7.2, the scenario has a vertical strike-slip fault inside a homogeneous
cuboid domain. The earthquake rupture is artificially nucleated at the center of the fault -
i.e., in a small square zone shown in red color. The rupture spontaneously begins from the
nucleation region and moves toward the rest of the fault surface. As the process involves,
the rupture encounters two square patches (shown in green), along which the initial stress
conditions are set to different values compared to other parts of the fault surface. In
this scenario, the nucleation is imposed by setting the initial shear stress higher than the
initial static yield stress inside the nucleation patch. The failure affects all parts of the
fault plane, including the nucleation patch.

The top of the cuboid domain represents a free surface, whereas the rest act as absorbing
boundaries. The material properties are homogeneous in this scenario. The material
density equals 2760 kg/m3, while the first and second Lamé parameters are about 32.04
GPa. The details of the TPV-5 scenario regarding the initial conditions are given in
[93].

In the TPV-5 scenario, the friction is subjected to the Linear Slip-Weakening law (see
Eq. 2.23) with homogeneous parameters along the fault. The static and dynamic friction
coefficients are equal to 0.677 and 0.525, respectively. The critical distance is set to 0.4,
whereas, the cohesion coefficient equals zero.

The experiment was conducted using a one million elements mesh, containing almost 50
thousand rupture elements along the fault, on a single Nvidia A100 GPU. The baseline
solution was obtained on a single AMD EPYC 7763 CPU using all 64 cores and making
use of the AVX256 instruction set via 1) the LIBSXMM library (used as the main YATeTo
backend for the wave propagation solver) and 2) auto-vectorization (used for the dynamic

124

7.2. Portability

Table 7.1.: Comparison of the OpenMP and SYCL parallel programming models on a
single AMD EPYC 7763 64-core CPU and Nvidia A100-PCIE-40GB GPU.
The performance results were obtained using one million elements mesh of the
TPV-5 test scenario and averaged among the first 1000 time steps.

Hardware 64 cores 1 core
1 GPU

1 core
1 GPU

1 core
1 GPU

1 core
1 GPU

1 core
1 GPU

1 core
1 GPU

Model OpenMP
v4.0

DPC++
v2023WW13

OpenSYCL
v9.4

OpenSYCL
v9.4

OpenMP
v5.0

OpenMP
v4.5

OpenMP
v4.5

Compiler gcc
v11.2.0

clang
v17.0

nvhpc
v22.11

clang
v14.0.6

nvhpc
v22.11

clang
v14.0.6

gcc
v11.2.0

Kernels
time, sec 197.009 88.209 88.245 88.515 91.331 107.171 1048.261

Elapsed
time, sec 197.052 88.373 88.412 88.682 146.431 115.154 1056.119

Speed-up 1.000 2.229 2.228 2.222 1.346 1.711 0.187
Performance,
SP-TFLOP/s 2.023 6.110 6.108 6.089 4.559 4.869 0.514

rupture code). The performance data were averaged among the first 1000 time steps. The
results of the experiment and comparisons are shown in Table 7.1.

As can be seen from Table 7.1, the SYCL implementation of SeisSol’s dynamic rupture
solver resulted in the best performance for the given scenario. The difference in run time
between all tested SYCL implementations - i.e., DPC++ and OpenSYCL - is less than
0.5%. The average speedup against the baseline achieved a value of 2.2. On the other
hand, results obtained with the OpenMP implementations were inconsistent regarding
performance. In all three cases, one can observe substantial differences between the time
spent on executing GPU kernels and the elapsed time. It indicates that the tested OpenMP
implementations entail significant overheads caused by redundant synchronizations between
invocations of GPU kernels, even though the “nowait” clauses were explicitly specified for
all OpenMP target regions.

The best results with the Nvidia C++ compiler - i.e., nvhpc - were obtained while using
“target teams loop” and “loop bind” OpenMP clauses which are parts of the fifth version
of the standard. The clauses add a descriptive behavior to OpenMP, which is known to
be a prescriptive model [26]. The “loop” directives only prescribe that a next for-loop
statement must be parallelized and leave it up to the compiler to decide how it should
be done. As can be seen from Table 7.1, this approach resulted in the shortest time
spent on executing GPU kernels among all tested OpenMP implementations. The tested
versions of clang and gcc compilers do not support the OpenMP “loop” construct; thus,
the constructs were replaced with “target teams distribute” and “parallel for” directives
for which I had to explicitly specify the number of teams, the team size and scheduling for
each encountered for-loop - i.e., “schedule(static,1)”. Even though the kernels generated by
the clang compiler performed slightly worse than the ones generated by Nvidia C++, the
clang version of the code outperformed the Nvidia C++ implementation by approximately
21% with respect to the elapsed time because of significantly smaller overheads. The
gcc version of the OpenMP code resulted in the worst performance among all tested
implementations of the dynamic rupture code and was almost 5 times slower than the
baseline implementation.

125

7. Implementation of Dynamic Rupture

0 25 50 75 100 125 150

Elapsed time, sec

Linear Slip-Weakening Aging Law

Figure 7.3.: Comparisons of the Linear Slip-Weakening and Aging friction laws regarding
performance on a single Nvidia A100-PCIE-40GB GPU using the same one
million elements mesh for both cases.

The results obtained during the experiment determined the choice of SYCL for two
reasons. Firstly, all SYCL implementations of the dynamic rupture solver outperformed
their OpenMP counterparts. Secondly, all tested SYCL implementations had a little
deviation in run time, which highlighted the portability of the standard.

It is worth pointing out that the performance values reported in Table 7.1 must be
treated with care. The floating-point counters used in SeisSol do not count operations
occurring after the projections of volumetric DOFs onto rupture faces (see Eq. 3.45 and
Eq. 3.46). This happens because the counting is based on the code generation, which, as
mentioned above, is not a part of the dynamic rupture code implementation. Because the
inserted timers are kept running, and some floating-point operations are not considered,
the obtained performance values (measured in TFLOP/s) are lower than they must be.
This is relevant for both the CPU and GPU implementations of SeisSol.

Fig. 7.3 shows a difference in run–time between the SYCL implementations of the Linear
Slip-Weakening (see Eq. 2.23) and Aging friction (see Eq. 2.22) laws. The Aging law
belongs to a class of “State and Rate” models, which, as discussed in Section 3.6.3, define a
non-linear system of equations that need to be solved using the Newton-Raphson algorithm.
The required number of interactions until convergence of the algorithm strongly depends
on the local fault state at each Gaussian point. Therefore, some sub-tasks are more
computationally expensive than the others. This highlights the main difference between
the “State and Rate” and the Linear Slip-Weakening models, where, in the latter, all
sub-tasks are equal and computationally cheap because the slip rate magnitude at each
Gaussian point can be directly obtained from Eq. 3.63.

The experiment was conducted using the same computational mesh, the same hardware,
and the same implementation of the SYCL standard. The initial conditions for simulating
the rupture process subjected to the Aging law were taken from the TPV-101 test scenario
[94] and adjusted to the fault geometry used in the test (see Fig. 7.2). For a relative
comparison with Table 7.1, the simulations were performed only for the first 1000 time
steps. The results show that the Aging law implementation of friction is almost 32% more
computationally expensive than the Linear Slip-Weakening one. This number should be
treated as an estimate because the rupture process did not fully evolve during the first

126

7.3. Strong Scaling

1000 steps and, thus, many sub-tasks, in the case of the Aging law, require only a few
Newton-Raphson iterations to converge.

7.3. Strong Scaling

This section aims to demonstrate the strong scaling properties of SeisSol when the
fracturing in Earth’s crust occurs due to slipping rocks along a fault. For consistency
with the manuscript, the scaling experiment was conducted using the TPV-5 test scenario
on Selene, LUMI, and Leonardo supercomputers. The network characteristics of each
machine are shown in Fig. 6.24.

The computational mesh used in the experiment contains 17 million tetrahedrons and 360
thousand rupture elements. It was generated in two steps. Firstly, the first half of the
computational domain was built using the Netgen [109] mesh generator, taking advantage
of the geometrical symmetry of the scenario along the vertical fault. Netgen resulted
in a significantly better mesh quality than the results produced by Gmsh [42], which is
traditionally used as a part of SeisSol’s workflow. Secondly, the generated half was copied
and mirrored along the fault. The resulting LTS clustering is shown in Fig. 7.4a. As can
be seen, the wave propagation domain is distributed more or less equally between the first
five clusters. The area along the fault consists of elements having approximately the same
sizes, which can be deduced from the very tight distribution of dynamic rupture elements
between two time-clusters.

As mentioned in Section 6.3.3, the custom-built Nvidia A100-C-64 GPUs perform better
under low- and medium-sized SeisSol’s workloads than the Nvidia A100-SXM4-80 and
AMD MI250x GPUs (see Fig. 6.10). As discussed in Section 6.5.3, the LTS clustering and
the computational throughput characteristic of a computational device determine strong
scaling properties of the cluster-wise LTS schemes. Because the clustering is fixed in this
experiment, one should expect better scaling of the TPV-5 scenario on the Leonardo
supercomputer and obtain results similar to the ones shown in Fig. 6.23.

The experiment results are shown in Fig. 7.4 and match the abovementioned hypothesis.
As expected, SeisSol showed the best parallel efficiency on the Leonardo supercomputer
despite having the worst inter-node network characteristics, according to Fig. 6.24. The
graph shows that, in the case of Leonardo, the efficiency stayed slightly above 50% while
running the TPV-5 scenario on 64 nodes. In two other cases, the efficiency dropped below
35% at the same scale. One can observe that SeisSol on the Leonardo supercomputer
managed to outperform the same setup on LUMI by approximately 28% at a 64-node
scale due to higher parallel efficiency, even though the initial single-node performance
obtained on Leonardo was about 5% lower than on LUMI. By extrapolating data onto a
128-node scale, one can imagine that SeisSol would keep scaling up on Leonardo and match
Selene’s configuration for this particular scenario. However, in this case, the difference in
the single-node performance between these two machines is even more significant - i.e.,
approximately 1.9 times.

127

7. Implementation of Dynamic Rupture

0 1 2 3 4 5 6

101
102
103
104
105
106
107
108

Time-Cluster

El
em

en
t
C
ou

nt
Wave Propagation Dynamic Rupture

(a) Resulting LTS clustering for the used mesh of the TPV-5 scenario.

1 2 4 8 16 32 64

32
64

128
256
512
1024
2048
4096

Node Count

SP
-T

FL
O
P/

s

Selene ideal, Selene
LUMI ideal, LUMI
Leonardo ideal, Leonardo

(b) Strong scaling performance.

1 2 4 8 16 32 64
0.0

0.2

0.4

0.6

0.8

1.0

Node Count

Effi
ci
en

cy

Selene LUMI Leonardo

(c) Parallel efficiency.

Figure 7.4.: Strong scaling of the TPV-5 scenario using 17 million elements mesh on the
Selene, Leonardo and LUMI supercomputers.

128

7.4. Verification

7.4. Verification

The following summarizes the verification procedure of the proposed dynamic rupture
code implementation. In contrast to Section 6.7, there is no an analytical solution that can
be used to compare numerical results. However, the CPU version of SeisSol is regularly
verified against a suite of benchmarks [46] and has been validated against various real
events [117, 113, 124], etc. Therefore, the CPU implementation, configured with the
double-precision floating-point format, is used as a reference to compare values of physical
quantities obtained with the GPU implementation. The verification is conducted for the
TPV-5 test scenario after the first 12 seconds of the modeled earthquake event using a
computational mesh with approximately one million tetrahedrons in the wave propagation
domain and 55 thousand elements along the fault.

In SeisSol, physical quantities are computed in absolute units - e.g., m/s, MPa, etc.
Therefore, it is more convenient to use the reference error based on the L2 norm to
compare numerical results (see Eq. 7.1).

ErrorqL2
=
||qgpu − qcpu||2
||qcpu||2

(7.1)

where qgpu is the reference solution of quantity q obtained with the GPU implementa-
tion; qcpu is the numerical solution of physical quantity q obtained with the reference
implementation - i.e., CPU.

Table 7.2.: Relative error of the GPU implementation of the dynamic rupture solver
obtained for the TPV-5 test scenario. The CPU version of the code configured
with the double-precision floating-point format was used as the reference.

Quantity Single
Precision

Double
Precision Quantity Single

Precision
Double
Precision

Slip, |∆d| 2.208e-09 6.856e-17 Friction
Coefficient, µ 1.016e-11 2.303e-18

Slip Rate, |∆u| 5.558e-07 1.569e-10 Normal Stress, |σn| 4.783e-10 2.505e-28
Rupture

Velocity, Vr
3.370e-05 2.344e-06 Shear Traction, |τ | 2.899e-08 1.964e-14

According to the obtained data, shown in Table 7.2, the numerical results of the CPU
and GPU implementations are almost identical. As expected, the relative errors obtained
with the single-precision floating-point format are slightly higher but do not exceed ≈
0.01%. This demonstrates the correctness of numerical results and, thus, indirectly proves
the correctness of the GPU implementation.

7.5. Discussion

This chapter mainly explains task decomposition and source code portability of the GPU
version of SeisSol’s dynamic rupture solver. Additionally, the chapter presents the strong

129

7. Implementation of Dynamic Rupture

scaling behavior of SeisSol on distributed multi-GPU systems using the TPV-5 test
scenario. The scenario involves both wave propagation and dynamic rupture solvers, and
thus, all contributions presented in this and the previous chapter.

The coupling between the wave propagation and dynamic rupture solver involves a linear
transformation that projects a 3D modal basis onto a 2D nodal one. In this work, the
coupling is implemented using the YATeTo DSL because it is convenient, portable, and
efficient. Thus, the task decomposition of this part of the code is similar to the one
discussed in Chapter 6.

The rupture solver itself mainly involves pointwise operations, which are data-independent.
The task decomposition is trivial in this case. A single block of threads is used to update
all Gaussian points encompassed by a single rupture element. Thus, the total number of
blocks equals the number of rupture elements in a time-cluster.

As discussed throughout the chapter, non-linear functions are broadly involved in the
computations performed by the solver. At the moment of writing, the YATeTo DSL does
not support such operations. Therefore, I had to find an alternative solution to provide
the source code portability and high-performance computing. In this work, multiple
implementations of OpenMP and SYCL standards were considered. The experiments
show that all tested SYCL implementations result in about the same run time of the
rupture solver, which is entirely opposite to OpenMP. Moreover, the designed SYCL
implementation of the solver is approximately 1.65 times faster than the fastest OpenMP
variant.

The results presented in Fig. 7.4 demonstrate that the strong scaling behavior of the
TPV-5 scenario is similar to the one obtained with the LOH.1 test-case. The scaling lines
obtained on the LUMI, Selene, and Leonardo supercomputers have the same trend as
the one shown in Fig. 6.23. One can notice similarities in the structure of the first LTS
time-clusters between these two cases (see Fig. 6.20a and 7.4a), which, as discussed in
Section 6.5.3, is the key component determining strong scaling behavior on distributed
multi-GPU systems.

130

8. Implementation of Off-fault Plasticity

As discussed in Section 2.1, the underlying system of PDEs is built on top of the linear
stress-strain model. Stress states of some elements can exceed the yielding criterion at
the end of a time integration step - i.e., after adding flux contributions from neighboring
elements (see Eq. 4.2). The criterion determines the transition of a material from elastic
to plastic state. Such situations lead to unrealistic modeling of the wave propagation
process.

In Section 2.4, it was shown that plasticity can be simulated by the return-mapping
algorithm, which treats stress states obtained with purely elastic material properties as
predictors. The correction step determines the amount of plastic deformations, which
need to be taken into account to bring the stress states of the affected elements back to
the yield surface.

The return-mapping algorithm is often used in SeisSol to account for the non-linear
behavior of a material. For example, all production scenarios, which will be discussed in
Chapter 9, are based on the off-fault plasticity model. The algorithm is not computation-
ally intensive. However, leaving these computations on CPUs would negatively impact
the overall performance of SeisSol because of frequent data transfers between the host
and device. A GPU implementation eliminates this problem and, thus, increases the
computation throughput of earthquake simulations on heterogeneous computing systems.
This chapter describes only the key problems faced during the development of the GPU
version of the off-fault plasticity macro-kernel.

The performance data in this chapter are shown for the single-precision floating-point
format and convergence order 6, which is done mainly for illustration purposes.

8.1. Parallelization and Portability

The GPU implementation of the off-plasticity kernels is based on the idea proposed by
Wollherr, Gabriel, and Uphoff in [125] - i.e., simulating the yielding process entirely on a
nodal basis. Firstly, the solution defined on a modal basis (see Section 3.3) is projected
onto a set of three-dimensional nodal points ξi (see [125]), equal to the number of basis
functions of the modal basis.

As discussed in Section 2.1, a solution inside each element is composed of 6 stress and
3 velocity components. Taking into account the established memory layout in SeisSol

131

8. Implementation of Off-fault Plasticity

(see Section 4.1), a numerical solution can be viewed as a concatenation of the stress
S ∈ RB×6 and velocity U ∈ RB×6 matrices.

Qmlp =
(
S U

)
(8.1)

As shown in Section 2.4, modeling of the yielding process operates only on the stress
components. Thus, the change of basis can be implemented as follows

Ŝmip = Ψl(ξi)Smlp = V̂liSmlp (8.2)

where Smlp is the stress components of the m-the element on a modal basis; Ŝmip is the stress
components of the m-the element on a nodal basis; V̂li is the Vandermonde matrix.

The outcome of Eq. 8.2 determines values of the yield function F (σ) at all nodal points
inside each tetrahedron. The values obtained using Eq. 2.28 help to determine points
with internal stress states outside the yield surface - i.e., F (σ) > 0. For these points, the
required plastic strain increments can be found using Eq. 2.33. The increments are used
to correct the internal stress states of the affected points according to Eq. 2.32 and, thus,
return them back to the yield surface - i.e, F (σ) ≤ 0. The corrected stress states are
brought back to the modal basis by applying the inverse Vandermonde matrix, which,
together with the Vandermonde matrix, is pre-computed in advance.

Smlp = V̂−1
li Ŝ

m
ip (8.3)

Eq. 8.2 and Eq. 8.3 define simple tensor expressions; therefore, their corresponding
GPU kernels were implemented using the YATeTo DSL. However, as can be seen from
Eq. 2.28, 2.34, and 2.33, checking the yield criterion and the correction step involve
non-linear and point-wise functions, which are not supported by YATeTo and, thus, had
to be implemented conventionally - i.e., without code generation.

In SeisSol, a sub-task of the return mapping algorithm is defined as the adjustment of the
stress state of a single element in a given LTS time-cluster. In the GPU implementation,
I assign a team of threads equal to the number of nodal points to process each sub-task.
This can be also viewed as using a single GPU thread per nodal point. The sub-tasks are
unequal because the correction step and the transformation back to the modal basis must
be applied only to those elements that satisfy F (σ) > 0 condition, which is known only
during run time.

A naïve implementation would require data rearrangements involving complex parallel
reduction algorithms to process the elements outside the yield surface. The implementation
proposed in this work avoids it by writing the results of the yield condition checks into
a vector of booleans. The vector is passed to subsequent kernels, allowing sub-tasks to
execute the GPU code conditionally. This scenario forced me to extend the YATeTo DSL
and the GPU kernel generators to support conditional batch execution. An example can
be seen in lines 8, 9 and 10 of Listing 6.2, where each team of threads decides whether to
execute a kernel or skip it depending on the array values associated with each team.

At first glance, it is desirable to use the SYCL programming model to implement device
kernels for Eq. 2.28, 2.34, 2.33, etc. This would result in a portable solution that would be

132

8.2. Verification and Comparison

similar to the dynamic rupture solver discussed in Section 7.2. As mentioned above, it is
also preferable to utilize the device kernels generated by the YATeTo DSL. Moreover, some
generic algorithms from the Device API could also be used to initialize temporary memory
buffers required for intermediate results and manipulate device memory through pointers.
However, each change in the programming model - i.e., from SYCL to CUDA/HIP and vice
versa - would require synchronizing the entire device to preserve the correct execution order.
Otherwise, works submitted to a SYCL device queue, and the default Device API stream
would run concurrently, resulting in race conditions and, thus, leading to data corruptions.
Such behavior results from the SYCL device queue construction, which implicitly allocates
and associates a GPU stream with a queue. The stream is used internally by a standard
implementation to run submitted tasks; therefore, it is not exposed to the user. Thus, the
only way to impose correct execution order between tasks submitted to a CUDA/HIP
stream and a SYCL queue is through global device synchronization.

In this work, I used an alternative solution and implemented device kernels for Eq. 2.28,
2.34, 2.33, etc., separately for each supported GPU programming model in SeisSol - i.e.,
CUDA, HIP, and SYCL. This approach helped to avoid excessive device synchronizations
caused by the need to change programming models too frequently. All tasks are submitted
to the same GPU stream (or queue) and, thus, executed in order. The downside of this
approach is that a mistake found in one implementation must to be manually corrected in
two others, increasing the cost of source code maintenance.

8.2. Verification and Comparison

The GPU implementation of the return mapping algorithm is verified using the TPV-13 test
scenario taken from the SCEC benchmark collection [47]. The wave propagation domain is
a cuboid with homogeneous material properties - i.e., ρ = 2700 kg/m3, µ ≈ λ ≈ 29.40 GPa.
As shown in Fig. 8.1, the depth is equal to 42 km, whereas, the length and width are
almost 72 km long. Similar to the TPV-5 scenario, the top of the domain represents a
free surface; the rest act as absorbing boundaries.

The fault surface is 30 km wide, 15 km deep, and inclined at 60◦ downward from the
horizontal line. The scenario includes 3×3 km nucleation patch residing on the fault plane.
The patch is located at (0, 12) km in the fault coordinates. In contrast to the TPV-5,
in this scenario, the nucleation is achieved by decreasing the static friction coefficient,
which makes the initial shear stress exceed the fault strength. The details of the TPV-13
scenario regarding the initial conditions and fault parameters are given in [95].

Similar to the TPV-5, the TPV-13 test scenario operates on the Linear Slip-Weakening
friction law (see Eq. 2.23)) and homogeneous parameters along the fault. However, in this
case, the static and dynamic friction coefficients are equal to 0.70 and 0.10, respectively.
The critical distance is set to 0.5. The cohesion coefficient is negative, with the absolute
value equal to 200000.

133

8. Implementation of Off-fault Plasticity

Z = 42 km

X = 72 km Y
=
72

km

W = 30 km
D = 15 km

60◦

Figure 8.1.: Geometry and mesh refinement of the TPV-13 test scenario.

Table 8.1.: Relative error of the GPU implementation of the dynamic rupture solver
obtained for the TPV-13 test scenario. The CPU version of the code configured
with the double-precision floating-point format was used as the reference.

Quantity Single
Precision

Double
Precision Quantity Single

Precision
Double
Precision

Slip, |∆d| 1.361e-08 6.717e-16 Friction
Coefficient, µ 6.999e-05 9.398e-13

Slip Rate, |∆u| 0.003e-00 1.429e-12 Normal Stress, |σn| 6.087e-05 1.720e-12
Rupture

Velocity, Vr
1.717e-05 1.049e-07 Shear Traction, |τ | 7.154e-05 5.607e-13

Table 8.1 shows the relative errors of numerical results obtained with the GPU imple-
mentation. The presented data were obtained following the methodology described in
Section 7.4. In contrast to the TPV-5 benchmark, the largest error obtained with the
single-precision floating-point format is just slightly above 0.3%. This proves that the
proposed GPU implementation of the off-fault plasticity model matches the CPU one,
which, as mentioned in Section 7.4, has been validated against other seismic benchmarks
and applications.

Fig. 8.2 depicts the evolution of the velocity magnitude captured by a point receiver near
the fault - i.e., 3 km away from the center of the fault plane along the direction toward
the free surface. One can clearly observe that the results obtained with the off-fault
plasticity model are smoother. The sudden jumps in velocity at 3.69 and 4.37 seconds
after the beginning of the simulation are noticeably dumped. After the second jump, the
velocity starts gradually vanishing to zero. However, it stays at a slightly higher level in
comparison to the velocity profile obtained with the pure elastic model. The observed

134

8.3. Discussion

0 1 2 3 4 5 6 7 8
0

1

2

Time, sec

Ve
lo
ci
ty
,m

/s
without plasticity
with plasticity

Figure 8.2.: Comparison of the velocity magnitudes with and without the off-fault plasticity
model at a receiver located 3 km away from the center of the fault plane
along the normal direction toward the free surface (see Fig. 8.1).

0 300 600 900 1,200 1,500 1,800

Elapsed time, sec

without plasticity with plasticity

Figure 8.3.: Comparisons of the elapsed time of the TPV-13 test scenario with and without
the off-fault plasticity model on a single Nvidia A100-PCIE-40GB GPU.

behavior is analogous to the results presented in [125], focused on simulating the wave
propagation process in the viscoplastic media.

While collecting data for Fig. 8.2, the run time of two simulations was also tracked.
The results are shown in Fig. 8.3, where one can see that the off-fault plasticity macro-
kernel increases the time-to-solution by approximately 9.2%. Meanwhile, the performance
measured on a single Nvidia A100-PCIE-40GB GPU dropped only by about 4.5% - i.e.,
from 6.08 to 5.81 SP-TFLOP/s. The overheads measured in this experiment match the
ones reported in [125], which was performed using the CPU version of SeisSol.

8.3. Discussion

The chapter reveals the implementation details of the return-mapping method in the DG
formulation adapted for heterogeneous computing. The task decomposition proposed in
this part of the study is similar to the one discussed in Chapter 7 - i.e., a single block
of threads is assigned to process all Gaussian points inside a mesh element. However,

135

8. Implementation of Off-fault Plasticity

in contrast to the dynamic rupture algorithm, the return-mapping method operates on
a 3D nodal basis, which naturally requires more Gaussian points to preserve the same
polynomial strength within a mesh element. Thus, the method operates on larger thread
blocks.

As mentioned at the beginning of the section, the method adds more realistic behavior to
the wave propagation media. Fig. 8.3 clearly shows that the method is not computationally
expensive; the overall workload increases only by 4.5%. Taking into account the advantages
of the method - i.e., more accurate results of numerical earthquake simulations - the
increased computational cost is marginal.

At this point, all three major components of SeisSol are well-adapted for heterogeneous
computing. All parallel tasks inside the main computational loop are performed on
a device; thus, no extra host-to-device data transfers are required (except for writing
intermediate results to disks). Thus, the host system only submits computational tasks to
a device and tries to make it as busy as possible during the entire earthquake simulation
process. This scenario is desirable for any heterogeneous program. However, it may be
challenging to accomplish it in practice for certain scientific applications. In this study,
I managed to achieve it and, thus, maximize the overall computational throughput of
SeisSol.

136

9. Numerical Simulations and
Supercomputing

This chapter demonstrates three complete production earthquake simulations using the
GPU version of SeisSol, which contains all contributions presented in this work. All
simulations involve elastic wave propagation, dynamic rupture, off-fault plasticity models,
as well as heterogeneous material properties. As discussed in Section 8.3, all computations
are adapted for heterogeneous computing. Thus, the bulk of computations are performed
by accelerators without host-to-device data transfers inside the main computational loop,
except for the data output operations.

The first scenario is the 2023 Kahramanmaraş earthquake (shown in Section 9.1), which
models friction using the Linear Slip-Weakening law. The second one is the 2019 Ridgecrest
earthquake (shown in Section 9.2), which incorporates the Fast Velocity Weakening friction
law - i.e., a member of the “State and Rate” family. The last scenario is the 2018 Sulawesi
earthquake, which, as in the previous case, involves the Fast Velocity Weakening friction
law and, most importantly, a fully 3D coupled tsunami model. The computations required
for tsunami modeling were also adapted for heterogeneous computing and considered yet
another contribution of this work. The numerical results of the 2018 Sulawesi earthquake
and tsunami are presented in Section 9.3.

The 3D geometries with incorporated topography data, initial and boundary conditions,
material properties, etc., of all discussed earthquake models are taken from the scientific
artifacts of works [112, 68, 57, 108]. For consistency with the entire manuscript, the
convergence order is chosen to equal 6 for all simulations. The numerical results and
performance data were obtained on the LUMI and Leonarod supercomputers. Due to
the project budget constraints on both supercomputers, the termination criteria of all
simulations - i.e., the abortion time - were reduced.

9.1. 2023 Kahramanmaraş Earthquake

The first Mw 7.8 earthquake struck southern and central Turkey as well as northern and
western parts of Syria on the 6th of February, 2023. As shown in Fig. 9.1, it happened on
the Nurdağı-Pazarcık Fault (NPF), which branches from about 700 km long left-lateral
strike-slip East Anatolian Fault (EAF). After approximately 9 hours, another Mw 7.6
earthquake occurred about 90 km away toward the northwest from the epicenter of the
first one, on the Çardak fault. Seismic waves generated by the earthquakes propagated

137

9. Numerical Simulations and Supercomputing

Figure 9.1.: Regional tectonic map around the Kahramanmaras region and the 3D model
of the fault system. The map was taken from [57].

up to the surface and intensified shaking in the area surrounded by the fault systems.
According to [20], the rupture produced by the mainshock extended over approximately
300 km, resulting in surface displacements of up to 5 m. The second quake caused a
shorter rupture (i.e., about 100 km long) but led to larger land displacements of up to
7–8 m.

The consequences of the earthquake doublet were devastating. The official death toll in
Turkey and Syria exceeded 57 thousand people because the affected areas were densely
populated. Numerous smaller aftershocks of varying magnitudes continued to shake the
region, further damaging the affected buildings and, thus, worsening the rescue operations.
The first Mw 7.8 event is considered the most powerful earthquake recorded in Turkey
since 1939.

As shown in Fig. 9.1, the fault geometry comprises ten curved, intersecting segments
dipping between between 90 degrees along EAF and 70 degrees along the Çardak fault.
The average depth of the fault system is approximately 20 km.

138

9.1. 2023 Kahramanmaraş Earthquake

0 1 2 3 4

101
102
103
104
105
106
107
108
109
1010

Time-Cluster

El
em

en
t
C
ou

nt
Wave Propagation Dynamic Rupture

Figure 9.2.: LTS clustering of the Turkey computational mesh, consisting of approximately
175 million tetrahedrons and about 300 thousand rupture elements.

The earthquake sequence resulted in unexpected ruptures across the fault segments. The
numerical simulation presented in this section is based on the initial conditions, fault
geometry, relative fault strength, prestress, and material properties taken from the artifacts
of work [57]. According to [57], the simulation parameters were retrieved from 1) geodesy
and seismicity, 2) regional seismo-tectonics, 3) static slip inversion, and 4) earthquake
kinematics. The scenario incorporates the Linear Slip-Weakening friction law (see Eq.
2.23) with constant static and dynamic friction coefficients on all faults. The critical slip
distance on segments 7, 8 and 9 (see Fig. 9.1) is set to a higher value than for the other
parts to impose larger fracture energy for the main faults hosting the second event.

Numerical results presented in this section were obtained with a well-refined computational
mesh containing approximately 175 million tetrahedrons and around 300 thousand rupture
elements - i.e., about 5.6 times larger compared to the one used in [57]. The LTS clustering
is shown in Fig. 9.2. As can be observed, most of the mesh elements belong to the last
time-cluster. That is approximately 147 million tetrahedrons or, in other words, 84% of
all mesh elements. The last two clusters together comprise almost 99% of the entire mesh.
The LTS distribution of dynamic rupture and wave propagation elements between the
first three time-clusters indicates that the average element size sharply grows from the
fault surfaces to the bulk of the computational domain. Such meshing is understandable
from the user’s perspective since it is supposed to significantly reduce time-to-solution.
However, according to the experiments shown in Section 6.5.3, this approach substantially
limits the strong scaling capabilities of SeisSol on distributed multi-GPU systems. As
an example, parallel efficiency of the LOH.1 LTS Type 1 scenario (see Fig. 6.32), which
contains 70% of all elements in the last two time-clusters, reaches only about 40% on 64
nodes of the LUMI and Selene supercomputers.

The simulation was performed on the LUMI supercomputer, using 512 AMD MI250x GPUs
and 1024 MPI processes. The numerical results were obtained using the single-precision
floating-point because the LSW friction law involves simple arithmetical operations (i.e.,
subtraction, division, min) and, thus, is numerically stable. In this work, only the first 48

139

9. Numerical Simulations and Supercomputing

Figure 9.3.: Snapshots of the absolute slip rate along the East Anatolian Fault obtained
during a numerical simulation of the 2023 Kahramanmaraş earthquake.

seconds of the 2023 Kahramanmaraş earthquake were simulated, which was enough to
capture the rupture branching at the NPF-EAF junction. The simulation took 1 hour
and 13 minutes and resulted in 1.52 SP-PFLOP/s. The parallel efficiency, estimated using
Fig. 7.4, slightly exceeded 35%.

Simulation results are shown in Fig. 9.3, which demonstrates the rupture propagation
along the East Anatolian Fault. In 12 seconds after the beginning of the simulation, the
rupture reaches the NPF-EAF junction, which is almost 30 km away from the earthquake
hypocenter. Then, the rapture branches and starts moving to the opposite sides along the
Pazarcik segment - i.e., toward 1) the south of Turkey and north-west of Syria, and 2) the
center of Turkey. In 15 seconds after the branching, the rupture reaches the left tip of the
Erkenek fault, which is 46 km away from the junction. As can be seen, the rupture front
propagates almost 1.7 times faster along the northwest direction than toward the southwest.
According to the simulation results, the average displacement on the free surface is about
3-4 m along the EAF fault. The propagation patterns and rupture behavior closely match
the results reported in [57], which can be found in the supplementary materials attached to
that publication. Unfortunately, the provided initial conditions and material parameters
did not result in triggering the second Mw 7.7 earthquake event on the Çardak fault.

140

9.2. 2019 Ridgecrest Earthquake Sequence

9.2. 2019 Ridgecrest Earthquake Sequence

Figure 9.4.: Seismic activity around the Ridgecrest region and the 3D model of the fault
system. The map was taken from [99].

The Ridgecrest scenario models a sequence of earthquakes that occurred in California on
the 4th and 5th of July, 2019. The sequence included Mw 6.4 Searles Valley foreshock
followed byMw 7.1 Ridgecrest mainshock. The mainshock has been the biggest earthquake
event captured in southern California since the 1999 Hector Mine earthquake [128]. The
total economic loss was estimated at approximately 4-5 billion dollars according to [19].
Fortunately, the earthquakes caused no serious injuries and fatalities because the most
severe ground motion occurred far away from densely populated regions. Most of the
damage occurred at the China Lake Naval Air Weapons Station, where approximately
230 buildings were heavily affected.

The 3D fault system, shown in Fig. 9.4, was constructed using the radar images collected
from orbiting satellites, relocated seismicity, and selected focal mechanisms [108]. The
system contains four quasi-orthogonal intersecting fault segments, referred to as F1, F2,
F3, and F4. Segments F1, F3, and F4 are right-lateral faults trending from northwest to
southeast, whereas F2 is left-lateral, trending from northeast to southwest. The largest
segment (i.e., F3) stretches for approximately 45 km. Its dip angle changes between 80
degrees to the southwest and 70 degrees to the northeast along the fault. In the southeast,
the F3 fault branches into two subparallel strands separated approximately 7 km apart.
Each strand keeps trending toward the southeast for about 12 km. The F2 segment is

141

9. Numerical Simulations and Supercomputing

0 1 2 3 4 5

101
102
103
104
105
106
107
108
109
1010

Time-Cluster

El
em

en
t
C
ou

nt
Wave Propagation Dynamic Rupture

Figure 9.5.: LTS clustering of the Ridgecrest computational mesh, consisting of approxi-
mately 27 million tetrahedrons and about 600 thousand rupture elements.

almost orthogonal to F3 and stretches about 20 km long. The average depth of the system
is approximately 15 km.

A deep rupture across the F1 segment activates the conjugate left-lateral fault F2, which is
critically prestressed. After a while, the rupture starts propagating across both faults, with
a higher speed along F1. In a few seconds after that, the rupture process spontaneously
stops along the F1 segment before reaching the surface. However, the process keeps
evolving on the F2 fault, moving toward the southwest and up. In the end, the rupture
eventually reaches the surface and breaks it. As mentioned by Taufiqurrahman et al.
in [108], the rupture along the F2 segment can be described as a narrow slip pulse,
which re-accumulates a significant amount of shear stresses. The re-accumulated stresses
contribute to subsequent reactivations during the mainshock. Detailed descriptions of the
earthquake dynamics of the Ridgecrest sequence can be found in [99, 55, 128, 108].

In this study, computational mesh, initial, and boundary conditions are taken from the
updated artifacts1 of work [108], where the authors aimed to find a link between the
shocks of the Ridgecrest earthquake sequence using the CPU version of SeisSol. The
computational mesh comprises approximately 27 million tetrahedrons and about 600
thousand rupture elements. The LTS clustering of the mesh is depicted in Fig. 9.5,
showing that approximately 98% of all elements are in the last three time-clusters. This
clustering is slightly better compared to the one resulting from the 2023 Kahramanmaras
earthquake simulation discussed in Section 9.1. However, the same reasoning suggests
that the Ridgecrest scenario with this particular mesh will not scale well on muli-GPU
systems.

1 https://zenodo.org/record/7352554

142

https://zenodo.org/record/7352554

9.2. 2019 Ridgecrest Earthquake Sequence

The scenario is based on the Fast Velocity Weakening (FVW) friction law, which belongs
to the “State and Rate” family, similar to the Aging friction law, and given by

µf = a sinh−1

[
U
2U0

exp
(
ψ
a

)]
dψ
dt = −U

L

(
ψ − a ln

[
2U0
U sinh

(
µss(U)
a

)]) (9.1)

where µss coefficient is given by

µss(U) = µω +
f0 − (b− a) ln

(
U
U0

)
− µω(

1 +
[
U
Uω

]8)1/8
(9.2)

where f0 is the reference friction coefficient; µω is the weakening friction coefficient; Uω is
the weakening slip velocity. The rest of the coefficients are the same as for Eq. 2.22.

As can be seen from Eq. 2.22, computations stemming from the FVW friction law involve
non-linear functions such as exp, sinh, ln. The use of the single-precision floating-point
format can result in noticeable truncation errors. Thus, the double-precision format
is used for the Ridgecrest earthquake simulation to prevent fast-growing accumulated
numerical errors, which may eventually lead to the divergence of a numerical solution.
The simulation was conducted on the Leonardo supercomputer. The first 40 seconds of
the earthquake simulation took 6 hours and 1 minute while using 128 Nvidia A100-C-64
GPUs - i.e., 32 GPU nodes. The accumulated performance reached approximately 0.22
DP-PFLOP/s.

Figure 9.6.: Snapshots of the absolute slip rate along the Ridgecrest fault system.

Simulation results are shown in Fig. 9.6, which demonstrates the rupture propagation
along the Ridgecrest fault system. In [108], Taufiqurrahman et al. modified SeisSol’s

143

9. Numerical Simulations and Supercomputing

source code to impose the second stress nucleation region around the hypocenter of the
mainshock at a specific point in time. That approach allowed the authors to model
triggering the mainshock by the foreshock. The modified version from [108] dates 21
October 2021 and, thus, does not include the most recent and essential changes in SeisSol’s
source code, including the GPU implementation of the FVW friction law. Because the
most recent version of SeisSol, at the moment of writing, was used for that study, I only
managed to reproduce wave and rupture propagation caused by the mainshock.

The first snapshot clearly shows the location of the earthquake hypocenter. After 4
seconds of the simulation, one can observe that the rupture mainly propagates toward
the northwest, southeast, and up. After one more second, the rupture front reaches the
free surface in the northwest and passes over the junction of the F2-F3 segments, located
approximately 12 km away toward the southeast from the hypocenter. In the top right-
most snapshot, one can also observe a rupture front along the F2 segment propagating
toward the southwest and trending upwards, as shown in subsequent snapshots. After
8 seconds, the rupture front starts reaching the free surface in the southeastern part
of the F3 segment. At the same time, one can notice a reflected rupture wave in the
northwestern part of the F3 segment moving downwards. The reflected wave hits the
bottom of the segment after 10 seconds of the simulation. According to the simulation
results, the average displacement on the free surface reached approximately 4 m along the
fault.

9.3. 2018 Palu, Sulawesi Earthquake and Tsunami

On September 28, 2018, a Mw 7.5 strike-slip earthquake struck Donggala Regency - i.e., a
region in the Central Sulawesi Province, Indonesia. The event occurred due to a tectonic
movement of the left lateral Palu-Koro fault within the Molucca Sea microplate [48]. The
earthquake ruptured a 180 km long section of the fault at a very high speed, exceeding
the shear wave velocity - i.e., a super-shear earthquake. The event triggered a local but
devastating tsunami that hit Palu Bay, surrounded by the provincial capital, Palu City,
and its neighborhood. According to [90], the maximum flow depth and height reached 8 m
and 10 m, respectively. As shown in Fig. 9.7, the earthquake epicenter was approximately
70 km north of the capital. The hypo-central depth was estimated around 20 km [48].

Destructive flows of mud and soil destroyed large residential areas adjoined to the coastline.
According to the National Disaster Management Authority, the death toll caused by the
earthquake and tsunami exceeded 3 thousand people; 4 thousand were injured. More than
70 thousand houses and nearly 3 thousand schools were damaged [107].

The 3D fault model, taken from work [112], was reconstructed using focal mechanisms
and geodetic data and includes three major intersecting segments of the Palu-Koro fault
(see Fig. 9.7) - i.e., Northern, Palu, and Saluki. The Northern segment stretches about 86
km long from north to south, dipping 65 degrees toward the east. The Palu segment is
approximately 79 km long, stretching from northwest to southeast, and has the same dip

144

9.3. 2018 Palu, Sulawesi Earthquake and Tsunami

Figure 9.7.: Tectonic setting of the 2018 Palu, Sulawesi earthquake and its epicenter. The
zoomed region displays the area of interest, focusing on the Northern, Palu,
and Saluki segments. The following abbreviations are used: BH – Bird’s Head
plate; BS – Banda Sea plate; MF – Matano fault zone; PKF – Palu-Koro fault
zone; MS – Molucca Sea plate; SSF – Sula-Sorong fault zone; TI – Timor
plate. The image is taken from [112].

direction as the Northern segment. The Saluki segment is vertical, trending from north to
south.

The numerical simulation presented in this section is based on the initial and boundary
conditions, fault geometry, and material properties taken from the artifacts2 of works [112]
and [68]. Ulrich in [112] describes that a highly overstressed circular patch with a radius
of 1.5 km is placed at the hypocenter to initiate fault failure for this earthquake-tsunami
model. The scenario incorporates the Fast Velocity Weakening friction law (see Eq.
9.1). Apart from the rupture dynamics and seismic wave propagation, the model also
includes tsunami propagation. The fundamental concepts of tsunami modeling and the
corresponding contributions are briefly explained in the following.

Following work [78], the ocean dynamics in SeisSol is modeled as wave propagation in the
ocean. The model prescribes a free surface upper boundary condition in the presence of a
gravitational field. The governing equations describe water motions as small perturbations
about a rest state in hydrostatic equilibrium. The equations are based on the conservation
of mass and momentum of fluid, which are linearized about the hydrostatic state. It is

2 https://zenodo.org/record/5159333

145

https://zenodo.org/record/5159333

9. Numerical Simulations and Supercomputing

given by ∂p′

∂t +K
∂u′i
∂xi

= ρgu′3

ρ
∂u′i
∂t + ∂p

∂xi
= −δi2 ρgK p

′ (9.3)

where K is the constant bulk modulus of the fluid; g is the gravitational acceleration equal
to 9.81 m/s2; ρ is the fluid density; p′(x, t) and u′i(x, t) are perturbations of pressure and
velocities, respectively.

System 9.3 is referred to as the acoustic wave equation, expressed in velocity-pressure
formulations. It can be written in the form of Eq. 2.8. According to [78], the right-hand
side can be equated to zero because of its small magnitude, which can be neglected. The
system operates with four unknowns, namely: p′, u′1, u′2, u′3. The space-dependent Jacobian
matrices for the system can be written as

Aacc
qp =

0 K 0 0
1
ρ 0 0 0

0 0 0 0
0 0 0 0

 , Bacc
qp =

0 0 K 0
0 0 0 0
1
ρ 0 0 0

0 0 0 0

 , Cacc
qp =

0 0 0 K
0 0 0 0
0 0 0 0
1
ρ 0 0 0

 (9.4)

It can be analytically shown, that the eigenvalues of the Jacobian matrices are equal to
(−c, 0, c), where c is given by

√
K/ρ. Thus, System 9.3 is also hyperbolic. Therefore, it

can be numerically solved using the ADER-DG method as shown in Chapter 3. In [68],
Krenz et al. embedded the unknowns of System 9.3 into the same vector of quantities as
for the elastic wave propagation problem using Eq. 9.5.

σ11 = σ22 = σ33 = −p
σ12 = σ23 = σ13 = 0

(9.5)

That approach made both systems of PDEs structurally look the same, with the only
difference in the choice of flux matrices and boundary conditions. Despite introducing
additional computational overheads, it allowed the authors to preserve the same data
layouts for both implementations and, thus, reuse the same computational kernels. In
this work, I stick to the same approach.

The seafloor represents the interface between the elastic and acoustic domains, which
requires coupling. In SeisSol, it is established through the structure of the Riemann
problem at the interface boundaries. The derivation is similar to Eq. 3.6 - 3.7 but takes
into account a different set of the right-going waves. Eventually, the flux between the
boundaries takes the form of Eq. 3.11 (see details in [68]). This means that the coupling
is seamless from the algorithmic point of view and, thus, does not demand any additional
CPU or GPU code. The implementation only requires initializing element local flux
matrices appropriately.

The free ocean surface needs to be constrained through boundary conditions to close
System 9.3. In this model, the atmospheric pressure pa is imposed on the free surface,
which is mathematically translated into

p(x1, x2, η(x1, x2, t), t) = pa (9.6)

146

9.3. 2018 Palu, Sulawesi Earthquake and Tsunami

where η(x1, x2, t) is the displacement of water relative to the sea level along x3 direction.

The Taylor expansion allows us to linearize Eq. 9.6. This assumes small variations of η
at the sea level, which is a valid assumption for modeling tsunami propagation far from
the coastal area. Writing the result in terms of pressure perturbations leads to a more
convenient form of the boundary condition, namely

p′(x1, x2, 0, t) = ρgη(x1, x2, t) (9.7)

Apart from Eq. 9.7, System 9.3 requires additional constrains. It is usually given by a
so-called kinematic boundary condition, which establishes the relation between the motion
at the surface and its shape (see [100] for details). The condition prescribes the continuity
of the ocean surface, which means that no wave breaking can occur. At z = η(x1, x2, t), it
can be written as

u3 =
∂η(x1, x2, t)

∂t
+ u1

∂η(x1, x2, t)

∂x1
+ u2

∂η(x1, x2, t)

∂x2
(9.8)

Linearization of Eq. 9.8 regarding velocity perturbation at the sea level (i.e., z = 0) yields

∂η(x1, x2, t)

∂t
= u′3(x1, x2, 0, t) (9.9)

As discussed in Section 3.6, the DG method requires boundary conditions to be set through
numerical fluxes by solving a proper inverse Riemann problem. In the case of the free
ocean surface, artificial ghost cells can be used to impose Eq. 9.7 and Eq. 9.8 on the
surface boundaries. As shown in [68], the state in each aligned ghost cell (denoted using
“+” superscript) must follow Eq. 9.10 to obtain correct numerical fluxes.

p+,′ = 2ρgη − p−,′

u+,′n = u−,′n

(9.10)

where “−” denotes a cell inside the acoustic domain aligned to the free surface; subscript
n denotes the normal direction of the boundary between the cells.

The displacement η can be obtained by solving Eq. 9.11, which stems from the inverse
Riemann problem.

∂η

∂t
= u−,′n −

1

Z

(
ρgη − p−,′

)
(9.11)

where Z = cρ is impedance.

In SeisSol, the ADER scheme is used to evaluate the displacement from Eq. 9.11. The
solution is based on the Taylor expansion.

η(t) =

O−1∑
i=0

(t− t0)i

i!

∂iη(t0)

∂ti
(9.12)

Similar to Eq. 3.26, the derivatives required to compute Eq. 9.12 can be found by
differentiating Eq. 9.11 recursively.

∂iη

∂ti
=
∂i−1u−,′n

∂ti−1
− 1

Z

(
ρg
∂i−1η

∂ti−1
− ∂i−1p−,′

∂ti−1

)
(9.13)

147

9. Numerical Simulations and Supercomputing

The first time derivative (i.e., ∂0η/∂t0) is equal to the displacement η at the beginning of
a time step and, thus, given. The derivatives for pressure and velocities perturbations can
be retrieved from the results of ader macro-kernel (see Eq. 4.7) and, thus, also given.

The implementation of the gravitational free surface boundary consists of five steps.
Firstly, the integrated DOFs of the tetrahedrons with at least one face aligned to the free
ocean surface are stored in a temporary memory buffer. This is implemented as a part of
evaluating the “ader” macro-kernel (see Eq. 4.7). It is worth pointing out that all necessary
temporary buffers are allocated beforehand - i.e., during SeisSol’s initialization phase.
Thus, allocations and de-allocations of them do not involve any additional overheads.
Secondly, the saved time derivatives of pressure and velocity perturbations are projected
from the 3D modal onto the 2D nodal basis in the face normal directions. The step is
similar to mapping volumetric solutions to the 2D dynamic rupture Gaussian points (see
Eq. 3.45 and Eq. 3.46). Thirdly, displacement derivatives, computed using Eq. 9.13, are
summed together according to Eq. 9.12. The integrated displacements are saved into
another temporary memory buffer for later data processing. The fourth step happens
after evaluating all local flux contributions - i.e., after I localsurf macro-kernel. During this
step, the states in the adjacent ghost cells are computed according to Eq. 9.10 using the
saved integrated displacement values. Lastly, the computed ghost states get projected
from the 2D nodal back onto the 3D modal basis, multiplied with A+,m

qp flux matrices, and
added to the corresponding intermediate solutions - i.e., to the left-hand side of Eq. 4.1.

Steps 1, 2, and 5 involve only matrix multiplications, and thus, their GPU implemen-
tations are based on the kernels generated by the YATeTo DSL. Steps 3 and 4 require
manipulating individual columns of the projected integrated DOFs matrices and also
involve computations of the reciprocals of the impedance values. At the moment of writing,
these operations are not supported by the DSL and, thus, implemented without code
generation.

Computations involved in steps 3 and 4 are data-independent and operate only on point-
local data. Therefore, the task decomposition for them is trivial and similar to the
implementation of the dynamic rupture kernels. A single GPU thread is assigned to
process a nodal point; the block size equals the number of the 2D nodal points. Following
the reasoning discussed in Section 8.1, GPU kernels for steps 3 and 4 are implemented
separately for each supported GPU backend - i.e., CUDA, HIP, and SYCL - due to their
small sizes and tight integration with the surrounding generated code.

The computational mesh used for the Palu earthquake-tsunami simulation comprises
approximately 89 million tetrahedrons and about 100 thousand rupture elements. The
LTS clustering of the mesh is shown in Fig. 9.8. As can be seen, the tetrahedrons are
distributed between 8 LTS time-clusters. Approximately 99.5% of them belong to the last
4 clusters. The first cluster is the smallest one and contains only 12 mesh elements. As
in two previous cases, the clustering indicates that the simulation will not scale well on
muli-GPU systems with the given space discretization.

It is worth noting that the dynamic rupture elements are distributed only between time-
clusters 2, 3, and 4. The pattern may indicate that the mesh contains very skewed

148

9.3. 2018 Palu, Sulawesi Earthquake and Tsunami

0 1 2 3 4 5 6 7

101
102
103
104
105
106
107
108
109
1010

Time-Cluster

El
em

en
t
C
ou

nt
Wave Propagation Dynamic Rupture

Figure 9.8.: LTS clustering of the Palu computational mesh, consisting of approximately
89 million tetrahedrons and about 100 thousand rupture elements.

tetrahedrons far from the fault segments. Usually, it results from applying a box mesh
refinement with a very small transitioning region regarding the average element size from
inside the box outward (see Fig. A.3). A mesh generator may fail to fulfill a good mesh
quality within such a tiny volume. As a result, the generator can make a decision to skew
some elements to avoid a program failure. I suggests that, in such cases, a refinement
box can be slightly reduced in size while increasing the transitioning region. This can
give the generator a better opportunity to optimize a mesh. And it may not necessarily
increase the overall element count. The smallest time step width imposed by a given
CFL condition can be increased by eliminating skewed elements, leading to fewer time
integration steps. Moreover, it can reduce the number of time-clusters, making the first
ones larger and, thus, increasing GPU performance (see Fig. 6.10).

The correctness of the aforementioned acoustic coupling and boundary conditions was
checked by comparing numerical and analytical solutions of the Earthquake-Tsunami
benchmark scenario proposed by Krenz et al. in [68]. The analysis proved the correctness
of the GPU implementation and also revealed that the numerical solution quickly diverges
when the single-precision floating-point format is used. Thus, the double-precision format
is necessary for any earthquake-tsunami scenario in SeisSol. In this study, the 2018
Palu, Sulawesi earthquake and tsunami simulation was conducted on the Leonardo
supercomputer using 256 Nvidia A100-C-64 GPUs on 64 GPU nodes. The first 92 seconds
of the simulation took 13 hours and 9 minutes and resulted in almost 0.4 DP-PFLOP/s.

The fault system geometry and simulation results are shown in Fig. 9.9. Fig. 9.9b depicts
the shear and rupture fronts traveling along the Palu segment from north to south. As
can be seen from the snapshot, the rupture front covered more than 80 km in 17 seconds.
The collected numerical data revealed that the front crossed Palu Bay in approximately 4
seconds. The resulting fast slip pulse generates radiating shear waves, forming a V-like
shape on the free surface, also known as the Mach cone. Nevertheless, it is worth pointing
out that perturbations of the Earth caused by seismic waves alone could not lead to such
a devastating tsunami event similar to the one in question.

149

9. Numerical Simulations and Supercomputing

Figure 9.9.: Numerical results of the 2018 Palu, Sulawesi earthquake-tsunami scenario
obtained on the Leonardo supercomputer. (a) the 3D model of the fault
system. (b) the rupture and shear Mach fronts at 17 seconds. (c) and (d)
snapshots of vertical water displacement of the ocean surface at 40 and 70
seconds.

The earthquake resulted in rapid vertical displacements of the sea bottom of the bay. Fig.
9.10 shows displacements of two neighboring points at the bottom located approximately
at the center of the bay. The points belong to two adjacent elements with a shared edge,
laying on the fault surface of the Northern segment. Fig. 9.10 illustrates the local process at
the sea bottom around the test points. Nevertheless, it depicts a common pattern observed
from numerical results. As can be seen from the plot, the western part of the bay was lifted
up to approximately 0.65 m in about 4 seconds. Meanwhile, the eastern part went about
0.95 m down in around 8 seconds. After some initial perturbations, the displacement
difference between the two parts stabilized and became equal to approximately 1.4 m.

The abrupt change in the water level creates a difference in the potential energy of the
water between the two parts of the bay. The difference is substantial due to the enormous
mass of water in the western part of the bay, which is connected to the ocean. The
potential difference transforms into the kinetic water energy, establishing the flow from

150

9.3. 2018 Palu, Sulawesi Earthquake and Tsunami

0 10 20 30 40 50 60 70 80 90
−1.5

−1

−0.5

0

0.5

1

1.5

Time, sec

D
isp

la
ce
m
en
t,

m
West from the fault
East from the fault

Figure 9.10.: Vertical displacements of the sea bottom at two arbitrarily chosen points
around the center of Palu Bay. The points belong to the centers of adjacent
elements aligned to the rupture surface of the Northern segment.

left to right. As can be seen from Fig. 9.9c, the falling water columns hit the free surface
of the eastern part of the bay, forcing the water under it to get displaced downwards
and then toward the east. This process generates tsunami waves, which rapidly travel
toward the shore. According to Fig. 9.9d, the wavefront reaches the northeastern shore of
Palu Bay approximately 70 seconds after the beginning of the earthquake, resulting in a
heavy strike. At the same time, one can observe small amplitude tsunami waves reflected
from the southern shore of the bay. All in all, the process results in a complex wavefield
pattern, which can be studied further.

Table 9.1.: SeisSol’s performance data collected on 50 CPU/GPU supercomputing nodes
during simulations of the 2018 Palu, Sulawesi earthquake-tsunami scenario. The
performance data obtained on the SuperMUC-NG and Mahti supercomputers
are taken from work [68].
Supercomputer

name SuperMUC-NG Mahti Leonardo

Resources
per node

2x Intel Xeon
8174 CPUs,

48 cores, AVX512

2x AMD Rome
7H12 CPUs,

128 cores, AVX2

4x Nvidia
A100-C-64

GPUs
Performance,
DP-TFLOP/s 67.95 116.10 358.65

Numerical results presented in Fig. 9.9c and Fig. 9.9d are identical to the ones shown in
[68], which were obtained on several CPU-based supercomputers. This fact additionally
proves the correctness of the GPU implementation of SeisSol. Further, the publication
reports SeisSol’s performance measured on the SuperMUC-NG and Mathi supercomputers
over a wide range of CPU nodes. The authors provided detailed information about their
50-node runs on both machines using the same scenario and the same 89 million elements
mesh as the ones used for this study. To compare the CPU- and GPU-based executions,
an additional 50-node run was performed on the Leonardo supercomputer in this study.

151

9. Numerical Simulations and Supercomputing

The results are summarized in Table 9.1. As can be seen, the computational throughput of
SeisSol is almost 5.3 times higher on the Leonardo nodes compared to the SuperMUC-NG
ones and approximately 3.1 times higher than on the Mahti nodes. However, as shown in
[68], SeisSol scales well on the CPU-based supercomputers - i.e., reaching approximately
72% of parallel efficiency on 1600 SuperMUC-NG nodes and about 73% on 700 Mahti
nodes. As mentioned above, it is not possible to achieve similar strong scaling results
on GPU-accelerated machines, at the moment of writing, due to the very complex LTS
clustering resulting from the provided computational mesh.

The last experiment of this work is a short 1024-GPU run conducted on 256 Leonardo nodes
using 518 million elements mesh taken from the artifacts of work [68]. The refined mesh
contains almost 6 times more tetrahedrons in the elastic and acoustic wave propagation
domains and approximately 2.5 times more dynamic rupture elements. The resultant
LTS clustering is shown in Fig. A.4. Similar to the previous case, the tetrahedrons are
distributed between 8 LTS time-clusters, whereas the number of the dynamic rupture
clusters increased by a factor of 2 - i.e., from 3 to 6. The aggregated performance of the
run reached slightly above 1.81 DP-PFLOP/s. According to the result reported in [68],
the authors achieved 0.99 DP-PFLOP/s on 768 SuperMUC-NG nodes using the same
computational mesh and setup.

It is worth mentioning that, in contrast to work [68], the results shown in this chapter
were obtained using a so-called wiggle factor. The factor slightly reduces the global
minimal time step width, leading to a more compact LTS clustering, which is beneficial
for GPU-like execution (see Section 6.5.3). Typically, the change forces some elements
around the time-cluster boundaries to move from clusters with smaller time step widths
to their direct neighbors with larger ones. As a result, some clusters, usually the last ones,
can be merged entirely. For example, the use of an optimal wiggle factor reduced the
number of time-clusters in the elastic and acoustic wave propagation domains from 13 to
8 in this work. Therefore, the reader should be a bit careful when comparing the CPU
and GPU performance values reported in this section.

9.4. Discussion

This chapter presents simulations of three complete production earthquake scenarios
performed on two of the most powerful supercomputers in Europe at the moment of
writing - i.e., LUMI and Leonardo. Both supercomputers are distributed multi-GPU
systems. The largest simulation presented in this study involved the computational mesh
consisting of 518 million tetrahedrons and was conducted on 1024 Nvidia A-C-64 GPUs,
resulting in 1.81 DP-PFLOP/s. In this work, the used GPU counts were constrained
because of the limits in 1) the strong scaling performance and 2) supercomputing project
budgets. The former was mainly caused by the resulting distributions of mesh elements
between LTS time-clusters, which are illustrated in Fig. 9.2, Fig. 9.5, and Fig. 9.8.

152

9.4. Discussion

The 2023 Kahramanmaraş and the 2019 Ridgecrest scenarios model earthquake sequences
using two different approaches. In the former case, the aftershock must be triggered by
the seismic waves caused by the mainshock. A careful choice of the initial and boundary
conditions is required to achieve such an effect. In the latter case, the mainshock occurs
after the foreshock. The triggering, in this case, is imposed through the second stress
nucleation region around the hypocenter of the mainshock at a specific point in time and
requires specific source code modifications. In this work, I managed to reproduce only the
mainshocks of both earthquake sequences due to the reasons described in Section 9.1 and
Section 9.2. Nevertheless, the obtained numerical results match the observations reported
in [57, 108].

The demonstrated 2018 Sulawesi earthquake-tsunami scenario is the most advanced
because it involves simultaneous modeling of four phenomena: 1) wave propagation, 2)
dynamic rupture, 3) off-fault plasticity, and 4) ocean dynamics. As discussed in Section
9.3, SeisSol’s ocean dynamics and wave propagation implementations share many common
components. Coupling between them is done through a specially designed boundary
condition developed by Krenz et al. in [68]. As the contribution of this work, I adapted the
gravitational free surface boundary condition for heterogeneous computing environments
to achieve better GPU performance. The reader can find the details in Section 9.3. The
numerical results obtained during the earthquake-tsunami simulation are identical to the
ones presented in [68]. The latter were obtained on several CPU-based supercomputers.
This fact additionally proves the correctness of all GPU-adapted components of SeisSol.
The comparison between the CPU and GPU performance of the scenario is shown in
Table 9.1.

153

10. Conclusions

This study aimed to investigate whether a highly tuned CPU-based HPC application
designed for simulating seismic wave propagation and earthquake dynamics - i.e., SeisSol
- can be extended to efficiently utilize distributed multi-GPU systems. The results show
that all necessary computations can be fully adapted for heterogeneous computing and
optimally mapped to GPU-like computational units. The number of GPU service tasks
inside the main computational loop can be significantly minimized. The combination of
these two factors results in a high-performance GPU implementation of SeisSol, capable
of simulating real earthquake production scenarios. The results also show that a suitable
choice of abstractions and design patterns allows the CPU and GPU versions of SeisSol
to coexist in a single codebase. In the following, I describe the key finding of this study.

Because all computational tasks generated by elastic wave propagation, dynamic rupture,
and off-fault plasticity solvers run on GPUs, no additional host-to-device data transfers
are needed inside the main computational loop except for writing intermediate results
to disks. Additionally, the GPU version of SeisSol utilizes a pool of device memory,
which implements the LIFO policy - i.e., stack. The pool is used for fast allocations
and deallocations of temporary memory required for storing intermediate computational
results. Simple pointer arithmetic is much faster than communication with GPU runtime
libraries, which may consist of several layers and interact with the operating system kernel
space. Therefore, the memory pool design reduces the number of GPU service tasks and,
thus, increases the overall performance of the application.

GPU programming models used in this work (i.e., CUDA, ROCm, and SYCL) provide
different APIs for handling device service tasks - e.g., selection and initialization of devices,
memory allocation and deallocation, data transfers, etc. In this work, I demonstrate that
this problem can be solved by unifying programming interfaces using the Adapter and
Facade design patterns. The additional software layer redirects user requests to concrete
API calls and provides access only to a required subset of APIs, thus reducing the overall
software maintenance cost. The interface is also used to provide custom GPU service
tasks by combining several primitive ones and to abstract some commonly used GPU
algorithms - e.g., parallel reduction. Of course, an additional level of indirection entails
overheads. However, GPU programming models are primarily asynchronous. Therefore,
such inefficiencies on the host can be well hidden by computations on a device.

In this study, I demonstrate that the original software design, which is based on mixed
sub-task execution, can be adapted for heterogeneous computing by splitting each CPU
task into multiple ones containing sub-tasks of the same kind. Due to the static mesh
refinement used in SeisSol, this pre-processing step needs to be done only once - i.e.,

155

10. Conclusions

during the initialization phase. During this step, the data required for processing each
split task are recorded into batches and stored in a specially designed multi-level hash
table. The necessary batches for each GPU task can be efficiently retrieved from the
table using the keys, which encode the execution control flow path of a task as an integer
value. During a task execution, the GPU hardware maps each sub-task to a free streaming
multiprocessor. Thus, all multiprocessors concurrently perform the same computations on
different pieces of data. This leads to a better utilization of GPU resources. This approach
significantly simplifies the code generation design because the control flow selection logic,
which sometimes is not trivial, stays on the host.

Sometimes, a task split can generate many small-sized data-independent fragments.
Offloading such fragmented tasks to a GPU may degrade its performance; the workload of
a task may not be enough to completely utilize all available multiprocessors. In this study,
I address this problem by concurrently executing data-independent tasks on multiple GPU
streams (or queues in the case of SYCL). This approach gives a GPU scheduler enough
sub-tasks to fill all streaming processors with enough work. I show that the number
of service tasks in the main computational loop can be minimized by allocating and
managing a pool of streams. At some point, streams must be synchronized to ensure that
all submitted GPU tasks are completed. A synchronization of streams involves overhead
proportional to the pool size. I show that the optimal stream count equals 4 for Nvidia
A100 and AMD MI250x GPUs. This pool configuration increases the GPU performance
by approximately 19% compared to the single-stream design.

In SeisSol, computational micro-kernels, executed by CPU sub-tasks, are generated with
the YATeTo DSL. The DSL maps each tensor expression to an abstract syntax tree in
which each intermediate node represents a binary tensor operation. After the semantic
analysis, YATeTo generates vectorized CPU code for each operation represented by a
node during a post-order tree traversal. As one of the first steps of this work, I extended
the DSL to generate GPU code for batched binary operations - i.e., batched GEMMs.

On CPUs, the intermediate results of computations are small and fit into the top-
level caches. Thus, vectorization and abandoned data caching are the key components
determining the high CPU performance of SeisSol. GPU caches are not persistent
between subsequent invocations of GPU kernels. Thus, the initial GPU implementation
of SeisSol, implemented using batched binary operations, has inherently lower arithmetic
intensity than its original CPU counterpart; the GPU application redundantly moves
intermediate results between the device memory and compute units. In this study,
I demonstrate that the average GPU performance of the ADER-DG method can be
considerably improved by fusing subsequent batched GEMM GPU kernels during code
generation. A suitable intermediate code representation of batched GEMM operations
makes it easier to implement various code transformations to minimize shared memory
consumption and block-level thread synchronizations inside a fused kernel. The results
show that fusion increases GPU performance by more than 35% compared to executing
binary batched GEMM operations in sequence. Overall, the final GPU implementation of
SeisSol results in 2-2.5x speed-up relative to the original CPU version when comparing
performance on a single HPC GPU and a single 48-core AVX512 CPU server - i.e., a single
node of the SuperMUC-NG supercomputer. Currently, the kernel fusion is limited to only

156

batched GEMM operations. More advanced wave propagation models - e.g., viscoelastic -
involve high-order tensor operations. Therefore, the presented code-generation approach
needs to be better generalized and extended. However, fusing a long sequence of high-order
operations in a single GPU kernel is not trivial and requires a follow-up study.

Adapting a complex software application like SeisSol for heterogeneous computing envi-
ronments requires an incremental approach; parallel regions are developed, offloaded, and
tested one by one. During this process, a developer spends significant time developing the
code for copying input and output data to and from a device. The process is dynamic and
error-prone because, once two adjacent parallel regions are ported to GPUs, redundant
host-to-device copies must be removed. During the development, it may even be required
to restore the original host implementation of a parallel region to perform debugging.
The use of unified (managed) memory significantly simplifies the process. This memory
type is pageable: the device driver manages data migration between host and device
memory when a page fault occurs. Automatic data migration is less efficient than explicit
data copying because it involves extra algorithmic overhead and cannot fully utilize the
bandwidth of the bus connecting the host and a device. However, once all parallel regions
are offloaded, most of the data resides on the device during the whole execution of a
program. Thus, no data migration occurs between the host and a device, except for
writing intermediate results to a disk.

Many modern implementations of the MPI standard are adapted to pass messages
to/from MPI buffers allocated with unified memory. However, I demonstrate that,
while being convenient, this approach significantly reduces the application’s performance
during strong scaling. In this work, I extended the original non-blocking message-passing
algorithm of SeisSol to copy data from unified to device memory asynchronously before
exchanging data between GPUs over a network. This design involves a more efficient
communication protocol, which results in lower latency and higher bandwidth through a
communication channel. The results show that the improved algorithm increases strong
scaling performance by almost 2.6 times.

A cluster-wise LTS algorithm splits elements of a computational mesh into sub-sets -
i.e., time-clusters - and updates each with its optimal time integration step width. This
approach drastically reduces the time-to-solution of a simulation by reducing redundant
computations. However, the algorithm results in shrinking parallel regions. Some clusters
may fall into a low computational throughput region of a device, affecting the overall
performance of the algorithm. The problem intensifies during strong scaling when more
and more clusters fall to the low throughput region due to mesh partitioning. In these
cases, the workloads of GPU tasks may not be enough to hide kernel launching overheads,
leading to a significant performance loss.

In this study, I investigate the effect of graph-based execution on the strong scaling
performance of the LTS algorithm. Computational graphs are composed of GPU tasks and
stored directly on a device with all required kernel arguments. A single graph launch is
required to schedule executions of all GPU tasks enclosed by a graph in the order specified
by the graph edges. This work demonstrates how one can build computational graphs
for the ADER-DG method. The results show that the graph-based model increases the

157

10. Conclusions

average GPU performance by approximately 50% for small LTS clusters and the strong
scaling performance of the entire LTS algorithm by almost 40%. Despite a considerable
performance boost, the parallel strong scaling efficiency of the LTS algorithm reaches only
53% on distributed multi-GPU systems. This means the algorithm has other performance
limiters that require further investigation.

As a part of this study, I investigate why the strong scaling parallel efficiency of the LTS
algorithm drops faster on distributed multi-GPU systems than on distributed-memory
CPU machines. By using the GTS scheme on a single GPU and CPU and varying the
problem size, I show that the GPU throughput rapidly drops starting at a particular
problem size, whereas CPU performance stays almost flat within the entire test range. This
experiment concludes that there is a dependency between the computational throughput
characteristics of a device and LTS clustering. I demonstrate this by conducting multiple
strong scaling experiments on the LUMI supercomputer using the same computational
mesh with various LTS clustering configurations, enforced by manipulating the material
parameters of the domain. The results show that the performance varies within a wide
range and strongly depends on clustering - i.e., from 0.57 to 1.32 SP-PFLOP/s on 256
AMD MI250x GPUs. The worst results were obtained when the sizes of the time-clusters
linearly grew from the cluster with the highest update rate to the cluster with the lowest
one. The best results were obtained in the opposite case. The former type of clustering
commonly occurs in simulations of real production earthquake scenarios.

SeisSol’s implementation of the LTS scheme constrains update rates of adjacent clusters
to integer numbers. It results in having common synchronization points between them.
At these points, adjacent clusters have no data dependencies and, thus, can be updated
concurrently. In theory, neighboring time-clusters can be temporarily merged and updated
as a single one. This approach should reduce the overall number of small-sized GPU
tasks. Moreover, the execution of merged tasks will be shifted to a higher computational
throughput region. The batched data required for executing the merged tasks can be
prepared in advance - i.e., during the initialization phase. The proposed solution should
theoretically improve the strong scaling performance of the LTS algorithm on distributed
multi-GPU systems, which I suggest trying in a follow-up research.

Computations resulting from the dynamic rupture solver involve many non-linear op-
erations. These cannot be expressed with YATeTo because the DSL is designed for
generating source code for tensor operations. In this work, I compare several implementa-
tions of the OpenMP and SYCL standards for offloading the GPU tasks generated by
the dynamic rupture solver. The results show that SYCL results in better portability
compared to OpenMP. Moreover, the designed SYCL implementation of the rupture solver
is approximately 1.65 times faster than the fastest OpenMP variant.

The final results of this thesis include simulations of three complex earthquake scenarios
obtained with the fully adapted GPU version of SeisSol on the LUMI and Leonardo
supercomputers. The scenarios include the 2023 Kahramanmaraş earthquake, the 2019
Ridgecrest earthquake, and the 2018 Palu earthquake-tsunami event. The last one is the
most advanced because it involves simultaneous modeling of four phenomena: 1) wave
propagation, 2) dynamic rupture, 3) off-fault plasticity, and 4) ocean dynamics. This

158

scenario required the adaptation of the gravitational free surface boundary condition from
work [68] to GPUs for better performance. The obtained numerical results are identical
to the ones reported in [68]. The largest Palu simulation, presented in this work, involved
a computational mesh consisting of 518 million tetrahedrons and was conducted on 256
nodes of the Leonardo supercomputer (1024 Nvidia A-C-64 GPUs), resulting in 1.81
DP-PFLOP/s. For comparison, the same setup resulted in 0.99 DP-PFLOP/s on 768
SuperMUC-NG nodes, according to the results reported in [68].

The GPU version of SeisSol is mature and ready for performing complex earthquake
simulations on top-tier supercomputers. Currently, it is challenging to sustain high
performance on distributed multi-GPU systems during strong scaling. However, an in-
depth study of an extreme-scale earthquake event may involve multiple highly resolved
3D simulations, which can run in parallel on different sets of GPU nodes. Therefore,
researchers can efficiently utilize large portions of GPU-accelerated supercomputers despite
limited scaling capabilities. The outcome of this study is not limited to SeisSol. The
results, findings, and ideas shared in this thesis may help others to adapt and optimize
their scientific applications for heterogeneous computing environments.

159

A. Appendices

A.1. Supercomputers

A.1.1. LUMI

LUMI belongs to the Hewlett Packard Enterprise Cray EX family of supercomputers. The
LUMI-G partition consists of 2560 GPU nodes. Architecturally, it is similar to the Crusher
supercomputer regarding the single-node design (see Fig. 6.17). Each node is powered by
four AMD MI250X GPUs and controlled by a single 64-core AMD Trento CPU. Individual
GPUs within a node communicate via the GPU-to-GPU AMD Infinity Fabric interconnect,
delivering 100 GB/s bidirectional bandwidth. Each GPU gets attached to an individual
50 Gb/s network card via PCIe Gen4 ESM bus. The 200 Gb/s Cray Slingshot-11 network
connects all LUMI-G nodes using a Dragonfly topology.

The MI250X GPU is based on the AMD CDNA2 architecture (see [28]) and consists of
two Graphics Compute Dies. Each compute die is exposed to the Operating System (OS)
as a single accelerator with 110 Compute Units and 64 GB of HBM2e memory. Thus,
applications based on the Single Process Single GPU model must use 2 MPI processes to
utilize two graphics dies simultaneously and, thus, the entire MI250X GPU.

OS SUSE Linux Enterprise Server 15 SP4
MPI CRAY MPICH v8.1.25

GPU driver AMD v5.16.9.22.20
GPU Stack ROCm v5.4

Host Compiler amdclang v15.0.0
Device Compiler amdclang v15.0.0

Table A.1.: The used software stack on the LUMI-G partition.

A.1.2. Leonardo

Leonardo is a member of the Atos BullSequana XH family of supercomputers. The Booster
partition of Leonardo encompasses 3456 GPU nodes connected with the 200Gb/s Nvidia
Mellanox HDR InfiniBand network, featuring a Dragonfly+ topology. Each GPU node
consists of a single 32-core Intel Xeon 8358 CPU, four custom Nvidia Ampere 64GB-HBM2

161

A. Appendices

GPUs (referred to as A100-C-64 in this work), and two dual-port Mellanox HDR100
ConnectX-6 InfiniBand network cards, providing 400 Gb/s bidirectional bandwidth for
inter-node communication in total. Individual GPUs within a node are connected using
the NVLink 3.0 interconnect technology, which provides 200 GB/s bidirectional bandwidth
per GPU pair.

OS Red Hat Enterprise Linux 8
MPI OpenMPI v4.1.5

GPU driver Nvidia v525.105.17
GPU Stack NVIDIA HPC SDK v12.1

Host Compiler clang v15.0.0
Device Compiler nvcc v12.1

Table A.2.: The used software stack on the Leonardo Booster partition.

The details of the single-node and network hardware designs of the Leonardo supercomputer
are explained in [111].

A.1.3. Selene

Selene is a proprietary Nvidia’s supercomputer, which is based on the DGX SuperPOD
technology. The supercomputer consists of four SuperPODs, each containing 140 DGX
A100 nodes. Each node is powered by eight Nvidia A100-SXM4-80, controlled by two
64-core AMD Rome 7742 CPUs. The NVLink 3.0 technology is used to provide equal
bandwidth and latency for intra-node GPU-to-GPU communication. Eight single-port
Mellanox HDR ConnectX-6 InfiniBand network cards, connected to four PCIe switches,
are installed in each node. Each card provides 200 Gb/s bidirectional bandwidth. Addi-
tionally, each node is equipped with two dual-port Mellanox HDR ConnectX-6 InfiniBand
cards, reserved for communicating with the storage network. The nodes of the Selene
supercomputer are connected together using Full Flat-tree network topology.

OS Ubuntu 20.04
MPI OpenMPI 4.1.5, UCX 1.15.0

GPU driver Nvidia v515.65.01
GPU Stack Nvidia HPC SDK 23.5

Host Compiler gcc 13.1
Device Compiler nvcc v11.8

Table A.3.: The used software stack on the Selene supercomputer.

162

A.2. Supplementary Materials

A.2. Supplementary Materials

A.2.1. Influence of LTS clustering on Strong Scaling

Leonardo: Analysis without making use of CUDA-Graphs

1 2 4 8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

Scale Factor

W
ei
gh

ts

cluster 0 cluster 1 cluster 2 cluster 3 cluster 4

51
2

10
24

20
48

40
96

81
92

16
38

4
16

38
4

32
76

8
65

53
6

13
10

72
26

21
44

52
42

88

0
1
2
3
4
5
6
7
8
9
10
11

Number of Elements

SP
-T

FL
O
P/

s

Scaling Factor - 32

cluster 0
cluster 1
cluster 2
cluster 3
cluster 4
measured
average

51
2

10
24

20
48

40
96

81
92

16
38

4
16

38
4

32
76

8
65

53
6

13
10

72
26

21
44

52
42

88

0
1
2
3
4
5
6
7
8
9
10
11

Number of Elements

SP
-T

FL
O
P/

s
Scaling Factor - 512

cluster 0
cluster 1
cluster 2
cluster 3
cluster 4
measured
average

Figure A.1.: Evolution of performance-weights of LTS time-clusters during strong scaling.

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

Node Count

Pa
ra
lle

lE
ffi
ci
en

cy

ideal
measured

Figure A.2.: Ideal and measured parallel efficiency during strong scaling of the LOH.1
scenario on Nvidia A100-C-64 GPU.

163

A. Appendices

A.2.2. 2018 Palu, Sulawesi Earthquake and Tsunami

Figure A.3.: A snippet of the 89 million elements mesh used for the numerical simulation
of the 2018 Palu earthquake-tsunami scenario.

0 1 2 3 4 5 6 7

101
102
103
104
105
106
107
108
109
1010
1011

Time-Cluster

El
em

en
t
C
ou

nt

Wave Propagation Dynamic Rupture

Figure A.4.: LTS clustering of the Palu computational mesh, consisting of approximately
518 million tetrahedrons and about 275 thousand rupture elements.

164

Bibliography

[1] Tor M Aamodt, Wilson Wai Lun Fung, and Timothy G Rogers. “General-purpose
graphics processor architectures”. In: Synthesis Lectures on Computer Architecture
13.2 (2018), pp. 1–140.

[2] Daniel S Abdi, Lucas C Wilcox, Timothy C Warburton, and Francis X Giraldo.
“A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmo-
spheric model”. In: The International Journal of High Performance Computing
Applications 33.1 (2019), pp. 81–109.

[3] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles, techniques,
and tools.(Rep. with corrections.) 2020.

[4] Leandro R Alejano and Antonio Bobet. “Drucker–prager criterion”. In: The ISRM
Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014.
Springer, 2014, pp. 247–252.

[5] Aksel Alpay and Vincent Heuveline. “One Pass to Bind Them: The First Single-Pass
SYCL Compiler with Unified Code Representation Across Backends”. In: IWOCL
& SYCLcon 2023 (2023), p. 3585351.

[6] DJ Andrews. “Rupture dynamics with energy loss outside the slip zone”. In: Journal
of Geophysical Research: Solid Earth 110.B1 (2005).

[7] Zhen Guo Ban, Yan Shi, Qi Yang, Peng Wang, Shi Chen Zhu, and Long Li. “GPU-
accelerated hybrid discontinuous Galerkin time domain algorithm with universal
matrices and local time stepping method”. In: IEEE Transactions on Antennas
and Propagation 68.6 (2020), pp. 4738–4752.

[8] Dip Sankar Banerjee, Khaled Hamidouche, and Dhabaleswar K Panda. “Designing
high performance communication runtime for GPU managed memory: early experi-
ences”. In: Proceedings of the 9th Annual Workshop on General Purpose Processing
using Graphics Processing Unit. 2016, pp. 82–91.

[9] David A Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William Killian,
Adam J Kunen, Olga Pearce, Peter Robinson, Brian S Ryujin, and Thomas RW
Scogland. “RAJA: Portable performance for large-scale scientific applications”. In:
2019 ieee/acm international workshop on performance, portability and productivity
in hpc (p3hpc). IEEE. 2019, pp. 71–81.

[10] David A Beckingsale, Marty J McFadden, Johann PS Dahm, Ramesh Pankajak-
shan, and Richard D Hornung. “Umpire: Application-focused management and
coordination of complex hierarchical memory”. In: IBM Journal of Research and
Development 64.3/4 (2019), pp. 00–1.

165

Bibliography

[11] Jean-Pierre Berenger. “A perfectly matched layer for the absorption of electromag-
netic waves”. In: Journal of computational physics 114.2 (1994), pp. 185–200.

[12] Alexander Breuer, Alexander Heinecke, and Michael Bader. “Petascale local time
stepping for the ADER-DG finite element method”. In: 2016 IEEE international
parallel and distributed processing symposium (IPDPS). IEEE. 2016, pp. 854–863.

[13] Alexander Nikolas Breuer. “High Performance Earthquake Simulations”. PhD thesis.
Technische Universität München, 2015.

[14] Otto T Bruhns. “History of plasticity”. In: Encyclopedia of Continuum Mechanics
(2020), pp. 1129–1190.

[15] Miha Cernetic, Volker Springel, Thomas Guillet, and Rüdiger Pakmor. “High-order
Discontinuous Galerkin hydrodynamics with sub-cell shock capturing on GPUs”.
In: Monthly Notices of the Royal Astronomical Society 522.1 (2023), pp. 982–1008.

[16] Jesse Chan and Tim Warburton. “GPU-accelerated Bernstein–Bézier discontinuous
Galerkin methods for wave problems”. In: SIAM Journal on Scientific Computing
39.2 (2017), A628–A654.

[17] Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao, Sihuan Li, Kaiming Ouyang,
Kai Zhao, Nathan DeBardeleben, Qiang Guan, and Zizhong Chen. “TSM2: opti-
mizing tall-and-skinny matrix-matrix multiplication on GPUs”. In: Proceedings of
the ACM International Conference on Supercomputing. 2019, pp. 106–116.

[18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. “{TVM}: An
automated {End-to-End} optimizing compiler for deep learning”. In: 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 2018,
pp. 578–594.

[19] CALIFORNIA SEISMIC SAFETY COMMISSION. Findings and Recommendations
from the Ridgecrest Earthquake Sequence of July 2019. 2019. url: https://ssc.ca.
gov/wp-content/uploads/sites/9/2020/08/19-03_ridgecrest.pdf.

[20] Luca Dal Zilio and Jean-Paul Ampuero. “Earthquake doublet in Turkey and Syria”.
In: Communications Earth & Environment 4.1 (2023), p. 71.

[21] James Daniell and Armand Vervaeck. “Damaging earthquakes database 2011 the
year in review”. In: CEDIM Earthquake Loss Estimation Series, Research Report
No 1 (2012).

[22] Steven M Day, Jacobo Bielak, Doug Dreger, R Graves, S Larsen, KB Olsen, and
A Pitarka. “Tests of 3D elastodynamic codes: Final report for Lifelines Project
1A02”. In: Pacific Earthquake Engineering Research Center (2003).

[23] Steven M Day, Luis A Dalguer, Nadia Lapusta, and Yi Liu. “Comparison of
finite difference and boundary integral solutions to three-dimensional spontaneous
rupture”. In: Journal of Geophysical Research: Solid Earth 110.B12 (2005).

[24] Josep de la Puente, J-P Ampuero, and Martin Käser. “Dynamic rupture modeling
on unstructured meshes using a discontinuous Galerkin method”. In: Journal of
Geophysical Research: Solid Earth 114.B10 (2009).

166

https://ssc.ca.gov/wp-content/uploads/sites/9/2020/08/19-03_ridgecrest.pdf
https://ssc.ca.gov/wp-content/uploads/sites/9/2020/08/19-03_ridgecrest.pdf

Bibliography

[25] Joel E Denny, Seyong Lee, and Jeffrey S Vetter. “Clacc: Translating openacc to
openmp in clang”. In: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC). IEEE. 2018, pp. 18–29.

[26] Bronis R de Supinski, Thomas RW Scogland, Alejandro Duran, Michael Klemm,
Sergi Mateo Bellido, Stephen L Olivier, Christian Terboven, and Timothy G
Mattson. “The ongoing evolution of openmp”. In: Proceedings of the IEEE 106.11
(2018), pp. 2004–2019.

[27] Advanced Micro Devices. AMD CDNA Architecture. 2020. url: https://www.amd.
com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-
cdna-white-paper.pdf.

[28] Advanced Micro Devices. AMD CDNA2 Architecture. 2021. url: https://www.amd.
com/system/files/documents/amd-cdna2-white-paper.pdf.

[29] Advanced Micro Devices. ”AMD Instinct MI200” Instruction Set Architecture:
Reference Guide. Feb. 2022. url: https://www.amd.com/content/dam/amd/en/
documents/instinct-tech-docs/instruction-set-architectures/instinct-mi200-cdna2-
instruction-set-architecture.pdf.

[30] Ravil Dorozhinskii and Michael Bader. “Seissol on distributed multi-gpu systems:
Cuda code generation for the modal discontinuous galerkin method”. In: The
International Conference on High Performance Computing in Asia-Pacific Region.
2021, pp. 69–82.

[31] Benchun Duan and Steven M Day. “Inelastic strain distribution and seismic
radiation from rupture of a fault kink”. In: Journal of Geophysical Research: Solid
Earth 113.B12 (2008).

[32] Michael Dumbser and Martin Käser. “An arbitrary high-order discontinuous
Galerkin method for elastic waves on unstructured meshes—II. The three-
dimensional isotropic case”. In: Geophysical Journal International 167.1 (2006),
pp. 319–336.

[33] Eric M Dunham, David Belanger, Lin Cong, and Jeremy E Kozdon. “Earthquake
ruptures with strongly rate-weakening friction and off-fault plasticity, Part 1:
Planar faults”. In: Bulletin of the Seismological Society of America 101.5 (2011),
pp. 2296–2307.

[34] Fionn Dunne and Nik Petrinic. Introduction to computational plasticity. OUP
Oxford, 2005.

[35] Dominik Ernst, Georg Hager, Jonas Thies, and Gerhard Wellein. “Performance
Engineering for a Tall & Skinny Matrix Multiplication Kernel on GPUs”. In: arXiv
preprint arXiv:1905.03136 (2019).

[36] Jirı́ Filipovic, Jan Fousek, Bedrich Lakomỳ, and Matú Madzin. “Automatically
optimized GPU acceleration of element subroutines in finite element method”. In:
2012 Symposium on Application Accelerators in High Performance Computing.
IEEE. 2012, pp. 141–144.

[37] Jiřı́ Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. “Optimizing CUDA
code by kernel fusion: application on BLAS”. In: The Journal of Supercomputing
71.10 (2015), pp. 3934–3957.

167

https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi200-cdna2-instruction-set-architecture.pdf

Bibliography

[38] HSA Foundation. HSA Platform System Architecture Specification Version 1.0.
Jan. 2015. url: http://hsafoundation.com/wp-content/uploads/2021/02/HSA-
SysArch-1.01.pdf.

[39] Martin Fuhry, Andrew Giuliani, and Lilia Krivodonova. “Discontinuous Galerkin
methods on graphics processing units for nonlinear hyperbolic conservation laws”.
In: International Journal for Numerical Methods in Fluids 76.12 (2014), pp. 982–
1003.

[40] A-A Gabriel, J-P Ampuero, LA Dalguer, and Paul Martin Mai. “Source properties
of dynamic rupture pulses with off-fault plasticity”. In: Journal of Geophysical
Research: Solid Earth 118.8 (2013), pp. 4117–4126.

[41] Rajesh Gandham, David Medina, and Timothy Warburton. “GPU accelerated
discontinuous Galerkin methods for shallow water equations”. In: Communications
in Computational Physics 18.1 (2015), pp. 37–64.

[42] Christophe Geuzaine and Jean-François Remacle. “Gmsh: A 3-D finite element
mesh generator with built-in pre-and post-processing facilities”. In: International
journal for numerical methods in engineering 79.11 (2009), pp. 1309–1331.

[43] Nico Gödel, Steffen Schomann, Tim Warburton, and Markus Clemens. “GPU
accelerated Adams–Bashforth multirate discontinuous Galerkin FEM simulation of
high-frequency electromagnetic fields”. In: IEEE Transactions on magnetics 46.8
(2010), pp. 2735–2738.

[44] Nick Hagerty, Veronica Melesse Vergara, and Arnold Tharrington. Studying perfor-
mance portability of lammps across diverse gpu-based platforms. Tech. rep. Oak
Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2022.

[45] Khaled Hamidouche, Ammar Ahmad Awan, Akshay Venkatesh, and Dhabaleswar K
Panda. “CUDA M3: Designing efficient CUDA managed memory-aware MPI by
exploiting GDR and IPC”. In: 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC). IEEE. 2016, pp. 52–61.

[46] Ruth A Harris, Michael Barall, Brad Aagaard, Shuo Ma, Daniel Roten, Kim Olsen,
Benchun Duan, Dunyu Liu, Bin Luo, Kangchen Bai, et al. “A suite of exercises for
verifying dynamic earthquake rupture codes”. In: Seismological Research Letters
89.3 (2018), pp. 1146–1162.

[47] Ruth A Harris, Michael Barall, R Archuleta, E Dunham, B Aagaard, Jean Paul
Ampuero, Harsha Bhat, V Cruz-Atienza, L Dalguer, Phillip Dawson, et al. “The
SCEC/USGS dynamic earthquake rupture code verification exercise”. In: Seismo-
logical Research Letters 80.1 (2009), pp. 119–126.

[48] Hemanta Hazarika, Divyesh Rohit, Siavash Manafi Khajeh Pasha, Tsubasa Maeda,
Irsyam Masyhur, Ardy Arsyad, and Sukiman Nurdin. “Large distance flow-slide
at Jono-Oge due to the 2018 Sulawesi Earthquake, Indonesia”. In: Soils and
Foundations 61.1 (2021), pp. 239–255.

[49] Alexander Heinecke, Alexander Breuer, Michael Bader, and Pradeep Dubey. “High
order seismic simulations on the Intel Xeon Phi processor (Knights Landing)”.
In: International Conference on High Performance Computing. Springer. 2016,
pp. 343–362.

168

http://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.01.pdf
http://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.01.pdf

Bibliography

[50] Alexander Heinecke, Alexander Breuer, Sebastian Rettenberger, Michael Bader,
Alice-Agnes Gabriel, Christian Pelties, Arndt Bode, William Barth, Xiang-Ke
Liao, Karthikeyan Vaidyanathan, et al. “Petascale high order dynamic rupture
earthquake simulations on heterogeneous supercomputers”. In: SC’14: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE. 2014, pp. 3–14.

[51] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst.
“LIBXSMM: accelerating small matrix multiplications by runtime code generation”.
In: SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE. 2016, pp. 981–991.

[52] Verena Hermann. “ADER-DG-Analysis, further Development and Applications”.
PhD thesis. lmu, 2011.

[53] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications. Springer Science & Business Media, 2007.

[54] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. “CUDA
vs OpenACC: Performance case studies with kernel benchmarks and a memory-
bound CFD application”. In: 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. IEEE. 2013, pp. 136–143.

[55] Susan E Hough, Eric Thompson, Grace A Parker, Robert W Graves, Kenneth W
Hudnut, Jason Patton, Timothy Dawson, Tyler Ladinsky, Michael Oskin, Krittanon
Sirorattanakul, et al. “Near-field ground motions from the July 2019 Ridgecrest,
California, earthquake sequence”. In: Seismological Research Letters 91.3 (2020),
pp. 1542–1555.

[56] Yoshiaki Ida. “Cohesive force across the tip of a longitudinal-shear crack and
Griffith’s specific surface energy”. In: Journal of Geophysical Research 77.20 (1972),
pp. 3796–3805.

[57] Zhe Jia, Zeyu Jin, Mathilde Marchandon, Thomas Ulrich, Alice-Agnes Gabriel,
Wenyuan Fan, Peter Shearer, Xiaoyu Zou, John Rekoske, Fatih Bulut, et al. “The
complex dynamics of the 2023 Kahramanmaraş, Turkey, M w 7.8-7.7 earthquake
doublet”. In: Science 381.6661 (2023), pp. 985–990.

[58] Ali Karakus, Noel Chalmers, K Świrydowicz, and Tim Warburton. “A GPU
accelerated discontinuous Galerkin incompressible flow solver”. In: Journal of
Computational Physics 390 (2019), pp. 380–404.

[59] George Karypis and Vipin Kumar. “A Coarse-Grain Parallel Formulation of Multi-
level k-way Graph Partitioning Algorithm.” In: PPSC. 1997.

[60] George Karypis, Kirk Schloegel, and Vipin Kumar. “Parmetis: Parallel graph
partitioning and sparse matrix ordering library”. In: (1997).

[61] Martin Käser and Michael Dumbser. “An arbitrary high-order discontinuous
Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional
isotropic case with external source terms”. In: Geophysical Journal International
166.2 (2006), pp. 855–877.

169

Bibliography

[62] Martin Käser, P Martin Mai, and Michael Dumbser. “Accurate calculation of fault-
rupture models using the high-order discontinuous Galerkin method on tetrahedral
meshes”. In: Bulletin of the Seismological Society of America 97.5 (2007), pp. 1570–
1586.

[63] Ronan Keryell, Ruyman Reyes, and Lee Howes. “Khronos SYCL for OpenCL: a
tutorial”. In: Proceedings of the 3rd International Workshop on OpenCL. 2015,
pp. 1–1.

[64] Mikhail Khalilov and Alexey Timoveev. “Performance analysis of CUDA, OpenACC
and OpenMP programming models on TESLA V100 GPU”. In: Journal of Physics:
Conference Series. Vol. 1740. 1. IOP Publishing. 2021, p. 012056.

[65] Andrew C Kirby and Dimitri J Mavriplis. “Gpu-accelerated discontinuous galerkin
methods: 30x speedup on 345 billion unknowns”. In: 2020 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE. 2020, pp. 1–7.

[66] Andreas Klöckner, Tim Warburton, Jeff Bridge, and Jan S Hesthaven. “Nodal dis-
continuous Galerkin methods on graphics processors”. In: Journal of Computational
Physics 228.21 (2009), pp. 7863–7882.

[67] Marcin Knap and Paweł Czarnul. “Performance evaluation of unified memory
with prefetching and oversubscription for selected parallel cuda applications on
nvidia pascal and volta gpus”. In: The Journal of Supercomputing 75.11 (2019),
pp. 7625–7645.

[68] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S
Abrahams, Eric M Dunham, and Michael Bader. “3D acoustic-elastic coupling
with gravity: the dynamics of the 2018 Palu, Sulawesi earthquake and tsunami”.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 2021, pp. 1–14.

[69] Lawrence Livermore National Laboratory. RAJA Performance Portability Layer.
June 2023. url: https://github.com/LLNL/RAJA.

[70] Network-Based Computing Laboratory. OSU Micro-Benchmarks. June 2023. url:
https://mvapich.cse.ohio-state.edu/benchmarks.

[71] Chi-Chung Lam, P Sadayappan, and Rephael Wenger. “Optimal reordering and
mapping of a class of nested-loops for parallel execution”. In: International Workshop
on Languages and Compilers for Parallel Computing. Springer. 1996, pp. 315–329.

[72] Chi-Chung Lam, P Sadayappan, and Rephael Wenger. “Optimal reordering and
mapping of a class of nested-loops for parallel execution”. In: Languages and
Compilers for Parallel Computing: 9th International Workshop, LCPC’96 San Jose,
California, USA, August 8–10, 1996 Proceedings 9. Springer. 1997, pp. 315–329.

[73] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Kang Seol Lee, Sang Jin
Byeon, Jae Hwan Kim, Jin Hee Cho, Jaejin Lee, and Jun Hyun Chun. “A 1.2 V
8 Gb 8-channel 128 GB/s high-bandwidth memory (HBM) stacked DRAM with
effective I/O test circuits”. In: IEEE Journal of Solid-State Circuits 50.1 (2014),
pp. 191–203.

[74] Randall J LeVeque et al. Finite volume methods for hyperbolic problems. Vol. 31.
Cambridge university press, 2002.

170

https://github.com/LLNL/RAJA
https://mvapich.cse.ohio-state.edu/benchmarks

Bibliography

[75] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. “Automatic horizontal
fusion for GPU kernels”. In: 2022 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE. 2022, pp. 14–27.

[76] Tianyi Li and Allan M Rubin. “A microscopic model of rate and state friction
evolution”. In: Journal of Geophysical Research: Solid Earth 122.8 (2017), pp. 6431–
6453.

[77] Guoping Long, Jun Yang, Kai Zhu, and Wei Lin. “Fusionstitching: Deep fusion
and code generation for tensorflow computations on gpus”. In: arXiv preprint
arXiv:1811.05213 (2018).

[78] Gabriel C Lotto and Eric M Dunham. “High-order finite difference modeling
of tsunami generation in a compressible ocean from offshore earthquakes”. In:
Computational Geosciences 19.2 (2015), pp. 327–340.

[79] Jacob Lubliner. Plasticity theory. Courier Corporation, 2008.
[80] Jacob Lubliner and Panayiotis Papadopoulos. Introduction to solid mechanics.

Springer, 2016.
[81] Karthik Vadambacheri Manian, AA Ammar, Amit Ruhela, C-H Chu, Hari Subra-

moni, and Dhabaleswar K Panda. “Characterizing cuda unified memory (um)-aware
mpi designs on modern gpu architectures”. In: Proceedings of the 12th Workshop
on General Purpose Processing Using GPUs. 2019, pp. 43–52.

[82] Karthik Vadambacheri Manian, Ching-Hsiang Chu, Ammar Ahmad Awan, Kawthar
Shafie Khorassani, Hari Subramoni, and DK Panda. “OMB-UM: Design, imple-
mentation, and evaluation of CUDA unified memory aware MPI benchmarks”. In:
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). IEEE. 2019, pp. 82–92.

[83] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S
Vetter. “Nvidia tensor core programmability, performance & precision”. In: 2018
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE. 2018, pp. 522–531.

[84] Chris Marone. “The effect of loading rate on static friction and the rate of fault
healing during the earthquake cycle”. In: Nature 391.6662 (1998), pp. 69–72.

[85] Veronica Melesse Vergara, Reuben Budiardja, Matt Davis, Matthew Ezell, Jesse
Hanley, Christopher Zimmer, Michael Brim, Wael Elwasif, and Dan Dietz. Ap-
proaching the Final Frontier: Lessons Learned from the Deployment of HPE/Cray
EX Spock and Crusher supercomputers. Tech. rep. Oak Ridge National Lab.(ORNL),
Oak Ridge, TN (United States), 2022.

[86] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.0. June 2021. url: https://www.mpi-forum.org/docs/mpi-4.0/mpi40-
report.pdf.

[87] Axel Modave, Andreas Atle, Jesse Chan, and Tim Warburton. “A GPU-accelerated
nodal discontinuous Galerkin method with high-order absorbing boundary con-
ditions and corner/edge compatibility”. In: International Journal for Numerical
Methods in Engineering 112.11 (2017), pp. 1659–1686.

171

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Bibliography

[88] Axel Modave, Amik St-Cyr, and Tim Warburton. “GPU performance analysis
of a nodal discontinuous Galerkin method for acoustic and elastic models”. In:
Computers & Geosciences 91 (2016), pp. 64–76.

[89] Dawei Mu, Po Chen, and Liqiang Wang. “Accelerating the discontinuous Galerkin
method for seismic wave propagation simulations using the graphic processing unit
(GPU)—single-GPU implementation”. In: Computers & Geosciences 51 (2013),
pp. 282–292.

[90] Abdul Muhari, Fumihiko Imamura, Taro Arikawa, Aradea R Hakim, and Bagus
Afriyanto. “Solving the puzzle of the September 2018 Palu, Indonesia, tsunami
mystery: clues from the tsunami waveform and the initial field survey data”. In:
Journal of Disaster Research 13.Scientific Communication (2018), sc20181108.

[91] NVIDIA. NVIDIA Tesla P100: Whitepaper. 2019. url: https://images.nvidia.com/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.

[92] Swaroop Pophale, Swen Boehm, and Verónica G Vergara Larrea. “Comparing high
performance computing accelerator programming models”. In: High Performance
Computing: ISC High Performance 2019 International Workshops, Frankfurt,
Germany, June 16-20, 2019, Revised Selected Papers 34. Springer. 2019, pp. 155–
168.

[93] The SCEC/USGS Spontaneous Rupture Code Verification Project. Documentation
for The Problem, Version 5. June 2023. url: https://strike.scec.org/cvws/tpv5docs.
html.

[94] The SCEC/USGS Spontaneous Rupture Code Verification Project. Documentation
for The Problem, Versions 101 and 102. June 2023. url: https://strike.scec.org/
cvws/tpv101_102docs.html.

[95] The SCEC/USGS Spontaneous Rupture Code Verification Project. Documentation
for The Problem, Versions 12 and 13. June 2023. url: https://strike.scec.org/cvws/
tpv12_13docs.html.

[96] Max Rietmann. “Local time stepping on high performance computing architectures”.
In: (2015).

[97] Max Rietmann, Marcus Grote, Daniel Peter, and Olaf Schenk. “Newmark lo-
cal time stepping on high-performance computing architectures”. In: Journal of
Computational Physics 334 (2017), pp. 308–326.

[98] Max Rietmann, Daniel Peter, Olaf Schenk, Bora Uçar, and Marcus Grote. “Load-
balanced local time stepping for large-scale wave propagation”. In: 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE. 2015, pp. 925–
935.

[99] Zachary E Ross, Benjamı́n Idini, Zhe Jia, Oliver L Stephenson, Minyan Zhong,
Xin Wang, Zhongwen Zhan, Mark Simons, Eric J Fielding, Sang-Ho Yun, et al.
“Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake
sequence”. In: Science 366.6463 (2019), pp. 346–351.

[100] Tatsuhiko Saito. Tsunami generation and propagation. Springer, 2019.
[101] Christopher H Scholz. “Earthquakes and friction laws”. In: Nature 391.6662 (1998),

pp. 37–42.

172

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://strike.scec.org/cvws/tpv5docs.html
https://strike.scec.org/cvws/tpv5docs.html
https://strike.scec.org/cvws/tpv101_102docs.html
https://strike.scec.org/cvws/tpv101_102docs.html
https://strike.scec.org/cvws/tpv12_13docs.html
https://strike.scec.org/cvws/tpv12_13docs.html

Bibliography

[102] Jonas Schreier. “Optimization of small matrix multiplication kernels on Arm”. In:
(2021).

[103] Pavel Shamis, Manjunath Gorentla Venkata, M Graham Lopez, Matthew B Baker,
Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L Graham,
Liran Liss, et al. “UCX: an open source framework for HPC network APIs and be-
yond”. In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.
IEEE. 2015, pp. 40–43.

[104] Martin Siebenborn, Volker Schulz, and Stephan Schmidt. “A curved-element un-
structured discontinuous Galerkin method on GPUs for the Euler equations”. In:
Computing and Visualization in Science 15 (2012), pp. 61–73.

[105] Paul Springer and Paolo Bientinesi. “Design of a high-performance GEMM-like
tensor–tensor multiplication”. In: ACM Transactions on Mathematical Software
(TOMS) 44.3 (2018), pp. 1–29.

[106] Arthur H Stroud and Don Secrest. “Gaussian quadrature formulas”. In: (No Title)
(1966).

[107] Jafril Tanjung, Yasushi Sanada, Fajar Nugroho, Syafri Wardi, et al. “Seismic
analysis of damaged buildings based on postearthquake investigation of the 2018
Palu Earthquake”. In: GEOMATE Journal 18.70 (2020), pp. 116–122.

[108] Taufiq Taufiqurrahman, Alice-Agnes Gabriel, Duo Li, Thomas Ulrich, Bo Li, Sara
Carena, Alessandro Verdecchia, and František Gallovič. “Dynamics, interactions
and delays of the 2019 Ridgecrest rupture sequence”. In: Nature (2023), pp. 1–8.

[109] Netgen Team. Netgen. Version 5.3.1. 2023. url: https://ngsolve.org.
[110] Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics: a

practical introduction. Springer Science & Business Media, 2013.
[111] Matteo Turisini, Giorgio Amati, and Mirko Cestari. “LEONARDO: A Pan-

European Pre-Exascale Supercomputer for HPC and AI Applications”. In: arXiv
preprint arXiv:2307.16885 (2023).

[112] Thomas Ulrich. “On the rupture processes of large earthquakes using three-
dimensional data-integrated dynamic rupture simulations”. PhD thesis. lmu, 2020.

[113] Thomas Ulrich, Alice-Agnes Gabriel, Jean-Paul Ampuero, and Wenbin Xu. “Dy-
namic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal
faults”. In: Nature communications 10.1 (2019), p. 1213.

[114] Carsten Uphoff. “Flexible model extension and optimisation for earthquake simula-
tions at extreme scales”. PhD thesis. Technische Universität München, 2020.

[115] Carsten Uphoff and Michael Bader. “Generating high performance matrix kernels
for earthquake simulations with viscoelastic attenuation”. In: 2016 International
Conference on High Performance Computing & Simulation (HPCS). IEEE. 2016,
pp. 908–916.

[116] Carsten Uphoff and Michael Bader. “Yet another tensor toolbox for discontinuous
Galerkin methods and other applications”. In: ACM Transactions on Mathematical
Software (TOMS) 46.4 (2020), pp. 1–40.

173

https://ngsolve.org

Bibliography

[117] Carsten Uphoff, Sebastian Rettenberger, Michael Bader, Elizabeth H Madden,
Thomas Ulrich, Stephanie Wollherr, and Alice-Agnes Gabriel. “Extreme scale multi-
physics simulations of the tsunamigenic 2004 sumatra megathrust earthquake”.
In: Proceedings of the international conference for high performance computing,
networking, storage and analysis. 2017, pp. 1–16.

[118] Mohamed Wahib and Naoya Maruyama. “Scalable kernel fusion for memory-bound
GPU applications”. In: SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE. 2014,
pp. 191–202.

[119] Guibin Wang, YiSong Lin, and Wei Yi. “Kernel fusion: An effective method
for better power efficiency on multithreaded GPU”. In: 2010 IEEE/ACM Int’l
Conference on Green Computing and Communications & Int’l Conference on
Cyber, Physical and Social Computing. IEEE. 2010, pp. 344–350.

[120] Zoltán Wéber. “Estimating source time function and moment tensor from moment
tensor rate functions by constrained L 1 norm minimization”. In: Geophysical
Journal International 178.2 (2009), pp. 889–900.

[121] W Hwu Wen-mei. Heterogeneous System Architecture: A new compute platform
infrastructure. Morgan Kaufmann, 2015.

[122] Niklas Wintermeyer, Andrew R Winters, Gregor J Gassner, and Timothy War-
burton. “An entropy stable discontinuous Galerkin method for the shallow water
equations on curvilinear meshes with wet/dry fronts accelerated by GPUs”. In:
Journal of Computational Physics 375 (2018), pp. 447–480.

[123] Sebastian Wolf, Martin Galis, Carsten Uphoff, Alice-Agnes Gabriel, Peter Moczo,
David Gregor, and Michael Bader. “An efficient ADER-DG local time stepping
scheme for 3D HPC simulation of seismic waves in poroelastic media”. In: Journal
of Computational Physics 455 (2022), p. 110886.

[124] Stephanie Wollherr, Alice-Agnes Gabriel, and P Martin Mai. “Landers 1992
“reloaded”: Integrative dynamic earthquake rupture modeling”. In: Journal of
Geophysical Research: Solid Earth 124.7 (2019), pp. 6666–6702.

[125] Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten Uphoff. “Off-fault plasticity
in three-dimensional dynamic rupture simulations using a modal Discontinuous
Galerkin method on unstructured meshes: implementation, verification and appli-
cation”. In: Geophysical Journal International 214.3 (2018), pp. 1556–1584.

[126] Xinhui Wu, Ethan J Kubatko, and Jesse Chan. “High-order entropy stable dis-
continuous Galerkin methods for the shallow water equations: curved triangular
meshes and GPU acceleration”. In: Computers & Mathematics with Applications
82 (2021), pp. 179–199.

[127] Yidong Xia, Lixiang Luo, and Hong Luo. “OpenACC-based GPU acceleration of
a 3-D unstructured discontinuous galerkin method”. In: 52nd Aerospace Sciences
Meeting. 2014, p. 1129.

[128] Han Yue, Jianbao Sun, Min Wang, Zhengkang Shen, Mingjia Li, Lian Xue, Weifan
Lu, Yijian Zhou, Chunmei Ren, and Thorne Lay. “The 2019 Ridgecrest, California
earthquake sequence: Evolution of seismic and aseismic slip on an orthogonal fault
system”. In: Earth and Planetary Science Letters 570 (2021), p. 117066.

174

List of Figures

Figure 1.1. Evolution of the top 10 faster supercomputers in the world according
to the TOP500 list over the last ten years. 2

Figure 2.1. Components σij of the stress tensor resulting from the decomposition of
~T1, ~T2 and ~T2 forces (on the left) and the displacement of an infinitesimal
cubic element caused by deformation and a rigid body movement (on
the right). 7

Figure 2.2. Control Volume V with its boundaries S. 10
Figure 2.3. Locked and unlocked states of the fault. 11
Figure 2.4. Friction coefficients µf (on the left) computed according to 1) the

Aging law (see Eq. 2.22) using: a = 0.0085; b = 0.012; L = 0.01;
U0 = 1e− 6; f0 = 0.6 and 2) the LSW (see Eq. 2.23) using: C = 0.56,
µs = 0.5589, µd = 0.5225 and dc = 0.075. 12

Figure 2.5. Force couples representing the moment tensor. 13
Figure 3.1. Exemplary tetrahedral mesh comprising the wave propagation domain

and a vertical fault plane on the left and a tetrahedral element Tm on
the right. 17

Figure 3.2. Rotated faced-aligned coordinate system on the left. Discontinuities of
a solution between two adjacent elements Tm and Tmj on the right. . 18

Figure 3.3. Solution structure of the Riemann problem for Eq. 3.3. 19
Figure 3.4. Mapping tetrahedron Tm to the reference canonical element with

vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) on the left; and face
numbering of a tetrahedron on the right. 21

Figure 3.5. Mapping the 4th face of the reference tetrahedron T e to the reference
canonical triangle with vertices (0, 0), (1, 0) and (0, 1). 22

Figure 3.6. Orientations of the adjacent canonical triangles. 22
Figure 3.7. 2D Gaussian points on the dynamic rupture interface (on the left), and

the solution structure of the Riemann problem for Eq. 3.3 (on the right). 30
Figure 4.1. Strong-scaling parallel efficiency of SeisSol-proxy on a single AMD

EPYC 7402 CPU. 41
Figure 4.2. Cluster-wise time stepping scheme with the update ratio equal to 2. . 42
Figure 4.3. Example of time-clustering and mesh partitioning in SeisSol. 43
Figure 4.4. Relative distribution of work between 8 partitions of the mesh shown

in Fig. 4.3, on the left. The corresponding distribution of elements
between time-clusters in each sub-domain, on the right. 44

Figure 5.1. Nvidia GP100 Streaming Multiprocessor. 48
Figure 5.2. AMD CDNA Compute Unit. 49
Figure 5.3. High Bandwidth Memory architecture. 50

175

List of Figures

Figure 6.1. Matrix multiplication scheme in GemmForge - i.e., GEMM as a sum of
parallel outer products. Left: Coalesced memory read-access of matrix
A. Right: Work of a single active GPU thread per iteration. 62

Figure 6.2. Example of the shared memory loading strategies implemented in
GemmForge. On the left, the exact strategy is chosen because it
results in 24 warp-load operations (versus 27) and stores 480 matrix
elements in shared memory (versus 864). On the right, GemmForge
selects the extended strategy because it results in only 27 warp-load
operations (versus 48) despite consuming extra shared memory space
for 48 padded matrix elements. 63

Figure 6.3. Performance of the GEMM kernel generated according to Listing 6.1 on
Nvidia and AMD GPUs using CUDA-11.5 and ROCm-5.4, respectively. 65

Figure 6.4. Performance of the generated linear matrix combination kernel on
Nvidia and AMD GPUs using CUDA-11.5 and ROCm-5.4, respectively. 66

Figure 6.5. Graph coloring and the operands’ assignment to shared memory blocks
for Eq. 6.3. 70

Figure 6.6. Strength reduction in the YATeTo DSL and lowering to the linearized
IR. 72

Figure 6.7. Pattern matching for chains of matrix multiplications in YATeTo. . . 73
Figure 6.8. Performance of the benchmarks (Eq. 6.7 and Eq. 6.8) obtained on

various Nvidia and AMD graphics cards using binary and fused GEMM
kernels. 75

Figure 6.9. Roofline model analysis obtained on Nvidia V100-PCIE-32 using Nsight
Compute. 76

Figure 6.10. Performance and elapsed time of SeisSol-proxy obtained on different
single-GPUs using fused GEMM kernels. 76

Figure 6.11. Roofline model analysis obtained on Nvidia A100-SXM4-80 and AMD
MI250x (1x GCD) GPUs using Nsight Compute and Omniperf, respec-
tively. 78

Figure 6.12. Comparisons of the roofline model obtained with Omniperf and its
adjusted variant for AMD MI250x GPU. 80

Figure 6.13. Performance of SeisSol-proxy obtained using the split and fused flux
matrices. 80

Figure 6.14. Stream-based fork-join model. 81
Figure 6.15. Comparisons of the stream-based implementations of the surface neigh-

bor macro-kernel on different GPUs relative to the number of concurrent
streams under different workloads. 83

Figure 6.16. Tracing of the stream-based CUDA implementations of the surface
neighbor macro-kernel under different workloads obtained on Nvidia
A100-SXM4-80 GPU using the circular stream buffer size equal to 4. 84

Figure 6.17. Topology of a single node of the Crusher supercomputer. 86
Figure 6.18. Geometry and a computational mesh of the LOH.1 test scenario. . . . 87
Figure 6.19. Results of the latency and unidirectional bandwidth tests conducted

on the Selene supercomputer. 88
Figure 6.20. Statistics of the MPI message sizes during strong scaling of the LOH.1

scenario in SeisSol. 90

176

List of Figures

Figure 6.21. Point-to-point message-passing schemes between GPUs in SeisSol. The
green color denotes MPI buffers allocated in unified memory; the blue
one - regular device memory; the gray color - host memory. 90

Figure 6.22. Comparison of the strong scaling performance of the LOH.1 bench-
mark using different message-passing configurations on the Selene
supercomputer using the mesh shown in Fig. 6.20. 93

Figure 6.23. Comparison of the strong scaling performance of SeisSol on the Selene,
Leonardo and LUMI supercomputers using the LOH.1 benchmark with
the mesh shown in Fig. 6.20 and the D-D message-passing configuration. 95

Figure 6.24. Comparison of the latency and unidirectional bandwidth on the Se-
lene, Leonardo and LUMI supercomputers using D-D message-passing
configuration. 96

Figure 6.25. Time integration steps with a synchronization point in between. . . . 97
Figure 6.26. Comparisons of the graph-based and stream-based execution models

applied to SeisSol-proxy on Nvidia A100 GPU. 99
Figure 6.27. Comparisons of the graph-based and stream-based execution models

during strong scaling of the LOH.1 benchmark on the Selene super-
computer. 99

Figure 6.28. Evolution of performance-weights of LTS time-clusters during strong
scaling. 102

Figure 6.29. Ideal and measured parallel efficiency during strong scaling of the
LOH.1 scenario on AMD MI250x GPU. 103

Figure 6.30. LOH.1 geometry with parametrized LTS clustering. 103
Figure 6.31. Tested LTS configurations. 104
Figure 6.32. Strong scaling of different LTS clustering configurations on the LUMI

supercomputer. 105
Figure 6.33. Comparison of different variants of the mesh partitioning algorithm

applied to the LOH.1 test scenario. 108
Figure 6.34. Influence of different mesh partitioning versions on SeisSol’s strong

scaling performance. 109
Figure 6.35. Weak scaling of the LOH.1 test scenario on the LUMI supercomputers. 111
Figure 6.36. The unified application programming interface in SeisSol - i.e., Device

API. 112
Figure 6.37. Performance of SeisSol-proxy on Nvidia RTX 3080 Turbo GPU using

different GPU backends. 113
Figure 6.38. Convergence analysis of the GPU implementation of SeisSol’s elastic

wave propagation solver. 115
Figure 6.39. Performance of SeisSol-proxy on AMD MI250x GPU regarding different

maximal polynomial degrees N and the floating-point formats. 117
Figure 7.1. Left: Gaussian points within the canonical triangle required for the

Stroud quadrature rule of strength 6. Right: Dependencies of the
strengths of the Stroud rule on the number of Gaussian points. 121

Figure 7.2. Geometry and mesh refinement of the TPV-5 test scenario. 124
Figure 7.3. Comparisons of the Linear Slip-Weakening and Aging friction laws

regarding performance on a single Nvidia A100-PCIE-40GB GPU using
the same one million elements mesh for both cases. 126

177

List of Figures

Figure 7.4. Strong scaling of the TPV-5 scenario using 17 million elements mesh
on the Selene, Leonardo and LUMI supercomputers. 128

Figure 8.1. Geometry and mesh refinement of the TPV-13 test scenario. 134
Figure 8.2. Comparison of the velocity magnitudes with and without the off-fault

plasticity model at a receiver located 3 km away from the center of the
fault plane along the normal direction toward the free surface (see Fig.
8.1). 135

Figure 8.3. Comparisons of the elapsed time of the TPV-13 test scenario with and
without the off-fault plasticity model on a single Nvidia A100-PCIE-
40GB GPU. 135

Figure 9.1. Regional tectonic map around the Kahramanmaras region and the 3D
model of the fault system. 138

Figure 9.2. LTS clustering of the Turkey computational mesh, consisting of ap-
proximately 175 million tetrahedrons and about 300 thousand rupture
elements. 139

Figure 9.3. Snapshots of the absolute slip rate along the East Anatolian Fault
obtained during a numerical simulation of the 2023 Kahramanmaraş
earthquake. 140

Figure 9.4. Seismic activity around the Ridgecrest region and the 3D model of the
fault system. 141

Figure 9.5. LTS clustering of the Ridgecrest computational mesh, consisting of
approximately 27 million tetrahedrons and about 600 thousand rupture
elements. 142

Figure 9.6. Snapshots of the absolute slip rate along the Ridgecrest fault system. 143
Figure 9.7. Tectonic setting of the 2018 Palu, Sulawesi earthquake and its epicen-

ter. The zoomed region displays the area of interest, focusing on the
Northern, Palu, and Saluki segments. 145

Figure 9.8. LTS clustering of the Palu computational mesh, consisting of ap-
proximately 89 million tetrahedrons and about 100 thousand rupture
elements. 149

Figure 9.9. Numerical results of the 2018 Palu, Sulawesi earthquake-tsunami sce-
nario obtained on the Leonardo supercomputer. 150

Figure 9.10. Vertical displacements of the sea bottom at two arbitrarily chosen
points around the center of Palu Bay. The points belong to the centers
of adjacent elements aligned to the rupture surface of the Northern
segment. 151

Figure A.1. Evolution of performance-weights of LTS time-clusters during strong
scaling. 163

Figure A.2. Ideal and measured parallel efficiency during strong scaling of the
LOH.1 scenario on Nvidia A100-C-64 GPU. 163

Figure A.3. A snippet of the 89 million elements mesh used for the numerical
simulation of the 2018 Palu earthquake-tsunami scenario. 164

Figure A.4. LTS clustering of the Palu computational mesh, consisting of approx-
imately 518 million tetrahedrons and about 275 thousand rupture
elements. 164

178

List of Tables

Table 3.1. Transformations of χ2-χ1 coordinates of the canonical triangle to χ̃2-χ̃1

coordinates of the neighbor triangle for all possible orientations defined
by h (see Fig. 3.6). 23

Table 4.1. Matrix sizes for typical convergence orders. 37
Table 6.1. Cost evaluation statistics. 75
Table 6.2. Maximum and average speed-ups computed for Fig. 6.10. 77
Table 6.3. Average empirical convergence orders of the σ22 variable obtained while

simulating the plane waves with SeisSol on AMD MI250x GPU using
the double-precision floating-point format. 116

Table 7.1. Comparison of the OpenMP and SYCL parallel programming models on
a single AMD EPYC 7763 64-core CPU and Nvidia A100-PCIE-40GB
GPU. 125

Table 7.2. Relative error of the GPU implementation of the dynamic rupture solver
obtained for the TPV-5 test scenario. 129

Table 8.1. Relative error of the GPU implementation of the dynamic rupture solver
obtained for the TPV-13 test scenario. 134

Table 9.1. SeisSol’s performance data collected on 50 CPU/GPU supercomputing
nodes during simulations of the 2018 Palu, Sulawesi earthquake-tsunami
scenario. 151

Table A.1. The used software stack on the LUMI-G partition. 161
Table A.2. The used software stack on the Leonardo Booster partition. 162
Table A.3. The used software stack on the Selene supercomputer. 162

179

Code Listings

6.1. Example of operands descriptions in GemmForge. 61
6.2. Generated batched GEMM kernel (56x56x9) for Nvidia sm70 model according

to the description given in Listing 6.1. 64
6.3. Low-level Intermediate Representation (IR) of Eq. 6.3 in ChainForge. The IR

instructions are shown using the bold dark green font; the register array - the
bold dark blue font; shared memory - the bold dark red font; the operands
residing in global memory - the bold light blue font; the operands residing in
shared memory - the normal black font prefixed with “%” symbol. 70

181

List of Algorithms

1. CPU implementation of the Neighbor Surface Integral - i.e., Inghbsurf 41
2. GPU implementation of the Neighbor Surface Integral - i.e., Inghbsurf 59
3. Stream-based implementation of the Neighbor Surface Integral - i.e., Inghbsurf . . . 82
4. Receiving Copy-Layer . 92
5. Sending Copy-Layer . 94
6. Graph-based implementation of the ADER scheme without source terms and

when t = t0 - i.e., Iader. 98

183

	Introduction
	Governing Equations for Earthquake Modeling
	Elastic Wave Propagation
	Dynamic Rupture Process
	Kinematic Point Sources
	Off-fault Plasticity Model

	Discontinuous Galerkin Method in SeisSol
	Numerical Fluxes
	Reference Element
	Basis Functions
	ADER
	Local Time Stepping
	Boundary Conditions
	Absorbing Boundaries
	Free-Surface Boundaries
	Dynamic Rupture

	HPC Concepts in SeisSol
	Data Layout and Macro Kernels
	Code Generation
	Multithreading
	Distributed-Memory Computing

	Graphical Processing Units
	Architectures
	Programming models
	Kernel Launching Mechanism

	Implementation of Elastic Wave Propagation
	Memory Management
	Task Decomposition for Massively Parallel Systems
	Code Generation
	GemmForge
	ChainForge
	Preliminary Performance Analysis
	Revisiting the Flux Matrix Decomposition

	Concurrent Task Execution
	Execution on Distributed Multi-GPU Systems
	MPI Buffers Placement
	Graph-Based Task Execution
	Influence of LTS clustering on Strong Scaling
	Enchanted Mesh Partitioning in SeisSol
	LTS Weak Scaling

	Source Code Portability
	Verification and Convergence Study
	Discussion

	Implementation of Dynamic Rupture
	Parallelization
	Portability
	Strong Scaling
	Verification
	Discussion

	Implementation of Off-fault Plasticity
	Parallelization and Portability
	Verification and Comparison
	Discussion

	Numerical Simulations and Supercomputing
	2023 Kahramanmaraş Earthquake
	2019 Ridgecrest Earthquake Sequence
	2018 Palu, Sulawesi Earthquake and Tsunami
	Discussion

	Conclusions
	Appendices
	Supercomputers
	LUMI
	Leonardo
	Selene

	Supplementary Materials
	Influence of LTS clustering on Strong Scaling
	2018 Palu, Sulawesi Earthquake and Tsunami

	Bibliography
	List of Figures
	List of Tables
	Code Listings
	List of Algorithms

