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Creating a Predictive Model for the Traffic Impacts of Road Closures 

Abstract 

This thesis investigates the impact of Munich's aqt project, focusing on traffic effects in 

two areas with newly implemented car-free zones. Using historical open-source data, a 

Random Forest regression model was developed to predict traffic impacts for future sim-

ilar projects. The study researched travel behavior changes due to road closures, includ-

ing traffic, alternative transport, weather, and sports activity data. Results show no sig-

nificant change in relative speed, indicating stable traffic conditions with minor improve-

ments. The models, utilizing averaged historical data by weekdays for future feature val-

ues, achieved modest accuracy (R² ~ 0.2), surpassing linear regression models. Key 

features influencing accuracy included speed, day of the week, and weather, while non-

time-dependent factors like demographics and amenities had negligible impact. These 

outcomes support existing literature on road closures, indicating an elastic reaction to 

reduced car infrastructure and confirming minimal observed traffic changes. Overall, the 

aqt project demonstrated a non-significant effect on traffic conditions, mitigating con-

cerns about increased congestion from restricting car access.  
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1. Introduction 

1.1. Background 

The concept of a 'car-free' environment describes various urban settings, each defined by spe-

cific characteristics and objectives. These definitions extend to entire cities, residential areas, 

and city centers, among others. In a car-free city, the use of private vehicles is significantly 

restricted or eliminated to prioritize sustainable modes of transportation (Topp & Pharoah, 

1994). Car-free housing developments focus on reducing vehicular presence to enhance com-

munity interaction and environmental quality. Similarly, car-free city centers aim to transform 

urban cores into pedestrian-friendly zones with improved accessibility and reduced pollution. 

Each of these definitions reflects a commitment to rebuilding urban spaces for a more sustain-

able and livable future (Friedman, 2021; Nieuwenhuijsen & Khreis, 2016).  

There are already many reasons to accelerate this development. In 2017, car traffic in Ger-

many accounted for 94.5 percent of the 149 billion euros of external costs related to transpor-

tation. These external costs include environmental, accident, and health-related expenses 

(Sutter, 2019). Additionally, car traffic significantly contributes to climate change, responsible 

for 20 percent of Germany's 164 million tons of greenhouse gas emissions in 2019 (Umwelt-

bundesamt, 2023). The importance of a more car-free oriented development underscores the 

significance of car-free zones and cities.  

Car-free districts within cities represent a starting point for developing car-free urban areas. 

The aqt project in Munich is an initiative to create car-free urban areas, focusing on sustainable 

city development. Main participants are the Technical University of Munich and Munich's mo-

bility department. Key objectives include reducing car traffic, improving urban living quality, 

and fostering efficient, climate-neutral mobility. Launched in October 2022 with planning and 

design, the project progressed in 2023 through community engagement and street experi-

ments in the Südliche Au and Walchenseeplatz areas. Significant changes were implemented 

in Südliche Au from June 12th, like transforming a section of Kolumbusstraße, the Schlotthauer 

Platz and Entenbachplatz into a car-free zone and adding three mobility hubs. In Walchen-

seeplatz, the main activities began on July 5th with the closure of Landlstraße and the estab-

lishment of two mobility hubs. These mobility hubs offer residents alternative mobility options, 

providing a substitute for car usage. Originally planned to conclude on October 31, 2023, the 

project was prematurely terminated on October 25, 2023, due to legal challenges (Landes-

hauptstadt München, n.d.; Technische Universität München, n.d.). This thesis is fundamentally 

based on the aqt project, exploring its macroscopic impacts on mobility behavior to inform the 

development of similar car-free districts in the future.  
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1.2. Objectives 

The motivation behind this report is to demonstrate that spatially limited car-free development 

initiatives are unlikely to significantly disrupt traffic conditions and may promote the use of 

sustainable transportation modes and increase active mobility. This research aims to acceler-

ate the adoption of car-free projects by eliminating concerns about deteriorating traffic situa-

tions. The thesis provides evidence that fears of worsened traffic due to such developments 

can be effectively addressed and mitigated. 

The primary aim of this thesis is to develop a predictive model designed to evaluate the travel 

impacts of car-free events within urban environments. This model will be built upon historical 

open-source data gathered during the aqt project, which will aid in comprehending the travel 

dynamics associated with such events. Furthermore, the model is intended to project travel 

impacts for future car-free events similar to the aqt project. The are two objectives of this thesis: 

firstly, to create an open-source model for future usage, and secondly, to analyze the gathered 

data which was collected relying solely on open-source data. This methodology is used to not 

only improve the model's utility and flexibility for subsequent applications but also to motivate 

its broader adoption by transparently describing the process and sources of data, thus estab-

lishing a framework for similar research projects in the future. This thesis aims to contribute to 

urban planning, transportation studies, and environmental policy by enhancing understanding 

of travel behavior dynamics in response to car-free initiatives, thereby enriching the discourse 

on sustainable urban mobility. 

The scope of this study is geographically centered on Munich, particularly focusing on the 

areas impacted by the aqt project, and temporally confined to the duration of the project's 

implementation. While this specific focus allows for an in-depth analysis of the project's im-

pacts, it also presents limitations. The findings might not be fully generalizable to other cities 

or regions with different urban layouts, cultural contexts, or traffic patterns. Additionally, the 

reliance on open-source data and the chosen modeling approach may constrain the compre-

hensiveness of the analysis. These limitations should be considered when interpreting the re-

sults and extrapolating the findings to other settings. 

Based on the outlined motivation and objectives of this thesis, the central research question of 

the study is: How do road closures impact travel behavior, considering variables like traffic and 

active mobility data, weather conditions, infrastructure, and demographic characteristics, within 

the context of a car-free event in Munich? 
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1.3. Structure of the thesis 

An in-depth literature review focuses on the design and concept of car-free streets, including 

their benefits and challenges. Research on traffic impacts of road closures draws on Cairns et 

al. (2002) work regarding the concept of evaporating traffic in response to reduced car infra-

structure. This thesis also reviews specific case studies from Paris, Calgary, Oslo, and Seoul 

to pinpoint literature gaps and explore global approaches to car-free events and road closures, 

particularly their effects on travel behavior. Another significant aspect involves examining travel 

behavior models, beginning with more foundational travel behavior models and extending to 

data-driven modeling approaches in transportation research, with a brief discussion on the 

application of Random Forest (RF) regression and Deep Neural Networks in this field. 

The methodology of this thesis focuses on developing a predictive model, incorporating data 

on motorized car traffic, alternative modes of transportation, sports-related activity, weather 

conditions, infrastructure, and demographics. It begins with an introduction to the study areas, 

followed by showcasing the collection of non-time-dependent data such as demographics and 

amenities. This is complemented by acquisition of time-dependent data using multiple APIs 

and open-source methods, allowing for the capture of transportation related impacts over var-

ious durations, from an hour to several days, as determined by the source of the data. This 

gathered data undergoes analysis and processing, serving dual purposes: visualizing changes 

over the project duration and contributing to model development of predicting traffic state. RF 

regression is selected as the modeling approach, with a focus on refining the model through 

hyperparameter tuning. The study also emphasizes evaluating feature importance and statis-

tical metrics such as R² to assess the model's fit and accuracy. Additionally, the research con-

sideres the integration and effects of varying traffic patterns, weather conditions, and infra-

structure changes to enhance the model's predictive capabilities in urban settings.  

The results section of the thesis is divided into two main parts. The first part focuses on pre-

senting and analyzing the collected data. This includes illustrating changes in relative speed 

within the study areas and examining the progression of the collected data throughout the 

timeframe. It features visualizations of activity-related data, weather conditions and the usage 

of alternative transportation modes. Non-time-dependent data, such as demographics and 

amenity distribution, is also presented. The second part delves into the specific models devel-

oped for the two primary study areas, Südliche Au and Walchenseeplatz. This section details 

the determined hyperparameters and discuss the feature importances and correlations along 

with relevant statistical measurements for the model results. Visual representations, including 

scatterplots and time series comparisons of actual versus predicted values, is used to demon-

strate the accuracy of the models. To contextualize the results and provide a comparative 
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perspective, a linear regression analysis is also employed alongside the primary model. More-

over, the section includes a cross-model validation, where one model, trained on one study 

area, is tested on the other, with their results presented in the described format. This approach 

showcases the adaptability of the model to different projects.  

The ensuing discussion interprets the results presented in this study. It starts with an analysis 

of the collected data, focusing on its project-specific impacts and interdependencies. The dis-

cussion also considers the actual project area and its main features regarding transportation, 

reflecting on the anticipated minimal changes observed. This aligns with the literature, which 

reinforces the findings and will be briefly examined. Further, the integrity and limitations of the 

collected data is analyzed, acknowledging the constraints given by open-source resources and 

computational limitations. The analysis extends to evaluating the features and target variables 

of the model, discussing their statistical measures, correlations, and factors contributing to the 

less-than-ideal model fit. A critical aspect of the discussion is the overall prediction power of 

the model, particularly addressing its lower accuracy and exploring the reasons behind this 

outcome with discussing methods to improve the accuracy. Finally, the methodological ap-

proach of the study is thoroughly reviewed and critiqued, ensuring a comprehensive under-

standing of the research process and its outcomes.  

The conclusion summarizes the significant findings derived from both the presented results 

and the developed model. Additionally, the conclusion outlines the potential practical applica-

tions of the research, demonstrating how the findings and the model can be utilized in real-

world scenarios. It also offers insights into possible future research directions, restricted by the 

limitations of this thesis.  
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2. Literature Review 

2.1. Car-free zones and travel behavior 

2.1.1. Designing car-free streets and their concept 

Historically, cities have gone through different phases. Newman & Kenworthy (1999) defined 

the three city stages as “Walking City” until 1850, “Transit City” until 1950, and 1950 “Automo-

bile City.” Until the first half of the 20th century, cities have been dense and traditional public 

spaces with walking as the primary mode of transport. Starting in the 1950s, health challenges 

changed the city’s development from a medieval dense structure to a more open and modern 

form (Doheim et al., 2020). Le Corbusier, a prominent French urban planner, envisioned a city 

that was both functional and accommodating for cars and people. His concept of an ideal city 

included towering buildings, expansive highways, and ample green spaces. In the mid-20th 

century, as economies grew, there was a notable shift from the dense urban neighborhoods 

to more spread-out suburbs, marking the era where automobiles became a crucial element of 

public life. However, this approach soon faced criticism, and around the 1960s, researchers 

began to delve into the intricate relationship between public life and urban spaces, questioning 

and re-evaluating Le Corbusier's urban planning principles  (Gehl & Svarre, 2013).  

Around 1990, conferences about car-free cities and sustainable transport began to spread. In 

1992, the European Commission started the “Club of Car-free Cities” initiative, where around 

100 cities showed interest (Topp & Pharoah, 1994, p. 233). In the new century, more and more 

cities are shifting their mobility solutions toward sustainable and environmentally friendly de-

velopment (Nieuwenhuijsen & Khreis, 2016). Although there are many reasons on the envi-

ronmental and health sites to reduce car traffic, the trend for cars is steadily increasing, and 

by 2023, 2 billion vehicles are expected in the world (Sperling & Gordon, 2008). Therefore, it 

is crucial to establish car-free areas, whether they be specific streets, designated zones, or 

entire cities, to mitigate the impacts of this trend. 

Davis & Duany (2018) determined differences between the classification of a road and a street. 

In high-density urban areas, streets designed for slow-moving traffic serve as vibrant centers 

of activity, surrounded by a mix of offices, shops, and apartments. These multifunctional 

spaces not only allow for vehicular traffic but also provide a pedestrian-friendly environment, 

fostering interactions among residents, workers, and visitors that enhance social cohesion and 

community engagement. The focus on aesthetics and social integration distinguishes streets 

from mere thoroughfares, turning them into avenues of urban life. Conversely, roads are often 

found in suburban or rural areas, primarily designed for higher speeds and increased traffic 

volume. Focused on efficient vehicle movement, they emphasize unidirectional flow and 
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provide direct routes with minimal interruptions. Unlike the multifaceted urban streets, roads 

typically lack a diverse mix of land uses and primarily serve a single function: facilitating vehic-

ular traffic. While the distinction between roads and streets is evident, the definition of a street 

can vary among researchers and urban planners. Some emphasize the physical attributes of 

streets, describing them as narrower and more linear spaces compared to roads. Others em-

phasize the multifunctional nature of streets, which goes beyond their function as mere con-

duits for traffic (Ahmed, 2020; Rapoport, 1991).  

In this thesis, the term "car-free street" refers to a specific type of street predominantly ob-

served in suburban and residential areas near city centers. A car-free street emphasizes a 

local and socially oriented perspective, focusing on streets with restricted or limited motor ve-

hicle access. These streets are designed to prioritize pedestrian and cyclist activities, creating 

a safer and more sustainable environment for residents and enhancing the quality of life. 

2.1.2. Benefits and challenges of car-free streets 

When vehicle access is restricted in certain areas, there's a shift towards non-motorized 

transport (NMT) and active mobility. This transition offers multifaceted benefits, broadly cate-

gorized into social, economic, health, and environmental aspects, as described by Mansoor et 

al. (2022). These categories are interrelated and contribute to reducing both internal and ex-

ternal transport costs. Internal costs in transportation include direct expenses like fuel, mainte-

nance, insurance, and labor associated with vehicle operation and transport services. External 

costs, however, encompass broader societal and environmental impacts such as air pollution, 

traffic congestion, noise, and public health concerns, which are not typically included in the 

direct costs of transportation. By minimizing these internal and external costs, a transition to 

NMT and active mobility promotes a more sustainable and economically efficient transportation 

system (Friedrich, 2001; Jakob et al., 2006). 

Encouraging active mobility, such as walking and cycling, has been shown to increase physical 

activity among individuals, which is important for preventing cardiovascular diseases (World 

Health Organization, 2009). Additionally, the National Public Health Partnership [Australia] et 

al. (2001) highlight the health benefits of increased physical activity.  Implementing car-free 

zones also plays a significant role in reducing health risks associated with vehicle emissions, 

such as respiratory diseases like asthma. The absence or reduction of vehicle traffic in these 

zones leads to lower air pollution levels, thus enhancing air quality and fostering a healthier 

environment for both residents and visitors (Frank et al., 2006). Furthermore, car-free streets 

contribute to improved safety for NMT users, as they significantly decrease the likelihood of 

accidents involving vehicles and cyclists, thereby creating a safer urban environment (Van-

denbulcke et al., 2009).  
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Car-free streets offer significant benefits for local communities, providing spaces for public 

gatherings and events that contribute to vibrant, livable neighborhoods, ultimately enhancing 

residents' quality of life (Gehl & Svarre, 2013). These pedestrian-centric areas also positively 

impact the local economy. They attract pedestrians and cyclists to nearby businesses, and 

studies have indicated that such pedestrian-friendly and bicycle-supportive environments can 

lead to increased foot traffic, higher sales, and the revitalization of local commerce. This trans-

formation not only boosts economic activity but also fosters a sense of community and con-

nectivity among residents and visitors (Bliss, 2021; New York City Department of Transporta-

tion, 2014; Thomson, 2018).  

Vehicle usage significantly contributes to various forms of pollution, including air, noise, and 

water pollution, which harms the environment (Chester & Horvath, 2008). Emissions such as 

noise, carbon monoxide, and particulate matter, largely inevitable byproducts of vehicular traf-

fic, predominantly affect local environments. Meanwhile, greenhouse gas emissions from ve-

hicles have a broader, global impact on climate change (Litman, 2023). Consequently, reduc-

ing the number of vehicles on the road is an important strategy for primarily mitigating local 

pollution, thereby contributing to healthier and more sustainable urban environments. 

In transitioning to a car-free environment, several challenges arise, ranging from the initial 

development of public spaces to the continuous monitoring and assessment of changes in and 

around the designated area. Chapter 2.1.3 of this thesis will specifically address challenges 

pertaining to traffic and travel impact, offering an in-depth analysis of these complexities. The 

success of implementing car-free initiatives depends on public acceptance and adaptability to 

change. The degree of public engagement and the quality of planning, particularly when driven 

by immediate needs without thorough consideration, are essential factors that influence com-

munity acceptance and attitudes towards change. Insufficient public involvement and hastily 

executed, imprecise planning processes often contribute significantly to resistance and re-

duced acceptance of car-free measures (Doheim, Farag, & Badawi, 2020). 

A critical challenge in creating car-free environments is ensuring accessibility and ease of mo-

bility for people with disabilities. Concerns arise that car-free zones might introduce additional 

barriers, worsen the long-standing issue of urban planning often neglecting the needs of disa-

bled individuals. Addressing this challenge effectively requires providing fully accessible public 

transportation and adopting inclusive planning and development strategies that prioritize the 

specific requirements of people with disabilities. By incorporating inclusive design principles, 

the benefits extend beyond just supporting people with disabilities; such approaches also sig-

nificantly improve the urban experience for other groups, including the elderly and children, 
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fostering a more universally accessible and user-friendly urban environment (Verlinghieri et 

al., 2022). 

2.1.3. Traffic impacts of road closures 

Understanding traffic demand, especially in relation to infrastructure changes, requires a thor-

ough examination of two key concepts: traffic evaporation and induced traffic. Induced traffic 

is essentially the converse of traffic evaporation, where improving and expanding transporta-

tion connections leads to increased traffic. However, it's crucial to differentiate induced traffic 

from just traffic generation. Induced traffic is better understood as a consequence of enhanced 

accessibility for residents in surrounding areas. This improved accessibility enables people to 

participate more frequently in a variety of activities, thereby affecting their travel behavior. Rec-

ognizing induced traffic as a reflection of increased access and activity options offers a more 

refined perspective on how transportation infrastructure impacts urban mobility (Bucsky & 

Juhász, 2022).  

Traditional traffic models have often operated under the assumption that reducing transporta-

tion space would always lead to increased congestion, based on the belief that traffic levels 

are inelastic. However, this notion was challenged in the mid-1990s, particularly when the UK 

government recognized that constructing new roads was not an effective solution for reducing 

motorized traffic congestion (D. Wood, 1994). In an effort to substantiate the significance of 

this perspective, a research study was conducted to examine the effects of reallocating road 

space. Contrary to initial assumptions, the study found that the impact on vehicular traffic from 

space reallocation was considerably less severe than anticipated. Furthermore, the results 

showed an actual reduction in traffic volume, indicating that the response of individuals to 

changes in road space is more complex than traditionally thought. This revelation suggests a 

need for a revaluation of traffic models and policies, taking into account the dynamic nature of 

traffic flow and individual travel behaviors (Cairns et al., 1998).  

A subsequent study by Cairns et al. (2002) delved deeper into understanding the factors lead-

ing to traffic reduction following road closures. This comprehensive research analyzed approx-

imately 100 case studies on traffic evaporation, revealing an average traffic volume reduction 

of 11%. The study identified three primary explanations for this phenomenon of road traffic 

reallocation: 

1. Traffic Management and Route Changes: It was found that reducing road capacity on one 

route often led to adaptations in traffic management. This included increasing capacity on 

alternative routes or adjustments in driving styles to accommodate the new road condi-

tions. 
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2. Route and Time Adjustments: The study observed that while users generally maintained 

the same number of daily trips, they often altered their routes or adjusted journey times to 

navigate the changed traffic landscape. 

3. Adoption of Alternative Strategies: In situations where the road network could not support 

increased capacity or alternative journey times due to pre-existing congestion, individuals 

resorted to various adaptive strategies. These included shifting to alternative forms of 

transport like public transport, walking, and cycling; changing their destination; consolidat-

ing trips; modifying the frequency of their journeys; or, in some cases, choosing not to 

travel at all. It was in these scenarios that a significant reduction in traffic was most nota-

ble.  

 

Understanding the impacts of road closures requires examining network characteristics and 

tracking traffic changes over time, as behavioral adaptations can range from days to years. 

Following a road closure, temporary congestion often intensifies in nearby areas, but early 

public engagement can mitigate these initial effects. Over the first year, traffic patterns undergo 

adjustment, influenced by seasonal factors, without showing a definitive trend of reduction or 

increase. However, long-term studies indicate two patterns: an initial reduction in traffic may 

be negated by subsequent increases, often linked to rising car ownership. This implies that 

short-term traffic decreases might be counteracted by longer-term trends. Conversely, the 

long-term elasticity of traffic often leads to a more pronounced overall reduction in volume, 

reflecting a gradual adjustment of travel behaviors to the new road layouts over time (Goodwin 

et al., 1998).  

In exploring the scale effects on car-free projects, a study by Melia & Calvert (2023) assessed 

the traffic impacts of two different scenarios: a local small-scale road closure and the closure 

of a major traffic artery. The findings revealed that the small-scale road closure did not signifi-

cantly reduce traffic. In contrast, closing a central bridge led to journey time reallocations and 

an overall decrease in network traffic. The study highlighted important research gaps in under-

standing traffic evaporation and the redistribution of car spaces, particularly in measuring res-

idents' behavioral responses and analyzing traffic displacement on key city routes. This master 

thesis addresses these identified gaps by investigating traffic shifts in small-scale road clo-

sures and developing a predictive model for traffic conditions in more central car-free zones.  

2.2. Case studies: Traffic impacts of road closures and car-free events 

This chapter examines a range of case studies to explore the impact of road closures and car-

free events on traffic dynamics. The analysis is structured into two primary sections: the first 

evaluates the effects of road closures due to construction or structural collapses, while the 
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second delves into in-depth studies of areas implementing car-free initiatives aimed at reduc-

ing vehicular traffic.  

2.2.1. Road closures 

Chapter 2.1.3 delves into the study of road closures and their impact on traffic, a topic of re-

search interest since the late 1990s. This chapter presents a thorough review of various case 

studies on road closures, examining their effects on traffic dynamics. It covers a range of 

events, including the 1999 Calgary bridge closure and the 2016 Oslo tunnel restoration, ana-

lyzing key findings from these studies. The objective is to collect deeper understanding of how 

road closures influence travel behavior and transportation systems. The investigated scenarios 

encompass full road closures and spatial reductions involving lane closures on major streets 

(Federal Highway Administration, 2023). Our focus centers on case studies of full road clo-

sures in Calgary (1999) and Mississippi (2007), as well as a spatial reduction closure in Oslo 

(2016), with the main findings shown in Table 1. 

Table 1: Road closures and significant findings 

Road closure/re-
duction event 

Duration Vehicles af-
fected 

Main findings 

Street Bridge Res-
tauration, Calgary 
(1999) 

14 months 34,000 veh/day 
(closure) 

4.4 % reduction in veh. Trips, 93% continued 
with the car and changed route, 3.6% increase 
in transit (Hunt et al., 2002). 

I-35W Bridge Col-
lapse Mississippi, 
Minneapolis 
(2007) 

13 months 140,000 veh/day 
(closure) 

No traffic reduction due to increased capacity 
on alternate routes, changing routes and jour-
ney time is the primary alternative, no increase 
in PuT (Zhu et al., 2010). 

Tunnel Restora-
tion, Oslo (2016) 

14 months  70,000 veh/day 
(4 to 2 lanes) 

Users shifted routes, journey times, and 
modes, and commute satisfaction remained 
high (Tennøy & Hagen, 2021). 

In a comprehensive study conducted by Hunt et al. (2002), the travel impacts resulting from 

the closure of Calgary's Centre Street bridge for 14 months (from August 1999 to September 

2000) were thoroughly examined. Through long ongoing 24-hour traffic counts and phone in-

terviews, the research revealed a notable 4.4% reduction in vehicle trips along the north and 

east-west corridors, except for a slight increase during morning peak hours. Interestingly, de-

spite the bridge closure, most users (about 93%) adapted their travel routes and times to evade 

congestion rather than discontinuing their vehicle trips altogether. Furthermore, the study un-

veiled a modest shift, with approximately 3.6% of vehicle users choosing public transport. In 

comparison, 0.8% chose active modes like walking or cycling during the closure period, high-

lighting the intriguing influence of infrastructure disruptions on travel choices. These findings 

shed light on the resilience of private vehicle use in the face of disruptions while emphasizing 

the importance of adaptable transportation systems to effectively manage congestion.  
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The collapse of the I-35W bridge in Minneapolis (US) in August 2007 resulted in significant 

disruption to approximately 140,000 daily vehicle trips. A comprehensive study by Zhu et al. 

(2010)  was conducted to assess the traffic impacts, incorporating data from loop connectors, 

bus ridership statistics and a survey. In the wake of the bridge collapse, media projections 

speculated an immediate shift towards public transportation and a subsequent increase in con-

gestion on alternative routes. However, the empirical findings presented a different scenario. 

While travelers experienced an overall increase in travel time, the congestion levels were not 

as severe as initially expected, indicating a certain degree of resilience in the transportation 

system. One notable finding was the considerable increase in public transport ridership imme-

diately after the incident, exhibiting a significant rise of approximately 6.6%. However, this sta-

tistical significance diminished after a year, although the positive trend in public transport us-

age persisted. The primary reason for this sustained trend was expanding capacity on other 

bridges by implementing shoulder lanes, which mitigated the congestion and provided a viable 

alternative for commuters.  

A lane reduction project took place in Oslo, Norway 2012, where four lanes in a main road 

tunnel were temporarily reduced to 2 lanes, impacting 70,000 vehicles per day. The research 

was conducted by Tennøy & Hagen (2021) from 2015 to 2018, involving traffic data collection 

for all modes during two weeks in spring and autumn, along with a survey and follow-up inter-

views for respondents. As expected, the reduction decreased average speed and increased 

volumes on alternative routes, particularly the most logical and closest ones. Residents re-

ported that the reduction presented a significant disadvantage for vehicles and active modes, 

which were forced away from their usual paths.   

The examined case studies focused on the travel impacts of several transportation infrastruc-

ture disruptions. Generally, these studies uncovered that, despite initial expectations of severe 

consequences, the short-term increases in travel time and congestion were more moderate. 

People displayed a notable adaptability, adjusting their routes and travel times to circumvent 

congested areas and the road closures. Moreover, a rise in public transport usage was ob-

served following the disruptions, though this increment slightly diminished over time. These 

outcomes underscore the resilience of transportation systems and underscore the necessity 

of having flexible options in place to manage congestion efficiently. 

2.2.2. Car-free events  

While in the previous section, road closures happened due to construction or collapse, in this 

chapter car-free events and streets were built to ban traffic from the road. While there is less 

literature about car-free events, which occur quickly, more extended events are monitored 
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more. Table 2 shows an overview of the main findings of road closures for the main purpose 

of developing a car-free area. 

Table 2: Car-free events and main findings 

Road Closure/Re-
duction Event 

Type of 
closure 

Vehicles af-
fected 

Main Findings 

Parisian Riverbank 
(2016) 

Full closure 40,000 
veh/day 

Six-minute increase in travel time for direct us-
ers, 15 % increase in traffic congestion on 
main alternative route (Sleiman, 2021) 

Georgetown, Ma-
laysia 

Simulated 
reduction 

N/A 78 % increased travel distance and 28 % in-
crease in travel time (Salleh et al., 2021) 

Cheonggyecheon 
Stream Restaura-
tion Seoul (2012) 

4 to 2 
lanes re-
duction 

168,000 
veh/day 

6% decrease in vehicle trips with a modest rise 
in public transport use and a slight increase in 
congestion (Chung et al., 2012) 

The Parisian Riverbank street closure, initiated by George Pompidou, involved the closure of 

approximately 3.3 km of the expressway between the southwest and southeast of the Seine 

River, impacting around 40,000 vehicles daily (Willsher, 2016). In a study by Sleiman (2021) 

the effects of the road closure were investigated using traffic data from road sensors and public 

transportation records. The study's key findings include a reduction in travel speed by 3.1 km/h 

on the primary alternate route (South ring road) and a notable 15% increase in traffic conges-

tion on the eastward Ring roads. Users who typically travelled on the now-closed road saw an 

average increase of six minutes in their travel time, while those using major alternative routes 

experienced an additional two-minute delay. There was also a slight rise in public transport 

usage. However, the study highlighted negative side effects, such as increased air pollution 

affecting residents near the alternative routes. Overall, the case study portrays the road closure 

as unsuccessful in meeting sustainable objectives like reducing traffic demand and encourag-

ing sustainable transport modes, despite providing benefits to those using the reallocated road 

space.  

In another case study by Salleh et al. (2021) GIS analysis was used to model potential car-

free zones in George Town, Malaysia. The research utilized Google Maps Traffic Data to pre-

dict traffic patterns, focusing on rerouting vehicle data based on route, distance, and journey 

time. This approach assessed the traffic impact on alternative routes. The study's significant 

findings included identifying suitable car-free areas and predicting their effects on travel time 

and distance. It revealed an average increase of 77.7% in traveled distance and 28.3% in 

travel time across seven analyzed routes.  

The Cheonggyecheon stream restoration in Seoul, starting in July 2003, reduced road lanes 

from four to two in each direction, leading to significant infrastructure changes. Chung et al. 

(2012) studied the immediate travel impacts and monitored the changes over several years. 
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Initially, mode shift effects were modest, with slight increases in travel time and mild conges-

tion. Vehicle trips decreased by about 6%, while public transport saw a minor increase of 

1.65% to 4.89%. Public transit ridership peaked in the third week post-construction, while ve-

hicle trips dipped to their lowest. Long-term analysis up to three years post-restoration showed 

the auto mode share decreased by 4.0% in Seoul and 5.4% in Cheonggyecheon, with public 

transport usage increasing by 6% and 10%, respectively. Average speed near the site initially 

dropped but returned to pre-restoration levels within three years. The long-term public 

transport share remained relatively unchanged by the project. Overall, both short-term and 

long-term traffic impacts were less severe than expected, demonstrating commuter adaptabil-

ity and eventual return to pre-construction travel patterns.  

2.3. Travel behavior models 

In transportation planning and urban mobility studies, travel behavior models are key for un-

derstanding individual travel decisions and their impact on traffic patterns, especially within 

infrastructure changes. The next chapter will specifically focus on discussing key travel behav-

ior models, emphasizing on data-driven models which are used in this thesis.  

2.3.1. Overview of travel behavior models 

One of the foundational contributions to travel behavior modeling was made by McFadden 

(1974), who introduced the concept of discrete choice models. His work laid the groundwork 

for understanding how individuals make discrete travel choices based on travel time, cost, and 

mode availability. In subsequent years, numerous advancements have been made to enhance 

travel behavior modeling, particularly in the context of infrastructure modifications. Traditional 

models, such as the gravity model and the four-step transportation planning process, have 

been widely utilized to forecast traffic patterns and estimate the effects of new infrastructure 

developments, including road and public transit expansions (Wilson, 1971). These models 

have proven effective in capturing broad traffic trends and understanding the overall impacts 

of infrastructure changes on travel behavior (Ortúzar S. & Willumsen, 2011).  

Another theory that has raised attention in the last decades is the agent-based modeling ap-

proach, a powerful tool on the microsimulation level. Agent-based models (ABMS) are compu-

tational models that simulate complex systems by representing individual agents and their in-

teractions within a dynamic environment. By considering individual-level behaviors and inter-

actions, ABMs capture real-world systems' heterogeneity, adaptability, and complexity (Bona-

beau, 2002; Macal & North, 2010). ABMs are particularly valuable for studying traffic flow, 

travel behavior, and urban mobility in transportation. They can capture the complexities of 

transportation systems, including traffic congestion, route choices, and the interplay between 
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different modes of transport. ABMs help understand how individual travelers decide their 

routes, modes, and departure times and how these decisions collectively shape the overall 

transportation network (Crooks et al., 2021). 

In recent years, through advanced data analytics, data-driven approaches have significantly 

transformed transportation research by utilizing the wealth of available data. Leveraging em-

pirical data from various sources, such as traffic sensors, GPS devices, and travel surveys, 

these methods enable researchers to develop models and make informed decisions in the 

transportation domain. In traffic flow forecasting, data-driven techniques have successfully pre-

dicted traffic conditions and congestion (Jiang & Luo, 2022). Urban traffic management has 

also significantly benefited from data-driven approaches, particularly in traffic prediction, con-

trol, and optimization, offering practical solutions to improve traffic flow and reduce congestion 

(Sikder et al., 2022). Moreover, data-driven methods have played a crucial role in understand-

ing travel behavior and decision-making processes, providing valuable insights into travelers' 

preferences, choices, and travel patterns (Ton et al., 2018). With the loads of available data, 

these approaches have the potential to revolutionize transportation planning and management, 

paving the way for more efficient and sustainable transportation systems. As explained, data-

driven models are a favorable approach for managing large volumes of data and complex 

interactions, and they have been selected for implementation in this thesis. Specifically, the 

following chapter explores data-driven modeling in transportation research. 

2.3.2. Data-driven modeling in transportation research 

One approach to handle big data and model transportation effects is RF regression. This ma-

chine learning technique has emerged as a powerful data-driven modeling approach in trans-

portation research. Leveraging the principles of ensemble learning, RF combines multiple de-

cision trees to make accurate predictions and handle complex relationships between variables 

through majority voting. This approach has found widespread application in various transpor-

tation-related tasks, owing to its ability to handle large datasets, capture non-linear patterns, 

and provide robust predictions (Cheng et al., 2019). 

In traffic flow forecasting, RF regression has remarkably succeeded in predicting traffic condi-

tions and congestion. Cheng et al. (2019) conducted a study on data-driven traffic flow fore-

casting, showcasing the effectiveness of RF models over linear regression. The study used 

traffic diary data and explanatory variables to predict accurate traffic patterns. Additionally, the 

model's capability to handle temporal dependencies makes it well-suited for predicting traffic 

flow in urban areas. 

In a recent study by J. Wood et al. (2023), RF regression was employed to predict bus pas-

senger occupancy. The analysis utilized real-time passenger data and weather information as 
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input features. The RF model demonstrated lower Root Mean Squared Errors on the training 

data than linear regression and a R² between 0.64 and 0.78. However, due to data quality 

limitations, its performance could significantly improve the testing data. Nevertheless, the RF 

approach's ability to handle categorical and continuous variables makes it valuable for pas-

senger occupancy prediction and transportation safety analysis. In another study conducted 

by Yang et al. (2023), RF was utilized to forecast road traffic accidents, incorporating various 

contributing factors such as road conditions, weather, and traffic volumes. The model re-

searched accuracy in identifying high-risk locations and discerning factors associated with ac-

cidents, thereby providing valuable insights for safety interventions and accident prevention 

strategies. 

Deep neural networks (DNNs), a deep learning method utilizing artificial neural networks, have 

become increasingly significant in transportation research. These networks, which mimic the 

human brain's structure, comprise multiple interconnected neurons capable of learning com-

plex patterns from large datasets (Schmidhuber, 2015). Effective in tackling complex transpor-

tation issues, DNNs excel at processing large-scale data, understanding non-linear interac-

tions, and providing accurate predictions. Their application extends across diverse transporta-

tion areas, such as travel demand modeling and accident detection (Haghighat et al., 2020). 

For example, in traffic flow prediction, DNNs outperform traditional methods due to their supe-

rior handling of traffic's dynamic and non-linear characteristics. In safety applications, DNNs 

analyze historical accident data to identify potential hotspots, enhancing proactive safety strat-

egies (Ren et al., 2018). Their role in autonomous vehicle technology, particularly in developing 

advanced driver-assistance systems, further exemplifies their transformative potential in trans-

portation (Bojarski et al., 2016). The adaptability of DNNs across various transportation fields 

highlights their central role in advancing both the theoretical and practical dimensions of trans-

portation research. 
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3. Methodology 

This paper aims to predict traffic dynamics around road closures in Munich. This chapter de-

lineates the development of the predictive model, utilizing publicly available data. It begins with 

a description on data collection and cleaning, followed by a discussion on the selection of the 

features from various datasets. The chapter concludes with an explanation of the model's de-

velopment, testing, and evaluation procedures. Figure 1 provides an overview of the applied 

methodology.  

 
Figure 1: Overview of methodology 
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3.1. Data collection 

The study exclusively utilized open-source data, collecting from various sources like TomTom, 

Strava, Tier, Emmy, and others to collect publicly available transportation data for model de-

velopment. Figure 2 illustrates an overview of the time frame of the data collection and the 

projects duration. 

 
Figure 2: Timeline of data collection and project duration 

3.1.1. Project area, demographics, infrastructure and weather data 

The study area was defined using two circles, each with a 1.5 km radius centered around the 

two areas. This area, comprising the overlap of these circles, encompassed seven districts, 

notably Obergiesing-Fasangarten and Au-Haidhausen, linked to the Landlstraße and Kolum-

busstraße/Entenbachplatz/Schlotthauer Platz project sites, respectively. Data collection fo-

cused on this region, with occasional inclusion of points outside due to technical factors. The 

MCube aqt project defined two neighborhoods, 'Südliche Au' and 'Walchenseeplatz', as the 

project areas within the study area's boundaries. The 'inner area' encompasses these parking 

license districts, while the remaining study area is considered the 'outer area'.  Figure 3 visually 

depicts these areas along with relevant project streets, including Schlotthauer Platz, Enten-

bachplatz, Kolumbusstraße, and Landlstraße. In Appendix A1, the Figure 23 illustrates the two 

designated areas within the Munich cityscape. 
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Figure 3: Project and measurement area of aqt project 

The data collection spanned from 2 May to 20 September 2023, totalling 142 days. This period 

was selected to align with the initiation of the Südliche Au and Walchenseeplatz projects, which 

began on 12 June and 5 July 2023, respectively, and concluded on 25 October 2023. A notable 

limitation during this period was the API usage restriction from TomTom, which allowed only 

2500 calls per day, equating to approximately 100 data points per hour. Consequently, due to 

these constraints and the need for testing and validation, specific data points were excluded 

at the beginning and end of the timeframe.  

This study's developed model benefited from integrating exogenous variables like weather, 

demographics, and infrastructure data. These variables, external to the primary focus of rela-

tive car speed, are instrumental in understanding traffic dynamics in car-free districts. Weather 

data including temperature, precipitation, and wind conditions, allowed for the consideration of 

environmental impacts on traffic flow. Demographics data provided insight into socio-economic 

factors influencing transportation choices, while infrastructure data, covering amenities, bicycle 

stands, and project specific changes, shed light on the influence of urban development and 

the project initiatives on traffic patterns. The combination of these exogenous factors with pri-

mary time series data enabled a comprehensive analysis of how external influences interplay 

with traffic dynamics (Hyndman & Athanasopoulos, 2021; Shafik & Tutz, 2009). 
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The study's demographic analysis utilized 2011 census data from Germany, mapped to 100 m 

grid cells, and compared it with 2022 Munich population statistics disaggregated by district and 

nine age groups (Stadtverwaltung Landeshauptstadt München, 2023; Zensus, 2011), Factors 

for nine age groups were calculated, enabling the extrapolation of 2011 census data to reflect 

2022 population compositions in the study areas.  

Infrastructure data was primarily focused on amenities within the measurement area, utilizing 

OpenStreetMap for geographic coordinates and details. This included data on various ameni-

ties, removed parking lots, closed street percentages, and new mobility hubs, crucial for ana-

lysing transportation behavior and infrastructure changes due to road closures (García et al., 

2019; OpenStreetMap contributors, 2017). Weather data, gathered daily over the study period 

from Meteostat (n.d.), provided detailed information on temperature, wind conditions, and pre-

cipitation. Data collection was centered around Kolumbusstraße, as shown in Figure 3, to cap-

ture environmental conditions relevant to the studies area.  

3.1.2. Traffic, alternative and active mobility data  

Traffic data, essential for analysing vehicular movement, was collected using the TomTom API 

within the defined aqt project area from 2 May to 20 September 2023. A comprehensive da-

taset was amassed from 92 strategically placed measurement points across the project area, 

with data captured hourly. This dataset encompassed vital traffic attributes, including free-flow 

and current travel times and speeds, along with a reliability metric expressed as a confidence 

ratio. The effective gathering of this data was enabled by the collecting the data of TomTom 

Navigation systems in vehicles, providing a continuous stream of real-time traffic information 

to augment the dataset. 

To efficiently utilize the TomTom API, which is limited to 2500 daily calls, the study utilized a 

network of 92 spatially distinct measurement points, as shown in Figure 4. These points were 

strategically placed with an inter-measurement distance of approximately 326 meters to ensure 

comprehensive coverage of the project area and address data scarcity issues. In proximity to 

specific project sites, distances were adjusted based on available speed data for more detailed 

analysis. A calibration process determined level 9 as the optimal zoom level for data acquisition 

with TomTom, striking a balance between the need for detailed spatial resolution and compu-

tational limitations. This strategic configuration yielded a dataset rich in both depth and diver-

sity, facilitating an in-depth analysis of vehicular traffic's temporal variations within the project 

area (TomTom, 2023). To compensate for missing data at certain points and times, historical 

data was obtained from NGis Geo GmbH through TomTom's Move Portal. Given the discrep-

ancies between collected and NGis-provided data, the model development primarily focused 

on current speed and free-flow speed as predictive variables for traffic conditions.  
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Figure 4: Speed measurement data points 

This study identified various alternative transportation providers to investigate different modes 

of individual transportation, focusing on e-scooters and e-mopeds. These modes have gained 

prominence in urban settings for their potential to address challenges of traditional commuting 

and align with the shift towards eco-friendly and shared mobility solutions (Fishman et al., 

2013). Data collection from a rental e-scooter and e-bike company, as well as a rental electric 

motorbike provider, began in late May 2023. It involved hourly tracking of operational vehicles' 

geographical coordinates in Munich, aiming to provide insights into the dynamics of these al-

ternative mobility modes. Figure 4 displays 90 orange measurement areas for scooter and 

demographics data. These areas, delineated by 320-meter side orange rectangles, total 90 in 

number and were strategically chosen, particularly for their relevance in capturing detailed 

speed measurements for traffic variables in the inner project area. 

Due to the unavailability of public transport data from municipal sources, the study initially 

employed Google Maps' 'popular times' feature as an alternative source, using queries through 

the Google Maps API. However, this method faced inherent inaccuracies and gaps. A thorough 

assessment within the project area included all locations near public transit stops correspond-

ing to popular times, while areas beyond were assessed only at transit stops, aligning with the 

study's scope. Despite these efforts, the data from Google Popular Times proved challenging 

due to inconsistencies and lack of clarity, compounded by missing information at transportation 

network stops. Two months into data collection, starting mid-May 2023, Google imposed 
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restrictions on the use of Popular Times data, complicating data acquisition and analysis. Con-

sequently, this paper does not utilize Google Popular Times data in its analysis (Google, n.d.). 

To assess active mobility modes like walking and cycling, two primary data sources were uti-

lized. Firstly, Munich's four bicycle measurement stations, with one located in the project area, 

provided data every 15 minutes, accessible via the Munich open-data portal (Munich, n.d.). 

Secondly, the Strava heatmap was employed to analyze street utilization patterns related to 

running and cycling, offering insights into areas of heightened active mobility. However, this 

dataset predominantly reflects sports activities and may not precisely represent everyday walk-

ing and cycling transportation modes. Despite this limitation, increased sports activities could 

suggest suitability for pedestrian and cycling activities. The heatmap utilizes a cumulative dis-

tribution function for contrast enhancement, effectively minimizing quantization artifacts in ar-

eas with low heat values. (Strava Inc., n.d.). Due to the unavailability of an open API for the 

Strava heatmap, a method was developed to capture the heatmap images within the project 

area and analyze pixel luminance. Figure 5 illustrates the dimensions of these Strava heatmap 

tiles and the collected images used in this analysis. 

 
Figure 5: Sports-activity related heatmap tiles and brightness pictures 

Initiated in late May 2023, the Strava heatmap was updated irregularly, approximately every 3 

to 4 weeks. This initiative involved tracking changes in pixel luminance across 30 images cov-

ering the study area. Each new data collection phase yielded about 7.8 million data points. 
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Over the span of 117 days, beginning on 28 May 2023, six distinct changes in brightness were 

recorded from the Strava heatmap. This resulted in a total of approximately 43 million data 

points that required processing. 

3.2. Data processing  

Time-dependent variables, crucial for modeling infrastructure changes, contrast with time-in-

dependent variables, which require specific processing for effective integration into the model. 

In this study, time-independent variables include demographics and infrastructure data. Con-

versely, traffic, alternative transportation, sports-related activity, and weather data are catego-

rized as time-dependent variables, reflecting their dynamic nature and influence on model out-

comes. 

3.2.1. Demographics, infrastructure and weather data processing  

To integrate demographic data into the statistical model, it was initially segmented into 90 

measurement points, as illustrated in Figure 4. The complexity of incorporating nine age groups 

per point led to a significant increase in variables. Therefore, age groups were not differenti-

ated for these points. Additionally, an alternative approach was tested, where age groups were 

aggregated for the four measurement areas, rather than individually for each of the 90 IDs. 

Both methodologies were evaluated and employed in model development. 

Regarding infrastructure-related data, the study adopted the classifications of amenities as 

outlined by Mulligan & Carruthers (2011) which include:  

 Public services and education: Kindergartens, schools, and universities. 

 Private consumption goods: Restaurants and bars catering to private consumption. 

 Transportation: Public transportation stops, stations, and bicycle stands. 

 Cultural institutions: Museums and other cultural entities.  

This study's framework for assessing amenity-related infrastructure in the study area involved 

categorizing the area into four distinct zones, as described in Chapter 3.1.1: the inner areas of 

two project sites and the outer areas of the measurement zone. Sixteen variables were identi-

fied, representing the count of each amenity type within these zones, including bicycle stands. 

Notably, parking lots removed, mobility options added and road closures due to project-related 

implementations were classified as time-dependent infrastructure variables, given their re-

moval on specific dates. Weather data, comprising parameters like average, minimum, and 

maximum temperature, precipitation, sunshine hours, and wind data (speed, direction, gusts), 

was also considered time dependent. 
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3.2.2. Traffic, alternative and active mobility data processing 

Traffic data was collected over 142 days at 92 measurement points, yielding approximately 

287,000 data points. To standardize data from various providers, a variable calculating the 

ratio of speed to free-flow speed at each point was used. Daily averaging of measurements 

was necessary due to constraints in hourly data collection, presenting a challenge with more 

missing data points during the day than at night. To mitigate this, each day was divided into 

three segments: 12 a.m. to 6 a.m., 6 a.m. to 6 p.m., and 6 p.m. to 12 a.m., with averages 

calculated for each. These part-averages were then combined for a daily average, assigning 

double weight to the 6 a.m. to 6 p.m. period due to its longer duration. Ultimately, 11,960 data 

points from these 92 points over 142 days were utilized for model development.  

The data collection for e-scooters and electric mopeds, commencing on 25 May and 28 May 

2023 respectively, paralleled the challenges encountered with TomTom speed data. E-scooter 

data comprised around 100,000 location data points daily over 116 days, a high volume at-

tributed to the absence of spatial restrictions in the API, enabling extensive coverage. Electric 

moped data involved collecting approximately 1,000 location data points daily throughout the 

same period.  

Data collection was confined to the designated measurement areas for efficiency. 90 meas-

urement points formed 320-meter side rectangular buffers, depicted in Figure 4. Daily vehicle 

counts within these areas were compared against total vehicle counts in Munich, attributing 

missing values to an overall decrease in vehicle data. This method highlighted variations in 

vehicle usage, identifying areas of higher utilization. It was noted that only about 15% of the 

measurement area was covered by scooter rental services, limiting usable data to 11 meas-

urement points near the Südliche Au project area. Post-processing, e-scooters and electric 

mopeds contributed to 22 variables over 116 days, resulting in 2,552 data points for the model. 

The Strava heatmap data consisted of 30 tiles, each approximately 822 meters per side, con-

taining 512 x 512-pixel images. Each pixel was color-coded with Red (R), Green (G), and Blue 

(B) values, forming the basis of the color composition. To derive a standardized perceptual 

brightness index from these pixel values, a formula proposed by Finley (2006) was applied: 

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =  0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵  

The study utilized Strava heatmap data, updated every three to four weeks, recording bright-

ness values for each tile and pixel. These values were overlaid onto 90 measurement points 

from the other data collections. To facilitate daily analysis, the brightness value for a given day 

was extended to subsequent days until a new update. The average brightness value per day 

and tile was calculated, with higher values indicating increased sports activity. The processed 
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Strava heatmap data comprised 90 variables over 117 days, amounting to 10,764 data points. 

However, the data exhibited low variance and infrequent updates, posing challenges in cap-

turing dynamic activity changes. Ultimately, 341 variables were overall generated for the period 

from 2 May to 20 September 2023, with the final dataset consisting of 40,298 data points.  

A key methodological aspect was the innovative treatment of time-dependent features. In light 

of the road closure's impact, we developed feature variants representing historical patterns 

prior to the closure. These were calculated as weekly mean values and extended post-closure, 

ensuring the continuity of historical trends. This strategy enabled the model to train on a da-

taset reflecting temporal nuances, aligning pre-closure patterns with post-closure predictions. 

This approach ensures the model is informed by temporally consistent data, crucial for accu-

rately predicting urban traffic dynamics. 

3.3. Model selection, development and evaluation 

This chapter details the comprehensive process of model selection, development, testing, and 

evaluation. It describes the parameterization and adjustments of the model, detailing the spe-

cific modifications implemented. Furthermore, the chapter delves into the approach adopted 

for feature selection and provides an in-depth analysis of the model's performance evaluation, 

highlighting the resultant findings.  

3.3.1. Model selection 

The selection of RF regression for this study is based on its distinct advantages in handling 

complex data scenarios, as compared to linear regression, support vector machines (SVM), 

and neural networks.  

 Non-Linearity Handling: RF is proficient at capturing non-linear relationships within da-

tasets, a common characteristic in real-world data, unlike linear regression models that are 

limited to linear correlations (Breiman, 2001; Hastie et al., 2017)  

 Robustness to Outliers: SVMs are often sensitive to outliers, which can adversely affect 

model performance. RF, leveraging multiple decision trees, mitigates this issue, enhancing 

its robustness (Kanamori et al., 2014) 

 Feature Importance: RF inherently provides feature importance rankings, offering insights 

into the variables driving model predictions, aiding in interpretability (Pedregosa et al., 2011; 

Strobl et al., 2007) 

 Ensemble Learning: The ensemble learning technique in RF, which aggregates predictions 

from numerous trees, reduces the risk of overfitting and improves generalization (Hastie et 

al., 2017; Rokach, 2010). 
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 High-Dimensional Data: RF maintains model interpretability even in high-dimensional data 

scenarios, where neural networks may falter (Bishop, 2006). 

 Model Flexibility: RF is user-friendly and less dependent on hyperparameter tuning com-

pared to neural networks, which require extensive data and tuning (Schmidhuber, 2015). 

As Hastie et al. (2017) highlight, RF is effective in capturing intricate data interactions with low 

bias. The literature review in chapter 2.3.2 emphasized RF's suitability for transportation be-

havior analysis. Considering the extensive time-series data and multiple variables with com-

plex interrelationships, RF was deemed the optimal choice for forecasting traffic patterns post-

road closure in this study. Deep Neural Networks were also considered for this study; however, 

their "black box" nature and challenges in result interpretation led to the selection of RF due to 

its greater interpretability. 

3.3.2. Model development 

RF regression combines decision tree regression with ensemble learning, making it suitable 

for predicting continuous variables in large datasets. Key components include (Breiman, 2001): 

 Ensemble Learning: RF integrates multiple decision trees, each built independently. Their 

aggregated predictions enhance accuracy. 

 Decision Trees: These trees segment data into subsets using feature attributes, with leaf 

nodes in regression trees holding numerical predictions. 

 Randomization: RF employs randomization through bootstrap sampling for each tree and 

random feature selection at splits, reducing overfitting and improving generalization.  

 Aggregation: Final predictions are averaged from individual tree outputs. 

Developed in Python using Scikit-learn, this study's RF model processed data in pandas data 

frames, merging based on timestamps (Pedregosa et al., 2011). Post-road closure data was 

isolated to create target variables, focusing on predicting traffic patterns, particularly relative 

speed variables, in the project area. These variables, eight per area, reflect traffic performance 

and congestion. 

The longer data collection period resulted in dataset size discrepancies. To address this, the 

larger dataset underwent random undersampling to match the smaller dataset’s length, ensur-

ing balanced representation (Kraiem et al., 2021). The dataset was partitioned into training and 

testing sets, with 80% for training and 20% for testing. A random state of 42 ensured repro-

ducible splits (Pedregosa et al., 2011). 

The study employed a multioutput model to estimate multiple dependent variables simultane-

ously, capturing the complex interactions among them and offering a comprehensive view of 

the traffic dynamics (Pedregosa et al., 2011).  
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3.3.3. Model testing and evaluation 

Evaluating the predictive model and the target variables is a critical phase in assessing the 

model's performance and reliability. Two commonly employed evaluation metrics are the co-

efficient of determination, R², and the mean absolute error MAE. R², a widely recognized sta-

tistical measure, assesses the model's goodness of fit to the observed data, providing insights 

into the proportion of variance in the target variable explained by the model: 

𝑅 = 1 − (
𝑅𝑆𝑆

𝑇𝑆𝑆
) 

Where RSS (Residual Sum of Squares) represents the sum of the squared differences be-

tween the predicted values and the actual values in the dataset and TSS (Total Sum of 

Squares) the sum of the squared differences between each data point and the mean of the 

dependent variable. It indicates the model's predictive capability, where higher R² values indi-

cate better predictive accuracy. The mean absolute error, on the other hand, quantifies the 

absolute deviation between the model's predictions and the actual values, providing a measure 

of the model's accuracy:  

𝑀𝐴𝐸 =
1

𝑛
∗ |𝑦 − 𝑦 | 

Where n is the number of data points, 𝑦  is the actual observed value for data point i and 𝑦  is 

the predicted value for data point i.The evaluation process leverages these metrics to gauge 

the model's ability to faithfully capture and predict the target variables (Breiman, 2001; Chicco 

et al., 2021; Pedregosa et al., 2011).  

Hyperparameter tuning is pivotal for optimizing model performance. This study utilized 

GridSearchCV from the scikit-learn library for identifying the most effective hyperparameter set 

for the RF Regression model (Pedregosa et al., 2011). This method comprehensively evalu-

ates different hyperparameter combinations, focusing on ‘max_depth’ and ‘n_estimators’. 

‘Max_depth’, which limits the maximum splits in each tree, is crucial for controlling model com-

plexity. A low ‘max_depth’ can cause underfitting, failing to capture complex data patterns, 

while an excessively high ‘max_depth’ might lead to overfitting and poor generalization. A 

‘max_depth’ of 'None' allows trees to expand until they have fewer than ‘min_samples_split’ 

samples (James et al., 2023; Liaw & Wiener, 2002). ‘N_estimators’ defines the count of deci-

sion trees in the ensemble, influencing the ensemble's size and diversity. Increasing ‘n_esti-

mators’ enhances the model's capacity to discern intricate data relationships, improving pre-

dictive accuracy. However, beyond a certain point, additional estimators yield minimal benefit 

and increase computational load (Breiman, 2001; Cutler et al., 2007).  
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Key hyperparameters in this study also include ‘min_samples_leaf’ and ‘min_samples_split’. 

‘Min_samples_leaf’, the minimum number of samples required at a leaf node, balances over-

fitting and underfitting. A low value may lead to overfitting by making decisions based on min-

imal data, capturing noise, whereas a high value might result in underfitting by oversimplifying 

the model. ‘Min_samples_split’, the minimum number of samples needed to split an internal 

node, also addresses overfitting by avoiding splits in nodes with few samples. However, if set 

too high, it may cause underfitting by impeding the tree's ability to discern detailed patterns, 

while a very low value might lead to overfitting by creating overly complex trees (James et al., 

2023; Probst et al., 2019). These hyperparameters are data-dependent, and their optimal val-

ues, identified through grid search with three-fold cross-validation, are specific to the dataset 

under study. 

Furthermore, the study leveraged the RF model's inherent feature importance attribute for un-

derstanding each input's contribution to the model's predictive accuracy. Feature importances 

were determined based on the reduction in impurity, such as mean squared error, offered by 

each feature. This approach not only clarifies the model's functionality but also aids in effective 

feature selection, prioritizing attributes most important to the analysis. Additionally, a correla-

tion matrix using the Pearson coefficient will be presented to facilitate a clearer understanding 

of the linear interdependencies among the selected feature set (Breiman, 2001; Mei et al., 

2022; Shaikh, 2018). 
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4. Results 

This chapter outlines the initial data analysis, model development and evaluation findings. Re-

sults are organized according to the four primary measurement zones: inner and outer study 

area of Südliche Au, and inner and outer study area of Walchenseeplatz. The analysis pre-

dominantly contrasts data from periods before and after the respective project starts, highlight-

ing changes due to road closures.  

4.1. Data Analysis 

4.1.1. Demographics, infrastructure and weather data 

Demographic data, segmented into four main project areas was further categorized into nine 

age groups. Figure 6 shows this data through a heatmap, with dark blue indicating higher 

resident concentrations and light blue showing lower concentrations in each area and age 

group. Analysis reveals that the predominant age group in both inner study areas is 30-40 

years. In Südliche Au, the 40-50 year age group follows closely, whereas in Walchenseeplatz, 

it is the 20-30 year age group.  

 
Figure 6: Demographics in percentage of age group per study area (Munich, n.d.; Zensus, 2011) 

The combined population across all study areas totals 128,741, though this figure includes 

some double counting in the outer project areas, as indicated by the heatmap data.  

Details regarding infrastructure data will be presented in Table 3. 
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Table 3: Number of amenities in the study areas 

 Südliche Au 
Inner 

Südliche Au 
Outer 

Walchenseeplatz 
Inner 

Walchenseeplatz 
Outer 

Kindergarten, schools 3 61 0 36 

Restaurants, cafes 20 436 6 114 

Transportation 15 193 4 154 

Museums 0 6 0 0 

Bicycle stands 11 256 6 176 

Removed parking lots1 129 0 41 0 

Percentage of closed road1 0.09 0 0.04 0 

New mobility hubs1 3 0 2 0 

In terms of amenities, the outer Südliche Au area, partially intersecting with Munich's city cen-

ter, displays the highest count, particularly in restaurants and cafes, as shown in Table 3. This 

contrasts with the fewer amenities in Walchenseeplatz, emphasizing its more residential na-

ture. Spatial distribution details of these amenities are provided in the Appendix A2. 

The project's implementation influenced infrastructure in the Südliche Au region, with 9% (480 

meters) of its total street length of 5,200 meters closed to motorized vehicles. The Walchen-

seeplatz area saw 4% (190 meters) of its 4,600 meters of streets similarly restricted. Those 

roads in both inner areas are mainly residential and secondary streets, with not heavy traffic. 

The projects initiative also led to the creation of new mobility hubs—three in Südliche Au and 

two in Walchenseeplatz—enhancing vehicle sharing and repair services. 

Weather data, sourced solely from Südliche Au, offers a comprehensive view for the entire 

study area. Figure 7 illustrates this data, displaying average temperature and precipitation from 

02 May to 20 September 2023 on the left, and sunshine duration and wind speed over the 

same time frame on the right. Post-projects implementation, a rise in average temperature and 

more frequent precipitation days were observed, while sunshine duration peaked just before 

the project and remained stable afterward. 

 
1 From the respective project start 
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Figure 7: Temperature, precipation, sunshine hours and wind speeds 

Prior to 12.06.2023 (Südliche Au project start), the average temperature in the study area was 

15 °C, which increased to an average of 20 °C after the 12th June, 2023. Precipitation levels 

also rose, from 2 mm to 4 mm, and average daily sunshine duration extended from 494 to 508 

minutes. Wind speeds, however, remained constant, fluctuating between 9 and 10 m/s both 

before and after the project's start. Similar trends were observed in Walchenseeplatz post-

project commencement on 05.07.2023, with pre-project data closely aligning with post-project 

figures. A comprehensive table detailing these statistics is included in the Appendix A3. 

4.1.2. Traffic, alternative and active modes 

The traffic data results are presented as the ratio of current speed to free flow speed. A higher 

ratio signifies a more favorable traffic condition, as the current speed approaches the optimal 

free flow speed. Figure 8 displays speed metrics for both project zones: the inner and outer 

areas. The congruence in data between these two zones suggests comparable traffic condi-

tions across both areas.  
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Figure 8: Speed data in project areas 

Table 4 provides descriptive statistics for each area, comparing conditions pre- and post-pro-

ject implementation. The outer areas exhibited no change in the average speed's mean. How-

ever, the inner zones experienced an increase in relative speed, with a notable four percentage 

point rise in the median speed for the inner Südliche Au zone post-implementation.  

Table 4: Descriptive statistics relative speed data 

 Südliche Au Walchenseeplatz 

 Before 12.06.23 After 12.06.2023 Before 05.07.2023 After 05.07.2023 

 Inner Outer Inner Outer Inner Outer Inner Outer 

Mean 0.82 0.83 0.84 0.83 0.85 0.84 0.87 0.86 

Median 0.84 0.85 0.88 0.88 0.89 0.88 0.89 0.90 

Variance 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Range 0.54 0.64 0.61 0.82 0.48 0.64 0.48 0.82 

25th percentile 0.76 0.76 0.79 0.74 0.80 0.76 0.80 0.78 

75th percentile 0.90 0.93 0.94 0.96 0.93 0.94 0.97 0.97 

Skewness -0.60 -1.10 -1.00 -1.05 -1.00 -0.94 -1.20 -1.22 

Kurtosis 2.22 0.80 0.09 0.37 0.08 -0.15 0.46 0.86 

A significant shift in kurtosis in the inner Südliche Au zone was also observed. Higher kurtosis 

pre-implementation indicated a predominance of extreme speed measurements, which went 

towards zero post-implementation, reflecting more consistent speed readings. Across all da-

tasets, negative skewness indicates a predominance of speed measurements above the 

mean, punctuated by occasional lower-speed outliers. 
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Figure 9 presents a side-by-side comparison of e-scooter and e-moped usage trends in the 

Südliche Au area, with e-scooter data on the left and e-moped data on the right. No data was 

available for the Walchenseeplatz study area due to restricted rental areas of the companies. 

The e-scooter data, at first observation, shows fewer extreme values, a phenomenon that can 

be attributed to their higher usage frequency in complete Munich compared to e-mopeds.  

 
Figure 9: E-scooter and e-moped usage in study area 

Table 5 provides a comparative analysis of e-scooter and e-moped usage in Südliche Au, 

before and after the project's initiation. The data indicates a post-project decrease in e-scooter 

usage in the inner study area, with e-mopeds showing an increase in both areas of Südliche 

Au. The median for e-moped usage remained zero in all areas, both pre- and post-project, 

suggesting that at least half of the data values were zero. Both transport modes exhibited a 

variance of zero in the data, due to dividing the number of vehicles to all vehicles, which led to 

small values and therefore very small variance. Post-project, the 25th percentile (Q1) for e-

scooters was zero in both regions, denoting that 25% of speeds were zero, with a notable shift 

in the outer region from a non-zero value pre-project to zero post-project. Skewness analysis 

revealed a significant positive skew in all regions, particularly for e-mopeds, indicating frequent 

occurrences of speeds above the mean. Additionally, both e-scooters and e-mopeds displayed 

increased kurtosis post-project, reflecting the longer pre-project duration compared to the post-

project period.  
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Table 5: Descriptive statistics e-scooter and e-moped data 

 E-Scooter data E-Moped data 

 Before 12.06.23 After 12.06.2023 Before 12.06.2023 After 12.06.2023 

 Inner Outer Inner Outer Inner Outer Inner Outer 

Mean 0.00025 0.00026 0.00024 0.00033 0.00043 0.00065 0.00059 0.00081 

Median 0.00025 0.00020 0.00015 0.00020 0.00000 0.00027 0.00000 0.00000 

Variance 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Range 0.00080 0.00100 0.00160 0.00410 0.00817 000817 0.00743 0.01273 

25thpercentile 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

75thpercentile 0.00040 0.00065 0.00038 0.00070 0.00057 0.00137 0.00169 0.00176 

Skewness 0.69 0.61 1.67 2.03 2.43 1.48 2.72 2.33 

Kurtosis 2.11 1.11 4.40 8.34 6.32 2.34 10.21 6.47 

Figure 10 illustrates the heatmap brightness values, correlating with the intensity of sports 

activities like running and cycling from the Strava activity heatmap. Analysis of the timeline 

indicates an overall reduction in activity levels across all areas during the data collection pe-

riod. An exception is observed in the inner area of Südliche Au, where a noticeable increase 

in activities occurs shortly after the project's initiation. Comparative analysis between the two 

regions shows that Südliche Au consistently exhibits higher luminosity on the heatmap, indi-

cating a higher level of sports activity engagement compared to the Walchenseeplatz area.  

 
Figure 10: Brightness values of sports activity heatmap 

Table 6 summarizes the brightness values from the sports activity heatmap data. A key obser-

vation is the presence of only a single recorded value before the project's start in Südliche Au 

due to irregular data updates, leading to zero variance, skewness, and kurtosis. Overall, a 
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decrease in brightness values was observed across all regions as the project advanced. The 

broader range of values in the outer areas is notably influenced by the inclusion of the Isar 

area, a location known for its high level of sports activity. 

 Table 6: Descriptive statistics brightness values of sports activity heatmap 

 Südliche Au Walchenseeplatz 

 Before 12.06.23 After 12.06.2023 Before 05.07.2023 After 05.07.2023 

 Inner Outer Inner Outer Inner Outer Inner Outer 

Mean 52.60 54.64 52.57 54.48 46.37 51.36 46.23 51.23 

Median 52.69 52.69 52.62 52.69 44.93 52.53 44.83 52.19 

Variance 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 

Range 0.29 20.22 0.49 20.56 11.13 19.02 11.32 19.15 

25th percentile 52.56 52.40 52.60 52.22 43.32 44.93 43.17 44.75 

75th percentile 52.69 61.54 52.70 61.38 44.95 54.55 44.83 54.42 

Skewness 0.00 0.00 0.25 0.12 0.11 -0.09 1.07 0.21 

Kurtosis 0.00 0.00 -1.32 -0.61 -2.00 -2.00 0.21 -0.07 

4.1.3. Key findings 

This chapter presents a detailed analysis of the inner and outer Südliche Au and Walchen-

seeplatz areas, highlighting key findings of the data analysis: 

 Demographics: Both inner areas predominantly house residents aged 30-40 years, with a 

total population of 128,741 across all regions, accounting for potential overlaps in the outer 

areas. 

 Infrastructure: The outer Südliche Au area, being closer to Munich's city center, is charac-

terized by a higher density of amenities like restaurants, cafes, and transportation facilities, 

contrasting with Walchenseeplatz’s more residential nature. 

 Weather Data: Data from Südliche Au shows an increase in average temperature and pre-

cipitation days after the project's start. Sunshine duration was at its peak just before the 

project and stabilized thereafter. 

 Traffic Data: Speed metrics comparison pre- and post-project in both areas indicates stable 

traffic conditions, with a minor increase in relative speed in the inner regions post-imple-

mentation. 

 Alternative Modes: Post-project, there was a slight increase in e-scooter usage in Südliche 

Au outer area, while e-moped usage increased in both study areas. 
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 Sports Activities: Heatmap brightness values revealed a general decline in sports activities, 

such as running and cycling, with the exception of a temporary increase in the inner Süd-

liche Au region following the project's initiation. 

4.2. Random Forest regression model 

A RF regression model was developed to analyze traffic patterns in car-free zones. The mod-

el's configuration, key influencing variables, and performance will be discussed in the following 

chapters.  

4.2.1. Model design and feature set 

In this study, the variable set was streamlined from 343 to a smaller, more manageable number 

to enhance the model's universality and interpretability. This simplification process was care-

fully managed to avoid diminishing the model's effectiveness. Measurement variables were 

categorized into two spatial groups: inner and outer study areas. In each category, data from 

various locations were consolidated into single, mode-specific variables. Notably, the e-scooter 

and e-moped data were exclusive to the Südliche Au area and thus not applicable to Walchen-

seeplatz. Table 7 is providing outlining key features and their definitions, omitting those with 

minimal impact on later model stages. For prediction, historical averages of time-sensitive var-

iables based on the day of week, including target variables, were used, differentiating them in 

the model by appending an underscore "_" to each feature name. Day of week was chosen 

due to its highest feature importance next to the other time-dependent features which could 

not be predicted.  

Table 7: Feature names and definitions 

Feature name Definition 

inner_speed_ 1-8, equal speed measurement points within the study area 

outer_speed_ Averaged all outer speed measurements for each outer study area 

tavg_, tmin_, tmax_, prcp_, 
wspd_ 

Weather data such as average temperature, precipitation  

Removedparking, newmobility, 
closedroads 

Number of removed parking spots for each inner study area, number of 
new mobility hubs and percentage of closed roads 

inner/outer-amenities Number of amenities differentiated by classification and area 

biketotal_ Number of bikes passing through the biking measurement station 

inner/outer_actmode_ Sports activity related heatmap data for inner and outer area 

inner/outer_escooter_ / emoped_ Number of escooter and emoped in the study area relative to all vehicles 

inner/outer_age Number of residents in the inner and outer study area 
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Variables with their original future value were added in the model development to see which 

influence it would have when adding the prediction for variables like weather to the model 

training. The target variables were identified within the internal areas of the study. The selec-

tion of these eight variables was determined by pre-established data collection points, as indi-

cated in Figure 11, meaning the numbers of the variables are merely a spatial indicator. The 

choice of these locations was also based on the information provided by the external company. 

 
Figure 11: Target variables for Südliche Au (left) and Walchenseeplatz (right) 

4.2.2. Random Forest model analysis - Südliche Au 

In addressing missing values within the feature dataset, mean imputation was applied, utilizing 

the column-wise and weekday-specific averages. Although alternative methods were consid-

ered, mean imputation demonstrated higher model performance. The optimal hyperparame-

ters for the Südliche Au model were determined through the technique of GridSearchCV. The 

finalized parameters, chosen based on minimizing mean squared error, are as follows: 1120 

trees (estimators), no limit on tree depth, a minimum of 5 sample per leaf, at least 12 samples 

required to split, and a test size of 20%. 

The selection of target variables was influenced by the geographical scope of the Südliche Au 

study. Predictor variables were evaluated using performance metrics like mean squared error, 

contributing to the efficacy of the multi-output model. Model accuracy was assessed using 

mean absolute error (MAE) and coefficient of determination (R²), along with visual evaluations. 

For a comprehensive understanding of feature interdependencies, Figure 12 presents a cor-

relation matrix for the Südliche Au study, utilizing the Pearson coefficient. A notable observa-

tion from this matrix is the high correlation between relative speed values, both within and 

across the inner and outer areas. The relative speed features, despite their correlation, are 

retained in the RF model, as this approach can effectively handle correlated predictors. In fact, 

these correlated features contribute positively to the model's overall accuracy. Additionally, the 

average temperature (‘tavg’) displayed a significant correlation, scoring 0.73, with both biking 
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data (‘biketotal’) and inner e-scooter data. This suggests a strong relationship between tem-

perature and mobility patterns in these modes of transport. Interestingly, the infrastructure 

changes related to the project, represented by the addition of new mobility hubs (‘newmobility’), 

exhibited almost negligible correlations with all other features, indicating a limited direct impact 

on the studied variables.  

 

Figure 12: Feature correlation matrix for Südliche Au 

A comprehensive feature set was found to support model robustness, leading to R² of around 

0.2, although not all the features used could be logically justified. Time-independent variables, 

such as age and amenity data, showed no high impact on model performance and were ex-

cluded. Despite minimal influence, heatmap data related to activity levels were kept due to 

their negligible computational overhead. 
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Figure 13: Top 20 feature importances at Südliche Au  

Figure 13 delineates the top 20 features importance for the prediction of speed variables within 

the Südliche Au study area. Mainly speed variables, e-moped, e-scooter and weather variables 

such as wind peak gust (‘wpgt’) and wind speed (‘wspd’) have a higher influence, but the num-

ber of mobility hubs as a project related features made it into the top 20, while developing the 

model with over 30 variables. Table 8 presents a detailed overview of the eight most influential 

features in the model, along with their corresponding importance values. Additionally, it in-

cludes the target variables, each accompanied by its respective R² (coefficient of determina-

tion) and MAE (mean absolute error) values, providing a clear picture of the model's predictive 

accuracy for each target. The overall model demonstrates a modest aggregated R² of 0.17 and 

an MAE of 0.102, indicating its general predictive performance. It is important to note that the 

presence of an underscore '_' following a feature name signifies that the feature has been 

averaged by weekday for future values, similar for the Walchenseeplatz model. This distinction 

is important as it means these averaged features are not identical to their corresponding target 

variables, representing a different aspect of the data.  

Table 8: Feature importances and target variables with their statistical measures 

In
p

u
t 

Feature inner_speed1_ inner_speed2_ outer_speed_ inner_speed8_ 

Importance 0.26 0.19 0.18 0.10 

Feature inner_speed5_ inner_speed7_ wpgt_ inner_emoped_ 

Importance 0.07 0.04 0.03 0.02 

O
u

tp
u

t 

Target variable inner_speed1 inner_speed2 inner_speed3 inner_speed4 

R² 0.21 0.20 0.21 0.12 

MAE 0.093 0.086 0.105 0.110 
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O
u

tp
u

t 
Target variable inner_speed5 inner_speed6 inner_speed7 inner_speed8 

R² 0.20 0.11 0.12 0.21 

MAE 0.103 0.108 0.112 0.107 

The model's predictive accuracy was assessed by averaging the forecast values of each target 

variable to derive a relative speed metric, which was then compared against the averaged 

actual mean speed. Figure 14 illustrates these findings, depicting a scatterplot on the left that 

highlights the variance between true and predicted values, and on the right, a graphical repre-

sentation of these values across the predicted time series. 

 
Figure 14: True vs. predicted relative speed values of Südliche Au model 

The scatterplot analysis indicates that predicted values predominantly are located within the 

0.75 to 0.95 range, in contrast to the mean true values which span from 0.55 to 1.00. This 

discrepancy is further illustrated in the right diagram, where the predicted values show a lower 

range of outliers compared to the mean true values.  

Enhancements to the model involved incorporating actual post-road closure feature values, 

specifically sports-activity heatmap data, which resulted in an increased overall R² of 0.26. 

Interestingly, the addition of future weather data, despite being identified as significant fea-

tures, paradoxically reduced the model's R² to -0.06. Similar with e-scooter and e-moped data 

which had a higher influence but reduced the overall R². Sole reliance on weather data for 

predictions aligned the predicted values more closely with true values, yet further decreased 

the R². When only using speed variables, the overall R² decreased a small amount in perfor-

mance reducing it to a R² of 0.16. The models developed as part of this research are detailed 

in Appendix A5. 
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To compare the RF model accuracy, a linear regression model was developed and its results 

are showed in Figure 15. This figure includes a time-series showing the mean true vs. mean 

predicted relative speed values indicating the pattern of the relative speed feature, averaged 

per weekday, and a scatter plot that underscores the model's limitations, particularly in pre-

dicting lower relative speed values. The model required training on the complete dataset and 

was subsequently tested on post-project data to avoid yielding a negative R² value, a situation 

that arose when employing the same methodology (20% test size post project) as used in the 

RF approach. Consequently, the linear regression demonstrates an inadequate fit, with an R² 

value of only 0.11. This low R² value signifies the model's inability to accurately represent the 

data's trends, a challenge stemming from the non-linear nature of the dataset which linear 

regression—a statistical method for modeling the relationship between a dependent variable 

and one or more independent variables—cannot adequately address. The analysis reveals 

'outer_speed' and 'inner_speed3' as the only significant features (p-value < 0.005), along with 

'weekday', indicating their substantial influence on the model despite its overall poor perfor-

mance. 

 
Figure 15: Linear Regression model for Südliche Au 

4.2.3. Random Forest model analysis - Walchenseeplatz 

The methodological approach applied in the Südliche Au study was replicated for the Wal-

chenseeplatz area. The finalized hyperparameters parameters chosen based on minimizing 

mean squared error, are as follows: 1120 trees (estimators), no limit on tree depth, a minimum 

of 5 samples per leaf, at least 2 samples required to split, and a test size of 0.2. The model 

development strategy and feature importance assessment were consistent, with the top 20 

features displayed in Figure 16. Notable differences from the Südliche Au included decreased 

impact of weather data and a slight increase in the significance of activity-related data. Time-

independent features continued to show minimal to no importance for the model's performance 
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in Walchenseeplatz. However, the variable representing removed parking lots in the project 

area exhibited a higher influence on the model's performance. 

 
Figure 16: Top 20 feature importances at Walchenseeplatz 

Similar to the Südliche Au study, a correlation matrix was also developed for Walchenseeplatz, 

detailed in Appendix A4. This matrix revealed similar interdependencies between the inner and 

outer relative speed variables as observed in the Südliche Au study. In the context of Wal-

chenseeplatz, the project-related infrastructure change was quantified by the number of re-

moved parking lots. Like the Südliche Au findings, this particular feature—removal of parking 

lots—demonstrated almost no correlation with other variables. An interesting aspect of the 

Walchenseeplatz study is the negative correlation observed between the minimum tempera-

ture and both inner and outer activity-related data. This relationship implies that higher mini-

mum temperatures could lead to decreased activity, which is a counterintuitive finding. 

Table 9 highlights eight out of the ten most dominant features in the Walchenseeplatz study, 

including their importance scores, and the R² and MAE for each target variable. These features 

exhibit similarities to those in the Südliche Au study, with the notable exception of the omission 

of e-moped data and the inclusion of ‘weekday’ as a feature in this analysis. In contrast to the 

Südliche Au model, the Walchenseeplatz model demonstrates lower MAE values across all 

variables, indicating more precise predictions. Additionally, the range of R² values in the Wal-

chenseeplatz study is broader, with more pronounced outliers in both higher and lower spec-

trums. This suggests a variation in the model's predictive accuracy across different variables. 

Overall, the Walchenseeplatz model exhibits an R² of 0.19 and an MAE of 0.085, signifying a 

notable improvement in performance compared to the Südliche Au model. 
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Table 9: Feature importances and target variables with their statistical measures 
In

p
u

t 
Feature inner_speed1_ inner_speed8_ inner_speed5_ outer_speed_ 

Importance 0.29 0.21 0.19 0.11 

Feature inner_speed6_ inner_speed3_ weekday tmin_ 

Importance 0.10 0.03 0.01 0.01 

O
u

tp
u

t 

Target variable inner_speed1 inner_speed2 inner_speed3 inner_speed4 

R² 0.20 0.09 0.25 0.17 

MAE 0.086 0.088 0.090 0.085 

Target variable inner_speed5 inner_speed6 inner_speed7 inner_speed8 

R² 0.28 0.13 0.11 0.27 

MAE 0.085 0.078 0.079 0.085 

Figure 17 illustrates the predictive and true values for the Walchenseeplatz area. The predicted 

values ranged between 0.80 and 0.95, while the true values spanned from 0.65 to 1.00. The 

time-series diagram in the Figure 17 further demonstrates that while the predictive values fol-

low the true values, they do not capture the outliers to the lower values observed in the mean 

true values.  

 
Figure 17: True vs. predicted relative speed values of Walchenseeplatz model 

Alternate modeling strategies, such as the incorporation of weather data and the gradual in-

troduction of future feature values, mirrored the effects observed in the Südliche Au model. 

Particularly, the addition of inner and outer activity-related heatmap data notably enhanced 

slightly the model performance. Incorporating all future feature values including the outer 

speed, as opposed to averaging based on historical data, significantly increased the feature 

importance of the outer speed value to nearly 1, resulting in an overall R² of 0.94 and a MAE 

of 0.02. However, this approach assumes the availability of future values of the outer relative 
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speed value for prediction, which may not be practical. Speed-related variables showed high 

correlation within the area-defined zones. Eliminating the speed variable entirely shifted the 

dominant predictor to wind direction, followed by other weather variables, similar to the Süd-

liche Au model, leading to a negative R² of -0.10 and an increased MAE of 0.10. 

4.2.4. Cross-model validation 

In this chapter, the applicability of the developed models to future car-free area projects will be 

evaluated by testing their performance across different settings. Specifically, the model trained 

on the Walchenseeplatz dataset, which exhibited higher performance, was applied to the Süd-

liche Au dataset. This required aligning the feature variables and target variables in length. 

The relative speed prediction locations at Südliche Au and Walchenseeplatz varied, so the 

values of the eight target variables were averaged to simplify them into a single measure. 

Initially, only 20% of post-road closure data from Südliche Au was used for testing the Wal-

chenseeplatz model. The results, displayed in Figure 18, show a scatterplot of the predictions 

against actual values. The model yielded a negative R² value of -0.04 and a Mean Absolute 

Error (MAE) of 0.092, indicating a poor fit between the predicted values (ranging between 0.75 

and 0.90) and the actual mean values. 

 
Figure 18: True vs. predicted relative speed values of Südliche Au with Walchenseeplatz model 

In an alternative approach, 20% of the entire data collection period from Südliche Au was 

utilized for testing, resulting in improved R² and MAE values. However, it is important to note 

that the values prior to the road closure were accurately predicted due to their inclusion in the 

training data of the Walchenseeplatz model. As shown in Figure 19, the model accurately pre-

dicts values up to June 2023, after which it begins to deviate. The overall R² achieved was 

0.23 with an MAE of 0.086. While this includes pre-closure values predicted with high accu-

racy, the post-closure predictions also exhibited reasonable higher accuracy than the first ap-

proach, when inspecting the shown diagrams.  
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Figure 19: True vs. predicted relative speed values of  Südliche Au tested on Walchenseeplatz model on complete project duration 
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5. Discussion 

This chapter delves into interpreting the findings, beginning with a discussion on the specific 

outcomes of the projects. It integrates insights from literature reviews, contrasting them with 

the data results. Additionally, this chapter addresses the constraints encountered in data col-

lection and processing. In evaluating the models' efficacy, the focus is on analyzing the pre-

dictive capabilities of the developed models, along with a comprehensive assessment of the 

RF regression model's overall performance. The chapter also includes a critical reflection on 

the methodological approaches employed in the study.  

5.1. Interpretation of data related findings  

5.1.1. Analysis of project-specific impacts 

In the demographic analysis, the predominant age groups in the study areas were identified 

as 20-40 years, suggesting a prevalence of younger residents. Regarding infrastructure, Süd-

liche Au exhibits a commercial character with a higher presence of cultural amenities and con-

sumer services, whereas Walchenseeplatz is predominantly residential. The results indicating 

almost no change in relative speeds suggest that the age groups within the specified city area 

and their amenities do not heavily rely on individual motorized traffic for their transportation 

needs. The availability of extensive public transport options in both areas further implies a 

reduced reliance on automobiles among residents. The data collection spanned from May to 

September 2023, starting with typical spring weather that progressed to higher temperatures 

and precipitation levels over time. Notably, an unusual increase in precipitation was observed, 

attributed to a dry period at the end of May and beginning of June. However, wind speeds and 

sunshine duration showed no significant variation before and after the project commence-

ments. 

Analyzing traffic data, a marginal increase of 0.02 percentage points in average relative speed 

in Südliche Au was observed, which is not significant. The minimal change observed also sug-

gests that road closures affecting between 4% and 9% of a specific area do not significantly 

impact traffic conditions.  This change in relative speed could be influenced by various external 

factors, such as school holidays, weather conditions, and the number of construction sites, all 

potentially impacting traffic flow. Figure 20 illustrates the relationship between temperature, 

precipitation, and relative speed in the inner Südliche Au area. While no direct correlation be-

tween these variables is evident, a pattern emerged in August, suggesting improved traffic 

conditions with higher temperatures. Conversely, increased precipitation towards the end of 

August resulted in a reduction in relative speed. Further analysis of these relationships is 
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explored in the section discussing the model's efficacy. Similar it was seen at Walchen-

seeplatz, which can be looked at in Appendix A6. 

 
Figure 20: Relative speed, temperature and precipitation changes over time in Südliche Au 

A key observation from the study is the negligible difference in average relative speeds be-

tween the outer and inner study areas of both project locations. While the outer areas exhibited 

slightly higher speeds, this can be attributed to the greater number of measurement points with 

better traffic conditions. Notably, a change was observed in Südliche Au immediately following 

the project's initiation on June 12, 2023. For approximately 10-12 days, there was a marked 

increase in relative speed, which subsequently reverted to normal levels. This temporary spike 

was also mirrored, though not identically, in the outer area speeds, suggesting that factors 

other than the road closures might have influenced the slightly improved traffic conditions.  

Another interesting finding is the correlation between reduced precipitation, a two-week school 

holiday period and improved traffic conditions. This trend suggests that during school holidays, 

possibly due to residents being on vacation, the overall traffic flow improved noticeably.  

The data from Walchenseeplatz did also not indicate any significant changes post-project com-

mencement. This outcome is likely due to the smaller size of the area and a lower proportion 

of road closures, resulting in minimal impact on traffic. A notable observation from the Wal-

chenseeplatz study area was the higher skewness in speed data, reflecting a predominance 

of values above the mean and a presence of a few lower-speed outliers. This pattern might be 

influenced by occasional severe traffic conditions on the Mittlerer Ring, Munich's primary cir-

cumferential road, which is a small part of the outer Walchenseeplatz study area. Additionally, 

the generally higher mean speed in the inner study area could be attributed to its more resi-

dential character, which typically experiences fewer and less intense traffic disruptions 
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compared to more commercial or busy areas. In conclusion, the relative speed data did not 

show any significant changes attributable to the projects in either the inner or outer study areas. 

This is consistent with expectations given the primarily residential nature of these areas and 

therefore a limited effect on the overall traffic state. Table 10 below shows the average changes 

and their t-test of the data prior and after the project implementations. 

Table 10: Overview of value changes and t-tests of data in the study areas after the projects implementation 

Area Variable t-statistic p-value Change in % Evaluation 

Südliche Au inner 
relative speed 

-0.71 0.48 1.68% Not significant, minimal increase 

Südliche outer rel-
ative speed 

-0.16 0.88 0.38% Not significant, negligible in-
crease 

Südliche Au inner 
e-scooter 

0.41 0.68 -5.90% Not significant, slight decrease 
in usage 

Südliche Au outer 
e-scooter 

-1.98 0.05 28.40% Borderline significance, noticea-
ble increase 

Südliche Au inner 
e-moped 

-1.11 0.27 38.86% Not significant, substantial in-
crease in usage 

Südliche Au Outer 
e-moped 

-0.91 0.36 25.23% Not significant, noticeabl in-
crease in usage 

Südliche Au inner 
activity data 

3.40 0.00 -0.05% Statistically significant decrease 
(slight change) 

Südliche Au outer 
activity data 

6.82 0.00 -0.29% Statistically significant decrease 
(noticeable) 

Walchenseeplatz 
inner relative 
speed 

-1.37 0.17 2.68% Not significant, slight increase 

Walchenseeplatz 
relative speed 

-1.24 0.22 2.70% Not significant, slight increase 

Walchenseeplatz 
inner activity data 

14.89 0.00 -0.30% Statistically significant decrease 
(noticeable) 

Walchenseeplatz 
outer activity data 

13.09 0.00 -0.26% Statistically significant decrease 
(noticeable) 

Post-implementation of the project, e-scooter activity in the inner Südliche Au area witnessed 

a decrease of around 5%. This observation requires cautious interpretation due to the fact that 

data collection commenced only two weeks before the project's start. Conversely, a 27% in-

crease in e-scooter usage was also observed in the outer areas which is borderline significant, 

where data coverage was incomplete due to the rental providers' operational zones. This trend 

could also be influenced by rising temperatures, encouraging greater use of e-scooters. The 

inner and outer activity related speed data showed a statistically significant impact of the road 
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closures, but this might be due to only updates of the heatmap four to six weeks. The weather 

conditions also showed a statistically significant increase in temperature and precipitation, not 

showed in the Table 10, but these impacts are not project related. 

In contrast, e-moped usage in the inner area saw a 38% increase in average, though this 

change was not statistically significant. In the outer areas, e-moped usage experienced a 

roughly not significant 25% rise. These shifts suggest a trend that may reflect the pattern ob-

served in outer e-scooter usage, potentially influenced by warmer weather conditions that en-

courage the use of shared vehicles. This hypothesis is supported by the observed correlation 

between e-scooter and e-moped usage data and temperature variations. Overall, while road 

closures seem to have had minimal impact on overall vehicle usage, the distinct trends in the 

inner and outer areas, as well as between e-scooters and e-mopeds, indicate some level of 

influence from these changes.  

The heatmap data, indicative of sports activity levels, generally showed a decline in both study 

areas. Not captured in the table, however, is a slight rise in activities within the inner Südliche 

Au area following the project's initiation. This increase in sports activities likely does not corre-

late directly with the project implementations, but somehow shows negative correlation with 

the temperature data. This relationship implies that higher minimum temperatures could lead 

to decreased activity, which is a counterintuitive finding. Typically, one might expect increased 

temperatures to encourage outdoor activity, making this negative correlation a point of interest 

of potential further investigation, as it suggests an inverse relationship that contradicts common 

assumptions about temperature and outdoor activity levels. The observed decrease may be 

attributed to the heatmap's methodology, which compares yearly activity levels against global 

benchmarks. Thus, the negative values in these areas could reflect a global increase in activ-

ities, with a comparatively smaller rise in the specific study regions. Consequently, the influ-

ence of the projects on sports activities appears to be minimal.  

5.1.2. Context within the literature findings 

The study areas, primarily consisting of residential roads, were expected to encounter minimal 

traffic disruption from road closures. This aligns with the literature's characterization of such 

streets as vibrant living spaces that promote reduced dependency on cars (Davis & Duany, 

2018). This concept suggested a negligible impact on traffic from the implementations. 

Extensive literature, particularly Cairns et al. (1998, 2002), indicates that traffic is more elastic 

than previously assumed, with road closures having a limited impact on traffic conditions 

around the closed areas. This study corroborates this, showing no significant effect on relative 

speed across the study areas, despite road closures. Although we did not observe a clear 

reduction in traffic akin to the 11% decrease reported by Cairns et al. (2002), the overall traffic 
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conditions did not worsened due to the project implementations. This minimal change aligns 

with Melia & Calvert (2023), where traffic reductions on a small-scale road demonstrated no 

significant impact, mirroring the patterns observed in our study.  

Goodwin et al. (1998) found that the long-term elasticity of traffic in response to road closures 

is typically greater than initially expected. Although our study of a temporary road closure event 

couldn't extensively analyze long-term effects, initial data from Südliche Au indicated an im-

mediate improvement in traffic conditions post-project commencement. However, after 10-12 

days, traffic states reverted to varying levels, often influenced by weekdays.  

Examining global road closure and car-free initiatives reveals that closures of heavily used 

roads typically lead to changes in traffic conditions or alterations in user travel routes and times. 

However, the roads in our study, Südliche Au and Walchenseeplatz, were less utilized with 

heavy traffic occupations. Consequently, the impacts observed in major projects like the Pa-

risian Riverbank closure or Cheonggyecheon’s lane reduction show limited parallels to our 

findings. Notably, the long-term analysis of Cheonggyecheon revealed a gradual decline in the 

road closure's impact and a subsequent decrease in vehicle usage, underscoring the elastic 

nature of traffic responses to road closures.  

Mansoor et al. (2022) highlight that the primary benefits of car-free districts stem from in-

creased non-motorized traffic, leading to more physical activity. In our study, such an increase 

was initially observed in the inner Südliche Au post-project implementation, but the activity 

diminished within three weeks, as indicated by declining heatmap brightness values across all 

measured areas. Consequently, the main anticipated benefits were not substantiated in this 

study, partly due to the lack of environmental or social impact assessments in the study areas.  

5.1.3. Data integrity and limitations 

A key element of this study is the use of open-source data, offering significant advantages 

such as replicability of the data collection process across different areas and public accessi-

bility. This methodology allows for the straightforward application of our data collection proce-

dures in various locations. However, challenges with open-source data include issues with 

consistency, usage limitations, and the difficulty of obtaining specific data needs. Conse-

quently, our approach to analyzing transportation effects had to adapt to the available data, 

rather than being driven by our specific data requirements.  

The study encountered specific challenges in data collection. Google Maps data, initially se-

lected to measure public transportation impacts, proved inconsistent and unsuitable. Similarly, 

collecting data on walking and cycling activities was challenging, particularly in cases without 

active tracking, which limited the utility of heatmap-related data. This data was reliant on users 
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recording their activities, a prerequisite for inclusion in the study. Moreover, the infrequent up-

dates of the heatmap, occurring every four to six weeks, limited the accuracy of observations 

regarding the project's impacts. Additionally, obtaining data on alternative transport modes like 

e-scooters, e-mopeds, and e-bikes was problematic due to limited open data access from var-

ious other rental companies and the exclusion of the Walchenseeplatz area from the compa-

nies' service zones. Furthermore, refining the data processing of counting vehicles in specific 

areas is needed, as the chosen method may not accurately reflect actual usage frequency. 

Although overall traffic data showed greater consistency and availability, using only relative 

speed data provides a limited view of an area's traffic state. Incorporating vehicle counts and 

lane information could yield more comprehensive results. 

Another significant challenge in this study was the disparity in data collection durations for pre- 

and post-project phases, constrained by the paper's time limitations. Additionally, missing val-

ues throughout the datasets hindered effective averaging, which was essential for synthesizing 

large volumes of data and understanding inter-dataset relationships. While daily averaging 

provided a general overview, it failed to capture nuances like rush hour trends or time-specific 

outliers in all variances of data. The strategy of utilizing available data, rather than specifying 

needs, offers reproducibility benefits. However, challenges such as combining diverse data 

sources, managing inconsistencies, and navigating usage restrictions can adversely affect the 

accuracy of the results.  

5.2. Evaluation of model efficacy 

This chapter examines the features and target variables employed in our model development, 

evaluating the models' predictive performance, goodness of fit, and cross-model validation 

across both study areas. It also reflects on the methodological approach in light of these re-

sults.  

5.2.1. Comparative analysis of feature and target variables in models 

In evaluating models for both study areas, the inner and outer speed variables emerged as 

key predictors, though their time-dependency necessitated averaging by weekday. The prom-

inence of these speed variables in predictions is logical, given their direct relation to the out-

comes they forecast. However, a model relying solely on these speed variables underper-

formed compared to the more comprehensive model in both study areas, evidenced by a lower 

R² and higher MAE. Splitting the inner and outer features across the 92 measurement points 

improved the model's R² by 0.04. However, for clarity and ease of reuse, the model employed 

summarized features despite this apparent enhancement. In this multioutput model with eight 

target variables, each averaged counterpart features exhibited distinct feature importances. 
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While 'inner_speed1' was a dominant feature in both models, the significance of subsequent 

features varied. 

Table 11: Inner mean relative speeds and variance (in brackets) before and after the projects implementation of each target 

variable 

 Südliche Au (12.06.2023) Walchenseeplatz (05.07.2023) 

 Before After Before After 

Inner_speed1 0.86 (0.009) 0.86 (0.014) 0.79 (0.012) 0.83 (0.011) 

Inner_speed2 0.86 (0.010) 0.85 (0.013) 0.83 (0.009) 0.85 (0.012) 

Inner_speed3 0.87 (0.001) 0.83 (0.015) 0.85 (0.009) 0.86 (0.013) 

Inner_speed4 0.71 (0.004) 0.86 (0.014) 0.86 (0.010) 0.90 (0.010) 

Inner_speed5 0.83 (0.012) 0.86 (0.015) 0.85 (0.012) 0.86 (0.013) 

Inner_speed6 0.84 (0.006) 0.85 (0.015) 0.87 (0.011) 0.90 (0.010) 

Inner_speed7 0.83 (0.007) 0.85 (0.016) 0.86 (0.010) 0.90 (0.010) 

Inner_speed8 0.81 (0.011) 0.77 (0.017) 0.87 (0.011) 0.86 (0.013) 

In the Südliche Au model, 'inner_speed4' exhibited minimal importance, aligning with the find-

ings presented in Table 11. This table details the mean and variance (indicated within brackets) 

of the target features, highlighting a significant difference in the relative speed of 'inner_speed4' 

before and after the project implementation. This lack of importance is reflected in the high 

Mean Absolute Error (MAE) and one of the lowest R² values for 'inner_speed4'. Furthermore, 

variables like 'inner_speed1', 'inner_speed2', 'inner_speed5', and 'inner_speed8' in Südliche 

Au demonstrated lower MAEs and higher R², likely due to their higher variance, approximately 

0.01, compared to the around 0.005 variance of 'inner_speed4', ‘inner_speed5’ and 'in-

ner_speed7' with a resulting R² of around 0.11. This difference becomes more pronounced 

post-road closure, with variances around 0.015.  

In contrast, Walchenseeplatz's model identified 'inner_speed8' as having the lowest im-

portance, unique in its decreasing relative speed but on the other hand having one of the higher 

R². Which again can be reasoned by the higher variance before the project start, similar to 

‘inner_speed1’ and ‘inner_speed5’, which have the highest variances before and also higher 

R² around 0.25. The higher variances and lower R² values observed in some prediction varia-

bles are likely attributable to their varying locations within the inner study areas. These different 

locations can lead to distinct traffic patterns, influencing the variability and predictability of 

these variables. Also, the overall variation in the feature importances of different 'inner_speed' 

variables can be attributed to their correlations and distinct locations within the inner study 
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areas, resulting in more pronounced differences in relative speeds. Interestingly, the 

'outer_speed' feature, like the inner area features, exhibits high importance and predictability 

in the model. It's noteworthy that this feature represents an average across approximately 50 

distinct measurement points. The similarity in mean and variance between 'outer_speed' and 

the inner area features suggests that it is a reliable predictor, demonstrating comparable be-

havior across different areas of the study. 

Interestingly, in the Südliche Au area, wind peak gust emerged as a significant predictor, ini-

tially seeming unrelated. This correlation might be attributed to the impact of stormier weather 

conditions, indicated by higher wind speeds, on traffic dynamics. Conversely, in the Walchen-

seeplatz model, wind peak gusts emerged as one of the less significant weather features, with 

minimum and average temperatures showing greater influence. The role of the weather da-

taset in this model, especially regarding the importance and accuracy of features like minimum 

and average temperature, requires additional investigation and research to validate the mod-

el's accuracy. Beyond weather factors, the day of the week stood out as a critical feature, with 

its future values being predictable. This suggests that the day of the week has a substantial 

influence on relative speed, more so than other variables that could be predicted, offering val-

uable insights into traffic behavior. 

 
Figure 21: Averaged relative speed per day of week in Südliche Au 

Figure 21 displays the average relative speed by day of the week in Südliche Au, highlighting 

the day's influence on traffic conditions both before and after road closure. This observation 

aligns with expectations, particularly when considering weekday traffic patterns, which are typ-

ically more congested due to work-related commuting, compared to weekends. A similar trend 

is evident in the Walchenseeplatz data, as shown in the Appendix A7. 



Creating a Predictive Model for the Traffic Impacts of Road Closures 53 

The influence of alternative mobility features like e-scooters and e-mopeds on speed prediction 

is minimal, with inner area features being more impactful than outer area ones. However, their 

effect is negligible, as excluding these variables only worsens the model's R² by 0.001. Adding 

to this influence is the aspect that the data collection started around three weeks later than the 

traffic data collection, which led to imputation and shortening parts of the earlier time frame. 

They were retained in the model due to potential correlations. Notably, attempts to predict inner 

e-scooter and e-moped usage were inaccurate, suggesting that this data may be challenging 

to forecast effectively without specialized model training and tuning. 

In the Südliche Au model, the inner and outer sports-related activity data had no significant 

impact on model performance. This outcome is understandable, given the near-zero variance 

in the heatmap data due to the late start of data collection, which contributes minimal predictive 

value. In contrast, within the Walchenseeplatz model, this feature ranks in the top 20, likely 

due to the absence of e-scooter and e-moped data, because the importance is still very low. 

However, attempts to predict inner and outer heatmap-related data were unsuccessful, primar-

ily because of the extended duration between changes in the data and the negligible variance 

observed. The bicycle data from Erhardtstraße influenced the model's prediction, with a strong 

correlation observed among north, south, and total directions, leading to the inclusion of only 

the total count. Conversely, at Walchenseeplatz, despite the measurement point being farther 

away than Südliche Au, bike data had a more significant impact. 

Features describing the project implementation were also time-dependent, such as the number 

of removed parking spots, new mobility hubs, and the percentage of road closures. Initially, 

these values were zero and then increased post-implementation. Notably, at least one of these 

variables influenced each model, indicating their minimal impact on prediction. The variation 

in the significance of these features across different models may be attributed to correlations 

among them and the complexity of the machine learning model. Despite the values remaining 

constant post-road closure, their slight importance in the model suggests that the road closures 

had some effect on relative speeds. Overall, using these variables to represent the project's 

initiatives might not be the most effective approach for future studies. 

The negligible impact of non-time-dependent variables such as age and amenities on the mod-

el's prediction power can be attributed to several factors. Primarily, their relevance to time-

dependent variables, which are characterized by temporal dynamics, is minimal. If there's little 

or no correlation between these non-time-dependent features and the target variables, their 

influence on predictions is almost null. This is particularly evident with variables like age, where 

there may be no direct correlation between the residents' age and the area's overall traffic 

state, especially considering factors like transit or drive-through traffic. Moreover, other 
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variables in the model might have a greater influence and effectively encompass the infor-

mation that non-time-dependent features could provide.  

5.2.2. Assessment of overall model prediction performance 

The performance of the RF model was assessed using R² for goodness of fit and MAE for 

accuracy. For each of the eight target variables and the overall multioutput models, the R² did 

not exceed 0.3, indicating a modest fit. Similarly, the MAE was around 0.1, not optimal consid-

ering 50% of predictions were within a range of 0.16.  In contrast, J. Wood et al. (2023) reported 

R² values between 0.64 and 0.78 in their RF model, suggesting a significantly better fit due to 

the inclusion of precise passenger occupancy data with weather information. Meanwhile, Yang 

et al. (2023) achieved high predictive values in a classification task using RF, as reflected by 

their F1 scores, although this metric is not directly comparable to R². Though, when comparing 

the RF model to the constructed linear regression, it shows superior performance, suggesting 

a well-reasoned approach in model selection.  

In our study, the hyperparameters for the RF models were optimized using GridSearchCV, 

revealing similar configurations for both study areas. Each model utilized 1120 trees, striking 

a balance between complexity and performance. For the Südliche Au model, a 'max_depth' 

set to None permitted trees to grow until reaching a 'min_samples_split' of 12. This configura-

tion was key in capturing intricate patterns within the data. Additionally, setting 'min_sam-

ples_leaf' to 5 helped prevent overfitting by ensuring that each leaf node had enough samples. 

Conversely, in the Walchenseeplatz model, 'min_samples_split' was reduced to 2, the lowest 

possible value, with ‘max_depth’ set to None aiming to discern extremely fine-grained patterns. 

However, this heightened sensitivity necessitated caution against overfitting. To mitigate this 

risk, 'min_samples_leaf' was also set to 5, ensuring a balance between capturing detailed data 

patterns and maintaining the model's ability to generalize effectively.  

Predicting future values based solely on historical data yielded a low R², close to 0, suggesting 

that historical data alone were insufficient for accurate predictions of future relative speed. This 

lack of predictive power can be attributed to the unpredictability of speed using only historical 

values and possibly the choice of predictors derived from open-source data, which may not 

significantly influence speed. Other variables, such as school holidays and other potentially 

influential events, were not included in the data collection, further limiting the model's effec-

tiveness. To improve predictions, future values were estimated by averaging historical data by 

weekday. This method, selected after testing two imputation strategies (mean and averaging 

by weekday), proved higher effectiveness. The choice was also influenced by the significant 

impact of weekdays on the model.  
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In efforts to enhance the model, incorporating actual future values improved performance se-

lectively. Including real-time future weather conditions paradoxically worsened the model's fit, 

despite increasing the importance of these features. The outcome, which suggested that 

weather variables influenced relative speed despite worsening the model fit, presents a para-

dox that warrants further detailed investigation. This contradiction in the results indicates a 

need for more focused research to understand the true impact of weather conditions on relative 

speed and to resolve the apparent discrepancies in the model's performance. Contrarily, inte-

grating future values from activity-related heatmap data raised the overall R² to 0.28, a result 

that was challenging to rationalize given the decline in data values, lack of variance, and min-

imal importance when averaged. Notably, the inclusion of future outer relative speed values 

significantly boosted model performance, elevating R² from around 0.3 to approximately 0.9. 

This substantial improvement underscored the strong correlation between outer and inner 

speed values. 

When assessing the predictive capabilities of the models for both areas, the model for Wal-

chenseeplatz exhibited a higher R². This can primarily be attributed to the more extensive col-

lection of pre-project data, providing a larger dataset for training. Consequently, the model 

could better capture and predict the variance in the target variables due to the increased vol-

ume of pre-project training data.  

 
Figure 22: Time-series and scatter plot for Südliche Au (left) and Walchenseeplatz (right) 

Figure 22 showcasing time-series and scatter plots for both study areas, reveals another rea-

son for the higher prediction accuracy of the Walchenseeplatz model: its mean true values 

display less variance, ranging between 0.85 and 0.95. In contrast, the Südliche Au area shows 

a wider range of 0.75 to 0.95. Additionally, the aspect of extending data collection before the 

start of the project is a non-negligible factor. For future projects, a prolonged period of data 



Creating a Predictive Model for the Traffic Impacts of Road Closures 56 

gathering could lead to higher and improved model accuracy. Longer data collection periods 

provide a more comprehensive dataset, allowing for a deeper understanding of baseline con-

ditions and more precise modeling of potential impacts. Furthermore, the similarity in the pre-

diction time-series of both areas suggests comparable traffic conditions, indicating that the 

projects' initiatives had a limited impact on the overall traffic state. The plots collectively indi-

cate that the model struggles to accurately predict variance in the data, as evidenced by the 

low R² and higher Mean Absolute Error (MAE). This suggests limitations in the model's ability 

to capture and replicate the variability present in the underlying data. 

For the purpose of evaluating the model's applicability to similar projects, the Walchenseeplatz 

model was applied to the Südliche Au project. This cross-application revealed significant limi-

tations. When tested solely on post-project initiation data, the model yielded a negative R², 

suggesting that simply using the mean of the data would have been more predictive. Incorpo-

rating pre-project data improved the goodness of fit slightly, yet the overall predictive capability 

remained suboptimal. These results unfortunately indicate that the model, as trained on the 

Walchenseeplatz data, may not be effective for forecasting traffic conditions following road 

closures in urban settings. This limitation highlights the challenges in transferring predictive 

models across different urban contexts and the importance of tailoring models to specific pro-

ject characteristics and data environments.  

5.2.3. Reflection of methodological approaches 

This section reflects on the modeling approach chosen for this study, particularly focusing on 

the use of RF models and their associated challenges. Despite their capabilities, both models 

in our study did not yield highly accurate results. One key difficulty with RF models is their 

interpretability; as observed, features such as bike and weather data impacted the model's 

predictions in ways that were not easily explainable.  

Additionally, RF models depend on robust and complete datasets. In our case, computational 

issues led to some missing values, potentially undermining the model's performance. The over-

all feature selection for data collection could have been improved regarding the choice of lo-

cations and the duration of the collection period. While thoguh the data collection process pro-

vided a rich dataset with a high number of variables, which in theory could enhance model 

training, RF can sometimes struggle with datasets featuring many features. Also, the high 

number of variables in the model contributed to challenges in interpretation and reproducibility 

for future projects. Additionally, presence of many variables in the dataset, leading to increased 

overall data volume, presented challenges during the hyperparameter tuning phase of our RF 

model, notably in terms of computational demands. This complexity in the dataset, combined 
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with the intensive process of hyperparameter optimization, resulted in computational difficul-

ties, impacting the efficiency and feasibility of the modeling process.  

On the positive side, RF is known for its robustness against overfitting and its ability to effec-

tively handle non-linear relationships, making it a potentially strong candidate for complex an-

alytical tasks. However, to comprehensively evaluate the effectiveness of our methodological 

approach, exploring alternative machine learning techniques, such as Deep Neural Networks, 

could be beneficial. Due to the scope and limitations of this thesis, such exploration was not 

feasible at this stage, but it presents a valuable avenue for future research. 
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6. Conclusion 

The conclusion summarizes the thesis's key findings, explaining how the research question 

was answered and the impact of car-free initiatives on urban mobility. It discusses the practical 

implications and potential applications of the methodology in urban planning. The conclusion 

also recognizes the study's limitations and suggests future research directions to expand upon 

these findings.  

6.1. Summary and contribution 

This thesis aimed to explore the traffic impacts of road closures within the aqt project in Munich, 

analyzing historical data including traffic conditions, alternative and active transportation 

modes, demographics and weather conditions.  

The literature review on reducing car infrastructure showing an 11% decrease in traffic volume, 

which aligns with this thesis, and different results from global case studies. In cities like Seoul, 

Calgary, and Oslo, initial increases in travel time and public transport use, as well as reductions 

in vehicle trips, were observed. These changes, however, often diminished over time, reflecting 

the traffic system's elasticity. Notably, a long-term study in Seoul showed a gradual improve-

ment in speed over three years, with declining car ownership and rising public transport use. 

In contrast, Paris's road closure study highlighted increased congestion and worsened traffic 

conditions. These varied findings highlight the complexities of road closures and infrastructure 

reduction in urban mobility. 

In this study, data-driven modeling in transportation research was found effective, with RF 

Regression achieving R² values between 0.6 and 0.8 in different studies. To analyze travel 

behavior changes in two project areas, data on multiple transportation modes, weather, amen-

ities, and demographics were collected within a 1.5 km radius of the projects. This included 

measurements of current and free-flow speed at 92 points, e-scooter and e-moped counts, 

and analysis of heatmap data for foot and cycling mobility. All data, sourced from open plat-

forms, was processed for analysis and visualization. A RF model, adept at handling non-linear 

data and complex patterns, was developed. Its accuracy, assessed using mean absolute error 

and R², was fine-tuned through hyperparameter optimization. 

Before the project, average relative speeds were 0.82 in Südliche Au and 0.85 in Walchen-

seeplatz, both increasing by 0.2 post-implementation, a change not deemed significant. E-

scooter usage in Südliche Au's inner area fell by about 5%, but rose by 28% in outer areas. E-

moped usage grew by 25% in outer and 38% in inner areas. Activity heatmap data showed a 

slight decrease, marking the only features with significant change. Weather data from Südliche 
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Au indicated higher average temperature and precipitation, but stable wind speeds and air 

pressure. Demographics revealed a predominant 30-40 year age group in both areas, with 

Südliche Au being more commercial and Walchenseeplatz more residential. Road closures of 

the aqt project accounted for 9% of street length in Südliche Au and 4% in Walchenseeplatz. 

The RF models for Südliche Au and Walchenseeplatz primarily identified speed variables, av-

eraged by weekday from pre-project data, as dominant features. Day of week and weather 

variables also influenced model accuracy. Despite their insights, both models achieved only 

moderate fit, with an R² of around 0.2 and an MAE of approximately 0.1. This performance, 

while modest, surpasses the linear regression's R² of 0.1 obtained using the complete training 

dataset. The longer duration of data collection at Walchenseeplatz contributed to a slightly 

better model accuracy. However, when this model was applied to Südliche Au, it necessitated 

the inclusion of pre-project data to achieve a reasonable fit. Omitting this pre-project data led 

to a negative R², highlighting the model's dependency on historical context for accuracy. 

The findings of this thesis reveal that the car-free initiatives in the study areas had minimal 

impact on traffic, evidenced by the lack of significant change in data and the low accuracy of 

the model in predicting traffic post-road closure. A slight increase in relative speed suggests 

that reducing car infrastructure might improve traffic conditions, echoing literature findings that 

generally associate traffic volume reduction, particularly when major roads are not affected. 

The younger demographics and abundant amenities and public transport options in Südliche 

Au and Walchenseeplatz suggest a lower dependency on cars among residents, possibly con-

tributing to the minimal impact of car-free initiatives on traffic in these areas. Dominant features 

of the RF like historical relative speed, weather, and day of the week were identified, but the 

absence of factors like major construction events and school holidays could have limited the 

model's accuracy. This suggests that such other variables, not included in the project's initia-

tive, might play a more significant role in determining traffic conditions. Interestingly, incorpo-

rating future values of e-scooters and e-mopeds enhanced model accuracy slightly, while using 

the outer area's relative speed to predict the inner area's speed significantly increased R² to 

around 0.95. This high correlation implies a strong dependency between inner and outer area 

traffic, indicating that the road closures in the inner areas did not substantially affect traffic flow. 

Furthermore, the enhanced predictive capability of the Walchenseeplatz model underscores 

the value of detailed and extended data collection in achieving better model accuracy. This 

observation affirms the overall efficacy of the modeling approach employed, particularly when 

contrasted with linear regression methods, which yielded less favorable outcomes. The higher 

success of the Walchenseeplatz model suggests that investing in comprehensive data collec-

tion and analysis can significantly improve the precision and reliability of predictive models.  
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The research presented in this thesis demonstrates that road closures have a negligible impact 

on travel behavior, considering factors such as relative speed, alternative modes of transpor-

tation, weather conditions, amenities, and demographics. The observed minimal improvement, 

though slight, indicates that the initiatives do not substantially disrupt traffic conditions. Fur-

thermore, they may encourage the adoption of sustainable transportation modes and enhance 

active mobility. Given the limited predictive power of the models developed, the findings are 

primarily applicable to the studied areas. This research also underscores the complexity of 

urban mobility and the nuanced impact of car-free initiatives.  

6.2. Practical implications, limitations and future direction 

This thesis explores the effects of car-free initiatives on urban mobility, employing open-source 

data to develop predictive models. While the initial models, lacking future values and an ex-

tensive and detailed data collection, showed limited predictive power, integrating forward-look-

ing variables like weather and alternative transport modes may improve their efficacy. For 

broader application and refinement, the models and datasets are openly accessible (see Ap-

pendix A) to facilitate enhancements or adaptations to similar projects. The data collection, 

rooted in open-source methods, is replicable with the addition of API keys and other cost-free 

resources detailed in the repository, ensuring wide accessibility and adaptability. 

However, the study faces limitations due to its dependence on open-source data chosen for 

availability rather than specific research needs, leading to challenges in data acquisition and 

processing. For example, the use of inconsistent crowding data at public transport stations 

was hindered by data restrictions. Additionally, the large and semi-structured nature of the 

open-source data required extensive processing, and computational and API constraints led 

to the averaging of data from hourly to daily measurements, potentially omitting critical contex-

tual details like peak hours. Moreover, the study's scope, focused on Munich, may limit its 

applicability to other cities or varied urban initiatives. Similarly, the time constraints faced dur-

ing this thesis limited the extent of detailed data collection both before and after the implemen-

tation of the projects' initiatives, potentially restricting the depth of the research conducted.   

Despite these challenges, this thesis lays a solid groundwork for future exploration in car-free 

initiatives, providing valuable insights and methodologies that could significantly influence the 

creation and management of new car-free zones and events. It underscores the potential of 

these initiatives to enhance urban sustainability and liveability, all while minimally impacting 

traffic flow. The findings, demonstrating negligible traffic disruptions in specific urban settings, 

offer essenital insights for urban planners and policymakers considering similar car-free strat-

egies. These strategies are aimed not only at reducing automobile dependence but also at 
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promoting sustainable and eco-friendly transportation alternatives, which are increasingly vital 

in today's urban landscapes.  

As we look forward, this research sets a course for comprehensive investigations into the mul-

tifaceted impacts of car-free environments. The adoption of car-free zones represents a trans-

formative approach to urban development, going beyond merely easing traffic congestion. It's 

about reshaping urban spaces to prioritize community well-being, environmental responsibility, 

and enhancing overall quality of life. This thesis suggests that future research should expand 

its focus to include a wider range of data sources, encompassing varying urban dynamics. 

Cross-city comparative studies could provide a broader understanding of the efficacy of car-

free zones in diverse urban settings. Conducting long-term studies would offer insights into the 

enduring effects and public reception of these initiatives. Advanced modeling techniques 

should be employed to capture the complex dynamics of urban mobility and the socio-eco-

nomic and environmental facets of car-free zones. Moreover, the potential for applying this 

model to other projects is further enhanced by integrating longer and more extensive data 

collection. Such an analytical approach is essential to understand the broader implications of 

these initiatives and to guide effective policy-making. It advocates for building urban spaces 

that are not only livable but are also resilient and forward-looking, leading the way towards a 

sustainable, car-free future. This vision for urban development is not just an aspiration but a 

necessary evolution to create cities that are adaptive, environmentally conscious, and focused 

on the health and happiness of their residents. 
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Appendix 

Appendix A: Access to open-source models 

The data collection, model development, and testing processes for this study are documented 

in the referenced GitHub repository ‘masterthesis-lin-tim’2, which contains guidelines for using 

and further developing the model. However, for data collection, additional efforts are required, 

such as obtaining API keys and specifying location points. It's important to note that the data 

processing phase involved the use of multiple tools, which are not included in the repository. 

Consequently, users may need to independently manage these aspects of the process. 

Appendix A1: Study areas in the context of the city of Munich 

 
Figure 23: Study areas within the Munich cityscape 

  

 
2 github.com/tolltim/masterthesis-lin-tim 
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Appendix A2: Geographical visualization of amenities in the study area 

 
Figure 24: Amenities visualized in the study areas 
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Appendix A3: Descriptive statistic of weather data for both study areas 

Table 12: Descriptive statistics weather data 

 Südliche Au Walchenseeplatz 

 Before 12.06.23 After 12.06.2023 Before 05.07.2023 After 05.07.2023 

 tavg3  prcp4 tsun5 wspd6 tavg prcp tsun wspd tavg prcp tsun wspd tavg prcp tsun wspd 

Mean 15.32 2.02 493.76 9.56 20.36 3.48 507.79 9.22 17.19 2.12 524.41 9.72 20.33 3.81 493.71 9.04 

Range 11.10 20.30 907.00 7.60 16.20 41.60 933.00 16.50 15.80 20.30 933.00 10.80 16.20 41.60 917.00 16.50 

25th percen-

tile 

11.90 0.00 246.00 8.30 18.38 0.00 276.00 7.10 14.80 0.00 296.75 8.30 18.20 0.00 229.00 6.80 

75th percen-

tile 

18.10 0.00 799.00 11.20 22.82 2.73 737.00 10.40 19.42 0.43 800.75 11.20 22.90 3.60 73.00 10.10 

t-statistics  -8.01 -1.18 -0.35 0.56  -4.89 -1.52 0.68 1.47 

p-value 0.00 0.24 0.73 0.58 0.00 0.13 0.49 0.14 

In Table 12 the t-statistics and p-value is calculated on the change before and after the projects 

implementations.  

 

 

 

 

 

 

 
3 tavg = Average temperature [°C] 
4 prcp = Precipitation [mm] 
5 tsun = Sunshine duration [min] 
6 wspd = Wind speed [m/s] 
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Appendix A4: Correlation matrix for Walchenseeplatz 

 
Figure 25: Correlation matrix for Walchenseeplatz 
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Appendix A5: Further developed models 

Building a RF model incorporating future values of e-scooter, e-moped, and activity data raised 

the overall R² to 0.26, with 'inner_escooter' as the dominant feature and others also signifi-

cantly influencing model accuracy, as shown in Figure 26. 

 
Figure 26: Top 20 feature importances Südliche Au with future values 

The scatter plot and the prediction vs. actual values could be predicted better, with the dia-

grams showing in Figure 27. 

 
Figure 27: True vs. predicted values for Südliche Au with future values 

At Walchenseeplatz, the inclusion of future activity-related data, in the absence of e-scooter 

and e-moped data, improved the model's R² to 0.26. This enhancement is depicted in the 

scatter plot in Figure 28 Additionally, the feature importances for both inner and outer ‘actmode’ 

rose to approximately 10%. 
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Figure 28: True vs. predicted values of Walchenseeplatz with future activity related data 

Introducing the future values of the ‘outer_speed’ variable significantly improved the R² of both 

models, reaching between 0.92 and 0.96. This highlights the similarity in traffic conditions be-

tween the inner and outer study areas. Figure 29 Introducing the future values of the 

‘outer_speed’ variable significantly improved the R² of both models, reaching between 0.92 

and 0.96. This highlights the similarity in traffic conditions between the inner and outer study 

areas. 

 
Figure 29: True vs. predicted values for Südliche Au (left) and Walchenseeplatz (right) with future outer relative speed data 
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Appendix A6: Precipitation, temperature and relative speed over time at Walchenseeplatz 

 
Figure 30: Precipitation, temperature and relative speed over time of Walchenseeplatz 

 

Appendix A7: Relative speed per day of week of Walchenseeplatz before and after project 

start 

 
Figure 31: Relative speed per day of week of Walchenseeplatz before and after project start 
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