
Project Report: Exploring Performance Modeling

in AutoPas

Tobias Humig

August 2023

1

Abstract

The particle simulation library AutoPas implements many algorithms with vastly
different performance characteristics to solve the pairwise short-range particle
interactions in molecular dynamics simulations. During the simulation, it uses
black-box optimization techniques to automatically select the fastest algorithm
for the current state. While they are able to find good algorithms eventually,
they often try highly unsuitable ones at the start due to lack of initial per-
formance information. As some algorithms perform orders of magnitude worse
than the optimum for a given simulation state, this has a significant negative
impact on the time to solution.

In this project, we gather knowledge about the performance characteristics
of the algorithms through theoretical modeling, profiling, and benchmarking.
We make the results available through a new white-box optimization strategy
that is able to apply any domain-specific knowledge during optimization. It
removes those algorithms from the candidate list that likely perform worst in
the current simulation state. In our tests, removing the five percent slowest
algorithms reduced the tuning time by up to 80 percent while still finding the
best algorithm. Furthermore, we give insights and recommendations what can
be done to potentially improve the performance further.

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Contribution . 5
1.3 Approach . 6

2 Background 7

3 Profiling AutoPas 8
3.1 Method . 8

3.1.1 Intel VTune Profiler . 9
3.1.2 perf stat . 9
3.1.3 perf record . 9
3.1.4 Intel Advisor . 9

3.2 Selection of Scenarios . 10
3.3 Observations . 10

4 Theoretical Modeling of Linked Cells vs. Verlet Lists 12
4.1 Compute Model . 12
4.2 Memory Access Model . 13
4.3 Optimize cellSizeFactor . 14
4.4 Optimize rebuildFrequency and skin 15

5 Rule-Based Tuning 17
5.1 Motivation . 17
5.2 Description . 17
5.3 Rule Language . 18
5.4 Implementation . 19
5.5 Tooling . 19

6 High-Variety Benchmarks 20
6.1 Motivation . 20
6.2 Scenario Generation . 20
6.3 Data Collection and Format . 20
6.4 Report generation . 21
6.5 Summary of Insights . 21
6.6 Algorithm Subset Ranking . 22

7 Other Work: Build-time improvements 24

8 Future Work 25
8.1 Spatial Hashing for Linked Cells 25
8.2 Early timeout for very long-running tuning iterations 25
8.3 Improve the Use of SIMD Instructions in the LJFunctor for Verlet

Lists . 25

3

8.4 Pack particles within cutoff in SIMD implementation of the LJ-
Functor . 26

8.5 Collect data from ARM cluster and compare 26

9 Conclusion 27

4

1 Introduction

1.1 Motivation

Implementing a fast simulator for particle simulations is challenging. Varying
parameters of a simulation like particle density and distribution lead to very dif-
ferent compute requirements and memory access patterns. Thus, fully utilizing
the available hardware across a range of these parameters is difficult. AutoPas
tackles this problem by implementing (at the time of writing) 186 different al-
gorithms and picking the most suitable one for the current simulation state,
automatically.

For a given simulation, the algorithms perform orders of magnitude differ-
ent compared to each other. AutoPas implements several black-box optimiza-
tion strategies to choose the best algorithm for the current simulation. These
strategies need to execute each algorithm at least once to collect data about
its performance. This is problematic, because testing a single algorithm that
takes three orders of magnitude longer than the optimal algorithm (something
we did observe) negatively impacts the end-to-end simulation time. In practice,
this means that sometimes, while AutoPas has implemented a fast algorithm
for a simulation state, the time of finding it supersedes the improved simulation
performance of the specialized algorithm.

1.2 Contribution

In this thesis, we explore how this problem can be solved by extending the
scope of optimization strategies for selecting the best algorithm to white-box
optimization strategies. These have pre-defined information about the specific
optimization space they are working in. In our case, we give them domain-
specific knowledge of the AutoPas developers about the available algorithms.
This allows them to skip the worst performing algorithms without testing them
even once while searching for the best one. Since tuning time is often dominated
by a few very long-running algorithms, this has a great effect on end-to-end
simulation time.

We built the new white-box optimization in such a way that it can be used
for additional improvements in the future. Our ideas for that include the fol-
lowing: At first, we might be able to predict the potential of a new tuning phase
by observing parameters that influence the performance of the algorithms. This
way, we can trigger a new tuning phase early by scheduling it once the parame-
ters changed more than a certain threshold, or we can postpone the next tuning
phase if we see that the influential parameters did not change much. Second,
in the future we might be able to finish a tuning phase early by modeling the
expected optimal runtime and stopping a tuning phase once we found an algo-
rithm that is close enough to the optimum. This would also open up another
dimension of optimization, that is the order in which the algorithms are tested
during tuning.

5

1.3 Approach

We divided our work in four steps, Profiling AutoPas, Theoretical Modeling,
Rule-Based Tuning, and High-Variety Benchmarks. Each of these four steps is
described in detail in its own section.

In Section 3, we describe the first step, Profiling AutoPas. Its goal was to
understand the behavior of different algorithms and collect influential factors
on the performance of them. This knowledge is then used in the second step,
Theoretical Modeling. This is described in Section 4. Here, we derive closed
formulas for basic properties of these algorithms like compute requirements,
depending on parameters of the given simulation. In Section 5, we describe
our extensible tuning strategy Rule-Based Tuning that is able to make use of
the acquired domain-specific knowledge. Finally, we describe our high-variety
benchmarks to collect information for writing rules in our Rule-Based Tuning
in Section 6.

After our main contribution, we describe our work on build time improve-
ments in Section 7, and some ideas for future work on AutoPas in Section 8
before we conclude in Section 9.

Before explaining our contribution, we give a short background on the Linked
Cells and the Verlet Lists algorithm in Section 2.

6

def l i n k e d c e l l s i t e r a t i o n () :
for c e l l in c e l l s :

for p a r t i c l e in c e l l :
for neighbor in (n e i g h b o r c e l l s (c e l l) + c e l l) :
Check t ha t the ne ighbor p a r t i c l e i s not the
p a r t i c l e i t s e l f , and t ha t i t i s w i th in the
#c u t o f f rad ius
i f 0 < d i s t anc e (p a r t i c l e , ne ighbor) <= cu t o f f :

i n t e r a c t (p a r t i c l e , ne ighbor)

Figure 1: Pseudocode for the Linked Cells algorithm archetype.

2 Background

The two major algorithm archetypes for solving short-range particle simulations
in AutoPas are Linked Cells and Verlet Lists. We present these shortly as a basis
for the following topics.

Linked Cells partitions the domain into equally sized cells where a list of
particles within a given cell can be accessed in O(1). To find all neighbors for
a particle, only particles in cells within the cutoff radius have to be checked.
If the cell side-length is chosen to be greater or equal the cutoff radius of the
short-range particle interaction, only the immediate 26 neighboring cells of the
cell the given particle is in need to be checked. Assuming a constant maximum
of particles per cells, this results in O(n) runtime of this algorithm. Figure 1
shows pseudocode for the Linked Cells algorithm archetype.

When using the Verlet Lists algorithm, for each particle, a list of neighbor
particles in a given distance is maintained. This distance, called interaction
distance, has to be greater or equal to the cutoff radius. In this thesis, we call
the factor by which the interaction distance is higher than the cutoff radius
the skin factor, and skin is the difference of the interaction distance and the
cutoff. If the skin factor is chosen larger, the neighbor lists have to be updated
less often, assuming the particles move with the same velocity. For building and
updating the neighbor lists in O(n), the Linked Cells algorithm is typically used.
Iterating through the neighbor list and updating them using Linked Cells has
O(n) total runtime. Figure 2 shows pseudocode for the Verlet Lists algorithm
archetype.

7

def v e r l e t l i s t s i t e r a t i o n () :
i f r ebu i l d nece s sa ry :

bu i ld Linked Ce l l s with c e l l s i z e = i n t e r a c t i o n d i s t anc e
use L inkedCe l l s to bu i ld ne ighbor l i s t s

for p a r t i c l e in p a r t i c l e s :
for neighbor in p a r t i c l e . n e i g h b o r l i s t :
Check t ha t the ne ighbor i s w i th in the c u t o f f rad ius
i f d i s t anc e (p a r t i c l e , ne ighbor) <= cu t o f f :

i n t e r a c t (p a r t i c l e , ne ighbor)

Figure 2: Pseudocode for the Verlet Lists algorithm archetype.

3 Profiling AutoPas

This section describes how we profiled AutoPas to understand the runtime be-
havior of various algorithms and get an idea of the major factors that influence
their performance.

3.1 Method

We profiled AutoPas on our own desktop machine that runs Arch Linux with
a Intel (R) Core (TM) i7-8700K CPU @3.70Ghz, and 32GB DDR4 RAM at
2133MHz. While profiling, we set the frequency governor to performance using
$ sudo cpupower frequency-set --governor performance to minimize the
impact of power-saving or turbo boost modes of the CPU, and allow all users
full access to the Linux perf subsystem to collect performance data using $
echo -1 | sudo tee /proc/sys/kernel/perf event paranoid. The simula-
tions where run using md-flexible. It was compiled using GCC 10.2.

In all cases, we made sure that as few other processes as possible were run-
ning on the system. This is especially important for multithreaded profiling
where we expect that AutoPas uses 100 percent of the CPU. In these cases, it
can make sense to configure AutoPas to use one or two cores less than avail-
able to stabilize the performance. Furthermore, we configured the simulation
to have a runtime between a few seconds and a minute using the number of
iterations configuration parameter. A shorter runtime leads to high instability
of the results, a longer runtime to a high volume of data to analyze which takes
longer, and potentially to CPU throttling due to high temperature. We used
the tool sensors while running longer multithreaded simulations to observe the
maximum CPU temperature. The deltaT configuration parameter was set to
zero to only measure pair-wise force interaction time and have the simulation
state static.

We used several profiling tools available for Linux, Intel VTune Profiler,
perf stat, perf record, and Intel Advisor. These are described below in
more detail.

8

3.1.1 Intel VTune Profiler

The Intel VTune Profiler1 is an easy-to-use profiling tool that gives an acces-
sible overview of various performance metrics of a program in a graphical user
interface. Starting from the Performance Snapshot Analysis, it guides the user
through various analysis types that are especially interesting for the current pro-
gram. We found especially useful that VTune measures the maximum achievable
memory bandwidth in the Memory Access Analysis, and displays how well the
available memory bandwidth is utilized by the program.

3.1.2 perf stat

We used perf stat2 to count specific interesting CPU hardware events that
show information like instructions per clock (IPC), percentage of branch misses,
last level cache misses, average load latency, and more. It is fast and easy to use
on the command line. Looking at the right events gives insights into what is the
bottleneck of the program execution, for example whether memory bandwidth
or memory latency is the limiting factor. Which events are available depends, on
the concrete CPU the program is executed on. A list of events can be retrieved
using perf list. We found that perf Metric Groups are especially helpful to
find interesting events and interpret them. These are listed in perf list under
Metric Groups, as well.

3.1.3 perf record

To see where time is spent in case of surprising runtime behavior, for example
when the majority of time is not spent in pairwise force calculation, we used perf

record3. This tool regularly samples stack traces during program execution to
give an overview in which parts of the code time is spent. While perf has
a built-in profile viewer, it is hard to use. Alternative viewers that provide a
good user experience are the Firefox Profiler4, pprof5 by Google, and the CLion
profiler6 which can be used to collect the profile as well, directly.

3.1.4 Intel Advisor

Intel Advisor7 is another profiler from Intel that shows a Roofline analysis of the
important loops in your program. This is very useful to determine whether the
program is more memory or CPU bound, and how much potential performance

1https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-

profiler.html
2https://man7.org/linux/man-pages/man1/perf-stat.1.html
3https://man7.org/linux/man-pages/man1/perf-record.1.html
4https://github.com/firefox-devtools/profiler/blob/main/docs-user/guide-perf-

profiling.md
5https://github.com/google/perf_data_converter
6https://www.jetbrains.com/help/clion/cpu-profiler.html#

InterpretingTheResults_FlameChart
7https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

9

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man1/perf-record.1.html
https://github.com/firefox-devtools/profiler/blob/main/docs-user/guide-perf-profiling.md
https://github.com/firefox-devtools/profiler/blob/main/docs-user/guide-perf-profiling.md
https://github.com/google/perf_data_converter
https://www.jetbrains.com/help/clion/cpu-profiler.html#InterpretingTheResults_FlameChart
https://www.jetbrains.com/help/clion/cpu-profiler.html#InterpretingTheResults_FlameChart
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

improvement there is left solely from optimizing the implementation without
changing the algorithm.

3.2 Selection of Scenarios

Profiling all 186 algorithms on a wide range of particle simulation scenarios
manually would be an enormous undertaking, so we had to limit ourselves to a
small subset of interesting algorithms and scenarios. The goal of this profiling
is to get a feeling for how various parameters of the simulation influence the
performance of the algorithms. For the majority of profiles, we selected the
Linked Cells C18 algorithm with Newton 3 enabled, both with AoS and SoA
data layout, and the Verlet Lists Cells C18 algorithm with Newton 3 enabled
and data layout AoS. We chose these, because they represent both Verlet Lists
and Linked Cells as the two major algorithms for particle simulations, and are
comparable, because all use the C18 traversal. Spot-wise, we also tested different
algorithms, for example the Pairwise Verlet Lists or a Linked Cells algorithm
with Newton 3 disabled.

For the scenarios, we varied the following parameters. We varied between
very low, medium, and very high density, between small, medium, and very
large domains, and between uniform and Gaussian particle distribution. This
resulted in a manageable number of 18 different configurations. We set the
size of the domain together with the particle density to values such that the
total number of particles varies from 105 to 108, while the average number of
particles per cell varied from 0.1 to 25. In the Gaussian particle distribution,
the particles were clustered heavily such that the majority of cells contained a
single or even no particle. The center of the particle cluster was put at two
thirds of the domain in all dimensions instead of in the center.

3.3 Observations

The work on profiling AutoPas made clear that modeling the performance of a
particle simulation algorithm is difficult. Both the Linked Cells and the Verlet
Lists algorithm can be memory or CPU bound, depending on the simulation
scenario.

In high-density scenarios with uniform distribution where the average num-
ber of particles is higher than 10, the arithmetic intensity is high, because the
number of particle interactions grows quadratically with the number of particles
in a cell. This leads to both algorithms being CPU bound. Here, the Linked
Cells algorithm with the SoA data layout performs best, as many calculations
can be performed using SIMD instructions. With good vectorization, there are
densities where the used memory bandwidth is considerably higher than the
main memory bandwidth, so caches are used effectively.

In low-density scenarios with uniform distribution where the average num-
ber of particles is at most one, the arithmetic intensity is low, so we are not
CPU bound. The memory access pattern is very irregular. Scanning all parti-
cles of a cell in order, as Linked Cells does, is not an advantage here, because

10

each cell contains less than one particle on average. Thus, the performance is
limited by memory latency, and not bandwidth. In this case, the Verlet Lists
algorithm performs better, because it can skip empty cells, while the Linked
Cells algorithm iterates over all cells and their neighbors.

In medium-density scenarios with uniform distribution, there was no clear
explanation which algorithm performed best in which scenario.

For the Gaussian distribution, we see the two effects described above play
against each other. The majority of the cells is almost empty or empty, so the
constant overhead of Linked Cells per cell impacts the performance negatively.
On the other hand, its more regular memory access pattern compared to Verlet
Lists improves performance while working on the densely filled cells in the center
of the particle cluster. Which effect dominates the other is difficult to predict,
beforehand.

The impact of the size of the domain under equal particle density and dis-
tribution was not important in many cases. Only for very small domains, all
algorithms benefited from the fact that the whole memory working set fitted
into the L3 cache, so the irregular memory accesses did not have such a strong
performance impact.

In general, we saw that the number of last level cache misses correlated with
the performance. In most of the cases where we were not able to clearly explain
why an algorithm performs better than the others, we saw that the number of
last level cache misses was smaller for the best performing algorithm.

These insights are now used to build approximate theoretical models of the
algorithms to predict which is better, at least in the cases where we see a clear
performance difference.

11

4 Theoretical Modeling of Linked Cells vs. Ver-
let Lists

In this section, we present theoretical models we developed using the knowledge
from profiling AutoPas. These models describe runtime properties of the Linked
Cells and the Verlet Lists algorithm. Using these models, we compare both
approaches and optimize the meta parameters of the algorithms. For Linked
Cells, we optimize the cellSizeFactor that determines how large the individual
cells are. For Verlet Lists, we optimize the skin and the rebuildFrequency.

While each implementation of the same algorithm behaves differently, there
are intrinsic similarities between all of them, and fundamental differences be-
tween Verlet Lists and Linked Cells that potentially make it possible to deter-
mine which algorithm archetype is theoretically better suited for a given scenario
using a simplified model of the algorithms.

4.1 Compute Model

In both algorithm archetypes, there are two kinds of calculations that need to
be done. First, potential particle neighbors have to be checked if their dis-
tance is within the cutoff radius. Then, for all particle pairs, the real particle
interaction has to be evaluated. The second calculation needs to be done in
both algorithms. Only during SIMD execution, if particle pairs are masked out
instead of being replaced with others, the work differs. The amount of work
for the first calculation depends on the number of potential neighbors for each
particle. The main motivation for using Verlet Lists is to reduce this number.
Instead of checking the particles of all neighbor cells each iteration, this is only
done when particles moved more than skin/2 when the particle neighbor lists are
potentially invalid. However, these cells need to be larger compared to Linked
Cells to capture all particles that need to be added to the lists.

The number of neighbor calculations in a scenario with uniform particle
distribution can be estimated using Equation 1 for avg. particles per cell > 1

27 .
For each particle, the neighbor calculation happens for all particles in the 27
surrounding cells, but not with itself. If Newton’s third rule is used, the number
of neighbor calculations is halved. This rule, from now on called Newton 3,
states that for two particles, the force that the first particle exerts on the second
particle is equal to the force that the second particle exerts on the first particle.
Thus, this force only needs to be computed once. In practical implementations,
this can only be leveraged when the parallelization scheme allows to update the
force value of both particles at once without introducing data races.

LC neighbor calculations = particles · (avg. particles per cell · 27− 1) (1)

For Verlet Lists, the neighbor calculation happens for each particle with all
neighbors in its neighbor list. The neighbor list contains all particles within its
skin radius. Its size can be estimated from the number of neighbor calculations
from Linked Cells by multiplying with the fraction of the volume of the skin

12

1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Factor by which Verlet Lists need less neighbor calculations than
Linked Cells for a rebuild frequency of 1

20 .

sphere divided by the volume of the 27 surrounding cells. In addition to the
neighbor calculations happening each iteration, there are additional neighbor
calculations for building the neighbor lists. Each rebuild requires a full Linked
Cells neighbor calculation. Equation 2 shows the formula to compute the aver-
age number of neighbor calculations per iteration including those of rebuilding
the neighbor lists.

VL neighbor calculations = LC neighbor calculations ·

· (
4
3 · π · skin factor3

33
+ rebuild frequency)

(2)

This means that the term 33
4
3 ·π·skin factor3

describes how many neighbor calcula-

tions Linked Cells needs more than Verlet Lists in each iteration, assuming we
do not need to frequently rebuild. It only depends on the skin factor variable.
As shown in Figure 3, with a rebuild frequency of 1

20 , Verlet Lists only need
≈ 31.8% for a skin factor of 1.2. A skin factor larger than ≈ 1.83 increases the
number of neighbor calculations over the number that Linked Cells needs and
is hence considered as the upper limit of reasonable values.

4.2 Memory Access Model

Each neighbor distance and force calculation needs to load data from memory,
and potentially store data back. For the force calculation, both Verlet Lists and
Linked Cells need to load all necessary data of the particles, so the amount of
data fetched is equal. For neighbor calculations, the amount of data fetched
is linear in the number of neighbor calculations. If the Verlet Lists algorithm

13

does less neighbor calculations by a factor x, the amount of data fetched during
neighbor calculations is lowered by factor x, as well.

The most important difference is the pattern in which the algorithms access
the memory. In Linked Cells, the particles are typically stored continuously
within a cell, and the neighbor and force calculations iterate over these particles
sequentially. In Verlet Lists, each particle stores a list of pointers to neighbors
that do not lie continuously in memory. When iterating over the neighbor list,
the hardware prefetcher is not able to prefetch the next particles before they
are requested. Furthermore, Linked Cells needs to access all cells, even if they
are empty, while Verlet Lists only needs to process all lists.

From Section 3, we know that the performance of the algorithms correlates
with the number of last level cache misses in many cases. Thus, we construct a
simplified model to predict this number.

In our model, we approximate the last level cache misses using the number
of irregular memory accesses. For Verlet Lists, we can approximate the number
of irregular memory accesses with the number of pairwise force interactions,
because the particles in the neighbor lists are not stored sequentially in memory.

VL irregular memory accesses = VL neighbor calculations (3)

For Linked Cells, we scan the particles in a cell in order, but we have an
irregular memory access whenever we access a cell. The number of cell accesses
is number of cells·avg. particles per cell·27, where 27 is the number of neighbor
cells each cell has including itself (the three loops in the Linked Cells algorithm
from Figure 1).

LC irregular memory accesses = number of cells · avg. particles per cell · 27
(4)

Figure 4 shows how the number of irregular memory accesses develop with
varying particles per cell in a domain of 50 cells in each dimension and skin
factor of 1.2 and rebuild frequency of 1

20 . We see that at ≈ 3.18 avg. particles
per cell, the number of irregular memory accesses is the same. Below, the Verlet
Lists algorithm has less irregular memory accesses. Above, Linked Cells has an
advantage.

4.3 Optimize cellSizeFactor

In the practical implementations of the Linked Cells algorithms in AutoPas,
there is a constant overhead per cell in each iteration. This is not included in
the compute model from Section 4.1. In very sparse scenarios, this overhead can
surpass the neighbor and pairwise force calculations in each iteration by far. In
this case, the performance can be improved by increasing the cellSizeFactor
to a value where the number of cells is not larger than the number of particles,
anymore. However, care must be taken for skewed particle distributions. If a

14

10−1 100 101

10−1

100

Avg. Particles per Cell

V
er
le
t
L
is
ts

/
L
in
ke
d
C
el
ls

Figure 4: The factor of irregular memory accesses of Verlet Lists over Linked
Cells.

large number of particles is located near to each other in s small part of the
whole domain, increasing the cellSizeFactor can lead to quadratic runtime,
because all particles might be located in a single cell, afterwards. This can be
mitigated by estimating the maximum number of pair interactions that may
happen after increasing the cellSizeFactor. Given the maximum number of
particles contained in a single cell n, the maximum number after resize can be
estimated by n∗cellSizeFactor3. The cellSizeFactor can now be increased
only to a level where the number of pairwise interactions in a single cell is
considerably smaller than the number of cells in the domain.

4.4 Optimize rebuildFrequency and skin

As we saw in Section 4.1, the neighbor calculation savings of Verlet Lists de-
pend on the two variables rebuild frequency and skin factor. Decreasing the
skin factor and increasing the rebuild frequency lowers the number of neighbor
calculations necessary for Verlet Lists. Thus, choosing these values optimally is
important. Valid are all variable combinations that still guarantee correctness
of the algorithm. For this, no particle is allowed to move more than skin/2 in

1
rebuild frequency iterations. This requirement shows that the variables are not
independent. Given a fixed skin factor, the optimal rebuild frequency can be
computed from the number of iterations the fastest particle needs to travel cutoff
distance as in (Equation 5), and the other way around.

rebuild frequency =
1

1 + iterations for cutoff movement · skin factor−1
2

(5)

15

100 101 102 103
1

1.1

1.2

1.3

Iterations to cutoff movement

O
p
ti
m
al

S
k
in

F
ac
to
r

Figure 5: Optimal skin factor depending on the number of iterations the fastest
particle needs to travel the cutoff radius.

Using Equation 2, we can choose both rebuild frequency and skin optimally
for a given maximum particle movement per iteration, expressed as the number
of iterations it takes a particle with maximum movement to travel the cutoff
radius. Equation 6 shows how to compute the optimal skin factor from the max-
imum movement. Given the optimal skin factor, the optimal rebuild frequency
can then be computed according to Equation 5.

optimal skin factor(m := iterations for cutoff movement) =

= argmin
skin factor>=1

4
3 · π · skin factor3

33
+

1

1 +m · skin factor−1
2

=
m− 2 +

√
4− 4 ·m+ 6

√
6
πm

3/2 +m2

2m

(6)

This function is plotted in Figure 5. As we can see, the optimal values range
from ≈1–1.3. Larger skin factors to minimize the number of rebuilds further
are not worth it in any case, according to our model. In practice, the number
of neighbor calculations is a bit higher than predicted using this optimization
in many cases, because the rebuild frequency can not be set continuously, but
must be rounded down.

16

5 Rule-Based Tuning

5.1 Motivation

The overall performance of AutoPas is determined by its ability to quickly select
a fast algorithm for each iteration of the pairwise force calculation. An algorithm
in AutoPas consists out of five components, the container, the traversal, the
Newton 3 option, the data layout, and the load estimator. The cell size factor
can be seen as a sixth component. However, we don’t consider it here, because
we showed in Section 4.3 that good values for it can be chosen without tuning
over several candidates. We call this a configuration. Right now, AutoPas
periodically starts a tuning phase in which several configurations are tested using
some pre-defined tuning strategy, and the best configuration is then employed
until the next tuning phase starts. The length of this tuning phase and the
choice of tested configurations have a high impact on the overall performance,
because they determine the tuning overhead. This is the overhead over the
runtime where the optimal configuration is correctly guessed in the beginning of
each tuning phase and no other configurations that are slower are tested. Since
the performance of different configurations in a given scenario spans multiple
orders of magnitude, this overhead can become very high. All existing tuning
strategies use black-box optimization algorithms that are not able to make use
of existing domain specific about the configurations or the concrete running
simulation the developers or users of AutoPas might have. This is a gap that
Rule-Based Tuning fills. It enables developers and users of AutoPas to provide
their domain specific knowledge as so called rules to help AutoPas in finding a
fast configuration during tuning more quickly.

5.2 Description

Rule-Based Tuning is a tuning strategy based on Full Search. Full Search tests
all possible configurations and thus always finds the optimal configuration, but
also has the highest possible overhead. Rule-Based Tuning works the same way,
but first filters out some configurations each tuning phase using user-provided
rules. These rules can use metrics, called Live Info, collected from the cur-
rent simulation state to define a partial order over configurations. Whenever
a configuration is ordered after another configuration in this partial order, it
is filtered out from the set of configurations to test this tuning phase, because
another configuration is in the test set that provides better performance, given
the rule is correct. These rules are defined in their own language, the Rule
Language, described in Section 5.3. If the given rules are precise enough to
filter out a significant part of the worst performing configurations, the tuning
overhead compared to Full Search is drastically reduced, but the strategy still
finds the optimal configurations.

Rule-Based Tuning can also be used to provide the subset of configurations
as output that is determined worthwhile to test. On this subset, arbitrary other
black-box tuning strategies can be executed. This combines the domain-specific

17

knowledge of the Rule-Based Tuning with the smartness of existing black-box
optimization algorithms.

5.3 Rule Language

The Rule Language is the domain specific language used to define rules. When
using the Rule-Based Tuning, AutoPas expects a file containing all rules to use
in this language. For reference, the full grammar of the language can be found
in the AutoPas repository in RuleLanguage.g4.

A file in the Rule Language consists of a list of statements. The most
important statement is a configuration order. Here is an example:

[container=”Ve r l e t L i s t sC e l l s ” , dataLayout=”AoS”] >=
[container=”Ve r l e t L i s t sC e l l s ” , dataLayout=”SoA”]
with same newton3 , t r av e r s a l , loadEst imator ;

This configuration order defines the following partial order between configura-
tions a, b:

∀a, b ∈ Configurations. container(a) = container(b) = VerletListsCells ∧
dataLayout(a) = AoS ∧ dataLayout(b) = SoA ∧ newton3(a) = newton3(b) ∧
traversal(a) = traversal(b) ∧ loadEstimator(a) = loadEstimator(b) =⇒ a → b

The configuration orders are not allowed to introduce circles of configurations
to fulfill partial order requirements (no diagnostic required8). In general, a
configuration order consists of two configuration patterns separated by >= and
an optional with same clause.

Configuration orders can be applied conditionally using if statements:

i f avgPa r t i c l e s < 6 :
[. . .] >= [. . .] ;

endif

In this case, the configuration order is only applied if the average number
of particles in a cell is below 6. avgParticles is a Live Info, one of the
metrics collected live from the simulation state in the beginning of the tun-
ing phase. All available metrics are listed in the doxygen documentation of
LiveInfo::gather().

Finally, for convenience, there are two other types of statements, define
and define list. These allow to define constants and lists of constants in the
rule file. They have global scope, starting from where they are defined.

define th r e sho ld = 0 . 5 ;
d e f i n e l i s t l i nkedCe l l sConta in e r = LinkedCel l s , L inkedCe l l sRe f e r ence ;
i f avgPa r t i c l e s < d e f i n e t h r e s h o l d :

[container = ”Ve r l e tC l u s t e rL i s t s ”] >=
[container = l inkedCe l l sConta in e r]

8https://en.cppreference.com/w/cpp/language/ndr

18

with same dataLayout ;
endif

This example defines a threshold constant and a list of containers, and then or-
ders all configurations with the VerletClusterLists container before all con-
figurations where the container is in the defined list, as long as they have the
same data layout, if the average particles per cell are below the given threshold.

5.4 Implementation

The rule language is parsed using ANTLR9. From the resulting AST, code is
generated for a very simple stack-based virtual machine that is able to execute
the given rule program dynamically at runtime and return the list of configura-
tion orders that should be applied. Then, each available configuration is checked
against the right-side pattern of all configuration orders. If it matches one of
them, it is removed from the list of configurations to test.

5.5 Tooling

Since finding a correct set of rules that decreases the search space size signif-
icantly in many scenarios is challenging, multiple tools are provided to collect
runtimes of configurations in various scenarios and quickly verify rules against
these records.

To collect the necessary data to test new rules, a logger is introduced which
sits between the AutoPas AutoTuner and the used tuning strategy as a proxy.
This TuningStrategyLoggerWrapper logs all calls into the tuning strategy into
a file that can later be replayed using a different tuning strategy. Thus, col-
lecting data using Full Search makes it possible to quickly run and compare all
other tuning strategies. To verify if rules are correct in a given scenario, the
Rule-Based Tuning strategy has a verification mode where it tests all possible
configurations similar to Full Search, but verifies for each incoming data point
if it violates the partial order provided by the rule file. This combination makes
it possible to once log data for hundreds of scenarios, and then verify a new rule
against this data in seconds.

9https://www.antlr.org/

19

6 High-Variety Benchmarks

6.1 Motivation

With the Rule-Based Tuning, we have built a way to make domain-specific
knowledge available to the tuning strategies of AutoPas. However, finding help-
ful and correct tuning rules is difficult. We derived rules from our theoretical
models, but these are limited and only differentiate between the Linked Cells
and Verlet Lists algorithm archetypes, not the many concrete algorithm imple-
mentations we have in AutoPas.

Thus, we needed a way to derive such rules at scale. For this, we executed
all algorithms in a great variety of scenarios while collecting data about their
performance. Then, we analyzed the data to find correlations of when a partic-
ular algorithm performs worse than another one, and used that information to
write the corresponding rule. This not only allowed us to find correct rules and
judge how large their impact on real simulations is, but this data also allows
us to verify arbitrary new rules that developers or users come up with, in the
future.

6.2 Scenario Generation

To get meaningful results, we need to cover a large variety of particle simula-
tion scenarios. However, each scenario must be simulated by every algorithm
multiple times to get reliable results. This takes a lot of time, so the number of
scenarios we can use is limited. For the scenarios, we varied multiple parameters
like domain size, number of particles, particle distribution, cutoff, and skin. We
arrived at 241 scenarios. The exact parameters can be found in the generated
SQLite database described in Section 6.3. While there are certainly important
scenarios that we have missed, we believe we have covered a wide range for
the following reason. Analyzing the data showed that almost all container and
traversals perform best in one of the generated scenarios. Thus, it is unlikely
that our scenarios only cover a small part of the wide range of possible scenarios.
If it were, we would expect that a few algorithms dominate almost all scenarios.

6.3 Data Collection and Format

We execute all generated scenarios using the Full Search tuning strategy and
log all data that relates to tuning using the TuningStrategyLoggerWrapper as
explained in Section 5.5. While this format contains all the necessary data, it is
difficult to analyze. For this reason, we developed a program that converts the
tuning logs from all generated scenarios into a single SQLite3 database. This
allows us to use SQL to analyze the data.

This SQLite database contains a table Scenario with information about the
scenarios that were run, as well as a table Measurement. This table has a row
for each algorithm in each scenario and stores the properties of the algorithm
like container, traversal, data layout, and more, as well as the recorded run-

20

time. The scenario is stored as a foreign key on the Scenario table. Along with
these tables, the SQLite database is already created with several useful views on
these tables that show the number of different algorithms that were executed,
the best algorithm of each scenario, the algorithms that performed the best
most often, the algorithms that never performed best, a view configRanks that
contains for each Measurement information how much worse it performed com-
pared to the best algorithms in all scenarios, how much time was spent tuning
in each scenario, one that shows how much time was spent for an algorithm in
all scenarios, a view that shows all configurations that are strictly worse than
another configuration (that means in all scenarios, it performed worse than the
superseding configuration), and more. To make the results well accessible, we
automatically generate an HTML report for these and more insights.

6.4 Report generation

While analyzing the data using SQL is straightforward, viewing the results in the
SQLite commandline is not. For this reason, we built an extensible python script
that visualizes many interesting insights that are created using SQL queries in an
HTML report. For example, a section of the report that uses a bar diagram to vi-
sualize the data can be created by writing visualize bar(dbcursor, ’select

* from traversalWinners’, ’Wins Per Traversal’, True) where traversalWinners
is one of the predefined views. The third parameter indicates that the bar dia-
gram should be horizontal.

6.5 Summary of Insights

In this section, we summarize the most interesting insights we gained from the
large scale benchmarks. All these results and more are part of the generated
report and can be viewed in more detail there. The queries that produce these
results are part of the report generation script.

1. Across all scenarios, most algorithms perform between a factor of 2-50
worse compared to the best algorithm of the scenario. It is approximately
Gaussian distributed. There are algorithms that perform 1000 times worse
than the best.

2. Up to 80 percent of the tuning time is spent in the 10 worst performing
algorithms in a scenario. On average, it is 40 percent.

3. All containers performed best at least one scenario, except the Pairwise
Verlet Lists.

4. 31 configurations performed best in some scenario.

5. The Verlet Cluster Lists algorithm with AoS data layout, disabled Newton
3 and the vcl c01 balanced traversal performed the most stable across
all scenarios, performing a factor of two worse than the best algorithm

21

on average, but a factor of five at most. All other algorithms performed
worse than a factor of five over the best algorithm in at least one scenario.

6. For 43 algorithms, there each is a single configuration that performed
better in all scenarios. These configurations never need to be taken into
account for tuning.

7. On average the slowest configuration is 80x slower than the fastest.

8. The majority of iterations we executed took less than five seconds, but
some took up to 120 seconds.

6.6 Algorithm Subset Ranking

In addition to the analysis described above, we conducted one more complex
analysis that could not be formulated as a single SQLite query to answer the
following question: Which subset of n algorithms gives the best performance
across all scenarios? The exact metric of what is best can for example be
minimal overall runtime, or minimal average regression compared to the best
algorithm in each scenario. While we have all the data to answer this question,
we can only solve this naively by evaluating all algorithm combinations for very
small n, like n = 5. For n = 10, there are already

(
186
10

)
= 1016 combinations.

To answer this question for larger n, we implemented a genetic algorithm
that finds a solution within up to a couple of minutes also for larger n. The
genetic algorithm works as follows. Each individual has n genes. The value of a
gene is a specific algorithm. As fitness function, we generate a SQL query that
evaluates the performance of an individual according to the defined metric. For
crossover, we randomly select parent genes until the child has n genes. Only
if two parents are exactly equal, we generate a random child. For mutation,
we change a random gene to a random algorithm. Our starting individuals are
randomly generated. We found that a crossover rate of 60 percent, a mutation
rate of 5 percent, and a population size of 50 work well. In each generation, we
remove duplicate individuals. We compute up to 10’000 generations to make
sure we find a good result. Finding the optimum takes between a few seconds
and a few minutes, depending on the subset size.

We applied the script on a data collection of 144 algorithms in 133 different
scenarios. While we cannot guarantee that the solution is optimal for larger
n (we verified it up to n = 6 for a smaller subset of the algorithms), the per-
formance of the subset improves consistently with increasing n until n = 27
(Figure 6). This is expected, as 27 algorithms are enough to perform optimally
in all scenarios. For n = 10, we found an algorithm subset that performs at
most 20 percent worse than the best algorithm in all scenarios. This subset is
shown in Table 1. Rerunning the script returns approximately the same results.

22

5 10 15 20 25 30
1

1.5

2

2.5

3

Algorithm Subset Size

M
ax

im
u
m

p
er
fo
rm

an
ce

lo
ss

(f
a
ct
o
r)

Figure 6: How increasing the size of the optimal subset steadily improves per-
formance. The y-axis shows the worst performance of the subset in any scenario
as factor over optimum performance for this scenario.

Container Traversal Data Layout Newton3
LinkedCells lc c04 HCP SoA enabled
LinkedCellsReferences lc c08 SoA enabled
LinkedCellsReferences lc c01 SoA disabled
VerletClusterLists vcl c06 AoS enabled
VerletClusterLists vcl cluster iteration AoS disabled
LinkedCellsReferences lc c04 HCP AoS enabled
VerletListsCells vlc c18 AoS enabled
VarVerletListsAsBuild vvl as built AoS enabled
VerletClusterLists vcl c01 balanced AoS disabled
VerletClusterLists vcl c01 balanced SoA disabled

Table 1: The best algorithm subset of size 10 we found using our algorithm
subset ranking optimization.

23

7 Other Work: Build-time improvements

While working on exploring performance modeling in AutoPas, we stumbled
over several things that we thought could be improved. Of these, our build
time improvements deserve special attention. Before our improvements, any
change in the md-flexible compilation unit that calls AutoPas resulted in a
full recompilation of all AutoPas code. Now, this is no longer the case.

Users of the AutoPas library provide their custom particle and functor class
types to the library. Since these types are fundamental, almost all code in
AutoPas is templated on at least one of them. This means that almost all code
of AutoPas is templated and written in header files. If the user of the library
now changes any code in the compilation unit that includes AutoPas, the whole
AutoPas library needs to be recompiled. In the case of md-flexible, this was
especially problematic as it uses four different functor types. Recompilation
times on a laptop for a single compilation unit were up to 20 minutes for any
change on an important source file in the md-flexible executable. However,
recompilation was actually only necessary when the particle or functor class is
changed. This is what we implemented.

To only recompile AutoPas when necessary, we split the declaration and
the definition of the AutoPas library interface into two header files, similar to
how the problem is solved for non-templated libraries. Then, we only included
the AutoPas declaration in the compilation units of md-flexible that call into
AutoPas. To make this compile with the templated interface, we externally
declared the AutoPas library interface with the concrete template argument
types in the files where they are used. For each externally declared unit, we
then created a new compilation unit that includes the AutoPas definitions and
instantiates the templated with the concrete template argument types. We did
this both for the particle type that is passed to the AutoPas<ParticleType>

class template and for the functor type that is passed to the template function
AutoPas<ParticleType>::iteratePairwise(FunctorType*).

By doing this, the changes in the md-flexible compilation unit no longer
force the compiler to recompile all code in AutoPas. Only changes to the par-
ticle and the functor type do. Furthermore, the iteratePairwise() function
is now compiled in a separate compilation unit for each functor type used in
md-flexible, so they can be compiled in parallel instead of sequentially in a
single compilation unit.

24

8 Future Work

In this section, we shortly describe some of the ideas we came up with to improve
AutoPas while working on this project.

8.1 Spatial Hashing for Linked Cells

While analyzing the performance of Linked Cells, we observed that the overhead
of storing and accessing empty cells dominates the memory usage and execution
time in very sparse scenarios with large domains. Right now, the cells are stored
in a std::vector. This could be changed to a hash table that has the position
of this cell as key, and the cell itself as value. In this hash table, empty cells
would not need to be stored at all. Since the cells are arranged on a 3D grid,
using a spatial hash function sounds promising. If a scenario is really sparse,
using a bloom filter that stores which coordinates are contained in the hash
table could speed up checking if a cell is empty even more.

8.2 Early timeout for very long-running tuning iterations

As we have seen in this thesis, while trying different algorithms during a tuning
phase, algorithms that take orders of magnitude longer than others dominate the
tuning time and have considerable impact on the end-to-end simulation time.
Since there is such a large difference in runtime between algorithms, aborting an
iteration using a new algorithm if it already took a factor x longer then another
algorithm that was already tested could help against this. If such a feature is
implemented, one of the algorithms that showed the most stable performance
across all tested scenarios in Section 6 should be tested first to get a reasonable
baseline.

Cancellation could be implemented by passing an atomic bool or std::stop token

to the traverseParticlePairs() function of each traversal that is regularly
checked. For Linked Cells, it could be checked after each interaction of a cell
with all its neighbors. This has low overhead as reading it as long as it is
unchanged is a simple load from memory that is likely cached.

8.3 Improve the Use of SIMD Instructions in the LJFunc-
tor for Verlet Lists

While profiling the SoA Verlet Lists implementations, we noticed that the LJ
Functor does not make good use of SIMD instructions in its neighbor list inter-
action functions. Being able to use SIMD instructions is one of the main benefits
that Linked Cells SoA has over Linked Cells AoS, as our profiling showed.

25

8.4 Pack particles within cutoff in SIMD implementation
of the LJFunctor

In the hand-crafted SIMD implementation of for the interaction of two cells
in the LJFunctor, the force between two particles of the cells is always calcu-
lated, and then masked away if the particles are not within the cutoff. Since
only about a sixth of the particles are actually in the cutoff range, this is
a lot of wasted work. It could be more efficient to pack a SIMD register
with particles that are all within the cutoff and then only calculate the force
for those. A StackOverflow post describing a possible technique is the fol-
lowing: https://stackoverflow.com/questions/36932240/avx2-what-is-

the-most-efficient-way-to-pack-left-based-on-a-mask

8.5 Collect data from ARM cluster and compare

In Section 6, we only collected data from a cluster with Intel CPUs. It would be
interesting to compare how the algorithms perform differently on ARM CPUs,
so it would be valuable to use the existing infrastructure to collect the same
performance data on an ARM cluster and use SQL to analyze the difference.

26

https://stackoverflow.com/questions/36932240/avx2-what-is-the-most-efficient-way-to-pack-left-based-on-a-mask
https://stackoverflow.com/questions/36932240/avx2-what-is-the-most-efficient-way-to-pack-left-based-on-a-mask

9 Conclusion

In this thesis, we described our work on exploring performance modeling in
AutoPas. In Section 3, we started with profiling a few selected algorithms in
various scenarios to get a feeling for which parameters influence the performance
of the algorithms. Then, we used this knowledge in Section 4 to construct
theoretical models of various runtime properties of the Linked Cells and the
Verlet Lists algorithm and provided closed formulas to optimize their meta
parameters. In Section 5, we then built a new tuning strategy called Rule-Based
Tuning that uses a declarative domain-specific language to apply the knowledge
we gained so far on tuning. To get more insights in how AutoPas performs and
improve the Rule-Based Tuning further, we conducted high-variety benchmarks
in Section 6. Using the collected data, we gave valuable insights into how the
algorithms in AutoPas behave and found a subset of 10 algorithms that performs
optimal in many scenarios, and only up to 27 percent worse than the optimal
in few scenarios using a genetic algorithm. Finally, we presented our work on
build time improvements in Section 7 and presented some ideas for future work
on AutoPas in Section 8.

27

	Introduction
	Motivation
	Contribution
	Approach

	Background
	Profiling AutoPas
	Method
	Intel VTune Profiler
	perf stat
	perf record
	Intel Advisor

	Selection of Scenarios
	Observations

	Theoretical Modeling of Linked Cells vs. Verlet Lists
	Compute Model
	Memory Access Model
	Optimize cellSizeFactor
	Optimize rebuildFrequency and skin

	Rule-Based Tuning
	Motivation
	Description
	Rule Language
	Implementation
	Tooling

	High-Variety Benchmarks
	Motivation
	Scenario Generation
	Data Collection and Format
	Report generation
	Summary of Insights
	Algorithm Subset Ranking

	Other Work: Build-time improvements
	Future Work
	Spatial Hashing for Linked Cells
	Early timeout for very long-running tuning iterations
	Improve the Use of SIMD Instructions in the LJFunctor for Verlet Lists
	Pack particles within cutoff in SIMD implementation of the LJFunctor
	Collect data from ARM cluster and compare

	Conclusion

