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Abstract

Developing high-precision artificial intelligence (AI) products necessitates a diverse and large
amount of real user data. However, user data are typically fragmented and stored in various
local devices and data centers. In the conventional centralized setting, data analysts can
directly gather these dispersed local data at the server side for conducting data mining and
model training tasks. However, emerging privacy regulations have imposed strict restrictions
on access and use of raw local data, which presents significant challenges for AI technology
research and application. Therefore, how to enable data analysts to effectively utilize local
data from different sources under comprehensive privacy protection is an urgent problem to
be addressed in the current era of big data.

The problem of local data utilization can be addressed through two schemes: model-to-data
transmission and data-to-model transmission. The model-to-data transmission approach uses
distributed machine learning (ML) mechanisms, such as federated learning (FL), to conduct
model training on the local side. During training, only the model parameters are exchanged,
while the raw data remain on the local side. However, existing privacy-preserving federated
learning (PPFL) algorithms cannot achieve a satisfactory balance among privacy, usability,
and efficiency. In contrast, data-to-model transmission involves perturbing local data us-
ing state-of-the-art data anonymization techniques and sharing the privatized data with the
server. The data can then be used for various downstream AI tasks. Nevertheless, existing
data anonymization algorithms cannot comprehensively support the private sharing of high-
dimensional data, unstructured data, and vertically partitioned data.

This thesis proposes a number of algorithms that employ the concept of distributed ML to
address the challenges of both schemes. To start with, a novel local differential privacy (LDP)-
based framework named SIGNDS-FL is introduced to improve the privacy-utility-efficiency
trade-off in the model-to-data transmission scheme. The framework adopts a sign-based di-
mension selection strategy, which not only greatly alleviates the huge utility loss in previous
LDP-FL frameworks but also significantly reduces the uplink communication overhead dur-
ing FL training. The enhanced performance of the SIGNDS-FL framework further inspires
the application of distributed ML to data-to-model transfer schemes. A number of algorithms
applying deep learning-based synthetic data generation (DL-SDG) in a distributed manner
are proposed to support private and high-utility data sharing in different scenarios. First, a
framework called DP-FED-WAE is introduced, which combines a generative Wasserstein au-
toencoder (WAE) with the previously proposed SIGNDS-FL framework to effectively learn the
statistical distributions of high-dimensional structure data without direct access to raw local
data and generate high-fidelity synthetic data on the server side for downstream data mining
and model training tasks. The concept of distributed DL-SDG is then extended to unstructured
data, where a framework FEDSTDG is proposed for the private sharing of multivariate time
series. The framework also incorporates an improved multi-dimension selection algorithm and
an adaptive learning rate adjustment algorithm to the previous SIGNDS-FL framework to fur-
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ther improve synthetic data utility. Finally, the idea is also applied to the scenarios of vertically
partitioned data, where each client holds different attributes for the same group of data own-
ers. A framework called VERTIGAN is introduced, which enables the server to gain insights
into cross-attribute correlations among different parties and to generate high-utility synthetic
data with the complete attribute set without the collection of raw local data.
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1 Introduction

1.1 Motivation and Problem Statement

In recent decades, there has been an exponential increase in the volume and diversity of data
generated from various aspects of our lives, such as from social media, financial transactions,
healthcare, and other online activities. It is estimated that the volume of data generated,
consumed, copied, and stored will exceed 180 Zettabytes by 2025 [143]. Although these
massive amounts of data contain valuable information about human populations, they are
typically fragmented and stored in different local devices and organizational data warehouses.
As such, being able to access and effectively utilize these local data is crucial for successful
big data analytics. By analyzing the data obtained from different sources, researchers and
businesses can gain broader insights into consumer behavior, preferences, and motivations
and use the information to make informed decisions and develop advanced AI products that
better meet the needs of consumers. For example, in an E-commerce scenario, retailers can
analyze different customers’ online shopping behaviors and personalize their product offerings
to a specific group according to their purchasing preferences. Similarly, a healthcare company
can aggregate the health records of patients in different hospitals to explore risk factors for
certain diseases and develop targeted applications. Leveraging the wide range of data from
different sources not only yields significant social and economic benefits, but also fosters
innovation of technology, services, and products.

In the traditional AI product development, data analysts directly gather data from different lo-
cal data sources into a central data warehouse for data mining and training effective machine
learning (ML) models. However, as these data usually contain sensitive information about in-
dividuals, the direct collection of raw data may lead to serious privacy risks. More specifically,
more than 30,000 cases of data breaches since 2004 have been recorded in [165], where
the number of records exposed per incident ranges from millions to trillions. According to a
recent report in 2023 [106], a staggering 2.6 billion personal records were leaked globally in
2021 and 2022, and the total number of data breaches in 2023 will further increase to be 20%
higher than in 2022. A few of the particularly notorious data breach incidents are shown in
Figure 1.1. It is estimated that the average total cost of a single data breach is nearly 4.5 mil-
lion dollars. The frequent and severe repercussions of data breach incidents have garnered
significant societal attention regarding the protection of data privacy and led many countries
to implement a series of privacy protection regulations (Figure 1.1), such as the General Data
Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) to set ground
rules for the collection, usage, and sharing of personal data. Violations of these laws and
regulations can lead to substantial business costs. It is predicted by Gartner that by 2024,
“75% of the world’s population will have personal data covered under modern privacy regu-
lations, up from 10% in 2020” [50]. The increasing prominence of privacy concerns and the
accelerated implementation of stringent privacy regulations have created a significant barrier
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Figure 1.1 Privacy breach incidents and privacy regulations in recent decades.

for different service providers to freely gather and leverage raw personal data that are stored
in local devices and data centers, as they would in a centralized setting (as illustrated in Fig-
ure 1.2). The lack of access to raw local data presents significant challenges in the research
and application of AI technologies.

To enhance clarity and simplicity, this thesis will use the terms central server or simply server
to refer to the party responsible for performing data mining and model training tasks, and local
client or client to refer to the party that holds the raw user data. As introduced above, user
data are usually dispersed on the local side and held by a number of clients, which cannot be
directly accessed by the server due to privacy issues. Therefore, there is a great need to
explore potential solutions that enable the server to effectively utilize local data from
different clients without violating privacy.



1.2 Challenges in Existing Solutions

5

Figure 1.2 Illustration of the centralized setting. The server directly collects private data from all clients
to develop the AI model, which may cause privacy leakage and data compliance problems.

1.2 Challenges in Existing Solutions

Current data-driven AI systems typically involve two main components: model and data.
Hence, existing solutions that enable private utilization of local data can be categorized into
two groups, namely model-to-data transmission and data-to-model transmission. In the model-
to-data transmission solutions, the model is sent to the local side and the training process is
performed in a distributed manner. This eliminates the need for the server to collect the raw
data from the local client. In contrast, solutions based on data-to-model transmission em-
ploy advanced data anonymization techniques to privatize the raw local data. Then, only the
anonymized data is shared with the server, which allows the model to be trained on the server
side without compromising the privacy of the data owners. Next, we present the existing
approaches and research challenges for each of these two solutions.

1.2.1 Model-to-Data Transmission via Federated Learning

The fundamental concept behind model-to-data transmission is to enable multiple clients to
collaboratively train the ML model on the local side without sharing their raw data with the
server. An illustration of the solution is shown in Figure 1.3. One of the representative tech-
nologies following this scheme is federated learning (FL) [108], a distributed ML mechanism
that has attracted extensive research and attention in recent years in a wide range of sce-
narios such as healthcare [117, 131], communication networks [97, 120], Internet-of-Things
(IoT) [84, 116], etc. During each training round of FL, the server broadcasts the current global
model to the local clients. Each client uses the raw local data to train the model and sends
the model updates back to the server. The server then aggregates the received information
to update the global model and sends it to the local clients again in the next round. By only
allowing the exchange of model parameters between the server and clients during the training
process while keeping raw data on the local side, FL enables the server to effectively leverage
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Figure 1.3 Illustration of the model-to-data-transmission solution. Instead of collecting private data for
developing the AI model, the server broadcasts the model to the local side. Each client trains the model
locally and only shares the model parameters with the server.

local data without directly accessing them. As a result, the mechanism provides significant
privacy benefits in comparison to the centralized setting.

Nevertheless, since the model is iteratively trained on raw local data, it may still reveal a certain
degree of sensitive information about these training data. Actually, a series of recent studies
have pointed out that the original FL mechanism is vulnerable to various privacy attacks (e.g.,
[103, 71, 182]). For instance, since the model is trained on real local data, sensitive information
from the training data might be encoded into the model updates. Therefore, an honest-but-
curious server or any adversaries eavesdropping on a client’s communications with the server
may use the uploaded model updates to reconstruct the raw local data [186, 51, 182]. More-
over, as the local model updates are further used to update the global model, adversaries that
have access to the global model may also apply membership inference [115, 112] or property
inference attacks [112]: the former aims to infer whether a specific client has participated in
the training process, while the latter aims to infer whether the local data contain certain prop-
erties that are independent of the main goal of the training task (e.g., given a facial expression
classifier, infer whether the local data contains images of a particular gender).

In order to mitigate the potential privacy threats, different privacy-enhancing technologies
(PETs) have been incorporated into the original FL, leading to the emergence of various
privacy-preserving federated learning (PPFL) mechanisms. Some prior works [110, 7]) ap-
plied differential privacy (DP) [42], a rigorous mathematical notion of privacy, to protect the
global model. More specifically, by clipping each local update and adding random noise to the
global model, the algorithms limit the impact of each client’s local data on the global model
and hence achieve client-level central differential privacy (CDP) guarantees. However, these
algorithms cannot prevent privacy leakages from local updates. Alternatively, crypto-based
methods adopted secure multi-party computation (SMC) [14, 135] and homomorphic encryp-
tion (HE) [124, 104] protocols to encrypt the local model weights. The encrypted message will
be aggregated on the server side and then decrypted, ensuring that the server cannot gain
information about an individual client. Follow-up works [69, 78, 147, 57] have further com-



1.2 Challenges in Existing Solutions

7

Table 1.1 Limitations of existing work in privacy-preserving FL.

Categories
Protection
Methods

Actor
Target of

Protection
Limitations

Crypto-
based

SMC
[14, 135] Client Local Model

• High communication cost
• High computation cost
• No protection for global models

HE
[124, 104]

DP-
based

CDP
[110, 7]

Server Global Model
• No protection for local models
• Slight impact on model utility

LDP
[40, 184]

Client
Local Model
Global Model

• Large impact on model utility

Hybrid
CDP+SMC

[69, 78]
Client and

Server
Local Model
Global Model

• High communication cost
• High computation cost

CDP+HE
[147, 57]

bined the crypto protocols with DP [42], where random noise is added either on the local side
or server side to ensure that the global model satisfies CDP guarantees. Nevertheless, these
crypto-based solutions usually require extra communication and computation costs, hence
may not be practical in large-scale scenarios. To mitigate both privacy and inefficiency prob-
lems, some other works [40, 184] have also proposed to perturb the local model updates,
which provides strict LDP [82] guarantees for the local data. In comparison to the CDP-
based solutions, LDP-based FL mechanisms provide strong privacy protection for both local
and global models. Moreover, they facilitate communication and computation more efficiently
compared to the crypto-based methods. Nevertheless, LDP-based algorithms usually suffer
from significant utility loss, especially for high-dimensional models. In Table 1.1, we summa-
rize the existing PPFL solutions and their limitations. It is apparent that there is still a great
need for PPFL algorithms that can achieve privacy, utility, and efficiency at the same
time.

1.2.2 Data-to-Model Transmission via Privacy-Preserving Data Sharing

Although the model-to-data transmission scheme provides a solution to perform model training
without directly accessing the clients’ local data, the server must repeat the training process
each time the models are changed, resulting in additional communication and computational
expenses. Instead of shifting the training process to the local side, an alternative solution is to
let the clients first privatize the raw local data using data anonymization techniques. Then, the
clients only need to share the processed data with the server, which will be used for multiple
downstream data analysis and model training tasks. Moreover, the scheme can be further
divided into the cross-silo scenario and the cross-device scenario, as shown in Figure 1.4. In
the cross-silo scenario (scenario (A)), it is assumed that a group of trusted data collectors has
gathered the raw data of individual data owners into several data centers and aims to share the
anonymized datasets with a third-party data analyst. For instance, several hospitals having
different patients’ medical records want to share their patients’ data with an AI company to
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Figure 1.4 Illustration of two distinguish scenarios in data-to-model-transmission. In scenario (A), the
raw data are initially collected by a group of trusted data collectors and shared with an untrusted third-
party data analyst after data anonymization. In scenario (B), the data analyst also plays the role of
data collector. Hence, the raw data are anonymized by the data owners themselves and then shared
with the data analyst.

develop a cancer prediction model. Here, each data collector is considered a client, and the
dataset stored in each data center contains private data belonging to multiple data owners.
Conversely, in the cross-device scenario (scenario (B)), the data collector carries out the data
analysis task directly. For instance, an online shopping application seeks to directly collect
shopping preferences from users’ end devices to train advanced recommendation algorithms.
Here, there are no longer trusted data collectors. Each data owner is considered a client, and
the dataset stored in each end device contains private data belonging to a single data owner.

According to the EU Article 29 Data Protection Working Party’s 05/2014 opinion [123], the
main anonymization techniques can be generally categorized into two groups, namely gener-
alization and randomization. Generalization aims to reduce the granularity of a data represen-
tation by suppressing the attribute values with an asterisk ’*’ or replacing them with a broader
category (for instance, replace city with country, or replace date with month). Some of the
representative techniques include k-anonymity [141] , t-closeness [105] , and l-diversity [93].
Although such techniques ensure that an individual’s data will be “hidden” in a larger group
that contains multiple records with the same representation, the released datasets still contain
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real personal data and hence may still reveal sensitive information of data owners. In contrast,
Randomization aims to perturb the attribute values in order to break the strong link between
the data record and the individual. Some common randomization techniques include permuta-
tion, noise addition, and DP [42]. Permutation swaps certain attribute values from one record
with another to eliminate the link between attributes and individuals. However, the separate
permutation of attributes may break the potential cross-attribute correlations and hence cause
the data to become unusable for advanced data analysis tasks such as ML. Noise addition
adds random noise to attribute values to reduce their accuracy, but it is difficult to measure
the degree of privacy protection achieved by a certain amount of noise. In comparison, DP-
based algorithms perturb the original dataset under formal privacy guarantees. Prior works
first use probabilistic graph models [25, 179, 17] or copula functions [92, 49] to approximate
low-dimensional marginal distributions of the original dataset. Then, the marginals are per-
turbed with random noise to achieve CDP guarantees for each individual record. Finally, the
noisy marginals will be used to generate a synthetic dataset, which preserves similar statis-
tical properties as the original dataset. As the generated synthetic data are fully synthetic
and eliminate the linkage to the original data, the algorithms effectively reduce risks of re-
identification attacks or attribute disclosure [122]. However, these algorithms are only feasible
in the cross-silo scenarios, where each original dataset contains records belonging to dif-
ferent data owners and individuals’ privacy can hence be protected via CDP. In contrast, in
the cross-device scenario, each original dataset belongs to one specific data owner. CDP
may not be sufficient in this case since the anonymized dataset preserves overall distribu-
tions of the original data and hence may still expose the individual’s private information. To
tackle this issue, a variant concept of differential privacy called LDP [82] has been introduced.
LDP guarantees privacy for each individual’s local data by ensuring that the randomization
outcome of one client’s data cannot be differentiated from the data of other clients. Neverthe-
less, prior research on LDP-based data sharing mainly focuses on one-dimensional statistics,
such as frequency estimation [35, 44], heavy-hitter identification [10, 16], and itemset mining
[128, 161], etc. Although a number of follow-up works [45, 130, 160] proposed solutions for
multi-dimensional data, these algorithms still suffer from the curse of dimensionality : an in-
crease of the number of attributes will not only increase the computation and communication
cost but also lead to a significant degradation in data utility.

With the development of AI, deep learning-based synthetic data generation (DL-SDG) has
attracted increasing attention in recent years. The main idea of such techniques is to train
deep generative models such as AE [85, 144] and GAN [53] to learn the correlations and
marginal distributions of the original data and then use the trained models to directly gener-
ate high-fidelity synthetic data. A number of existing works [122, 77, 23] have proposed to
incorporate DP during the training of generative models to provide strict privacy guarantees
for the original data. This can be considered an alternative solution for private data sharing
under cross-silo scenarios, where each data collector can train a separate generative model
using the data gathered from multiple data owners. It has been shown that under the same
privacy guarantees, the DL-SDG-based algorithms can achieve much better utility for high-
dimensional data in comparison to traditional marginal-based algorithms. Nevertheless, these
algorithms are not directly applicable to cross-device scenarios, as the synthetic data released
by each data owner may still reveal sensitive information about the individual. As such, how
to apply the concept of DL-SDG for cross-device data sharing is an important chal-
lenge to be solved in the data-to-model transmission scheme. In addition, compared
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Table 1.2 Comparison of existing techniques for privacy-preserving data sharing.

Anonymization
Techniques

K-Anonymity
[141, 105, 93]

DP DL-SDG
[122, 77, 23]CDP

[25, 17, 49]
LDP

[45, 130, 92]
Data Sharing

Scenarios
Cross-silo Cross-silo Cross-device Cross-silo

Data Type Structured Structured Structured
Structured,

Unstructured
Data Partition

Strategies
Horizontal,

Vertical
Horizontal,

Vertical
Horizontal Horizontal

Pros • Easy implementation • Strong privacy guaran-
tees

• Good data utility
• Strong privacy guaran-
tees when applying DP
during model training
• Support different data
types

Cons

• Weak privacy guaran-
tees
• Not scalable
• Only support structured
data
• Only support cross-silo
scenarios

• Only support structured
data
• Significant utility loss for
high-dimensional data

• Only support cross-silo
scenario
• Only support
horizontally-partitioned
data

with traditional anonymization algorithms that can only be used for sharing structured data,
DL-SDG-based algorithms can flexibly adjust model architectures to support the release of
other unstructured data types (such as images and time series) in the cross-silo scenarios.
Nevertheless, whether these solutions can be leveraged for sharing unstructured data
under cross-device scenarios remains an unexplored issue. Finally, although the exist-
ing DL-SDG algorithms can be applied in the cross-silo scenarios, they only focused on the
horizontally-partitioned setting, where data collectors hold data of different individuals with the
same attributes. However, in some other scenarios, the raw data are vertically-partitioned.
The data collectors usually have different sets of attributes of the same group of individuals
and the data analysts aim to combine all the attributes and create an integrated dataset to im-
prove the data mining accuracy. Unfortunately, previous DL-SDG-based solutions are also not
feasible in this case, as the synthetic data separately generated by each data collector cannot
be linked to each other and combined into an integrated dataset. As such, how to apply the
concept of DL-SDG for sharing vertically-partitioned data is also an open question.

1.3 Research Goal and Guiding Research Questions

This thesis aims to enable the efficient and private utilization of local data by solving a series
of challenges in both model-to-data transmission and data-to-model transmission schemes.
The subsequent part of this section outlines the guiding research questions (RQs) that will be
investigated in this thesis to achieve this overarching goal.
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RQ1: In the model-to-data transmission scheme, can the current PPFL frameworks be
improved with a better balance in privacy, utility, and efficiency?

The objective of RQ1 is to address the challenge of the currently unfavorable privacy-utility-
efficiency trade-off in model-to-data transmission solutions. As mentioned earlier, the existing
PPFL frameworks either suffer from excessive communication and computation expenses, in-
sufficient privacy protection, or a substantial reduction in usefulness. RQ1 seeks to investigate
feasible enhancements to the existing PPFL frameworks to achieve a better balance between
privacy, utility, and efficiency.

RQ2: In the data-to-model transmission, can the concept of DL-SDG-based privacy-
preserving data sharing be applied in cross-device scenarios?

Considering the strong capabilities of DL-SDG solutions in generating high-fidelity synthetic
data, RQ2 aims to investigate the viability of leveraging this technique for sharing horizontally-
partitioned data in cross-device scenarios. The primary objective is to enable data analysts
to obtain a set of synthetic data that preserves similar overall statistical properties as the
original local data while ensuring that the private information of arbitrary data owners is not
compromised.

RQ3: Can the DL-SDG-based cross-device data sharing solutions be extended to un-
structured data types?

Building upon the findings of RQ2, RQ3 further seeks to investigate the feasibility of utilizing
DL-SDG techniques for sharing unstructured data in cross-device scenarios. In comparison
to structured tabular data, unstructured data such as images and time series are more intri-
cate and have more complex semantic representations. Hence, the answer to this research
question would further enhance the overall capability of the technique in sharing diverse types
of data.

RQ4: Can the concept of DL-SDG-based privacy-preserving data sharing be applied to
vertically-partitioned data?

Finally, in contrast to RQ2 and RQ3 which focus on horizontally-partitioned data, RQ4 is for-
mulated to tackle the challenge of applying DL-SDG-based techniques to share vertically-
partitioned data. In comparison to the horizontal setting, the generated synthetic data in
the vertical setting are required to retain the correlations between attributes held by different
clients, thereby increasing the complexity of the data-sharing process. The answer to this
research question would further affirm the feasibility of DL-SDG-based techniques for private
data sharing under different data partitioning strategies.

Each RQ and the corresponding publication is linked to and derived from the presented chal-
lenges. Table 1.1 provides an overview of which challenge is addressed by each RQ.

1.4 Road Map

This section provides an outline of the thesis structure and an overview of the publications
included in this thesis.
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Table 1.3 Mapping of challenges to the addressed research questions

Challenges in extant literature RQ1 RQ2 RQ3 RQ4
C1: Lack of PPFL solutions for achieving satisfactory privacy-
utility-efficiency balance

✓

C2: Lack of DL-SDG-based solutions for private data sharing
in cross-device scenarios

✓

C3: Lack of DL-SDG-based solutions for sharing unstructured
data in cross-device scenarios

✓ ✓ ✓

C4: Lack of DL-SDG-based solutions for private sharing of
vertically-partitioned data

✓ ✓

Notes. C: Challenge; RQ: Research Question; ✓: Addresses challenge

1.4.1 Thesis Structure

This cumulative thesis is divided into three main parts: Part A – Introduction to the thesis, Part
B – Publications, and Part C – Conclusions and Future Work. A road map of the thesis is
illustrated in Figure 1.5. The contents of each part are briefly described as follows:

Part A: This part begins with the motivation and the problem statement followed by the ob-
jective and structure of the thesis (see Chapter 1). Then, the basic theoretical knowledge for
understanding this thesis is provided in Chapter 2.

Part B: This part consists of four peer-reviewed contributions (Chapter 3 to Chapter 6), which
include three peer-reviewed publications (Chapter 3, Chapter 4, and Chapter 6) and a peer-
reviewed, revised working paper (Chapter 5). The objective of these publications is to tackle
the challenges in Table 1.3 based on the idea of distributed ML. The first publication (Chap-
ter 3) focuses on the model-to-data transmission scheme and introduces a novel LDP-based
PPFL framework that achieves a better balance in privacy, utility, and efficiency. Based on the
idea of distributed ML, the second publication (Chapter 4) deals with the current challenges of
the data-to-model transmission scheme and presents a distributed DL-SDG-based framework
for private sharing of horizontally-partitioned structured data in cross-device scenarios. Then,
the third publication (Chapter 5) further extends the concept to unstructured data types and
introduces a variant framework for sharing time-series data. Finally, the fourth publication in
Chapter 6 focuses on the challenge of the private sharing of vertically-partitioned data, which
further broadens the capabilities of distributed DL-SDG in real-life use cases.

Part C: The last part concludes the thesis. Chapter 7 presents a summary of the results of
the publications. Then, the limitations of the thesis and potential directions for future research
are discussed in Chapter 8. Finally, conclusions of the thesis are presented in Chapter 9.

1.4.2 Overview of Publications

The four peer-reviewed publications supporting the research goals of the thesis are embedded
in Part B, as depicted in Figure 1.5. These publications are summarized in the following
itemization, with each containing a brief overview of the research problem, the methodological
approach adopted, and the primary contributions of the respective publication:
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Figure 1.5 Structure of the thesis.

P1: SIGNDS-FL for improving the privacy-utility-efficiency balance in privacy-
preserving federated learning. Although FL enables the efficient and private utilization of
local data by moving the models to data, recent research highlights that the original FL frame-
work is still vulnerable to privacy attacks. However, existing PPFL frameworks cannot achieve
a satisfactory balance between privacy, utility, and efficiency: crypto-based solutions intro-
duce extra communication and computation costs, CDP-based solutions do not provide local
privacy protection, while LDP-based solutions suffer from significant degradation in model
utility. This study aims to improve the privacy-utility-efficiency balance in LDP-FL. The main
contributions of this work include (1) A novel framework called SIGNDS-FL based on pri-
vate dimension selection, which achieves better model utility compared with existing LDP-FL
frameworks; (2) An exponential mechanism (EM)-based multi-dimension selection (EM-MDS)
algorithm that further improves model convergence and accuracy; (3) An extensive evaluation
demonstrating the capability of SIGNDS-FL on a number of real-world datasets.

P2: DP-FED-WAE for the private sharing of high-dimensional structured data. In the
data-to-model transmission scheme, each client must anonymize their raw local data before
sharing them with the server. LDP is a widely used technique for private data sharing in
cross-device scenarios (i.e., without trusted data collectors). However, existing LDP-based
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algorithms typically suffer from the curse-of-dimensionality problem: an increase in data fea-
tures not only results in extra computation and communication costs but also poor data utility.
On the other hand, although previous DL-SDG solutions can achieve a better utility on high-
dimensional data, these algorithms cannot be directly applied to cross-device scenarios. This
work mitigates the limitations of previous works following the idea of distributed ML. The main
contributions include (1) A novel framework DP-FED-WAE that applies DL-SDG in a dis-
tributed fashion to support private data sharing in cross-device scenarios; (2) Adoption of a
generative WAE which is privately trained under the aforementioned SIGNDS-FL framework
in P1 to learn the overall distribution of all local data and used for generating high-fidelity syn-
thetic data on the server side; (3) Extensive experimental results on a number of real-world
datasets showing the advantages of the proposed framework in sharing high-dimensional data
while striking a satisfactory utility-privacy balance.

P3: FEDSTDG for the private sharing of multivariate time-series data. Besides the widely
explored structured (tabular) data, time-series data, with rich spatial-temporal information,
have been pervasively used in finance [107], healthcare [178], and IoT [31] applications. Nev-
ertheless, existing works (e.g., [47]) are only feasible for the cross-silo scenarios, where a
set of trusted data collectors already centralizes the individuals’ time-series data and aims to
share the data with a third-party service provider, while the cross-device scenarios without
trusted data collectors are rarely considered. This work fills this research gap and provides a
distributed DL-SDG-based solution for privately synthesizing the local time-series data without
the requirement of the trusted data collector. The main contributions include (1) A novel frame-
work FEDSTDG, which follows the idea in P2 but is capable of supporting private sharing of
time-series data; (2) Enhancement of the SignDS-FL framework in P1 with an improved multi-
dimension selection algorithm and adaptive global learning rate, which reduces the manual
effort in hyperparameter tuning and achieves a better data utility; (3) An extensive evalua-
tion on various examples of real-world time-series data for demonstrating the capability of our
framework in preserving both utility and privacy.

P4: VERTIGAN the private sharing of vertically-partitioned data. Previous works on
privacy-preserving data sharing usually focus on horizontally-partitioned data, where each
client holds data with the same set of attributes. In contrast, the vertical setting, where clients
hold different sets of attributes of the same group of data owners, is less studied. Existing
DP-based solutions for sharing vertically-partitioned data only apply to low-dimensional struc-
tured data and suffer from large utility loss with an increase in dimensionality. In this study,
we further extend the concept of distributed DL-SDG into private data sharing under vertical
settings. The main contributions include (1) A novel framework VERTIGAN, which is com-
prised of one multi-output global generator and multiple local discriminators and is capable
of learning the feature distribution of all data silos and generating high-utility synthetic data
containing all the features; (2) A DP training process to ensure strict privacy guarantees for
the local data; (3) An extensive evaluation using a number of real-world datasets to demon-
strate the capability of our framework in achieving a satisfactory utility-privacy balance in the
aggregation of vertically-partitioned local silo data.

Table 1.4 provides a summary of the publications embedded in Part B of this thesis, including
information on the title, authors, outlet, type, and rank for each publication.

1ACM Transactions on Intelligent Systems and Technology: https://dl.acm.org/journal/tist
2ACM Indexing: https://dl.acm.org/journal/tist/indexing

https://dl.acm.org/journal/tist
https://dl.acm.org/journal/tist/indexing
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Table 1.4 Summary of embedded publications

No. Title Authors Outlet Type Rank
P1 SignDS-FL: Local Differ-

entially Private Federated
Learning with Sign-based
Dimension Selection

Jiang,
Zhou,
Grossklags

TIST
20221

(published)

Journal Impact Factor
20212: 10.489

P2 Privacy-Preserving High-
Dimensional Data Collec-
tion with Federated Gen-
erative Autoencoder

Jiang,
Zhou,
Grossklags

PoPETS
20223

(published)

Journal CORE
20214: A

P3 Distributed Synthetic
Time-Series Data Gen-
eration with Local Differ-
entially Private Federated
Learning

Jiang,
Zhou,
Grossklags

PoPETS
20245

(submitted)

Working
Paper

CORE
20214: A

P4 Distributed GAN-Based
Privacy-Preserving Pub-
lication of Vertically-
Partitioned Data

Jiang,
Zhang,
Zhou,
Grossklags

PoPETS
20235

(published)

Journal CORE
20214: A

3Proceedings on Privacy Enhancing Technologies, Volume 2022: https://www.petsymposium.org/
popets/2022/

4CORE Ranking: http://portal.core.edu.au/conf-ranks/1442/
5Proceedings on Privacy Enhancing Technologies, Volume 2024: https://www.petsymposium.org/
popets/2024/

https://www.petsymposium.org/popets/2022/
https://www.petsymposium.org/popets/2022/
http://portal.core.edu.au/conf-ranks/1442/
https://www.petsymposium.org/popets/2024/
https://www.petsymposium.org/popets/2024/
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2 Research Methods and Preliminaries

In this chapter, we aim to lay the foundation for the subsequent sections of this dissertation by
presenting the necessary concepts and background information on differential privacy, feder-
ated learning, and synthetic data generation.

2.1 Differential Privacy and Its Variants

We start by providing an overview of differential privacy, covering its fundamental concepts.
We will explain the original definition of differential privacy (DP), as well as the variations
known as Rényi differential privacy (RDP) and local differential privacy (LDP).

2.1.1 Differential Privacy

DP [42] is a formal notion of privacy that is widely used in privacy-preserving data analysis
applications. The original definition of DP is as follows:

Definition 1 ((ϵ, δ)-DP [42]). A randomized mechanism M : X → Y satisfies (ϵ, δ)-DP if
for any two adjacent datasets X,X ′ ∈ X differing in one data sample and any measurable
subset of outputs Y ⊆ Y the following statement holds:

Pr [M(X) ∈ Y ] ≤ eϵ · Pr
[M(X ′) ∈ Y ]+ δ. (2.1)

The definition ensures that the outputs of the randomization mechanismM(·) on the neigh-
boring datasets X and X ′ are very close to each other. Therefore, the adversary is unable
to discern sensitive information about any particular record, hence providing stringent privacy
protection for each individual in the dataset. The ϵ in Definition 1 refers to the privacy budget,
namely the privacy guarantee in the worst case. The smaller ϵ, the stronger the privacy level
is. The factor δ represents the probability of privacy leakage (i.e., the probability of failure
to hold the privacy guarantee). The smaller δ, the higher privacy. In practice, the value of δ
should be negligible, particularly less than 1/|X|, where |X| is the number of records in the
dataset. When δ = 0, the mechanism satisfies pure ϵ-DP.

For a real-valued function f , a common approach to achieve DP guarantees is to introduce
a certain amount of random noise to the outputs of f . The noise scale is carefully calibrated
based on f ’s sensitivity, which quantifies how much the output of a function can vary when a
single individual’s data is modified or removed from the dataset. The definition of Lp-sensitivity
of a given function f goes as follows:
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Definition 2 (Lp-sensitivity). For a real-valued function f : X → Rd, the Lp-sensitivity of f is
defined as

∆pf = max
X,X′

||f(X)− f(X ′)||p (2.2)

for all adjacent datasets X and X ′, where ∥ · ∥p denotes the Lp-norm.

Following this paradigm, the widely used Gaussian mechanism independently adds zero-
mean Gaussian noise to each dimension of the output, which is defined as follows:

Definition 3 (Gaussian mechanism [42]). For a real-valued function f : X → Rd with an
L2-sensitivity ∆2f , the following Gaussian mechanismMσ satisfies (ϵ, δ)-DP:

Mσ(x) = f(x) +N (0, σ2I), where σ = ∆2f

ϵ

√
2 log 1.25

δ
. (2.3)

In addition, DP also holds two useful properties [42], namely robustness to post-processing
and sequential composition. The post-processing property states that any deterministic or
randomized function defined over an DP mechanism also satisfies DP. The sequential com-
position property states that interactively applying the DP mechanism on the same set of data
yields an accumulated privacy cost.

Property 1 (Post-Processing). LetM be an (ϵ, δ)-DP mechanism and g be an arbitrary map-
ping from the set of possible outputs to an arbitrary set. Then, g ◦M is (ϵ, δ)-DP.

Property 2 (Sequential Composition). Suppose n mechanisms {M1, · · · ,Mn} respectively
satisfy (ϵ, δ)-DP, and are sequentially computed on the same set of private data D, then a
mechanism formed by (M1, · · · ,Mn) satisfies (∑n

i=1 ϵi,
∑n
i=1 δi)-DP.

2.1.2 Rényi Differential Privacy

While the original DP defined an upper bound of the privacy loss, this bound can be some-
times loose, meaning that the true privacy loss is much less than the analytical result. In the
case of iterative algorithms, where the overall privacy loss is the cumulative result of all the
iterations, the difference between the calculated privacy bound and the actual value becomes
even more pronounced. To overcome this challenge, recent works have delved into explor-
ing novel variants of DP that offer tighter bounds on the privacy loss, particularly for iterative
algorithms, while still upholding useful and meaningful privacy definitions. One of the widely
used definitions is RDP [113], which uses the Rényi divergence [154] to measure the distance
between two probabilities. The definition of Rényi divergence is as follows:

Definition 4 (Rényi divergence [154]). Given two probability distributions P and Q, the Rényi
divergence of order α > 1 is:

Dα(P ||Q)) = 1
α− 1 log E

X∼Q

[(
P (X)
Q(X)

)α]
, (2.4)
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where EX∼Q is the expected value of X for the distribution of Q, P (X) and Q(X) denote the
density of P and Q at X, respectively.

Based on Definition 4, the definition of RDP is stated as:

Definition 5 ((α, ϵ(α))-RDP [113]). A randomized mechanism M satisfies (α, ϵ(α))-RDP if
for any two adjacent datasets X,X ′ differing in one data sample, the Rényi α-divergence
betweenM(X) andM(X ′) satisfies

Dα(M(X)||M(X ′))) ≤ ϵ(α). (2.5)

Similar to DP, the Gaussian mechanism can also be used to achieve (α, ϵ(α))-RDP:

Definition 6 (Gaussian mechanism under RDP [113]). For a real-valued function f : X → Rd
with an L2-sensitivity ∆2f , the following Gaussian mechanismMσ satisfies (α, ϵ(α))-RDP:

Mσ(x) = f(x) +N (0, σ2I), where σ = ∆2f

√
α

2ϵ(α) . (2.6)

In addition, RDP also preserves the properties of post-processing and sequential composition.

Property 3 (Post-processing under RDP). LetM be an (α, ϵ(α))-RDP mechanism, and g be
an arbitrary mapping from the set of possible outputs to an arbitrary set. Then, g ◦ M also
satisfies (α, ϵ(α))-RDP.

Property 4 (Sequential Composition under RDP). Suppose n mechanisms {M1, · · · ,Mn}
respectively satisfy (α, ϵi(α))-RDP, and are sequentially computed on the same set of private
data X, then a mechanism formed by (M1, · · · ,Mn) satisfies (α,∑n

i=1 ϵi(α))-RDP.

Furthermore, the privacy guarantees under RDP can be converted to the original DP guaran-
tees:

Lemma 1 (RDP to DP [113]). If a mechanism M satisfies (α, ϵ(α))-RDP, then M satisfies
(ϵ(α) + log 1/δ

α−1 , δ)-DP for any δ ∈ (0, 1).

One of the major advantages of RDP is the tight composition in comparison to the original
DP. For algorithms querying the same dataset multiple times, computing the accumulated
privacy loss under RDP based on Property 4 and then converting to the original (ϵ, δ)-DP
using Lemma 1 often yields a much lower privacy cost than directly applying the composition
under the original definition. In addition, for iterative algorithms, the privacy cost of RDP can
be further reduced by the subsampled mechanism:

Lemma 2 (RDP for Subsampled Mechanism [162]). Given a dataset of a points drawn from
a domain X and a randomized mechanismM that takes an input from X b for b ≤ a, let the
randomized algorithmM ◦ subsample be defined as: (1) subsample: subsample without
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replacement m data points of the dataset (sampling parameter ζ = b/a), and (2) applyM: a
randomized algorithm taking the subsampled dataset as the input. For all integers α ≥ 2, ifM
obeys (α, ϵ(α))-RDP, then the new randomized algorithmM◦ subsample obeys (α, ϵ′(α))-
RDP where

ϵ′(α) ≤ 1
α− 1 log

(
1 + ζ2

(
α

2

)
min

{
4(eϵ(2) − 1), eϵ(2) min{2, (eϵ(∞) − 1)2}}

+
α∑

j=3
ζj
(
α

j

)
e(j−1)ϵ(j) min{2, (eϵ(∞) − 1)j}

)
.

(2.7)

Intuitively, the subsampling further introduces a certain extent of uncertainty of whether a
particular record is used for producing the final results, hence further amplifying the privacy
protection of any individual record in the dataset.

Differentially Private Stochastic Gradient Descent

The privacy concept of privacy amplification by sampling is often used in differentially pri-
vate stochastic gradient descent (DPSGD) algorithms. More specifically, in each iteration of
DPSGD, a batch of b samples Xt is sampled from dataset X with a fixed subsampling proba-
bility ζ = b/|X|, where b is the batch size. With the current model parameter θt and the loss
function L, the gradient of each sample xi ∈ Xt is computed as:

gt(xi) = ∇θi
L(θi, xi). (2.8)

Then, the DPSGD algorithm clips each per-example gradient based on a fixed L2-norm clip-
ping bound C:

ḡt(xi) = CLIP(gt(xi);C) = gt(xi)/max
(

1, ||gt(xi)||2
C

)
, (2.9)

which ensures that for any two neighboring datasets, the L2-sensitivity of each query given
by
∑
xi∈Xt

ḡt(xi) is bounded by C. Finally, the clipped gradients are summed and perturbed
with Gaussian noise with a scale determined by C, namely:

g̃g = 1
b


 ∑

xi∈Xt

ḡt(xi) +N
(
0, σ2C2I

)

 , (2.10)

where σ is the noise multiplier determined by the privacy budget. Given the overall privacy
budget, the total number of iterations, and the batch size b, the smallest σ can be computed
using Definition 6, Property 4, and Lemma 2. Moreover, since the noise gradient g̃t in each
iteration satisfies DP guarantees, the final model also satisfies DP due to Property 3.

2.1.3 Local Differential Privacy

Finally, DP and RDP are usually applied in centralized settings where the data have already
been collected by a trusted server. However, in local settings, we aim to ensure that each
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client’s local data will not be accessed by the server. Hence, the definition of LDP has been
proposed [82], which provides strong local privacy guarantees for each user. The definition is
as follows:

Definition 7 (LDP [82]). A randomized mechanismM : X → Y satisfies ϵ-LDP if and only if
for any two inputs x, x′ ∈ X and for any output y ∈ Y :

Pr [M(x) = y] ≤ eϵ · Pr
[M(x′) = y

]
. (2.11)

Similarly, LDP also holds the properties of robustness to post-processing and sequential com-
position.

Property 5 (Post-processing under LDP). Let M be an ϵ-LDP mechanism and g be an ar-
bitrary mapping from the set of possible outputs to an arbitrary set. Then, g ◦ M is ϵ-LDP.

Property 6 (Sequential Composition under LDP). Suppose n mechanisms {M1, · · · ,Mn}
respectively satisfy ϵi-LDP, and are sequentially computed on the same set of private data D,
then a mechanism formed by (M1, · · · ,Mn) satisfies (∑n

i=1 ϵi)-LDP.

2.2 Federated Learning

Over the past few decades, there has been a significant surge in the utilization of AI services
in our everyday lives. Building effective AI services typically involves training ML and deep
learning (DL) models with a substantial amount of user data. However, this data is often scat-
tered and distributed across various local devices and entities. In the conventional approach
of centralized learning, the service provider would gather data from all these local parties and
train the ML model on a cloud server. Nevertheless, the advent of strict data regulations, such
as GDPR, has limited the service provider’s ability to collect raw user data. Consequently,
this poses a considerable challenge to the traditional centralized paradigm. In this context, FL
emerges as a promising solution that empowers service providers to effectively utilize local
data without violating user privacy. By embracing a distributed learning paradigm, FL enables
the training of ML models without the need to collect raw local data. The fundamental principle
of FL is to distribute the computation tasks to the local side. In essence, AI models are col-
laboratively trained by multiple “local parties” (which can be different local devices or different
organizations) under the coordination of a central server. Throughout the training process,
only model updates or specific intermediate results are shared, while the individual local raw
data remains on the local side.

According to the partitioning strategies of local data, existing FL solutions can be generally
categorized into two main groups, respectively for horizontally-partitioned data and vertically-
partitioned data.
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Figure 2.1 Example of model training on horizontally-partitioned data. Each local party holds the
same set of features of a different set of samples. The server uses FL to increase the number of
training samples to improve model performance. Here, a healthcare service seeks to use the data
from different local devices to train a model for analyzing users’ health conditions.

2.2.1 Federated Learning for Horizontally-Partitioned Data

Horizontally-partitioned data refers to scenarios where the data across multiple local parties
are divided by samples. Each party possesses data from a distinct set of samples while
sharing the same set of features. The server uses FL to increase the number of training
samples to improve model performance. An example of FL in the horizontal setting is shown
in Figure 2.1. In this particular case, a healthcare service, referred to as the server, seeks
to train a model for analyzing users’ health conditions. Each local party represents a user’s
smart device, such as smartphones, smart watches, etc., which collects and stores users’
health data. To this end, the server first initializes a global model. Then, in each FL training
round, the server distributes the current global model to all the local parties. Each party
proceeds to train the model using its data and subsequently sends the model updates back to
the server. The server aggregates all the local model updates to update the global model. This
exchange process is repeated over several rounds until the global model achieves satisfactory
performance.

2.2.2 Federated Learning for Vertically-Partitioned Data

On the other hand, vertically-partitioned data entails dividing the features or attributes of the
data across multiple local parties (usually distinct organizations). Each party possesses a
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Figure 2.2 Example of model training on vertically-partitioned data, where each local party holds a
different set of features of the same set of samples. The server uses FL to increase the number of
features to improve model performance. Here, a credit card company seeks to use the data from an
E-commerce company, a bank, and an online media company to train a credit score prediction model.

different set of features or attributes of the same group of users. The server wants to combine
the features of all the parties to enhance the model’s performance. To exemplify, consider the
scenario depicted in Figure 2.2, where a credit card company collaborates with three parties:
an E-commerce company, a bank, and an online media company. The goal of the server is
to utilize features from diverse sources to create more precise user profiles and train a more
accurate model for credit score prediction.

Nevertheless, as each party holds a different set of features, training a common global model
on the local side, as done in the horizontal setting, is no longer feasible. Thus, in the vertical
setting, each party holds a distinct local model (commonly known as the bottom model). In
addition, a sample-wise data alignment should be applied before the training starts to ensure
that the selected training records from each party belong to the same group of users. Then,
during training, each party inputs their local data to the local model, and shares the model
outputs, or so-called embeddings, with the server. On the server side, an additional model,
known as the top model, is deployed. It takes the concatenation of all the local embeddings
as input and finally outputs the predicted results. Based on the prediction loss, the gradient of
the top model is calculated, which is then backpropagated to each local party to compute the
gradient of the corresponding bottom model. The training process will be repeated for several
iterations until the system achieves a satisfactory prediction accuracy.
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Figure 2.3 Example structure of an AE model.

2.3 Synthetic Data Generation

With the rapid advancement in machine learning and deep learning technologies, deep gen-
erative models are gaining immense popularity for their ability to capture real data distribution
and generate high-fidelity synthetic data. The produced synthetic data can be used for various
purposes, such as privacy-preserving data sharing and pre-training machine learning models.
The objective of this dissertation is to delve into the exploration of two significant classes of
deep generative models, namely AE and GAN, with a specific focus on their role in enabling
the private utilization of local data.

2.3.1 Autoencoders

The AE [133] is a class of neural networks that are used to learn efficient and compressed
feature representations in an unsupervised manner. An AE model, as shown in Figure 2.3,
generally consists of two main parts: an encoder Qψ and a decoder Gθ. The encoder com-
presses the original high-dimensional input x ∼ Px into the low-dimensional latent feature
z = Qψ(x) and the decoder maps z to the reconstructed output x̃ = Gθ(z), which is of the
same shape as x. The goal of training is to find an optimized pair of encoder and decoder,
which minimizes the distance between x and x̃ = Gθ(Qψ(x)), namely

LAE = Ex∼Px [Lrec(x,Gθ(Qψ(x))], (2.12)

where Lrec(·, ·) is a metric for featuring the difference between two vectors. For instance,
we can use the mean squared error (MSE) to measure the distance between continuous
input vectors and the categorical cross-entropy (CE) for discrete input vectors. Building upon
this, several variants of AE have been proposed for synthetic data generation, such as the
variational autoencoder (VAE) [85] and WAE [144]. For example, an illustration of the WAE
model is presented in Figure 2.4. The model adheres to the encoder-decoder architecture of
AE. However, to augment its capabilities, an additional penalty term is introduced to enforce
compliance of the latent space features with a predetermined prior distribution, commonly
adopting the standard Gaussian distribution N (0, I). During the training process, the primary
objective is to determine an optimal set of parameters that effectively minimizes the distance
between the inputs and outputs while constraining the latent space features to follow the
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Figure 2.4 Example structure of an WAE model.

predefined prior distribution. Hence, the objective function of a WAE model can then be
formulated as:

LWAE = Ex∼Px [Lrec(x,Gθ(Qψ(x))] + λ · Llat(qz, pz), (2.13)

where the latent space distance Llat is the MMD between the real latent distribution qZ and
the standard Gaussian distribution pZ , and λ is a weight to balance both distances, which
is usually set to 1 by default. Additionally, the MMD is computed as follows: given a batch
of data sampled from the two distributions, i.e., {q1, · · · , qN} ∼ qz and {p1, · · · , pN} ∼ pz,
Llat(qz, pz) can be empirically estimated as:

Llat(qz, pz) = 1
N(N − 1)

∑

i ̸=j
κ(pi, pj)− 2

N2
∑

i,j

κ(pi, qj) + 1
N(N − 1)

∑

i ̸=j
κ(qi, qj), (2.14)

where K(x, y) = κ
κ+∥x−y∥2

2
. Given dz as the dimension of latent layer and σz as the scale of

the prior distribution, κ = 2dzσ2
z .

Furthermore, several previous works integrate advanced layers to the original AE model, to
enhance their modeling capabilities for different types of data. For instance, [65, 28] apply
convolutional layers into AE to extract intricate patterns within images, whereas [9, 56] adopt
recurrent layers to capture spatiotemporal information in time-series data. The incorporation
of advanced layers has significantly expanded their applicability across a wide range of data
types and facilitated the modeling of complex structures within these datasets. In this dis-
sertation, we will present an example of utilizing a modified AE model for the collection of
time-series data.

2.3.2 Generative Adversarial Network

Besides AE models, GAN [53] is another class of unsupervised learning algorithms that have
been extensively studied in the last decade due to its strong capability to generate high-fidelity
synthetic data.

A GAN model typically consists of two components: a generator G and a discriminator D,
as presented in Figure 2.5. The generator is responsible for producing synthetic data x̃ by
taking a random noise vector z from a certain latent distribution Pz and mapping it to the
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Figure 2.5 Example structure of a GAN model.

data space. On the other hand, the discriminator attempts to distinguish between real data
samples x drawn from the real distribution Px and synthetic data samples x̃ generated by the
generator using the latent distribution Pz, which is usually the standard Gaussian distribution
N (0, I). This interaction between the generator and discriminator can be viewed as a two-
player min-max game. The generator aims to improve the quality of the synthetic data to
fool the discriminator, while the discriminator tries to discriminate between real and synthetic
data with high accuracy. Through this adversarial training process, both models are trained
simultaneously, constantly improving their abilities until a dynamic equilibrium is reached. The
ultimate goal of a GAN is to approximate the real data distribution Px with the synthetic data
distribution Px̃ in such a way that the discriminator cannot accurately distinguish between the
two. The problem can be formulated with the following objective [53]:

LGAN = E
x∼Px

[logD(x)] + E
x̃∼Px̃

[log(1−D(x̃))], (2.15)

where Px is the distribution of real data and Px̃ is the distribution of synthetic data x̃ = G(z)
with z ∼ Pz.
By utilizing different generator and discriminator structures, GANs have been adjusted to gen-
erate various types of synthetic data such as tabular data [122, 171], images [80, 81], and
time-series data [177, 70]. Nevertheless, the original GAN models usually suffer from prob-
lems such as training instability and failure to converge. Therefore, some other works pro-
posed to modify the loss function to improve model convergence. The Wasserstein GAN
(WGAN) [6, 164] is one of the well-known improved GANs. In comparison with the original
loss function, WGAN proposed in [164] uses the Wasserstein-1 distance with an additional
gradient norm penalty to achieve Lipschitz continuity. Given the real data x, the input noise
z ∼ Pz and the synthetic data x̃ = G(z), the gradient penalty term can be written as

(∥∇x̂D(x̂)∥ − 1)2, where x̂ = µx+ (1− µ)x̃. (2.16)
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Here x̂ is a weighted average between the real and synthetic data and µ ∼ U(0, 1) is a
randomly sampled weight. Thus, the loss function for the generator and discriminator is for-
mulated as follows:

LG = D(x̃) = D(G(z)), (2.17)

LD = D(x)−D(x̃) + λ(∥∇x̂D(x̂)∥ − 1)2, (2.18)

where λ is the weight for the gradient penalty. By combining Equation (2.17) and Equa-
tion (2.18), the loss function of WGAN can be derived as:

LWGAN = E
x̃∼Px̃

[D(x̃)]− E
x∼Px

[D(x)] + λ E
x̂∼Px̂

[(∥∇x̂D(x̂)∥ − 1)2]. (2.19)
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papers in the original format can be found in the Appendix.
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3.1 Abstract

In this chapter, we first focus on addressing the data silo problem using model transmission.
As discussed in Section 1.2.1, FL, as one of the representative solutions, has attracted in-
creasing attention due to achievements in computational efficiency and privacy preservation.
However, recent research highlights that the original FL framework may still reveal sensitive
information of clients’ local data from the exchanged local updates and the global model pa-
rameters. Local Differential Privacy (LDP), as a rigorous definition of privacy, has been applied
to FL to provide formal privacy guarantees and prevent potential privacy leakage. However,
previous LDP-FL solutions suffer from considerable utility loss with an increase of model di-
mensionality. Recent work [99] proposed a two-stage framework that mitigates the dimension-
dependency problem by first selecting one “important” dimension for each local update and
then perturbing the dimension value to construct the sparse privatized update. However, the
framework may still suffer from utility loss because of the insufficient per-stage privacy budget
and slow model convergence.

In this work, we propose an improved framework, SIGNDS-FL, which shares the concept of
dimension selection with [99], but saves the privacy cost for the value perturbation stage by
assigning random sign values to the selected dimensions. Besides using the single-dimension
selection algorithms in [99], we propose an Exponential Mechanism-based Multi-Dimension
Selection (EM-MDS) algorithm that further improves model convergence and accuracy. We
evaluate the framework on a number of real-world datasets with both logistic regression mod-
els and deep neural networks and show that our framework significantly outperforms the pre-
vious LDP-FL solutions and enjoys an advanced utility-privacy balance.

3.2 Introduction

machine learning (ML) has been widely applied in solving societal challenges in recent years.
Traditional centralized learning mechanisms gather all the client data for model training and
therefore suffer from high computational complexity and privacy issues. Due to these prob-
lems, federated learning (FL) [108] has been proposed, where the ML models are jointly
trained by multiple local devices (also referred to as clients or users) under the coordina-
tion of a central server. As training tasks are distributed to local devices and clients’ private
data are never uploaded to the server, the framework enjoys distinctive advantages in both
computational efficiency and privacy protection. FL is increasingly used in real-life scenarios
such as health care [96], recommendation systems [174], and other mobile edge computing
applications [97].

Although FL enjoys significant privacy benefits in comparison to centralized learning, recent
works have demonstrated that FL is still vulnerable to various privacy attacks such as re-
construction attacks [186] and membership inference attacks [115], as the exchanged local
updates and the global model parameters may reveal sensitive information of the private local
data. Motivated by this, an increasing number of privacy-preserving federated learning (PPFL)
frameworks with privacy-enhancing techniques such as homomorphic encryption (HE) [32],
secure multi-party computation (SMC) [176] and differential privacy (DP) [42] have been pro-
posed, aiming to prevent potential privacy leakage in FL. However, the cryptography-based
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Figure 3.1 Overview of the SIGN-FL framework. At each global round, the server broadcasts the
current global model to the local side. Each client trains the global model with local data and computes
the local model update. Then, the client randomly samples a sign value and builds the top-k dimension
set: if the sign value equals 1, the top-k set is built with the dimensions of the k largest update values;
otherwise, it is built with the dimensions of the k smallest update values. An LDP-based dimension
selection algorithm is then applied to select a set of “important” dimensions. The sampled sign value
and the selected dimension set will be sent to the server. The server will construct sparse privatized
local updates by assigning the sign value to the corresponding selected dimensions and finally use
them to update the global model.

solutions may not be practical to large-scale FL scenarios due to the massive additional com-
munication and computation costs, as discussed in [95].

In comparison, DP-FL frameworks use randomization algorithms (e.g., injecting random noise)
to perturb the model updates or the model parameters and do not impose significant additional
communication and computation costs. Moreover, the randomization algorithms follow a strict
DP definition and can effectively prevent attackers from inferring information from local data.
The DP-FL frameworks in [110, 7] add Gaussian noise on the server side in order to protect
the privacy of the global model. However, they assume the presence of a trusted server. Thus,
a more practical solution is to apply local differential privacy (LDP) to FL, which perturbs the
local updates before sending them to the server. Nevertheless, as discussed in [79], it is very
challenging for LDP-FL frameworks to achieve a satisfactory privacy-utility balance, especially
for high-dimensional models. For instance, [136] proposes the first LDP-FL framework using
the sparse vector technique. However, its DP guarantee is per dimension and is less effec-
tive for large models [121]. Later works, i.e., [40, 158, 184] adopted LDP mean estimation
algorithms to perturb the local updates. However, the injected noise in these solutions is in
essence proportional to the model dimensionality, making them only applicable to simple ML
models. A recent work proposed FEDSEL [99], a two-stage LDP-FL framework that includes
a dimension selection (DS) stage and a value perturbation (VP) stage. Given an original local
update vector, the DS stage first builds a top-k dimension set containing the dimensions of
the k largest absolute update values and privately selects one “important” dimension from the
top-k set. Then, in the VP stage, the value of the selected dimension is perturbed via the LDP
algorithms in [40, 158] and used to construct a sparse privatized local update.
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Although FEDSEL [99] mitigates the dimension-dependency problem in previous works, the
framework may still suffer from utility loss due to the following reasons. First, since the pri-
vacy budget is consumed by both stages, for high-privacy regimes (when the privacy budget
is small), each stage may obtain only an insufficient privacy budget and cause large ran-
domness. Moreover, the framework only selects one dimension for each local update, which
may lead to slow model convergence, especially for high-dimensional models. In this work,
we address the above challenges from two perspectives. First, we propose a novel LDP-FL
framework, SIGNDS-FL (as shown in Figure 3.1), which aims to mitigate the problem of an
insufficient per-stage privacy budget in the high-privacy regime. The main idea is to save the
privacy budget for the VP stage in [99] by building the top-k set according to the real local
update values and assigning sign values instead of the perturbed dimension values to the
selected dimensions. The sign values are randomly sampled by each client on the local side,
which is used for determining the top-k set and constructing the privatized local update. More-
over, besides adopting the single-dimension selection algorithms as in [99], we give the first
attempt to explore multi-dimension selection algorithms. To select h dimensions under the ϵ-
LDP guarantee, a naive approach is to independently perform the single-dimension selection
h times. However, the privacy budget for selecting each dimension should then be less than
ϵ/h, which will lead to a significant degradation in model utility. Inspired by the exponential
mechanism (EM) [111] and its extension in frequency estimation on set-valued data [159], we
propose an Exponential Mechanism-based Multi-Dimension Selection (EM-MDS) algorithm.
In comparison to the naive approach, EM-MDS utilizes the privacy budget more efficiently
and helps improve model convergence and accuracy.1

Our major contributions can be summarized as follows:

• We propose SIGNDS-FL, a novel LDP-FL framework. Different from [99], we propose
to build the top-k dimension set according to real update values and construct the pri-
vatized updates based on sign values randomly sampled by the clients. Our solution
saves the privacy budget for the VP stage in [99] and achieves better model accuracy
under the same privacy level.

• We further extend the single-dimension selection strategy in [99] to multi-dimension se-
lection and propose EM-MDS, a novel algorithm based on the idea of the exponential
mechanism [111]. The algorithm can more effectively utilize the privacy budget in com-
parison to the naive approach and achieves better model utility.

• We evaluate the performance of our framework on a number of real-world datasets and
ML models and compare the results with previous works. For the simple tasks of training
logistic regression models on structured datasets, our framework achieves an accuracy
loss of only 1% ∼ 2% under a privacy level ϵ ≥ 4 in comparison to a 5% ∼ 15%
decrease of accuracy for the baseline methods. For the complex tasks that train deep
neural networks on image datasets, the accuracy loss of our framework under a privacy
level ϵ ≥ 8 is also less than 8% and at best only 2%. Extensive experimental results
demonstrate that our framework significantly outperforms the previous LDP-FL solutions
and enjoys an advanced utility-privacy balance.

1The implementation code can be found at: https://gitee.com/mindspore/mindspore/blob/
r1.6/mindspore/lite/java/java/fl_client/src/main/java/com/mindspore/flclient/
SecureProtocol.java

https://gitee.com/mindspore/mindspore/blob/r1.6/mindspore/lite/java/java/fl_client/src/main/java/com/mindspore/flclient/SecureProtocol.java
https://gitee.com/mindspore/mindspore/blob/r1.6/mindspore/lite/java/java/fl_client/src/main/java/com/mindspore/flclient/SecureProtocol.java
https://gitee.com/mindspore/mindspore/blob/r1.6/mindspore/lite/java/java/fl_client/src/main/java/com/mindspore/flclient/SecureProtocol.java
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The remainder of the chapter is organized as follows. In Section 3.4, we introduce the system
model and the proposed methodology in detail. The evaluation experiments and results are
then presented in Section 3.5. In Section 3.6, we discuss the potential applications of the pro-
posed method. Finally, conclusions and avenues for future work are presented in Section 3.7.

3.3 Related Work

In recent years, DP [42] has been widely used as a strict criterion for privacy protection in data
analysis [41], data publishing [179], and machine learning [22, 1]. Moreover, an increasing
number of studies also incorporate DP into FL in order to reduce potential privacy leakage and
offer privacy guarantees for the framework. Previous works by [110] and [7] proposed to add
Gaussian noise on the server side to protect the privacy of the global model. However, such
solutions cannot prevent privacy leakage from clients’ local updates. Follow-up works further
adopted crypto-based algorithms to strengthen local privacy. For instance, [69] presented a
framework that incorporates DP with SMC while [147] introduced a hybrid solution with DP
and HE. Yet, the solutions require extra communication and computation costs during the
key-distribution phase and cannot be applied to large-scale scenarios.

Due to the privacy and efficiency issues in the abovementioned solutions, a more practical
approach is to use LDP [82] to privatize the original local updates before sending them to
the server. Considering that the local updates are numerical vectors and the global aggre-
gation on the server side computes the average of all the local updates, a natural way is to
use the LDP mean estimation algorithms. Given a local update vector ∆ ∈ [−1, 1]d, a naive
solution is to independently perturb each dimension using the Laplace mechanism [42], i.e.,
∆̂ = ∆ + Lap(2d

ϵ ). However, the noise scale is essentially linear to the dimension d and will
result in a significant utility loss for high-dimensional models. In order to reduce the noise
scale, [40] further proposed a method based on randomized response (RR) [163] (referred
to as DM) that maps each original value to two possible constants {−B,B}, which are de-
termined by d and ϵ. Although the algorithm achieves a lower noise scale, it is relatively
sophisticated and does not achieve ϵ-LDP when d is even [119]. Based on DM, [158] further
proposed a piecewise mechanism (PM), which returns a sparse privatized vector with at most
h dimensional values, where h = max{1,min{d, ⌊ ϵ

2.5⌋}}. More specifically, for each selected
dimension ∆[j], the algorithm first computes the noised results xj and let the ∆̂[j] = d

hxj . In
this case, the communication cost is reduced to O(h) in comparison with O(d) in DM. The
authors also proposed a hybrid mechanism (HM), which combines DM and PM to achieve
an optimized worst-case variance. Additionally, a follow-up work by [184] proposed an im-
proved PM-SUB algorithm, which further reduced the variance when ϵ is large. Although
[158] and [184] increase the per-dimension privacy budget to ϵ/h by only reporting the value
of h random dimensions, the perturbed values are finally enlarged by d/h for an unbiased
estimation, which increases the injected noise at the same time. Based on the above LDP
mean estimation-based solutions, a recent work by [99] further proposed FEDSEL, a two-
stage LDP-FL framework that includes a DS stage and a VP stage. In the DS stage, LDP-
based dimension selection algorithms are applied to select one “important” dimension from
the top-k dimension set (i.e., the set of dimensions with the k largest absolute update values);
in the VP stage, the value of the selected dimension is perturbed via the LDP algorithms in
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[40, 158]. Finally, a sparse privatized local update is constructed and returned to the server.
Although [99] mitigates the dimension-dependency problem apparent in previous works, the
privacy budget is still consumed by two stages. When the privacy budget is small, each stage
may obtain only an insufficient privacy budget and cause large randomness. Also, only select-
ing one dimension for each local update may lead to slow model convergence, especially for
high-dimensional models.

In addition to solutions following a strict LDP definition, alternative notions of LDP have also
been investigated. For instance, [13] introduced minimax differential privacy, which relaxes
local privacy by limiting the prior knowledge of the attackers, thus allowing the algorithm to
be performed under a much larger privacy budget (e.g., ϵ > 500). Similarly, [148] proposed
the ε-LDPFed framework based on Condensed LDP (ε-CLDP) [54]. The algorithm defines ε
as the privacy cost under CLDP and requires ε ≪ ϵ to ensure meaningful privacy protection.
However, they adopted ε = 1 in the evaluation experiments, which is equivalent to using a
very large ϵ under the original LDP definition and results in weak privacy protection. As we
mainly focus on LDP-FL under the original LDP definition, the above two solutions are out of
scope for this paper.

3.4 SIGNDS-FL Framework

Although the LDP-FL framework in [99] shows considerable performance improvements in
comparison to previous works, it may still suffer from utility loss because of the insufficient
per-stage privacy budget and slow model convergence. In this section, we will present our
solution to address these limitations. To start with, we will describe our system model. Then,
we will introduce our enhanced LDP-FL framework SIGNDS-FL, which aims to further reduce
the privacy cost in [99] and mitigate the utility loss in high-privacy regimes. Finally, we will
present EM-MDS, a new privacy-preserving multi-dimension selection algorithm that helps
improve model convergence.

3.4.1 System Model

A common FL scenario is considered in this work, where a machine learning model M is
jointly trained by a number of local clients under the coordination of a central server. Each
client i holds a local dataset Xi that contains the client’s private personal data. At each global
round t, the server selects a group of N clients and distributes the current global model Mt.
Each client i in the group trains the global model for several gradient descent steps with his
local data Xi and obtains the local model M i

t . Then, the client computes the local update
∆i
t = M i

t −Mt and sends ∆i
t back to the server. On the server side, all the local updates are

aggregated and averaged, which is then used to update the global model as below:

∆t = 1
N

N∑

i=1
∆i
t, Mt+1 = Mt + ∆t. (3.1)

The updated global model Mt+1 is distributed again to local clients to start the next round.
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Since the raw local updates ∆i
t are derived based on clients’ personal data, directly uploading

∆i
t to the server may reveal private information of raw local data. Here, the server is as-

sumed to be honest-but-curious, which follows the system protocols but tries to infer sensitive
information of local users from ∆i

t. Thus, to prevent such privacy leakage, the clients use a
randomization algorithm M to perturb the local updates and send the privatized updates to
the server. The randomization algorithmM follows the strict LDP definition, ensuring that the
server lacks access to the original local updates and providing formal privacy guarantees for
clients’ local data.

3.4.2 General Workflow of SIGNDS-FL

Motivated by the limitations of [99], we propose SIGNDS-FL, an improved LDP-FL framework.
The main idea is to substitute the VP stage in [99] by assigning a constant value to the se-
lected dimensions in order to save privacy costs. In this way, with the same privacy level, the
proposed method can achieve less randomness and thus higher accuracy in the dimension
selection stage. However, since the parameter values may have different signs, assigning the
same constant value to all the selected dimensions may result in a significant change in the
gradient descent direction. To address the problem, the SIGNDS-FL framework adopts an
extra sign variable s ∈ {−1, 1}, which is used for dimension selection and for the construc-
tion of the sparse privatized local updates. The idea is inspired by the SIGNSGD algorithm
proposed by [12]. The authors quantized each local update value to its sign value to reduce
the communication cost and proved that the algorithm can still enjoy a satisfying convergence
rate. Thus, in our algorithm, each client randomly samples a sign value s on the local side.
If s = 1, the dimension indices of the k largest values in the local update are used to build
the top-k dimension set and perform the private dimension selection process. The selected
dimensions will then be assigned with s = 1 to construct the sparse privatized local update.
Intuitively, the k largest values are highly likely to be larger than zero. Therefore, assigning
the positive sign value to the selected dimension will not cause much difference in the model
update direction, which mitigates the impact on model accuracy. Similarly, when s = −1, the
dimension indices of the k smallest values are used for building the top-k set. The selected
dimensions are assigned with the negative sign value for constructing the sparse privatized
local update.

The general training workflow of SIGNDS-FL is presented in Algorithm 1. At each global round
t, the server selects a group of N clients and broadcasts the current global model Mt to the
clients (Lines 2-4). On the local side, the client i trains the global model for several gradient
descent epochs with his local data Xi and computes the local update ∆i

t (Lines 13-17). Then,
the client sorts ∆i

t by real update values, randomly samples a sign value sit ∈ {−1, 1} with
equal probability, and builds the top-k dimension set Stopk following the idea described above
(Lines 18-23). Given the privacy budget ϵ, different LDP dimension selection algorithms are
applied to privately select a set of dimensions J it (Line 24), which, together with the sampled
sign sit, will be returned to the server. The server then constructs the sparse privatized local
update ∆̂i

t by assigning the sign value sit to all the dimensions contained in J it (Lines 6-7).
Finally, all the sparse local updates are aggregated and used to update the global model with
a global learning rate γ (Lines 9-10). The updated global model Mt+1 is distributed again to
local clients to start the next round.
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Algorithm 1: SIGNDS-FL

Input: M1 ∈ Rd: initial global model; T : global aggregation rounds; N : number of
per-round clients; E: number of local epochs; η: local learning rate; d: local
update size; k: top-k set size; h: output dimension set size; γ: global learning
rate; ϵ: privacy budget

Output: Trained model M

Server executes:
1: for global round t = 1, · · · , T do
2: Randomly select a group of N clients
3: for client i = 1, · · · , N in parallel do
4: Broadcast current global model Mt

5: Receive the dimension set and sign J it , s
i
t = LocalUpdate(Mt, E, η, ϵ, k, h)

6: Initialize the sparse privatized local update ∆̂i
t = [0, · · · , 0]d

7: For j ∈ {1, · · · , d}, if j ∈ J it , set ∆̂i
t[j] = sit

8: end for
9: Aggregate all the sparse local updates: ∆̂t = 1

N

∑N
i=1 ∆̂i

t

10: Update global model Mt+1 = Mt + γ · ∆̂t

11: end for
12: Return Global model M = MT+1

LocalUpdate(Mt, E, η, ϵ, k, h):
// Run on the client side

13: Initialize local model M i
t ←Mt

14: for epoch e = 1, · · · , E do
15: M i

t = M i
t − η · ∇L(M i

t , X
i)

16: end for
17: Calculate local update:

∆i
t = M i

t −Mt

18: Randomly sample a sign sit ∈ {1,−1} with probability Pr[sit = 1] = 0.5
19: if sit = 1 then
20: Select dimensions indices of k largest values in ∆i

t to build Stopk
21: else
22: Select dimensions indices of k smallest values in ∆i

t to build Stopk
23: end if
24: Obtain the private dimension set

J it = LDP-DimSel(Stopk, d, k, h, ϵ)
25: Return J it , s

i
t
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In the later sections, we will introduce two private dimension selection algorithms that provide
strict ϵ-LDP guarantees to clients’ local data. In addition, since the sign values are randomly
sampled by the clients and are unrelated to the local data, the sparse privatized local updates
constructed on the server side also satisfy ϵ-LDP.

Theorem 1. For the original local update ∆ of any client, if the dimension selection algorithm
used in Algorithm 1 satisfies ϵ-LDP, the sparse privatized local update ∆̂ also satisfies ϵ-LDP.

Proof. According to Section 2.1.3, for any client with two possible local updates ∆,∆′, the

privatized local update ∆̂ satisfies ϵ-LDP if and only if Pr[∆̂|∆]
Pr[∆̂|∆′] ≤ exp(ϵ).

In Algorithm 1, the construction of the privatized local update can be decomposed into two
steps: privately selecting a dimension set J according to the sampled sign value s and as-
signing each dimension j ∈ J with s. This can be formulated as

Pr[∆̂|∆]
Pr[∆̂|∆′]

=
Pr[J |∆] ·∏j∈J Pr

[
∆̂[j]|∆[j]

]

Pr[J |∆′] ·∏j∈J Pr
[
∆̂[j]|∆′[j]

] , (3.2)

and since the dimension selection step satisfies the ϵ-LDP guarantee, it holds that:

Pr[J |∆]
Pr[J |∆′] ≤ exp(ϵ). (3.3)

Additionally, each selected dimension is assigned with the sign value s, which is a constant
and is independent of the real dimension value. Thus, we have:

Pr
[
∆̂[j]|∆[j]

]
= Pr

[
∆̂[j]|∆′[j]

]
= 1, (3.4)

where j ∈ J . To sum up the above considerations, it holds that

Pr[∆̂|∆]
Pr[∆̂|∆′]

= Pr[J |∆] · 1
Pr[J |∆′] · 1 ≤ exp(ϵ), (3.5)

which completes the proof.

Note that the privacy guarantees achieved by Theorem 1 hold for any ϵ-LDP dimension selec-
tion algorithms and are agnostic to the model structures.

3.4.3 Local Differentially Private Dimension Selection

Next, we will introduce two private dimension selection algorithms used in the framework that
provide strict ϵ-LDP guarantees to the local updates and local data.
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Algorithm 2: PS for single dimension selection [99]
Input: Stopk: top-k dimension set; d: local update size; k: top-k set size; ϵ: privacy

budget.
Output: J : selected dimension

1: Sample a Bernoulli variable x such that

Pr[x = 1] = psin = exp(ϵ) · k
d− k + exp(ϵ) · k

2: if x = 1 then
3: Randomly sample a dimension J ∈ {a ∈ {1, · · · , d}|a ∈ Stopk}
4: else
5: Randomly sample a dimension J ∈ {a ∈ {1, · · · , d}|a /∈ Stopk}
6: end if
7: Return J

Single-dimension Selection

We start with the single-dimension selection algorithms, which only select one dimension for
each local update. This has been investigated in [99]. Here, we briefly introduce one of
the proposed algorithms called perturbed sampling (PS), which is presented in Algorithm 2.
Given the top-k dimension set Stopk, a dimension J is randomly sampled as

J ∈
{
{a ∈ {1, · · · , d}|a ∈ Stopk} with probability psin

{a ∈ {1, · · · , d}|a /∈ Stopk} with probability 1− psin
. (3.6)

Namely, the dimension J is sampled from the top-k dimension set with a probability psin and
otherwise from the non-top-k dimension set. Let psin be the top-k probability. Thus, the
privacy guarantee of Algorithm 2 is as follows:

Lemma 3. Algorithm 2 satisfies ϵ-LDP when psin ≤ exp(ϵ)·k
d−k+exp(ϵ)·k .

Proof. For each client, given any two possible local updates ∆ and ∆′ and the sampled sign
value s, let Stopk, S′

topk be the corresponding top-k dimension sets and J ∈ {1, · · · , d} be any
output dimension. Given the top-k probability psin, the probabilities of sampling the dimension
J from the top-k set and from the non-top-k set are respectively psin · 1

k and (1− psin) · 1
d−k .

Thus, when psin ≤ exp(ϵ)·k
d−k+exp(ϵ)·k it holds that

Pr[J |∆]
Pr[J |∆′] = Pr[J |Stopk]

Pr[J |S′
topk]

≤ Pr[J |J ∈ Stopk]
Pr[J |J /∈ S′

topk]
=

psin · 1
k

(1− psin) · 1
d−k
≤ exp(ϵ), (3.7)

which completes the proof.
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Multi-Dimension Selection

Although Algorithm 2 can efficiently select top-k dimensions under LDP guarantees, it only
returns one dimension for each local model update, which may result in the loss of valuable
parameter information and a slow convergence for high-dimensional models. This motivates
us to consider whether it is possible to generalize the algorithm by returning multiple dimen-
sions. In order to select h dimensions under ϵ-LDP, a naive method is to repeatedly apply Al-
gorithm 2 for h times. However, according to the sequential composition property (Property 6),
the privacy budget for selecting each dimension should be less than ϵ/h, which will lead to
a significant decrease in the probability psin and a degradation of model accuracy. There-
fore, better dimension selection algorithms are needed. Since the dimension indices here are
non-numerical values, traditional LDP algorithms such as Laplace and Gaussian mechanisms
[42] cannot be directly applied. In contrast, the EM [111] is a widely used method for handling
such non-numerical queries. Inspired by this idea, we further propose an enhanced EM-MDS
algorithm to improve model convergence and utility.

Consider a top-k dimension set Stopk and an output set J with h elements. Let ν = |Stopk ∩J |
be the number of intersections between the two sets, which is equivalent to the number of
top-k dimensions contained in J . A score function u(Stopk, J) is then defined as an indicator
function to highlight whether the top-k dimensions contained in J are larger than a certain
threshold νth, namely

u(Stopk, J) = 1(|Stopk ∩ J | ≥ νth) = 1(ν ≥ νth), (3.8)

where 0 ≤ ν ≤ h and 1 ≤ νth ≤ h. Furthermore, let ϕu be the sensitivity of u, it can be
derived that

ϕu = max
J∈J
||u(Stopk, J)− u(S′

topk, J)|| = 1− 0 = 1, (3.9)

where J is the domain of the output set, and Stopk and S′
topk are two random top-k dimension

sets. With the above definitions, the multi-dimension selection process can be defined as
follows:

Definition 8 (EM-MDS). Given the top-k dimension set Stopk of a local update, one can ran-
domly sample an output dimension set J ∈ J with the following probability:

pmul =
exp( ϵ

ϕu
· u(Stopk, J))

∑
J ′∈J exp( ϵ

ϕu
· u(Stopk, J ′)) = exp(ϵ · 1(ν ≥ νth))

∑τ=h
τ=0 ωτ · exp(ϵ · 1(τ ≥ νth))

= exp(ϵ · 1(ν ≥ νth))
∑τ=νth−1
τ=0 ωτ +∑τ=h

τ=νth
ωτ · exp(ϵ)

, (3.10)

where ν is the number of top-k dimensions contained in J , νth is the threshold of the score
function and ωτ =

(k
τ

)(d−k
h−τ

)
is the number of possible combinations in J that contains τ top-k

dimensions.

The next question is: how to determine an appropriate threshold νth to achieve a satisfac-
tory model utility? From Equation (3.10), the probability that the sampled J contains τ top-k
dimensions given a threshold νth can further be derived as follows:

pmul(ν = τ |νth) =
{
ωτ/Ω if 0 ≤ τ < νth

ωτ · exp(ϵ)/Ω if νth ≤ τ ≤ h
, (3.11)
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where Ω = ∑τ=νth−1
τ=0 ωτ + ∑τ=h

τ=νth
ωτ · exp(ϵ) is the denominator part of Equation (3.10).

Moreover, the expectation of ν given the threshold νth can be calculated as

Emul[ν|νth] =
τ=h∑

τ=0
τ · pmul(ν = τ |νth). (3.12)

Intuitively, the higher Emul[ν|νth], the higher the probability that the sampled J contains more
top-k dimensions and the better the model utility. Therefore, the optimum threshold ν∗

th can
be determined as the threshold that achieves the highest Emul[ν|νth], namely

ν∗
th = argmax

νth∈{1,··· ,h}
Emul[ν|νth]. (3.13)

By summarizing all the above design considerations, the workflow of our EM-MDS algorithm
is presented in Algorithm 3. Given all the input settings (d, k, h, ϵ), the optimal threshold ν∗

th

is firstly determined based on Equation (3.12) and Equation (3.13) (Line 1). Then, the dimen-
sion selection process is conducted as in Definition 8. Nevertheless, as the output domain J
contains

(d
k

)
possible combinations, directly sampling a set J from J with a certain probabil-

ity is computationally expensive, especially when d and k are large. To further improve the
efficiency, the trick of inverse sampling is applied, which firstly samples a random variable β
from the uniform distribution U(0, 1) and determines the target number of top-k dimensions ν
according to the cumulative distribution of pmul(ν|ν∗

th) (Lines 3-13). An example of the inverse
sampling trick is illustrated in Figure 3.2. In this case, the computational cost of Algorithm 3
is efficiently reduced from O(

(d
k

)
) to O(d). Finally, the output dimension set J is constructed

by randomly sampling ν dimensions from the top-k dimension set and h− ν dimensions from
the non-top-k set.

Now, we present the privacy and utility analysis of the EM-MDS algorithm.

Lemma 4. Algorithm 3 satisfies ϵ-LDP.

Proof. For each client, given any two possible local updates ∆ and ∆′ and the sampled sign
value s, let Stopk, S′

topk be the corresponding top-k dimension sets. For any output dimension
set J ∈ J , let ν = |Stopk ∩ J |, ν ′ = |S′

topk ∩ J | be the number of intersections between J and
both top-k sets. With the sampling probability defined in Equation (3.10) it holds that

Pr[J |∆]
Pr[J |∆′] = Pr[J |Stopk]

Pr[J |S′
topk]

=

exp( ϵ
ϕu

·u(Stopk,J))∑
J′∈J exp( ϵ

ϕu
·u(Stopk,J ′))

exp( ϵ
ϕu

·u(S′
topk

,J))∑
J′∈J exp( ϵ

ϕu
·u(S′

topk
,J ′))

=

exp(ϵ·1(ν≥νth))∑τ=νth−1
τ=0 ωτ +

∑τ=h

τ=νth
ωτ ·exp(ϵ)

exp(ϵ·1(ν′≥νth))∑τ=νth−1
τ=0 ωτ +

∑τ=h

τ=νth
ωτ ·exp(ϵ)

= exp(ϵ · 1(ν ≥ νth))
exp(ϵ · 1(ν ′ ≥ νth)) ≤

exp(ϵ · 1)
exp(ϵ · 0) = exp(ϵ),

(3.14)

which completes the proof.

As for the utility analysis, we compare the performance of our EM-MDS algorithm with the
naive method of applying Algorithm 2 for multi-dimension selection. More specifically, with the
output size h, the naive way repeats the PS algorithm h times with the privacy budget ϵ/h for
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Algorithm 3: EM-MDS for multi-dimension selection
Input: Stopk: top-k dimension set; d: local update size; k: top-k set size; h: output size;

ϵ: privacy budget.
Output: J : dimension set with h elements

1: Determine the optimum threshold ν∗
th = argmax

νth∈{1,··· ,h}
Emul[ν|νth]

2: Compute denominator Ω = ∑τ=ν∗
th−1

τ=0 ωτ +∑τ=h
τ=ν∗

th
ωτ · exp(ϵ), where ωτ =

(k
τ

)(d−k
h−τ

)

3: Randomly sample β from uniform distribution U(0, 1)
4: Initialize τ = 0, F(τ) = ω0/Ω
5: while F(τ) < β do
6: τ = τ + 1
7: if τ < ν∗

th then
8: F(τ) = F(τ) + ωτ/Ω
9: else

10: F(τ) = F(τ) + ωτ · exp(ϵ)/Ω
11: end if
12: end while
13: Let ν = τ be the number of top-k dimensions
14: Sample ν dimensions from {a ∈ {1, · · · , d}|a ∈ Stopk} and append to J
15: Sample h− ν dimensions from {a ∈ {1, · · · , d}|a /∈ Stopk} and append to J
16: Return J

each iteration. Thus, the probability of sampling from the top-k set is psin = exp(ϵ/h)·k
d−k+exp(ϵ/h)·k .

Given a sampled dimension set J , the probability distribution and the expectation of ν can be
derived as follows:

psin(ν = τ) =
(
h

τ

)
· pτsin · (1− psin)h−τ , Esin[ν] =

τ=h∑

τ=0
τ · psin(ν = τ). (3.15)

For the EM-MDS algorithm, we firstly determine the optimum ν∗
th based on Equation (3.13)

and then calculate the expectation Emul[ν] = E[ν|ν∗
th] as in Equation (3.12).

We select different settings of h and ϵ to empirically compare the privacy-utility trade-off of
the naive method and the proposed method. More specifically, we use E[ν]/h, the expected
ratio of top-k dimensions contained in the output set, to represent the model utility. Intuitively,
a higher expected ratio means that there is a higher probability of selecting dimensions from
the top-k set, which contributes to the model utility. The comparison results are presented in
Figure 3.3. It can be seen that both algorithms achieve the same expected ratio when h = 1.
This can be derived from Equation (3.10), where the EM-MDS algorithm is equivalent to the
PS algorithm when h = 1. Moreover, with the same privacy budget ϵ, increasing the output
dimension h will lead to a lower top-k ratio and a lower model utility. This is because a large
h causes each dimension allocated with less privacy budget, thus a lower probability to be
sampled from the top-k set. Nonetheless, the EM-MDS algorithm achieves a distinctively
higher top-k ratio in the output set compared with the naive method. In particular, the higher
the privacy budget ϵ, the larger the difference. This is due to the fact that EM-MDS considers
all the combinations of the output set and assigns higher probabilities to those with more
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Figure 3.2 Example of using the inverse
sampling trick to determine ν, namely the
number of top-k dimensions in J .

Figure 3.3 Utility of using PS and EM-MDS
algorithms in multi-dimension selection re-
garding different output size h and privacy
budget ϵ.

top-k dimensions. As a result, the algorithm can utilize the privacy budget more efficiently in
comparison to the naive method and achieve a better model utility.

3.5 Experiments and Results

After implementing the proposed framework, we now report the results of comprehensive ex-
periments with a number of open-source datasets to evaluate its performance. In this section,
we will first introduce the experimental settings and then discuss the evaluation results.

3.5.1 Experiment Setup

We first introduce the experimental settings including the datasets and models used in the
experiments, baseline algorithms, and parameter configurations.

Datasets and Models

Six open-source datasets are used for evaluating the performance of our framework. Each
dataset contains multi-dimensional data records used for classification tasks:

• The Census dataset [38] contains records drawn from the 1990 United States census
data, which include 68 personal attributes such as gender, income, and marriage status.
The dataset is used for a classification task to determine the duration of people’s active
duty service.

• The Adult dataset [86] originally contains records with 15 personal attributes such as
age, occupation, education, and gender. The goal is to train a binary classifier that
determines whether a person earns more than 50 thousand dollars a year. We use a
processed version from [126] that converts the original attributes into 123 binary fea-
tures.
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Table 3.2 Details of datasets and models

Data Type Dataset #Records #Features #Classes Model #Parameters

Structured
Data

Census 2,458,285 68 3 LR 207
Adult 32,561 123 2 LR 248
USPS 9,298 256 10 LR 2570
HAR 10,299 561 6 LR 3372

Image Data
FMNIST 70,000 784 10

NN 76,330
CNN 44,426

EMNIST 131,600 784 47
NN 79,919

CNN 47,571

• The USPS dataset [67] is a digit dataset provided by the U.S. Postal Service. The
dataset contains 9298 samples with 256 features, which are categorized into 10 classes.

• The Human Activity Recognition (HAR) [5] dataset contains 10299 sensor data records
of 30 volunteers which can be categorized into 6 daily activities. Each data record has
561 features representing different time and frequency domain variables.

• The Fashion-MNIST (FMNIST) [168] dataset contains 70,000 article images (from Za-
lando), which are categorized into 10 classes. Each record is a grey-scale image of size
28× 28.

• The Extended-MNIST (EMNIST) [30] dataset consists of 131,600 handwritten letters,
each is a grey-scale image of size 28×28. Here, we use the EMNIST-Balanced dataset,
where the samples are evenly categorized into 47 classes.

We conduct experiments to evaluate the performance of our framework in both simple and
complex training tasks. For simple training tasks, we train logistic regression (LR) models on
the structured datasets (i.e., Census, Adult, USPS, HAR). For complex tasks, we conduct
experiments on the image datasets (FMNIST, EMNIST) using neural network (NN) as well as
convolutional neural network (CNN) models. Here, we use a 2-layer NN with 96 neurons on the
hidden layer and LeNet [88], a widely used CNN that consists of two convolution layers (each
followed by a max-pooling layer) and three fully connected layers to perform the experiments.

Details about the datasets and models are presented in Table 3.2, which include the number
of records, features, and classes for each dataset as well as the number of parameters of the
used models.

Baselines

Various previous works mentioned in Section 3.3 are used as our baselines, namely: DM [40],
PM [158], HM [158], PM-SUB [184] and FEDSEL [99]. For FEDSEL, we choose the ratio of
the privacy budget for the dimension selection stage to be 0.1 and 0.5, which is referred to in
the experiment results as FEDSEL0.1 and FEDSEL0.5.
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Parameter Configurations

In the experiments, we set the global round T = 500, where 250 clients participate in each
round. Each client possesses 10 data records. The global learning rate is set to γ = 0.05.
For local training, each client updates the model for E = 10 epochs with a learning rate
η = 0.001. For the LDP dimension selection algorithms, we set the size of the top-k dimension
set k = 0.1d, where d is the size of local updates (i.e., the number of model parameters).
Moreover, we vary the privacy budget ϵ to explore the influence of privacy on the performance
of the framework. In our experiments, we choose ϵ ∈ {0.5, 1, 2, 4, 8, 12}. Additionally, we
repeat each experiment 10 times and report the average accuracy.

3.5.2 Performance in Simple Training Tasks

We first evaluate the performance of our SIGNDS-FL framework in simple training tasks. Here,
we adopt the single-dimension selection algorithm (Algorithm 2) for a fair comparison, which is
referred to as SIGNDSBIT. We train LR models on the four structured datasets and compare
the model accuracy with the baselines under different settings.

Model Accuracy Regarding the Privacy Level

To start with, we analyze how the framework performs under different privacy budgets. We
conduct the training process under different LDP-FL frameworks with ϵ ∈ {0.5, 1, 2, 4, 8} and
compare the model accuracy, as shown in Figure 3.4. We use the error bars here and also in
later results to represent the 95% confidence level. It can be observed that the model accu-
racy of all methods improves with an increase of ϵ. This aligns with the privacy-utility tradeoff
in LDP-FL frameworks: the larger ϵ, the less randomness added for privacy protection, and
the better the model utility. Moreover, although the LDP mean estimation-based baselines
(DM, PM, HM, and PM-SUB) can achieve relatively satisfactory accuracy for low-dimensional
datasets (Adult, Census), they suffer from an obvious accuracy loss for datasets with more
features (USPS, HAR). This is because the noise scale in these algorithms is proportional to
model dimensionality. Thus, for the USPS and HAR datasets, the increase in model size re-
sults in a larger noise scale and a higher accuracy loss. In comparison, FEDSEL and SIGNDS-
FL can effectively mitigate the dimension-dependency problem. However, SIGNDS-FL can
achieve even better performance than FEDSEL. This is likely due to the fact that FEDSEL splits
the privacy budget for selecting the top-k dimensions and perturbing the dimension values,
whereas our framework applies all the privacy budget for better dimension selection results.
In addition, FEDSEL adds random noise to the dimension value, while SIGNDS-FL replaces
the dimension value with the sign values. This can better preserve the real model update di-
rection and further improve model convergence. It can be seen that SIGNDS-FL consistently
outperforms the baselines for all the datasets. With ϵ ≥ 4, the baseline methods suffer from at
minimum 5% ∼ 15% decrease of accuracy for the USPS and HAR datasets, while our frame-
work only causes around 1% ∼ 2% accuracy loss. The results illustrate that the SIGNDS-FL
framework can effectively address the dimension-dependency problem in baseline algorithms
and achieve better model utility under the same privacy levels.
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Figure 3.4 Accuracy of LR models trained on structured datasets with different privacy budgets ϵ.

Model Accuracy Regarding the Group Size

We further investigate how the choice of group size N (i.e., the number of participating clients
in each round) influences the training performance. We conduct experiments varying the
group size N ∈ {100, 250, 500, 750} under a privacy level of ϵ = 4 and compare the change
of model accuracy for the different LDP-FL solutions. The results in Figure 3.5 show that
training with a larger group size can in general help improve model accuracy. In addition,
our framework consistently outperforms the baselines under the same group size settings.
Moreover, it can be observed that the baseline algorithms are more sensitive to the group
size in comparison to SIGNDS-FL, especially with larger models. More specifically, for USPS
and HAR, the accuracy change of our framework is less than 8%, but around 10% ∼ 15%
for the baseline methods. This is due to the baseline algorithms adding random noise to
the real dimension values, which alters the direction of the selected dimensions. Thus, the
algorithms require a sufficiently large group size to reduce the impact of noise on the direction
of the averaged local updates as well as on the model utility. In comparison, our SIGNDS-
FL framework replaces the real dimension values with their corresponding sign values, which
preserves the direction of the selected dimensions. Therefore, our framework shows higher
robustness to different choices of group sizes in comparison to the baselines and can still
achieve satisfactory performance even with small group sizes.
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Figure 3.5 Accuracy of LR models trained on structured datasets with different group sizes.

3.5.3 Performance in Complex Training Tasks

Next, we evaluate the performance of our framework on complex tasks. We respectively train
the 2-layer NNs and CNNs on both FMNIST and EMNIST datasets and compare the results
with the baseline methods.

Model Accuracy Regarding the Privacy Level

Firstly, we analyze the impact of the privacy budget ϵ on model accuracy. The results are
presented in Figure 3.6, where we can see that the baseline algorithms based on LDP mean
estimation cannot obtain an acceptable model accuracy for complex training tasks even with
ϵ = 8. This occurs since the injected noise in these algorithms gets proportionally larger
for high-dimensional deep neural network (DNN), which may require an extremely large ϵ to
mitigate the randomness. Moreover, although FEDSEL shows a better performance, there
is still a distinctive decrease in accuracy. In comparison, our framework achieves a notable
accuracy improvement. For the FMNIST dataset, the accuracy loss is around 4% for 2-layer
NNs and CNNs. For EMNIST, the accuracy loss is respectively around 10% and 15% for both
models. It follows that saving the privacy budget for better dimension selection results and
using the sign values to preserve the model update direction can contribute to improving the
model utility. Moreover, it can be observed that the models trained on FMNIST always have a
higher accuracy than those trained on EMNIST. This is because EMNIST has 47 classes in
comparison to FMNIST which only has 10 classes. Thus, the increase in data variants leads
to more difficulty in model training.
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Figure 3.6 Accuracy of NNs and CNNs trained on image datasets with different privacy budget ϵ.

Model Accuracy Regarding the Group Size

We also analyze the impact of group size N on the accuracy of complex models. As in Sec-
tion 3.5.2, we conduct experiments varying the group size N ∈ {100, 250, 500, 750} under a
privacy level of ϵ = 4 and compare the model accuracy. The results are shown in Figure 3.7.
It can be seen that the baseline algorithms cannot yield negligible accuracy loss for the com-
plex models even with an increase in group size. On the other hand, our proposed method
consistently outperforms the baseline methods under different group sizes. The model accu-
racy can be further improved by 1% ∼ 5% when increasing the group size from 250 to larger
than 500. The results demonstrate that the proposed SIGNDS-FL framework can effectively
support complex training tasks with high-dimension deep neural network (DNN)s.

3.5.4 Performance Improvement with Multi-Dimension Selection

Although our framework shows significant accuracy improvements for training DNNs in com-
parison to the baseline methods, there is still an obvious gap in model accuracy between the
private training setting and the non-private setting. This may be due to the fact that we only
select one dimension for each local update, which slows down the model convergence and
thus results in a decrease in model accuracy. In the following, we aim to explore whether
our multi-dimension selection algorithm EM-MDS can further help improve model accuracy.
We respectively train NNs and CNNs under SIGNDS-FL using the EM-MDS algorithm with
h, namely the number of selected dimensions, to be 3 and 5. We choose different privacy
budgets ϵ ∈ {1, 4, 8, 12} in the experiments. In addition, we also analyze the model ac-
curacy when using the naive multi-dimension selection approach, which simply repeats the
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Figure 3.7 Accuracy of NNs and CNNs trained on image datasets with different group size.

single-dimension selection algorithm h times with a privacy budget of ϵ/h for each time (as
mentioned in Section 3.4.3).

Comparison of Model Accuracy Regarding the Privacy Level

It can be seen that the naive multi-dimension selection method may not contribute to the model
utility under high privacy regimes. In particular, when ϵ ≤ 4, selecting multiple dimensions
via the naive method causes a distinctive decrease of accuracy in comparison to the single-
dimension selection results. In contrast, the proposed EM-MDS algorithm can achieve similar
or even slightly better accuracy under the same ϵ. This aligns with the utility analysis in
Figure 3.3. More specifically, the naive method evenly splits the privacy budget for each output
dimension. When the total ϵ is small, each dimension may be allocated with an insufficient
privacy budget and the output set may only obtain a low top-k ratio. In comparison, EM-
MDS considers all the combinations of the output set and assigns higher probabilities to the
combinations with more top-k dimensions. Thus, the algorithm can achieve a higher top-
k ratio in the output set and a better model utility. Moreover, there is an obvious accuracy
improvement with EM-MDS as ϵ increases. For example, with ϵ ≥ 8, EM-MDS gets better
accuracy with h = 5 in comparison to the single-dimension selection algorithm while the naive
approach still shows a decrease in accuracy. As a result, with the same privacy guarantee,
our EM-MDS can more efficiently utilize the privacy budget for selecting more dimensions in
comparison to the naive approach and can further improve model utility. In comparison to the
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Figure 3.8 Comparison of model accuracy regarding different dimension selection strategies.

results in Section 3.5.3, with ϵ ≥ 8, EM-MDS achieves around a 2% increase of accuracy for
the FMNIST dataset and more than an 8% accuracy improvement for the EMNIST dataset.

Comparison of Model Convergence

We further visualize the model accuracy regarding the global rounds in order to investigate
whether the EM-MDS algorithm can help speed up model convergence. We compare the
results of both models and datasets under the privacy level ϵ = 8 and present the results
of different dimension selection strategies in Figure 3.9. Intuitively, model convergence faces
a trade-off between the output size h and the randomness during the dimension selection
process. As discussed above, a larger output size may not always contribute to model con-
vergence since it may result in an increase in randomness in dimension selection when the
privacy budget is insufficient. On the other hand, when ϵ is large enough, an increase in h will
speed up model convergence since more information of the local updates is used during train-
ing. Similar to the results in Figure 3.8, using the naive approach with h = 5 triggers an even
slower convergence speed in comparison to the single-dimension selection strategy, which
is because of the insufficient privacy budget for dimension selection. In contrast, EM-MDS
with h = 5 shows the fastest convergence over all the selection strategies. This indicates
that EM-MDS can help improve model convergence and thus requires fewer communication
rounds for model training.
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Figure 3.9 Comparison of model convergence regarding different dimension selection strategies.

3.5.5 Analysis of Results

From the results in Section 3.5.2 and Section 3.5.3, it can be seen that the LDP mean
estimation-based baselines are effective for low-dimensional models but suffer from large
accuracy loss for high-dimensional models. This is because the injected noise in these al-
gorithms grows proportionally with the model size, which causes significant utility loss. More-
over, although FEDSEL can mitigate this dimension-dependency problem for LR models, it
still poses an obvious accuracy loss for DNNs. On the contrary, the SIGNDS-FL framework
achieves better accuracy for both simple LR models and complex DNNs. In addition, we
observe that the baseline algorithms are more sensitive to the group size and require a suffi-
ciently large group size to mitigate the impact of noise on model convergence. In comparison,
SIGNDS-FL can still obtain acceptable model accuracy even with small group sizes. The re-
sults demonstrate the viability of SIGNDS-FL in real-life applications. On the one hand, the
framework can effectively support not only simple LR models but also complex DNNs. On the
other hand, the framework can also be extended to scenarios with only a small number of
local clients.

The results in Section 3.5.4 illustrate how the proposed EM-MDS algorithm can further im-
prove the accuracy of complex models. The results show that the naive multi-dimension se-
lection algorithm may have a negative impact on model accuracy, especially when ϵ is small.
This is because the naive approach evenly splits the privacy budget across each output di-
mension. This causes each dimension to be allocated with an insufficient privacy budget and
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thus a low probability of being selected from the top-k dimensions. In contrast, with the same
privacy budget, our EM-MDS algorithm follows the idea of exponential mechanism [111] and
assigns higher probabilities to the output combinations with higher top-k ratios. Therefore,
the top-k dimensions will be more likely to be selected, which contributes to a better model
utility. With the increase of ϵ, the model accuracy of using EM-MDS is better than single-
dimension SIGNDS-FL. The results demonstrate that the EM-MDS algorithm can be applied
to improve the performance of SIGNDS-FL in training high-dimensional models, which further
strengthens the framework’s practicality in real-world applications.

3.6 Discussion

In this work, we introduced an efficient and privacy-preserving LDP-FL framework with a sat-
isfactory privacy-utility balance. The framework enjoys significantly lower communication and
computation costs than crypto-based solutions and thus can be applied in a variety of large-
scale privacy-sensitive applications. For example, in mobile edge computing applications, one
can use the framework for privately training user profile models for providing keyboard sugges-
tions [175] or ranking browser history suggestions [59]. In computer vision applications [100],
the framework can be applied to train object detection models while ensuring the privacy of the
local images. Besides the existing applications of supervised learning tasks, it is also possible
to extend the framework to support other ML tasks, such as unsupervised learning, reinforce-
ment learning, and semi-supervised learning [79]. For instance, one can apply the framework
to privacy-preserving distributed synthetic data generation scenarios [146, 74], where the gen-
erative models are trained privately using the proposed framework to learn the distribution of
local data and then to generate synthetic data on the server side. This can be considered as
an alternative approach for privacy-preserving data collection. In addition, the framework can
also be integrated into private semi-supervised learning applications, where both labeled and
unlabeled local data are utilized for updating the global model [172]. It should be noted that
despite the large variety of possible applications and ML model scenarios, the main idea of
the LDP-FL protocol remains unchanged.

3.7 Conclusion

FL has recently attracted increased attention due to its computational efficiency and privacy
benefits. However, the naive FL framework is still vulnerable to a number of privacy attacks as
the exchanged local updates and the final model can still reveal sensitive information of clients’
local data. LDP, as a strong notion of privacy, has been recently applied to the local side of
federated learning to provide privacy guarantees for clients’ local data. However, previous
LDP-FL solutions cannot provide satisfactory outcomes for high-dimensional models.

In this work, we propose SIGNDS-FL, an efficient and privacy-preserving federated learning
framework based on LDP dimension selection. The main idea is to privately select a set
of “important” dimensions of the local updates under strict LDP guarantees and to construct
sparse privatized local updates using sign values, which are randomly determined by the
clients. Moreover, we propose EM-MDS, an efficient multi-dimension selection algorithm
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that can better utilize the privacy budget and contribute to improving model convergence and
accuracy. We evaluate the framework on many real-world structured and image datasets
using simple LR models as well as DNNs. Extensive experimental results demonstrate that
our framework significantly outperforms the previous LDP-FL solutions and enjoys a favorable
utility-privacy balance.
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4.1 Abstract

Although FL addresses the data silo problem by distributing the model training task to the lo-
cal side, the solution is task-specific. Namely, the collaborative training procedure needs to be
repeated for each different training task or model structure. In contrast to model transmission,
an alternative solution is data transmission. The main idea is to anonymize the local data on
the local side and only send the privatized data to the server, which will be used to support
various downstream data analysis and model training tasks. One of the state-of-the-art priva-
tization technologies is local differential privacy (LDP). However, existing LDP algorithms are
not applicable to high-dimensional data; not only because of the increase in computation and
communication costs, but also poor data utility.

In this work, we introduce a novel data synthesis-based solution for addressing the curse of
dimensionality problem in LDP-based high-dimensional data collection. Different from existing
works on synthetic data generation, we focus on the scenario where the data are distributed
on the local side and are inaccessible to the server. With the combination of a generative
autoencoder, federated learning, and differential privacy, our framework is capable of privately
learning the statistical distributions of local data and generating high-utility synthetic data on
the server side without revealing users’ private information. We evaluated the framework in
terms of data utility and privacy protection on a number of real-world datasets and showed
that our framework outperforms the LDP-based baseline algorithms in capturing joint distri-
butions and correlations of attributes and generating high-utility synthetic data. Extensive ex-
perimental results demonstrate the capability and efficiency of our framework in synthesizing
high-dimensional data while striking a satisfactory utility-privacy balance.

4.2 Introduction

With the rapid development of network and computer technologies, large and diverse quanti-
ties of multi-dimensional person-specific data are frequently generated on local devices such
as smartphones and IoT sensors. These data usually contain rich information of univariate
and multivariate (joint) distributions describing user profiles, which is valuable for data ana-
lysts to explore the hidden correlations and patterns of data from different perspectives and
to obtain a better understanding of the characteristics of user groups. For instance, a digital
healthcare application may utilize users’ physical information (i.e., temperature, blood pres-
sure, activity signals, etc.) for health monitoring and disease predictions, while an online shop-
ping website may take users’ age, gender, and purchase history for providing suitable product
recommendations. In principle, the more dimensions the data consist of, the more information
can be used for describing an individual user; thus, the more accurate the decision-making
system can be. Therefore, the collection of multi-dimensional data can be of significant help
to companies and organizations in designing and building effective business intelligence & AI
services.

However, since the data are generated based on individuals’ ongoing behaviors, the direct
collection can reveal sensitive information about them and lead to severe privacy problems
(see, for example, [18, 11]). local differential privacy (LDP) [82], as a state-of-the-art data
anonymization mechanism, has been recently deployed by major technology organizations
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such as Apple [35], Google [44], and Microsoft [36] for privacy-preserving data collection. By
locally randomizing the user data before sending it to the server, the LDP algorithms ensure
that the server cannot access the original user data, but is able to learn the population’s
overall statistics. However, prior research on LDP-based data collection mainly focuses on
one-dimensional statistics, such as frequency estimation [35, 44], heavy-hitter identification
[10, 16], and itemset mining [128, 161], etc. However, since the attributes in multi-dimensional
data are usually correlated, the server is particularly interested in learning the correlations and
joint distributions among attributes.

Directly applying the above-mentioned LDP algorithms for estimating the joint distributions of
multi-dimensional data faces a foundational problem: the curse-of-dimensionality. The domain
size increases exponentially with data dimensionality, which will lead to extremely large com-
munication costs and storage complexity, as well as a significant degradation in data utility. To
reduce the large communication overhead, Fanti et al. [45] proposed to separately collect data
of each dimension under LDP and to estimate the joint distributions using expectation maxi-
mization (EM). However, the algorithm only supports estimates of the joint distribution of two
attributes. Further, Ren et al. [130] introduced LOPUB, which splits the w-dimensional data
into m-dimensional clusters (m < w) using dependence graphs and estimates m-way joint
distributions via an EM-based and Lasso regression-based approach. However, the algorithm
still suffers from high computational complexity and low data utility when m is large. Based on
these facts, alternative solutions for privacy-preserving high-dimensional data collection are
still greatly needed.

Recently, data synthesis has been considered a promising approach for addressing data pri-
vacy issues in business intelligence & AI services. With the strong capabilities of character-
izing the joint distributions and correlations of high-dimensional data, deep generative mod-
els are increasingly used for generating high-utility and low-sensitivity synthetic data. In this
work, we follow the idea of data synthesis and propose DP-FED-WAE, a privacy-preserving
framework for high-dimensional categorical data collection. Different from prior work on dif-
ferentially private synthetic data generation algorithms [179, 122, 145], which mainly focuses
on the centralized setting where the real data are already collected by the server, our frame-
work conducts the data synthesis without collecting real local data. The main idea is to train
a (generative) Wasserstein autoencoder (WAE) [144] under the federated learning (FL) [108]
setting to learn the distributions of the high-dimensional local data and then to generate high-
quality synthetic data on the cloud server. Moreover, we propose a novel local randomization
algorithm SIGNDS, which is applied to a client’s local updates to prevent potential privacy
leakages in FL. The algorithm provides a strict ϵ-LDP privacy guarantee for any client’s local
dataset.

In comparison with previous data collection approaches, our framework shows significant ad-
vantages in both data utility and privacy protection. As for data utility, the WAE model has a
strong capability in capturing correlations and joint distributions of high-dimensional data and
generating high-utility synthetic data. The generated synthetic data can be easily scaled up
to replace the real data for data analysis and AI training tasks. As for privacy, the generated
data are fully synthetic, which effectively reduce risks of re-identification attacks or attribute
disclosure [122]. Moreover, training the WAE model under the LDP-FL setting not only avoids
the collection of raw user data but also provides comprehensive privacy guarantees to the
framework. Our contributions can be summarized as follows:
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• We propose DP-FED-WAE, an efficient and privacy-preserving framework that effec-
tively combines a generative autoencoder, FL, and DP for collecting high-dimensional
categorical data. Based on the idea of data synthesis, the framework effectively solves
the curse-of-dimensionality problem in LDP-based data collection solutions. The syn-
thetic data preserves high utility and can replace real data for data mining and AI training
tasks.

• We further propose a novel local randomization algorithm SIGNDS, which perturbs
clients’ local updates and prevents potential privacy leakages in FL. We prove that the
algorithm follows a strict ϵ-LDP definition and provides a strong local privacy guarantee
to any client’s local data.

• We have implemented our framework and evaluated the performance in terms of data
utility and privacy protection using real-world datasets containing 68–124 classification
attributes. Through comparison with the LDP-based algorithms, we show that the syn-
thetic data generated by our framework always preserve much closer joint distributions
and correlations to real data. Also, the accuracy loss of the model trained with synthetic
data generated by our framework is significantly reduced in comparison to the base-
line method. With a local privacy guarantee ϵ = 8, we reduced the accuracy loss from
10% ∼ 30% to less than 3% and at best even less than 1%. Extensive evaluation exper-
iments show that our framework has outperforming capability and efficiency in collecting
high-dimensional data while striking a satisfactory utility-privacy balance.

4.3 Problem Statement

In this work, we consider a scenario where a large number of local users hold high-dimensional
personal data. A central server aims to estimate joint distributions of these high-dimensional
data and to generate similar synthetic data for data analysis or designing new AI services.
Here, we assume the server to be honest-but-curious, who follows the system protocols but
tries to infer sensitive information of local users. Thus, to protect local privacy, we require
the server not to have access to raw local data but only anonymized versions of data or their
feature representations.

Assume that there are N local users, each holding one or more data records, which have
|A| attributes A = {a1, · · · , a|A|}. Each attribute ai has a domain Λi of possible values.
The full domain for the |A|-dimensional data record is denoted as Λ = Λ1 × · · · × Λ|A|,
where × is the Cartesian product. The total domain size is |Λ| = ∏|A|

i=1 |Λi|, which increases
exponentially with data dimensionality |A|. Based on the notation above, the problem can
then be formulated as follows: given a |A|-dimensional private dataset X distributed among
N local users, a central server aims to generate a synthetic dataset X̃ without access to
raw data X. The synthetic dataset X̃ has the same attributes A, and preserves similar joint
distributions of X, namely

PX̃(a1 · · · a|A|) ≈ PX(a1 · · · a|A|). (4.1)
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It can be further derived that the synthetic data X̃ also preserves m-way joint distributions as
X. Namely, given an m-way attribute combination A ⊆ A, we have

PX̃(A) ≈ PX(A). (4.2)

4.4 Proposed Solution

As discussed previously, existing LDP algorithms are impractical for collecting high-dimensional
data due to both high computation and communication costs and poor data utility (e.g., [44, 45,
130]). In order to solve the curse-of-dimensionality problem, we propose DP-FED-WAE, an
efficient privacy-preserving framework for collecting high-dimensional categorical data. The
framework contains three main components: a generative autoencoder, FL, and DP. Follow-
ing the idea of recent data synthesis techniques, the framework utilizes generative autoen-
coders to learn the statistical distributions and correlations of high-dimensional user data and
then to generate high-utility synthetic data on the server side. Different from existing works
of synthetic data generation where the real data are already available to the server (e.g.,
[179, 122, 145]), our framework focuses on the scenario where the real data are distributed
on local devices. Therefore, we propose to train the generative autoencoder under the FL set-
ting, which only exchanges model parameters during the training process and keeps the raw
user data inaccessible to the server. Furthermore, we incorporate DP during the training pro-
cess in order to prevent potential privacy leakages in FL. In comparison to the previous DP-FL
frameworks that add DP noise on the server side [110, 7], we propose a novel local random-
ization algorithm that perturbs the local updates before uploading them to the server. This
ensures that the server cannot gain access to real local updates and efficiently prevents local
privacy leakages. We prove that the randomization algorithm follows a strict LDP definition
and provides a strong local privacy guarantee to each client’s local dataset.

The overall workflow is presented in Figure 4.1, which is processed in the following sequence:

1. The local clients first process the original categorical data into a numerical form, which
can be used for training the generative autoencoder. At the same time, the server
defines the structure of the generative autoencoder based on the dimensionality of local
data and initializes the model.

2. The generative autoencoder is then collaboratively trained under the FL mechanism that
is incorporated with LDP to achieve strict privacy guarantees.

3. After the model gets trained, the decoder is extracted for generating synthetic data.
The generated data will be finally converted back to categorical form and used for data
mining and building machine learning models.

4.4.1 Data Pre-Processing and Design of the Generative Model

Since the original data are categorical and cannot be directly processed by machine learning
models, we first convert the data into numerical form. Here, we use a one-hot encoding to
encode each categorical attribute into a binary vector. Each entry in the binary vector stands
for a unique attribute value and the entry of the given value is set to 1 while all the others are
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Figure 4.1 Overview of the DP-FED-WAE framework. The generative Wasserstein Autoencoder is first
trained under the federated setting, which learns the distributions of real local data. An LDP algorithm
SIGNDS is applied to the local updates to provide strict local privacy guarantees. After the model is
trained, the decoder part is used to generate high-utility synthetic data. The generated data will be
used for data mining and building AI services.
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set to 0. Finally, we concatenate all the binary vectors into one vector as the input data for the
generative model.

In this framework, we choose the Wasserstein autoencoder (WAE) as the generative model
in our framework, which provides better data synthesis capability in comparison to the varia-
tional autoencoder (VAE) [85] and less training difficulty than the generative adversarial net-
work (GAN) [53]. As a variant from the family of autoencoders, WAE preserves the encoder-
decoder architecture. The encoder Qψ compresses the original high-dimensional input x ∼
Px into the low-dimensional latent feature z = Qψ(x) and the decoder Gθ maps z to the
reconstructed output x̃ = Gθ(z), which is the same shape as x. The distance between the
original input and the reconstructed output can be presented as Lrec(x,Gθ(Qψ(x))). In ad-
dition, a regularizer term Llat(qz, pz) is applied to measure the distance between the latent
space distribution qz and certain prior distribution pz. The final objective function of the WAE
model can thus be formulated as follows:

LWAE = Ex∼Px [Lrec(x,Gθ(Qψ(x)))] + λ · Llat(qz, pz), (4.3)

where λ is a hyperparameter for balancing the two terms. The goal of training is to find an
optimal set of parameters, which minimizes the distance between the inputs and outputs while
restricting the latent space to follow the prior distribution.

We design the WAE models with fully-connected hidden layers. We apply the relu activation
on the output of each hidden layer for better training performance. Moreover, since the inputs
are binary vectors, we use the sigmoid activation on the output layer, which restricts the output
value within [0,1]. Then, we calculate the binary cross-entropy of each input/output dimension
and compute the average as the reconstruction distance Lrec(x,Gθ(Qψ(x))). For the latent
space distance Llat(qz, pz), we use the standard Gaussian distribution as the prior distribution
pz and use the maximum mean discrepancy (MMD) to measure the distance between the
latent space distribution qz and pz, as in [144]. Given a batch of data sampled from the two
distributions, i.e., {q1, · · · , qN} ∼ qz and {p1, · · · , pN} ∼ pz, Llat(qz, pz) can be empirically
estimated as

Llat(qz, pz) = 1
N(N − 1)

∑

i ̸=j
K(pi, pj)− 2

N2
∑

i,j

K(pi, qj) + 1
N(N − 1)

∑

i ̸=j
K(qi, qj), (4.4)

where K(x, y) = κ
κ+∥x−y∥2

2
. Given dz as the dimension of latent layer and σz as the scale of

the prior distribution, κ = 2dzσ2
z . We choose λ equal to 1.

4.4.2 Training the Generative Model

Previous LDP-FL frameworks (e.g., [42, 40, 158]) evenly split the privacy budget across dimen-
sions and apply the perturbation independently. However, the per-dimension privacy budget
becomes extremely small for high-dimensional models, which results in a significant increase
in noise. A recent work [99] proposed a two-stage LDP-FL framework, which splits the pri-
vacy budget into a dimension selection (DS) stage and a value perturbation (VP) stage. In
the DS stage, the local update is sorted by absolute value, and one "important" dimension is
privately selected from the top-k dimensions; in the VP stage, the value of the selected di-
mension is perturbed. Finally, a sparse local update is constructed and returned to the server.
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Algorithm 4: SIGNDS

Input: ∆ ∈ Rd: local update; k: size of the top-k set; ϵ: privacy budget; s: sampled sign
Output: j: selected dimension index

1: if s = 1 then
2: Select dimensions of k largest values in ∆ to build the top-k dimension set Stopk
3: else
4: Select dimensions of k smallest values in ∆ to build the top-k dimension set Stopk
5: end if
6: Sample a Bernoulli variable x such that Pr[x = 1] = eϵ·k

d−k+eϵ·k
7: if x = 1 then
8: Randomly sample a dimension j ∈ {a ∈ {1, · · · , d}|a ∈ Stopk}
9: else

10: Randomly sample a dimension j ∈ {a ∈ {1, · · · , d}|a /∈ Stopk}
11: end if
12: Return j

Although [99] mitigated the dimension-dependency problem by only selecting one "important"
dimension, the privacy budget is still consumed by the two stages. In high-privacy scenar-
ios (where the privacy budget is small), each stage may therefore obtain only an insufficient
privacy budget and cause large randomness.

Motivated by the limitations of [99], we propose a sign-based dimension selection algorithm
SIGNDS, as presented in Algorithm 4. The main idea is to substitute the VP stage by assigning
a constant value to the selected dimension. Since the parameter values may have different
signs, we introduce an extra variable s ∈ {−1, 1}, which is randomly sampled by the client
with equal probability. Then, given each local update ∆, we build the top-k dimension set
Stopk according to ∆’s real values and the sampled sign s: if s = 1, Stopk is built with the
dimensions of the k largest values; otherwise, it is built with the dimensions of the k smallest
values. We refer to the dimensions included in Stopk as top-k dimensions and the rest as
non-top-k dimensions. Then, a dimension index j is randomly sampled as follows:

j ∈
{
{a ∈ {1, · · · , d}|a ∈ Stopk} w.p. p

{a ∈ {1, · · · , d}|a /∈ Stopk} w.p. 1− p
, (4.5)

Namely, the index j is sampled from the top-k dimensions with a probability of p and otherwise
from the non-top-k dimensions with a probability of 1−p. We refer to p as the top-k probability.
Finally, the dimension index j and the sampled sign value s are returned to the server. Since
our algorithm does not return the dimension value to the server, we save the privacy budget
for the value perturbation stage in [99]. With the same privacy level, we can now achieve less
randomness and thus higher accuracy in dimension selection.

In the following, we provide the privacy guarantee and utility analysis of Algorithm 4.

Lemma 5. Algorithm 4 satisfies ϵ-LDP when the top-k probability p ≤ eϵ·k
d−k+eϵ·k .

Proof. For each client, given the sampled sign s and any output dimension j ∈ {1, · · · , d},
let Stopk, S′

topk be the top-k dimension set of any two possible local update vectors ∆ and ∆′.
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Given the top-k probability p, the probability of sampling a dimension j from the top-k set and
the non-top-k set are respectively p · 1

k and (1− p) · 1
d−k . Thus, when p ≤ eϵ·k

d−k+eϵ·k we have

Pr[j|∆]
Pr[j|∆′] = Pr[j|Stopk]

Pr[j|S′
topk]

≤ Pr[j|j ∈ Stopk]
Pr[j|j /∈ S′

topk]
=

p · 1
k

(1− p) · 1
d−k
≤ eϵ (4.6)

which completes the proof.

In addition to the privacy guarantee, we are also interested in how to choose proper k and ϵ in
order to achieve a certain top-k probability p. Let ξ = k/d be the ratio of the top-k parameters
regarding the total number of parameters. A ξ = 1 means to randomly select one dimension
from the entire dimension group. Intuitively, the smaller ξ, the closer the parameter values of
top-k dimensions to the real largest (or smallest) value and the better the model utility. We
derive relations among ϵ, p, and ξ as follows:

Corollary 1. With a fixed privacy budget ϵ, in order to achieve a probability p, ξ should satisfy
ξ ≥ p

eϵ·(1−p)+p .

Corollary 2. With a fixed top-k ratio ξ, in order to achieve a probability p, ϵ should satisfy
ϵ ≥ log p·(1−ξ)

(1−p)·ξ .

Proof. From Lemma 5, we have p ≤ eϵ·k
d−k+eϵ·k = eϵ·ξ

1−ξ+eϵ·ξ . Thus, with a fixed ϵ, we have

ξ ≥ p
eϵ·(1−p)+p ; with a fixed ξ, we have ϵ ≥ log p·(1−ξ)

(1−p)·ξ

Corollary 1 states that with a fixed privacy budget ϵ, a smaller top-k ratio ξ leads to a decrease
of top-k probability p. Moreover, given an expected top-k probability p and a predefined top-
k ratio ξ, the minimum required privacy budget ϵ can be calculated using Corollary 2. We
further visualize the relations of ϵ, p, and ξ in Figure 4.2. As shown in Figure 4.2a, in high-
privacy scenarios (e.g., ϵ ≤ 2), the required top-k ratio ξ differs distinctively with the choices
of p. Namely, we have to choose a large ξ in order to ensure that the index is more likely to be
sampled from top-k dimensions. As ϵ increases (e.g., ϵ ≥ 6), ξ does not differ much regarding
p. In other words, we can always achieve a high top-k probability even with a small top-k ratio.
In Figure 4.2b, we further present the minimum ϵ under various ξ and p.

We now describe the overall training process presented in Algorithm 5. At each global round
t, the server selects a group of n clients and broadcasts the current global model Mt. On
the local side, each client i in the group trains the global model for several epochs with his
local data Xi and computes the local update ∆i

t. Then, the client randomly samples a sign
sit ∈ {−1, 1} with equal probability and uses it along with the predefined privacy budget ϵr to
privately select a dimension index jit of the local update. Finally, sit and jit are returned to the
server. After receiving the dimension jit and the sampled sign sit, the server builds a sparse
local update ∆̂i

t and assigns sit to the selected dimension. Since the selected dimension jit
satisfies the ϵ-LDP guarantee and the assigned sign value sit is unrelated to the local data,
according to LDP’s robustness to post-processing (Property 5), the sparse local updates also
satisfy ϵ-LDP. Finally, the server aggregates all the sparse local updates and updates the
global model with a global learning rate γ. The updated global model Mt+1 is distributed to
local clients to start the next round.
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Figure 4.2 Relations among ϵ, p, and ξ. (a): given privacy budget ϵ and the expected top-k probability
p, the minimum top-k ratio ξ required. (b): given the expected top-k ratio ξ and top-k probability p, the
minimum privacy budget ϵ required.

Note that according to the sequential composition property (Property 6), if the same client re-
peatedly participates in the training and submits the local update for multiple global rounds, the
overall privacy guarantee for his local data will be accumulated. Assume each client is allowed
to participate in at most tr global rounds. In order to ensure an overall privacy guarantee of
ϵ-LDP for each client’s local data after the whole training process, the per-round privacy guar-
antee should satisfy ϵr ≤ ϵ/tr. Moreover, during the training process, we monitor the number
of rounds each client participates in. If a client has reached the maximum participating rounds
(which is tr here), he is not allowed to participate in the later training process.

4.4.3 Generating Synthetic Data and Data Post-Processing

Once the model has been trained, the server can use the decoder part to generate synthetic
data. Recall that the latent space features are enforced to follow the standard Gaussian dis-
tribution pz. Therefore, we can simply generate random latent features from pz and feed them
into the decoder. The decoder output has the same length as the encoded input described in
Section 4.4.1, where each dimension is a numerical value between 0 and 1.

Finally, we need to convert the synthetic data back to categorical form. Given an output vector,
we first split it into pieces of short vectors, each representing one categorical attribute. Then,
for each short vector, we choose the entry with the maximum value as the attribute value. In
the end, we concatenate all the categorical labels into one vector as the final synthetic data.
The synthetic data will be used for data analysis and training of machine learning models.

4.5 Experiments and Results

We implemented the proposed framework and performed comprehensive experiments with a
number of open-source datasets to evaluate its performance.
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Algorithm 5: Training the WAE Model

Input: M1 ∈ Rd: initial global model; N : number of per-round clients; E: number of
local epochs; η: local learning rate; k: number of parameters in the top-k set of
each local update; T : number of global aggregation rounds; γ: global learning
rate; ϵr: per-round privacy budget

Output: Trained WAE model M

Server executes:
1: for global round t = 1, · · · , T do
2: Randomly select a group of N clients
3: for client i = 1, · · · , N in parallel do
4: Broadcast current global model Mt

5: Receive sampled sign and dimension sit, j
i
t = LocalUpdate(Mt, E, η, ϵr, k)

6: Build sparse local update ∆̂i
t = [0, · · · , 0]d and set ∆̂i

t[jit ] = sit
7: end for
8: Aggregate local updates: ∆̂t = 1

N

∑N
i=1 ∆̂i

t

9: Update global model Mt+1 = Mt + γ · ∆̂t

10: end for
11: Return Global model M = MT+1

LocalUpdate(Mt, E, η, ϵr, k, h):
// Run on the client side

13: Initialize local model M i
t ←Mt

14: for epoch e = 1, · · · , E do
15: M i

t = M i
t − η · ∇L(M i

t , X
i)

16: end for
17: Calculate local update: ∆i

t = M i
t −Mt

18: Randomly sample a sign sit ∈ {1,−1} with probability Pr[sit = 1] = 0.5
19: Dimension selection jit = SignDS(∆i

t, k, ϵr, s
i
t)

20: Return sit, j
i
t

4.5.1 Experiment Setup

Datasets and WAE Models

We used four open-source datasets for evaluating the performance of our framework. Each
dataset contains multi-dimensional data records, which were used for classification tasks:

• The Census dataset [38] contains records drawn from the 1990 United States census
data, which include 68 personal attributes such as gender, income, and marriage status.
We used the dataset for a classification task to determine the duration of people’s active
duty service.

• The Twitter dataset [83] contains records with 77 attributes such as the number of
discussions, average discussion length, and the number of authors, which are used
to predict the number of active discussions, namely the popularity magnitude of each
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Table 4.2 Datasets details

Dataset Type
Num. Num. Domain

Records Attributes Size
Census Integer 2458285 68 2150

Twitter Integer 140707 78 2181

Vehicle Binary 98528 101 2101

Adult Binary 32561 124 2124

Table 4.3 Structure of WAE models

Dataset Num.Params Model Structure

Census 76524
Input-Dense(96, relu)-Dense(24)
-Dense(96, relu)-Output(sigmoid)

Twitter 94961
Input-Dense(128, relu)-Dense(36)
-Dense(128, relu)-Output(sigmoid)

Vehicle 13093 Input-Dense(64, relu)-Dense(16)
Adult 16060 -Dense(64, relu)-Output(sigmoid)

instance. In our experiment, we quantified the values of each attribute into five bins.
The goal was to classify the level of popularity of each instance.

• The Vehicle dataset [39] contains data collected in wireless distributed sensor networks.
Each record has 100 attributes representing data collected from different acoustic and
seismic sensors. The goal was to train a classifier for vehicle type classification.

• The original Adult dataset [86] contains records with 15 personal attributes such as
age, occupation, education, and gender. The goal was to train a binary classifier that
determines whether a person earns more than 50K a year. We used the processed
version from [126], which converted the original attributes into binary features.

We present details of each dataset in Table 4.2, which include the number of records and
attributes, the length of the one-hot encoded input, and the total domain size. Since the
number of user data should be large in order to preserve data utility (which will be discussed in
Section 4.7.1), in the following experiments we simulated the large-scale distributed scenario
by assuming there were 5× 104 clients, each holding two data records. Hence, we randomly
sampled 105 records for each dataset. For datasets with more than 105 records (i.e., Census
and Twitter), we did the sampling without replacement.

We varied the structure of the WAE models to fit the input size of different datasets. Details
of the WAE models can be found in Table 4.3. For binary datasets (i.e., Vehicle and Adult),
small WAE models with a latent-layer size of 16 were already sufficient to achieve satisfactory
data synthesis performance. On the other hand, for the other two complex datasets that
had distinctively higher domain sizes, we used larger models with a higher latent-layer size
to better capture the hidden distribution and cross-attribute correlations. Moreover, it is also
possible to use auxiliary data to further optimize the model structure, which we will discuss in
Section 4.6.2. We also provide an example structure of the WAE model used for the Adult
dataset (Figure 4.3), where FC represents fully-connected layers, BCE represents the binary
cross-entropy and MMD represents the MMD penalty.
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Figure 4.3 Structure of the WAE model used for Adult dataset.

Baseline Methods

In the following experiments, we have used LOPUB [130] and LOCOP [160] as our baseline
algorithms. Both algorithms apply LDP directly on the local data and send the randomized
data to the server. The local randomization follows the RAPPOR algorithm [44]. As derived
in [130], given w as the number of attributes in local data, H as the number of hash functions
and pf as the flip probability, the overall privacy for each individual client is

ϵ = 2 · w ·H · ln((2− pf )/pf ). (4.7)

Then, the randomized data will be aggregated on the server side for estimating the joint dis-
tributions and attribute dependencies. Such information will then be finally used for construct-
ing the synthetic dataset: LOPUB generates the dependency graph based on a dependence
threshold ϕ and estimates m-way joint distributions to generate the synthetic data; LOCOP

leverages multivariate Gaussian copula to determine attribute dependencies and generates
synthetic data by only using one- and two-way joint distributions. For both algorithms, we
used the Lasso-based regression for estimating the joint distributions. In addition, we fol-
lowed [130] to choose the number of the hash function H = 4 and the dependence threshold
ϕ = 0.4.
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Evaluation Metrics

We evaluated the performance of our framework from two perspectives, namely the data utility
evaluation and the privacy evaluation:

• For the data utility evaluation, we first compared the statistical distributions of synthetic
data and real data. Then, we used different machine learning models to investigate
the utility of synthetic data in AI training tasks. Intuitively, synthetic data with high utility
should show similar statistical properties and model accuracy as real data.

• For the privacy evaluation, we investigated the capability of our framework against mem-
bership inference attacks, where an attacker aimed to use the synthetic dataset to de-
termine whether a target data was used for training the WAE model.

Parameter Configurations

In the experiments, we assumed there were 5×104 clients. We set the global round T = 5000,
and N = 10 clients were sampled to train the WAE model in each global round; namely, each
client was sampled once during the whole training process. We set the global learning rate
γ = 1 due to the good empirical performance. For local training, each client updated the
model for E = 10 epochs. We used the Adam optimizer with a default local learning rate
η = 0.001 for all the WAE models. For the local randomization, we chose the top-k ratio ξ
from {0.05, 0.1, 0.25} and the privacy budget ϵ ∈ {0.5, 1, 2, 4, 6, 8} to explore the influence of
privacy on the framework performance.

It should be noted that ϵ here was the overall local privacy budget for each client. As men-
tioned in Section 4.4.2, if each client participated in tr global training rounds, the per-round
privacy budget should satisfy ϵr ≤ ϵ/tr. Since we assumed that each client only participated
once during the whole training process, we have tr = 1 and the per-round privacy budget is
equal to the overall privacy budget. Moreover, we would like to emphasize that the selected
ϵ values are reasonable local privacy guarantees for collecting w-dimensional data. Consider
the privacy guarantee of the baseline algorithms (Equation (4.7)), with the number of the hash
function H = 1 and a flipping probability pf = 0.5, we already have ϵ = 150 for the Census
dataset with w = 68. For the Adult dataset with w = 124, the overall ϵ is even 272, which is
significantly larger than our setting.

Computation Environments

We performed all the experiments on a server with an Intel E5-2470 2.40GHz CPU. In Ta-
ble 4.4, we report the computational time of 1) 10 epochs of local training on each client;
2) one round of local updates aggregation and global model update on the server side; 3)
generation of 105 synthetic data records on the server.
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Table 4.4 Computation time of model training and synthetic data generation

Dataset Adult Vehicle Census Twitter

Training
Client 1.06 s 0.93 s 1.28 s 1.25 s
Server 3.51 ms 3.05 ms 4.95 ms 4.92 ms

Data Generation 7.38 s 7.37 s 9.44 s 10.47 s

4.5.2 Evaluation for Data Utility

In this section, we evaluate the utility of the synthetic data generated using our framework in
comparison to the baseline. The evaluations can be generally divided into statistical compari-
son and AI training performance.

Statistical Comparison

For the statistical comparison, the goal is to investigate whether the synthetic data generated
by our framework can preserve the joint distributions and correlations of real data. Intuitively,
synthetic data with high utility should show similar statistical properties as real data. We have
respectively comparedm-way joint distributions and the cross-attribute correlations to analyze
the utility of the synthetic data.

Comparison of Joint Distributions For the analysis of joint distributions, we used the aver-
age total variation distance (AVD) to quantify the distribution difference between the real data
and synthetic data, as suggested in [130], which is defined as

AVD = 1
2
∑

A⊆A
|Preal(A)− Psyn(A)|, (4.8)

where Preal(A) and Psyn(A) are m-way joint distributions of real data and synthetic data.
More specifically, given an m-way attribute combination A with a domain size of |ΛA|, Preal
and Psyn are |ΛA|-dimensional vectors, where each entry is the probability of a specific value
combination (namely the ratio of occurrence in the entire real or synthetic dataset). For each
dataset, we randomly chose 100 combinations of m attributes and calculated the average
distribution difference.

We first analyzed the AVD of all three algorithms with respect to the privacy level ϵ. For each
dataset, we respectively compared the AVD of the synthetic data generated by the baseline
algorithms and by our framework. In Figure 4.4, we present the results for the four-way joint
distribution with different privacy budgets. The error bars represent the 95% confidence in-
terval (also for the remaining experimental results). It can be seen that the AVD of all the
algorithms decreases with the increase of ϵ. For all datasets, the synthetic data generated by
our framework (referred to as WAE) have smaller AVD in comparison to the baseline methods
(referred to as LoPub and LoCop), indicating that the synthetic data generated by our frame-
work preserves better multivariate distributions than the baseline methods. Also, we notice
that the non-binary datasets Census and Twitter usually show larger AVD in comparison to
the other two binary datasets. This is due to the fact that the non-binary datasets have a larger
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Figure 4.4 AVD of four-way joint distribution between the real and synthetic data with respect to differ-
ent privacy levels.

domain size, which leads to lower frequencies of the potential attribute combinations. There-
fore, it is more difficult for the generative models to find meaningful mappings between the
original input space and the compact latent space, which results in a comparatively larger dif-
ference between the synthetic data and real data. Moreover, we observe that for our solution,
when the privacy budget ϵ is small, the synthetic data with a larger top-k ratio have smaller
AVD; while for larger ϵ, the synthetic data with smaller ξ show better utility. This complies
with the discussion in Section 4.4.2. By intuition, the smaller ξ is, the better model perfor-
mance is. However, when ϵ is small, the decrease of ξ leads to a significant decrease in top-k
probability p, which increases the randomness of dimension selection and affects the model
convergence. As ϵ increases, p is always relatively high and does not differ much regarding to
ξ. In this case, a smaller ξ enhances the model performance and thus improves the utility of
the synthetic data.

We further analyzed the AVD of all the algorithms with regard to the dimension of joint distribu-
tions m, in order to get a deeper insight into our framework’s capability on complex statistics.
For each dataset, we tested the m-way AVD where m ∈ {2, 3, 4, 5, 6} and present the results
under ϵ = 4 in Figure 4.5. It can be seen that for all the datasets, the AVD increases with a
larger m. In addition, our proposed solution consistently outperforms the baseline algorithms.
More specifically, the AVD of the baseline algorithms is close to our framework when m is
small, yet gets distinctively larger with an increase of m. This indicates that our framework
can effectively capture the information of high-dimensional joint distributions of real data.
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Figure 4.5 AVD ofm-way joint distributions between the real and synthetic data with respect to different
dimensions of joint distribution.

Comparison of Correlation For the comparison of correlation, we have respectively com-
puted the Pearson correlation coefficient of the real and synthetic dataset and used the corre-
lation matrix distance (CMD) [61] to measure the distance between the two correlations, which
is defined as follows:

CMD = 1− tr{RrealRsyn}
∥Rreal∥2∥Rsyn∥2

, (4.9)

whereRreal andRsyn are correlation coefficient matrices of real and synthetic data, tr(·) is the
matrix trace, ∥ · ∥2 is the Frobenius norm. The correlation matrix distance (CMD) is bounded
by [0, 1], where zero means the two correlation matrices are identical.

For each dataset, we calculated the CMD of the synthetic data generated by both the base-
line algorithms and our framework under different privacy levels and compared the results in
Figure 4.6. It can be seen that with the same ϵ, the baseline algorithms always show a much
larger CMD in comparison to the results of our framework. Although increasing the ϵ helps to
reduce the CMD, it is still insufficient for preserving the multivariate correlations of real data.
On the other hand, the synthetic data generated by our framework shows a distinctive de-
crease with the increase of ϵ. In particular, the CMD is close to zero when ϵ ≥ 4, indicating
that the synthetic data have similar cross-attribute correlations as real data.

We further visualized the correlation coefficient matrix of real data and synthetic data with heat
maps in order to better understand the capability of our method in capturing and preserving the
cross-attribute correlations. Figure 4.7 shows the comparison result of the different datasets
with ϵ = 8 and ξ = 0.1. For each dataset, we present the correlations of the first 10 attributes.
From the visualization results, it can be seen that the correlation of synthetic data is similar
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Figure 4.6 CMD between the real and synthetic data with different privacy levels.

to the correlation of real data, indicating that the synthetic data successfully preserves the
attribute correlations of real data.

AI Training Performance

Next, we used different machine learning models to evaluate the utility of synthetic data in
different AI training tasks. More specifically, we trained two classification models Mreal, Msyn,
respectively, with real data and synthetic data, and tested both models with an amount of held-
out real data. Then, we compared the test accuracy Accreal and Accsyn, which represent the
test accuracy of Mreal, Msyn. If Accsyn was close to Accreal, we considered that the synthetic
data are of high utility.

For each dataset, we used a two-layer neural network (NN) and random forest (RF) as the
classification models. We trained each classification model 10 times and calculated the av-
eraged Accsyn. In Figure 4.8 and Figure 4.9, we present the results of Accreal as well as
Accsyn evaluated on the synthetic data generated by all three methods under different privacy
levels. It can be seen that the Accsyn of the baselines shows, in general, a distinctive distance
from Accreal on both evaluation models and only has slight improvement with larger privacy
budget ϵ. In comparison, the Accsyn of our method consistently outperforms the baselines
for both classification algorithms. With an increase of ϵ, the Accsyn gradually gets close to
Accreal. Moreover, we observe higher Accsyn with the decrease of top-k ratio ξ. In particular,
with ϵ = 8 and ξ = 0.05, the reduction of Accsyn is less than 1% for the Census and Adult
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Figure 4.7 Correlation comparison between the real and synthetic data with ϵ = 8 and ξ = 0.1. For
each dataset, we present the correlations of the first 10 attributes. It can be seen that the synthetic
data preserves similar correlations as real data.

dataset and less than 3% for the other two datasets. The results above further indicate that
the synthetic data generated by our framework largely preserves the joint distributions and
hidden correlations of real data, and can replace real data for AI training tasks.

Impact of the Number of Records

In the above experiments, we assumed a group size of 5×104 clients and in total 105 records.
We further investigated how the number of records impacts the utility of synthetic data. We
varied the number of records among {104, 105, 106} (thus the total number of clients is re-
spectively {5×103, 5×104, 5×105}). Similar to previous experiments, we assumed that each
client held two data records and only participated once during the whole training process. For
the experiments with 104, we set the total global rounds T = 500 with n = 10 clients for each
round. For the experiments with 106 records, we set the total global rounds T = 5000 with
n = 100 clients for each round.

We have evaluated the accuracy of both classification models (i.e., two-layer NN and RF)
with respect to the number of records and present the results in Figure 4.10 and Figure 4.11.
Here we compare the results under a privacy of ϵ = 8 (and ξ = 0.1 for our method). Although
both algorithms show higher classification accuracy with a larger number of records, the base-
line algorithms still cannot achieve significant improvements even with the largest number of
records. In comparison, the classification accuracy of our method constantly outperforms the
baseline algorithms. In addition, we notice that the classification accuracy in the experiments
with 104 records is distinctively lower than others. This is because the generative model is
underfitted when trained on a limited number of records and thus cannot generate high-utility
synthetic data. On the other hand, although a larger number of local data (e.g., 106) ensures
the generative model is fully-trained, the model performance does not improve much after
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Figure 4.8 Classification accuracy of NN models trained with real data (Real Data) and synthetic
data generated by our framework (WAE) as well as by the baseline algorithms (LoPub, LoCop) under
different privacy levels.

achieving convergence and thus cannot reach much improvement regarding classification ac-
curacy.

Impact of the Number of Users

In previous experiments, we assumed that there were a large number of users (e.g., 5× 104)
who each only participated once during the entire training process. We further extended the
scenario by assuming there were fewer clients and each client was selected multiple times for
model training. To this end, we respectively assumed there were 5 × 104, 5 × 103, 5 × 102

clients, each with 2, 20, and 200 data records. Each client participated in 1, 10, and 100
global training rounds and the corresponding per-round privacy budget ϵr equals ϵ, ϵ/10 and
ϵ/100 (ϵ is the total privacy cost).

For each dataset, we conducted experiments with the total privacy budget ϵ ∈ {2, 4, 8} and
evaluated the accuracy of both classification models regarding the number of users. The
results are shown in Figure 4.12 and Figure 4.13. It can be generally seen that participating
in multiple training rounds can cause a distinctive impact on the framework performance and
data utility, especially for datasets with larger generative models (Census and Twitter). This is
because with a fixed total privacy budget the per-round privacy budget is inversely proportional
to the participating rounds. Therefore, having each client participate in multiple training rounds
will significantly increase the randomness injected during model training and affect the model
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Figure 4.9 Classification accuracy of RF models trained with real data (Real Data) and synthetic data
generated by our framework (WAE) as well as by the baseline algorithms (LoPub, LoCop) under dif-
ferent privacy levels.

convergence. Thus, we need to further increase the total privacy budget ϵ to achieve satisfying
data utility.

4.5.3 Evaluation for Privacy Protection

Although a larger privacy budget ϵ has a distinctive contribution to data utility, this may be at
the expense of privacy. Currently, there is no concrete understanding of how to choose an
appropriate ϵ in practice for a satisfactory utility-privacy trade-off. In this section, we have em-
pirically analyzed the privacy protection capabilities of our framework against the membership
inference attack (MIA). We followed the MIA protocol of [138]. The protocol assumed that the
attacker holds a reference dataset that shares similar distributions as the real training data.
The attacker respectively trains a pair of generative models Gin and Gout using the reference
data with and without the target record. Then, an attack model is trained to distinguish the
synthetic data generated by Gin and Gout, which can be considered as a binary classification
task. Finally, given the published synthetic dataset, the attacker can use the attack model to
test whether the synthetic data is generated by a model trained with the target record, namely
whether the target record is included in the generative model’s training dataset.

We randomly picked 30 records as the target record. For each target record, we trained gener-
ative models under different privacy settings and repeated the attack 10 times. In each attack
trial, we used a list of machine learning models such as support vector machines, logistic re-
gression models, KNN models, RFs, and NNs as the attackers and picked the highest attack
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Figure 4.10 Classification accuracy of NN models with different numbers of records under the privacy
level of ϵ = 8.

Table 4.5 Accuracy of membership inference attack

Dataset Census Twitter Vehicle Adult
No Privacy 0.735 0.698 0.637 0.642

ϵ = 8 0.574 0.547 0.546 0.535
ϵ = 2 0.548 0.529 0.513 0.519
ϵ = 0.5 0.529 0.524 0.507 0.506

accuracy over all the attackers. Finally, we compute the averaged attack accuracy against all
the target records under different privacy settings and present the results in Table 4.5. It can
be seen that synthetic data generated by the non-private generative model is more likely to re-
veal the membership information of the target record. The attack accuracy of all the datasets
is more than 60% and even up to 73.5% for the Census dataset. On the other hand, applying
DP can effectively reduce the attack accuracy. With ϵ = 0.5, the attack accuracy is reduced
by 13% ∼ 20%. Even with ϵ = 8, the attack accuracy can still be reduced by 8% ∼ 16%
and is close to 50%, namely the accuracy of a random guess. The results demonstrate that
our framework is able to reduce the risk of membership inference attacks and provide privacy
protection to the local data.
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Figure 4.11 Classification accuracy of RF models with different numbers of records under the privacy
level of ϵ = 8.

4.6 Discussion

4.6.1 Extension to Other Data Types

In this paper, we demonstrated that our framework performs well on high-dimensional categor-
ical data. In order to do so, we converted the categorical data into numerical form for training
the WAE model and then reversed the model’s numerical outputs back to categorical form. In
future studies, it is also possible to modify the current model structure and the loss function
in order to extend the framework for supporting other data types, image data, and text data.
For instance, for image data, we can further apply convolution layers to enhance the feature
extraction capability and use the mean squared error instead of the cross-entropy to measure
the reconstruction distance. Despite the variation of the generative models, the main idea of
training the model under privacy-preserving federated learning and generating synthetic data
remains unchanged. In Figure 4.14, we give the synthesis results evaluated on the MNIST
[89] and Fashion-MNIST [168] dataset. For each dataset, we show the synthetic data pro-
duced by generated models trained under different privacy settings, namely, non-private, with
privacy of ϵ = 8 and ϵ = 4. Note that the synthetic data are randomly generated and may
look different from real data. However, it can be observed that our framework is also capable
of synthesizing image datasets, and generated images have better quality with an increase of
the privacy budget.
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Figure 4.12 Classification accuracy of NN models with different numbers of users under different pri-
vacy levels.

4.6.2 Auxiliary Data for Pre-Training

Before applying the WAE model for collecting local user data, the server needs to design the
model structure. An appropriate model structure helps to enhance the capability of capturing
the local data distributions and thus the utility of synthetic data. In our scenario, the server
only knows the basic properties of the data to be collected, such as the number of attributes
and the domain of each attribute. The server can thus use some auxiliary data to optimize
the model structure. The auxiliary data here refer to certain public datasets or the random
data generated by uniform sampling from the domain of the local data. The server can use
such data to simulate the data collection process and tune the model structure by evaluating
the utility of the synthetic data. Moreover, the auxiliary data can also be used for pre-training
the WAE model before applying the model in the data collection process, so as to improve the
model convergence and the utility of synthetic data.

In Table 4.6, we compare the utility of synthetic data generated by WAE models with (w) and
without (w/o) pre-training under the setting of ξ = 0.1 and ϵ ∈ {4, 8}. For each dataset, we
have randomly generated an auxiliary dataset only using the basic properties of real data,
as mentioned before. We used the auxiliary dataset to pre-train the WAE model and applied
the pre-trained model to the data collection process. We respectively evaluated the utility of
synthetic data generated in both scenarios based on the classification accuracy of NNs and
RFs. For both types of models, we observe that the synthetic data generated by pre-trained
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Figure 4.13 Classification accuracy of RF models with different numbers of users under different pri-
vacy levels.

WAE models achieve 1 ∼ 2% increase in classification accuracy. The results demonstrate that
using auxiliary data to pre-train the WAE model is feasible to enhance the model convergence
in the data collection process and further improve the synthetic data utility.

4.7 Related Work

4.7.1 Data Collection Under Local Differential Privacy

Differential privacy (DP) [42], as a strong mathematical formalization of privacy, has been
used as a criterion for privacy protection in data publishing, data mining, and machine learn-
ing ([41, 179, 1]). However, traditional DP assumes a trusted server (data curator), who first
collects the original user data, and then performs data analysis under differential privacy.
In order to eliminate the assumptions of trustworthy servers, LDP [82] has been proposed,
which provides strong privacy guarantees to local data. By utilizing local randomization algo-
rithms, the server cannot infer any individual’s original data but can learn the overall statis-
tics of the whole population. However, prior research on LDP mainly focuses on collecting
one-dimensional statistics, such as frequency estimation ([44, 35]), heavy-hitter identification
([10, 16]), and itemset mining ([128, 161]). Regarding scenarios with multi-dimensional data,
Alaggan et al. [3, 2] proposed using Bloom filters to encode local data and analyze aggre-



4 DP-FED-WAE for Private Sharing of High-Dimensional Structured Data

80

Figure 4.14 Results of data synthesis on image datasets.

Table 4.6 Classification accuracy of synthetic data generated by WAE models with (w) and without
(w/o) pre-training

Accuracy - NN Accuracy - RF
Dataset w/o w w/o w

Census
ϵ = 8 0.948 0.960 0.952 0.965
ϵ = 4 0.929 0.935 0.932 0.940

Twitter
ϵ = 8 0.786 0.798 0.788 0.796
ϵ = 4 0.771 0.782 0.778 0.785

Vehicle
ϵ = 8 0.781 0.795 0.788 0.794
ϵ = 4 0.762 0.789 0.763 0.782

Adult
ϵ = 8 0.808 0.815 0.812 0.820
ϵ = 4 0.787 0.798 0.775 0.789

gated statistics. However, their works do not involve the estimation of joint distributions and
cross-attribute correlations, which differs from our objectives.

Directly applying the above LDP-based algorithms to estimate complex statistics of high-
dimensional data will cause extremely large communication overhead as well as a degra-
dation in data utility. Consider, for example, RAPPOR [44], a state-of-the-art LDP-based
data collection algorithm. For w-dimensional binary data with w = 32, we have domain size
|Λ| = 232 ≈ 4.3 × 1010. Directly applying RAPPOR consumes a communication cost and
a storage space of O(|Λ|) [130]. Also, for high-dimensional input domains, it is common for
each user to have a unique feature combination. Therefore, it is essential to collect a large
number of data in order to cover all the possible combinations in the feature domain. Given
a domain size |Λ|, as a general rule of thumb [44], the number of user data N should follow√
N/10 ≥ |Λ|. In the above example, N ≥ 100 · 264 ≈ 1.8 × 1021. All of these requirements

are impractical for real-world applications. In subsequent research, Fanti et al. [45] proposed
to separately collect data of each dimension under RAPPOR and estimate the joint distribu-
tions using expectation maximization (EM). Although the algorithm significantly reduces the
communication overhead between clients and the server, it only supports to estimate the joint
distribution of two attributes. Based on [45], Ren et al. proposed LOPUB [130], which reduces
w-dimensional data to m-dimensional clusters (m < w) using dependence graphs and es-
timates m-way joint distributions with an EM-based and Lasso regression-based approach.
However, the algorithm still suffers from high computational complexity and low data utility
when m is large. An improved scheme, LOCOP [160] was further proposed, which lever-
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ages multivariate Gaussian copula to estimate cross-attribute dependencies and to construct
synthetic data.

Instead of directly randomizing the local data, our framework uses deep generative models to
learn the data distributions and to generate synthetic data without accessing real data, which
effectively enhances data utility. In our experiments, we used LOPUB and LOCOP as the
baselines to compare the frameworks’ performance in terms of data utility.

4.7.2 Differentially Private Synthetic Data Generation

Differentially private synthetic data generation has been extensively studied over recent years
as an alternative solution to privacy-preserving data publishing. Previous works ([25, 179])
analyzed statistical distributions of original data under differential privacy and used them to
generate synthetic data. Later works have proposed using differentially private generative
models ([122, 145]) to directly generate high-utility synthetic data. However, these works only
focus on the centralized setting, where the server has already collected the real data and uses
them to generate private synthetic data. In contrast, our approach is practical for a distributed
setting, where the server cannot access the real data, but is interested in learning statistical
information about the data.

Recent works by Augenstein et al. [7] and Triastcyn et al. [146] also investigate the synthetic
data generation under the distributed setting. [7] aims to use generative models to detect
errors and bugs in local data. However, as they claimed, such applications do not require high-
fidelity generation. On the other hand, although [146] focused on generating and publishing
synthetic data, their method is only limited to image data. In addition, they adopted a weaker
measure of privacy to preserve the model performance. In comparison to both works, our
framework is able to generate synthetic data with high utility and fidelity, which can replace
real data in data mining and AI training tasks. Moreover, we apply strict LDP randomization
on the client side, which provides strong privacy guarantees for clients’ local privacy.

4.7.3 Efficiency and Privacy in Federated Learning

Communication Efficiency in Federated Learning

It is widely acknowledged that communication cost can be a bottleneck for FL, especially
when training high-dimensional models. Recently, a number of upload link and download link
compression methods have been proposed to alleviate the communication cost in FL.

The upload link compression applies quantization or sparsification on the model updates to
reduce the communication cost from clients to the server. The main idea of quantization is to
reduce the number of bits of update values. For instance, Seide et al. [134] proposed the 1-
BIT SGD, which quantizes the update values larger than a pre-defined threshold to 1 and the
rest to 0. Similarly, Bernstein et al. [12] proposed SIGNSGD and SIGNUM, where the update
values are quantized to their sign valueS. The study theoretically proved that SIGNSGD can
effectively reduce the communication cost while enjoying a satisfying convergence rate. In
contrast, sparsification aims to transmit only a subset of update values. For instance, the
top-k mechanisms (e.g., [37, 4]) only keep the top-k largest magnitude values of each model
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update and set the others to 0. Stich et al. [139] proposed a similar scheme with memory.
Ivkin et al. [68] further proposed to use the count-sketch algorithm to approximately select
the top-k updates.

On the other hand, reducing the communication cost of the download link has recently also
gained increasing attention. Caldas et al. [19] gave the first attempt at the download link
compression and proposed FEDERATED DROPOUT, which extracts small sub-models from
the original high-dimensional and sends to the client side for local training. Based on this
idea, Bouacida et al. further proposed [15] an adaptive federated dropout algorithm, which
builds the sub-models using an adaptive activation score map. In addition, Jiang et al. [76]
proposed to gradually prune the global model during the training process to achieve better
communication and computational efficiency without loss of accuracy.

Privacy Protection in Federated Learning

Although FL enjoys significant privacy benefits in comparison to centralized learning, recent
works showed that FL is still vulnerable to various privacy attacks [51, 115] against the ex-
changed local updates and the global model. Thus, an increasing number of studies propose
to incorporate DP into the FL framework. Some works (e.g., [110, 7]) add Gaussian noise on
the server side to protect the privacy of the global model. However, such solutions cannot pre-
vent privacy leakages from the local updates. Thus, other works propose hybrid frameworks
(e.g., [69, 147, 43]), which use crypto-based solutions such as HE and SMC to further achieve
local privacy protection. However, these solutions require extra communication and compu-
tation costs during the key-distribution phase and thus, may not be practical in large-scale
scenarios.

Considering the privacy and efficiency issues in the above-mentioned solutions, a more prac-
tical solution is to apply LDP to FL, which perturbs the local updates before sending them to
the server. Previous LDP-FL frameworks (e.g., [40, 158, 184]) perturb the local updates using
private mean estimation algorithms. However, these algorithms evenly split the privacy bud-
get across dimensions and the injected noise is proportional to the model dimension, making
them only applicable to simple ML models. A recent work proposed FEDSEL [99], a two-stage
LDP-FL framework that includes a DS stage and a VP stage. The DS stage first sorts the local
update by absolute value and then privately selects one "important" dimension from the top-k
dimension set (namely, the set of k dimensions with the largest absolute values). Then, in
the VP stage, the value of the selected dimension is perturbed via the LDP algorithms in [158]
and used to construct a sparse privatized local update. Although [99] mitigates the dimension-
dependency problem by only selecting one "important" dimension, the privacy budget is still
consumed by the two stages. In high-privacy scenarios, each stage may therefore obtain only
an insufficient privacy budget and cause large randomness.

Inspired by the effectiveness of SIGNSGD [12] and top-k sparsification ([99, 37, 4]), we pro-
pose a novel local randomization algorithm called SIGNDS. The main idea is to save the
privacy budget for the VP stage in [99] by assigning sign values instead of the perturbed di-
mension values to the selected dimensions. With the same privacy budget, we can achieve
less randomness and thus higher model utility.
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4.8 Conclusion

Building effective business and AI services requires the collection of personal data, which
often introduces challenges related to an insufficient amount of data on the one hand, and
privacy violations on the other hand. Recently, deep generative model-based data synthesis
techniques have created opportunities for addressing these challenges: the generative mod-
els have strong capabilities in capturing the cross-attribute correlations of real data and can
easily generate large-scale high-utility data; in addition, since the generated data are fully
synthetic and cannot be linked to any particular individual, re-identification attacks or attribute
disclosure becomes almost impossible.

In this work, we have followed the idea of data synthesis and proposed DP-FED-WAE, a
privacy-preserving framework for high-dimensional data collection. The framework utilizes a
(generative) Wasserstein autoencoder to learn the joint distributions and correlations of high-
dimensional user data and generate high-utility synthetic data on the server side. Moreover,
we applied a novel LDP-FL framework for training the autoencoder, which not only avoids the
collection of real local data but also provides strong local privacy guarantees. Experimental
evaluation with real-world datasets shows that our framework significantly outperforms the
LDP-based baseline algorithms for high-dimensional data collection and synthesis. The syn-
thetic data generated by our framework preserves very similar statistical properties as real
data and can replace real data for data mining and model training tasks.
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5.1 Abstract

Developing effective data analysis tools and AI models for time-series data usually faces data
insufficiency and privacy issues. While synthetic data generation (SDG) has been considered
a promising technique for addressing these challenges, prior works assume that the central
server can directly collect the real client data. However, this may not always be achievable in
real-life scenarios, as the clients may be unwilling to share their private data.

In this paper, we consider a more realistic setting where the clients’ local data are inaccessible
to the server. We propose FEDSTDG, the first privacy-preserving framework for distributed
multivariate time-series synthesis. With the combination of federated learning (FL), local differ-
ential privacy (LDP), and a recurrent generative autoencoder, our framework achieves learning
the temporal correlations and distributions of local multivariate time series without collecting
the real data. The trained autoencoder will be used to generate high-utility synthetic data on
the server side. We further propose a novel SUBMDS algorithm for privatizing the local model
updates during FL training, which achieves a remarkable utility improvement compared to
the previous LDP-FL algorithms. Additionally, we also propose MAGRR, a privacy-preserving
algorithm that adaptively adjusts the FL learning rate for better model convergence. We eval-
uate the performance of our framework on a number of real-world datasets. Experimental
results on four open-source datasets demonstrate the capability and efficiency of our frame-
work in generating high-quality time-series data. Under the same privacy level, the synthetic
data generated using the SUBMDS algorithm yields around 20% ∼ 85% reduction in the
downstream prediction error compared to using previous LDP-FL algorithms. Additionally,
empirical analysis of privacy and adversarial attacks shows that our framework can effectively
improve privacy protection and robustness in the FL process.

5.2 Introduction

With the rapid development of network and computer technologies, large and diverse quan-
tities of person-specific data are frequently generated on local devices such as smartphones
and IoT sensors. Besides the widely-explored tabular data and image data, there has also
been an increasing number of studies in modeling time-series data in finance [107], health-
care [178], and IoT [31] applications. These data usually consist of a series of measurements
gathered periodically over time. Data analysts can use the rich information contained in these
time-series data to explore the hidden temporal distributions and correlations among attributes
from different perspectives and develop algorithms for classification and forecasting tasks. For
instance, a digital healthcare application may utilize users’ physical information for health mon-
itoring and disease predictions, while a location-based service may use the drivers’ historical
trajectory to forecast potential future locations. However, the development of such AI services
usually faces two major challenges: data insufficiency and privacy issues. On the one hand,
building reliable machine learning (ML) models usually requires adequate training data to pre-
vent overfitting and achieve satisfactory performance. On the other hand, directly using real
personal data for training the ML models may cause severe privacy problems and may even
violate legal requirements (e.g., in the context of the GDPR).
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In recent years, synthetic data generation (SDG) has been considered one of the potential
techniques for addressing the above challenges in business intelligence & AI services. Exten-
sive studies have proposed to use generative models to generate different types of synthetic
data, such as tabular data [122], images [129], and time series [177] for a variety of real-world
applications. Such techniques enjoy advantages in both data utility and privacy protection.
The well-designed generative models have strong capabilities for capturing the joint distribu-
tions and hidden correlations of real data and can flexibly produce high-fidelity synthetic data
for data analysis and building accurate ML models at a large scale. Also, the generated data
are fully synthetic, which effectively reduces the risks of re-identification attacks or attribute
disclosure [122]. Some later works [170, 77] also incorporate differential privacy (DP) into
the training process to provide formal privacy guarantees to the algorithms. Nevertheless,
these previous works only consider the synthetic data generation (SDG) under the centralized
setting, where the real data are already collected by a data curator (referred to as the cloud
server ) and will be used to train the generative models for privacy-preserving data publish-
ing. This may not always be realistic since the data owners (referred to as local clients) may
be reluctant to share their personal data with untrusted servers. To address this problem,
some recent works [7, 146, 74] propose solutions for distributed SDG. The generative models
are trained using the federated learning (FL) mechanism [108], which only exchanges model
parameters and keeps the real data on the local side. However, existing distributed SDG so-
lutions only focus on structured data and images (see [98], Table 2), which cannot be directly
applied to time-series data.

In this paper, we offer the first attempt at distributed SDG of time-series data. Inspired by
prior work conducted by Jiang et al. [74], we propose FEDSTDG, an efficient and privacy-
preserving framework that achieves synthesizing the clients’ local time-series data without the
collection of real data. Our framework shows several advantages compared to [74]. To start
with, we extend the Wasserstein autoencoder (WAE) architecture used in [74] into a recur-
rent Wasserstein autoencoder (RWAE), which can better capture the temporal distributions
and correlations of multivariate time-series data. The model is then trained under the fed-
erated learning setting to learn the distribution of local data without collecting the raw data.
Finally, the trained model can be used to generate high-fidelity synthetic data on the server
side. In addition, [74] proposed a local differential privacy (LDP) algorithm, SIGNDS, to pre-
vent privacy leakage for the local model updates. However, for each local update vector, the
algorithm only selects one dimension index of an "important" parameter to send to the server,
which suffers from a particularly slow convergence speed with large models. A follow-up
study [75] introduced EM-MDS, a privacy-preserving algorithm that employs the exponential
mechanism to select multiple dimensions under LDP guarantees. In this paper, we propose
enhancements to EM-MDS from two perspectives. Firstly, we introduce an improved multi-
dimensional selection algorithm called SUBMDS, which applies parameter subsampling to
enable the selection of more dimension indices under the same privacy guarantee. Addition-
ally, we present MAGRR, which adaptively adjusts the FL learning rate in a private manner
and facilitates a rapid and stable model convergence. By incorporating both algorithms, our
framework demonstrates superior model convergence and synthetic data utility in comparison
to prior methods.

Our major contributions can be summarized as follows:
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• We propose FEDSTDG, a privacy-preserving framework for the distributed synthesis
of multivariate time-series data. With the combination of LDP, FL, and a RWAE, our
framework enables the learning of local time-series data distributions and the generation
of high-fidelity synthetic data without the need for centralized data collection. To the best
of our knowledge, this is the first work of synthetic time-series data generation under a
distributed setting.

• We introduce two innovative approaches, SUBMDS and MAGRR, as improvements to
existing LDP-FL algorithms. The former applies parameter subsampling to enable the
selection of more dimension indices, while the latter adaptively adjusts the learning rate
to achieve a rapid and stable model convergence. The integration of both algorithms
leads to superior synthetic data utility compared to existing methods.

• We use a number of real-world time-series datasets to evaluate the performance of our
framework. Extensive evaluation results demonstrate that our framework has superior
capability and efficiency in synthesizing time-series data while achieving satisfactory
privacy protection and robustness.

The remainder of the paper is organized as follows. In Section 5.3, we discuss prior work on
synthetic data generation and privacy-preserving FL. The problem statement is described in
Section 5.4 and our proposed framework is introduced in detail in Section 5.5. The evaluation
experiments and results are then presented in Section 5.6. Finally, conclusions are presented
in Section 5.7.

5.3 Related Work

5.3.1 Differentially Private Synthetic Data Generation

Differentially private synthetic data generation has been extensively studied over recent years
as an alternative solution to privacy-preserving data publishing. Previous works [92, 179] an-
alyzed statistical distributions of original structured data under DP and used them to generate
synthetic data. Later works proposed to use DP generative models such as generative ad-
versarial networks [53] and autoencoders [85, 144] to directly generate high-utility synthetic
data, which can be flexibly applied to tabular data [77], images [23], and time series [47].
However, prior SDG solutions mainly focus on the centralized setting, where the server has
already collected the real clients’ data for generating private synthetic data. This may not al-
ways be realistic since the clients may refuse to share their personal local data with untrusted
servers. In order to address the problem, some recent works [7, 146] introduced solutions
for distributed SDG. The generative models are trained using the FL mechanism, which only
exchanges model parameters and keeps the real data on the local side. However, existing dis-
tributed SDG solutions only focus on structured data and image data. In this paper, we fill this
research gap and propose the first framework for synthetic time series data generation. The
framework learns the spatial-temporal distributions of raw local data and generates synthetic
time series on the server side to support downstream data analysis tasks.
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5.3.2 Privacy-Preserving Federated Learning

Although FL enjoys significant privacy benefits in comparison to centralized learning, recent
works showed that FL is still vulnerable to various privacy attacks against the local model
updates [51] and the final global model [115]. A number of existing works propose to in-
corporate crypto-based solutions such as homomorphic encryption (HE) [147] and secure
multi-party computation (SMC) [69] into FL for protecting the local model updates. However,
these solutions cannot be well-scaled due to the extra communication and computation costs
during the encryption and key-distribution phase. Some other works proposed to apply LDP
to FL, where the local updates are perturbed before being sent to the server. However, pre-
vious private mean estimation-based LDP-FL frameworks (e.g., [40, 158, 184]) easily suffer
from significant utility loss, as the injected noise in these algorithms is, in essence, propor-
tional to the number of model parameters. To address the issue, some recent works [99, 74]
proposed dimension selection-based solutions, which only select one “important” dimension
index for each local update vector under LDP guarantees and use the shared indices on the
server side to construct corresponding sparse updates to update the global model. Never-
theless, both algorithms only select one dimension for each local update, which may lead to
slow model convergence, especially for high-dimensional models. A follow-up work [75] intro-
duced EM-MDS, an advanced LDP multi-dimension selection algorithm. Rather than repeti-
tively conducting single-dimension selection with evenly divided privacy budgets, the algorithm
treats each group of indices as a complete entity and adopts the exponential mechanism to
assign higher probabilities to subsets containing more "important" indices. In this paper, we
further enhance the existing algorithm with a reduced input size and plan an adaptive learning
rate, which achieves better model utility under the same privacy guarantees.

5.4 Problem Statement

In this paper, we consider a scenario where a number of clients hold multivariate time-series
data on the local side. Such data can be, for instance, clients’ daily activities collected by
wearable devices, or vehicle trajectories collected during driving. A central server aims to
investigate the distribution and correlations of these time-series data and generate similar
synthetic data for data analysis and designing AI services. Here, we assume the server to be
honest-but-curious, who follows the system protocols but tries to infer sensitive information of
local users. Hence, to protect local privacy, we require the server not to have direct access to
raw local data.

The problem can be formulated as follows: given a private multivariate time-series dataset
X1:L with W attributes and L time steps, each sample xi1:L ∈X1:L is denoted as

xi1:L =



F i1
...
F iL


 =




f i1,1 · · · f i1,W
...

. . .
...

f iL,1 · · · f iL,W


 , (5.1)

where F il represents the vector of multivariate features of the lth timestamp and fl,w is the
feature of the wth attribute. Note that each record has the same number of W attributes.
Assume the private dataset is distributed among N local users. A central server aims to
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Figure 5.1 Overview of the FEDSTDG framework. The RWAE model is first trained under the federated
setting, which learns the distributions of real local data. Two LDP algorithms, SUBMDS and MAGRR,
are respectively applied for privatizing the local updates and the update magnitude. After the model
is trained, the decoder part is used to generate high-utility synthetic data. The generated data will be
used for data analysis and building AI services.

generate a synthetic dataset X̃1:L without accessing the real local data. The synthetic dataset
X̃1:L should have the same number of attributes as X1:L. Moreover, X̃1:L can preserve the
temporal distributions as in X1:L, i.e.,

P (X1:L) ≈ P (X̃1:L). (5.2)

The above objective can be further simplified with a conditional distribution among time steps
as follows:

P (X l|X1:l−1) ≈ P (X̃ l|X̃1:l−1), (5.3)

which states that the synthetic data can well approximate the real data at any time l.
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Figure 5.2 Structure of the RWAE model.

5.5 FEDSTDG Framework

In this paper, we propose FEDSTDG, a privacy-preserving framework for distributedly synthe-
sizing the multivariate local time series without collecting raw data. The overall workflow of
our FEDSTDG is presented in Figure 5.1. More specifically, our framework first trains a RWAE
model under the FL setting to learn the spatial-temporal distributions of local data and then
generates high-utility synthetic data on the server side, which can be used for downstream
data mining and model training tasks. Moreover, on the basis of the sign-based dimension se-
lection concept in [74, 75], we propose an improved LDP-FL algorithm that achieves a better
privacy-utility balance. We first introduce an enhanced algorithm SUBMDS to support private
multi-dimension selection. The algorithm effectively mitigates the privacy leakage from upload
updates while enjoying a better model convergence compared to existing solutions. Addition-
ally, we introduce the MAGRR algorithm, which enables adaptive learning rate adjustments
during the training process. We prove that both SUBMDS and MAGRR satisfy a strict LDP
definition. By integrating these key components, our framework eliminates the need for a
trusted server and ensures strict privacy protection for local data. In the following, we will first
introduce the RWAE model and LDP-FL algorithms used in our framework and then describe
the overall workflow in detail.

5.5.1 Structure of the Recurrent Wasserstein Autoencoder

Although [74] proposed to use WAE [144] for the data synthesis, the previous model only
applies to structured data. In this paper, we extend the model by incorporating long short-
term memory (LSTM) [63] layers (a type of recurrent layer) in both encoder and decoder to
better capture the spatial-temporal information of the original time-series data. The structure
of our RWAE model is presented in Figure 5.2. For the encoder, the time-series data are
sequentially input into the LSTM layer. Each cell in the LSTM layer takes in input at a given
time step and combines it with information from previous time steps to compute the output of
the current step, which is used as input for future time steps. The information passed from
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the previous cells enables the layer to learn the temporal correlations of input time series.
Moreover, the layer adopts a forget gate, an input gate, and an output gate to compute the
cell output, which helps to mitigate the gradient vanishing problem compared to the traditional
recurrent layers. The outputs of all the cells are then concatenated and input into a fully
connected layer to compute the latent features. The decoder is constructed with a symmetric
structure as the encoder, where the latent features are mapped back to the input space using
another fully connected layer and an LSTM layer. Each cell in the LSTM layer of the decoder
outputs features of a specific time step, and the combination of all these outputs forms the
final synthetic data. Our RWAE model follows the same objective function as WAE models,
which consists of a reconstruction distance measured using MSE and a latent space distance
measured using MMD. Moreover, we set the balancing parameter λ = 1.

5.5.2 Training with Local Differentially Private Federated Learning

Next, we will introduce the improved LDP-FL algorithm adopted in the FEDSTDG framework,
which consists of a subset multi-dimension selection algorithm SUBMDS and a private learn-
ing rate adjustment algorithm MAGRR.

Subset Multi-Dimension Selection (SubMDS)

As discussed previously, LDP-FL is one of the privacy-enhancing solutions to prevent privacy
leakage in FL. However, existing private mean estimation-based LDP-FL algorithms suffer
from a significant utility loss as the noise scale is proportional to the number of model pa-
rameters. To improve upon this, we introduced the SIGNDS-FL algorithm in Chapter 3, which
adopts a dimension selection protocol to address the curse-of-dimensionality problem in ex-
isting LDP-FL algorithms. For each model update vector, the algorithm first constructs a top-k
set Stopk with the dimension indices of k distinctively updated parameters. A set of dimension
indices is then selected from Stopk under LDP guarantees, which are sent to the server to
update the global model. We further introduced two algorithms, namely PS and EM-MDS,
for single-dimension selection and multi-dimension selection, respectively.

Upon a closer examination of the EM-MDS algorithm [75] (Section 3.4.3), we note that the
optimal threshold ν∗

th(h∗) and the corresponding optimal output size h∗ can be automatically
determined. First, for each fixed output size h, we search the optimal threshold ν∗

th(h). More
specifically, the expectation of ν in the sampled output set J given a certain threshold νth(h)
can be derived as follows:

E[ν|νth(h)] =
h∑

τ=0
τ · p(ν = τ |νth(h)) =

νth−1∑

τ=0

τ · ωτ
Ω +

h∑

τ=νth

τ · ωτ · exp(ϵ)
Ω , (5.4)

where Ω = ∑νth(h)−1
τ=0 ωτ +∑h

τ=νth(h) ωτ · exp(ϵ) as the denominator of Equation (3.10). Intu-
itively, the larger E[ν|νth(h)], the more likely that the sampled J contains more top-k dimen-
sion indices and the better the model utility. Therefore, the optimal threshold ν∗

th(h) can be
determined as the threshold that achieves the maximum E[ν|νth(h)], namely

ν∗
th(h) = argmax

νth∈[1,h]
E[ν|νth(h)]. (5.5)
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Next, we calculate output top-k ratio, namely the proportion of top-k dimension indices within
the output set, as ςh= E[ν|ν∗

th(h)]/h. Intuitively, a larger output size h means more indices
are selected, while a higher ratio ςh suggests selected indices are more likely to be top-k
indices. To achieve a good balance between model convergence and utility, we set a minimum
acceptable output top-k ratio ς∗. Then, we respectively compute the output top-k ratio ςh for
each output size h and choose the largest size that meets the requirement of ς∗ to be the
optimal size h∗. Namely,

h∗ = argmin
h∈[1,inf)

ςh = argmin
h∈[1,inf)

E[ν|ν∗
th(h)]
h

s.t. ςh > ς∗. (5.6)

Then, we use Equation (5.5) to compute the corresponding optimal threshold ν∗
th(h∗).

Through empirical tests, we discovered that the optimal output size h∗ depends not only on the
privacy budget ϵ but also on the input top-k ratio k/d, which is the ratio of the top-k set Stopk
to the total number of local update parameters. To illustrate this, let’s assume the original
local update has d = 20000 parameters and the top-k set contains the indices of k = 100
parameters. Keeping k fixed, we select the actual input size d̃ from {0.01d, 0.05d, 0.1d},
resulting in input top-k ratio k/d̃ of {0.5, 0.1, 0.05}. Next, we calculate the optimal output size
h∗ for different output top-k ratio ς∗ and present the results in Figure 5.3. We use different
colors to represent various input top-k ratio and distinct line patterns to differentiate the privacy
budget levels. The results show that, under the same privacy level, a larger input top-k ratio
k/d leads to a larger h∗. This suggests that reducing the input size d̃ may accelerate model
convergence and enhance model utility.

The insightful result motivates us to introduce a new algorithm, SUBMDS. The algorithm aims
to enhance model performance by using a reduced input size d̃. The process of SUBMDS
is illustrated in Algorithm 6. Given the original local update ∆ ∈ Rd, we first randomly select
d̃ = ϱ ·d model parameters and construct the input set Sin using the corresponding dimension
indices. Here, ϱ is referred to as the subsampling ratio. Then, a sign value s is sampled and
used to determine the construction of the top-k set Stopk. Next, with a predefined privacy
budget ϵ and an expected output top-k ratio ς∗, we compute the optimal output size h∗ and
threshold ν∗

th based on Equation (5.6) and Equation (5.5). These values are then used to
calculate the probability defined in Equation (3.10). It should be noted that in our algorithm,
the input set Sin only contains d̃ dimension indices. Hence, the output domain is shrunk to
J = {i|i ∈ Sin}h and the number of output sets containing ν top-k dimensions is reduced
to ων =

(k
ν

)( d̃−k
h∗−ν

)
. Following [75], we use the inverse sampling technique [155] to build the

output set. Specifically, the number of top-k dimensions included in J is determined by a
random variable β drawn from the uniform distribution U(0, 1) and the cumulative distribution
function F(ν|ν∗

th). Finally, J is constructed by randomly selecting ν indices from Stopk and
h− ν indices from the remaining indices set Sin\Stopk.

As the subset of parameters is randomly sampled and is irrelevant to the original local update,
we can prove that our SUBMDS algorithm satisfies ϵ-LDP guarantees.

Lemma 6. The SUBMDS algorithm satisfies ϵ-LDP.

Proof. For each client, given any two arbitrary local updates ∆,∆′ and an input set Sin con-
taining d̃ randomly sampled dimension indices, let Stopk and S′

topk be the top-k sets con-
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Figure 5.3 Comparison of the optimal output size under different privacy budgets and input top-k
ratio. Given the original input size d = 20000 and top-k size k = 100, we vary the actual input size
among d̃ = {0.01d, 0.05d, 0.1d}, resulting in an input top-k ratio k/d̃ among {0.5, 0.1, 0.05}. Then, we
compare the corresponding optimal output size h∗ regarding different expected output top-k ratio ς∗.

structed from Sin. For any output set J ∈ J , where J = {i|i ∈ Sin}h being the output
domain, let ν = |Stopk ∩ J |, ν ′ = |S′

topk ∩ J | be the number of intersected indices between J
and both top-k sets. With the sampling probability defined in Equation (3.10) it holds that

Pr[J |∆]
Pr[J |∆′] = Pr[J |Stopk, Sin]

Pr[J |S′
topk, Sin] =

exp( ϵ
ϕu

·u(Stopk,J))∑
J′∈J exp( ϵ

ϕu
·u(Stopk,J ′))

exp( ϵ
ϕu

·u(S′
topk

,J))∑
J′∈J exp( ϵ

ϕu
·u(S′

topk
,J ′))

=

exp(ϵ·1(ν≥νth))∑νth−1
τ=0 ωτ +

∑h

τ=νth
ωτ ·exp(ϵ)

exp(ϵ·1(ν′≥νth))∑νth−1
τ=0 ωτ +

∑h

τ=νth
ωτ ·exp(ϵ)

= exp(ϵ · 1(ν ≥ νth))
exp(ϵ · 1(ν ′ ≥ νth)) ≤

exp(ϵ · 1)
exp(ϵ · 0) = exp(ϵ),

(5.7)

which completes the proof.

MAGRR for Adaptive Global Learning Rate

After receiving clients’ output index sets and sampled sign values, the server constructs cor-
responding sparse updates and uses their average to update the global model parameters.
However, both previous works [74, 75] used a constant global learning rate γ throughout train-
ing, which impacts the model’s utility. A large γ results in fast convergence but may cause
a significant discrepancy between the real and the sparse local updates as training keeps
on. Conversely, a small γ requires more rounds for convergence. To address this, an ideal
approach is to apply an adaptive γ that starts large and progressively decreases during train-
ing. Therefore, we introduce a novel algorithm MAGRR to adapt the global learning rate in
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Algorithm 6: SUBMDS

Input: ∆ ∈ Rd: local update with d parameters; k: size of top-k set; ϱ: subsampling
ratio; ϵ: privacy budget;

1: Randomly sample d̃ = ϱ · d parameters from ∆ to build ∆in

2: Use the dimension indices of parameters in ∆in to build an input set Sin
3: Randomly sample a sign value s from {1,−1}
4: if s = 1 then
5: Build a top-k set Stopk with the indices of k largest parameters in ∆in

6: else
7: Build a top-k set Stopk with the indices of k smallest parameters in ∆in

8: end if
9: Given d̃ and k, compute the optimal output size h∗ and threshold ν∗

th according to
Equation (5.5) and Equation (5.6)

10: Compute denominator Ω = ∑ν∗
th−1
τ=0 ωτ +∑h∗

τ=ν∗
th
ωτ · exp(ϵ), where ωτ =

(k
τ

)( d̃−k
h∗−τ

)

11: Randomly sample β ∼ U(0, 1)
12: Initialize ν = 0 and F(ν|ν∗

th) = ω0/Ω
13: while F(τ) < β do
14: ν = ν + 1
15: if ν < ν∗

th then
16: Let F(ν|ν∗

th) = F(ν|ν∗
th) + ων/Ω

17: else
18: Let F(ν|ν∗

th) = F(ν|ν∗
th) + exp(ϵ) · ων/Ω

19: end if
20: end while
21: Construct J by sampling ν indices from Stopk and h∗-ν indices from the remaining set

Sin\Stopk
22: Return J

a private manner. The main idea is to collect the largest magnitude of each client’s local up-
date and use the aggregated result to determine the global learning rate for the next training
round. In addition, as the real update magnitude cannot be directly published due to privacy
issues, the algorithm randomizes the real magnitude under LDP guarantees and only shares
the privatized value. More specifically, with the current round’s global learning rate γ, each
client computes the largest magnitude m in the local update (where m ≥ 0). Subsequently,
we quantize m into two bins, namely, [0, r · γ) and [r · γ,∞), where r is the decay rate. We
use the bin index b as a flag to indicate whether the global learning rate should be decayed.
Then, we apply a binary randomized response (RR) [163] to flip the index. Given a privacy
budget ϵ, we have:

b̂ =




b w.p exp(ϵ)

exp(ϵ)+1
1− b w.p 1

exp(ϵ)+1
, (5.9)

The randomized bin index will be sent to the server. Here, we present the privacy analysis of
the MAGRR algorithm.

Lemma 7. The MAGRR algorithm satisfies ϵ-LDP.
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Algorithm 7: MAGRR

Input: ∆ ∈ Rd: local update with d parameters; γ: global learning rate ; b̂: aggregated
decay flag; r: decay rate; ϵ: privacy budget; Tpat: patience threshold; tpat:
number of rounds requiring a decay in learning rate.

LocalPert(∆, γ, ϵ):
// Run on the client side

1: Get the largest magnitude value m from ∆
2: Compute the decay flag b:

if m ∈ [0, r · γ), set b = 1; elif m ∈ [r · γ,∞), set b = 0
3: Perturb the decay flag b:

b̂ =




b w.p exp(ϵ)

exp(ϵ)+1
1− b w.p 1

exp(ϵ)+1
(5.8)

4: Return b̂

ServerAggr(b̂, γ, r, Tpat, tpat):
// Run on the server side

1: if b̂ ≥ 0.5 then
2: tpat = tpat + 1
3: if tpat = Tpat then γ′ = r · γ, tpat = 0; else γ′ = γ
4: else
5: γ′ = γ, tpat = 0
6: end if
7: Return γ′, tpat

Proof. For each client, given two arbitrary real bin indices b, b′ and the perturbed index as b̂,
with the flip probability defined in Equation (5.9) it holds that

Pr[b̂|b]
Pr[b̂|b′]

≤ Pr[b̂ = b|b]
Pr[b̂ = 1− b′|b′]

=
exp(ϵ)

exp(ϵ)+1
1

exp(ϵ)+1
= exp(ϵ), (5.10)

which completes the proof.

After receiving the perturbed flags, the server will update the global learning rate accordingly.
If more than half of the flags are 1, meaning the majority of local clients’ update magnitude is
less than r ·γ, we adjust the learning rate to r ·γ; otherwise, we keep γ unchanged. However,
adjusting the learning rate in every round may lead to unstable training due to variations in
update magnitudes across clients and the randomness in flag reporting. To address this, we
introduce a patience threshold Tpat and only modify the global learning rate when the condition
of majority flags being 1 persists for more than Tpat rounds. In the following experiments in
Section 5.6, we use default values of r = 0.5 and Tpat = 50.
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5.5.3 Overall Workflow of FEDSTDG

We now describe the overall workflow of our FEDSTDG framework presented in Figure 5.1.

First, we train the RWAE within a federated setting, as depicted in Algorithm 8. At each global
round t, the server randomly selects a subset of N clients and broadcasts the current global
model Mt and the global learning rate γt. Each local client i trains the global model using its
private data Xi and calculates the local update ∆i

t. Then, given a privacy budget ϵidx, the
client utilizes the SUBMDS algorithm to sample the random sign value sit and compute the
private index set J it . Additionally, with a privacy budget ϵmag, the client computes the decay
flag based on the local update magnitudes. Then, the client sends the respective bit, s

i
t, and J it

to the server. Note that for each local update, we sequentially apply the SUBMDS and MAGRR
algorithms to obtain the private index set and the decay flag of the learning rate. According
to the DP’s sequential composition theorem (Property 6), the total privacy guarantee to each
local update is ϵ = ϵidx + ϵmag.

After receiving the information from local clients, the server constructs the sparse update using
each pair of sit and J it and computes the aggregated model update ∆̂t. Moreover, the server
also calculates an aggregated decay flag b̂t based on the local decay flags and modifies the
global learning rate γt accordingly. Finally, the server employs ∆̂t and b̂t to update the global
model parameters, and the new global model Mt+1 is distributed to local clients for the next
training round.

Once the model has been trained, the server can use the decoder Gθ to produce synthetic
time-series data. Recall that the latent space features are enforced to follow the standard
Gaussian distribution pz. Therefore, we can simply sample random latent features z from pz
and feed them into Gθ to generate high-utility synthetic time-series data, which can be further
used for data analysis and building AI services.

5.6 Experiments

We implemented the proposed framework using the TensorFlow platform and conducted com-
prehensive experiments with real-world datasets to evaluate its performance. We conduct the
proposed experiments on an Intel 1.8 GHz Core i7 CPU. In this section, we will introduce the
experimental settings and discuss the evaluation results.

5.6.1 Experiment Setup

Datasets and Model Architectures

We use four real-world multivariate time-series datasets for evaluating the performance of our
framework.
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Algorithm 8: Training the RWAE

Input: M ∈ Rd: global model with d parameters; T : number of aggregation rounds; N :
number of clients in each round; E: number of local epochs; η: local learning
rate; k: size of top-k set; ϱ: subsampling ratio; γ: global learning rate; tpat:
accumulated number of decay rounds; Tpat: threshold for decay rounds; r:
decay rate; ϵidx, ϵmag: privacy budgets.

Output: Trained WAE model M

Server executes:
1: Initialize the global model M1 and the global learning rate γ1
2: for global round t = 1, · · · , T do
3: Randomly select a group of N clients
4: for client i = 1, · · · , N in parallel do
5: Broadcast the global model Mt and the global learning rate γt to the local side
6: bit, s

i
t, J

i
t = LocalUpdate(Mt, E, η, ϵidx, ϵmag, γt, k, ϱ, r)

7: Construct ∆̂i
t = [0, · · · , 0]d; for j ∈ J it , set ∆̂i

t[j] = sit
8: end for
9: Compute the aggregated model update ∆̂t = 1

N

∑N
i=1 ∆̂i

t

10: Compute the aggregated decay flag b̂t = 1
N

∑N
i=1 b

i
t

11: Update global learning rate γt+1, tpat = MagRR.ServerAggr(b̂t, γt, r, Tpat, tpat)
12: Update global model Mt+1 = Mt + γt+1 · ∆̂t

13: end for
14: Return Global model M = MT+1

LocalUpdate(Mt, E, η, ϵidx, ϵmag, γt, k, ϱ, r):
// Run on the client side

15: Initialize local model M i
t ←Mt

16: for epoch e = 1, · · · , E do
17: M i

t = M i
t − η · ∇L(M i

t , X
i)

18: end for
19: Compute local update: ∆i

t = M i
t −Mt

20: Get the output set J it , s
i
t = SubMDS(∆i

t, k, ϱ, ϵidx)
21: Get the decay flag bit = MagRR.LocalPert(∆i

t, r, γt, ϵmag)
22: Return bit, s

i
t, J

i
t



5.6 Experiments

99

Table 5.2 Details of Datasets and Model Size

#Records #Features #Steps #Parameters
Sine 50,000 5 30 29,269

Stock 4,400 6 24 26,358
Energy 19,735 27 24 29,729

Air 9,333 13 24 27,485

Sine [177]: The dataset contains 50,000 multivariate sinusoidal sequences simulated using
the open-source code provided in the original paper 1. Each record contains five attributes,
representing the sequence with different frequencies and phase.

Stock [46]: The dataset contains daily historical Google stocks data originating from August
2004, which sums to approximately 4400 records. Each record contains six attributes such
as volume, opening prices, and closing prices. The goal is to predict future stock prices and
volume.

Energy [20]: The dataset contains 19,735 records, each with 27 attributes presenting the
energy usage as well as temperature and humidity in different areas of each period of time.
The goal is to predict energy usage in the future.

Air [33]: The dataset contains 9358 hourly records of an Air Quality Multisensor Device,
including the hourly concentrations and sensor responses of different types of gas. The goal
is to predict the future trend of gas concentration. We remove the date and time attributes in
the original data and replace the missing values with zeros.

For all the datasets, we normalize the record values to [0,1]. For the encoder part of the
RWAE models, we use single-layer LSTM with 32 hidden units followed by a fully connected
layer with 16 units. The layers in the decoder are of the same hidden units as the encoder but
in a reversed order. Furthermore, we use the sigmoid activation for the output layer to restrict
the reconstructed values to be within [0,1]. Details of the datasets and the corresponding
model size are presented in Table 5.2.

Evaluation Metrics

We evaluate the performance of our framework considering three aspects, namely data utility,
privacy protection, and robustness. For the evaluation of data utility, we follow the evaluation
approaches in [177] and assess the quality of synthetic data from three perspectives:

• Fidelity : The synthetic data should preserve similar correlations and distributions of real
data.

• Diversity : The synthetic data should be diversely distributed and cover most of the
variety of real data.

• Usefulness: The synthetic data should have similar performance as real data in AI train-
ing tasks.

1https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/timegan/data_
loading.py

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/timegan/data_loading.py
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/timegan/data_loading.py
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In this study, we utilize the MMD distance Equation (2.14), t-SNE analysis [153], and mean
absolute error (MAE) for next step prediction to assess the fidelity, diversity, and usefulness,
respectively. To evaluate privacy protection, we examine the effectiveness of our framework
against membership inference attack (MIA) by comparing the attack accuracy under various
privacy levels. Finally, we evaluate the robustness of our framework against untargeted poi-
soning attacks. .

Baselines

In the following experiments, we investigate the performance of our framework under differ-
ent privacy settings. We also compare the results with and without adaptive global learn-
ing rate adjustment, which are respectively referred to as SUBMDS and ADASUBMDS. We
also compare the performance of the RWAE model trained with baseline LDP-FL algorithms,
including SIGNDS [75] with single-dimension selection (referred to as SignDS-S) and with
multi-dimension selection (referred to as SIGNDS-M). We also include a baseline that evenly
splits the privacy budget for multi-dimension selection (referred to as SIGNDS-E). Moreover,
we also compare the model trained under the non-private centralized setting and federated
setting and the DP centralized setting using the DPSGD algorithm.

Hyperparameter Configurations

In each experiment, we conduct the FL training for 1000 global rounds, where N = 50 clients
are sampled in each round. For the local training, we assume each local client has 10 time-
series records and trains the RWAE model forE = 10 epochs using the Adam optimizer with a
default learning rate η = 0.001. We further choose various privacy budgets ϵ ∈ {0.5, 2, 4, 6, 8}
to explore the influence of privacy on the framework performance. For all the algorithms,
we keep k = 0.05d, where d is the total number of model parameters and k is the number
of indices in Stopk. For SUBMDS, we set the subsampling rate ϱ to 0.1. Hence, the input
top-k ratio for SIGNDS-S, SIGNDS-M, SIGNDS-E is 0.05, while for SUBMDS is 0.05/0.1 =
0.5. Moreover, for all three algorithms, we set the desired output top-k ratio ς∗ to 0.8. In
experiments without adaptive global learning rate, we set ϵidx to ϵ and γ to 5. In experiments
with adaptive global learning rate (ADASUBMDS), we set ϵidx to 0.9ϵ and ϵmag to 0.1ϵ. The
initial value of γ is set to 25, the decay rate r is 0.5, and the patience threshold Tpat is 50.

5.6.2 Evaluation of Data Utility

We first evaluate the utility of the synthetic data under different privacy levels regarding the
fidelity, diversity, and usefulness.

Analysis of Fidelity

To start with, we investigate the fidelity of synthetic data in comparison to real data. To this end,
we use the MMD distance in Equation (2.14) to measure the distribution difference between
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Figure 5.4 Comparison of MMD distance between real and synthetic data of all the datasets. For each
dataset, we compare the results of non-private centralized and FL settings as well as different LDP-FL
baselines under different privacy levels.

real data and synthetic data. Intuitively, the smaller the MMD, the more similar the synthetic
data is to real data. For each dataset, we respectively compare the MMD of the RWAE
models trained under private and non-private centralized settings and FL settings and present
the results in Figure 5.4. It can be seen that, for the RWAE models trained with LDP-FL
algorithms, the increase of the privacy budget ϵ generally leads to a decrease in MMD, as
the model is perturbed by less noise during the training process. Moreover, our SUBMDS
and ADASUBMDS algorithms achieve a distinctive improvement compared to the baseline
algorithms, particularly with smaller privacy budgets. Specifically, under the same privacy
level, both algorithms can achieve an approximate 30% − 40% reduction in MMD compared
to the single-dimension SIGNDS (SIGNDS-S), and around 20%− 30% compared to the multi-
dimension SIGNDS (SIGNDS-M). When ϵ increases, the MMD is approaching the results
of the non-private FL setting. The results suggest that reducing the input dimensions and
adopting a larger top-k ratio can effectively accelerate model convergence and help improve
synthetic data utility.
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Figure 5.5 T-SNE visualization of the distribution of real and synthetic data on the four datasets. Each
column represents the results of one dataset. Each row provides the distribution of synthetic data
generated under non-private centralized and FL settings as well as using different LDP-FL algorithms
with ϵ = 8. SUBMDS and ADASUBMDS refer to the results of using the proposed methods. Red
denotes the real data and blue denotes synthetic data. We also use the Synthcity library [127] to
compute the coverage ratio between real and synthetic data.

Analysis of Diversity

Next, we qualitatively assess the diversity of the synthetic data. Here, we conduct a t-
SNE analysis [153] to visually depict the distribution of real and synthetic data from different
datasets in a two-dimensional space. Intuitively, synthetic data with good utility should be
characterized by a distribution with high diversity and cover the distribution of real data. In
Figure 5.5, we present the visualization results of the four datasets generated by the RWAE
model under the non-private centralized and federated settings, as well as using different LDP-
FL algorithms with ϵ = 8. For each dataset, we respectively compare the distribution between
the real data (red) and the synthetic data (blue). Moreover, we also use the Synthcity library
[127] 2 to compute the coverage ratio between real and synthetic data. It can be seen that the
synthetic data generated by the baseline LDP-FL algorithms fail to cover the entirety of the
real distribution. In contrast, the synthetic data generated using our SUBMDS and ADASUB-
MDS algorithms can better overlap with real data and achieve a higher coverage ratio. The
results illustrate that our framework can better capture the distributions of different variants of
real data and generate diversified synthetic data.

Analysis of Usefulness

We further analyze the usefulness of synthetic data in AI training tasks. We use the real and
synthetic data to train a one-layer LSTM model for next-step prediction, respectively. Then,

2https://github.com/vanderschaarlab/synthcity

https://github.com/vanderschaarlab/synthcity
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we evaluate the model performance using a held-out set of real data. Intuitively, if the LSTM
models trained with synthetic data demonstrate similar performance as those trained with
real data, we say that the synthetic data is of high usefulness and can replace real data for
downstream AI training tasks. Here, we use the MAE to measure the performance of the
LSTM models.

The predictive MAE of all datasets under various privacy settings is presented in Table 5.3.
The MAE of models trained with real data is also included as a reference. It is evident that both
SUBMDS and ADASUBMDS exhibit significantly lower predictive errors compared to the other
two baselines, particularly for small privacy budgets. Specifically, with ϵ = 0.5, the ADASUB-
MDS algorithm reduces the MAE by at least 20% compared to the baseline algorithms, and
achieves a maximum reduction of 85% on the Stock dataset. This further demonstrates the
effectiveness of our multi-dimensional selection algorithms in enhancing the performance of
RWAEs and the quality of synthetic data. Furthermore, as ϵ increases, the MAE of the SUB-
MDS and ADASUBMDS algorithms gradually approaches that of the real data. With ϵ = 8,
the increase in MAE for both algorithms is less than 0.09 and only 0.002 at best when com-
pared to models trained with real data. These results demonstrate that the synthetic data
generated by our framework has higher usefulness compared to the baselines and can serve
as a replacement for real data in AI training tasks.

Ablation Study

We further conduct a series of ablation studies under the ADASUBMDS setting to investigate
how the split ratio of privacy budgets and the number of per-round clients will impact the
framework’s performance.

Impact of the Split of Privacy Budgets In previous experiments, we found that allocating
90% of the total privacy budget to dimension selection enhances the performance of ADA-
SUBMDS compared to baselines under the same privacy budget. In this section, we further
investigate how the different split ratios of privacy budgets impact the model performance. To
this end, we conduct experiments under ϵ = {2, 4, 8} with ϵidx being 10%, 50%, and 90%
of the total budget, respectively, and compare the predictive MAE of synthetic data generated
under different privacy settings. The results of the four datasets are shown in Figure 5.6. It can
be observed that for the same total privacy value ϵ, choosing a larger split ratio for dimension
selection typically results in a lower MAE, namely better data utility. This suggests the model’s
update direction is more crucial for achieving a satisfactory convergence in comparison to the
update magnitude. Given that the dimension selection process significantly impacts the up-
date direction, it should receive a higher proportion of privacy to reduce randomness during
training. Additionally, for the magnitude perturbation, since we implement a quantization on
the real value and only modify the global learning rate following Tpat rounds, it can withstand
greater randomness and therefore be assigned less privacy.

Impact of the Per-round Clients In addition to the split ratio of privacy budgets, we also
analyze the impact of the number of participating clients in each training round on the frame-
work’s performance. We choose 50, 100, and 200 per-round clients respectively, and train
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Table 5.3 Comparison of synthetic data utility in AI training tasks. For each dataset, we respectively
use real and synthetic data to train one-layer LSTM models for next-step prediction and evaluate the
models’ predictive MAE on a held-out set of real data. Here we compare the MAE of synthetic data
generated under different privacy settings.

Datasets Sine Stock
Non-Private

Setting
Real Center FL Real Center FL
0.020 0.027 0.038 0.012 0.013 0.014

Central-DP
Setting

ϵ = 0.5 ϵ = 2 ϵ = 8 ϵ = 0.5 ϵ = 2 ϵ = 8
0.124 0.103 0.051 0.018 0.015 0.014

FL Setting ϵ = 0.5 ϵ = 2 ϵ = 8 ϵ = 0.5 ϵ = 2 ϵ = 8
SignDS-S [74] 0.211 0.141 0.130 0.131 0.022 0.017

SignDS-E 0.210 0.145 0.127 0.130 0.021 0.017
SignDS-M [75] 0.196 0.141 0.111 0.118 0.021 0.015

SubMDS 0.159 0.120 0.107 0.028 0.016 0.014
AdaSubMDS 0.134 0.108 0.110 0.020 0.015 0.014

Datasets Energy Air
Non-Private

Setting
Real Center FL Real Center FL
0.031 0.043 0.043 0.038 0.043 0.047

Central-DP
Setting

ϵ = 0.5 ϵ = 2 ϵ = 8 ϵ = 0.5 ϵ = 2 ϵ = 8
0.060 0.056 0.050 0.083 0.081 0.074

FL Setting ϵ = 0.5 ϵ = 2 ϵ = 8 ϵ = 0.5 ϵ = 2 ϵ = 8
SignDS-S [74] 0.118 0.066 0.054 0.117 0.087 0.079

SignDS-E 0.116 0.065 0.054 0.116 0.087 0.078
SignDS-M [75] 0.108 0.062 0.053 0.113 0.085 0.071

SubMDS 0.084 0.054 0.051 0.097 0.082 0.070
AdaSubMDS 0.058 0.052 0.050 0.087 0.083 0.070

the model with ϵ ∈ {2, 4, 8}. The MMD of the four datasets under different privacy settings is
shown in Figure 5.7. For both datasets, it is evident that increasing the number of per-round
clients further reduces the MAE. With ϵ ≤ 4, increasing the per-round clients from 50 to 200
results in around a 50% ∼ 75% decrease in MMD. This outcome is due to the aggregation
of privatized local updates on the server side. Consequently, when ϵ is small, using more
per-round clients helps mitigate the impact of local randomization on the aggregated global
update, thereby improving the convergence of the global model. Conversely, when ϵ is large,
the randomness caused by the local protection process is already significantly reduced. Thus,
the number of per-round clients does not significantly enhance the utility of synthetic data.

Impact of the Decay Rate and Patience Threshold Finally, we study the impact of r
and Tpat on the model convergence. We train the RWAE with r ∈ {0.5, 0.9} and Tpat ∈
{10, 50, 100}, and use the MMD of synthetic data after each round of aggregation for analysis.
Intuitively, a smaller r leads to a faster decay of the learning rate, while a smaller Tpat implies
a more frequent decay of the learning rate. Figure 5.8 illustrates the performance of the model
with privacy budget ϵ = 6. We observe that r = 50 and Tpat = 10 result in slower conver-
gence and poorer model performance, as the learning rate reduces quickly at the beginning
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Figure 5.6 Analysis of the impact of privacy split ratio. For each dataset, we train the RWAE model
with ϵmag being 10%, 50%, 90% of the total privacy ϵ and compare the MAE of synthetic data under
different privacy settings.

of training. Conversely, r = 0.9 and Tpat = 100 exhibit unstable convergence, as the learning
rate deviates significantly from the true magnitude, leading to a greater discrepancy in sparse
updates. Furthermore, we notice that the ideal combination of r and Tpat may vary across
datasets, suggesting potential improvement by tuning hyperparameters.

Pre-training with Auxiliary Data Finally, we investigate whether the performance of SUB-
MDS can be further improved with pre-training. We assume that the server has a small
number of auxiliary data that are from a similar distribution as real local data. The server uses
these data to pre-train the RWAE model and then applies the warm-up model for FL training.
In Table 5.4, we respectively compare the MMD between the real data and the synthetic data
generated by the model with and without pre-training. For each dataset, we use 100 auxil-
iary data to pre-train the model for 50 epochs. We report the results of training, especially
with ϵ = 2 and ϵ = 8. It can be seen that for all the datasets, synthetic data generated by
pre-trained RWAE models can achieve a lower MMD. In particular, when ϵ = 2, the MMD
has been reduced by around 30% after using pre-training. This is because a larger amount of
randomness is injected during the FL training when ϵ is small, which hinders the model con-
vergence. Since the pre-trained model has already learned some information about the data
distribution, it may suffer from less difficulty during FL training in comparison to training the
model from scratch and can therefore obtain a better synthetic data utility. On the other hand,
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Figure 5.7 Analysis of the impact of per-round clients. For each dataset, we train the RWAE model
with 50, 100, and 200 per-round clients and compare the MMD of synthetic data under different privacy
settings.

when ϵ is large, the FL training is less affected by the local randomization process. Thus, the
improvement of MMD by using pre-training is less significant.

5.6.3 Evaluation of Privacy Protection

Although DP provides a formal definition for the level of privacy protection, there is currently
no concrete interpretation of how to choose an appropriate ϵ in practice for a satisfactory
utility-privacy trade-off. Therefore, we empirically analyze the performance of our framework
in defending the membership inference attack (MIA). We follow the black-box MIA proposed in
[62], where the attacker uses the distance between a target record and a published synthetic
dataset to infer whether the record is used to train the RWAE model. Intuitively, the generative
models tend to produce synthetic data that are more similar to the training data. Therefore, the
more synthetic records close to the target record, the higher the probability the target record
is included in the training data. Let x be a target record and Xsyn be the published synthetic
dataset, we denote Rρ(x) = {x′|Γ(x, x′) ≤ ρ} as the ρ-neighborhood of x under a certain
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Figure 5.8 Analysis of the impact of decay rate r and patience threshold Tpat. For each dataset, we
respectively use decay rate r ∈ {0.5, 0.9} and patience threshold Tpat ∈ {10, 50, 100} to train the
RWAE model for 500 rounds under ϵ = 6. Results show the MMD of synthetic data during the training
process.

distance metric Γ. The attacker then computes the ratio of synthetic records that fall into the
neighborhood of x, namely

Rρ(x) = 1
|Xsyn|

∑

xsyn∈Xsyn

1[xsyn ∈ Uρ(x)], (5.11)

where xsyn is an individual synthetic record in Xsyn and |Xsyn| is the size of the synthetic
dataset. Clearly, the higher Rρ(x), the more likely that x is in the training data.

In our experiments, we construct the target dataset with 100 training records and 100 testing
records (which are not used for training the RWAE model). The ground truth labels of the
training and testing records are 1 and 0, respectively. For each experiment, we generate a
synthetic dataset Xsyn containing 105 records. Then, we compute the Euclidean distance
between the target and synthetic records and further derive the ratio Rρ(x) of each target
record. Here, we follow [62] and set ρ as the median of the minimum distance of each target
record. After sorting the Rρ(x) of all the target records, we assign a prediction label 1 to the
100 records with the largest Rρ(x) and a prediction label 0 to the rest. Finally, we compute
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Table 5.4 Comparison of MMD of synthetic data generated by RWAEs with (w) and without (w/o)
pretraining.

ϵ = 2 ϵ = 8
w/o w improve w/o w improve

Sine 0.101 0.064 0.037 0.024 0.020 0.004
Stock 0.095 0.070 0.025 0.028 0.023 0.005

Energy 0.026 0.019 0.007 0.020 0.017 0.003
Air 0.048 0.034 0.014 0.028 0.025 0.003

Table 5.5 Averaged attack accuracy of the MIA attack under different privacy settings.

Dataset
Center
(No DP)

FL
(No DP)

SubMDS
ϵ = 8 ϵ = 2 ϵ = 0.5

Sine 0.706 0.634 0.586 0.548 0.514
Stock 0.717 0.650 0.613 0.559 0.501

Energy 0.613 0.594 0.579 0.531 0.509
Air 0.643 0.621 0.615 0.587 0.539

the attack accuracy regarding the ground truth labels and the predicted results. We repeat
each experiment 5 times and present the averaged attack accuracy under different privacy
settings in Table 5.5. It can be seen that synthetic data generated by the non-private RWAEs
are still likely to reveal the membership information of the target record. For the four datasets,
the attack accuracy on synthetic data trained under the non-private FL setting can be more
than 60%, and the accuracy under the non-private centralized setting can even exceed 70%.
On the other hand, training the RWAEs with DP can help mitigate information leakage. More
specifically, with ϵ = 0.5, the attack accuracy is reduced by 11% ∼ 21% and is close to 50%,
namely the performance of random guesses. Even with ϵ = 8, the attack accuracy can still be
reduced by 3% ∼ 12%. The results demonstrate that our framework is able to reduce the risk
of MIA and provide privacy protection to the local data.

5.6.4 Evaluation of Robustness

Finally, we investigate whether the proposed SUBMDS algorithm can also help prevent poison
attacks and improve the robustness of FL training. Here we focus on the scenarios of model
poisoning attacks, where a number of malicious local clients modify the real local updates in
order to disturb the model convergence. We consider two common attack strategies, namely
random updates and sign flip. The former replaces the real update with a random update,
while the latter flips the signs of update values. In the experiments, we presume a presence
of 20% malicious clients. We then train the RWAE models using the non-private setting as
well as the SUBMDS algorithm with ϵ ∈ {2, 8} and evaluate the predictive MAE of synthetic
data under both model poisoning attacks. In Figure 5.9 we report the predictive MAE of the
four datasets. Noticeably, for RWAEs trained in the non-private setting, a significant increase
in predictive MAE is observed on applying both poisoning attacks, suggesting that the training
process is easily influenced by the attacks. In contrast, training RWAEs with SUBMDS effec-
tively reduces the MAE. In particular, with ϵ = 8, the MAE under the random updates attack
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Figure 5.9 The effectiveness in defending against model poison attacks evaluated on the four datasets.
For each dataset, we present the predictive MAE of synthetic data generated under different poisoning
attacks and privacy settings.

is reduced by 0.25 for Sine and 0.7 for Stock in comparison to the non-private setting. This
is because SUBMDS only selects a subset of dimensions for each local update, which limits
the impact of random updates on the model convergence. Moreover, although decreasing ϵ
increases the MAE for both poisoned and unpoisoned models because of the larger random-
ness introduced during training, it can still lessen the effect of poisoning attacks compared
to the non-private setting. The results demonstrate that applying SUBMDS algorithm on the
local side can help mitigate different poison attacks and help improve the robustness of FL.

5.7 Conclusion

synthetic data generation (SDG) has recently attracted increasing attention because of its po-
tential to address data insufficiency and privacy issues in data mining and building AI services.
However, most prior SDG works are conducted under the centralized setting, which assumes
the real client data have been collected by the server and will be used for private data publish-
ing. On the other hand, although recent works propose solutions for generating synthetic data
under the distributed setting, they are currently only limited to structured and image data.
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In this paper, we offer the first attempt to generate synthetic time-series data under the dis-
tributed setting. We propose FEDSTDG, an effective framework for synthesizing local mul-
tivariate time-series data with comprehensive privacy guarantees. The framework utilizes a
time-series autoencoder to learn the distributions and correlations of real local data and gen-
erate high-fidelity synthetic data on the server side. Moreover, we propose SUBMDS, a novel
local randomization algorithm for preventing potential privacy leakages in our framework. We
show that the algorithm not only provides strict LDP guarantees but also contributes to improv-
ing the utility of synthetic data compared to existing LDP-FL algorithms. Finally, we introduce
MAGRR, a privacy-preserving algorithm for adaptively adjusting the global learning rate during
FL training. Extensive evaluation with real-world datasets demonstrates the capability and effi-
ciency of our framework in synthesizing time-series data under strong privacy protection. The
synthetic data preserves similar statistical properties as real data and can be easily scaled up
for future data mining and AI training tasks.
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6.1 Abstract

In the previous chapter, we focused on the scenarios where data are horizontally-partitioned,
where all the local datasets share the same set of features. In this chapter, we further explore
privacy-preserving data transmission under a vertical setting. Namely, the local parties hold
different features of the same set of users. This setting is also common in real life, as the
user data collected by different AI service providers are usually different. Since these data
describe the user profiles from various perspectives, gathering and analyzing the data from
all the local parties would enable the developers to gain a better understanding of the user
population. Nevertheless, the publication of vertically-partitioned data faces a dilemma: on the
one hand, the original data cannot be directly shared by local parties due to privacy concerns;
on the other hand, independently privatizing the local datasets before publishing may break
the potential correlation between the cross-party attributes and lead to a significant utility loss.
Prior solutions compute the privatized multivariate distributions of different attribute sets for
constructing a synthetic integrated dataset. However, these algorithms are only applicable to
low-dimensional structured data and may suffer from large utility loss with the increase in data
dimensionality.

Following the idea of synthetic data generation, we further propose VERTIGAN, the first frame-
work based on a generative adversarial network (GAN) for publishing vertically-partitioned
data with privacy protection. The framework adopts a GAN model comprised of one multi-
output global generator and multiple local discriminators. The generator is collaboratively
trained by the server and local parties to learn the distribution of all parties’ local data and
is used to generate a high-utility synthetic integrated dataset on the server side. Additionally,
we apply differential privacy (DP) during the training process to ensure strict privacy guaran-
tees for the local data. We evaluate the framework’s performance on a number of real-world
datasets. Extensive experimental results demonstrate the capability and efficiency of our
framework in synthesizing vertically-partitioned data while striking a satisfactory utility-privacy
balance.

6.2 Introduction

With the rapid development of network and computer technologies, large and diverse quanti-
ties of user data have been extensively collected and stored by different companies and insti-
tutes (referred to as local parties). These data usually contain rich information characterizing
user profiles, which is valuable for data mining and building AI services. Due to the variety of
service scenarios, the user data are often vertically partitioned and distributed among these
local parties. That is, the local dataset held by each party usually contains different attributes
of the same group of users. Considering that the more attributes the data consist of, the more
information can be used for describing an individual user, it is practical for local parties to
collaborate with each other and publish an integrated dataset with all the attributes for better
decision making or building high-accuracy services. For instance, in a healthcare scenario,
a group of specialist hospitals could publish a joint dataset to study potential correlations be-
tween different types of illnesses such as cancer, and heart and lung diseases. Similarly, in a
smart finance scenario, a loan company could use a dataset jointly published by a bank and
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an e-commerce company to more deeply explore the key attributes that may result in higher
default risk. More generally, integrating and analyzing these vertically-partitioned datasets en-
ables data analysts to explore the hidden correlations of attributes from different perspectives
and thus obtain a better understanding of the characteristics of user groups. This can be of
significant help in designing optimized data mining algorithms and machine learning models.

However, publishing vertically-partitioned datasets has to be recognizant of the restrictions
of data protection regulations such as the GDPR and users’ privacy concerns. On the one
hand, since the local data are generated based on users’ ongoing behaviors and may contain
sensitive information of individual users, directly sharing the original local datasets with an
untrusted third party may lead to serious privacy leakage (see, for example, [18, 11]). On the
other hand, the local parties can use state-of-the-art privacy-enhancing techniques, such as
differential privacy (DP) [42], to process the real data and only share the privatized datasets.
Nevertheless, each party individually privatizing the local data may break the correlations and
joint distributions among attributes held by different parties and lead to distinctive utility loss
in the published dataset. Therefore, solutions for publishing vertically-partitioned data under a
satisfactory privacy-utility balance are greatly needed.

In comparison to the substantial attention given to privacy-preserving data mining and ma-
chine learning under a vertical setting, algorithms for publishing the vertically-partitioned data
are still barely studied. Prior works [72, 87] proposed two-party publication protocols un-
der k-anonymity guarantees [141]. Unfortunately, later studies [166, 140] pointed out that
k-anonymity models are vulnerable to various privacy attacks and cannot provide sufficient
privacy protection. Follow-up work [114] proposed the first algorithm for publishing vertically-
partitioned data under DP guarantees. However, the algorithm is limited to two-party scenarios
and requires pre-defined taxonomy trees for all categorical attributes. Recent work by Tang et
al. [142] proposed to use a latent tree model [181] to represent the cross-attribute distributions
in the original dataset and privatizes the latent tree parameters via a distributed Laplace pro-
tocol to achieve ϵ-DP for each local dataset. Although the work by Tang et al. [142] effectively
improves data utility and efficiency compared to [114], the algorithm evenly splits the privacy
budget to all the attribute pairs. Therefore, the noise scale may increase exponentially with
the data dimensionality and cause significant utility loss. Moreover, the algorithm is limited to
discrete structured datasets and cannot support other data types.

In recent years, data synthesis has increasingly been considered a useful approach for ad-
dressing data insufficiency problems in developing AI applications. With the strong capabilities
of characterizing the correlations and distributions of high-dimensional data, deep generative
models such as generative adversarial network (GAN) are increasingly used for generating
high-utility and low-sensitivity synthetic data. Although some recent works (e.g., [146, 74])
also proposed training the generative models under the federated learning (FL) framework to
avoid the direct collection of real local data, the solutions all focus on the horizontal setting,
which cannot be directly applied to vertically-partitioned data.

In this work, we address this research gap and propose VERTIGAN, the first GAN-based
framework for privacy-preserving publication of vertically-partitioned data. The framework
adopts a distributed GAN architecture, comprised of a global generator and multiple local dis-
criminators. By using a collaborative training strategy, the global generator is trained without
accessing the real local data. Moreover, we adopt a multi-output structure for the generator,
which enables the model to directly learn the correlations and distributions of the attributes
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held by different local parties and generate synthetic integrated data. Finally, we inject DP
perturbation during the training process, which ensures that the generator and the synthetic
data satisfy strict DP guarantees for each local party. The main contributions of our approach
are as follows:

• We propose VERTIGAN, an efficient and privacy-preserving framework for publishing
vertically-partitioned data. The framework trains a multi-output global generator to di-
rectly learn the distribution of all parties’ local data and to generate high-utility synthetic
integrated data on the server side. To the best of our knowledge, this is the first frame-
work based on a deep generative model for private data publication under the vertical
setting.

• We introduce a distributed training strategy, where the global generator is updated
based on the gradients calculated by the local discriminators. The strategy eliminates
the need to access real local data when training the global generator. Moreover, we
apply DP perturbation during the training process to provide a strict privacy guarantee
for each local dataset.

• We implement our framework and evaluate the performance on a number of real-world
datasets containing 68–1501 classification attributes. Through comparison with the pre-
vious statistics-based algorithms, we show that the synthetic data generated by our
framework always preserve much closer joint distributions and correlations to real data.
Moreover, with a local privacy guarantee ϵ = 8, we achieve around 2% ∼ 15% improve-
ment in classification accuracy compared to the baseline algorithms. Extensive evalu-
ation experiments show that our framework has outperforming capability and efficiency
in collecting high-dimensional data while offering a favorable utility-privacy balance.

6.3 Related Work

6.3.1 Data Analysis on Vertically-Partitioned Data

In recent decades, data analysis on vertically-partitioned data has attracted increasing atten-
tion. Different from the horizontal setting, vertical partitioning refers to the scenario where local
parties collect different attributes of the same set of users. Existing applications on vertically-
partitioned data include, for instance, jointly training ML models using attributes of all the local
parties, or publishing an integrated dataset for future data mining.

Machine Learning Under Vertical Setting

In the context of machine learning (ML), prior studies by Vaidya et al. proposed a series of se-
cure multi-party computation (SMC) protocols [176] for training different models on vertically-
partitioned data, including Bayes classifier [150], and decision trees [151], etc. Hardy et al. [58]
proposed a vertical federated learning (VFL) framework that trained LR models using homo-
morphic encryption (HE) [32]. Yang [173] further applied the quasi-Newton method in VFL
to reduce the number of communication rounds. Some other works [27, 167] also proposed
solutions for tree-based models and neural networks [132]. Besides using crypto-based tech-
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nologies such as HE and SMC to ensure security in VFL, recent works [26, 157] further pro-
posed to incorporate DP into the training process to provide strict privacy guarantees for local
data.

On the other hand, some recent works also investigate potential privacy attacks against VFL,
which include label inference attacks and feature reconstruction attacks. In the label inference
attacks, the parties without ground-truth labels aim to use the back-propagated gradients
to infer the sample labels. Several existing attacks proposed to explore the difference of
the gradient norms [94] or the sign of the last-layer gradients [101, 187]. Other research
[48] also proposed a semi-supervised learning approach that first estimated the bottom-layer
parameters and then used the “completed” model to “generate” the label of arbitrary samples.
Apart from the label leakage, some other works [102, 73] also studied the feature leakage in
VFL, where the party obtaining the model predictions tries to reconstruct the input features
of other parties. Nevertheless, existing attacks against VFL only focused on classification
models, where the attackers either try to infer the ground-truth labels or need to use the model
predictions to reconstruct local features. In contrast, in this paper, we use the GAN model for
data synthesis, which does not involve such label (or prediction) information. Hence, the
above-mentioned attacks in VFL are no longer applicable.

Data Publication Under Vertical Setting

Compared to the extensive set of studies on machine learning under the vertical setting, there
are still only limited prior works on publishing vertically-partitioned data. Prior works in [72, 87]
proposed SMC-based protocols for two-party data publication under k-anonymity guarantees
[141]. Nevertheless, later studies [166, 140] pointed out that k-anonymity models are vulnera-
ble to various privacy attacks and cannot provide sufficient privacy protection. In contrast, DP
[42] is considered as a more principled approach for private data publication. Mohammed et
al. proposed DistDiffGen [114], the first algorithm for publishing vertically-partitioned data un-
der DP guarantees. DistDiffGen first generalizes the raw data using a distributed exponential
mechanism and then adds noise to the distributions to ensure ϵ-DP. However, the algorithm
is limited to two-party scenarios and requires pre-defined taxonomy trees for all categorical
attributes, which may not always be available in practice. Later work by Tang et al. [142]
proposed an improved differentially private latent tree (DPLT) algorithm, which first uses a la-
tent tree model [181] to represent the cross-attribute distributions in the original dataset and
then privatizes the latent tree parameters via a distributed Laplace protocol to achieve ϵ-DP
for each local dataset. The latent tree model will then be used for generating a synthetic
dataset. Although [142] significantly improves the data utility and efficiency in comparison to
[114], it is still limited to discrete attributes. Moreover, since the privacy budget is evenly split
over all the attribute pairs, the noise scale may increase exponentially with the increased data
dimensionality and cause a large utility loss.

In this paper, we propose a distributed GAN-based protocol for publishing vertically partitioned
data in a private manner. Compared to previous works, our solution can support the publica-
tion of high-dimensional datasets with strict DP guarantees. Moreover, the framework can be
further extended to support other types of data such as numerical data and images.
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6.3.2 Differentially Private Data Synthesis

DP data synthesis has been extensively studied over recent years as one of the solutions
for privacy-preserving data publishing. Previous statistics-based works [25, 179] computed
joint distributions of original structured data under DP guarantees and used them to generate
synthetic datasets. However, these methods can only be applied to structured data and may
suffer from a significant utility loss with the increase in data dimensionality.

Inspired by the rapid evolution of deep learning, later works proposed to directly train gen-
erative models such as autoencoders [85, 6] and generative adversarial networks (GANs)
[53] and to generate high-utility synthetic data. Nevertheless, simply training these gener-
ative models without protection may still lead to privacy leakage. For instance, prior work
[152, 8] showed that GANs may unintentionally memorize the training data. Moreover, Hayes
et al. [60] proposed different membership inference attacks against the trained generator
and discriminators. Later works also demonstrated that the membership information can be
revealed from the generated synthetic data [62, 24, 138]. In addition, Zhou et al. [185]
performed a property inference attack, which uses the synthetic data to infer the macro-level
information of training data (e.g., the ratio of samples regarding a certain property).

DP has been considered one of the countermeasures against such privacy attacks. Existing
DP data synthesis algorithms are generally divided into two categories, namely by using dif-
ferentially private stochastic gradient descent (DPSGD) [1] or private aggregation of teacher
ensembles (PATE) [121]. The DPSGD-based algorithms [170, 183] perturb the model gradi-
ents in each iteration by clipping and adding Gaussian noise to ensure DP guarantees. The
PATE-based algorithms [77, 156] first train a group of teacher models (e.g., the discriminator
in GAN) on non-overlapping subsets of original data and then use the noisy predictions from
the teacher group to train the student model (e.g., the generator). Nevertheless, previous data
synthesis algorithms mainly focus on the centralized setting, where the server has already col-
lected the clients’ real data. This may not always be realistic since the clients may refuse to
share their personal local data with untrusted servers. Therefore, some recent works also pro-
posed to train the generative autoencoders [74] and GANs [146, 180] under the FL framework
to avoid the collection of original data. However, existing solutions only focus on the horizontal
setting, where the local data shares the same set of attributes. In contrast, in this paper, we
conduct the first attempt at the GAN-based DP data synthesis for vertically-partitioned data.

6.4 Problem Statement

In this work, we focus on the scenario where the user data are vertically partitioned and
distributed over multiple local parties. Each party possesses a different set of attributes of the
same group of samples. A central server aims to integrate these local datasets in a private
manner and publish a joint dataset containing all the attributes. The joint dataset will be further
used by external data analysts for downstream data mining and model training tasks.

An illustration of the system setting is shown in Figure 6.1. We assume there are N local
parties P1, · · · ,PN . Each party Pi has a local dataset containing a different set of attributes
Ai = {ai1, · · · , ai|Ai|}. Here, the attribute sets can be either partially overlapping or non-
overlapping. Moreover, each party may hold samples not covered by other parties. Therefore,
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Figure 6.1 Overview of the system model.

we assume that the local data have certain alignable sample IDs (e.g., ID number, cellphone
number, etc.). The local parties can use private set intersection (PSI) protocols (e.g., [34,
66, 29]) to determine the intersecting sample IDs without exposing the non-intersect samples.
Then, each party sorts the common samples according to their IDs and obtains the final
training dataset Xi ∈ RM×|Ai|, where H is the number of samples and |Ai| is the number of
attributes.

The goal of the task is to design a privacy-preserving framework, where a central server can
collaborate with all the local parties and publish a private joint dataset X̃ ∈ RH×|∪H

i=1A
i| that

contains the full set of attributes. The joint dataset X̃ preserves both single-party and cross-
party attribute correlations. More specifically, consider local parties Pi and Pj respectively
holding local datasets Xi ∈ RH×|Ai| and Xj ∈ RH×|Aj |, then the distribution of X̃ should
satisfy

PX̃(Ai) ≈ PXi(Ai), PX̃(Ai, Aj) ≈ PXi,Xj (Ai, Aj). (6.1)

Following previous works, we assume that the local parties and the central server are honest-
but curious, who correctly follow the protocols but try to infer sensitive information of other local
datasets. Moreover, we also consider the threat posed by external data analysts, who aim to
use the published joint dataset to re-identify sensitive information of specific users. Based
on the considerations above, it is required that there is no information exchange among local
parties and each party does not know the attribute set of other parties. Moreover, we assume
that the server cannot directly access the raw local data but is aware of the full attribute set
and the size of the training dataset. Finally, the published dataset should satisfy strict DP
guarantees and not reveal the privacy of individual users in the local datasets.
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Figure 6.2 General workflow of the VERTIGAN framework.

6.5 Proposed Framework

Although previous works proposed statistics-based algorithms for publishing vertically-
partitioned data under DP guarantees, the solutions are only limited to low-dimensional struc-
tured data and may suffer from large utility loss with the increase in domain size. Follow-
ing the idea of data synthesis, we propose VERTIGAN, the first GAN-based framework for
differentially-private publication of vertically-partitioned data. The overall workflow of the frame-
work is presented in Figure 6.2, which consists of two phases, namely the collaborative train-
ing process and the synthetic data generation process. In the first process, a GAN model
is collaboratively trained by the server and all the local parties to learn the correlations and
distributions of all the local datasets in a private manner. In the second phase, the generator
part is used to directly generate synthetic integrated data that contains attributes held by all
the local parties. The synthetic data preserves similar statistical properties to real data and
can be alternatively used for downstream data analysis and AI training tasks.
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Nevertheless, training the GAN model on distributed vertically-partitioned data faces several
challenges. To start with, in this work, we focus on the scenario where the real data are dis-
tributed on the local side and cannot be directly shared with the server. Hence, the model
cannot be simply trained as in the centralized setting due to data inaccessibility. Moreover,
in the vertical setting, the attribute sets held by the local parties are usually different from
each other, which is referred to as attribute inconsistency in this work. This causes existing
solutions that train GANs in the horizontal FL framework to be inapplicable. Finally, recent
contributions (e.g., [137, 21]) point out that the ML models may memorize information in train-
ing data and suffer from different privacy attacks. Therefore, privacy protection techniques
should be applied during model training to prevent potential privacy leakage. We apply corre-
sponding solutions in the VERTIGAN framework to address the above-mentioned challenges.
In the following sections, we will respectively introduce each solution in detail.

6.5.1 Distributed GAN Against Data Inaccessibility

Different from other generative models, GANs are usually built with two independent networks,
namely a generator and a discriminator. The two networks are trained in an adversarial man-
ner to improve their own performance. By taking advantage of GANs’ separate generator-
discriminator architecture, the VERTIGAN framework applies a distributed training strategy
to address data inaccessibility problems. More specifically, the framework deploys a global
generator G on the server side and multiple discriminators {D1, · · · , DN} on the local side.
The global generator takes in random latent features and outputs synthetic data for each local
party, while the local discriminators are trained on the local side to distinguish between real
data and synthetic data. The ultimate goal of the framework is to obtain a well-trained global
generator on the server side that is capable of producing high-utility synthetic data without
violating the privacy of real local data.

The training process is conducted in cooperation with the server and all the local parties, as
shown in Figure 6.2. During each global training round, the server broadcasts the current
global generator to all the local parties for generating synthetic data. Each party first uses its
real local data and the corresponding part of synthetic data to train its local discriminator and
then uses the trained discriminator to compute the generator’s gradient. Finally, the gradients
from all the local parties will be aggregated on the server side and used to update the global
generator. In Figure 6.3, we also present a detailed illustration of the local training process. It
can be seen that the local data are only used for training the local discriminator Di, and the
global generator G is only updated based on the gradient computed by the trained discrimi-
nators. Moreover, only the information (weights and gradients) of the generator is exchanged
between the local and server side, while the discriminators and the real data are always kept
on the local side. In this way, the framework can facilitate the training of the global generator
without direct access to the real local data.

6.5.2 Multi-Output Generator Against Attribute Inconsistency

Moreover, in this work, we consider the scenario where the user data are vertically-partitioned
and distributed among M local parties. Since the local parties under this setting may hold
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Figure 6.3 Workflow of the local training process.

different sets of attributes, the conventional single-output generators are not applicable to the
framework. In order to address the attribute inconsistency problem, we propose a multi-output
structure for the global generator. The generator consists of several common layers (denoted
as G0) and M separate follow-up branches (denoted as {G1, · · · , GN}). Each branch Gi

produces synthetic data with attributes of one local party Pi. Given a batch of input feature
Z, the global generator is capable of concurrently producing synthetic data {X̃1, · · · , X̃N} for
all the local parties. Here, X̃i = Gi(G0(Z)) corresponds to the data generated from the i-th
branch.

We follow the optimization approach of WGAN introduced in Section 2.3.2 to iteratively train
the global generator and local discriminators in the proposed framework. On the one hand, the
training of the discriminators on the local side is conducted as under the centralized setting.
Here, the loss function for the i-th local discriminator Di is:

LiD = Di(xi)−Di(x̃i) + λ(∥∇x̂iD(x̂i)∥ − 1)2, (6.2)

where xi is the real data of the i-th local party, x̃i = Gi(G0(z)) is the synthetic data generated
by the i-th branch of G, x̂i is the gradient penalty as defined in Equation (2.16), and λ is
the weight for the gradient penalty. Once the discriminators have been trained for several
iterations, they will be used to compute the gradient of the global generator. The loss function
for the global generator G can be computed as the sum of the loss regarding all the local
discriminators, each of which is derived following Equation (2.17):

LG =
N∑

i=1
LiG =

N∑

i=1
Di(Gi(G0(z))). (6.3)

The generator’s gradient ∇LG can be further derived as

∇LG = ∂
∑N
i=1 LiG
∂G

=
N∑

i=1

∂LiG
∂[G0, G1, · · · , GN ]

=
[
∂L1

G

∂G0 ,
∂L1

G

∂G1 , 0, · · · , 0
]

+ · · ·+
[
∂LNG
∂G0 , 0, 0, · · · ,

∂LNG
∂GN

]

=
[
N∑

i=1

∂LiG
∂G0 ,

∂L1
G

∂G1 , · · · ,
∂LNG
∂GN

]
(6.4)
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which is the sum of the generator gradients from all the local parties. Hence, by aggregating
all the returned generator gradients, the server achieves to use the sum of the gradients to
update the global generator. It can be seen from Equation (6.4) that the parameters of each
branch Gi are updated based on the gradients from party Pi, while the parameters of the
common layers G0 are updated by the gradients from all the local parties. Therefore, the
multi-output structure enables the global generator to automatically capture the correlations
and distributions of attributes across local parties during the training process and directly
generate synthetic integrated data with the entire attribute set.

6.5.3 Collaborative Training with Differential Privacy

In the previous sections, we illustrate how the VERTIGAN framework enables a global gener-
ator to learn the hidden correlations of attributes across all the local parties without actually
accessing the real local data. Nevertheless, recent studies (e.g., [137, 21]) showed that the
trained generator may reveal sensitive information of real local data under various privacy
attacks. In order to mitigate potential privacy risks, we further apply DP during the training
process, which provides strict privacy guarantees to the local datasets.

Considering the global generator does not directly access real local data, we follow previous
DP-GAN algorithms [170, 183] and only perturb the gradients of local discriminators to achieve
privacy protection. Specifically, in each update step of the discriminator, we first sample a
batch of real local data and synthetic data, and then compute the corresponding gradients
{gi,bD }b∈B . Each gradient gi,bD is then clipped by a pre-defined L2-norm bound C, namely

ḡi,bD = clip(gi,bD , C) = gi,bD /max(1, ||gi,bD ||2/C). (6.5)

Next, we sum up all the clipped gradients, add random Gaussian noise N (0, σ2C2I), and
divide the perturbed gradient by the batch size B as shown below:

g̃iD = 1
B

(
B∑

b=1
ḡi,bD +N (0, σ2C2I)

)
. (6.6)

The gradient g̃iD is used to update the discriminator parameters.

Since the local discriminator is repeatedly updated during the training process, according to
the composition property, the total privacy cost should be accumulated. Considering that RDP
achieves a much tighter privacy estimation in comparison to the traditional DP (as mentioned
in Section 2.1.2), we first compute the overall privacy cost under the RDP definition and then
convert it back to the traditional DP definition. To start with, the privacy cost of each gradient
perturbation under RDP is derived as follows:

Corollary 3. With a noise scale N (0, σ2C2), the perturbed gradient g̃iD satisfies (α, α/2σ2)-
RDP.

Proof. Let f = ∑B
b=1 ḡ

b
D = ∑B

b=1 clip(gbD, C) be the sum of all the gradients clipped by an
L2-norm bound of C. The sensitivity of f can be derived as:

∆2f = max
X,X′

||f(X)− f(X ′)||2 ≤ C. (6.7)
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Algorithm 9: VERTIGAN - Workflow of Server
Input: G: global generator; N : number of local parties; T : global training rounds; η:

learning rate; OPT : optimizer for the GAN model.
Output: Trained global generator G

Server executes:
1: Initialize global generator G
2: for each local party i = 1, · · · , N do
3: LocalInitialization() // Run on the local side
4: end for
5: for each global round t = 1, · · · , T do
6: Sample random seed ϑ
7: for local party i = 1, · · · ,M do
8: Distribute ϑ and G to the local party i
9: Get local gradient giG = LocalUpdate(ϑ,G)

10: end for
11: Aggregate local gradients gG = ∑N

i=1 g
i
G

12: Update generator G← OPT.update(G, gG, η)
13: end for
14: return G

Furthermore, the gradient perturbation process can be denoted asMf = f +N (0, σ2C2I).
Based on Definition 6, the privacy cost ofMf under the order α is

ϵ(α) = (∆2f)2 · α
2 · σ2C2 = C2 · α

2 · σ2C2 = α

2σ2 . (6.8)

As shown in Equation (6.6), the perturbed gradient will be divided by a batch size B, and the
result g̃iD will be actually used to update the discriminator. Since B is unrelated to the real
data, according to the post-processing property (Property 3), the final discriminator update g̃iD
also satisfies (α, ϵ(α))-RDP.

According to Lemma 2, the privacy guarantee can be further amplified by subsampling. Given
M as the total number of training data and B as the batch size, we compute the sampling rate
as ζ = H/B and derive the amplified privacy cost ϵ′(α) following Lemma 2. Next, assume the
discriminator has updated for Ttotal steps during the entire training process, then the overall
privacy cost is (α, Ttotal · ϵ′(α))-RDP. We further convert privacy cost back to the traditional
(ϵ, δ)-DP definition according to Lemma 1. Finally, since the global generator is trained on the
local discriminators, according to Property 3, the global generator also satisfies (ϵ, δ)-DP for
the corresponding local dataset.

6.5.4 Overall Training Process

With the above design considerations, we now describe the overall training process presented
in Algorithm 9 and Algorithm 10.
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Before the training starts, the server initializes the global generator G. On the local side, each
party also initializes its local discriminatorDi. Moreover, considering that the local parties may
have personalized privacy requirements, we let each local party individually compute the noise
scale σi. With the universally configured batch size B, global rounds T , and local steps E, the
discriminator’s total update step is derived as Ttotal = T ·E. Following the privacy accounting
process described in Section 6.5.3, the required σi under the target privacy budget (ϵi, δi) can
be determined accordingly. Finally, since each local party holds different attributes of the same
group of samples, the local training data should be sample-wise aligned during each global
round. A naive solution is to let the server randomly sample multiple batches of data indices
for selecting the real data as well as input features for generating the synthetic data, and then
broadcast all the information to the local side. However, this may cause extra communication
costs, especially for large training batches. To address the issue, our framework applies a
pseudorandom number generator (PRNG) Φi at each local party to realize the data alignment.
Following prior works [14, 109], we use secure PRNGs to achieve comprehensive security
guarantees. Moreover, we require that all the local PRNGs use the same algorithm and are
deployed with the same configuration. Therefore, according to the reproducibility of PRNG,
given the same random seed ϑ, each Φi is able to produce the same sequence of indices
of real data or input features sampled from the standard Gaussian distribution. By using the
PRNG, the server only needs to randomly sample a random seed and broadcast it to all
the local parties in each global round, which significantly improves communication efficiency.
Also, considering that existing secure PRNGs based on standard cryptographic primitives can
have an output rate of gigabytes per second on modern CPUs [79], their computation cost is
negligible compared to the local training time.

In each global training round, the server broadcasts the current global generator G as well
as the random seed ϑ to all the local parties. Each party P i first sets Φi with the random
seed ϑ and then updates the local discriminator Di for E steps using the real data Xi and the
synthetic data X̃i = Gi(G0(Z)) sampled by Φi. We apply the DP perturbation in each up-
date step, where the batch of gradients is clipped by L2 bound C and perturbed with random
Gaussian noise N (0, σi2C2I). The noise scale σi is determined in the initialization process.
Then, the local discriminator is used to compute the gradient giG of the current global gener-
ator, which will be returned to the server for updating the parameters of the global generator
parameters. The global training process is conducted for T rounds. Once the training com-
pletes, the server can use the global generator G to directly generate the synthetic dataset
with attributes of all the local parties.

6.6 Experiments and Results

We implemented the proposed framework using the Tensorflow library and performed com-
prehensive experiments with a number of open-source datasets to evaluate its performance.
In this section, we first introduce the experimental settings and then discuss the evaluation
results.
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Algorithm 10: VERTIGAN - Workflow of Local Party i

Input: G: global generator; Di: party i’s local discriminator; Xi: party i’s local data;
Φi: party i’s local PRNG; T : global training rounds; E: local update steps; B:
batch size; η: learning rate; C: L2 clipping bound; (ϵi, δi): party i’s privacy
budget; OPT : optimizer for the GAN model.

LocalInitialization():
1: Initialize local discriminator Di, local PRNG Φi

2: Given the target (ϵi, δi) and the pre-defined (B, Ttotal, E), compute the required noise
scale σi

LocalUpdate(ϑ,G):
3: Get local data Xi, set Φi.set_seed(ϑ)
// Train local discriminator

4: for t = 1, · · · , E do
5: Sample indices J = Φi.random_choice(size=B)
6: Sample input noise Z = Φi.random_normal(size=B)
7: for b = 1, · · · , B do
8: Let x = Xi[J [b]], x̃ = Gi(G0(Z[b]))
9: Compute Li,bD (x, x̃) and gi,bD = ∇Li,bD (x, x̃)

10: Clip gradient ḡi,bD = gi,bD /max(1, ||gi,bD ||2/C)
11: end for
12: Aggregate gradients and add noise g̃iD = 1

B (∑B
b=1 ḡ

i,b
D +N (0, σi2C2I))

13: Update discriminator Di ← OPT.update(Di, g̃iD, η)
14: end for
// Compute generator gradient

15: Sample input noise Z = Φi.random_normal(size=B)
16: Compute giG = 1

B

∑B
b=1∇LG(Gi(G0(Z[b])))

17: return giG

6.6.1 Experiment Setup

Datasets and Models

We used six multi-dimensional classification datasets for evaluating the performance of the
VERTIGAN framework:

• Web [125] contains records with 124 binary attributes extracted from each web page.
The goal was to train a classifier to determine whether the web page belongs to a
category.

• Vehicle [39] contains data collected in wireless distributed sensor networks. Each
record has 100 binary attributes representing data collected from different acoustic and
seismic sensors. The goal was to train a classifier for vehicle type classification.

• Census [38] contains records drawn from the 1990 United States census data, including
68 personal attributes such as gender, income, and marital status. We used the dataset
to classify the duration of people’s active duty service.
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Table 6.2 Datasets details

Dataset Type
Num. Num. Domain

Records Attributes Size
Census Integer 2,458,285 68 2150

Twitter Integer 140,707 78 2181

Web Binary 36,974 124 2124

Vehicle Binary 98,528 101 2101

HAR Binary 10,299 561 2561

Dilbert Binary 10,000 1501 21501

Table 6.3 One-hot dimensions and the number of model parameters under the two-party setting

Party 1 Party 2 Server

Dataset
One-hot #Param. One-hot #Param. #Param.

Dim. D1 Dim. D2 G

Census 137 9,592 145 10,732 53,760
Twitter 195 19,307 174 15,313 94,768

Web 124 7,813 123 7,751 39,416
Vehicle 100 5,101 102 5,305 26,857

HAR 562 158,485 566 160,745 812,949
Dilbert 1,500 788,551 1,505 794,190 2,681,446

• Twitter [83] contains records with 77 attributes such as the number of discussions and
average discussion length, which are used to predict the popularity magnitude of each
instance. In our experiment, we quantified the values of each attribute into five bins.
The goal was to classify the level of popularity of each instance.

• Activity [5] contains sensor records describing six daily activities. Each data record has
561 attributes representing different time and frequency domain variables. We normal-
ize each attribute and convert the data to binary form.

• Dilbert was originally provided in [90] for object recognition. We use the processed
version in [55], where the records are categorized into five classes. We take the first
1500 attributes from the processed data to exclude the irrelevant variables mentioned
in [55]. Then, we normalize each attribute and convert the data to binary form.

Details of each dataset are presented in Table 6.2, including the data type, the number of
records and attributes, and the domain size. In the experiments, we assume that each party
holds 105 data records. To this end, we randomly sample 105 records from each original
dataset and partition the datasets by feature. If the original dataset contains fewer records,
the data are sampled with replacements. We further use one-hot encoding to convert the
original categorical attributes to the numerical form for model training.

We design the global generator and local discriminators as multi-layer neural networks (NNs)
and determine their layer size according to the one-hot dimension of the local datasets. The
local discriminators are two-layer NNs whose output is a scalar between 0 and 1. The global
generator is a multi-output model, which has two common layers followed by a number of sep-
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arate branches. Each branch contains two fully-connected layers, which output the synthetic
data of one party. In Table 6.3, we report the one-hot dimensions and the model size under
the two-party setting.

Baseline Methods

Considering the objective and setting of existing works on the publication of vertically-partitioned
data, we use the DPLT algorithm proposed by Tang et al. [142] as our baseline in the following
experiments. The algorithm uses a latent tree model to represent the cross-attribute correla-
tions in the original dataset and perturbs the tree parameters via a distributed Laplace protocol
to achieve DP guarantee for each local dataset. Additionally, a tree index-based method TICQ
can also be used to determine the minimum set of latent attribute pairs for constructing the
latent tree, which helps to reduce the noise scale. The total privacy budget is consumed by
three parts, namely the generation of latent attributes, quantification of latent attributes’ corre-
lations, and privatization of the tree parameters. For each dataset, we respectively compare
the synthetic data utility of using the DPLT algorithm (referred to as DPLT) as well as the
improved TICQ-DPLT algorithm (referred to as DPLT+). Moreover, we also present the utility
of synthetic data generated under the non-private setting as a reference.

Parameter Configurations

In the following experiments, we conduct the collaborative training process for T = 1500
rounds. During local training, each local discriminator is updated forE = 10 steps with a batch
size of B = 1000. For both the generator and discriminator, we use the RMSprop optimizer
with a default learning rate of η = 0.001. Moreover, we apply the gradient perturbation when
training the local discriminators, where the L2-clip bound C is set to 1 and the noise scale
σ varies according to the target privacy budget. We choose a different privacy budget ϵ ∈
{0.5, 1, 2, 4, 8} and δ = 10−5 so as to explore the influence of privacy on the framework
performance. The ϵ here follows the traditional DP definition (Definition 1).

Evaluation Metrics

We evaluate the performance of our VERTIGAN framework from two perspectives, namely
the utility evaluation and the privacy evaluation. For the utility evaluation, we first compare the
statistical similarity of synthetic data and real data. Then, we apply commonly used machine
learning models to investigate the utility of synthetic data in AI training tasks. For the pri-
vacy evaluation, we investigate the capability of our framework against membership inference
attacks, where an attacker aims to use the synthetic dataset to determine whether a target
record is used for training theGAN model.
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Table 6.4 Computation time (sec) of the proposed VERTIGAN framework and baseline DPLT+ algo-
rithm regarding different datasets. For VERTIGAN, we perform 1500 global rounds and report the total
training time.

Dataset Web Vehicle Census Twitter HAR Dilbert
DPLT+ 1516.20 1116.81 1341.47 3954.03 19598.39 34413.66

VertiGAN 485.35 396.35 424.42 510.26 3296.08 8387.30

Computation Environments

We perform all the experiments on an NVIDIA Quadro RTX 6000 GPU. In Table 6.4, we com-
pare the training time (sec) of our VERTIGAN framework and the baseline DPLT+ algorithm
regarding all the datasets.

6.6.2 Utility: Statistical Similarity

We start our evaluation under the two-party setting, which is commonly used in existing VFL
frameworks. Here, each party holds half of the attributes. We first evaluate the performance of
VERTIGAN by investigating whether the generated synthetic data can preserve similar statisti-
cal properties as real data. To this end, we respectively compare the m-way joint distributions
and cross-attribute correlations of the real data and synthetic data and analyze their statistical
similarity.

Comparison of Joint Distributions

For the analysis of joint distributions, we used the average total variation distance (AVD) to
quantify the distribution difference between the real data and synthetic data, as used in [142],
which is defined as

AVD = 1
2
∑

A⊆A
|Preal(A)− Psyn(A)|, (6.9)

where A is one of the m-way attribute combinations in the attribute set A, Preal(A) and
Psyn(A) are joint distributions of real and synthetic data. More specifically, assume the at-
tribute combination A has a domain size of |ΛA|, Preal and Psyn are |ΛA|-dimensional vec-
tors, where each entry is the probability of a specific value combination (namely the ratio of
occurrence in the entire real or synthetic dataset). For each dataset, we randomly chose 100
m-way attribute combinations and computed the average distribution difference.

AVD Regarding the Privacy Budget ϵ In Figure 6.4, we first compare the 4-way AVD of the
synthetic data generated by the VERTIGAN framework as well as the two baseline algorithms
under different privacy levels. We also report the results under the fully centralized setting and
the results of the proposed framework under the non-private setting as a reference. The error
bars represent the 95% confidence interval (also for the remaining experimental results). It can
be seen that the AVD of all the algorithms reduces with the increase of ϵ. Nonetheless, for all
the datasets, the synthetic data generated by the VERTIGAN framework consistently achieve



6 VERTIGAN for Private Sharing of Vertically-Partitioned Structured Data

128

Figure 6.4 AVD of 4-way joint distributions between the real and synthetic data with respect to different
privacy levels.

a smaller AVD in comparison with the baseline methods, which indicates a better capability of
our VERTIGAN framework in capturing the multivariate distributions. Moreover, there is a more
distinctive gap in AVD between the baseline algorithms and VERTIGAN for the datasets with
a larger domain size. It can be observed that when ϵ ≥ 4, the AVD of the baseline algorithms
is almost two to three times in comparison with VERTIGAN. This is because a larger domain
size refers to more cross-attribute combinations. Since the baseline algorithms are supposed
to evenly split the privacy budget to all the attribute pairs, the increase in domain size may
cause each attribute pair to be allocated with an insufficient privacy budget, which may result
in serious degradation of data utility. In comparison, VERTIGAN applies DP perturbation to
the discriminator’s gradients and is not directly related to the domain size. Therefore, the
increase in domain size does not significantly affect the utility of the synthetic data generated
by VERTIGAN.

AVD Regarding the Multivariate Dimension m We further analyze the AVD with varied
multivariate dimension m to gain a deeper insight into VERTIGAN’s capability in the context
of complex datasets. To this end, we choose m ∈ {2, 3, 4, 5, 6} and compare the m-way
AVD of using VERTIGAN as well as the baseline algorithms. We present the results under
ϵ = 2 in Figure 6.5. Similarly, we also report the m-way AVD under the centralized setting
and under the non-private VERTIGAN setting as a reference. It can be seen that for all the
datasets, VERTIGAN steadily shows a smaller m-way AVD compared to the baseline algo-
rithms. Moreover, although the baseline algorithms achieve similar AVD when m is small, the
difference gets distinctively larger with an increase of m. Especially, for all the datasets, the
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Figure 6.5 AVD ofm-way joint distributions between the real and synthetic data with respect to different
dimensions of the joint distribution.

5-way and 6-way AVD of the baseline algorithms are almost twice that of VERTIGAN. This
indicates that our framework is more adept at capturing the information of high-dimensional
joint distributions of real data.

Comparison of Correlation

We further visualize the correlation coefficient matrix of real data and synthetic data with heat
maps in order to better understand the capability of our method in capturing and preserv-
ing the cross-attribute correlations. Figure 6.6 shows the comparison result of the different
datasets with ϵ = 8. For each dataset, we respectively select 10 attributes from each party
and present the correlation matrix of the 20 attributes. From the visualization results, it can
be seen that the correlation of synthetic data is similar to the correlation of real data, which
further demonstrates that the synthetic data successfully preserves the attribute correlations
of real data.

6.6.3 Utility: AI Training Performance

Next, we investigate the utility of synthetic data in AI training tasks. To this end, we train two
classification models Mreal and Msyn, respectively, with real data and synthetic data. Then,
we test both models with an amount of held-out real data and compare the test accuracy,
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Figure 6.6 Correlation comparison between the real and synthetic data with ϵ = 8. For each dataset,
we present the correlations of 20 attributes, where each party contributes 10 attributes. It can be seen
that the synthetic data preserves similar correlations as real data.

namely, Accreal and Accsyn. Intuitively, if Accsyn is close to Accreal, we consider the synthetic
data to be of high utility which can replace real data for AI training tasks.

In the experiments, we use the Multi-layer Perceptron (MLP) classifier as the target AI model.
We train both Mreal and Msyn ten times and compute the averaged Accreal and Accsyn. In
Table 6.5, we present the accuracy of the MLP classifiers evaluated on different datasets.
For each dataset, we compare the Accsyn of synthetic data generated under the non-private
centralized and VERTIGAN setting, as well as that generated by the private DPLT and VER-
TIGAN frameworks with ϵ ∈ {0.5, 2, 8}. It can be observed that although all the algorithms
show a higher Accsyn with an increase of ϵ, the accuracy of VERTIGAN is generally higher
than the baselines for all privacy levels, especially for complex datasets. In particular, with
ϵ = 8, the synthetic data generated by VERTIGAN achieves around 2% ∼ 15% improvement
of Accsyn compared to the baseline algorithms. The results indicate that our framework has
a better capacity for preserving the hidden patterns and correlations of real data compared to
the baselines. The generated synthetic data can be effectively used for data mining and AI
training tasks.
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Table 6.5 Classification accuracy of MLP models evaluated on synthetic data generated under different
privacy settings.

Dataset
Acc.
Real

Acc. Synthetic
(No DP)

Acc. Synthetic
(With DP)

Center
GAN

Verti
GAN

ϵ DPLT DPLT+
Verti
GAN

Web 0.8453 0.8276 0.8079
0.5 0.7114 0.7124 0.6970
2 0.7251 0.7238 0.7776
8 0.7385 0.7484 0.7900

Vehicle 0.8204 0.8074 0.7984
0.5 0.7385 0.7208 0.7498
2 0.7596 0.7373 0.7627
8 0.7690 0.7729 0.7840

Census 0.9858 0.9820 0.9732
0.5 0.8822 0.8870 0.9088
2 0.9027 0.9092 0.9432
8 0.9465 0.9487 0.9655

Twitter 0.8209 0.8180 0.7871
0.5 0.7277 0.7274 0.7445
2 0.7371 0.7397 0.7701
8 0.7520 0.7580 0.7822

HAR 0.9532 0.8990 0.8414
0.5 0.4228 0.4570 0.5368
2 0.5519 0.5702 0.7022
8 0.6038 0.6284 0.7746

Dilbert 0.9394 0.8651 0.8010
0.5 0.2722 0.2988 0.5525
2 0.4331 0.4353 0.6241
8 0.5434 0.5672 0.7134

6.6.4 Ablation Study

We further conduct a series of ablation studies to investigate how the size of local datasets, the
imbalanced splitting of attribute sets, and the increase of local parties impact the performance
of the VERTIGAN framework and synthetic data utility.

Impact of the Number of Records

To start with, in the previous experiments, we assume that the local parties share data of 105

records. We further investigate how varying the number of local records affects the frame-
work’s performance. To this end, we respectively vary the size of local datasets with 104, 105,
and 106 records and conduct experiments under different privacy levels. In Figure 6.7, we
present the 4-way AVD of the Vehicle, Census, and HAR datasets with ϵ = {0.5, 2, 8}. It
can be seen that using a larger number of records can significantly improve the data utility,
especially in high-privacy regimes. For instance, when ϵ = 0.5, for all the datasets, the AVD
with 104 records is 2 ∼ 4 times the results with 105 records. This is because the privacy loss of
each iteration is related to the sampling rate ζ, as shown in Lemma 2. Therefore, with a fixed



6 VERTIGAN for Private Sharing of Vertically-Partitioned Structured Data

132

Figure 6.7 4-way AVD under the two-party settings with 104, 105, and 106 records under the privacy
level ϵ = {0.5, 2, 8}.

Figure 6.8 4-way AVD under the two-party settings with ϵ = 8 and attribute split ratio from {0.1/0.9,
0.3/0.7, 0.5/0.5}. For each dataset, we compare the results of random splitting and correlated splitting,
where the strongly correlated attributes are assigned to one of the parties.

batch size of B, increasing the total number of records leads to a decrease in privacy loss. In
other words, the framework only needs to add a smaller amount of noise to achieve the same
privacy level, which largely enhances the utility of synthetic data. On the other hand, for ϵ = 8,
the AVD with 106 is similar to the results with 105 records. This is because larger privacy
budgets result in less noise being injected during training, hence the model can already con-
verge well with 105 records. In this case, using larger datasets offers a comparatively smaller
contribution to the utility.

Impact of Imbalanced Attribute Sets

Next, in addition to exploiting the setting where the entire attribute set is evenly split and
held by two local parties, we also investigate whether the utility of the synthetic data will
differ if the local parties possess an imbalanced number of attributes. To this end, we split
the entire attribute set with a ratio of 0.1/0.9, 0.3/0.7, and 0.5/0.5 (i.e., an even split) and
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Figure 6.9 4-way AVD under the two-party settings with ϵ = 8 and the number of clients from
{2, 4, 8, 16}. For each dataset, we compare the results of random splitting and correlated splitting,
where the strongly correlated attributes are assigned to a subset of the parties.

compare the data utility under different privacy levels. Moreover, we also explore whether
the imbalanced split of strongly correlated attributes affects the data utility. To this end, we
first compute the pair-wise correlation of all the attributes and apply hierarchical clustering
to group the most correlated attributes. Then, we construct the imbalanced attribute sets
in two ways: random split and correlated split. The former randomly splits the attribute set
according to the split ratio, while the latter manually assigns the strongly correlated attributes
to one of the local parties. We conduct experiments under different split ratios following both
split fashions and report the results in Figure 6.8. It can be observed that an imbalanced
attribute set can lead to a degradation of framework performance. In contrast, assigning the
strongly correlated attributes to one of the parties slightly improves the data utility compared
to the random setting. Intuitively, when the attributes belong to different generator branches,
the framework may suffer from a certain information loss on the pair-wise correlations. In
contrast, the correlation information can be better preserved when both attributes belong to
the same branch, hence leading to higher data utility.

Impact of the Number of Local Parties

Besides the impact of imbalanced splitting, we also analyze the effects of varying the number
of local parties on the framework performance. To this end, we respectively perform the data
publication process using the different methods under the settings consisting of 2, 4, 8, and 16
local parties and compare the utility of synthetic data. In Figure 6.9, we present the 4-way AVD
with different numbers of local parties under ϵ = 8. It can be observed that the framework
performance degrades with the increase of local parties. This might be because the joint
distributions and correlations are more difficult to capture when the correlated attributes are
spread over multiple local parties. On the other hand, similar to observations in Section 6.6.4,
when assigning all the strongly-correlated attributes to a subset of local parties (i.e., by using
correlated splitting), the cross-attribute correlations can be better preserved and the data utility
can be further improved.
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Table 6.6 MIA accuracy under different privacy settings.

CenterGAN
No DP

VertiGAN
No DP ϵ = 8 ϵ = 2 ϵ = 0.5

Vehicle 0.5841 0.5758 0.5538 0.5448 0.5287
Web 0.6008 0.5844 0.5633 0.5367 0.5223

Census 0.6509 0.6394 0.6171 0.5800 0.5421
Twitter 0.6746 0.6672 0.6320 0.5980 0.5676
HAR 0.5784 0.5637 0.5324 0.5241 0.5160

Dilbert 0.6044 0.5856 0.5623 0.5433 0.5386

6.6.5 Empirical Privacy Analysis

Although choosing a larger privacy budget ϵ can distinctively improve the data utility, this may
lead to increased privacy leakage. In order to obtain a better understanding of the utility-
privacy trade-off, we conduct a membership inference attack to empirically analyze the pri-
vacy protection capabilities of our framework under different privacy settings. We follow the
black-box MIA protocol proposed in [62], which uses the distance of a target record to the
synthetic dataset to infer the membership information. The intuition is that the generator tends
to generate synthetic data close to the training data. Therefore, given a target record x, let
Uρ(x) = {x′|Γ(x, x′) ≤ ρ} denote the ρ-neighborhood of x with respect to the distance metric
Γ. Then, we randomly generate a synthetic dataset Xsyn with n records and compute the ratio
that the synthetic records fall into the neighborhood of x, namely

Rρ(x) = 1
n

n∑

i=1
1[xisyn ∈ Uρ(x)], (6.10)

where xisyn is the ith synthetic record. Obviously, the higher the Rρ(x), the more likely it is
that x is included in the training data.

In our experiments, we construct the target dataset by randomly sampling 100 training records
(denoted as Xin) and 100 testing records (denoted as Xout). Then, we generate a synthetic
dataset Xsyn with 104 records and use the normalized Hamming distance to measure the
minimum distance between each target record and the synthetic data. Following [62], we set
ρ as the median of the minimum distance of each record. Given the ground truth label and the
predicted membership probability, we compute the averaged attack accuracy under different
privacy settings. The results are reported in Table 6.6. It can be observed that synthetic
data generated by non-private GANs are still likely to reveal the membership information of
the target record. In particular, for Twitter and Census dataset, the attack accuracy under
the non-private setting is more than 65%. On the other hand, applying DP to our VERTIGAN
framework can effectively reduce attack accuracy. With ϵ = 8, the attack accuracy is reduced
by 2% ∼ 4%, while with ϵ = 0.5, the attack accuracy is reduced by 5% ∼ 10%. The results
demonstrate that our framework is able to mitigate the risk of membership inference attacks
and can provide strengthened privacy protection to the local data.
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Figure 6.10 Results of image data synthesis under a three-party setting. Each row represents the
synthetic images generated by one local party under different privacy settings.

6.7 Discussions and Future Work

In this section, we discuss potential extensions of our framework, current limitations, and
directions for future work.

6.7.1 Extension to Other Data Types

In Section 6.6, we demonstrated that the VertiGAN framework is effective in publishing vertically-
partitioned categorical datasets and achieves better data utility compared to previous statistics-
based baselines. Moreover, our framework can be further extended to more complex settings
where each party holds different types of data. For instance, in a healthcare scenario, a group
of hospitals can use the framework to publish a joint dataset containing patients’ CT images
and physical symptoms for future medical research. This can be realized by modifying the
structure of the models and using the advanced layers. For instance, we can respectively
adopt convolution layers and recurrent layers to enhance the feature extraction on image data
and time-series data. Despite the variation of the layers and model structures, the main work-
flow of the VertiGAN framework remains unchanged. In Figure 6.10, we further demonstrate
the framework’s feasibility in the context of image data. Here, we assume that there are three
local parties respectively holding handwritten digits from MNIST, handwritten letters from Ex-
tended MNIST, and article images from Fashion-MNIST. We construct a global generator
with three output branches and the corresponding local discriminators and analyze the quality
of synthetic images generated under different privacy settings. Note that the synthetic data
are randomly generated and hence are not identical to the real data. Nevertheless, it can
still be observed that our framework is capable of jointly synthesizing all three categories of
images of different local clients, and the generated data enjoys a satisfactory level of quality
under a larger privacy budget.
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Figure 6.11 4-way AVD between the real and synthetic data with respect to different gradient sparsity
ratios.

6.7.2 Reduction of Communication Cost

As described in Section 6.5.4, in each global round, the parameters and gradients of the
global generator are repeatedly exchanged between the server and local parties. This may
result in a high communication cost, especially for high-dimensional models. One possible
approach for mitigating the upload communication cost is to process the generator’s gradients
with top-k sparsification and send the sparsified gradients to the server. In Figure 6.11, we
investigate how the sparsification level affects the utility of synthetic data. Here, we choose
the top-k ratio from {0.25, 0.5, 0.75, 1} and compare the corresponding 4-way AVD of the
synthetic data under the privacy level of ϵ ∈ {2, 8}. It can be observed that even processing
the gradients with a top-k ratio of 0.25 can still achieve data utility comparable to returning
the entire gradients. The results demonstrate the effectiveness of gradient sparsification in
reducing the upload communication cost.

Moreover, it is also possible to further reduce the download communication cost of the frame-
work. More specifically, before the training starts, the server broadcasts the initialized global
generator to all the local parties. Then, during training, instead of broadcasting the entire
global generator, the server only sends the parameters of the common layers G0 and the cor-
responding branch Gi to the party P i, which is enough for P i to produce the synthetic data
X̃i = Gi(G0)(Z) on the local side (see Section 6.5.2). The improvement not only reduces the
download communication but also prevents the local parties from inferring the inputs of the
other parties.

6.7.3 Protection for the Uploaded Gradients

In this paper, we apply DP perturbation to the discriminator and enforce privacy guarantees
to the generator according to the post-processing property. Nevertheless, even though the
global generator is not directly trained on the local data, the gradients derived by the local
discriminators may still reveal sensitive information about local data. Considering that recent
studies in FL [14, 75] adopt secure multi-party computation (SMC) or local differential privacy
(LDP) for encrypting or perturbing local updates, such protection techniques may also be
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applicable to our framework. For instance, we can use SMC protocols to encrypt the real
gradients on the local side before sending them to the server. In this way, the server cannot
obtain the individual real gradients but only the sum of all the gradients after the decryption.
However, the use of SMC protocols may increase the communication and computational cost
of the framework due to the key generation and exchange process. On the other hand, LDP-
based solutions add random noise to the local gradients, which will not largely affect efficiency.
Nevertheless, it may cause significant utility loss due to the limited number of local parties
under the vertical setting. Hence, how to protect the uploaded gradients regarding security,
utility, and efficiency will be an important direction for future work.

6.8 Conclusion

Due to the great variety in service scenarios, user data in real-life applications are often verti-
cally partitioned and distributed among different local parties. Although it is of great benefit for
data analysts to explore the hidden correlations of attributes of all the local parties, publishing
the vertically-partitioned data raises both privacy and utility concerns.

In this paper, we follow the idea of synthetic data generation and propose VERTIGAN, the first
GAN-based framework for privately publishing vertically-partitioned data. Different from the
prior statistics-based solutions, our framework adopts a distributed GAN architecture, where
a global generator is adversarially trained with a group of local discriminators to learn the
distribution of all parties’ local data and used to directly generate synthetic integrated data on
the server side. Moreover, we apply DP perturbation during the training process to ensure
strict privacy guarantees for the local data. Experimental evaluation with real-world datasets
shows that our framework significantly outperforms the statistics-based baseline algorithms
for publishing high-dimensional vertically-partitioned data. The synthetic data generated by
our framework preserves very similar statistical properties as real data and can replace real
data for data mining and model training tasks.
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Discussion and Conclusions
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7 Summary of Results

In recent years, emerging privacy regulations have set strict restrictions for data analysts for
directly accessing and using local user data, which has significantly changed the landscape
for the development of advanced AI applications. This thesis centered around the data in-
accessibility problem and seeks potential solutions for efficiently leveraging the local data
without compromising individuals’ privacy. The thesis first identifies a sequence of challenges
encountered by both model-to-data transmission and data-to-model transmission schemes
and addresses these challenges respectively through the four peer-reviewed publications em-
bedded in Part B. This chapter presents the main results of each publication and provides a
consolidated summary in Table 9.1.

The first publication (P1) focuses on addressing the challenge of improving the privacy-utility-
efficiency balance in the model-to-data transmission scheme and proposes an improved LDP-
based PPFL framework called SIGNDS-FL. The framework adopts the strategy of sign-based
private dimension selection to mitigate the significant utility loss in previous LDP-FL frame-
works. In addition, the work also proposes a multi-dimension selection algorithm that satisfies
strict LDP guarantees and can further improve model convergence and accuracy. In com-
parison to the previous work under the same privacy level, the framework achieves around
4% ∼ 10% improvement in accuracy on simple linear models and even 10% ∼ 20% improve-
ment on DNNs. Moreover, as each client only needs to report a few dimension indices instead
of the entire model, the uplink communication cost is reduced by more than 99%. Extensive
experimental results show that the SIGNDS-FL framework achieves significant improvements
regarding the balance between privacy, utility, and efficiency.

Motivated by the effectiveness of the SIGNDS-FL framework proposed in P1, publication two
(P2) further focuses on the data-to-model transmission scheme and proposes a distributed
framework DP-FED-WAE to enable DL-SDG-based data sharing in cross-device scenarios.
The main idea of the framework is to first train a generative WAE model under FL to learn
the overall distribution of local data and then use the trained model to generate high-utility
synthetic data on the server side. The adoption of the SIGNDS-FL framework not only avoids
the server’s direct access to the raw local data but also provides strict LDP guarantees to
each data owner. The framework effectively addresses the curse-of-dimensionality problem in
the previous LDP-based solutions and achieves significantly better utility on high-dimensional
data. When using the synthetic data generated under the same privacy guarantee for training
downstream AI models, the LDP-based solutions suffer from an accuracy loss of 10% ∼ 30%,
whereas the accuracy loss of the proposed framework is less than 3%, and at best even less
than 1%. Extensive evaluation experiments show that the framework has advanced capability
and efficiency in collecting high-dimensional data while striking a satisfactory utility-privacy
balance.
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On the basis of P2, the third publication (P3) further explores the feasibility of applying dis-
tributed DL-SDG for sharing unstructured data in cross-device scenarios. More specifically,
this work proposes a variant framework called FEDSTDG, which combines SIGNDS-FL with a
recurrent generative AE for privately sharing the horizontally-partitioned time-series data held
by different data owners. Moreover, this work modifies the previous SIGNDS-FL framework
with an improved multi-dimension selection algorithm SUBMDS, which applies an additional
dimension subsampling step to reduce the input size and achieves a distinctive improvement
in the utility of the synthetic data. Additionally, the framework further adopts a novel algorithm
MAGRR to adaptively adjust the learning rate during the training process and hence acceler-
ate model convergence. Comprehensive utility evaluation results on real-world datasets show
that the modified framework is capable of generating better-utility time-series data. Under the
same privacy level, the synthetic data generated by using the modified framework achieves
around 20% ∼ 85% reduction in the downstream prediction error compared to the previous
SIGNDS-FL framework. Additionally, empirical analysis using membership inference attacks
and poisoning attacks further suggests the framework is capable of mitigating privacy and
security risks during model training. Extensive evaluation results demonstrate that the FED-
STDG framework has superior capability and efficiency in synthesizing time-series data while
achieving satisfactory privacy protection and robustness.

Finally, the fourth publication (P4) tackles challenges of the data-to-model transmission scheme
regarding the sharing of vertically-partitioned data in cross-silo scenarios. A framework called
VERTIGAN is proposed, which follows the idea of distributed DL-SDG while adopting a modi-
fied GAN architecture comprised of a single global generator and multiple local discriminators
to effectively learn the joint distribution among attributes held by different data silos without
the direct access to the raw local data. Moreover, it incorporated DP perturbation during the
training process to provide a strict privacy guarantee to the local data. Compared to the prior
statistics-based solutions, the proposed framework shows significantly better performance in
capturing the joint distribution of high-dimensional data and yields around 2% ∼ 15% improve-
ment of accuracy in downstream ML tasks. Extensive evaluation results demonstrate that the
framework can effectively support the private sharing of high-dimensional vertically-partitioned
data with a favorable utility-privacy balance.
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Table 7.1 Summary of results

No. Title Results
P1 SignDS-FL: Local

Differentially Private
Federated Learning
with Sign-based Di-
mension Selection

• Proposal of SIGNDS-FL, an LDP-based PPFL framework
with the idea of sign-based private dimension selection.
• Proposal of an EM-based private multi-dimension selection
algorithm to further improve model utility.
• Evaluation on real-world data to show the capability of the
framework in achieving a better balance in privacy, utility, and
efficiency.

P2 Privacy-Preserving
High-Dimensional
Data Collection with
Federated Genera-
tive Autoencoder

• Proposal of DP-FED-WAE, the first distributed DL-SDG-
based framework for the data-to-model transmission of high-
dimensional horizontally-partitioned structured data.
• The combination of the generative AE and FL provides a
promising solution for servers to learn the overall distribution
of the local data without accessing the raw data, and the LDP
perturbation during FL training further ensures strict privacy
guarantees to the local data.
• Evaluation on real-world datasets to show that the proposed
framework can effectively mitigate the curse-of-dimensionality
problem in previous LDP-based solutions and is able to
achieve a satisfactory privacy-utility balance.

P3 Distributed Syn-
thetic Time-Series
Data Generation
with Local Differ-
entially Private
Federated Learning

• Proposal of FEDSTDG, the first distributed DL-SDG-based
framework for the data-to-model transmission of horizontally-
partitioned time-series data.
• Design of a recurrent generative AE model for capturing the
spatial-temporal information in the multivariate time series.
• Modification of the previous SIGNDS-FL framework with
an improved multi-dimension selection algorithm and an LDP
adaptive learning rate adjustment algorithm which contributes
to better model utility.
• Evaluation on real-world datasets to show the capability of
the framework in the private aggregation of time series from
local silos. The generated synthetic data achieve high utility
and can be applied to support downstream AI tasks.

P4 Distributed GAN-
Based Privacy-
Preserving Publi-
cation of Vertically-
Partitioned Data

• Proposal of VERTIGAN, the first distributed DL-SDG-based
framework for the data-to-model transmission of vertically-
partitioned structured data.
• Design of a distributed GAN architecture with a global gen-
erator and multiple local discriminators to learn the joint distri-
bution of features from different data silos.
• Design of training process with DP perturbation to ensure
strict privacy guarantees to local data.
• Extensive evaluation results to show the capability of the pro-
posed framework in aggregating high-dimensional data while
offering a favorable utility-privacy balance.
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8 Limitations and Future Work

8.1 Inspection of Data Quality

It is well known that data quality is one of the key factors in developing effective AI prod-
ucts. Data with bad quality may not only render performance degradation on AI models or
algorithms but also create serious security vulnerabilities (such as poisoning attacks) in the
model. In the traditional centralized ML setting, the data analysts can directly aggregate the
raw local data and manually perform a series of data inspection and cleaning steps on the
server side to ensure the data’s correctness and usefulness. However, privacy compliance
issues restrict the raw local data from being directly shared with the server, making manual
data inspection no longer feasible. While this thesis presents a number of solutions for data
analysts to harvest insights from the local data in a distributed manner without directly ag-
gregating these raw data, the solutions assume that the local data is benign, correct, and
relevant to the target mission. To further ensure the usefulness of local data, one can conduct
data inspection on the local side based on a mathematically derived influence score [91] or
a pre-trained evaluation model [149]. Also, filtering and clipping techniques (e.g., [169, 118])
that were originally proposed for defending against poisoning attacks may be utilized to limit
the impact of model updates of low-quality data. In a nutshell, how to inspect the quality of
local data in a privacy-preserving manner and ensure the data have a positive impact
on the models’ performance is an important topic for future research.

8.2 Optimization of Hyperparameters

In ML applications, it is universally understood that the choices of hyperparameters (e.g., con-
figurations for model structures and training algorithms) play a crucial role in the models’ per-
formance. Although techniques on hyperparameter optimization (HPO) under the centralized
training setting have been extensively studied in recent years, they may encounter more chal-
lenges in the federated setting. To start with, FL includes more hyperparameters compared
to the centralized setting, such as the number of participants and the update step for the
global model, which results in a geometric (exponential) increase of the search space and a
more complex HPO procedure. Moreover, conducting an HPO search usually requires a large
number of experiments to find the hyperparameter combinations with the best model perfor-
mance. This already results in a tremendous computational cost under the centralized setting
and will cause even larger communication and computational expenses under the federated
setting. Moreover, compared to the centralized setting, the local data under the FL setting
are sometimes non-iid, which further increases the difficulty of the HPO process. Last but not
least, existing HPO techniques are mostly applied in the non-private setting, yet whether the
choices of hyperparameters can expose the privacy of local data remains an open question.
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In summary, how to efficiently search for the optimal hyperparameters under the FL
setting while preserving privacy guarantees for the local data is an important future
research direction.

8.3 Performance Improvement Under High-Privacy Regimes

Although the solutions proposed in this thesis have achieved significant improvements regard-
ing model accuracy and synthetic data utility compared to the baseline solutions, there is still
a performance gap under high-privacy regimes (e.g., with a privacy budget ϵ ≤ 1), especially
for higher-dimensional models and datasets. This is because the DP algorithms inject more
random noise under the high-privacy regimes, which seriously affects model convergence. To
mitigate the problem, advanced DP algorithms should be further investigated, which inject less
noise during training while providing the same privacy guarantees for the local data. More-
over, searching for the optimal hyperparameters under the distributed setting, as mentioned
in Section 8.2, can be another potential solution. Finally, instead of training the models from
scratch, one can consider using certain auxiliary data to first pre-train the model on the server
side and then fine-tune the model under the distributed setting. For instance, it is shown in
Section 4.6.2 and Section 5.6.2 that pre-training the models with a small set of auxiliary data
can further improve the utility of synthetic data. In brief, how to apply different techniques
to improve model accuracy and synthetic data utility under high-privacy regimes is also
an essential direction for future research.

8.4 Reduction of Download Communication Cost in SIGNDS-FL

In the original FL protocol, the local clients are responsible for conducting the local training
process and returning the entire model updates to the server for updating the global model.
This thesis proposed an improved SIGNDS-FL framework where local clients only need to
transmit a subset of dimension indices to the server, which not only provides strict LDP guar-
antees to the local data but also significantly reduces the uplink communication cost. How-
ever, as the server still needs to broadcast the entire model weights to the local clients in each
global round, the downlink communication may become another bottleneck as the model size
increases, especially for large-scale FL scenarios. A few recent studies [19, 76, 15] have pro-
posed solutions for reducing the size of the model broadcast to the client side. For instance,
[19] proposed a dropout-based solution, which first extracts a number of small sub-models by
only selecting a subset of neurons in each layer of the original high-dimensional model and
then only sends the sub-models to the local side. Follow-up work in [15] further proposed
an adaptive algorithm, which builds the sub-models based on an adaptive activation score
map to improve the model accuracy. Besides the reduction of communication costs, train-
ing smaller models on the local side can also help decrease the computational cost on the
local side. On the other hand, [76] proposed to prune the global model during the training
process, which also achieves significant improvement in communication and computational
efficiency. In summary, exploring whether such techniques can be integrated into the
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current SIGNDS-FL framework to further improve communication and computational
efficiency will be important future work.

8.5 Comprehensive Privacy-Utility Assessments of Synthetic
Data

Finally, although SDG has been considered a promising solution for privacy-preserving ML,
some recent studies also highlight that synthetic data may memorize sensitive information of
training data and cause privacy breaches. The frameworks proposed in this thesis apply DP
perturbation during the generative model training to provide privacy guarantees for the training
data. Nevertheless, choosing a proper privacy level ϵ that achieves an optimal privacy-utility
trade-off remains an open question. A number of recent works proposed different privacy
assessment frameworks to evaluate the privacy risks of commonly used SDG algorithms.
For instance, [64] offers an attack-based framework that measures privacy leakage of syn-
thetic data regarding a number of membership and attribute inference attacks under different
threat models. Moreover, [52] proposed to evaluate the privacy of synthetic data based on the
privacy risks of singling out, linkability, and inference defined in [123]. Therefore, such pri-
vacy assessment methods can also be incorporated into the current frameworks in the
future to provide a comprehensive evaluation of the privacy-utility trade-off under dif-
ferent privacy levels and serve as a guiding tool for choosing the proper privacy levels
when considering different scenarios and criteria.
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9 Conclusions

In the current digital era, data is widely recognized as business-enabling capital that helps
companies and organizations to improve their operational efficiency, make informed decisions,
and foster innovation and growth. By collecting and analyzing diverse and large amounts of
real-world user data, data analysts are able to gain deeper insights into the target groups and
create more advanced and competitive AI products. However, the growing data privacy con-
cerns and the emerging privacy regulations have strictly restricted data analysts from directly
accessing and leveraging raw local data, posing great challenges in the development of AI
technologies.

Existing solutions to local data utilization problems can generally be divided into two cat-
egories, namely model-to-data transfer and data-to-model transfer. On the one hand, the
model-to-data transfer solution uses distributed machine learning protocols such as FL for
model training to avoid direct access to raw data. However, the previous PPFL framework
failed to achieve a satisfactory balance between privacy, utility, and efficiency. On the other
hand, the data-to-model transfer scheme uses state-of-the-art anonymization technology to
process raw data, sharing only privatized data. However, there are still limitations in con-
ducting private data sharing under different scenarios, different data types, and different data
partition strategies.

This thesis proposed a series of solutions to address the challenges in both aforementioned
schemes based on the idea of distributed ML. To start with, Chapter 3 focuses on the chal-
lenge of finding a better privacy-utility-efficiency balance in the model-to-data transmission
scheme and introduces an improved LDP-based framework called SIGNDS-FL. The frame-
work leverages a sign-based dimension selection strategy to effectively mitigate the large
randomness incurred in previous LDP-FL frameworks and achieves a significant improve-
ment in model utility, particularly for DNN models. The improved performance in LDP-FL
fosters the generation of the distributed DL-SDG concept, which is used for addressing chal-
lenges in the data-to-model transfer scheme. In Chapter 4, a framework called DP-FED-WAE
is introduced for addressing the curse-of-dimenonality challenge in aggregating horizontally-
partitioned structured data. The framework trains a generative AE under the LDP-FL frame-
work to learn the overall data distribution without direct access to the raw data and generates
synthetic data with outperforming data utility compared to the prior work. Then, the concept
is further applied in Chapter 5 to unstructured data, where a framework called FEDSTDG is
introduced for the private aggregation of horizontally-partitioned time-series data. The frame-
work fills the gap of privacy-preserving aggregation of unstructured data. In addition, an
advanced LDP-FL framework is proposed, which adopts an improved multi-dimension selec-
tion algorithm and adaptive learning rate adjustment to further improve model performance
and synthetic data utility. Finally, Chapter 6 focuses on the private aggregation of vertically-
partitioned structured data and introduces a framework called VERTIGAN. By using a dis-
tributed GAN architecture comprised of a single multi-output global generator and multiple
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local discriminators, the framework is capable of learning the joint distribution of attributes,
and the generated synthetic data preserves utility significantly better compared to prior solu-
tions under the same privacy guarantees.

Based on the thesis work, a number of research directions can be considered in the future.
First, proper data inspection methods should be incorporated into the current frameworks to
ensure the quality and correctness of the local data. Moreover, there is still room for perfor-
mance enhancements in the current solutions, especially under high-privacy regimes. Poten-
tial improvement approaches include the optimization of hyperparameters, optimization of DP
algorithms, and the use of pre-trained models. In addition, the uplink communication cost of
the current FL framework can be further reduced by using dropout-based or model-pruning-
based techniques. Lastly, it is necessary to build a comprehensive privacy-utility assessment
module that extensively evaluates the performance of the proposed distributed DL-SDG algo-
rithms from different perspectives. This helps improve the transparency of DL-SDG techniques
and can be used as an empirical tool for determining an adequate privacy level given different
scenarios and other important criteria.
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Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint,
Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh,
Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang
Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Pra-
neeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu,
and Sen Zhao. Advances and open problems in federated learning. Foundations and
Trends in Machine Learning, 14(1-2):1–210, 2021.



Bibliography

158

[80] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. In 6th International Conference on
Learning Representations, Vancouver, BC, Canada, 2018.

[81] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 4401–4410, Long Beach, CA, USA, 2019.

[82] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–
826, 2011.

[83] François Kawala, Ahlame Douzal-Chouakria, Eric Gaussier, and Eustache Dimert. Pré-
dictions d’activité dans les réseaux sociaux en ligne. In 4ième Conférence sur les Mod-
èles et l’Analyse des Réseaux: Approches Mathématiques et Informatiques, France,
2013.

[84] Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. Feder-
ated learning for internet of things: Recent advances, taxonomy, and open challenges.
IEEE Communications Surveys & Tutorials, 23(3):1759–1799, 2021.

[85] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In 2nd Interna-
tional Conference on Learning Representations, Banff, AB, Canada, 2014.

[86] Ron Kohavi. Scaling up the accuracy of Naive-Bayes classifiers: A decision-tree hybrid.
In SIGKDD Conference on Knowledge Discovery and Data Mining, pages 202–207,
Portland, Oregon, USA, 1996. AAAI Press.

[87] Florian Kohlmayer, Fabian Prasser, Claudia Eckert, and Klaus A Kuhn. A flexible ap-
proach to distributed data anonymization. Journal of Biomedical Informatics, 50:62–76,
2014.

[88] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[89] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[90] Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object
recognition with invariance to pose and lighting. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 97–104, Washington, DC, USA,
2004.

[91] Anran Li, Lan Zhang, Junhao Wang, Feng Han, and Xiang-Yang Li. Privacy-preserving
efficient federated-learning model debugging. IEEE Transactions on Parallel and Dis-
tributed Systems, 33(10):2291–2303, 2022.

[92] Haoran Li, Li Xiong, and Xiaoqian Jiang. Differentially private synthesization of multi-
dimensional data using copula functions. In 17th International Conference on Extending
Database Technology, pages 475–486, Athens, Greece, 2014.



Bibliography

159

[93] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-Closeness: Privacy be-
yond k-anonymity and l-diversity. In IEEE 23rd International Conference on Data Engi-
neering, pages 106–115, 2007.

[94] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia
Smith, and Chong Wang. Label leakage and protection in two-party split learning. In
Tenth International Conference on Learning Representations, Virtual Event, 2022.

[95] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learn-
ing: Challenges, methods, and future directions. IEEE Signal Processing Magazine,
37(3):50–60, 2020.

[96] Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu,
Maximilian Baust, Yan Cheng, Sébastien Ourselin, M. Jorge Cardoso, and Andrew
Feng. Privacy-preserving federated brain tumour segmentation. In 10th International
Workshop on Machine Learning in Medical Imaging, volume 11861 of Lecture Notes in
Computer Science, pages 133–141, 2019.

[97] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang
Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile
edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,
22(3):2031–2063, 2020.

[98] Claire Little, Mark Elliot, and Richard Allmendinger. Federated learning for generating
synthetic data: A scoping review. International Journal of Population Data Science,
8(1), 2023.

[99] Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. Fedsel: Federated
SGD under local differential privacy with top-k dimension selection. In 25th International
Conference on Database Systems for Advanced Applications, volume 12112, pages
485–501, Jeju, South Korea, 2020.

[100] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng,
Tianjian Chen, Han Yu, and Qiang Yang. Fedvision: An online visual object detection
platform powered by federated learning. In The 34th AAAI Conference on Artificial
Intelligence, pages 13172–13179, 2020.

[101] Yang Liu, Zhihao Yi, and Tianjian Chen. Backdoor attacks and defenses in feature-
partitioned collaborative learning. CoRR, abs/2007.03608, 2020.

[102] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack
on model predictions in vertical federated learning. In 37th IEEE International Confer-
ence on Data Engineering, pages 181–192, Chania, Greece, 2021.

[103] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang Yang, and
S Yu Philip. Privacy and robustness in federated learning: Attacks and defenses. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[104] Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu. Privacy-preserving federated
learning based on multi-key homomorphic encryption. International Journal of Intelligent
Systems, 37(9):5880–5901, 2022.



Bibliography

160

[105] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. l-Diversity: Privacy beyond k-anonymity. ACM Transactions on
Knowledge Discovery from Data, 1(1):3–es, 2007.

[106] Stuart Madnick. The continued threat to personal data: Key factors behind the 2023
increase. Technical report, Massachusetts Institute of Technology, 12 2023.

[107] Sourav Majumdar and Arnab Kumar Laha. Clustering and classification of time se-
ries using topological data analysis with applications to finance. Expert Systems with
Applications, 162:113868, 2020.

[108] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y
Arcas. Communication-efficient learning of deep networks from decentralized data. In
20th International Conference on Artificial Intelligence and Statistics, volume 54, pages
1273–1282, Fort Lauderdale, USA, 2017.

[109] H. Brendan McMahan and Galen Andrew. A general approach to adding differential
privacy to iterative training procedures. CoRR, abs/1812.06210, 2018.

[110] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differen-
tially private recurrent language models. In 6th International Conference on Learning
Representations, Vancouver, BC, Canada, 2018.

[111] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th
Annual IEEE Symposium on Foundations of Computer Science, pages 94–103, Provi-
dence, RI, USA, 2007.

[112] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In 2019 IEEE Symposium on
Security and Privacy, pages 691–706, 2019.

[113] Ilya Mironov. Rényi differential privacy. In 30th IEEE Computer Security Foundations
Symposium, pages 263–275, Santa Barbara, CA, USA, 2017.

[114] Noman Mohammed, Dima Alhadidi, Benjamin CM Fung, and Mourad Debbabi. Secure
two-party differentially private data release for vertically partitioned data. IEEE Trans-
actions on Dependable and Secure Computing, 11(1):59–71, 2013.

[115] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of
deep learning: Passive and active white-box inference attacks against centralized and
federated learning. In 2019 IEEE Symposium on Security and Privacy, pages 739–753,
San Francisco, CA, USA, 2019.

[116] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and H Vin-
cent Poor. Federated learning for internet of things: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 23(3):1622–1658, 2021.

[117] Dinh C. Nguyen, Quoc-Viet Pham, Pubudu N. Pathirana, Ming Ding, Aruna Senevi-
ratne, Zihuai Lin, Octavia A. Dobre, and Won-Joo Hwang. Federated learning for smart
healthcare: A survey. ACM Computing Surveys, 55(3):60:1–60:37, 2023.



Bibliography

161

[118] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering, Hos-
sein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni,
Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider. FLAME: Taming
backdoors in federated learning. In 31st USENIX Security Symposium, pages 1415–
1432, Boston, MA, USA, 2022.

[119] Thông T. Nguyên, Xiaokui Xiao, Yin Yang, Siu Cheung Hui, Hyejin Shin, and Junbum
Shin. Collecting and analyzing data from smart device users with local differential pri-
vacy. CoRR, abs/1606.05053, 2016.

[120] Solmaz Niknam, Harpreet S Dhillon, and Jeffrey H Reed. Federated learning for wire-
less communications: Motivation, opportunities, and challenges. IEEE Communications
Magazine, 58(6):46–51, 2020.

[121] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfellow, and Kunal Talwar.
Semi-supervised knowledge transfer for deep learning from private training data. In 5th
International Conference on Learning Representations, Toulon, France, 2017.

[122] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park,
and Youngmin Kim. Data synthesis based on generative adversarial networks. Pro-
ceedings of the VLDB Endowment, 11(10):1071–1083, 2018.

[123] Article 29 Data Protection Working Party. Opinion 05/2014 on anonymization tech-
niques. Technical report, EU, 2014.

[124] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai.
Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans-
actions on Information Forensics and Security, 13(5):1333–1345, 2017.

[125] John Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical Report MSR-TR-98-14, Microsoft, 1998.

[126] John C. Platt. Fast training of support vector machines using sequential minimal opti-
mization, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[127] Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity:
Facilitating innovative use cases of synthetic data in different data modalities. CoRR,
abs/2301.07573, 2023.

[128] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. Heavy hitter esti-
mation over set-valued data with local differential privacy. In 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 192–203, Vienna, Austria,
2016.

[129] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In 4th International Confer-
ence on Learning Representations, San Juan, Puerto Rico, 2016.

[130] Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang, Julie A. McCann, and
S. Yu Philip. LoPub: High-dimensional crowdsourced data publication with local differ-
ential privacy. IEEE Transactions on Information Forensics and Security, 13(9):2151–
2166, 2018.



Bibliography

162

[131] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albar-
qouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al.
The future of digital health with federated learning. NPJ Digital Medicine, 3(1):119,
2020.

[132] Daniele Romanini, Adam James Hall, Pavlos Papadopoulos, Tom Titcombe, Ab-
bas Ismail, Tudor Cebere, Robert Sandmann, Robin Roehm, and Michael A. Hoeh.
PyVertical: A vertical federated learning framework for multi-headed splitNN. CoRR,
abs/2104.00489, 2021.

[133] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal
representations by error propagation. Technical report, University of California, San
Diego; Institute for Cognitive Science, 1985.

[134] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradi-
ent descent and its application to data-parallel distributed training of speech DNNs.
In 15th Annual Conference of the International Speech Communication Association,
pages 1058–1062, Singapore, 2014.

[135] Shreya Sharma, Chaoping Xing, Yang Liu, and Yan Kang. Secure and efficient fed-
erated transfer learning. In 2019 IEEE International Conference on Big Data, pages
2569–2576, Los Angeles, CA, USA, 2019. IEEE.

[136] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In 2015 ACM
SIGSAC Conference on Computer and Communications Security, pages 1310–1321,
2015.

[137] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership in-
ference attacks against machine learning models. In 2017 IEEE Symposium on Security
and Privacy, pages 3–18, San Jose, CA, USA, 2017.

[138] Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic data – Anonymi-
sation groundhog day. In 31st USENIX Security Symposium, pages 1451–1468,
Boston, MA, USA, 2022.

[139] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with
memory. In 31st Annual Conference on Neural Information Processing Systems, pages
4452–4463, Montreal, Canada, 2018.

[140] Yan Sun, Lihua Yin, Licai Liu, and Shuang Xin. Toward inference attacks for k-
anonymity. Personal and Ubiquitous Computing, 18(8):1871–1880, 2014.

[141] Latanya Sweeney. K-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[142] Peng Tang, Xiang Cheng, Sen Su, Rui Chen, and Huaxi Shao. Differentially private
publication of vertically partitioned data. IEEE Transactions on Dependable and Secure
Computing, 18(2):780–795, 2019.

[143] Petroc Taylor. Total data volume worldwide 2010-2025, Sep 2022.



Bibliography

163

[144] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schölkopf. Wasserstein
auto-encoders. In 6th International Conference on Learning Representations, Vancou-
ver, BC, Canada, 2018.

[145] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. DP-CGAN: Differen-
tially private synthetic data and label generation. In IEEE Conference on Computer
Vision and Pattern Recognition – Workshops, pages 98–104, Long Beach, CA, USA,
2019.

[146] Aleksei Triastcyn and Boi Faltings. Federated generative privacy. IEEE Intelligent Sys-
tems, 35(4):50–57, 2020.

[147] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui
Zhang, and Yi Zhou. A hybrid approach to privacy-preserving federated learning. In
12th ACM Workshop on Artificial Intelligence and Security, pages 1–11, London, UK,
2019.

[148] Stacey Truex, Ling Liu, Ka Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. LDP-
Fed: Federated learning with local differential privacy. In 3rd International Workshop
on Edge Systems, Analytics and Networking, EdgeSys@EuroSys 2020, pages 61–66,
Heraklion, Greece, 2020.

[149] Tiffany Tuor, Shiqiang Wang, Bong Jun Ko, Changchang Liu, and Kin K. Leung. Over-
coming noisy and irrelevant data in federated learning. In 25th International Conference
on Pattern Recognition, pages 5020–5027, Virtual Event / Milan, Italy, 2020.

[150] Jaideep Vaidya and Chris Clifton. Privacy preserving naïve Bayes classifier for vertically
partitioned data. In Fourth SIAM International Conference on Data Mining, pages 522–
526, Lake Buena Vista, Florida, USA, 2004.

[151] Jaideep Vaidya, Chris Clifton, Murat Kantarcioglu, and Scott Patterson. Privacy-
preserving decision trees over vertically partitioned data. ACM Transactions on Knowl-
edge Discovery from Data, 2(3):1–27, 2008.

[152] Gerrit van den Burg and Chris Williams. On memorization in probabilistic deep gener-
ative models. In 34th Annual Conference on Neural Information Processing Systems,
pages 27916–27928, Virtual, 2021.

[153] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(11):2579–2605, 2008.

[154] Tim van Erven and Peter Harremoës. Rényi divergence and Kullback-Leibler diver-
gence. IEEE Transactions on Information Theory, 60(7):3797–3820, 2014.

[155] Curtis R. Vogel. Computational methods for inverse problems. Society for Industrial and
Applied Mathematics, Philadelphia, USA, 2002.

[156] Boxin Wang, Fan Wu, Yunhui Long, Luka Rimanic, Ce Zhang, and Bo Li. Datalens:
Scalable privacy preserving training via gradient compression and aggregation. In 2021
ACM SIGSAC Conference on Computer and Communications Security, pages 2146–
2168, Virtual Event, Republic of Korea, 2021.



Bibliography

164

[157] Chang Wang, Jian Liang, Mingkai Huang, Bing Bai, Kun Bai, and Hao Li. Hybrid differ-
entially private federated learning on vertically partitioned data. CoRR, abs/2009.02763,
2020.

[158] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin, Junbum
Shin, and Ge Yu. Collecting and analyzing multidimensional data with local differential
privacy. In 35th IEEE International Conference on Data Engineering, pages 638–649,
Macao, China, 2019.

[159] Shaowei Wang, Liusheng Huang, Yiwen Nie, Pengzhan Wang, Hongli Xu, and Wei
Yang. Privset: Set-valued data analyses with locale differential privacy. In 2018 IEEE
Conference on Computer Communications, pages 1088–1096, Honolulu, HI, USA,
2018.

[160] Teng Wang, Xinyu Yang, Xuebin Ren, Wei Yu, and Shusen Yang. Locally private high-
dimensional crowdsourced data release based on copula functions. IEEE Transactions
on Services Computing, 15(2):778–792, 2019.

[161] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally differentially private frequent item-
set mining. In 2018 IEEE Symposium on Security and Privacy, pages 127–143, San
Francisco, California, USA, 2018.

[162] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled Renyi
differential privacy and analytical moments accountant. In 22nd International Confer-
ence on Artificial Intelligence and Statistics, volume 89, pages 1226–1235, Naha, Oki-
nawa, Japan, 2019.

[163] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[164] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the improved
training of Wasserstein GANs: A consistency term and its dual effect. In 6th Interna-
tional Conference on Learning Representations, Vancouver, BC, Canada, 2018.

[165] Wikipedia. List of data breaches, Jan 2023.

[166] Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Ke Wang, and Jian Pei. Minimality attack
in privacy preserving data publishing. In 33rd International Conference on Very Large
Data Bases, pages 543–554, Vienna, Austria, 2007.

[167] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. Privacy
preserving vertical federated learning for tree-based models. Procedding of VLDB En-
dowment, 13(11):2090–2103, 2020.

[168] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset
for benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

[169] Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. CRFL: Certifiably robust feder-
ated learning against backdoor attacks. In 38th International Conference on Machine
Learning, volume 139, pages 11372–11382, Virtual Event, 2021.



Bibliography

165

[170] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private
generative adversarial network. CoRR, abs/1802.06739, 2018.

[171] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Mod-
eling tabular data using conditional GAN. In 32nd Annual Conference on Neural Infor-
mation Processing Systems, pages 7333–7343, Vancouver, BC, Canada, 2019.

[172] Dong Yang, Ziyue Xu, Wenqi Li, Andriy Myronenko, Holger R. Roth, Stephanie A. Har-
mon, Sheng Xu, Baris Turkbey, Evrim Turkbey, Xiaosong Wang, Wentao Zhu, Gianpaolo
Carrafiello, Francesca Patella, Maurizio Cariati, Hirofumi Obinata, Hitoshi Mori, Kaku
Tamura, Peng An, Bradford J. Wood, and Daguang Xu. Federated semi-supervised
learning for COVID region segmentation in chest CT using multi-national data from
China, Italy, Japan. Medical Image Analysis, 70:101992, 2021.

[173] Kai Yang, Tao Fan, Tianjian Chen, Yuanming Shi, and Qiang Yang. A quasi-Newton
method based vertical federated learning framework for logistic regression. CoRR,
abs/1912.00513, 2019.

[174] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:
Concept and applications. ACM Transactions on Intelligent Systems and Technology,
10(2):12:1–12:19, 2019.

[175] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong,
Daniel Ramage, and Françoise Beaufays. Applied federated learning: Improving google
keyboard query suggestions. CoRR, abs/1812.02903, 2018.

[176] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago,
Illinois, USA, 1982.

[177] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative
adversarial networks. In 32th Annual Conference on Neural Information Processing
Systems, pages 5509–5519, Vancouver, BC, Canada, 2019.

[178] Abdelhafid Zeroual, Fouzi Harrou, Abdelkader Dairi, and Ying Sun. Deep learning meth-
ods for forecasting COVID-19 time-series data: A comparative study. Chaos, Solitons
& Fractals, 140:110121, 2020.

[179] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui
Xiao. PrivBayes: Private data release via Bayesian networks. ACM Transactions on
Database Systems, 42(4):25:1–25:41, 2017.

[180] Longling Zhang, Bochen Shen, Ahmed Barnawi, Shan Xi, Neeraj Kumar, and Yi Wu.
FedDPGAN: Federated differentially private generative adversarial networks framework
for the detection of COVID-19 pneumonia. Information Systems Frontiers, 23(6):1403–
1415, 2021.

[181] Nevin L Zhang. Hierarchical latent class models for cluster analysis. The Journal of
Machine Learning Research, 5:697–723, 2004.



Bibliography

166

[182] Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. A survey on gradient
inversion: Attacks, defenses and future directions. In 32st International Joint Confer-
ence on Artificial Intelligence, pages 5678–5685, Vienna, Austria, 2022.

[183] Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private releasing via deep
generative model. CoRR, abs/1801.01594, 2018.

[184] Yang Zhao, Jun Zhao, Mengmeng Yang, Teng Wang, Ning Wang, Lingjuan Lyu, Dusit
Niyato, and Kwok-Yan Lam. Local differential privacy-based federated learning for in-
ternet of things. IEEE Internet of Things Journal, 8(11):8836–8853, 2021.

[185] Junhao Zhou, Yufei Chen, Chao Shen, and Yang Zhang. Property inference attacks
against GANs. In 29th Annual Network and Distributed System Security Symposium,
San Diego, CA, USA, 2022.

[186] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems, pages 14747–14756, 2019.

[187] Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuanqin He, Zhihao Yi, Qiang Yang,
and Ya-Qin Zhang. Defending batch-level label inference and replacement attacks in
vertical federated learning. IEEE Transactions on Big Data, 1:1–12, 2022.



167

Appendix: Original Version of Publications

This Appendix includes the original versions of the peer-reviewed core publications that this
cumulative dissertation is based on. The works in Chapter 3, Chapter 4, and Chapter 6 have
revised layouts compared to the original publications included in this Appendix. Details of the
papers are summarized in order of appearance:

• Xue Jiang, Xuebing Zhou, and Jens Grossklags (2022) SignDS-FL: Local Differentially
Private Federated Learning with Sign-Based Dimension Selection. ACM Transactions
on Intelligent Systems and Technology, 13(5): 1–22.

• Xue Jiang, Xuebing Zhou, and Jens Grossklags (2022) Privacy-Preserving High-
Dimensional Data Collection with Federated Generative Autoencoder. Proceedings on
Privacy Enhancing Technologies, 2022(1): 481–500.

• Xue Jiang, Yufei Zhang, Xuebing Zhou, and Jens Grossklags (2023) Distributed GAN-
Based Privacy-Preserving Publication of Vertically-Partitioned Data. Proceedings on
Privacy Enhancing Technologies, 2023(2): 236–250.

Each published paper is introduced with an overview page, and followed by the relevant Cre-
ative Commons deed.



Appendix: Original Version of Publications

168

1 SignDS-FL: Local Differentially Private Federated Learning with
Sign-based Dimension Selection

Authors Xue Jiang1’2 (xue.jiang@tum.de)

Xuebing Zhou2 (xuebing.zhou@huawei.com)

Jens Grossklags1 (jens.grossklags@in.tum.de)

1 Technical University of Munich (TUM),

Boltzmannstraße 3, 85748 Garching, Germany
2 Huawei Munich Research Center,

Riesstraße 25, 80992 Munich, Germany

Type Journal

Outlet ACM Transactions on Intelligent Systems and Technology3

Ranking

Impact Factor in 20224: 10.489

Rank in the field of Information Systems4: 36/163

Rank in the field of Artificial Intelligence4: 13/145

Status Published

DOI https://doi.org/10.1145/3517820

Citation Jiang, X., Zhou, X., & Grossklags, J. (2022). SignDS-FL: Local Differen-
tially Private Federated Learning with Sign-based Dimension Selection.
ACM Transactions on Intelligent Systems and Technology (TIST), 13(5),
1-22.

Copyright This work is published under a Creative Commons Attribution-
NonCommercial International 4.0 (CC BY-NC 4.0) License5.

Author

Contributions

Xue Jiang developed the core idea for the paper and took primary re-
sponsibility for designing the methodology, acquiring data, implementing
experiments, evaluating results, and drafting the manuscript. Xuebing
Zhou and Jens Grossklags provided valuable feedback and suggestions
on the methodology and experiments, and assisted in reviewing and en-
hancing the manuscript.

3https://dl.acm.org/journal/tist
4https://dl.acm.org/journal/tist/indexing
5https://creativecommons.org/licenses/by-nc/4.0/

https://doi.org/10.1145/3517820
https://dl.acm.org/journal/tist
https://dl.acm.org/journal/tist/indexing
https://creativecommons.org/licenses/by-nc/4.0/


74

SignDS-FL: Local Differentially Private Federated Learning
with Sign-based Dimension Selection

XUE JIANG, Technical University of Munich, Germany
XUEBING ZHOU, Huawei Technologies Düsseldorf GmbH, Germany
JENS GROSSKLAGS, Technical University of Munich, Germany

Federated Learning (FL) [31] is a decentralized learning mechanism that has attracted increasing attention due
to its achievements in computational efficiency and privacy preservation. However, recent research highlights
that the original FL framework may still reveal sensitive information of clients’ local data from the exchanged
local updates and the global model parameters. Local Differential Privacy (LDP), as a rigorous definition of
privacy, has been applied to Federated Learning to provide formal privacy guarantees and prevent potential
privacy leakage. However, previous LDP-FL solutions suffer from considerable utility loss with an increase
of model dimensionality. Recent work [29] proposed a two-stage framework that mitigates the dimension-
dependency problem by first selecting one “important” dimension for each local update and then perturbing
the dimension value to construct the sparse privatized update. However, the framework may still suffer from
utility loss because of the insufficient per-stage privacy budget and slow model convergence.

In this article, we propose an improved framework, SignDS-FL, which shares the concept of dimension se-
lection with Reference [29], but saves the privacy cost for the value perturbation stage by assigning random
sign values to the selected dimensions. Besides using the single-dimension selection algorithms in Refer-
ence [29], we propose an Exponential Mechanism-based Multi-Dimension Selection algorithm that further
improves model convergence and accuracy. We evaluate the framework on a number of real-world datasets
with both simple logistic regression models and deep neural networks. For training logistic regression mod-
els on structured datasets, our framework yields only a ∼1%–2% accuracy loss in comparison to a ∼5%–15%
decrease of accuracy for the baseline methods. For training deep neural networks on image datasets, the accu-
racy loss of our framework is less than 8% and at best only 2%. Extensive experimental results show that our
framework significantly outperforms the previous LDP-FL solutions and enjoys an advanced utility-privacy
balance.

CCS Concepts: • Security and privacy→ Privacy-preserving protocols; • Computing methodologies
→Machine learning;

Additional Key Words and Phrases: Federated learning, local differential privacy

ACM Reference format:
Xue Jiang, Xuebing Zhou, and Jens Grossklags. 2022. SignDS-FL: Local Differentially Private Federated Learn-
ing with Sign-based Dimension Selection. ACM Trans. Intell. Syst. Technol. 13, 5, Article 74 (June 2022),
22 pages.
https://doi.org/10.1145/3517820

Authors’ addresses: X. Jiang and J. Grossklags, Technical University of Munich, Boltzmannstraße 3, Garching, Germany,
85748; emails: xue.jiang@tum.de, jens.grossklags@in.tum.de; X. Zhou, Huawei Technologies Düsseldorf GmbH, Riesstraße
25, Munich, Germany, 80992; email: xuebing.zhou@huawei.com.

$

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

© 2022 Copyright held by the owner/author(s).
2157-6904/2022/06-ART74
https://doi.org/10.1145/3517820

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 5, Article 74. Publication date: June 2022.



74:2 X. Jiang et al.

1 INTRODUCTION
Machine learning (ML) has been widely applied in solving societal challenges in recent years.
Traditional centralized learning mechanisms gather all the client data for model training and there-
fore suffer from high computational complexity and privacy issues. Due to these problems, feder-
ated learning (FL) [31] has been proposed, where the ML models are jointly trained by multiple
local devices (also referred to as clients or users) under the coordination of a central server. As
training tasks are distributed to local devices and clients’ private data are never uploaded to the
server, the framework enjoys distinctive advantages in both computational efficiency and privacy
protection. Federated learning is increasingly used in real-life scenarios such as health care [27],
recommendation systems [47], and other mobile edge computing applications [28].

Although FL enjoys significant privacy benefits in comparison to centralized learning, recent
works have demonstrated that FL is still vulnerable to various privacy attacks such as reconstruc-
tion attacks [52] and membership inference attacks [34], as the exchanged local updates and the
global model parameters may reveal sensitive information of the private local data. Motivated by
this, an increasing number of privacy-preserving FL frameworks with privacy-enhancing tech-
niques such as homomorphic encryption (HE) [10], secure multi-party computation (SMC)
[49], and differential privacy (DP) [14] have been proposed, aiming to prevent potential privacy
leakage in FL. However, the cryptography-based solutions may not be practical to large-scale FL
scenarios due to the massive additional communication and computation costs, as discussed in
Reference [26].

In comparison, DP-FL frameworks use randomization algorithms (e.g., injecting random noise)
to perturb the model updates or the model parameters and do not impose significant additional
communication and computation costs. Moreover, the randomization algorithms follow a strict
DP definition and can effectively prevent the attackers from inferring information from local data.
The DP-FL frameworks in References [3, 32] add Gaussian noise on the server side to protect the
privacy of the global model. However, they assume the presence of a trusted server. Thus, a more
practical solution is to apply local differential privacy (LDP) to FL, which perturbs the local
updates before sending them to the server. Nevertheless, as discussed in Reference [22], it is very
challenging for LDP-FL frameworks to achieve a satisfactory privacy-utility balance, especially
for high-dimensional models. For instance, Shokri and Shmatikov [38] propose the first LDP-FL
framework using the sparse vector technique. However, its DP guarantee is per-dimension and is
less effective for large models [36]. Later works, i.e., Duchi et al. [12], Wang et al. [42], and Zhao
et al. [51], adopted LDP mean estimation algorithms to perturb the local updates. However, the in-
jected noise in these solutions is in essence proportional to the model dimensionality, making them
only applicable to simple ML models. A recent work proposed FedSel [29], a two-stage LDP-FL
framework that includes a dimension selection (DS) stage and a value perturbation (VP) stage.
Given an original local update vector, the DS stage first builds a top-k dimension set containing the
dimensions of the k largest absolute update values and privately selects one “important” dimension
from the top-k set. Then, in the VP stage, the value of the selected dimension is perturbed via the
LDP algorithms in References [12, 42] and used to construct a sparse privatized local update.

Although FedSel [29] mitigates the dimension-dependency problem in previous works, the
framework may still suffer from utility loss due to the following reasons. First, since the privacy
budget is consumed by both stages, for high-privacy regimes (when the privacy budget is
small), each stage may obtain only an insufficient privacy budget and cause large randomness.
Moreover, the framework only selects one dimension for each local update, which may lead to
slow model convergence, especially for high-dimensional models. In this article, we address the
above challenges from two perspectives. First, we propose a novel LDP-FL framework, SignDS-FL
(as shown in Figure 1), which aims to mitigate the problem of an insufficient per-stage privacy

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 5, Article 74. Publication date: June 2022.



SignDS-FL: Local Differentially Private Federated Learning 74:3

Fig. 1. Overview of the Sign-FL framework. At each global round, the server broadcasts the current global
model to the local side. Each client trains the global model with local data and computes the local model
update. Then, the client randomly samples a sign value and builds the top-k dimension set: If the sign value
equals 1, then the top-k set is built with the dimensions of the k largest update values; otherwise, it is built
with the dimensions of the k smallest update values. An LDP-based dimension selection algorithm is then
applied to select a set of “important” dimensions. The sampled sign value and the selected dimension set will
be sent to the server. The server will construct sparse privatized local updates by assigning the sign value to
the corresponding selected dimensions and finally use them to update the global model.

budget in the high-privacy regime. The main idea is to save the privacy budget for the VP stage
in Reference [29] by building the top-k set according to the real local update values and assigning
sign values instead of the perturbed dimension values to the selected dimensions. The sign values
are randomly sampled by each client on the local side, which are used for determining the top-k
set and constructing the privatized local update. Moreover, besides adopting the single-dimension
selection algorithms as in Reference [29], we give the first attempt to explore multi-dimension
selection algorithms. To select h dimensions under the ϵ-LDP guarantee, a naive approach is to
independently perform the single-dimension selection h times. However, the privacy budget for
selecting each dimension should then be less than ϵ/h, which will lead to a significant degradation
in model utility. Inspired by the exponential mechanism [33] and its extension in frequency estima-
tion on set-valued data [43], we propose an Exponential Mechanism-based Multi-Dimension
Selection (EM-MDS) algorithm. In comparison to the naive approach, EM-MDS utilizes the
privacy budget more efficiently and helps improve model convergence and accuracy.1

Our major contributions can be summarized as follows:
• We propose SignDS-FL, a novel LDP-FL framework. Different from Reference [29], we pro-

pose to build the top-k dimension set according to real update values and construct the pri-
vatized updates based on sign values randomly sampled by the clients. Our solution saves
the privacy budget for the VP stage in Reference [29] and achieves better model accuracy
under the same privacy level.
• We further extend the single-dimension selection strategy in Reference [29] to multi-

dimension selection and propose EM-MDS, a novel algorithm based on the idea of the ex-
ponential mechanism [33]. The algorithm can more effectively utilize the privacy budget in
comparison to the naive approach and achieves better model utility.
• We evaluate the performance of our framework on a number of real-world datasets and ML

models and compare the results with previous works. For the simple tasks of training logistic

1The implementation code can be found at: https://gitee.com/mindspore/mindspore/blob/master/mindspore/lite/java/java/
fl_client/src/main/java/com/mindspore/flclient/SecureProtocol.java.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 5, Article 74. Publication date: June 2022.



74:4 X. Jiang et al.

regression models on structured datasets, our framework achieves an accuracy loss of only
∼1%–2% under a privacy level ϵ ≥ 4 in comparison to a ∼5%–15% decrease of accuracy for
the baseline methods. For the complex tasks, which train deep neural networks on image
datasets, the accuracy loss of our framework under a privacy level ϵ ≥ 8 is also less than
8% and at best only 2%. Extensive experimental results demonstrate that our framework
significantly outperforms the previous LDP-FL solutions and enjoys an advanced utility-
privacy balance.

The remainder of the article is organized as follows. In Section 2, we discuss prior work on
privacy-preserving FL. Section 3 presents a brief background about DP and FL. The system model
and the proposed methodology are introduced in detail in Section 4. The evaluation experiments
and results are then presented in Section 5. In Section 6, we discuss the potential applications
and the limitations of the proposed method. Finally, conclusions and avenues for future work are
presented in Section 7.

2 RELATED WORK
In recent years, DP [14] has been widely used as a strict criterion for privacy protection in data
analysis [13], data publishing [50], and machine learning [1, 8]. Moreover, an increasing num-
ber of studies also incorporate DP into FL to reduce potential privacy leakage and offer privacy
guarantees for the framework. Previous works by McMahan et al. [32] and Augenstein et al. [3]
proposed to add Gaussian noise on the server side to protect the privacy of the global model. How-
ever, such solutions cannot prevent privacy leakage from clients’ local updates. Follow-up works
further adopted crypto-based algorithms to strengthen local privacy. For instance, Jayaraman et al.
[18] presented a framework that incorporates DP with SMC while Truex et al. [40] introduced a
hybrid solution with DP and HE. Yet, the solutions require extra communication and computation
costs during the key-distribution phase and cannot be applied to large-scale scenarios.

Due to the privacy and efficiency issues in the above-mentioned solutions, a more practical
approach is to use LDP [23] to privatize the original local updates before sending them to the server.
Considering that the local updates are numerical vectors and the global aggregation on the server
side computes the average of all the local updates, a natural way is to use the LDP mean estimation
algorithms. Given a local update vector Δ ∈ [−1, 1]d , a naive solution is to independently perturb
each dimension using the Laplace mechanism [14], i.e., Δ̂ = Δ + Lap( 2d

ϵ ). However, the noise
scale is essentially linear to the dimension d and will result in a significant utility loss for high-
dimensional models. To reduce the noise scale, Duchi et al. [12] further proposed a method based
on randomized response [44] (referred to as DM) that maps each original value to two possible
constants {−B,B}, which are determined by d and ϵ . Although the algorithm achieves a lower
noise scale, it is relatively sophisticated and does not achieve ϵ-LDP when d is even [35]. Based
on DM, Wang et al. [42] further proposed a piecewise mechanism (PM), which returns a sparse
privatized vector with at most m dimensional values, where m = max{1,min{d, � ϵ

2.5 �}}. More
specifically, for each selected dimension Δ[j], the algorithm first computes the noised results x j

and let the Δ̂[j] = d
mx j . In this case, the communication cost is reduced to O (m) in comparison

with O (d ) in DM. The authors also proposed a hybrid mechanism (HM), which combines DM
and PM to achieve an optimized worst-case variance. Additionally, a follow-up work by Zhao et al.
[51] proposed an improved PM-Sub algorithm, which further reduced the variance when ϵ is large.
Although Reference [42] and Reference [51] increase the per-dimension privacy budget to ϵ/m by
only reporting the value of m random dimensions, the perturbed values are finally enlarged by
d/m for an unbiased estimation, which increases the injected noise at the same time. Based on
the above LDP mean estimation based solutions, a recent work by Liu et al. [29] further proposed
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FedSel, a two-stage LDP-FL framework that includes a DS stage and a VP stage. In the DS stage,
LDP-based dimension selection algorithms are applied to select one “important” dimension from
the top-k dimension set (i.e., the set of dimensions with the k largest absolute update values); in the
VP stage, the value of the selected dimension is perturbed via the LDP algorithms in References
[12, 42]. Finally, a sparse privatized local update is constructed and returned to the server. Although
[29] mitigates the dimension-dependency problem apparent in previous works, the privacy budget
is still consumed by two stages. When the privacy budget is small, each stage may obtain only an
insufficient privacy budget and cause large randomness. Also, only selecting one dimension for
each local update may lead to slow model convergence, especially for high-dimensional models.

In addition to solutions following a strict LDP definition, alternative notions of LDP have also
been investigated. For instance, Bhowmick et al. [5] introduced minimax differential privacy, which
relaxes local privacy by limiting the prior knowledge of the attackers, thus allowing the algorithm
to be performed under a much larger privacy budget (e.g., ϵ > 500). Similarly, Truex et al. [41]
proposed the α-CLDP-Fed framework based on Condensed LDP (CLDP) (α-CLDP) [15]. The
algorithm adopts α as the privacy cost under CLDP and requires α � ϵ to ensure meaningful pri-
vacy protection. However, they adopted α = 1 in the evaluation experiments, which is equivalent
to using a very large ϵ under the original LDP definition and results in weak privacy protection.
As we mainly focus on LDP-FL under the original LDP definition, the above two solutions are out
of scope for this article.

3 PRELIMINARIES
In the following, we offer background information about DP and FL.

3.1 Differential Privacy
Differential privacy [14] is a state-of-the-art data anonymization technique that provides strong
privacy guarantees for data analysis. The mathematical definition of DP is as follows:

Definition 1 (DP [14]). A randomized mechanism A : D → O satisfies ϵ-DP if for any two
adjacent datasets D,D ′ differing from one data sample and for any measurable subset of outputs
Y ⊆ O:

Pr [A (D) ∈ Y] ≤ eϵ · Pr [A (D ′) ∈ Y] , (1)
where ϵ describes the privacy loss.

Definition 1 is usually applied in centralized settings where the data have already been collected
by a trusted server. However, in local settings, we aim to ensure that each client’s local data will
not be accessed by the server. Thus, the definition of LDP has been proposed [23], which provides
strong local privacy guarantees for each user. The definition is as follows:

Definition 2 (LDP [23]). A randomized mechanismA : D → O satisfies ϵ-LDP if and only if for
any two inputs x ,x ′ ∈ D and for any output y ∈ O:

Pr [A (x ) = y
] ≤ eϵ · Pr [A (x ′) = y

]
, (2)

where ϵ describes the privacy loss.

In addition, LDP also holds two widely used properties [14], namely robustness to post-processing
and sequential composition. The former property states that any deterministic or randomized func-
tion defined over an LDP mechanism also satisfies LDP. The latter property states that interactively
applying the LDP mechanism on the same set of data yields an accumulated privacy cost.

Property 1 (Robustness to Post-Processing). Let A be an ϵ-LDP mechanism and д be an
arbitrary mapping from the set of possible outputs to an arbitrary set. Then, д ◦ A is ϵ-LDP.
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Property 2 (Seqential Composition). Suppose n mechanisms {A1, . . . ,An } respectively sat-
isfy ϵi -LDP and are sequentially computed on the same set of private data D, then a mechanism
formed by (A1, . . . ,An ) satisfies (

∑n
i=1 ϵi )-LDP.

3.2 Federated Learning
Federated learning [31] is a decentralized learning framework that achieves computational effi-
ciency and privacy benefits by distributing the training task to local devices. At each global round,
the server distributes the current global model to a number of local clients. Each client locally
updates the global model and returns the model update to the server. On the server side, all the
local updates are aggregated to update the global model, which will be distributed in the next
global round. Since only model parameters are exchanged during the training process, FL allows
the model to be trained without accessing raw local data and thus provides enhanced privacy pro-
tection in comparison to centralized training. Nevertheless, recent contributions point out that
the naive FL framework still suffers from various privacy attacks, which may take place not only
during the training phase [34, 52] but also during the inference phase [19]. These privacy risks can
be mainly divided into local privacy and global privacy aspects. Local privacy risks appear when
the local updates reveal insights about local data, while global privacy risks represent situations
when the global model memorizes local data. Clearly, the local privacy risks are more severe than
the global privacy risks since they can directly reveal information of a specific client. To address
this problem, an increasing number of privacy-preserving FL frameworks with privacy-enhancing
techniques such as HE [40], SMC [18], and DP [29, 32] have been proposed, aiming to provide pro-
tection against potential privacy risks.

4 SIGNDS-FL FRAMEWORK
Although the LDP-FL framework in Reference [29] shows considerable performance improve-
ments in comparison to previous works, it may still suffer from utility loss because of the in-
sufficient per-stage privacy budget and slow model convergence. In this section, we will present
our solution to address these limitations. To start with, we will describe our system model. Then,
we will introduce our enhanced LDP-FL framework SignDS-FL, which aims to further reduce the
privacy cost in Reference [29] and mitigate the utility loss in high-privacy regimes. Finally, we
will present EM-MDS, a new privacy-preserving multi-dimension selection algorithm that helps
improve model convergence.

4.1 System Model
A common FL scenario is considered in this article, where a machine learning model M is jointly
trained by a number of local clients under the coordination of a central server. Each client i holds a
local dataset Di that contains the client’s private personal data. At each global round t , the server
selects a group of N clients and distributes the current global model Mt . Each client i in the group
trains the global model for several gradient descent steps with his local data Di and obtains the
local model M i

t . Then, the client computes the local update Δi
t = M i

t −Mt and sends Δi
t back to the

server. On the server side, all the local updates are aggregated and averaged, which is then used
to update the global model as follows:

Δt =
1
N

N∑

i=1
Δi

t , Mt+1 = Mt + Δt . (3)

The updated global model Mt+1 is distributed again to local clients to start the next round.
Since the raw local updates Δi

t are derived based on clients’ personal data, directly uploading Δi
t

to the server may reveal private information of raw local data. Here, the server is assumed to be

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 5, Article 74. Publication date: June 2022.



SignDS-FL: Local Differentially Private Federated Learning 74:7

honest-but-curious, which follows the system protocols but tries to infer sensitive information of lo-
cal users from Δi

t . Thus, to prevent such privacy leakage, the clients use a randomization algorithm
A to perturb the local updates and send the privatized updates to the server. The randomization
algorithmA follows the strict LDP definition, ensuring that the server lacks access to the original
local updates and providing formal privacy guarantees for clients’ local data.

4.2 General Workflow of SignDS-FL
Motivated by the limitations of Reference [29], we propose SignDS-FL, an improved LDP-FL frame-
work. The main idea is to substitute the VP stage in Reference [29] by assigning a constant value
to the selected dimensions to save privacy costs. In this way, with the same privacy level, the pro-
posed method can achieve less randomness and thus higher accuracy in the dimension selection
stage. However, since the parameter values may have different signs, assigning the same constant
value to all the selected dimensions may result in a significant change in the gradient descent direc-
tion. To address the problem, the SignDS-FL framework adopts an extra sign variable s ∈ {−1, 1},
which is used for dimension selection and for the construction of the sparse privatized local up-
dates. The idea is inspired by the SignSGD algorithm proposed by Bernstein et al. [4]. The authors
quantized each local update value to its sign value to reduce the communication cost and proved
that the algorithm can still enjoy a satisfying convergence rate. Thus, in our algorithm, each client
randomly samples a sign value s on the local side. If s = 1, then the dimensions of the k largest
values in the local update are used to build the top-k dimension set and perform the private dimen-
sion selection process. The selected dimensions will then be assigned with s = 1 to construct the
sparse privatized local update. Intuitively, the k largest values are highly likely to be larger than
zero. Therefore, assigning the positive sign value to the selected dimension will not cause much
difference in the model update direction, which mitigates the impact on model accuracy. Similarly,
when s = −1, the dimensions of the k smallest values are used for building the top-k set. The se-
lected dimensions are assigned with the negative sign value for constructing the sparse privatized
local update.

The general training workflow of SignDS-FL is presented in Algorithm 1. At each global round
t , the server selects a group of N clients and broadcasts the current global model Mt to the clients
(Lines 2–4). On the local side, the client i trains the global model for several gradient descent
epochs with his local data Di and computes the local update Δi

t (Lines 13–17). Then, the client
sorts Δi

t by real update values, randomly samples a sign value si
t ∈ {−1, 1} with equal probability,

and builds the top-k dimension set Stopk following the idea described above (Lines 18–23). Given
the privacy budget ϵ , different LDP dimension selection algorithms are applied to privately select
a set of dimensions J i

t (Line 24), which, together with the sampled sign si
t , will be returned to

the server. The server then constructs the sparse privatized local update Δ̂i
t by assigning the sign

value si
t to all the dimensions contained in J i

t (Lines 6 and 7). Finally, all the sparse local updates
are aggregated and used to update the global model with a global learning rate γ (Lines 9 and 10).
The updated global model Mt+1 is distributed again to local clients to start the next round.

In the later sections, we will introduce two private dimension selection algorithms that pro-
vide strict ϵ-LDP guarantees to clients’ local data. In addition, since the sign values are randomly
sampled by the clients and are unrelated to the local data, the sparse privatized local updates con-
structed on the server side also satisfy ϵ-LDP.

Theorem 1. For the original local update Δ of any client, if the dimension selection algorithm used
in Algorithm 1 satisfies ϵ-LDP, then the sparse privatized local update Δ̂ also satisfies ϵ-LDP.

Proof. According to Definition 2, for any client with two possible local updates Δ,Δ′, the pri-
vatized local update Δ̂ satisfies ϵ-LDP if and only if Pr[Δ̂ |Δ]

Pr[Δ̂ |Δ′] ≤ exp(ϵ ).
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ALGORITHM 1: SignDS-FL
Input: M1 ∈ Rd : initial global model; T : global aggregation rounds; N : number of per-round clients; E:

number of local epochs; η: local learning rate; d : local update size; k : top-k set size; h: output
dimension set size; γ : global learning rate; ϵ : privacy budget

Output: Trained model M

Server executes:
1: for global round t = 1, . . . ,T do
2: Randomly select a group of N clients
3: for client i = 1, . . . ,N in parallel do
4: Broadcast current global model Mt
5: Receive the dimension set and sign

J i
t , s

i
t = LocalUpdate(Mt ,E,η, ϵ,k,h)

6: Initialize the sparse privatized local update
Δ̂i

t = [0]d

7: For j ∈ {1, . . . ,d }, if j ∈ J i
t , set Δ̂i

t [j] = si
t

8: end for
9: Aggregate all the sparse local updates:

Δ̂t =
1
N
∑N

i=1 Δ̂i
t

10: Update global model Mt+1 = Mt + γ · Δ̂t
11: end for
12: Return Global model M = MT+1

LocalUpdate(Mt ,E,η, ϵ,k,h):
// Run on the client side

13: Initialize local model Mi
t ← Mt

14: for epoch e = 1, . . . ,E do
15: Mi

t = Mi
t − η · ∇L (Mi

t ,D
i )

16: end for
17: Calculate local update: Δi

t = Mi
t −Mt

18: Randomly sample a sign si
t ∈ {1,−1} with

probability Pr[si
t = 1] = 0.5

19: if si
t = 1 then

20: Select dimensions of k largest values in Δi
t to

construct Stopk
21: else
22: Select dimensions of k smallest values in Δi

t to
construct Stopk

23: end if
24: Obtain the private dimension set J i

t =
LDP-DimSel(Stopk ,d,k,h, ϵ)

25: Return J i
t , s

i
t

In Algorithm 1, the construction of the privatized local update can be decomposed into two
steps: privately selecting a dimension set J according to the sampled sign value s and assigning
each dimension j ∈ J with s . This can be formulated as

Pr[Δ̂|Δ]
Pr[Δ̂|Δ′] =

Pr[J |Δ] ·∏j ∈J Pr
[
Δ̂[j]|Δ[j]

]
Pr[J |Δ′] ·∏j ∈J Pr

[
Δ̂[j]|Δ′[j]

] , (4)

and since the dimension selection step satisfies the ϵ-LDP guarantee, it holds that Pr[J |Δ]
Pr[J |Δ′] ≤ exp(ϵ ).

Additionally, each selected dimension is assigned with the sign value s , which is a constant and is
independent from the real dimension value. Thus, Pr[Δ̂[j]|Δ[j]] = Pr[Δ̂[j]|Δ′[j]] = 1, where j ∈ J .
To sum up the above considerations, it holds that

Pr[Δ̂|Δ]
Pr[Δ̂|Δ′] =

Pr[J |Δ] · 1
Pr[J |Δ′] · 1 ≤ exp(ϵ ), (5)

which completes the proof. �

Note that the privacy guarantees achieved by Theorem 1 hold for any ϵ-LDP dimension selection
algorithms and are agnostic to the model structures.

4.3 LDP Dimension Selection Algorithms
Next, we will introduce two private dimension selection algorithms used in the framework that
provide strict ϵ-LDP guarantees to the local updates and local data.
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ALGORITHM 2: PS for single dimension selection [29]
Input: Stopk : top-k dimension set; d : local update size; k : top-k set size; ϵ : privacy budget.
Output: J : selected dimension

1: Sample a Bernoulli variable x such that

Pr[x = 1] = exp(ϵ ) · k
d − k + exp(ϵ ) · k (6)

2: if x = 1 then

3: Randomly sample a dimension
J ∈ {a ∈ {1, . . . ,d }|a ∈ Stopk }

4: else
5: Randomly sample a dimension

J ∈ {a ∈ {1, . . . ,d }|a � Stopk }
6: end if
7: Return J

4.3.1 Single-dimension Selection. We start with the single-dimension selection algorithms,
which only select one dimension for each local update. This has been investigated in Reference
[29]. Here, we briefly introduce one of the proposed algorithms called perturbed sampling (PS),
which is presented in Algorithm 2. Given the top-k dimension set Stopk , a dimension J is randomly
sampled as

J ∈
⎧⎪⎨⎪⎩
{a ∈ {1, . . . ,d }|a ∈ Stopk } with probability psin

{a ∈ {1, . . . ,d }|a � Stopk } with probability 1 − psin
. (7)

Namely, the dimension J is sampled from the top-k dimension set with a probability psin and
otherwise from the non-top-k dimension set. Let psin be the top-k probability. Thus, the privacy
guarantee of Algorithm 2 is as follows:

Lemma 1. Algorithm 2 satisfies ϵ-LDP when psin ≤ exp(ϵ ) ·k
d−k+exp(ϵ ) ·k .

Proof. For each client, given any two possible local updates Δ and Δ′ and the sampled sign
value s , let Stopk , S

′
topk be the corresponding top-k dimension sets and J ∈ {1, . . . ,d } be any

output dimension. Given the top-k probability psin , the probabilities of sampling the dimension J

from the top-k set and from the non-top-k set are respectively psin · 1
k and (1 − psin ) · 1

d−k . Thus,
when psin ≤ exp(ϵ ) ·k

d−k+exp(ϵ ) ·k it holds that

Pr[J |Δ]
Pr[J |Δ′] =

Pr[J |Stopk ]
Pr[J |S ′topk ] ≤

Pr[J |J ∈ Stopk ]
Pr[J |J � S ′topk ] =

psin · 1
k

(1 − psin ) · 1
d−k

≤ exp(ϵ ), (8)

which completes the proof. �

4.3.2 Multi-dimension Selection. Although Algorithm 2 can efficiently select top-k dimensions
under LDP guarantees, it only returns one dimension for each local model update, which may re-
sult in the loss of valuable parameter information and a slow convergence for high-dimensional
models. This motivates us to consider whether it is possible to generalize the algorithm by return-
ing multiple dimensions. To select h dimensions under ϵ-LDP, a naive method is to repeatedly
apply Algorithm 2 for h times. However, according to the sequential composition property (Prop-
erty 2), the privacy budget for selecting each dimension should be less than ϵ/h, which will lead to
a significant decrease in the probabilitypsin and a degradation of model accuracy. Therefore, better
dimension selection algorithms are needed. Since the dimension indices here are non-numerical
values, traditional LDP algorithms such as Laplace and Gaussian mechanisms [14] cannot be di-
rectly applied. In contrast, the exponential mechanism [33] is a widely used method for handling
such non-numerical queries. Inspired by this idea, we further propose an enhanced EM-MDS algo-
rithm to improve model convergence and utility.
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Consider a top-k dimension set Stopk and an output set J with h elements. Let ν = |Stopk ∩ J |
be the number of intersections between the two sets, which is equivalent to the number of top-k
dimensions contained in J . A score function u (Stopk , J ) is then defined as an indicator function
to highlight whether the top-k dimensions contained in J are larger than a certain threshold νth ,
namely

u (Stopk , J ) = 1( |Stopk ∩ J | ≥ νth ) = 1(ν ≥ νth ), (9)
where 0 ≤ ν ≤ h and 1 ≤ νth ≤ h. Furthermore, let ϕu be the sensitivity of u, it can be derived that

ϕu = max
J ∈J
| |u (Stopk , J ) − u (S ′topk , J ) | | = 1 − 0 = 1, (10)

where J is the domain of the output set and Stopk and S ′topk are two random top-k dimension
sets. With the above definitions, the multi-dimension selection process can be defined as follows.

Definition 3 (EM-MDS). Given the top-k dimension set Stopk of a local update, one can randomly
sample an output dimension set J ∈ J with the following probability:

pmul =
exp( ϵ

ϕu
· u (Stopk , J ))

∑
J ′∈J exp( ϵ

ϕu
· u (Stopk , J

′))
=

exp(ϵ · 1(ν ≥ νth ))
∑τ=h

τ=0 ωτ · exp(ϵ · 1(τ ≥ νth ))

=
exp(ϵ · 1(ν ≥ νth ))

∑τ=νth−1
τ=0 ωτ +

∑τ=h
τ=νth

ωτ · exp(ϵ )
,

, (11)

where ν is the number of top-k dimensions contained in J , νth is the threshold of the score function
and ωτ =

(
k
τ

) (
d−k
h−τ

)
is the number of possible combinations inJ that contains τ top-k dimensions.

The next question is How do we determine an appropriate threshold νth to achieve a satisfactory
model utility? From Equation (11), the probability that the sampled J contains τ top-k dimensions
given a threshold νth can further be derived as follows:

pmul (ν = τ |νth ) =
⎧⎪⎨⎪⎩
ωτ /Ω i f 0 ≤ τ < νth

ωτ · exp(ϵ )/Ω i f νth ≤ τ ≤ h
, (12)

where Ω =
∑τ=νth−1

τ=0 ωτ +
∑τ=h

τ=νth
ωτ · exp(ϵ ) is the denominator part of Equation (11). Moreover,

the expectation of ν given the threshold νth can be calculated as

Emul [ν |νth] =
τ=h∑

τ=0
τ · pmul (ν = τ |νth ). (13)

Intuitively, the higher Emul [ν |νth], the higher the probability that the sampled J contains more
top-k dimensions and the better the model utility. Therefore, the optimum threshold ν∗th can be
determined as the threshold that achieves the highest Emul [ν |νth], namely

ν∗th = arg max
νth ∈{1, ...,h }

Emul [ν |νth]. (14)

By summarizing all the above design considerations, the workflow of our EM-MDS algorithm
is presented in Algorithm 3. Given all the input settings (d,k,h, ϵ), the optimal threshold ν∗th is
firstly determined based on Equations (13) and (14) (Line 1). Then, the dimension selection pro-
cess is conducted as in Definition 3. Nevertheless, as the output domain J contains

(
d
k

)
possible

combinations, directly sampling a set J from J with a certain probability is computationally ex-
pensive, especially when d and k are large. To further improve the efficiency, the trick of inverse
sampling is applied, which first samples a random variable β from the uniform distributionU (0, 1)
and determines the target number of top-k dimensions ν according to the cumulative distribution
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ALGORITHM 3: EM-MDS for multi-dimension selection
Input: Stopk : top-k dimension set; d : local update size; k : top-k set size; h: output size;

ϵ : privacy budget.
Output: J : dimension set with h elements

1: Determine the optimum threshold
ν∗th = arg max

νth ∈{1, ...,h }
Emul [ν |νth]

2: Compute denominator
Ω =
∑τ=ν ∗th−1

τ=0 ωτ +
∑τ=h

τ=ν ∗th
ωτ · exp(ϵ ), where

ωτ =
(k
τ

) (d−k
h−τ

)

3: Randomly sample β from uniform distribution
U (0, 1)

4: Initialize τ = 0, CDF = ω0/Ω
5: while CDF < β do
6: τ = τ + 1
7: if τ < ν∗th then
8: CDF = CDF + ωτ /Ω

9: else
10: CDF = CDF + ωτ · exp(ϵ )/Ω
11: end if
12: end while
13: Let ν = τ be the number of top-k dimensions
14: Sample ν dimensions from
{a ∈ {1, . . . ,d }|a ∈ Stopk }
and append to J

15: Sample h − ν dimensions from
{a ∈ {1, . . . ,d }|a � Stopk }
and append to J

16: Return J

of pmul (ν |ν∗th ) (Lines 3–13). An example of the inverse sampling trick is illustrated in Figure 2. In
this case, the computational cost of Algorithm 3 is efficiently reduced fromO (

(
d
k

)
) toO (d ). Finally,

the output dimension set J is constructed by randomly sampling ν dimensions from the top-k
dimension set and h − ν dimensions from the non-top-k set.

Now, we present the privacy and utility analysis of the EM-MDS algorithm.

Lemma 2. Algorithm 3 satisfies ϵ-LDP.

Proof. For each client, given any two possible local updates Δ and Δ′ and the sampled sign
value s , let Stopk , S

′
topk be the corresponding top-k dimension sets. For any output dimension set

J ∈ J , let ν = |Stopk ∩ J |, ν ′ = |S ′topk ∩ J | be the number of intersections between J and both
top-k sets. With the sampling probability defined in Equation (11) it holds that

Pr[J |Δ]
Pr[J |Δ′] =

Pr[J |Stopk ]
Pr[J |S ′topk ] =

exp( ϵ
ϕu
·u (S topk , J ))

∑
J ′∈J exp( ϵ

ϕu
·u (S topk , J

′))

exp( ϵ
ϕu
·u (S ′topk , J ))

∑
J ′∈J exp( ϵ

ϕu
·u (S ′topk , J

′))

=

exp(ϵ ·1(ν ≥νth ))
∑τ=νth−1

τ=0 ωτ +
∑τ=h

τ=νth
ωτ ·exp(ϵ )

exp(ϵ ·1(ν ′ ≥νth ))
∑τ=νth−1

τ=0 ωτ +
∑τ=h

τ=νth
ωτ ·exp(ϵ )

=
exp(ϵ · 1(ν ≥ νth ))

exp(ϵ · 1(ν ′ ≥ νth ))
≤ exp(ϵ · 1)

exp(ϵ · 0)
= exp(ϵ ),

(15)

which completes the proof. �

As for the utility analysis, we compare the performance of our EM-MDS algorithm with the
naive method of applying Algorithm 2 for multi-dimension selection. More specifically, with the
output size h, the naive way repeats the PS algorithm h times with the privacy budget ϵ/h for each
iteration. Thus, the probability of sampling from the top-k set is psin =

exp(ϵ/h) ·k
d−k+exp(ϵ/h) ·k . Given a

sampled dimension set J , the probability distribution and the expectation of ν can be derived as
follows:

psin (ν = τ ) =

(
h

τ

)
· pτ

sin · (1 − psin )h−τ , Esin[ν] =
τ=h∑

τ=0
τ · psin (ν = τ ). (16)
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Fig. 2. Example of using the inverse sampling
trick to determine ν , namely the number of
top-k dimensions in J .

Fig. 3. Utility of using PS and EM-MDS algo-
rithms in multi-dimension selection regarding
different output size h and privacy budget ϵ .

For the EM-MDS algorithm, we first determine the optimum ν∗th based on Equation (14) and then
calculate the expectation Emul [ν] = E[ν |ν∗th] as in Equation (13).

We select different settings of h and ϵ to empirically compare the privacy-utility tradeoff of the
naive method and the proposed method. More specifically, we use E[ν]/h, the expected ratio of
top-k dimensions contained in the output set, to represent the model utility. Intuitively, a higher
expected ratio means that there is a higher probability to select dimensions from the top-k set,
which contributes to the model utility. The comparison results are presented in Figure 3. It can
be seen that both algorithms achieve the same expected ratio when h = 1. This can be derived
from Equation (11), where the EM-MDS algorithm is equivalent to the PS algorithm when h = 1.
Moreover, with the same privacy budget ϵ , increasing the output dimension h will lead to a lower
top-k ratio and a lower model utility. This is because a large h causes each dimension allocated
with less privacy budget, thus a lower probability to be sampled from the top-k set. Nonetheless,
the EM-MDS algorithm achieves a distinctively higher top-k ratio in the output set compared with
the naive method. In particular, the higher the privacy budget ϵ , the larger the difference. This is
due to the fact that EM-MDS considers all the combinations of the output set and assigns higher
probabilities to those with more top-k dimensions. As a result, the algorithm can utilize the privacy
budget more efficiently in comparison to the naive method and achieve a better model utility.

5 EXPERIMENTS AND RESULTS
After implementing the proposed framework, we now report the results of comprehensive experi-
ments with a number of open source datasets to evaluate its performance. In this section, we will
first introduce the experimental settings and then discuss the evaluation results.

5.1 Experiment Setup
We first introduce the experimental settings including the datasets and models used in the experi-
ments, baseline algorithms, and parameter configurations.

5.1.1 Datasets and Models. Six open source datasets are used for evaluating the performance of
our framework. Each dataset contains multi-dimensional data records used for classification tasks:
• The Census dataset [11] contains records drawn from the 1990 United States census data,

which include 68 personal attributes such as gender, income and marriage status. The dataset
is used for a classification task to determine the duration of people’s active duty service.
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Table 1. Details of Datasets and Models

Data Type Dataset #Records #Features #Classes Model #Parameters

Structured
Data

Census 2,458,285 68 3 LR 207
Adult 32,561 123 2 LR 248
USPS 9,298 256 10 LR 2570
HAR 10,299 561 6 LR 3372

Image Data
FMNIST 70,000 784 10 NN 76,330

CNN 44,426

EMNIST 131,600 784 47 NN 79,919
CNN 47,571

• The Adult dataset [24] originally contains records with 15 personal attributes such as age,
occupation, education and gender. The goal is to train a binary classifier that determines
whether a person earns more than 50 thousand dollars a year. We use a processed version
from [37] that converts the original attributes into 123 binary features.
• The USPS dataset [17] is a digit dataset provided by the U.S. Postal Service. The dataset

contains 9,298 samples with 256 features, which are categorized to 10 classes.
• The Human Activity Recognition (HAR) [2] dataset contains 10,299 sensor data records

of 30 volunteers that can be categorized into 6 daily activities. Each data record has 561
features representing different time and frequency domain variables.
• The Fashion-MNIST (FMNIST) [45] dataset contains 70,000 article images (from Zalando),

which are categorized into 10 classes. Each record is a grey-scale image of size 28 × 28.
• The Extended-MNIST (EMNIST) [9] dataset consists of 131,600 handwritten letters, each

is a grey-scale image of size 28 × 28. Here, we use the EMNIST-Balanced dataset, where the
samples are evenly categorized into 47 classes.

We conduct experiments to evaluate the performance of our framework in both simple and
complex training tasks. For simple training tasks, we train logistic regression (LR) models on
the structured datasets (i.e., Census, Adult, USPS, HAR). For complex tasks, we conduct experi-
ments on the image datasets (FMNIST, EMNIST) using neural networks (NN) as well as convo-
lutional neural networks (CNN). Here, we use a two-layer NN with 96 neurons on the hidden
layer and LeNet [25], a widely used CNN that consists of two convolution layers (each followed
by a maxpooling layer) and three fully connected layers to perform the experiments.

Details about the datasets and models are presented in Table 1, which include the number of
records, features, classes for each dataset, as well as the number of parameters of the used models.

5.1.2 Baselines. Various previous works mentioned in Section 2 are used as our baselines,
namely: DM [12], PM [42], HM [42], PM-sub [51], and FedSel [29]. For FedSel, we choose the
ratio of the privacy budget for the dimension selection stage to be 0.1 and 0.5, which is referred in
the experiment results as FedSel0.1 and FedSel0.5.

5.1.3 Parameter Configurations. In the experiments, we set the global round T = 500, N = 250
clients participate in each round. Each client possesses 10 data records. The global learning rate
is set to γ = 0.05N. For local training, each client updates the model for E = 10 epochs with a
learning rate η = 0.001. For the LDP dimension selection algorithms, we set the size of the top-k
dimension set k = 0.1d , where d is the size of local updates (i.e., the number of model parameters).
Moreover, we vary the privacy budget ϵ to explore the influence of privacy on the performance of
the framework. In our experiments, we choose ϵ ∈ {0.5, 1, 2, 4, 8, 12}. Additionally, we repeat each
experiment 10 times and report the averaged accuracy.
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Fig. 4. Accuracy of LR models trained on structured datasets with different privacy budgets ϵ .

5.2 Performance in Simple Training Tasks
We first evaluate the performance of our SignDS-FL framework in simple training tasks. Here,
we adopt the single-dimension selection algorithm (Algorithm 2) for a fair comparison, which is
referred to as SignDSbit. We train LR models on the four structured datasets and compare the
model accuracy with the baselines under different settings.

5.2.1 Model Accuracy Regarding the Privacy Level. To start with, we analyze how the frame-
work performs under different privacy budgets. We conduct the training process under different
LDP-FL frameworks with ϵ ∈ {0.5, 1, 2, 4, 8} and compare the model accuracy, as shown in Figure 4.
We use the error bars here and also in later results to represent the 95% confidence level. It can be
observed that the model accuracy of all methods improves with an increase of ϵ . This aligns with
the privacy-utility tradeoff in LDP-FL frameworks: The larger the ϵ , the less randomness added for
privacy protection, and the better the model utility. Moreover, although the LDP mean estimation
based baselines (DM, PM, HM, and PM-sub) can achieve relatively satisfactory accuracy for low-
dimensional datasets (Adult, Census), they suffer from an obvious accuracy loss for datasets with
more features (USPS, HAR). This is because the noise scale in these algorithms is proportional to
model dimensionality. Thus, for the USPS and HAR datasets, the increase of model size results in
a larger noise scale and a higher accuracy loss. In comparison, FedSel and SignDS-FL can effec-
tively mitigate the dimension-dependency problem. However, SignDS-FL can achieve even better
performance than FedSel. This is likely due to the fact that FedSel splits the privacy budget for
selecting the top-k dimensions and perturbing the dimension values, whereas our framework ap-
plies all the privacy budget for better dimension selection results. In addition, FedSel adds random
noise to the dimension value, while SignDS-FL replaces the dimension value with the sign values.
This can better preserve the real model update direction and further improves model convergence.
It can be seen that SignDS-FL consistently outperforms the baselines for all the datasets. With
ϵ ≥ 4, the baseline methods suffer from at minimum ∼5%–15% decrease of accuracy for the USPS
and HAR datasets, while our framework only causes around ∼1%–2% accuracy loss. The results il-
lustrate that the SignDS-FL framework can effectively address the dimension-dependency problem
in baseline algorithms and achieve better model utility under the same privacy levels.

5.2.2 Model Accuracy Regarding the Group Size. We further investigate how the choice of group
size N (i.e., the number of participating clients in each round) influences the training performance.
We conduct experiments varying the group size N ∈ {100, 250, 500, 750} under a privacy level of
ϵ = 4 and compare the change of model accuracy for the different LDP-FL solutions. The results in
Figure 5 show that training with a larger group size can in general help improve model accuracy.
In addition, our framework consistently outperforms the baselines under the same group size set-
tings. Moreover, it can be observed that the baseline algorithms are more sensitive to the group
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Fig. 5. Accuracy of LR models trained on structured datasets with different group sizes.

Fig. 6. Accuracy of NNs and CNNs trained on image datasets with different privacy budget ϵ .

size in comparison to SignDS-FL, especially with larger models. More specifically, for USPS and
HAR, the accuracy change of our framework is less than 8%, but around∼10%–15% for the baseline
methods. This is due to the baseline algorithms adding random noise to the real dimension values,
which alters the direction of the selected dimensions. Thus, the algorithms require a sufficiently
large group size to reduce the impact of noise on the direction of the averaged local updates as
well as on the model utility. In comparison, our SignDS-FL framework replaces the real dimension
values with their corresponding sign values, which preserves the direction of the selected dimen-
sions. Therefore, our framework shows higher robustness to different choices of group sizes in
comparison to the baselines and can still achieve satisfactory performance even with small group
sizes.

5.3 Performance in Complex Training Tasks
Next, we evaluate the performance of our framework on complex tasks. We respectively train the
two-layer NNs and CNNs on both FMNIST and EMNIST datasets and compare the results with
the baseline methods.

5.3.1 Model Accuracy Regarding the Privacy Level. First, we analyze the impact of the privacy
budget ϵ on model accuracy. The results are presented in Figure 6, where we can see that the base-
line algorithms based on LDP mean estimation cannot obtain an acceptable model accuracy for
complex training tasks even with ϵ = 8. This occurs since the injected noise in these algorithms
gets proportionally larger for high-dimensional DNNs, which may require an extremely large ϵ
to mitigate the randomness. Moreover, although FedSel shows a better performance, there is still
a distinctive decrease of accuracy. In comparison, our framework achieves a notable accuracy im-
provement. For the FMNIST dataset, the accuracy loss is around 4% for two-layer NNs and CNNs
model. For EMNIST, the accuracy loss is respectively around 10% and 15% for both models. It fol-
lows that saving the privacy budget for better dimension selection results and using the sign values
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Fig. 7. Accuracy of NNs and CNNs trained on image datasets with different group size.

to preserve the model update direction can contribute to improving the model utility. Moreover,
it can be observed that the models trained on FMNIST always have a higher accuracy than those
trained on EMNIST. This is because EMNIST has 47 classes in comparison to FMNIST, which
only has 10 classes. Thus, the increase of data variants leads to more difficulty for model training.

5.3.2 Model Accuracy Regarding the Group Size. We also analyze the impact of group size N on
the accuracy of complex models. As in Section 5.2.2, we conduct experiments varying the group
size N ∈ {100, 250, 500, 750} under a privacy level of ϵ = 4 and compare the model accuracy. The
results are shown in Figure 7. It can be seen that the baseline algorithms cannot yield negligible
accuracy loss for the complex models even with an increase in group size. However, our proposed
method consistently outperforms the baseline methods under different group sizes. The model
accuracy can be further improved by ∼1%–5% when increasing the group size from 250 to larger
than 500. The results demonstrate that the proposed SignDS-FL framework can effectively support
the complex training tasks with high-dimension DNNs.

5.4 Performance Improvement with Multi-dimension Selection
Although our framework shows significant accuracy improvements for training DNNs in compar-
ison to the baseline methods, there is still an obvious gap in model accuracy between the private
training setting and the non-private setting. This may be due to the fact that we only select one
dimension for each local update, which slows down the model convergence and thus results in
a decrease in model accuracy. In the following, we aim to explore whether our multi-dimension
selection algorithm EM-MDS can further help improve model accuracy. We respectively train NNs
and CNNs under SignDS-FL using the EM-MDS algorithm with h, namely the number of selected
dimensions, to be 3 and 5. We choose different privacy budgets ϵ ∈ {1, 4, 8, 12} in the experiments.
In addition, we also analyze the model accuracy when using the naive multi-dimension selection
approach, which simply repeats the single dimension selection algorithm h times with a privacy
budget of ϵ/h for each time (as mentioned in Section 4.3.2).

5.4.1 Comparison of Model Accuracy Regarding the Privacy Level. In Figure 8, we report the
model accuracy of using different dimension selection methods under various privacy levels. It
can be seen that the naive multi-dimension selection method may not contribute to model utility
under high privacy regimes. In particular, when ϵ ≤ 4, selecting multiple dimensions via the naive
method causes a distinctive decrease of accuracy in comparison to the single-dimension selection
results. In contrast, the proposed EM-MDS algorithm can achieve similar or even slightly better
accuracy under the same ϵ . This aligns with the utility analysis in Figure 3. More specifically, the
naive method evenly splits the privacy budget for each output dimension. When the total ϵ is small,
each dimension may be allocated with an insufficient privacy budget and the output set may only
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Fig. 8. Comparison of model accuracy regarding different dimension selection strategies.

Fig. 9. Comparison of model convergence regarding different dimension selection strategies.

obtain a low top-k ratio. In comparison, EM-MDS considers all the combinations of the output set
and assigns higher probabilities to the combinations with more top-k dimensions. Thus, the algo-
rithm can achieve a higher top-k ratio in the output set and a better model utility. Moreover, there
is an obvious accuracy improvement with EM-MDS as ϵ increases. For example, with ϵ ≥ 8, EM-
MDS gets better accuracy with h = 5 in comparison to the single-dimension selection algorithm
while the naive approach still shows a decrease in accuracy. As a result, with the same privacy
guarantee, our EM-MDS can more efficiently utilize the privacy budget for selecting more dimen-
sions in comparison to the naive approach and can further improve model utility. In comparison
to the results in Section 5.3.1, with ϵ ≥ 8, EM-MDS achieves around a 2% increase of accuracy for
the FMNIST dataset and more than an 8% accuracy improvement for the EMNIST dataset.

5.4.2 Comparison of Model Convergence. We further visualize the model accuracy regarding
the global rounds to investigate whether the EM-MDS algorithm can help speed up model con-
vergence. We compare the results of both models and datasets under the privacy level ϵ = 8 and
present the results of different dimension selection strategies in Figure 9. Intuitively, model con-
vergence faces a tradeoff between the output size h and the randomness during the dimension
selection process. As discussed above, a larger output size may not always contribute to model
convergence since it may result in an increase in randomness in dimension selection when the
privacy budget is insufficient. However, when ϵ is large enough, an increase in h will speed up
model convergence since more information of the local updates is used during training. Similarly
to the results in Figure 8, using the naive approach with h = 5 triggers an even slower conver-
gence speed in comparison to the single-dimension selection strategy, which is because of the
insufficient privacy budget for dimension selection. In contrast, EM-MDS with h = 5 shows the
fastest convergence over all the selection strategies. This indicates that EM-MDS can help improve
model convergence and thus requires fewer communication rounds for model training.
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5.5 Analysis of Results
From the results in Sections 5.2 and 5.3, it can be seen that the LDP mean estimation based baselines
are effective for low-dimensional models but suffer from large accuracy loss for high-dimensional
models. This is because the injected noise in these algorithms grows proportionally with the model
size, which causes significant utility loss. Moreover, although FedSel can mitigate this dimension-
dependency problem for LR models, it still poses an obvious accuracy loss for DNN models. On
the contrary, the SignDS-FL framework achieves better accuracy for both simple LR models and
complex DNNs. In addition, we observe that the baseline algorithms are more sensitive to the
group size and require a sufficiently large group size for mitigating the impact of noise on model
convergence. In comparison, SignDS-FL can still obtain acceptable model accuracy even with small
group sizes. The results demonstrate the viability of SignDS-FL in real-life applications. On the
one hand, the framework can effectively support not only simple LR models but also complex
DNNs models. On the other hand, the framework can also be extended to scenarios with only a
small number of local clients.

The results in Section 5.4 illustrate how the proposed EM-MDS algorithm can further improve
the accuracy of complex models. The results show that the naive multi-dimension selection algo-
rithm may have a negative impact on model accuracy, especially when ϵ is small. This is because
the naive approach evenly splits the privacy budget across each output dimension. This causes
each dimension to be allocated with an insufficient privacy budget and thus a low probability to
be selected from the top-k dimensions. In contrast, with the same privacy budget, our EM-MDS
algorithm follows the idea of exponential mechanism [33] and assigns higher probabilities to the
output combinations with higher top-k ratios. Therefore, the top-k dimensions will be more likely
to be selected, which contributes to a better model utility. With the increase of ϵ , the model ac-
curacy of using EM-MDS is better than single-dimension SignDS-FL. The results demonstrate
that the EM-MDS algorithm can be applied to improve the performance of SignDS-FL in training
high-dimensional models, which further strengthens the framework’s practicality in real-world
applications.

6 DISCUSSION
In this section, we will first present potential applications of the proposed framework. Then, we
will discuss the limitations and directions for future work.

6.1 Potential Applications
In this article, we introduced an efficient and privacy-preserving LDP-FL framework with a sat-
isfactory privacy-utility balance. The framework enjoys significantly lower communication and
computation costs than crypto-based solutions and thus can be applied in a variety of large-scale
privacy-sensitive applications. For example, in mobile edge computing applications, one can use
the framework for privately training user profile models for providing keyboard suggestions [48]
or ranking browser history suggestions [16]. In computer vision applications [30], the framework
can be applied to train object detection models while ensuring the privacy of the local images.
Besides the existing applications of supervised learning tasks, it is also possible to extend the
framework to support other ML tasks, such as unsupervised learning, reinforcement learning, and
semi-supervised learning [22]. For instance, one can apply the framework to privacy-preserving
distributed synthetic data generation scenarios [20, 39], where the generative models are trained
privately using the proposed framework to learn the distribution of local data and then to gen-
erate synthetic data on the server side. This can be considered as an alternative approach for
privacy-preserving data collection. In addition, the framework can also be integrated into private
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semi-supervised learning applications, where both labeled and unlabeled local data are utilized
for updating the global model [46]. It should be noted that despite the large variety of possible
applications and ML model scenarios, the main idea of the LDP-FL protocol remains unchanged.

6.2 Limitations and Future Work
Although our proposed framework shows notable performance improvements in comparison
to the baseline methods, there are still limitations regarding model utility and communication
efficiency.

As for data utility, while our proposed SignDS-FL framework shows significantly better model
utility compared to the baseline algorithms, there is still an obvious accuracy loss for complex mod-
els. Therefore, it is desirable to further improve the proposed framework to better support complex
and high-dimensional models. On the one hand, an important future work is to conduct compre-
hensive theoretical convergence analysis to have a better understanding of the performance of the
current algorithm. On the other hand, one can also consider whether existing LDP mechanisms
for frequency estimation and item-set mining can be applied for the private dimension selection
process. Moreover, in real-life implementations, it might be helpful to first use auxiliary data to pre-
train the model on the server side and then to fine-tune the model parameters using the LDP-FL
framework, so as to mitigate the impact of the randomness during FL training.

As for communication efficiency, in comparison to the original FL approach, our proposed frame-
work significantly reduces the uplink communication cost by only transmitting a set of dimension
indices and the corresponding sign value to the server. However, the downlink communication
may also become a bottleneck as the model size increases, especially for large-scale FL scenarios.
A few recent studies [6, 7, 21] have proposed dropout-based and model pruning-based solutions
for reducing the size of the model broadcast to the client side. Meanwhile, training the smaller
models on the local side can also help decrease the computational cost of the client devices. There-
fore, exploring whether such techniques can be integrated into our framework to further improve
communication and computational efficiency will be an important future work.

7 CONCLUSION
Federated learning has recently attracted increased attention due to its computational efficiency
and privacy benefits. However, the naive FL framework is still vulnerable to a number of privacy
attacks as the exchanged local updates and the final model can still reveal sensitive information of
clients’ local data. LDP, as a strong notion of privacy, has been recently applied to the local side of
federated learning to provide privacy guarantees for clients’ local data. However, previous LDP-FL
solutions cannot provide satisfactory outcomes for high-dimensional models.

In this article, we propose SignDS-FL, an efficient and privacy-preserving federated learning
framework based on local differentially-private dimension selection. The main idea is to privately
select a set of “important” dimensions of the local updates under strict LDP guarantees and to
construct sparse privatized local updates using sign values, which are randomly determined by the
clients. Moreover, we propose EM-MDS, an efficient multi-dimension selection algorithm that can
better utilize the privacy budget and contribute to improving model convergence and accuracy. We
evaluate the framework on many real-world structured and image datasets using simple LR models
as well as DNNs. Extensive experimental results demonstrate that our framework significantly
outperforms the previous LDP-FL solutions and enjoys a favorable utility-privacy balance.
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Privacy-Preserving High-dimensional Data
Collection with Federated Generative
Autoencoder
Abstract: Business intelligence and AI services often
involve the collection of copious amounts of multi-
dimensional personal data. Since these data usually con-
tain sensitive information of individuals, the direct col-
lection can lead to privacy violations. Local differen-
tial privacy (LDP) is currently considered a state-of-
the-art solution for privacy-preserving data collection.
However, existing LDP algorithms are not applicable to
high-dimensional data; not only because of the increase
in computation and communication cost, but also poor
data utility.
In this paper, we aim at addressing the curse-of-
dimensionality problem in LDP-based high-dimensional
data collection. Based on the idea of machine learning
and data synthesis, we propose DP-Fed-Wae, an effi-
cient privacy-preserving framework for collecting high-
dimensional categorical data. With the combination of
a generative autoencoder, federated learning, and dif-
ferential privacy, our framework is capable of privately
learning the statistical distributions of local data and
generating high utility synthetic data on the server side
without revealing users’ private information. We have
evaluated the framework in terms of data utility and pri-
vacy protection on a number of real-world datasets con-
taining 68–124 classification attributes. We show that
our framework outperforms the LDP-based baseline al-
gorithms in capturing joint distributions and correla-
tions of attributes and generating high-utility synthetic
data. With a local privacy guarantee ε = 8, the ma-
chine learning models trained with the synthetic data
generated by the baseline algorithm cause an accuracy
loss of 10% ∼ 30%, whereas the accuracy loss is signif-
icantly reduced to less than 3% and at best even less
than 1% with our framework. Extensive experimental
results demonstrate the capability and efficiency of our
framework in synthesizing high-dimensional data while
striking a satisfactory utility-privacy balance.

Keywords: high-dimensional data collection, local dif-
ferential privacy, federated learning, generative models
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1 Introduction
With the rapid development of network and com-
puter technologies, large and diverse quantities of multi-
dimensional person-specific data are frequently gener-
ated on local devices such as smartphones and IoT
sensors. These data usually contain rich information
of univariate and multivariate (joint) distributions de-
scribing user profiles, which is valuable for data ana-
lysts to explore the hidden correlations and patterns of
data from different perspectives and to obtain a bet-
ter understanding of the characteristics of user groups.
For instance, a digital healthcare application may uti-
lize users’ physical information (i.e., temperature, blood
pressure, activity signals, etc.) for health monitoring
and disease predictions, while an online shopping web-
site may take users’ age, gender, and purchase his-
tory for providing suitable product recommendations.
In principle, the more dimensions the data consist of,
the more information can be used for describing an
individual user; thus, the more accurate the decision-
making system can be. Therefore, the collection of
multi-dimensional data can be of significant help for
companies and organizations in designing and building
effective business intelligence & AI services.

However, since the data are generated based on in-
dividuals’ ongoing behaviors, the direct collection can
reveal sensitive information about them and lead to se-
vere privacy problems (see, for example, [7, 12]). Local
differential privacy (LDP) [31], as a state-of-the-art data
anonymization mechanism, has been recently deployed
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by major technology organizations such as Apple [14],
Google [23], and Microsoft [15] for privacy-preserving
data collection. By locally randomizing the user data
before sending it to the server, the LDP algorithms en-
sure that the server cannot access the original user data,
but is able to learn the population’s overall statistics.
However, prior research on LDP-based data collection
mainly focuses on one-dimensional statistics, such as
frequency estimation [14, 23], heavy-hitter identification
[6, 11], and itemset mining [43, 54], etc. But since the
attributes in multi-dimensional data are usually corre-
lated, the server is particularly interested in learning the
correlations and joint distributions among attributes.

Directly applying the above-mentioned LDP algo-
rithms for estimating the joint distributions of multi-
dimensional data faces a foundational problem: the
curse-of-dimensionality. The domain size increases ex-
ponentially with data dimensionality, which will lead to
extremely large communication cost and storage com-
plexity, as well as a significant degradation in data util-
ity. To reduce the large communication overhead, Fanti
et al. [24] proposed to separately collect data of each di-
mension under LDP and to estimate the joint distribu-
tions using expectation maximization (EM). However,
the algorithm only supports estimates of the joint dis-
tribution of two attributes. Further, Ren et al. [44] intro-
duced LoPub, which splits the c-dimensional data into
k-dimensional clusters (k < c) using dependence graphs
and estimates k-way joint distributions via an EM-based
and Lasso regression-based approach. However, the al-
gorithm still suffers from high computational complex-
ity and low data utility when k is large. Based on these
facts, alternative solutions for privacy-preserving high-
dimensional data collection are still greatly needed.

Recently, data synthesis has been considered a
promising approach for addressing data privacy issues
in business intelligence & AI services. With the strong
capabilities of characterizing the joint distributions and
correlations of high-dimensional data, deep generative
models are increasingly used for generating high-utility
and low-sensitivity synthetic data. In this paper, we
follow the idea of data synthesis and propose DP-
Fed-Wae, a privacy-preserving framework for high-
dimensional categorical data collection. Different from
prior work on differentially private synthetic data gen-
eration algorithms [41, 49, 57], which mainly focuses on
the centralized setting where the real data are already
collected by the server, our framework conducts the data
synthesis without collecting real local data. The main
idea is to train a (generative) Wasserstein Autoencoder
[48] (WAE) under the federated learning [38] (FL) set-

ting to learn the distributions of the high-dimensional
local data and then to generate high-quality synthetic
data on the cloud server. Moreover, we propose a novel
local randomization algorithm SignDS, which is applied
on a client’s local updates to prevent potential privacy
leakages in FL. The algorithm provides a strict ε-LDP
privacy guarantee for any client’s local dataset.

In comparison with previous data collection ap-
proaches, our framework shows significant advantages in
both data utility and privacy protection. As for data util-
ity, the WAE model has a strong capability in capturing
correlations and joint distributions of high-dimensional
data and generating high-utility synthetic data. The
generated synthetic data can be easily scaled up to re-
place the real data for data analysis and AI training
tasks. As for privacy, the generated data are fully syn-
thetic, which effectively reduce risks of re-identification
attacks or attribute disclosure [41]. Moreover, training
the WAE model under the LDP-FL setting not only
avoids the collection of raw user data but also pro-
vides comprehensive privacy guarantees to the frame-
work. Our contributions can be summarized as follows:
– We propose DP-Fed-Wae, an efficient and privacy-

preserving framework that effectively combines a
generative autoencoder, FL, and DP for collect-
ing high-dimensional categorical data. Based on the
idea of data synthesis, the framework effectively
solves the curse-of-dimensionality problem in LDP-
based data collection solutions. The synthetic data
preserves high utility and can replace real data for
data mining and AI training tasks.

– We further propose a novel local randomization al-
gorithm SignDS, which perturbs clients’ local up-
dates and prevents potential privacy leakages in FL.
We prove that the algorithm follows a strict ε-LDP
definition and provides a strong local privacy guar-
antee to any client’s local data.

– We have implemented our framework and evaluated
the performance in terms of data utility and pri-
vacy protection using real-world datasets containing
68–124 classification attributes. Through compari-
son with the LDP-based algorithms, we show that
the synthetic data generated by our framework al-
ways preserve much closer joint distributions and
correlations to real data. Also, the accuracy loss of
the model trained with synthetic data generated by
our framework is significantly reduced in compar-
ison to the baseline method. With a local privacy
guarantee ε = 8, we reduced the accuracy loss from
10% ∼ 30% to less than 3% and at best even less
than 1%. Extensive evaluation experiments show
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that our framework has outperforming capability
and efficiency in collecting high-dimensional data
while striking a satisfactory utility-privacy balance.

2 Problem Statement
In this paper, we consider a scenario where a large num-
ber of local users hold high-dimensional personal data.
A central server aims to estimate the joint distributions
of these high-dimensional data and to generate similar
synthetic data for data analysis or designing new AI
services. Here, we assume the server to be honest-but-
curious, who follows the system protocols but tries to
infer sensitive information of local users. Thus, to pro-
tect local privacy, we require the server not to have ac-
cess to raw local data but only anonymized versions of
data or their feature representations.

Assume that there are N local users, each hold-
ing one or more data records, which have c attributes
W = {wi|i = 1, · · · , c}. Each attribute wi has a do-
main Ωi of possible values. The full domain for the c-
dimensional data record is denoted as Ω = Ω1×· · ·×Ωc,
where × is the Cartesian product. The total domain size
is |Ω| =

∏c
i=1 |Ωi|, which increases exponentially with

data dimensionality c. Based on the notation above, the
problem can then be formulated as follows: given a c-
dimensional private dataset X distributed among N lo-
cal users, a central server aims to generate a synthetic
dataset X ′ without access to raw data X. The synthetic
dataset X ′ has the same attributes W, and preserves
similar joint distributions of X, namely

PX′(w1 · · ·wc) ≈ PX(w1 · · ·wc). (1)

It can be further derived that the synthetic data X ′ also
preserves m-way joint distributions as X. Namely, given
an m-way attribute combination ω ⊆ W, we have

PX′(ω) ≈ PX(ω). (2)

3 Proposed Solution
As discussed previously, existing LDP algorithms are
impractical for collecting high-dimensional data due to
both high computation and communication cost and
poor data utility (e.g., [23, 24, 44]). In order to solve
the curse-of-dimensionality problem, we propose DP-
Fed-Wae, an efficient privacy-preserving framework for
collecting high-dimensional categorical data. The frame-

work contains three main components: a generative au-
toencoder, FL, and DP. Following the idea of recent data
synthesis techniques, the framework utilizes generative
autoencoders to learn the statistical distributions and
correlations of high-dimensional user data and then to
generate high-utility synthetic data on the server side.
Different from existing works of synthetic data gener-
ation where the real data are already available to the
server (e.g., [41, 49, 57]), our framework focuses on the
scenario where the real data are distributed on local
devices. Therefore, we propose to train the generative
autoencoder under the FL setting, which only exchanges
model parameters during the training process and keeps
the raw user data inaccessible to the server. Further-
more, we incorporate DP during the training process
in order to prevent potential privacy leakages in FL. In
comparison to the previous DP-FL frameworks that add
DP noise on the server side [5, 39], we propose a novel
local randomization algorithm that perturbs the local
updates before uploading them to the server. This en-
sures that the server cannot gain access to the real local
updates and efficiently prevents local privacy leakages.
We prove that the randomization algorithm follows a
strict LDP definition and provides a strong local pri-
vacy guarantee to each client’s local dataset.

The overall workflow is presented in Figure 1, which
is processed in the following sequence:
1. The local clients first process the original categorical

data into a numerical form, which can be used for
training the generative autoencoder. At the same
time, the server defines the structure of the gener-
ative autoencoder based on the dimensionality of
local data and initializes the model.

2. The generative autoencoder is then collaboratively
trained under the FL mechanism that is incorpo-
rated with LDP to achieve strict privacy guarantees.

3. After the model gets trained, the decoder is ex-
tracted for generating synthetic data. The gener-
ated data will be finally converted back to categor-
ical form and used for data mining and building
machine learning models.

3.1 Data Pre-Processing and Design of
the Generative Model

Since the original data are categorical and cannot be
directly processed by machine learning models, we first
convert the data into numerical form. Here, we use a
one-hot encoding to encode each categorical attribute
into a binary vector. Each entry in the binary vector
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Fig. 1. Overview of the DP-Fed-Wae framework. The generative Wasserstein Autoencoder is first trained under the federated setting,
which learns the distributions of real local data. An LDP algorithm SignDS is applied to the local updates to provide strict local pri-
vacy guarantees. After the model is trained, the decoder part is used to generate high-utility synthetic data. The generated data will
be used for data mining and building AI services.

stands for a unique attribute value and the entry of the
given value is set to 1 while all the others are set to 0.
Finally, we concatenate all the binary vectors into one
vector as the input data for the generative model.

In this paper, we have chosen the Wasserstein Au-
toencoder (WAE) as the generative model in our frame-
work, which provides better data synthesis capability
in comparison to the Variational Autoencoder (VAE)
[33] and less training difficulty than the Generative Ad-
versarial Network (GAN) [26]. As a variant from the
family of autoencoders, WAE preserves the encoder-
decoder architecture. The encoder Qφ compresses the
original high-dimensional input x ∼ Px into the low-
dimensional latent feature z = Qφ(x) and the decoder
Gθ maps z to the reconstructed output x′ = Gθ(z),
which is the same shape as x. The distance between the
original input and the reconstructed output can be pre-
sented as Dr(x,Gθ(Qφ(x))). In addition, a regularizer
term Dz(qz, pz) is applied to measure the distance be-
tween the latent space distribution qz and certain prior
distribution pz. The final objective function of the WAE
model can thus be formulated as follows:

LWAE = Ex∼Px [Dr(x,Gθ(Qφ(x)))] +λ ·Dz(qz, pz), (3)

where λ is a hyperparameter for balancing the two
terms. The goal of training is to find an optimal set of
parameters, which minimizes the distance between the
inputs and outputs while restricting the latent space to
follow the prior distribution.

We designed the WAE models with fully-connected
hidden layers. We apply the relu activation on the out-
put of each hidden layer for better training performance.
Moreover, since the inputs are binary vectors, we use
the sigmoid activation on the output layer, which re-
stricts the output value within [0,1]. Then, we calculate

the binary cross-entropy of each input/output dimen-
sion and compute the average as the reconstruction dis-
tance Dr(x,Gθ(Qφ(x))). For the latent space distance
Dz(qz, pz), we use the standard Gaussian distribution
as the prior distribution pz and use the maximum mean
discrepancy (MMD) to measure the distance between
the latent space distribution qz and pz, as in [48]. Given
a batch of data sampled from the two distributions, i.e.,
{q1, · · · , qn} ∼ qz and {p1, · · · , pn} ∼ pz, Dz(qz, pz) can
be empirically estimated as

Dz(qz, pz) = 1
n(n− 1)

∑

i6=j
K(pi, pj)− 2

n2

∑

i,j

K(pi, qj)

+ 1
n(n− 1)

∑

i 6=j
K(qi, qj),

(4)

where K(x, y) = κ
κ+‖x−y‖2

2
. Given dz as the dimension of

latent layer and σz as the scale of the prior distribution,
κ = 2dzσ2

z . We choose λ equal to 1.

3.2 Training the Generative Model

Previous LDP-FL frameworks (e.g., [19, 21, 52]) evenly
split the privacy budget across dimensions and ap-
ply the perturbation independently. However, the per-
dimension privacy budget becomes extremely small for
high-dimensional models, which results in a significant
increase of noise. A recent work [37] proposed a two-
stage LDP-FL framework, which splits the privacy bud-
get into a dimension selection (DS) stage and a value
perturbation (VP) stage. In the DS stage, the local up-
date is sorted by absolute value and one "important"
dimension is privately selected from the top-k dimen-
sions; in the VP stage, the value of the selected di-
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Algorithm 1: SignDS
Input: ∆ ∈ Rd: local update; k: size of the

top-k set; ε: privacy budget; s: sampled
sign

Output: j: selected dimension index
1: if s = 1 then
2: Select dimensions of k largest values in ∆

to build the top-k dimension set Stopk
3: else
4: Select dimensions of k smallest values in ∆

to build the top-k dimension set Stopk
5: end if
6: Sample a Bernoulli variable x such that

Pr[x = 1] = eε·k
d−k+eε·k

7: if x = 1 then
8: Randomly sample a dimension

j ∈ {a ∈ {1, · · · , d}|a ∈ Stopk}
9: else

10: Randomly sample a dimension
j ∈ {a ∈ {1, · · · , d}|a /∈ Stopk}

11: end if
12: Return j

mension is perturbed. Finally, a sparse local update is
constructed and returned to the server. Although [37]
mitigated the dimension-dependency problem by only
selecting one "important" dimension, the privacy bud-
get is still consumed by the two stages. In high-privacy
scenarios (where the privacy budget is small), each stage
may therefore obtain only an insufficient privacy budget
and cause large randomness.

Motivated by the limitations of [37], we propose a
sign-based dimension selection algorithm SignDS, as
presented in Algorithm 1. The main idea is to sub-
stitute the VP stage by assigning a constant value to
the selected dimension. Since the parameter values may
have different signs, we introduce an extra variable
s ∈ {−1, 1}, which is randomly sampled by the client
with equal probability. Then, given each local update ∆,
we build the top-k dimension set Stopk according to ∆’s
real values and the sampled sign s: if s = 1, Stopk is built
with the dimensions of the k largest values; otherwise,
it is built with the dimensions of the k smallest values.
We refer the dimensions included in Stopk as top-k di-
mensions and the rest as non-top-k dimensions. Then,
a dimension index j is randomly sampled as follows:

j ∈
{
{a ∈ {1, · · · , d}|a ∈ Stopk} w.p. p

{a ∈ {1, · · · , d}|a /∈ Stopk} w.p. 1− p
, (5)

Namely, the index j is sampled from the top-k dimen-
sions with a probability of p and otherwise from the
non-top-k dimensions with a probability of 1 − p. We
refer to p as the top-k probability. Finally, the dimen-
sion index j and the sampled sign value s are returned
to the server. Since our algorithm does not return the
dimension value to the server, we save the privacy bud-
get for the value perturbation stage in [37]. With the
same privacy level, we can now achieve less randomness
and thus higher accuracy in dimension selection.

In the following, we provide the privacy guarantee
and utility analysis of Algorithm 1.

Lemma 1. Algorithm 1 satisfies ε-LDP when the top-k
probability p ≤ eε·k

d−k+eε·k .

Proof. For each client, given the sampled sign s and
any output dimension j ∈ {1, · · · , d}, let Stopk, S′topk
be the top-k dimension set of any two possible local
update vectors ∆ and ∆′. Given the top-k probability
p, the probability of sampling a dimension j from the
top-k set and the non-top-k set are respectively p · 1k and
(1− p) · 1

d−k . Thus, when p ≤ eε·k
d−k+eε·k we have

Pr[j|∆]
Pr[j|∆′] = Pr[j|Stopk]

Pr[j|S′topk] ≤
Pr[j|j ∈ Stopk]
Pr[j|j /∈ S′topk]

=
p · 1

k

(1− p) · 1
d−k

≤ eε
(6)

which completes the proof.

In addition to the privacy guarantee, we are also inter-
ested in how to choose proper k and ε in order to achieve
a certain top-k probability p. Let α = k/d be the ratio
of the top-k parameters regarding the total number of
parameters. An α = 1 means to randomly select one
dimension from the entire dimension group. Intuitively,
the smaller α, the closer the parameter values of top-k
dimensions to the real largest (or smallest) value and
the better the model utility. We derive relations among
ε, p, and α as follows:

Corollary 1. With a fixed privacy budget ε, in order to
achieve a probability p, α should satisfy α ≥ p

eε·(1−p)+p .

Corollary 2. With a fixed top-k ratio α, in order to
achieve a probability p, ε should satisfy ε ≥ log p·(1−α)

(1−p)·α .

Proof. From Lemma 1, we have p ≤ eε·k
d−k+eε·k =

eε·α
1−α+eε·α . Thus, with a fixed ε, we have α ≥ p

eε·(1−p)+p ;
with a fixed α, we have ε ≥ log p·(1−α)

(1−p)·α
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Fig. 2. Relations among ε, p, and α. (a): given privacy budget
ε and the expected top-k probability p, the minimum top-k ra-
tio α required. (b): given the expected top-k ratio α and top-k
probability p, the minimum privacy budget ε required.

Corollary 1 states that with a fixed privacy budget ε, a
smaller top-k ratio α leads to a decrease of top-k proba-
bility p. Moreover, given an expected top-k probability
p and a predefined top-k ratio α, the minimum required
privacy budget ε can be calculated using Corollary 2.
We further visualize the relations of ε, p, and α in Fig-
ure 2. As shown in Figure 2a, in high-privacy scenarios
(e.g., ε ≤ 2), the required top-k ratio α differs distinc-
tively with the choices of p. Namely, we have to choose a
large α in order to ensure that the index is more likely to
be sampled from top-k dimensions. As ε increases (e.g.,
ε ≥ 6), α does not differ much regarding p. In other
words, we can always achieve a high top-k probability
even with a small top-k ratio. In Figure 2b, we further
present the minimum ε under various α and p.

We now describe the overall training process pre-
sented in Algorithm 2. At each global round t, the server
selects a group of n clients and broadcasts the current
global model Mt. On the local side, each client i in the
group trains the global model for several epochs with his
local data Xi and computes the local update ∆i

t. Then,
the client randomly samples a sign sit ∈ {−1, 1} with
equal probability and uses it along with the predefined
privacy budget εr to privately select a dimension index
jit of the local update. Finally, sit and jit are returned
to the server. After receiving the dimension jit and the
sampled sign sit, the server builds a sparse local up-
date ∆̂i

t and assigns sit to the selected dimension. Since
the selected dimension jit satisfies the ε-LDP guarantee
and the assigned sign value sit is unrelated to the local
data, according to DP’s robustness to post-processing
(Property 1 in Appendix A.2), the sparse local updates
also satisfy ε-LDP. Finally, the server aggregates all the
sparse local updates and updates the global model with
a global learning rate γ. The updated global modelMt+1
is distributed to local clients to start the next round.

Note that according to the sequential composition
property (Property 2 in Appendix A.2), if the same
client repeatedly participates in the training and sub-

Algorithm 2: Training the Generative Model
Input: M1 ∈ Rd: initial global model; n:

number of per-round clients; E: number
of local epochs; η: local learning rate; k:
number of parameters in the top-k set
of each local update; T : number of
global aggregation rounds; γ: global
learning rate; εr: per-round privacy
budget

Output: Trained WAE model M

Server executes:
1: for global round t = 1, · · · , T do
2: Randomly select a group of n clients
3: for client i = 1, · · · , n in parallel do
4: Broadcast current global model Mt

5: Receive sampled sign and dimension
sit, j

i
t = LocalUpdate(Mt, E, η, εr, k)

6: Build sparse local update ∆̂i
t = {0}d

and set ∆̂i
t[jit ] = sit

7: end for
8: Aggregate local updates: ∆̂t = 1

n

∑n
i=1 ∆̂i

t

9: Update global model Mt+1 = Mt + γ · ∆̂t

10: end for
11: Return Global model M = MT+1

LocalUpdate(Mt, E, η, εr, k):
// Run on the client side
13: Initialize local model M i

t ←Mt

14: for epoch e = 1, · · · , E do
15: M i

t = M i
t − η · ∇L(M i

t , X
i)

16: end for
17: Calculate local update: ∆i

t = M i
t −Mt

18: Randomly sample a sign sit ∈ {1,−1} with
probability Pr[sit = 1] = 0.5

19: Dimension selection jit = SignDS(∆i
t, k, εr, s

i
t)

20: Return sit, j
i
t

mits the local update for multiple global rounds, the
overall privacy guarantee for his local data will be accu-
mulated. Assume each client is allowed to participate in
at most tr global rounds. In order to ensure an overall
privacy guarantee of ε-LDP for each client’s local data
after the whole training process, the per-round privacy
guarantee should satisfy εr ≤ ε/tr. Moreover, during the
training process, we monitor the number of rounds each
client participates in. If a client has reached the maxi-
mum participating rounds (which is tr here), he is not
allowed to participate in the later training process.
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3.3 Generating Synthetic Data and Data
Post-Processing

Once the model has been trained, the server can use the
decoder part to generate synthetic data. Recall that the
latent space features are enforced to follow the standard
Gaussian distribution pz. Therefore, we can simply gen-
erate random latent features from pz and feed them into
the decoder. The decoder output has the same length as
the encoded input described in Section 3.1, where each
dimension is a numerical value between 0 and 1.

Finally, we need to convert the synthetic data back
to categorical form. Given an output vector, we first
split it into pieces of short vectors, each representing
one categorical attribute. Then, for each short vector,
we choose the entry with the maximum value as the
attribute value. In the end, we concatenate all the cate-
gorical labels into one vector as the final synthetic data.
The synthetic data will be used for data analysis and
training of machine learning models.

4 Experiments and Results
We implemented the proposed framework and per-
formed comprehensive experiments with a number of
open-source datasets to evaluate its performance.1 In
this section, we introduce the experimental settings and
discuss the evaluation results.

4.1 Experiment Setup

4.1.1 Datasets and WAE Models

We used four open-source datasets for evaluating the
performance of our framework. Each dataset contains
multi-dimensional data records, which were used for
classification tasks:
– The Census dataset [17] contains records drawn

from the 1990 United States census data, which in-
clude 68 personal attributes such as gender, income,
and marriage status. We used the dataset for a clas-
sification task to determine the duration of people’s
active duty service.

– The Twitter dataset [32] contains records with 77
attributes such as the number of discussions, aver-

1 The code will be available at https://gitee.com/mindspore/
mindspore/tree/r1.3/tests/st/fl/mobile/.

Table 1. Datasets details

Dataset Type Num. Num. Domain
Records Attributes Size

Census Integer 2458285 68 2150

Twitter Integer 140707 78 2181

Vehicle Binary 98528 101 2101

Adult Binary 32561 124 2124

Table 2. Structure of WAE models

Dataset Num.Params Model Structure

Census 76524 Input-Dense(96, relu)-Dense(24)
-Dense(96, relu)-Output(sigmoid)

Twitter 94961 Input-Dense(128, relu)-Dense(36)
-Dense(128, relu)-Output(sigmoid)

Vehicle 13093 Input-Dense(64, relu)-Dense(16)
Adult 16060 -Dense(64, relu)-Output(sigmoid)

age discussion length, and the number of authors,
which are used to predict the number of active dis-
cussions, namely the popularity magnitude of each
instance. In our experiment, we quantified the val-
ues of each attribute into five bins. The goal was to
classify the level of popularity of each instance.

– The Vehicle dataset [18] contains data collected
in wireless distributed sensor networks. Each record
has 100 attributes representing data collected from
different acoustic and seismic sensors. The goal was
to train a classifier for vehicle type classification.

– The original Adult dataset [34] contains records
with 15 personal attributes such as age, occupation,
education, and gender. The goal was to train a bi-
nary classifier which determines whether a person
earns more than 50K a year. We used the processed
version from [42], which converted the original at-
tributes into binary features.

We present details of each dataset in Table 1, which in-
clude the number of records and attributes, the length
of the one-hot encoded input, and the total domain size.
Since the number of user data should be large in order
to preserve data utility (which will be discussed in Sec-
tion 6.1), in the following experiments we simulated the
large-scale distributed scenario by assuming there were
5 × 104 clients, each holding two data records. Hence,
we randomly sampled 105 records for each dataset. For
datasets with more than 105 records (i.e., Census and
Twitter), we did the sampling without replacement.

We varied the structure of the WAE models to fit
the input size of different datasets. Details of the WAE
models can be found in Table 2. For binary datasets
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Fig. 3. Structure of the WAE model used for Adult dataset.

(i.e., Vehicle and Adult), small WAE models with a
latent-layer size of 16 were already sufficient to achieve
satisfactory data synthesis performance. On the other
hand, for the other two complex datasets that had dis-
tinctively higher domain sizes, we used larger models
with a higher latent-layer size to better capture the hid-
den distribution and cross-attribute correlations. More-
over, it is also possible to use auxilliary data to further
optimize the model structure, which we will discuss in
Section 5.2. We also provide an example structure of
the WAE model used for the Adult dataset (Figure 3),
where FC represents fully-connected layers, BCE repre-
sents the binary cross-entropy and MMD represents the
MMD penalty.

4.1.2 Baseline Methods

In the following experiments, we have used LoPub [44]
and LoCop [53] as our baseline algorithms. Both algo-
rithms apply LDP directly on the local data and send
the randomized data to the server. The local random-
ization follows the RAPPOR algorithm [23]. As derived
in [44], given c as the dimension of local data, h as the
number of hash functions and f as the flip probability,
the overall privacy for each individual client is

ε = 2 · c · h · ln((2− f)/f). (7)

Then, the randomized data will be aggregated on the
server side for estimating the joint distributions and
attribute dependencies. Such information will then be
finally used for constructing the synthetic dataset:

LoPub generates the dependency graph based on a de-
pendence threshold φ and estimates k-way joint distri-
butions to generate the synthetic data; LoCop leverages
multivariate Gaussian copula to determine attribute de-
pendencies and generates synthetic data by only using
one- and two-way joint distributions. For both algo-
rithms, we used the Lasso-based regression for estimat-
ing the joint distributions. In addition, we followed [44]
to choose the number of hash function h = 4 and the
dependence threshold φ = 0.4.

4.1.3 Evaluation Metrics

We evaluated the performance of our framework from
two perspectives, namely the data utility evaluation and
the privacy evaluation:
– For the data utility evaluation, we first compared

the statistical distributions of synthetic data and
real data. Then, we used different machine learning
models to investigate the utility of synthetic data
in AI training tasks. Intuitively, synthetic data with
high utility should show similar statistical proper-
ties and model accuracy as real data.

– For the privacy evaluation, we investigated the ca-
pability of our framework against membership in-
ference attacks, where an attacker aimed to use
the synthetic dataset to determine whether a tar-
get data was used for training the WAE model.

4.1.4 Parameter Configurations

In the experiments, we assumed there were 5 × 104

clients. We set the global round T = 5000, and n = 10
clients were sampled to train the WAE model in each
global round; namely, each client was sampled once dur-
ing the whole training process. We set the global learn-
ing rate γ = 1 due to the good empirical performance.
For local training, each client updated the model for
E = 10 epochs. We used the Adam optimizer with a
default learning rate η = 0.001 for all the WAE mod-
els. For the local randomization, we chose the top-k
ratio α from {0.05, 0.1, 0.25} and the privacy budget
ε ∈ {0.5, 1, 2, 4, 6, 8} to explore the influence of privacy
on the framework performance.

It should be noted that ε here was the overall local
privacy budget for each client. As mentioned in Sec-
tion 3.2, if each client participated in tr global train-
ing rounds, the per-round privacy budget should satisfy
εr ≤ ε/tr. Since we assumed that each client only partic-
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Table 3. Computation time of model training and synthetic data
generation

Dataset Adult Vehicle Census Twitter

Training Client 1.06 s 0.93 s 1.28 s 1.25 s
Server 3.51 ms 3.05 ms 4.95 ms 4.92 ms

Data Generation 7.38 s 7.37 s 9.44 s 10.47 s

ipated once during the whole training process, we have
tr = 1 and the per-round privacy budget is equal to
the overall privacy budget. Moreover, we would like to
emphasize that the selected ε values are reasonable lo-
cal privacy guarantees for collecting c-dimensional data.
Consider the privacy guarantee of the baseline algo-
rithms (Equation (7)), with the number of hash function
h = 1 and a flipping probability f = 0.5, we already have
ε = 150 for the Census dataset with c = 68. For the
Adult dataset with c = 124, the overall ε is even 272,
which is significantly larger than our setting.

4.1.5 Computation Environments

We performed all the experiments on a server with Intel
E5-2470 2.40GHz CPU. In Table 3, we report the com-
putational time of 1) 10 epochs of local training on each
client; 2) one round of local updates aggregation and
global model update on the server side; 3) generation of
105 synthetic data records on the server.

4.2 Evaluation for Data Utility

In this section, we evaluate the utility of the synthetic
data generated using our framework in comparison to
the baseline. The evaluations can be generally divided
into statistical comparison and AI training performance.

4.2.1 Statistical Comparison

For the statistical comparison, the goal is to investigate
whether the synthetic data generated by our framework
can preserve the joint distributions and correlations of
real data. Intuitively, synthetic data with high utility
should show similar statistical properties as real data.
We have respectively compared m-way joint distribu-
tions and the cross-attribute correlations to analyze the
utility of the synthetic data.

Fig. 4. Average total variation distance (AVD) of four-way joint
distribution between the real and synthetic data with respect to
different privacy levels.

4.2.1.1 Comparison of Joint Distributions
For the analysis of joint distributions, we used the Aver-
age Variant Distance (AVD) to quantify the distribution
difference between the real data and synthetic data, as
suggested in [44], which is defined as

AVD = 1
2
∑

ω∈Ω
|Preal(ω)− Psyn(ω)|, (8)

where Preal(ω) and Psyn(ω) are m-way joint distribu-
tions of real data and synthetic data. More specifically,
given an m-way attribute combination ω with a domain
size of |ω|, Preal and Psyn are |ω|-dimensional vectors,
where each entry is the probability of a specific value
combination (namely the ratio of occurrence in the en-
tire real or synthetic dataset). For each dataset, we ran-
domly chose 100 combinations of m attributes and cal-
culated the average distribution difference.

We first analyzed the AVD of all three algorithms
with respect to the privacy level ε. For each dataset, we
respectively compared the AVD of the synthetic data
generated by the baseline algorithms and by our frame-
work. In Figure 4, we present the results for the four-
way joint distribution with different privacy budgets.
The error bars represent the 95% confidence interval
(also for the remaining experimental results). It can be
seen that the AVD of all the algorithms decreases with
the increase of ε. For all datasets, the synthetic data
generated by our framework (referred to as WAE) have
smaller AVD in comparison to the baseline methods (re-
ferred to as LoPub and LoCop), indicating that the syn-
thetic data generated by our framework preserves better
multivariate distributions than the baseline methods.
Also, we notice that the non-binary datasets Census
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Fig. 5. Average total variation distance (AVD) of m-way joint
distributions between the real and synthetic data with respect to
different dimension of joint distribution.

and Twitter usually show larger AVD in comparison
to the other two binary datasets. This is due to the
fact that the non-binary datasets have a larger domain
size, which leads to lower frequencies of the potential at-
tribute combinations. Therefore, it is more difficult for
the generative models to find meaningful mappings be-
tween the original input space and the compact latent
space, which results in a comparatively larger difference
between the synthetic data and real data. Moreover, we
observe that for our solution, when the privacy budget
ε is small, the synthetic data with larger top-k ratio
have smaller AVD; while for larger ε, the synthetic data
with smaller α show better utility. This complies with
the discussion in Section 3.2. By intuition, the smaller α
is, the better model performance is. However, when ε is
small, the decrease of α leads to a significant decrease in
top-k probability p, which increases the randomness of
dimension selection and affects the model convergence.
As ε increases, p is always relatively high and does not
differ much regarding to α. In this case, a smaller α en-
hances the model performance and thus improves the
utility of the synthetic data.

We further analyzed the AVD of all the algorithms
with regard to the dimension of joint distributions m, in
order to get a deeper insight into our framework’s capa-
bility on complex statistics. For each dataset, we tested
the m-way AVD where m ∈ {2, 3, 4, 5, 6} and present
the results under ε = 4 in Figure 5. It can be seen that
for all the datasets, the AVD increases with a larger
m. In addition, our proposed solution consistently out-
performs the baseline algorithms. More specifically, the
AVD of the baseline algorithms is close to our frame-
work when m is small, yet gets distinctively larger with

Fig. 6. Averaged correlation error (CMD) between the real and
synthetic data with different privacy levels.

Fig. 7. Correlation comparison between the real and synthetic
data with ε = 8 and α = 0.1. For each dataset, we present
the correlations of the first 10 attributes. It can be seen that the
synthetic data preserves similar correlations as real data.

an increase of m. This indicates that our framework can
effectively capture the information of high-dimensional
joint distributions of real data.

4.2.1.2 Comparison of Correlation
For the comparison of correlation, we have respectively
computed the Pearson correlation coefficient of the real
and synthetic dataset and used the Correlation Matrix
Distance (CMD) [27] to measure the distance between
the two correlations, which is defined as follows:

CMD = 1− tr{RrealRsyn}
‖Rreal‖2‖Rsyn‖2

, (9)

where Rreal and Rsyn are correlation coefficient matri-
ces of real and synthetic data, tr(·) is the matrix trace,
‖ · ‖2 is the Frobenius norm. The CMD is bounded by
[0, 1], where zero means the two correlation matrices are
identical.
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For each dataset, we calculated the CMD of the syn-
thetic data generated by both the baseline algorithms
and our framework under different privacy levels and
compare the results in Figure 6. It can be seen that
with the same ε, the baseline algorithms always show a
much larger CMD in comparison to the results of our
framework. Although increasing the ε helps to reduce
the CMD, it is still insufficient for preserving the mul-
tivariate correlations of real data. On the other hand,
the synthetic data generated by our framework shows a
distinctive decrease with the increase of ε. In particular,
the CMD is close to zero when ε ≥ 4, indicating that the
synthetic data have similar cross-attribute correlations
as real data.

We further visualized the correlation coefficient ma-
trix of real data and synthetic data with heat maps in
order to better understand the capability of our method
in capturing and preserving the cross-attribute correla-
tions. Figure 7 shows the comparison result of the differ-
ent datasets with ε = 8 and α = 0.1. For each dataset, we
present the correlations of the first 10 attributes. From
the visualization results, it can be seen that the corre-
lation of synthetic data is similar to the correlation of
real data, indicating that the synthetic data successfully
preserves the attribute correlations of real data.

4.2.2 AI Training Performance

Next, we used different machine learning models to eval-
uate the utility of synthetic data in different AI train-
ing tasks. More specifically, we trained two classification
models Mreal, Msyn, respectively, with real data and
synthetic data, and tested both models with an amount
of held-out real data. Then, we compared the test accu-
racy Accreal and Accsyn, which represent the test accu-
racy of Mreal, Msyn. If Accsyn was close to Accreal, we
considered that the synthetic data are of high utility.

For each dataset, we used a two-layer Neural Net-
work (NN) and Random Forest (RF) as the classifica-
tion models. We trained each classification model 10
times and calculated the averaged Accsyn. In Figure 8
and Figure 12, we present the results of Accreal as well
as Accsyn evaluated on the synthetic data generated
by all three methods under different privacy levels. It
can be seen that the Accsyn of the baselines shows, in
general, distinctive distance from Accreal on both eval-
uation models and only has slight improvement with
larger privacy budget ε. In comparison, the Accsyn of
our method consistently outperforms the baselines for
both classification algorithm. With an increase of ε, the

Fig. 8. Classification accuracy of the neural network (NN) trained
with real data (Real Data) and synthetic data generated by our
framework (WAE) as well as by the baseline algorithms (LoPub,
LoCop) under different privacy levels.

Fig. 9. Classification accuracy of the neural network (NN) with
different number of records under the privacy level of ε = 8.

Accsyn gradually gets close to Accreal. Moreover, we ob-
serve higher Accsyn with the decrease of top-k ratio α.
In particular, with ε = 8 and α = 0.05, the reduction
of Accsyn is less than 1% for the Census and Adult
dataset and less than 3% for the other two datasets.
The results above further indicate that the synthetic
data generated by our framework largely preserves the
joint distributions and hidden correlations of real data,
and can replace real data for AI training tasks.

4.2.3 Impact of the Number of Records

In the above experiments, we assumed a group size of
5 × 104 clients and in total 105 records. We further in-
vestigated how the number of records impacts the util-
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Fig. 10. Classification accuracy of the neural network (NN) with
different number of users under different privacy levels.

ity of synthetic data. We varied the number of records
among {104, 105, 106} (thus the total number of clients
is respectively {5 × 103, 5 × 104, 5 × 105}). Similar to
previous experiments, we assumed that each client held
two data records and only participated once during the
whole training process. For the experiments with 104, we
set the total global rounds T = 500 with n = 10 clients
for each round. For the experiments with 106 records,
we set the total global rounds T = 5000 with n = 100
clients for each round.

We have evaluated the accuracy of both classifica-
tion models (i.e., two-layer NN and RF) with respect
to the number of records and present the results in Fig-
ure 9 and Figure 13. Here we compare the results un-
der a privacy of ε = 8 (and α = 0.1 for our method).
Although both algorithms show higher classification ac-
curacy with a larger number of records, the baseline al-
gorithms still cannot achieve significant improvements
even with the largest number of records. In compari-
son, the classification accuracy of our method constantly
outperforms the baseline algorithms. In addition, we no-
tice that the classification accuracy in the experiments
with 104 records is distinctively lower than others. This
is because the generative model is underfitted when
trained on a limited number of records and thus can-
not generate high-utility synthetic data. On the other
hand, although a larger number of local data (e.g., 106)
ensures the generative model be fully-trained, the model
performance does not improve much after achieving con-
vergence and thus cannot reach much improvement re-
garding classification accuracy.

4.2.4 Impact of the Number of Users

In previous experiments, we assumed that there were
a large number of users (e.g., 5 × 104) who each only
participated once during the entire training process. We
further extended the scenario by assuming there were
fewer clients and each client was selected multiple times
for model training. To this end, we respectively assumed
there were 5×104, 5×103, 5×102 clients, each with 2, 20,
and 200 data records. Each client participated in 1, 10,
and 100 global training rounds and the corresponding
per-round privacy budget εr equals ε, ε/10 and ε/100 (ε
is the total privacy cost).

For each dataset, we conducted experiments with
the total privacy budget ε ∈ {2, 4, 8} and evaluated
the accuracy of both classification models regarding the
number of users. The results are shown in Figure 10
and Figure 14. It can be generally seen that participat-
ing in multiple training rounds can cause a distinctive
impact on the framework performance and data util-
ity, especially for datasets with larger generative mod-
els (Census and Twitter). This is because with a fixed
total privacy budget the per-round privacy budget is in-
versely proportional to the participating rounds. There-
fore, having each client participating in multiple train-
ing rounds will significantly increase the randomness in-
jected during model training and affect the model con-
vergence. Thus, we need to further increase the total
privacy budget ε to achieve satisfying data utility.

4.3 Evaluation for Privacy Protection

Although a larger privacy budget ε has a distinctive
contribution to data utility, this may be at the expense
of privacy. Currently, there is no concrete understand-
ing of how to choose an appropriate ε in practice for a
satisfactory utility-privacy trade-off. In this section, we
have empirically analyzed the privacy protection capa-
bilities of our framework against the membership infer-
ence attack (MIA). We followed the MIA protocol of
[46]. The protocol assumed that the attacker holds a
reference dataset that shares similar distribution as the
real training data. The attacker respectively trains a
pair of generative models Gin and Gout using the refer-
ence data with and without the target record. Then, an
attack model is trained to distinguish the synthetic data
generated by Gin and Gout, which can be considered as
a binary classification task. Finally, given the published
synthetic dataset, the attacker can use the attack model
to test whether the synthetic data is generated by a



Privacy-Preserving High-dimensional Data Collection with Federated Generative Autoencoder 493

Table 4. Accuracy of membership inference attack

Dataset Census Twitter Vehicle Adult
No Privacy 0.735 0.698 0.637 0.642

ε = 8 0.574 0.547 0.546 0.535
ε = 2 0.548 0.529 0.513 0.519

ε = 0.5 0.529 0.524 0.507 0.506

model trained with the target record, namely whether
the target record is included in the generative model’s
training dataset.

We randomly picked 30 records as the target record.
For each target record, we trained generative models
under different privacy settings and repeated the at-
tack 10 times. In each attack trial, we used a list of
machine learning models such as SVMs, logistic regres-
sion models, KNNs, RFs, and NNs as the attacker and
picked the highest attack accuracy over all the attack-
ers. Finally, we computed the averaged attack accuracy
against all the target records under different privacy set-
tings and present the results in Table 4. It can be seen
that synthetic data generated by the non-private gen-
erative model is more likely to reveal the membership
information of the target record. The attack accuracy of
all the datasets is more than 60% and even up to 73.5%
for the Census dataset. On the other hand, applying
DP can effectively reduce the attack accuracy. With
ε = 0.5, the attack accuracy is reduced by 13% ∼ 20%.
Even with ε = 8, the attack accuracy can still be re-
duced by 8% ∼ 16% and is close to 50%, namely the
accuracy of a random guess. The results demonstrate
that our framework is able to reduce the risk of mem-
bership inference attacks and provide privacy protection
to the local data.

5 Discussion

5.1 Extension to Other Data Types

In this paper, we demonstrated that our framework per-
forms well on high-dimensional categorical data. In or-
der to do so, we converted the categorical data into nu-
merical form for training the WAE model and then re-
versed the model’s numerical outputs back to categori-
cal form. In future studies, it is also possible to modify
the current model structure and the loss function in or-
der to extend the framework for supporting other data
types, image data and text data. For instance, for im-
age data, we can further apply convolution layers to

Fig. 11. Results of data synthesis on image datasets.

Table 5. Classification accuracy of synthetic data generated by
WAE models with (w) and without (w/o) pre-training

Accuracy - NN Accuracy - RF
Dataset w/o w w/o w

Census ε = 8 0.948 0.960 0.952 0.965
ε = 4 0.929 0.935 0.932 0.940

Twitter ε = 8 0.786 0.798 0.788 0.796
ε = 4 0.771 0.782 0.778 0.785

Vehicle ε = 8 0.781 0.795 0.788 0.794
ε = 4 0.762 0.789 0.763 0.782

Adult ε = 8 0.808 0.815 0.812 0.820
ε = 4 0.787 0.798 0.775 0.789

enhance the feature extraction capability and use the
mean squared error instead of the cross-entropy to mea-
sure the reconstruction distance. Despite the variation
of the generative models, the main idea of training the
model under privacy-preserving federated learning and
generating synthetic data remains unchanged. In Fig-
ure 11, we give the synthesis results evaluated on the
MNIST [35] and Fashion-MNIST [56] dataset. For
each dataset, we show the synthetic data produced by
generated models trained under different privacy set-
tings, namely, non-private, with privacy of ε = 8 and
ε = 4. Note that the synthetic data are randomly gener-
ated and may look different from real data. However, it
can be observed that our framework is also capable of
synthesizing image datasets, and generated images have
better quality with an increase of the privacy budget.

5.2 Auxiliary Data for Pre-Training

Before applying the WAE model for collecting local user
data, the server needs to design the model structure. An
appropriate model structure helps to enhance the capa-
bility of capturing the local data distributions and thus
the utility of synthetic data. In our scenario, the server
only knows the basic properties of the data to be col-
lected, such as the number of attributes and the domain
of each attribute. The server can thus use some auxil-
iary data to optimize the model structure. The auxiliary
data here refer to certain public datasets or the random
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data generated by uniformly sampling from the domain
of the local data. The server can use such data to sim-
ulate the data collection process and tune the model
structure by evaluating the utility of the synthetic data.
Moreover, the auxiliary data can also be used for pre-
training the WAE model before applying the model in
the data collection process, so as to improve the model
convergence and the utility of synthetic data.

In Table 5, we compare the utility of synthetic data
generated by WAE models with (w) and without (w/o)
pre-training under the setting of α = 0.1 and ε ∈ {4, 8}.
For each dataset, we have randomly generated an auxil-
iary dataset only using the basic properties of real data,
as mentioned before. We used the auxiliary dataset to
pre-train the WAE model and applied the pre-trained
model to the data collection process. We respectively
evaluated the utility of synthetic data generated in both
scenarios based on the classification accuracy of NNs
and RFs. For both types of models, we observe that the
synthetic data generated by pre-trained WAE models
achieve 1 ∼ 2% increase in classification accuracy. The
results demonstrate that using auxiliary data to pre-
train the WAE model is feasible to enhance the model
convergence in the data collection process and further
improve the synthetic data utility.

5.3 Limitations and Future Work

5.3.1 Utility Loss Under High Privacy Regimes

Although our proposed framework shows significant per-
formance improvement in comparison to the baseline
methods, the synthetic data still suffer from obvious
utility loss when ε ≤ 1. Therefore, improving the frame-
work performance under high-privacy regimes is one
of the essential future research directions. Besides fine-
tuning the hyperparameters such as the number of per-
round participants n and the top-k ratio α, one of the
other potential solutions is to pre-train the model with
auxiliary data before the FL training procedure, as dis-
cussed in Section 5.2. In addition, the current SignDS
algorithm can be further extended to support the se-
lection of multiple top-k indices, which will also help
improve the model convergence.

5.3.2 Communication Cost of Download Link

In comparison to the traditional LDP-based data col-
lection approaches, our framework trains the generative

models under the federated learning setting, where each
client needs to download the global model and upload
the model updates at once. Although our framework
significantly reduces the communication cost of the up-
load link by only transmitting one dimension index and
the corresponding sign value, the communication cost
of downloading the global model may also become a
bottleneck as the model size increases, especially for
large-scale FL scenarios. As discussed in Section 6.3.1,
a few recent studies propose dropout-based and model
pruning-based solutions for reducing the download link
communication cost. The basic idea is to reduce the
size of the model broadcast to the client side by ex-
tracting sub-models or pruning redundant weights from
the global model. Meanwhile, using smaller models for
local training can also help to reduce the computational
cost of the client devices. Therefore, exploring whether
such techniques can be integrated into our framework
to further improve communication and computational
efficiency will be an important future work.

6 Related Work

6.1 Data Collection Under LDP

Differential privacy (DP) [21], as a strong mathemat-
ical formalization of privacy, has been used as a crite-
rion for privacy protection in data publishing, data min-
ing, and machine learning ([1, 20, 57]). However, tradi-
tional DP assume a trusted server (data curator), who
first collects the original user data, then performs data
analysis under differential privacy. In order to eliminate
the assumptions of trustworthy servers, local differen-
tial privacy (LDP) [31] has been proposed, which pro-
vides strong privacy guarantees to local data. By uti-
lizing local randomization algorithms, the server can-
not infer any individual’s original data, but can learn
the overall statistics of the whole population. How-
ever, prior research on LDP mainly focuses on collect-
ing one-dimensional statistics, such as frequency esti-
mation ([14, 23]), heavy-hitter identification ([6, 11]),
and itemset mining ([43, 54]). Regarding scenarios with
multi-dimensional data, Alaggan et al. [2, 3] proposed
using Bloom filters to encode local data and analyze ag-
gregated statistics. However, their works do not involve
the estimation of joint distributions and cross-attribute
correlations, which differs from our objectives.

Directly applying the above LDP-based algorithms
to estimate complex statistics of high-dimensional data
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will cause extremely large communication overhead as
well as a degradation in data utility. Consider, for exam-
ple, RAPPOR [23], a state-of-the-art LDP-based data
collection algorithm. For c-dimensional binary data with
c = 32, we have domain size |Ω| = 232 ≈ 4.3× 1010. Di-
rectly applying RAPPOR consumes a communication
cost and a storage space of O(|Ω|) [44]. Also, for high-
dimensional input domains, it is common for each user
to have a unique feature combination. Therefore, it is es-
sential to collect a large number of data in order to cover
all the possible combinations in the feature domain.
Given a domain size |Ω|, as a general rule of thumb [23],
the number of user data N should follow

√
N/10 ≥ |Ω|.

In the above example, N ≥ 100 · 264 ≈ 1.8 × 1021. All
of these requirements are impractical for real-world ap-
plications. In subsequent research, Fanti et al. [24] pro-
posed to separately collect data of each dimension under
RAPPOR and estimate the joint distributions using ex-
pectation maximization (EM). Although the algorithm
significantly reduces the communication overhead be-
tween clients and the server, it only supports to esti-
mate the joint distribution of two attributes. Based on
[24], Ren et al. proposed LoPub [44], which reduces
c-dimensional data to k-dimensional clusters (k < c) us-
ing dependence graphs and estimates k-way joint distri-
butions with an EM-based and Lasso regression-based
approach. However, the algorithm still suffers from high
computational complexity and low data utility when k is
large. An improved scheme, LoCop [53] was further pro-
posed, which leverages multivariate Gaussian copula to
estimate cross-attribute dependencies and to construct
synthetic data.

Instead of directly randomizing the local data, our
framework uses deep generative models to learn the data
distributions and to generate synthetic data without ac-
cessing real data, which effectively enhances data utility.
In our experiments, we used LoPub and LoCop as the
baselines to compare the frameworks’ performance in
terms of data utility.

6.2 DP Synthetic Data Generation

Differentially private synthetic data generation has been
extensively studied over recent years as an alternative
solution to privacy-preserving data publishing. Previ-
ous works ([36, 57]) analyzed statistical distributions of
original data under differential privacy and used them to
generate synthetic data. Later works have proposed us-
ing differentially private generative models ([41, 49]) to
directly generate high-utility synthetic data. However,

these works only focus on the centralized setting, where
the server has already collected the real data and uses
them to generate private synthetic data. In contrast, our
approach is practical for a distributed setting, where the
server cannot access the real data, but is interested in
learning statistical information about the data.

Recent works by Augenstein et al. [5] and Triastcyn
et al. [50] also investigate the synthetic data generation
under the distributed setting. [5] aims to use generative
models to detect errors and bugs in local data. However,
as they claimed, such applications do not require high-
fidelity generation. On the other hand, although [50] fo-
cused on generating and publishing synthetic data, their
method is only limited to image data. In addition, they
adopted a weaker measure of privacy for preserving the
model performance. In comparison to both works, our
framework is able to generate synthetic data with high
utility and fidelity, which can replace real data in data
mining and AI training tasks. Moreover, we apply strict
LDP randomization on the client side, which provides
strong privacy guarantees for clients’ local privacy.

6.3 Efficiency and Privacy in FL

6.3.1 Communication Efficiency in FL

It is widely acknowledged that communication cost can
be a bottleneck for FL, especially when training high-
dimensional models. Recently, a number of upload link
and download link compression methods have been pro-
posed to alleviate the communication cost in FL.

The upload link compression applies quantization or
sparsification on the model updates to reduce the com-
munication cost from clients to the server. The main
idea of quantization is to reduce the number of bits of
update values. For instance, Seide et al. [45] proposed
the 1-bit SGD, which quantizes the update values
larger than a pre-defined threshold to 1 and the rest to
0. Similarly, Bernstein et al. [8] proposed SignSGD and
SIGNUM, where the update values quantized to its sign
value. The study theoretically proved that SignSGD
can effectively reduce the communication cost while en-
joying a satisfying convergence rate. In contrast, sparsi-
fication aims to transmit only a subset of update values.
For instance, the top-k mechanisms (e.g., [4, 16]) only
keep the top-k largest magnitude values of each model
update and set the others to 0. Stich et al. [47] pro-
posed a similar scheme with memory. Ivkin et al. [28]
further proposed to use the count-sketch algorithm to
approximately select the top-k updates.
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On the other hand, reducing the communication
cost of the download link has recently also gained in-
creasing attention. Caldas et al. [13] gave the first
attempt of the download link compression and pro-
posed Federated Dropout, which extracts small sub-
models from the original high-dimensional and send to
the clients local training. Based on this idea, Bouacida et
al. further proposed [10] an adaptive federated dropout
algorithm, which builds the sub-models using an adap-
tive activation score map. In addition, Jiang et al. [30]
proposed to gradually prune the global model during
the training process to achieve better communication
and computational efficiency without loss of accuracy.

6.3.2 Privacy Protection in FL

Although FL enjoys significant privacy benefits in com-
parison to centralized learning, recent works showed
that FL is still vulnerable to various privacy attacks
[25, 40] against the exchanged local updates and the
global model. Thus, an increasing number of studies pro-
pose to incorporate differential privacy (DP) into the FL
framework. Some works (e.g., [5, 39]) add Gaussian noise
on the server side to protect the privacy of the global
model. However, such solutions cannot prevent the pri-
vacy leakages from the local updates. Thus, other works
propose hybrid frameworks (e.g., [22, 29, 51]), which use
crypto-based solutions such as homomorphic encryption
(HE) and secure multi-party computation (SMC) to fur-
ther achieve local privacy protection. However, these so-
lutions require extra communication and computation
costs during the key-distribution phase and thus, may
not be practical to large-scale scenarios.

Considering the privacy and efficiency issues in the
above-mentioned solutions, a more practical solution is
to apply local differential privacy (LDP) to FL, which
perturbs the local updates before sending them to the
server. Previous LDP-FL frameworks (e.g., [19, 52, 58])
perturb the local updates using private mean estimation
algorithms. However, these algorithms evenly split the
privacy budget across dimensions and the injected noise
is proportional to the model dimension, making them
only applicable to simple ML models. A recent work
proposed FedSel [37], a two-stage LDP-FL framework
that includes a dimension selection (DS) stage and a
value perturbation (VP) stage. The DS stage first sorts
the local update by absolute value and then privately se-
lects one "important" dimension from the top-k dimen-
sion set (namely, the set of k dimensions with the largest
absolute values). Then, in the VP stage, the value of

the selected dimension is perturbed via the LDP algo-
rithms in [52] and used to construct a sparse privatized
local update. Although [37] mitigates the dimension-
dependency problem by only selecting one "important"
dimension, the privacy budget is still consumed by the
two stages. In high-privacy scenarios, each stage may
therefore obtain only an insufficient privacy budget and
cause large randomness.

Inspired by the effectiveness of SignSGD [8] and
top-k sparsification ([4, 16, 37]), we propose a novel local
randomization algorithm called SignDS. The main idea
is to save the the privacy budget for the VP stage in
[37] by assigning sign values instead of the perturbed
dimension values to the selected dimensions. With the
same privacy budget, we can achieve less randomness
and thus higher model utility.

7 Conclusion
Building effective business and AI services requires the
collection of personal data, which often introduces chal-
lenges related to an insufficient amount of data on the
one hand, and privacy violations on the other hand.
Recently, deep generative model-based data synthesis
techniques have created opportunities for addressing
these challenges: the generative models have strong ca-
pabilities in capturing the cross-attribute correlations of
real data and can easily generate large-scale high-utility
data; in addition, since the generated data are fully syn-
thetic and cannot be linked to any particular individual,
re-identification attacks or attribute disclosure becomes
almost impossible.

In this paper, we have followed the idea of data syn-
thesis and proposed DP-Fed-Wae, a privacy-preserving
framework for high-dimensional data collection. The
framework utilizes a (generative) Wasserstein autoen-
coder to learn the joint distributions and correlations
of high-dimensional user data and generate high-utility
synthetic data on the server side. Moreover, we applied a
novel LDP-FL framework for training the autoencoder,
which not only avoids the collection of real local data
but also provides strong local privacy guarantees. Ex-
perimental evaluation with real-world datasets shows
that our framework significantly outperforms the LDP-
based baseline algorithms for high-dimensional data col-
lection and synthesis. The synthetic data generated by
our framework preserves very similar statistical prop-
erties as real data and can replace real data for data
mining and model training tasks.
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A Preliminaries
In the following, we offer additional background infor-
mation about federated learning and differential privacy.

A.1 Federated Learning

Federated learning [38] (FL) is a decentralized learning
mechanism which achieves computational efficiency and
privacy benefits by distributing the training task to local
devices. At each global round, the server distributes the
current global model to a number of local clients. Each
client locally updates the global model and returns the
model update to the server. On the server side, all the lo-
cal updates are aggregated to update the global model,
which will be distributed in the next global round. Since
only model parameters are exchanged during the train-
ing process, FL allows the model trained without ac-
cessing raw local data.

Although FL provides enhanced privacy protection
in comparison to centralized training, recent contribu-
tions (e.g., [25, 40, 55]) point out that the mechanism
still has privacy risks. In the context of FL, privacy risks
can be mainly divided into local privacy and global pri-
vacy aspects. Local privacy risks appear when the local
updates reveal insights about local data, while global
privacy risks represent situations when the global model
memorizes local data. Motivated by this, privacy en-
hancing techniques such as secure multi-party compu-
tation (MPC) [9] or differential privacy (DP) [39] are
incorporated into the original FL mechanism, providing
protections against global and local privacy risks.

A.2 Differential Privacy

Differential Privacy (DP) [21] is a state-of-the-art data
anonymization technique which provides strong privacy
guarantees for data analysis. The mathematical defini-
tion of DP is as follows:

Definition 1 (Differential Privacy [21]). A random-
ized mechanism M : D → O satisfies ε-DP if for any
two adjacent datasets D,D′ differing in one data sam-
ple and for any measurable subset of outputs Y ⊆ O we
have

Pr [M(D) ∈ Y] ≤ eε · Pr
[
M(D′) ∈ Y

]
, (10)

where ε describes the privacy loss.

The Definition 1 is usually applied in centralized set-
tings where the data have already been collected by a
trusted server. However, in the local settings, we aim to
ensure that each client’s local data will not be accessed
by the server. Thus, the definition of local differential
privacy (LDP) has been proposed [31], which provides
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strong local privacy guarantees for each user. The defi-
nition is as follows:

Definition 2 (Local Differential Privacy [31]). A ran-
domized mechanism M : D → O satisfies ε-LDP if and
only if for any two inputs x, x′ ∈ D and for any output
y ∈ O we have

Pr [M(x) = y] ≤ eε · Pr
[
M(x′) = y

]
, (11)

where ε describes the privacy loss.

In addition, LDP also holds two widely-used properties
[21], namely Robustness to Post-Processing and Sequen-
tial Composition. The former property states that any
deterministic or randomized function defined over an
LDP mechanism also satisfies LDP. The latter states
that interactively applying the LDP mechanism on the
same set of data yields an accumulated privacy cost.

Property 1 (Robustness to Post-Processing). Let M
be an ε-LDP mechanism and g be an arbitrary map-
ping from the set of possible outputs to an arbitrary set.
Then, g ◦M is ε-LDP.

Property 2 (Sequential Composition). Suppose there
are n mechanisms {M1, · · · ,Mn} that respectively sat-
isfy εi-LDP and are sequentially computed on the same
set of private data D, then a mechanism formed by
(M1, · · · ,Mn) satisfies (

∑n
i=1 εi)-LDP.

B Additional Experiment Results
In this section, we provide additional experiment re-
sults of the evaluation of AI training performance (Sec-
tion 4.2.2), including the classification accuracy of ran-
dom forests trained with synthetic data under different
privacy levels (Figure 12), as well as the impact of ac-
curacy regarding the number of records (Figure 13) and
the number of clients (Figure 14).

Fig. 12. Classification accuracy of the random forest (RF) trained
with real data (Real Data) and synthetic data generated by our
framework (WAE) as well as by the baseline algorithms (LoPub,
LoCop) under different privacy levels.

Fig. 13. Classification accuracy of the random forest (RF) with
different number of records under the privacy level of ε = 8.

Fig. 14. Classification accuracy of the random forest (RF) with
different number of users under different privacy levels.
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ABSTRACT
Developing effective data analysis tools and AI models for time-
series data usually faces data insufficiency and privacy issues. While
synthetic data generation (SDG) has been considered a promising
technique for addressing these challenges, prior works assume that
the central server can directly collect the real client data. However,
this may not always be achievable in real-life scenarios, as the
clients may be unwilling to share their private data.

In this paper, we consider a more realistic setting where the
clients’ local data are inaccessible to the server. We propose Fed-
STDG, the first privacy-preserving framework for distributed mul-
tivariate time-series synthesis. With the combination of federated
learning (FL), local differential privacy (LDP), and a recurrent gener-
ative autoencoder, our framework facilitates the learning of spatial-
temporal distributions of local multivariate time series without
collecting the real data. Instead, the trained autoencoder will be
used to generate high-utility synthetic data on the server side. We
further propose an improved LDP-FL framework which achieves a
remarkable utility improvement compared to previous algorithms.
Experimental results on four open-source datasets demonstrate
the capability and efficiency of our framework in generating high-
quality time-series data. Under the same privacy level, the synthetic
data generated using the proposed LDP-FL algorithm yields around
20% ∼ 85% reduction in the downstream prediction error compared
to the baselines. Additionally, empirical analyses of privacy and ad-
versarial attacks show that our framework can effectively improve
privacy protection and robustness in the FL process.

KEYWORDS
Time-series synthesis, federated learning, differential privacy.

1 INTRODUCTION
With the rapid development of network and computer technologies,
large and diverse quantities of person-specific data are frequently
generated on local devices such as smartphones and IoT sensors. Be-
sides the widely-explored tabular data and image data, there has also
been an increasing number of studies in modeling time-series data
in finance [25], healthcare [41], and IoT [5] applications. These data
usually consist of a series of measurements gathered periodically
over time. Data analysts can use the rich information contained in
these time-series data to explore the hidden temporal distributions
and correlations among attributes from different perspectives and
develop algorithms for classification and forecasting tasks. For in-
stance, a digital healthcare application may utilize users’ physical
information for health monitoring and disease predictions, while
a location-based service may use the drivers’ historical trajectory
to forecast potential future locations. However, the development

of such AI services usually faces two major challenges: data in-
sufficiency and privacy issues. On the one hand, building reliable
machine learning (ML) models usually requires adequate training
data to prevent overfitting and achieve satisfactory performance.
On the other hand, directly using real personal data for training
the ML models may cause severe privacy problems and may even
violate legal requirements (e.g., in the context of the GDPR).

In recent years, synthetic data generation (SDG) has been con-
sidered one of the potential techniques for addressing the above
challenges in business intelligence & AI services. Extensive studies
have proposed to use generative models to generate different types
of synthetic data, such as tabular data [28], images [29], and time
series [40] for a variety of real-world applications. Such techniques
enjoy advantages in both data utility and privacy protection. The
well-designed generative models have strong capabilities for cap-
turing the joint distributions and hidden correlations of real data
and can flexibly produce high-fidelity synthetic data for data anal-
ysis and building accurate ML models at a large scale. Also, the
generated data are fully synthetic, which effectively reduces the
risks of re-identification attacks or attribute disclosure [28]. Some
later works [18, 39] also incorporate differential privacy (DP) into
the training process to provide formal privacy guarantees to the
algorithms. Nevertheless, these previous works only consider the
SDG under the centralized setting, where the real data are already
collected by a data curator (referred to as the cloud server) and will
be used to train the generative models for privacy-preserving data
publishing. This may not always be realistic since the data owners
(referred to as local clients) may be reluctant to share their personal
data with untrusted servers. To address this problem, some recent
works [1, 16, 32] propose solutions for distributed SDG. The genera-
tive models are trained using the federated learning (FL) mechanism
[26], which only exchanges model parameters and keeps the real
data on the local side. However, existing distributed SDG solutions
only focus on structured data and images (see [23], Table 2), which
cannot be directly applied to time-series data.

In this paper, we offer the first attempt at distributed SDG of time-
series data. Inspired by prior work conducted by Jiang et al. [16],
we propose FedSTDG, an efficient and privacy-preserving frame-
work that achieves synthesizing the clients’ local time-series data
without the collection of real data. Our framework shows several
advantages compared to [16]. To start with, we extend the Wasser-
stein Autoencoder (WAE) architecture used in [16] into a recurrent
Wasserstein Autoencoder (RWAE), which can better capture the
temporal distributions and correlations of multivariate time-series
data. The model is then trained under the federated learning set-
ting to learn the distribution of local data without collecting the
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raw data. Finally, the trained model can be used to generate high-
fidelity synthetic data on the server side. In addition, [16] proposed
a local differentially private (LDP) algorithm, SignDS, to prevent
privacy leakage for the local model updates. However, for each
local update vector, the algorithm only selects one dimension index
of an "important" parameter to send to the server, which suffers
from a particularly slow convergence speed with large models. A
follow-up study [17] introduced EM-MDS, a privacy-preserving
algorithm that employs the exponential mechanism to select multi-
ple dimensions under LDP guarantees. In this paper, we propose
enhancements to EM-MDS from two perspectives. Firstly, we in-
troduce an improved multi-dimensional selection algorithm called
SubMDS, which applies parameter subsampling to enable the selec-
tion of more dimension indices under the same privacy guarantee.
Additionally, we present MagRR, which adaptively adjusts the FL
learning rate in a private manner and facilitates a rapid and stable
model convergence. By incorporating both algorithms, our frame-
work demonstrates superior model convergence and synthetic data
utility in comparison to prior methods.

Our major contributions can be summarized as follows:
• We propose FedSTDG, a privacy-preserving framework

for the distributed synthesis of multivariate time-series
data. With the combination of LDP, FL, and a recurrent
autoencoder (RWAE), our framework enables the learning
of local time-series data distributions and the generation of
high-fidelity synthetic data without the need for centralized
data collection. To the best of our knowledge, this is the
first work of synthetic time-series data generation under a
distributed setting.

• We introduce two innovative approaches, SubMDS and
MagRR, as improvements to existing LDP-FL algorithms.
The former applies parameter subsampling to enable the
selection of more dimension indices, while the latter adap-
tively adjusts the learning rate to achieve a rapid and stable
model convergence. The integration of both algorithms
leads to superior synthetic data utility compared to existing
methods.

• We use a number of real-world time-series datasets to evalu-
ate the performance of our framework. Extensive evaluation
results demonstrate that our framework has superior capa-
bility and efficiency in synthesizing time-series data while
achieving satisfactory privacy protection and robustness.

2 RELATED WORK
2.1 DP Synthetic Data Generation
Differentially private synthetic data generation has been extensively
studied over recent years as an alternative solution to privacy-
preserving data publishing. Previous works [22, 42] analyzed sta-
tistical distributions of original structured data under differential
privacy and used them to generate synthetic data. Later works
proposed to use differentially private generative models such as
generative adversarial networks [12] and autoencoders [21, 31] to
directly generate high-utility synthetic data, which can be flexibly
applied to tabular data [18], images [4], and time series [10]. How-
ever, prior SDG solutions mainly focus on the centralized setting,
where the server has already collected the real clients’ data for

generating private synthetic data. This may not always be realistic
since the clients may refuse to share their personal local data with
untrusted servers. In order to address the problem, some recent
works [1, 32] introduced solutions for distributed SDG. The gen-
erative models are trained using the FL mechanism, which only
exchanges model parameters and keeps the real data on the local
side. However, existing distributed SDG solutions only focus on
structured data and image data. In this paper, we fill this research
gap and propose the first framework for synthetic time series data
generation. The framework learns the spatial-temporal distribu-
tions of raw local data and generates synthetic time series on the
server side to support downstream data analysis tasks.

2.2 Privacy-Preserving FL
Although FL enjoys significant privacy benefits in comparison to
centralized learning, recent works showed that FL is still vulnerable
to various privacy attacks against the local model updates [11] and
the final global model [27]. A number of existing works propose to
incorporate crypto-based solutions such as homomorphic encryp-
tion (HE) [33] and secure multi-party computation (SMC) [15] into
FL for protecting the local model updates. However, these solutions
cannot be well-scaled due to the extra communication and com-
putation costs during the encryption and key-distribution phase.
Some other works proposed to apply LDP to FL, where the local
updates are perturbed before being sent to the server. However,
previous private mean estimation-based LDP-FL frameworks (e.g.,
[7, 36, 43]) easily suffer from significant utility loss, as the injected
noise in these algorithms is, in essence, proportional to the num-
ber of model parameters. To address the issue, some recent works
[16, 24] proposed dimension selection-based solutions, which only
select one “important” dimension index for each local update vector
under LDP guarantees and use the shared indices on the server
side to construct corresponding sparse updates to update the global
model. Nevertheless, both algorithms only select one dimension
for each local update, which may lead to slow model convergence,
especially for high-dimensional models. A follow-up work [17]
introduced EM-MDS, an advanced LDP multi-dimension selection
algorithm. Rather than repetitively conducting single-dimension
selection with evenly divided privacy budgets, the algorithm treats
each group of indices as a complete entity and adopts the exponen-
tial mechanism to assign higher probabilities to subsets containing
more "important" indices. In this paper, we further enhance the
existing algorithm with a reduced input size and plan an adaptive
learning rate, which achieves better model utility under the same
privacy guarantees.

3 PRELIMINARIES
3.1 Differential Privacy
DP [8] is a formal notion of privacy that is widely used in privacy-
preserving data analysis applications. The definition of DP is as
follows:

Definition 1 (DP [8]). A randomized mechanismM : X → Y
satisfies 𝜖-DP if for any two adjacent datasets 𝑋,𝑋 ′ differing in one
data sample and for any measurable subset of outputs 𝑌 ⊆ Y we
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have:
Pr [M(𝑋 ) ∈ 𝑌 ] ≤ 𝑒𝜖 · Pr

[M(𝑋 ′) ∈ 𝑌 ] , (1)
where 𝜖 describes the privacy loss.

The Definition 1 is usually applied in centralized settings where
the data have already been collected by a trusted server. However,
in the local settings, we aim to ensure that each client’s local data
will not be accessed by the server. Thus, the definition of local
differential privacy (LDP) has been proposed [19], which provides
strong local privacy guarantees for each user. The definition is as
follows:

Definition 2 (LDP [19]). A randomized mechanismM : X →
Y satisfies 𝜖-LDP if and only if for any two inputs 𝑥, 𝑥 ′ ∈ X and for
any output 𝑦 ∈ Y we have:

Pr [M(𝑥) = 𝑦] ≤ 𝑒𝜖 · Pr
[M(𝑥 ′) = 𝑦

]
, (2)

where 𝜖 describes the privacy loss.

In addition, LDP also holds two widely-used properties [8],
namely Sequential Composition and Robustness to Post-Processing.
The former property states that any deterministic or randomized
function defined over an LDP mechanism also satisfies LDP. The
latter states that interactively applying the LDP mechanism on the
same set of data yields an accumulated privacy cost.

Property 1 (Robustness to Post-Processing). LetM be an
𝜖-LDP mechanism and 𝑔 be an arbitrary mapping from the set of
possible outputs to an arbitrary set. Then, 𝑔 ◦M is 𝜖-LDP.

Property 2 (Seqential Composition). Suppose 𝑛 mechanisms
{M1, · · · ,M𝑛} respectively satisfy 𝜖𝑖 -LDP, and are sequentially com-
puted on the same set of private data 𝐷 , then a mechanism formed
by (M1, · · · ,M𝑛) satisfies (∑𝑛𝑖=1 𝜖𝑖 )-LDP.

3.2 Autoencoders
The Autoencoder (AE) [30] is a type of neural network that is
used to learn efficient and compressed feature representations in
an unsupervised manner. An AE model typically consists of two
primary components: an encoder 𝑄𝜓 and a decoder 𝐺𝜃 . The encoder
reduces the dimensionality of the original high-dimensional input
𝑥 ∼ 𝑃𝑥 to a lower-dimensional latent feature 𝑧 = 𝑄𝜓 (𝑥), and the
decoder maps 𝑧 back to the reconstructed output 𝑥 ′ = 𝐺𝜃 (𝑧), which
has the same shape as 𝑥 . The goal of training is to find an optimized
pair of encoder and decoder that minimizes the reconstruction
error between 𝑥 and 𝑥 ′ = 𝐺𝜃 (𝑄𝜓 (𝑥)). This can be formulated as
the following equation:

L𝐴𝐸 = E𝑥 ∼ 𝑃𝑥 [L𝑟𝑒𝑐 (𝑥,𝐺𝜃 (𝑄𝜓 (𝑥))], (3)
Here, L𝑟𝑒𝑐 (·, ·) is a metric used to measure the difference between
two vectors. Building upon this, several variants have been pro-
posed for synthetic data generation, such as the Variational Au-
toencoder (VAE) [21] and the Wasserstein Autoencoder (WAE) [31].
These variations introduce additional penalty terms to enforce the
latent space features to follow certain prior distributions. For ex-
ample, the objective function of WAE can be expressed as follows:

L𝑊𝐴𝐸 = E𝑥∼𝑃𝑥 [L𝑟𝑒𝑐 (𝑥,𝐺𝜃 (𝑄𝜓 (𝑥))] + 𝜆 · L𝑙𝑎𝑡 (𝑞𝑧 , 𝑝𝑧), (4)
where the latent distance L𝑙𝑎𝑡 is measured using the maximum
mean discrepancy (MMD) between the real latent distribution 𝑞(𝑧)

and the standard Gaussian distribution 𝑝 (𝑧). Given a batch of data
sampled from the two distributions, i.e., {𝑞1, · · · , 𝑞𝑁 } ∼ 𝑞𝑧 and
{𝑝1, · · · , 𝑝𝑁 } ∼ 𝑝𝑧 , L𝑙𝑎𝑡 (𝑞𝑧 , 𝑝𝑧) can be empirically estimated as:

L𝑙𝑎𝑡 (𝑞𝑧 , 𝑝𝑧) =
1

𝑁 (𝑁 − 1)
∑︁
𝑖≠𝑗

𝜅 (𝑝𝑖 , 𝑝 𝑗 ) − 2
𝑁 2

∑︁
𝑖, 𝑗

𝜅 (𝑝𝑖 , 𝑞 𝑗 )

+ 1
𝑁 (𝑁 − 1)

∑︁
𝑖≠𝑗

𝜅 (𝑞𝑖 , 𝑞 𝑗 )
, (5)

where K(𝑥,𝑦) = 𝜅
𝜅+∥𝑥−𝑦 ∥22

. Given 𝑑𝑧 as the dimension of latent

layer and 𝜎𝑧 as the scale of the prior distribution, 𝜅 = 2𝑑𝑧𝜎2
𝑧 .

3.3 Federated Learning
Federated learning (FL) is a decentralized learning approach that
offers computational efficiency and privacy advantages [26] com-
pared to the centralized setting. In this paper, we focus on a typical
FL scenario where a central server coordinates the training of a
machine learning model 𝑀 by multiple local clients. Each client
has its private dataset 𝑋 𝑖 . At each global round 𝑡 , the server selects
a group of 𝑁 clients and distributes the current global model 𝑀𝑡 .
Each client 𝑖 trains the model for a few gradient descent steps using
its local data and returns the local model update Δ𝑖𝑡 to the server.
On the server side, the average of all the local updates is first com-
puted as Δ𝑡 = 1

𝑁

∑𝑁
𝑖=1 Δ

𝑖
𝑡 and then used to update the global model

parameters as 𝑀𝑡+1 = 𝑀𝑡 + 𝛾 · Δ𝑡 . The updated model 𝑀𝑡+1 is then
distributed to the clients for the next round.

3.3.1 SignDS-FL. Although FL has successfully addressed the pri-
vacy concern of uploading raw data, studies [11, 27, 37] show that
privacy risks still exist in model updates and final global models.
Existing crypto-based FL protocols [2, 20] usually introduce com-
putational and communication overheads, while LDP-based mean
estimation algorithms affect model accuracy. To improve upon this,
recent work [16, 17] proposed SignDS-FL, a dimension selection-
based protocol that enhances model utility compared to previous
LDP-FL protocols. In SignDS-FL, a top-𝑘 set 𝑆𝑘 is constructed with
the dimension indices indicating the 𝑘 most significantly changed
model parameters for each local update. A set of dimension indices
is then selected from 𝑆𝑘 under LDP guarantees. These dimension
indices are then sent to the server to construct sparse updates and
update the global model. Moreover, the protocol introduces a ran-
dom sign value 𝑠 to determine the construction of the 𝑆𝑘 . If 𝑠 = 1,
𝑆𝑘 is constructed using the indices with the 𝑘 largest updates. Oth-
erwise, if 𝑠 = −1, 𝑆𝑘 is constructed using the indices with the 𝑘
smallest updates. As the sign value 𝑠 is further used to replace real
magnitude for building the sparse update, the dynamic construction
of the top-𝑘 set ensures that the sparse updates maintain a similar
direction to the original updates.

3.3.2 Exponential Mechanism-based Multi-Dimension Selection (EM-
MDS). In addition to [16], where only one dimension index is se-
lected for each local update, [17] further proposed an improved
algorithm EM-MDS that selects multiple dimension indices to boost
model convergence. Given a local update vector Δ ∈ R𝑑 and the cor-
responding top-𝑘 set 𝑆𝑘 , the algorithm defines 𝜈 = |𝑆𝑘 ∩ 𝐽 | ∈ [0, ℎ]
is the number of top-𝑘 dimensions contained in 𝐽 . Intuitively, a
larger 𝜈 means that the selected indices better represent the updated
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parameters and the sparse update is closer to the real update. Hence,
the algorithm adopts an indicator function𝑢 (𝑆𝑘 , 𝐽 ) = 1(𝜈 ≥ 𝜈𝑡ℎ) as
the utility function, which assigns higher probabilities to the output
sets containing more than 𝜈𝑡ℎ top-𝑘 dimensions. Here, 𝜈𝑡ℎ ∈ [1, ℎ]
is a pre-defined threshold of 𝜈 . Then, given a privacy budget, the
algorithm samples an output set 𝐽 with ℎ elements from the output
domain J = {1, · · · , 𝑑}ℎ with the following probability:

𝑝 =
exp( 𝜖𝜙𝑢 · 𝑢 (𝑆𝑘 , 𝐽 ))∑

𝐽 ′∈J exp( 𝜖𝜙𝑢 · 𝑢 (𝑆𝑘 , 𝐽 ′))
=

exp(𝜖 · 1(𝜈 ≥ 𝜈𝑡ℎ))∑ℎ
𝜏=0 𝜔𝜏 · exp(𝜖 · 1(𝜏 ≥ 𝜈𝑡ℎ))

=
exp(𝜖 · 1(𝜈 ≥ 𝜈𝑡ℎ))∑𝜈𝑡ℎ−1

𝜏=0 𝜔𝜏 +
∑ℎ
𝜈𝑡ℎ 𝜔𝜏 · exp(𝜖)

,

(6)

where𝜙𝑢 is the sensitivity of𝑢 (𝑆𝑘 , 𝐽 ) that equals to 1,𝜔𝜏 =
(𝑘
𝜏

) (𝑑−𝑘
ℎ−𝜏

)
is the number of output sets 𝐽 ′ ∈ J that contain 𝜏 top-𝑘 dimensions.
Unlike evenly splitting the privacy budget and repeating the single-
dimension selection process multiple times, the EM-MDS algorithm
treats each potential output set as one individual entity. This allows
for a more efficient utilization of the privacy budget when selecting
multiple dimensions, resulting in improved model utility. Instead
of dividing the privacy budget evenly and repeating the process of
selecting a single dimension multiple times, the EM-MDS algorithm
handles each potential output set as a separate entity. This allows
for a more efficient utilization of the privacy budget and results in
improved model utility.

4 PROBLEM STATEMENT
In this paper, we consider a scenario where a number of clients hold
multivariate time-series data on the local side. Such data can be,
for instance, clients’ daily activities collected by wearable devices,
or vehicle trajectories collected during driving. A central server
aims to investigate the distribution and correlations of these time-
series data and generate similar synthetic data for data analysis
and designing AI services. Here, we assume the server to be honest-
but-curious, who follows the system protocols but tries to infer
sensitive information of local users. Hence, to protect local privacy,
we require the server not to have direct access to raw local data.

The problem can be formulated as follows: given a private multi-
variate time-series dataset 𝑿1:𝐶 with 𝐴 attributes and 𝐶 time steps,
each sample 𝒙𝑖1:𝐶 ∈ 𝑿1:𝐶 is denoted as

𝒙𝑖1:𝐶 =


𝐹 𝑖1
...
𝐹 𝑖𝐶


=



𝑓 𝑖1,1 · · · 𝑓 𝑖1,𝐴
...

. . .
...

𝑓 𝑖𝐶,1 · · · 𝑓 𝑖𝐶,𝐴


, (7)

where 𝐹 𝑖𝑐 represents the vector of multivariate features of the 𝑐𝑡ℎ
timestamp and 𝑓 𝑖𝑐,𝑎 is the feature of the 𝑎𝑡ℎ attribute. Note that each
record has the same number of 𝐴 attributes. Assume the private
dataset is distributed among 𝑁 local users. A central server aims to
generate a synthetic dataset �̃�1:𝐶 without accessing the real local
data. The synthetic dataset �̃�1:𝐶 should have the same number
of attributes as 𝑿1:𝐶 . Moreover, �̃�1:𝐶 can preserve the temporal
distributions as in 𝑿1:𝐶 , i.e.,

𝑃 (𝑿1:𝐶 ) ≈ 𝑃 (�̃�1:𝐶 ). (8)

The above objective can be further simplified with a conditional
distribution among time steps as follows:

𝑃 (𝑿𝑐 |𝑿1:𝑐−1) ≈ 𝑃 (�̃�𝑐 |�̃�1:𝑐−1), (9)
which states that the synthetic data can properly approximate the
real data at any time 𝑐 .

5 FEDSTDG FRAMEWORK
In this paper, we propose FedSTDG, a privacy-preserving frame-
work for distributedly synthesizing the multivariate local time
series without collecting raw data. The overall workflow of our
FedSTDG is presented in Figure 1. More specifically, our frame-
work first trains a time-series WAE under the FL setting to learn
the spatial-temporal distributions of local data and then generates
high-utility synthetic data on the server side, which can be used for
downstream data mining and model training tasks. Moreover, on
the basis of the sign-based dimension selection concept in [16, 17],
we propose an improved LDP-FL algorithm that achieves a better
privacy-utility balance. We first introduce an enhanced algorithm
SubMDS to support private multi-dimension selection. The algo-
rithm effectively mitigates the privacy leakage from upload updates
while enjoying a better model convergence compared to existing
solutions. Additionally, we introduce the MagRR algorithm, which
enables adaptive learning rate adjustments during the training pro-
cess. We prove that both SubMDS and MagRR satisfy a strict LDP
definition. By integrating these key components, our framework
eliminates the need for a trusted server and ensures strict privacy
protection for local data. In the following, we will first introduce
the RWAE model and LDP-FL algorithms used in our framework
and then describe the overall workflow in detail.

5.1 Structure of the Time-Series Autoencoder
Although [16] proposed to use WAE [31] for the data synthesis, the
previous model only applies to structured data. In this paper, we
extend the model by incorporating long short-term memory (LSTM)
[14] layers (a type of recurrent layer) in both encoder and decoder
to better capture the spatial-temporal information of the original
time-series data. The structure of our RWAE model is presented in
Figure 2. For the encoder, the time-series data are sequentially input
into the LSTM layer. Each cell in the LSTM layer takes in input at a
given time step and combines it with information from previous
time steps to compute the output of the current step, which is used
as input for future time steps. The information passed from the
previous cells enables the layer to learn the temporal correlations of
input time series. Moreover, the layer adopts a forget gate, an input
gate, and an output gate to compute the cell output, which helps to
mitigate the gradient vanishing problem compared to the traditional
RNN layers. The outputs of all the cells are then concatenated and
input into a fully connected layer to compute the latent features. The
decoder is constructed with a symmetric structure as the encoder,
where the latent features are mapped back to the input space using
another fully connected layer and an LSTM layer. Each cell in the
LSTM layer of the decoder outputs features of a specific time step,
and the combination of all these outputs forms the final synthetic
data. Our RWAE model follows the same objective function as WAE
models, which consists of a reconstruction distance measured using
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Figure 1: Overview of the FedSTDG framework. The time-series autoencoder is first trained under the federated setting, which
learns the distributions of real local data. Two LDP algorithms, SubMDS and MagRR, are respectively applied for privatizing
the local updates and averaged update magnitude. After the model is trained, the decoder part is used to generate high-utility
synthetic data. The generated data will be used for data analysis and building AI services.

Figure 2: Structure of the RWAE model.

MSE and a latent space distance measured using MMD. Moreover,
we set the balancing parameter 𝜆 = 1.

5.2 Training with LDP-FL Algorithm
5.2.1 Subset Multi-Dimension Selection (SubMDS). Upon a closer
examination of the EM-MDS algorithm [17] (Section 3.3.2), we note
that the optimal threshold 𝜈∗

𝑡ℎ
(ℎ∗) and the corresponding optimal

output size ℎ∗ can be automatically determined. First, for each
fixed output size ℎ, we search the optimal threshold 𝜈∗

𝑡ℎ
(ℎ). More

specifically, the expectation of 𝜈 in the sampled output set 𝐽 given
a certain threshold 𝜈𝑡ℎ (ℎ) can be derived as follows:

E[𝜈 |𝜈𝑡ℎ (ℎ)] =
ℎ∑︁
𝜏=0

𝜏 · 𝑝 (𝜈 = 𝜏 |𝜈𝑡ℎ (ℎ))

=
𝜈𝑡ℎ−1∑︁
𝜏=0

𝜏 · 𝜔𝜏
Ω
+

ℎ∑︁
𝜏=𝜈𝑡ℎ

𝜏 · 𝜔𝜏 · exp(𝜖)
Ω

,

(10)

where Ω =
∑𝜈𝑡ℎ (ℎ)−1
𝜏=0 𝜔𝜏 +

∑ℎ
𝜏=𝜈𝑡ℎ (ℎ) 𝜔𝜏 ·exp(𝜖) as the denominator

of Equation (6). Intuitively, the larger E[𝜈 |𝜈𝑡ℎ (ℎ)], the more likely
that the sampled 𝐽 contains more top-𝑘 dimension indices and the
better the model utility. Therefore, the optimal threshold 𝜈∗

𝑡ℎ
(ℎ)

can be determined as the threshold that achieves the maximum
E[𝜈 |𝜈𝑡ℎ (ℎ)], namely

𝜈∗𝑡ℎ (ℎ) = argmax
𝜈𝑡ℎ∈[1,ℎ]

E[𝜈 |𝜈𝑡ℎ (ℎ)] . (11)

Next, we calculate output top-𝑘 ratio, namely the proportion of top-
𝑘 dimension indices within the output set, as 𝜍ℎ = E[𝜈 |𝜈∗

𝑡ℎ
(ℎ)]/ℎ.

Intuitively, a larger output size ℎ means more indices are selected,
while a higher ratio 𝜍ℎ suggests selected indices are more likely
to be top-𝑘 indices. To achieve a good balance between model
convergence and utility, we set a minimum acceptable output top-𝑘
ratio 𝜍∗. Then, we respectively compute the output top-𝑘 ratio 𝜍ℎ
for each output size ℎ and choose the largest size that meets the
requirement of 𝜍∗ to be the optimal size ℎ∗. Namely,

ℎ∗ = argmin
ℎ∈[1,inf )

𝜍ℎ = argmin
ℎ∈[1,inf )

E[𝜈 |𝜈∗
𝑡ℎ
(ℎ)]

ℎ
s.t. 𝜍ℎ > 𝜍∗ . (12)

Then, we use Equation (11) to compute the corresponding optimal
threshold 𝜈∗

𝑡ℎ
(ℎ∗).

Through empirical tests, we discovered that the optimal output
size ℎ∗ depends not only on the privacy budget 𝜖 but also on the
input top-𝑘 ratio 𝑘/𝑑 , which is the ratio of the top-𝑘 set 𝑆𝑘 to the
total number of local update parameters. To illustrate this, let’s
assume the original local update has 𝑑 = 20000 parameters and the
top-𝑘 set contains the indices of 𝑘 = 100 parameters. Keeping 𝑘

fixed, we select the actual input size 𝑑 from {0.01𝑑, 0.05𝑑, 0.1𝑑}, re-
sulting in input top-𝑘 ratio 𝑘/𝑑 of {0.5, 0.1, 0.05}. Next, we calculate
the optimal output size ℎ∗ for different output top-𝑘 ratio 𝜍∗ and
present the results in Figure 3. We use different colors to represent
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Figure 3: Comparison of the optimal output size under differ-
ent privacy budgets and input top-𝑘 ratio. Given the original
input size 𝑑 = 20000 and top-𝑘 size 𝑘 = 100, we vary the ac-
tual input size among 𝑑 = {0.01𝑑, 0.05𝑑, 0.1𝑑}, resulting in an
input top-𝑘 ratio 𝑘/𝑑 among {0.5, 0.1, 0.05}. Then, we compare
the corresponding optimal output size ℎ∗ regarding different
output top-𝑘 ratio 𝜍∗.

various input top-𝑘 ratio and distinct line patterns to differentiate
the privacy budget levels. The results show that, under the same
privacy level, a larger input top-k ratio 𝑘/𝑑 leads to a larger ℎ∗.
This suggests that reducing the input size 𝑑 may accelerate model
convergence and enhance model utility.

The insightful result motivates us to introduce a new algorithm,
SubMDS. The algorithm aims to enhance model performance by
using a reduced input size 𝑑 . The process of SubMDS is illustrated
in Algorithm 1. Given the original local update Δ ∈ R𝑑 , we first
randomly select 𝑑 = 𝜚 · 𝑑 model parameters and construct the
input set 𝑆𝑖𝑛 using the corresponding dimension indices. Then, a
sign value 𝑠 is sampled and used to determine the construction
of the top-𝑘 set 𝑆𝑘 . Next, with a predefined privacy budget 𝜖 and
an expected output top-𝑘 ratio 𝜍∗, we compute the optimal output
size ℎ∗ and threshold 𝜈∗

𝑡ℎ
based on Equation (12) and Equation (11).

These values are then used to calculate the probability defined in
Equation (6). It should be noted that in our algorithm, the input set
𝑆𝑖𝑛 only contains 𝑑 dimension indices. Hence, the output domain is
shrunk to J = {𝑖 |𝑖 ∈ 𝑆𝑖𝑛}ℎ and the number of output sets contain-
ing 𝜈 top-𝑘 dimensions is reduced to 𝜔𝜈 =

(𝑘
𝜈

) ( 𝑑−𝑘
ℎ∗−𝜈

)
. Following

[17], we use the inverse sampling technique [35] to build the output
set. Specifically, the number of top-𝑘 dimensions included in 𝐽 is
determined by a random variable 𝛽 drawn from the uniform distri-
bution U(0, 1) and the cumulative distribution function F (𝜈 |𝜈∗

𝑡ℎ
).

Finally, 𝐽 is constructed by randomly selecting 𝜈 indices from 𝑆𝑘
and ℎ − 𝜈 indices from the remaining indices set 𝑆𝑖𝑛\𝑆𝑘 .

As the subset of parameters is randomly sampled and is irrele-
vant to the original local update, we can prove that our SubMDS
algorithm satisfies 𝜖-LDP guarantees.

Lemma 1. The SubMDS algorithm satisfies 𝜖-LDP.

Proof. For each client, given any two arbitrary local updates
Δ,Δ′ and an input set 𝑆𝑖𝑛 containing 𝑑 randomly sampled dimen-
sion indices, let 𝑆𝑘 and 𝑆 ′

𝑘
be the top-𝑘 sets constructed from 𝑆𝑖𝑛 .

Algorithm 1: SubMDS
Input: Δ ∈ R𝑑 : local update with 𝑑 parameters; 𝑘 : size of

top-𝑘 set; 𝜚 : subsampling ratio; 𝜖 : privacy budget;
1: Randomly sample 𝑑 = 𝜚 · 𝑑 parameters from Δ to build Δ𝑖𝑛
2: Use the dimension indices of parameters in Δ𝑖𝑛 to build an

input set 𝑆𝑖𝑛
3: Randomly sample a sign value 𝑠 from {1,−1}
4: if 𝑠 = 1 then
5: Build a top-𝑘 set 𝑆𝑘 with the indices of 𝑘 largest

parameters in Δ𝑖𝑛
6: else
7: Build a top-𝑘 set 𝑆𝑘 with the indices of 𝑘 smallest

parameters in Δ𝑖𝑛
8: end if
9: Given 𝑑 and 𝑘 , compute the optimal output size ℎ∗ and

threshold 𝜈∗
𝑡ℎ

according to Equation (11) and Equation (12)

10: Compute denominator Ω =
∑𝜈∗𝑡ℎ−1
𝜏=0 𝜔𝜏 +

∑ℎ∗
𝜏=𝜈∗

𝑡ℎ
𝜔𝜏 · exp(𝜖),

where 𝜔𝜏 =
(𝑘
𝜏

) (𝑑−𝑘
ℎ∗−𝜏

)
11: Randomly sample 𝛽 ∼ U(0, 1)
12: Initialize 𝜈 = 0 and F (𝜈 |𝜈∗

𝑡ℎ
) = 𝜔0/Ω

13: while F (𝜏) < 𝛽 do
14: 𝜈 = 𝜈 + 1
15: if 𝜈 < 𝜈∗

𝑡ℎ
then F (𝜈 |𝜈∗

𝑡ℎ
) = F (𝜈 |𝜈∗

𝑡ℎ
) + 𝜔𝜈/Ω;

else F (𝜈 |𝜈∗
𝑡ℎ
) = F (𝜈 |𝜈∗

𝑡ℎ
) + exp(𝜖) · 𝜔𝜈/Ω

16: end while
17: Construct 𝐽 by sampling 𝜈 indices from 𝑆𝑘 and ℎ∗-𝜈 indices

from the remaining set 𝑆𝑖𝑛\𝑆𝑘
18: Return 𝐽

For any output set 𝐽 ∈ J , where J = {𝑖 |𝑖 ∈ 𝑆𝑖𝑛}ℎ being the output
domain, let 𝜈 = |𝑆𝑘 ∩ 𝐽 |, 𝜈 ′ = |𝑆 ′

𝑘
∩ 𝐽 | be the number of inter-

sected indices between 𝐽 and both top-𝑘 sets. With the sampling
probability defined in Equation (6) it holds that

Pr[𝐽 |Δ]
Pr[𝐽 |Δ′] =

Pr[𝐽 |𝑆𝑘 , 𝑆𝑖𝑛]
Pr[𝐽 |𝑆 ′𝐾 , 𝑆𝑖𝑛]

=

exp( 𝜖𝜙𝑢 ·𝑢 (𝑆𝑘 ,𝐽 ) )∑
𝐽 ′ ∈J exp( 𝜖𝜙𝑢 ·𝑢 (𝑆𝑘 ,𝐽 ′ ) )

exp( 𝜖𝜙𝑢 ·𝑢 (𝑆 ′𝐾 ,𝐽 ) )∑
𝐽 ′ ∈J exp( 𝜖𝜙𝑢 ·𝑢 (𝑆 ′𝐾 ,𝐽 ′ ) )

=

exp(𝜖 ·1(𝜈≥𝜈𝑡ℎ ) )∑𝜈𝑡ℎ−1
𝜏=0 𝜔𝜏+

∑ℎ
𝜏=𝜈𝑡ℎ

𝜔𝜏 ·exp(𝜖 )
exp(𝜖 ·1(𝜈 ′≥𝜈𝑡ℎ ) )∑𝜈𝑡ℎ−1

𝜏=0 𝜔𝜏+
∑ℎ
𝜏=𝜈𝑡ℎ

𝜔𝜏 ·exp(𝜖 )

=
exp(𝜖 · 1(𝜈 ≥ 𝜈𝑡ℎ))
exp(𝜖 · 1(𝜈 ′ ≥ 𝜈𝑡ℎ))

≤ exp(𝜖 · 1)
exp(𝜖 · 0) = exp(𝜖),

(13)

which completes the proof. □

5.2.2 MagRR for Adaptive Global Learning Rate. After receiving
clients’ output index sets and sampled sign values, the server con-
structs corresponding sparse updates and uses their average to
update the global model parameters. However, both previous works
[16, 17] used a constant global learning rate 𝛾 throughout training,
which impacts the model’s utility. A large 𝛾 results in fast conver-
gence but may cause a significant discrepancy between the real and



Distributed Synthetic Time-Series Data Generation with Local Differentially Private Federated Learning

Algorithm 2: MagRR
Input: Δ ∈ R𝑑 : local update with 𝑑 parameters; 𝛾 : global

learning rate ; 𝑏: aggregated decay flag; 𝑟 : decay rate;
𝜖 : privacy budget; 𝑇𝑎𝑐𝑐 : patience threshold; 𝑡𝑎𝑐𝑐 :
number of rounds requiring a decayed learning rate.

LocalPert(Δ, 𝛾, 𝜖𝑚𝑎𝑔):
// Run on the client side

1: Get the largest magnitude value𝑚 from Δ
2: Compute the decay flag 𝑏:

if 𝑚 ∈ [0, 𝑟 · 𝛾), set 𝑏 = 1; elif 𝑚 ∈ [𝑟 · 𝛾,∞), set 𝑏 = 0
3: Perturb the decay flag 𝑏:

𝑏 =

{
𝑏 𝑤.𝑝

exp(𝜖 )
exp(𝜖 )+1

1 − 𝑏 𝑤.𝑝 1
exp(𝜖 )+1

(14)

4: Return 𝑏

ServerAggr(𝑏,𝛾, 𝑟,𝑇𝑎𝑐𝑐 , 𝑡𝑎𝑐𝑐 ):
// Run on the server side

1: if 𝑏 ≥ 0.5 then
2: 𝑡𝑎𝑐𝑐 = 𝑡𝑎𝑐𝑐 + 1
3: if 𝑡𝑎𝑐𝑐 = 𝑇𝑎𝑐𝑐 then 𝛾 ′ = 𝑟 · 𝛾 , 𝑡𝑎𝑐𝑐 = 0; else 𝛾 ′ = 𝛾
4: else
5: 𝛾 ′ = 𝛾 , 𝑡𝑎𝑐𝑐 = 0
6: end if
7: Return 𝛾 ′, 𝑡𝑎𝑐𝑐

the sparse local updates as training keeps on. Conversely, a small
𝛾 requires more rounds for convergence. To address this, an ideal
approach is to apply an adaptive 𝛾 that starts large and progres-
sively decreases during training. Therefore, we introduce a novel
algorithm MagRR to adapt the global learning rate in a private
manner. The main idea is to collect the largest magnitude of each
client’s local update and use the aggregated result to determine the
global learning rate for the next training round. In addition, as the
real update magnitude cannot be directly published due to privacy
issues, the algorithm randomizes the real magnitude under LDP
guarantees and only shares the privatized value. More specifically,
with the current round’s global learning rate 𝛾 , each client com-
putes the average top-𝑘 magnitude𝑚 (where𝑚 ≥ 0). Subsequently,
we quantize𝑚 into two bins, namely, [0, 𝑟 · 𝛾) and [𝑟 · 𝛾,∞), where
𝑟 is the decay rate. We use the bin index 𝑏 as a flag to indicate
whether the global learning rate should be decayed. Then, we apply
a binary randomized response (RR) [38] to flip the index. Given a
privacy budget 𝜖 , we have:

𝑏 =

{
𝑏 𝑤.𝑝

exp(𝜖 )
exp(𝜖 )+1

1 − 𝑏 𝑤.𝑝 1
exp(𝜖 )+1

, (15)

The randomized bin index will be sent to the server. Here, we
present the privacy analysis of the MagRR algorithm.

Lemma 2. The MagRR algorithm satisfies 𝜖-LDP.

Proof. For each client, given two arbitrary real bin indices 𝑏,
𝑏′ and the perturbed index as 𝑏, with the flip probability defined in

Equation (15) it holds that

Pr[𝑏 |𝑏]
Pr[𝑏 |𝑏′]

≤ Pr[𝑏 = 𝑏 |𝑏]
Pr[𝑏 = 1 − 𝑏′ |𝑏′]

=

exp(𝜖 )
exp(𝜖 )+1

1
exp(𝜖 )+1

= exp(𝜖), (16)

which completes the proof. □

After receiving the perturbed flags, the server will update the
global learning rate accordingly. If more than half of the flags are 1,
meaning the majority of local clients’ update magnitude is less than
𝑟 · 𝛾 , we adjust the learning rate to 𝑟 · 𝛾 ; otherwise, we keep 𝛾 un-
changed. However, adjusting the learning rate in every round may
lead to unstable training due to variations in update magnitudes
across clients and the randomness in flag reporting. To address this,
we introduce a patience threshold 𝑇𝑎𝑐𝑐 and only modify the global
learning rate when the condition of majority flags being 1 persists
for more than 𝑇𝑎𝑐𝑐 rounds. In this paper, we use default values of
𝑟 = 0.5 and 𝑇𝑎𝑐𝑐 = 50.

5.3 Overall Workflow of FedSTDG
We now describe the overall workflow of our FedSTDG framework
presented in Figure 1.

First, we train the RWAE within a federated setting, as depicted
in Algorithm 3. At each global round 𝑡 , the server randomly selects
a subset of 𝑁 clients and broadcasts the current global model 𝑀𝑡
and the global learning rate 𝛾𝑡 . Each local client 𝑖 trains the global
model using its private data 𝑋 𝑖 and calculates the local update Δ𝑖𝑡 .
Then, given a privacy budget 𝜖𝑖𝑑𝑥 , the client utilizes the SubMDS
algorithm to sample the random sign value 𝑠𝑖𝑡 and compute the
private index set 𝐽 𝑖𝑡 . Additionally, with a privacy budget 𝜖𝑚𝑎𝑔 , the
client computes the decay flag based on the local update magnitudes.
Then, the client sends the respective𝑏𝑖𝑡 , 𝑠𝑖𝑡 , and 𝐽 𝑖𝑡 to the server. Note
that for each local update, we sequentially apply the SubMDS and
MagRR algorithms to obtain the private index set and the decay flag
of the learning rate. According to the DP’s sequential composition
theorem (Property 2), the total privacy guarantee to each local
update is 𝜖 = 𝜖𝑖𝑑𝑥 + 𝜖𝑚𝑎𝑔 .

After receiving the information from local clients, the server
constructs the sparse update using each pair of 𝑠𝑖𝑡 and 𝐽 𝑖𝑡 and com-
putes the aggregated model update Δ̂𝑡 . Moreover, the server also
calculates an aggregated decay flag 𝑏𝑡 based on the local decay flags
and modifies the global learning rate 𝛾𝑡 accordingly. Finally, the
server employs Δ̂𝑡 and 𝑏𝑡 to update the global model parameters,
and the new global model 𝑀𝑡+1 is distributed to local clients for
the next training round.

Once the model has been trained, the server can use the decoder
𝐺𝜃 to produce synthetic time-series data. Recall that the latent space
features are enforced to follow the standard Gaussian distribution
𝑝𝑧 . Therefore, we can simply sample random latent features 𝑧 from
𝑝𝑧 and feed them into 𝐺𝜃 to generate high-utility synthetic time-
series data, which can be further used for data analysis and building
AI services.
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Algorithm 3: Training the RWAE
Input: 𝑀 ∈ R𝑑 : global model with 𝑑 parameters; 𝑇 : number

of aggregation rounds; 𝑁 : number of clients in each
round; 𝐸: number of local epochs; 𝜂: local learning
rate; 𝑘 : size of top-𝑘 set; 𝜚 : subsampling ratio; 𝛾 :
global learning rate; 𝑡𝑎𝑐𝑐 : accumulated number of
decay rounds; 𝑇𝑎𝑐𝑐 : threshold for decay rounds; 𝑟 :
decay rate; 𝜖𝑖𝑑𝑥 , 𝜖𝑚𝑎𝑔 : privacy budgets.

Output: Trained WAE model 𝑀
Server executes:

1: Initialize the global model 𝑀1 and the global learning rate 𝛾1
2: for global round 𝑡 = 1, · · · ,𝑇 do
3: Randomly select a group of 𝑁 clients
4: for client 𝑖 = 1, · · · , 𝑁 in parallel do
5: Broadcast the global model 𝑀𝑡 and the global learning

rate 𝛾𝑡 to the local side
6: 𝑏𝑖𝑡 , 𝑠

𝑖
𝑡 , 𝐽

𝑖
𝑡 = LocalUpdate(𝑀𝑡 , 𝐸, 𝜂, 𝜖𝑖𝑑𝑥 , 𝜖𝑚𝑎𝑔, 𝛾𝑡 , 𝑘, 𝜚, 𝑟 )

7: Construct Δ̂𝑖𝑡 = [0, · · · , 0]𝑑 ; for 𝑗 ∈ 𝐽 𝑖𝑡 , set Δ̂𝑖𝑡 [ 𝑗] = 𝑠𝑖𝑡
8: end for
9: Compute the aggregated model update Δ̂𝑡 = 1

𝑁

∑𝑁
𝑖=1 Δ̂

𝑖
𝑡

10: Compute the aggregated decay flag 𝑏𝑡 = 1
𝑁

∑𝑁
𝑖=1 𝑏

𝑖
𝑡

11: Update global learning rate
𝛾𝑡+1, 𝑡𝑎𝑐𝑐 = MagRR.ServerAggr(𝑏𝑡 , 𝛾𝑡 , 𝑟 ,𝑇𝑎𝑐𝑐 , 𝑡𝑎𝑐𝑐 )

12: Update global model 𝑀𝑡+1 = 𝑀𝑡 + 𝛾𝑡+1 · Δ̂𝑡
13: end for
14: Return Global model 𝑀 = 𝑀𝑇+1

LocalUpdate(𝑀𝑡 , 𝐸, 𝜂, 𝜖𝑖𝑑𝑥 , 𝜖𝑚𝑎𝑔, 𝛾𝑡 , 𝑘, 𝜚, 𝑟 ):
// Run on the client side

15: Initialize local model 𝑀𝑖
𝑡 ← 𝑀𝑡

16: for epoch 𝑒 = 1, · · · , 𝐸 do
17: 𝑀𝑖

𝑡 = 𝑀𝑖
𝑡 − 𝜂 · ∇L(𝑀𝑖

𝑡 , 𝑋
𝑖 )

18: end for
19: Compute local update: Δ𝑖𝑡 = 𝑀𝑖

𝑡 −𝑀𝑡
20: Get the output set 𝐽 𝑖𝑡 , 𝑠𝑖𝑡 = SubMDS(Δ𝑖𝑡 , 𝑘, 𝜚, 𝜖𝑖𝑑𝑥 )
21: Get the decay flag 𝑏𝑖𝑡 = MagRR.LocalPert(Δ𝑖𝑡 , 𝑟 , 𝛾𝑡 , 𝜖𝑚𝑎𝑔)
22: Return 𝑏𝑖𝑡 , 𝑠

𝑖
𝑡 , 𝐽

𝑖
𝑡

Table 1: Details of Datasets and Model Size

#Records #Features #Steps #Parameters
Sine 50,000 5 30 29,269

Stock 4,400 6 24 26,358
Energy 19,735 27 24 29,729

Air 9,333 13 24 27,485

6 EXPERIMENTS
We implemented the proposed framework using the TensorFlow
platform and conducted comprehensive experiments with real-
world datasets to evaluate its performance. We conduct the pro-
posed experiments on an Intel 1.8 GHz Core i7 CPU. In this section,
we will introduce the experimental settings and discuss the evalua-
tion results.

6.1 Experiment Setup
6.1.1 Datasets and Model Architectures. We use four real-world
multivariate time-series datasets for evaluating the performance of
our framework:

Sine [40]: The dataset contains 50,000 multivariate sinusoidal
sequences simulated using the open-source code provided in the
original paper1. Each record contains five attributes, representing
the sequence with different frequencies and phase.

Stock [9]: The dataset contains daily historical Google stocks
data starting from August 2004, which sums to approximately 4400
records. Each record contains six attributes such as volume, opening
prices, and closing prices. The goal is to predict future stock prices
and volume.

Energy [3]: The dataset contains 19,735 records, each with 27
attributes presenting the energy usage as well as temperature and
humidity in different areas of each period of time. The goal is to
predict energy usage in the future.

Air [6]: The dataset contains 9358 hourly records of an Air
Quality Multisensor Device, including the hourly concentrations
and sensor responses of different types of gas. The goal is to predict
the future trend of gas concentration. We remove the date and time
attributes in the original data and replace the missing values with
zeros.

For all the datasets, we normalize the record values to [0,1]. For
the encoder part of the RWAE models, we use a single-layer LSTM
with 32 hidden units followed by a fully connected layer with 16
units. The layers in the decoder are of the same hidden units as
the encoder but in reversed order. Furthermore, we use the sigmoid
activation for the output layer to restrict the reconstructed values
to be within [0,1]. Details of the datasets and the corresponding
model size are presented in Table 1.

6.1.2 Evaluation Metrics. We evaluate the performance of our
framework considering three aspects, namely data utility, privacy
protection, and robustness. For the evaluation of data utility, we
follow the evaluation approaches in [40] and assess the quality of
synthetic data from three perspectives:

• Fidelity: The synthetic data should preserve the correlations
and distributions of real data.

• Diversity: The synthetic data should be diversely distributed
and cover most of the variety of real data.

• Usefulness: The synthetic data should have similar perfor-
mance as real data in AI training tasks.

In this study, we utilize the MMD distance Equation (5), TSNE anal-
ysis [34], and mean absolute error (MAE) for next step prediction to
assess the fidelity, diversity, and usefulness, respectively. To evaluate
privacy protection, we examine the effectiveness of our framework
against membership inference attacks (MIA) by comparing the at-
tack accuracy under various privacy levels. Finally, we evaluate the
robustness of our framework against untargeted poisoning attacks.

6.1.3 Baselines. In the following experiments, we investigate the
performance of our framework under different privacy settings. We
1https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/timegan/data_
loading.py
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also compare the results with and without adaptive global learn-
ing rate adjustment, which are respectively referred to as Sub-
MDS and AdaSubMDS. We also compare the performance of the
RWAE model trained with baseline LDP-FL algorithms, including
the SignDS with single-dimension selection [16] (referred to as
SignDS-s) and with multi-dimension selection [17] (referred to as
SignDS-M). We also include a baseline that evenly splits the pri-
vacy budget for multi-dimension selection (referred to as SignDS-E).
Moreover, we also compare the model trained under the non-private
centralized setting and federated setting and the DP centralized
setting.

6.1.4 Hyperparameter Configurations. In each experiment, we con-
duct the FL training for 1000 global rounds, where 𝑁 = 50 clients
are sampled in each round. For the local training, we assume each
local client has 10 time-series records and trains the RWAE model
for 𝐸 = 10 epochs using the Adam optimizer with a default learn-
ing rate 𝜂 = 0.001. We further choose various privacy budgets
𝜖 ∈ {0.5, 2, 4, 6, 8} to explore the influence of privacy on the frame-
work performance. For all the algorithms, we keep 𝑘 = 0.05𝑑 , where
𝑑 is the number of model parameters and 𝑘 is the number of in-
dices in 𝑆𝑡𝑜𝑝𝑘 . For SubMDS, we set the subsampling rate 𝜚 to 0.2.
Hence, the input top-𝑘 ratio for SignDS-S, SignDS-M, SignDS-
Eis 0.05, while for SuBMDS is 0.05/0.1 = 0.5. Moreover, for all
three algorithms, we set the expected output top-𝑘 ratio 𝜍∗ to 0.8.
In experiments without adaptive global learning rate, we set 𝜖𝑖𝑑𝑥
to 𝜖 and 𝛾 to 5. In experiments with adaptive global learning rate
(AdaSubMDS), we set 𝜖𝑖𝑑𝑥 to 0.9𝜖 and 𝜖𝑚𝑎𝑔 to 0.1𝜖 . The initial value
of 𝛾 is set to 25, the decay rate 𝑟 is 0.5, and the patience threshold
𝑇𝑝𝑎𝑡 is 50.

6.2 Evaluation of Data Utility
We first evaluate the utility of the synthetic data under different
privacy levels regarding the fidelity, diversity, and usefulness.

6.2.1 Analysis of Fidelity. To start with, we investigate the fidelity
of synthetic data in comparison to real data. To this end, we use the
MMD distance in Equation (5) to measure the distribution difference
between real data and synthetic data. Intuitively, the smaller the
MMD, the more similar the synthetic data is to real data. For each
dataset, we respectively compare the MMD of the RWAE models
trained under private and non-private centralized settings and FL
settings and present the results in Figure 4. It can be seen that, for
the RWAE models trained with LDP-FL algorithms, the increase
of the privacy budget 𝜖 generally leads to a decrease in MMD, as
the model is perturbed by less noise during the training process.
Moreover, our SubMDS and AdaSubMDS algorithms achieve a
distinctive improvement compared to the baseline algorithms, par-
ticularly with smaller privacy budgets. Specifically, when 𝜖 = 0.5,
the SubMDS algorithm results in approximately 30% − 40% reduc-
tion in MMD, and the AdaSubMDS algorithm yields a substantial
reduction of nearly 45% − 80%. The results suggest that reducing
the input dimensions and adopting a larger top-𝑘 ratio can effec-
tively accelerate model convergence and help improve synthetic
data utility.

6.2.2 Analysis of Diversity. Next, we qualitatively assess the diver-
sity of the synthetic data. Here, we conduct a T-SNE analysis [34]

Figure 4: Comparison of MMD distance between real and syn-
thetic data of all the datasets. For each dataset, we compare
the results of model trained under non-private centralized
and FL settings, as well as private centralized and FL settings
under different privacy levels.

to visually depict the distribution of real and synthetic data from
different datasets in a two-dimensional space. Intuitively, synthetic
data with good utility should be characterized by a distribution with
high diversity and cover the distribution of real data. In Figure 5, we
present the visualization results of the four datasets generated by
the RWAE model under the non-private centralized and federated
settings, as well as using different LDP-FL algorithms with 𝜖 = 8.
For each dataset, we respectively compare the distribution between
the real data (red) and the synthetic data (blue). Moreover, we also
use the Synthcity library [? ] 2 to compute the coverage ratio be-
tween real and synthetic data. It can be seen that the synthetic data
generated by the two baseline algorithms fail to cover the entirety
of the real distribution. In contrast, the synthetic data generated
using our SubMDS and AdaSubMDS algorithms can better over-
lap with real data and achieve a coverage ratio similar to that of
the non-private setting. The results illustrate that our framework
can capture the distributions of different variants of real data and
generate diversified synthetic data.

6.2.3 Analysis of Usefulness. We further analyze the usefulness
of synthetic data in AI training tasks. We respectively use the real
and synthetic data to train a one-layer LSTM model for next-step
prediction. Then, we evaluate the model performance using a held-
out set of real data. Intuitively, if the LSTM models trained with
synthetic data demonstrate similar performance as those trained
with real data, we say that the synthetic data is of high usefulness
and can replace real data for downstream AI training tasks. Here,
we use the mean absolute error (MAE) to measure the performance
of the LSTM models.

The predictive MAE of all datasets under various privacy settings
is presented in Table 2. The MAE of models trained with real data
2https://github.com/vanderschaarlab/synthcity
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Figure 5: T-SNE visualization of the distribution of real and synthetic data on the four datasets. Each row represents the results
for one dataset. Each column provides the distribution of synthetic data generated under non-private centralized and FL
settings, as well as DP centralized setting and using different LDP-FL algorithms with 𝜖 = 8. Red denotes the real data and blue
denotes synthetic data.

is also included as a reference. It is evident that both SubMDS and
AdaSubMDS exhibit significantly lower predictive errors compared
to the other two baselines, particularly for small privacy budgets.
Specifically, with 𝜖 = 0.5, the AdaSubMDS algorithm reduces the
MAE by at least 20% compared to the SignDS and EM-MDS algo-
rithms, and achieves a maximum reduction of 85% on the Stock
dataset. This further demonstrates the effectiveness of our multi-
dimensional selection algorithms in enhancing the performance
of RWAEs and the quality of synthetic data. Furthermore, as 𝜖
increases, the MAE of the SubMDS and AdaSubMDS algorithms
gradually approaches that of the real data. With 𝜖 = 8, the increase
in MAE for both algorithms is less than 0.09 and only 0.002 at best
when compared to models trained with real data. These results
demonstrate that the synthetic data generated by our framework
has higher usefulness compared to the baselines and can serve as a
replacement for real data in AI training tasks.

6.2.4 Ablation Study. We further conduct a series of ablation stud-
ies under the AdaSubMDS setting to investigate how the split ratio
of privacy budgets and the number of per-round clients will impact
the framework’s performance.

Impact of the Split of Privacy Budgets. In previous experiments,
we found that allocating 90% of the total privacy budget to dimen-
sion selection enhances the performance of AdaSubMDS compared
to baselines under the same privacy budget. In this section, we fur-
ther investigate how the different split ratios of privacy budgets
impact the model performance. To this end, we conduct experi-
ments under 𝜖𝑡𝑜𝑡𝑎𝑙 = {2, 4, 8} with 𝜖𝑖𝑑𝑥 being 10%, 50%, and 90%,
respectively, and compare the predictive MAE of synthetic data
generated under different privacy settings. The results of Energy
and Air datasets are shown in Figure 6. It can be observed that

for the same total privacy value 𝜖 , choosing a larger split ratio for
dimension selection typically results in a lower MAE, namely better
data utility. This suggests the model’s update direction is more
crucial for achieving a satisfactory convergence in comparison to
the update magnitude. Given that the dimension selection process
significantly impacts the update direction, it should receive a higher
proportion of privacy to reduce randomness during training. Ad-
ditionally, for the magnitude perturbation, since we implement a
quantization on the real value and only modify the global learning
rate following 𝑇𝑝𝑎𝑡 rounds, it can withstand greater randomness
and therefore be assigned less privacy.

Impact of the Per-round Clients. In addition to the split ratio
of privacy budgets, we also analyze the impact of the number of
participating clients in each training round on the framework’s
performance. We choose 50, 100, and 200 per-round clients respec-
tively, and train the model with 𝜖 ∈ {2, 4, 8}. The MMD of the Sine
and Stock datasets under different privacy settings is shown in Fig-
ure 7. For both datasets, it is evident that increasing the number of
per-round clients further reduces the MAE. With 𝜖 ≤ 4, increasing
the per-round clients from 50 to 200 results in around a 50% ∼ 75%
decrease in MMD. This outcome is due to the aggregation of pri-
vatized local updates on the server side. Consequently, when 𝜖 is
small, using more per-round clients helps mitigate the impact of
local randomization on the aggregated global update, thereby im-
proving the convergence of the global model. Conversely, when
𝜖 is large, the randomness caused by the local protection process
is already significantly reduced. Thus, the number of per-round
clients does not significantly enhance the utility of synthetic data.

Impact of the Decay Rate and Patience Threshold. Finally, we study
the impact of 𝑟 and 𝑇𝑝𝑎𝑡 on the model convergence. We train the
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Table 2: Comparison of synthetic data utility in AI training tasks. For each dataset, we respectively use real and synthetic data
to train one-layer LSTM models for next-step prediction and evaluate the models’ predictive MAE on a held-out set of real data.
Here we compare the MAE of synthetic data generated under different privacy settings.

Datasets Sine Stock Energy Air
Non-Private

Setting
Real Center FL Real Center FL Real Center FL Real Center FL
0.020 0.027 0.038 0.012 0.013 0.014 0.031 0.043 0.043 0.038 0.043 0.047

Central-DP
Setting

𝜖=0.5 𝜖=2 𝜖=8 𝜖=0.5 𝜖=2 𝜖=8 𝜖=0.5 𝜖=2 𝜖=8 𝜖=0.5 𝜖=2 𝜖=8
0.124 0.103 0.051 0.018 0.015 0.014 0.060 0.056 0.050 0.083 0.081 0.074

FL Setting 𝜖=0.5 𝜖=2 𝜖=8 𝜖=0.5 𝜖=2 𝜖=8 𝜖=0.5 𝜖=2 𝜖=8 𝜖=0.5 𝜖=2 𝜖=8
SignDS [16] 0.211 0.141 0.130 0.131 0.022 0.017 0.118 0.066 0.054 0.117 0.087 0.079
SignDSEven 0.210 0.145 0.127 0.130 0.021 0.017 0.116 0.065 0.054 0.116 0.087 0.078

EM-MDS [17] 0.196 0.141 0.110 0.118 0.021 0.015 0.108 0.062 0.053 0.113 0.085 0.071
SubMDS 0.178 0.122 0.107 0.033 0.016 0.014 0.084 0.054 0.051 0.097 0.082 0.070

AdaSubMDS 0.134 0.108 0.110 0.020 0.015 0.014 0.058 0.052 0.050 0.087 0.083 0.070

Figure 6: Analysis of the impact of privacy split ratio. For
each dataset, we train the RWAE model with 𝜖𝑚𝑎𝑔 being
10%, 50%, 90% of the total privacy 𝜖 and compare the MAE
of synthetic data under different privacy settings.

Figure 7: Analysis of the impact of per-round clients. For
each dataset, we train the RWAE model with 50, 100, and 200
per-round clients and compare the MMD of synthetic data
under different privacy settings.

RWAE with 𝑟 ∈ {0.5, 0.9} and 𝑇𝑝𝑎𝑡 ∈ {10, 50, 100}, and use the
MMD of synthetic data after each round of aggregation for analysis.
Intuitively, a smaller 𝑟 leads to a faster decay of the learning rate,
while a smaller 𝑇𝑝𝑎𝑡 implies a more frequent decay of the learning
rate. Figure 8 illustrates the performance of the model on Stock
and Air datasets with privacy budget 𝜖 = 6. We observe that 𝑟 = 50
and 𝑇𝑝𝑎𝑡 = 10 result in slower convergence and poorer model
performance, as the learning rate reduces quickly at the beginning
of training. Conversely, 𝑟 = 0.9 and 𝑇𝑝𝑎𝑡 = 100 exhibit unstable

Figure 8: Analysis of the impact of decay rate 𝑟 and patience
threshold 𝑇𝑝𝑎𝑡 . For each dataset, we respectively use decay
rate 𝑟 ∈ {0.5, 0.9} and patience threshold 𝑇𝑝𝑎𝑡 ∈ {10, 50, 100} to
train the RWAE model for 500 rounds under 𝜖 = 6. Results
show the MMD of synthetic data during the training process.

convergence, as the learning rate deviates significantly from the
true magnitude, leading to a greater discrepancy in sparse updates.
Furthermore, we notice that the ideal combination of 𝑟 and 𝑇𝑝𝑎𝑡
may vary across datasets, suggesting potential improvement by
tuning hyperparameters.

6.3 Evaluation of Privacy Protection
As for the privacy evaluation, we empirically analyze the perfor-
mance of our framework in defending the membership inference
attack (MIA). We follow the black-box MIA proposed in [13], where
the attacker uses the distance between a target record and a pub-
lished synthetic dataset to infer whether the record is used to train
the generative model. Let 𝑥 be a target record and X𝑠𝑦𝑛 be the
published synthetic dataset, we denoteU𝜌 (𝑥) = {𝑥 ′ |Γ(𝑥, 𝑥 ′) ≤ 𝜌}
as the 𝜌-neighborhood of 𝑥 under a certain distance metric Γ. The
attacker then computes the ratio of synthetic records that fall into
the neighborhood of 𝑥 , namely

R𝜌 =
1

|X𝑠𝑦𝑛 |
∑︁

𝑥𝑠𝑦𝑛∈X𝑠𝑦𝑛
1[𝑥𝑠𝑦𝑛 ∈ U𝜌 (𝑥)], (17)

where 𝑥𝑠𝑦𝑛 is an individual synthetic record in X𝑠𝑦𝑛 and |X𝑠𝑦𝑛 | is
the size of the synthetic dataset. Based on the intuition that the



Xue Jiang, Xuebing Zhou, and Jens Grossklags

Table 3: Averaged attack accuracy of the MIA attack under
different privacy settings.

Datasets FL (No DP) 𝜖 = 8 𝜖 = 4 𝜖 = 0.5
Sine 0.666 0.566 0.548 0.514

Stock 0.724 0.613 0.559 0.501
Energy 0.655 0.579 0.531 0.509

Air 0.706 0.621 0.587 0.539

Figure 9: The effectiveness in defending against model poi-
son attacks evaluated on Energy and Air datasets. For each
dataset, we present the predictive MAE of synthetic data gen-
erated under different poisoning attacks and privacy settings.

generative models tend to produce synthetic data that are more
similar to the training data, the higher R𝜌 , the more likely that 𝑥 is
in the training data.

In our experiments, we create a target dataset with 100 training
records and 100 testing records. For each experiment, we generate a
synthetic datasetX𝑠𝑦𝑛 with 105 records. We then use the Euclidean
distance as metric Γ and calculate the ratio R𝜌 (𝑥) for each target
record. Following [13], we set 𝜌 as the median of the minimum
distance for each target record. We sort the R𝜌 (𝑥) values for all
target records, choose the 100 records with the highest R𝜌 (𝑥) to
be the predicted members and compute the attack accuracy. We
repeat each experiment 5 times and present the average attack
accuracy under different privacy settings in Table 3. It is evident that
synthetic data generated by the non-private RWAEs still reveal the
membership information of the target record. The attack accuracy
for all datasets is above 0.65, and it even exceeds 0.7 for Stock and
Air. On the other hand, training the RWAEs with DP helps mitigate
information leakage. With 𝜖 = 0.5, the attack accuracy decreases
by 0.15 ∼ 0.22 and approaches 0.5, which is the performance of
random guesses. Even with 𝜖 = 8, the attack accuracy can still
be reduced by 0.08 ∼ 0.12. These results demonstrate that our
framework reduces the risk of MIA and provides privacy protection
for local data.

6.4 Evaluation of Robustness
Finally, we investigate whether the proposed SubMDS algorithm
can also help prevent poison attacks and improve the robustness
of FL training. Here we focus on two untargeted attacks, namely
random updates and sign flip, where a number of malicious local
clients modify the real local updates in order to disturb the model
convergence. More specifically, random updates replaces the real
update with a random update, while sign flip changes the signs of
update values. In the experiments, we presume a presence of 20%
malicious clients and train the RWAE models using the non-private
setting as well as the LDP-FL algorithms, including SignDS, EM-
MDS and SubMDS, with 𝜖 ∈ {2, 8}. Then, we evaluate the predictive
MAE of synthetic data under both model poisoning attacks. In
Figure 9 we report the predictive MAE of the Energy and Air
datasets. Noticeably, for RWAEs trained in the non-private setting,
a significant increase in predictive MAE is observed on applying
both poisoning attacks, suggesting that the training process is easily
influenced by the attacks. In contrast, training RWAEs with LDP-
FL algorithms effectively reduces the MAE. For both datasets, the
MAE under the sign flip attack is generally reduced by 30% ∼
60%, while the MAE of the random updates attack is reduced by
60% ∼ 70%. This is because these LDP-FL algorithms only select
a subset of dimensions for each local update, which limits the
impact of poisoned updates on model convergence and improves
the robustness of FL.

7 DISCUSSION AND FUTURE WORK
In this section, we will discuss the limitations of this work and
potential future research directions.

While our framework produces high-quality synthetic data com-
pared to the baseline FL algorithms, there is still a utility gap in the
non-private setting. Results in Section 6.2.4 show that increasing the
number of per-round clients and choosing proper hyperparameters
can enhance the utility of synthetic data. Additionally, exploring
advanced LDP-FL algorithms and generative models can further
enhance data utility while adhering to the main training workflow
outlined in Section 5.3.

In addition, we empirically show in Section 6.3 and Section 6.4
that our SignMDS algorithm successfully defends against member-
ship and model poisoning attacks. A comprehensive assessment
of the algorithm’s resilience to other privacy and adversarial at-
tacks would greatly contribute to the development of trustworthy
federated learning frameworks in the future.

Finally, it is important to note that SubMDS and MagRR are not
limited to specific model architectures or data types. They have
a broad applicability as privacy-preserving algorithms in various
federated learning scenarios.

8 CONCLUSION
In this paper, we propose FedSTDG, an effective framework for syn-
thesizing local multivariate time-series data with comprehensive
privacy guarantees. The framework utilizes a time-series autoen-
coder to learn the distributions and correlations of real local data
and generate high-fidelity synthetic data on the server side. More-
over, we improve state-of-the-art LDP-FL algorithms with two novel
approaches, namely SubMDS and MagRR, which achieve a better
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model and synthetic data utility under the same privacy guarantees.
Extensive evaluation with real-world datasets demonstrates the ca-
pability and efficiency of our framework in synthesizing time-series
data under strong privacy protection. The synthetic data preserves
similar statistical properties as real data and can be easily scaled
up for future data mining and AI training tasks.
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ABSTRACT
In the era of big data, user data are often vertically partitioned and
stored at different local parties. Exploring the data from all the
local parties would enable data analysts to gain a better understand-
ing of the user population from different perspectives. However,
the publication of vertically-partitioned data faces a dilemma: on
the one hand, the original data cannot be directly shared by local
parties due to privacy concerns; on the other hand, independently
privatizing the local datasets before publishing may break the po-
tential correlation between the cross-party attributes and lead to
a significant utility loss. Prior solutions compute the privatized
multivariate distributions of different attribute sets for constructing
a synthetic integrated dataset. However, these algorithms are only
applicable for low-dimensional structured data and may suffer from
large utility loss with the increase in data dimensionality.

Following the idea of synthetic data generation, we propose
VertiGAN, the first framework based on a generative adversarial
network (GAN) for publishing vertically-partitioned data with pri-
vacy protection. The framework adopts a GAN model comprised
of one multi-output global generator and multiple local discrimi-
nators. The generator is collaboratively trained by the server and
local parties to learn the distribution of all parties’ local data and is
used to generate a high-utility synthetic integrated dataset on the
server side. Additionally, we apply differential privacy (DP) during
the training process to ensure strict privacy guarantees for the
local data. We evaluate the framework’s performance on a number
of real-world datasets containing 68–1501 classification attributes
and show that our framework is more capable of capturing joint
distributions and cross-attribute correlations compared to statistics-
based baseline algorithms. Moreover, with a privacy guarantee of
ϵ = 8, our framework achieves around a 2% ∼ 15% improvement in
classification accuracy compared to the baseline algorithms. Exten-
sive experimental results demonstrate the capability and efficiency
of our framework in synthesizing vertically-partitioned data while
striking a satisfactory utility-privacy balance.
This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(2), 236–250
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0050

KEYWORDS
Differential privacy, vertically-partitioned data, synthetic data

1 INTRODUCTION
With the rapid development of network and computer technologies,
large and diverse quantities of user data have been extensively
collected and stored by different companies and institutes (referred
to as local parties). These data usually contain rich information
characterizing user profiles, which is valuable for data mining and
building AI services. Due to the variety in service scenarios, the user
data are often vertically partitioned and distributed among these
local parties. That is, the local dataset held by each party usually
contains different attributes of the same group of users. Considering
that the more attributes the data consist of, the more information
can be used for describing an individual user, it is practical for local
parties to collaborate with each other and publish an integrated
dataset with all the attributes for better decision making or building
high-accuracy services. For instance, in a healthcare scenario, a
group of specialist hospitals could publish a joint dataset to study
potential correlations between different types of illnesses such as
cancer, and heart and lung diseases. Similarly, in a smart finance
scenario, a loan company could use a dataset jointly published
by a bank and an e-commerce company to more deeply explore
the key attributes that may result in higher default risk. More
generally, integrating and analyzing these vertically-partitioned
datasets enables data analysts to explore the hidden correlations
of attributes from different perspectives and thus obtain a better
understanding of the characteristics of user groups. This can be of
significant help in designing optimized data mining algorithms and
machine learning models.

However, publishing vertically-partitioned datasets has to be
recognizant of the restrictions of data protection regulations such
as the GDPR and users’ privacy concerns. On the one hand, since
the local data are generated based on users’ ongoing behaviors
and may contain sensitive information of individual users, directly
sharing the original local datasets with an untrusted third party
may lead to serious privacy leakage (see, for example, [5, 7]). On
the other hand, the local parties can use state-of-the-art privacy-
enhancing techniques, such as differential privacy (DP) [18], to
process the real data and only share the privatized datasets. Never-
theless, each party individually privatizing the local data may break
the correlations and joint distributions among attributes held by
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different parties and lead to distinctive utility loss in the published
dataset. Therefore, solutions for publishing vertically-partitioned
data under a satisfactory privacy-utility balance are greatly needed.

In comparison to the substantial attention given to privacy-
preserving data mining and machine learning under a vertical
setting, algorithms for publishing the vertically-partitioned data
are still barely studied. Prior works [26, 36] proposed two-party
publication protocols under k-anonymity guarantees [52]. Unfortu-
nately, later studies [51, 62] pointed out that k-anonymity models
are vulnerable to various privacy attacks and cannot provide suf-
ficient privacy protection. Follow-up work [44] proposed the first
algorithm for publishing vertically-partitioned data under DP guar-
antees. However, the algorithm is limited to two-party scenarios and
requires pre-defined taxonomy trees for all categorical attributes.
Recent work by Tang et al. [53] proposed to use a latent tree model
[70] to represent the cross-attribute distributions in the original
dataset and privatizes the latent tree parameters via a distributed
Laplace protocol to achieve ϵ-DP for each local dataset. Although
the work by Tang et al. [53] effectively improves data utility and
efficiency compared to [44], the algorithm evenly splits the privacy
budget to all the attribute pairs. Therefore, the noise scale may
increase exponentially with the data dimensionality and cause sig-
nificant utility loss. Moreover, the algorithm is limited to discrete
structured datasets and cannot support other data types.

In recent years, data synthesis has increasingly been considered
a useful approach for addressing data insufficiency problems in
developing AI applications. With the strong capabilities of char-
acterizing the correlations and distributions of high-dimensional
data, deep generative models such as generative adversarial net-
works (GANs) are increasingly used for generating high-utility and
low-sensitivity synthetic data. Although some recent works (e.g.,
[28, 54]) also proposed training the generative models under the
federated learning (FL) framework to avoid the direct collection
of real local data, the solutions all focus on the horizontal setting,
which cannot be directly applied to vertically-partitioned data.

In this paper, we address this research gap and propose Ver-
tiGAN, the first GAN-based framework for privacy-preserving
publication of vertically-partitioned data. The framework adopts
a distributed GAN architecture, comprised of a global generator
and multiple local discriminators. By using a collaborative training
strategy, the global generator is trained without accessing the real
local data. Moreover, we adopt a multi-output structure for the gen-
erator, which enables the model to directly learn the correlations
and distributions of the attributes held by different local parties and
generate synthetic integrated data. Finally, we inject DP perturba-
tion during the training process, which ensures that the generator
and the synthetic data satisfy strict DP guarantees for each local
party. The main contributions of our approach are as follows:
• We propose VertiGAN, an efficient and privacy-preserving

framework for publishing vertically-partitioned data. The
framework trains a multi-output global generator to directly
learn the distribution of all parties’ local data and to generate
high-utility synthetic integrated data on the server side. To
the best of our knowledge, this is the first framework based
on a deep generative model for private data publication under
the vertical setting.

• We introduce a distributed training strategy, where the global
generator is updated based on the gradients calculated by
the local discriminators. The strategy eliminates the need
to access real local data when training the global generator.
Moreover, we apply DP perturbation during the training
process to provide a strict privacy guarantee for each local
dataset.
• We implement our framework and evaluate the performance

on a number of real-world datasets containing 68–1501 clas-
sification attributes. Through comparison with the previous
statistics-based algorithms, we show that the synthetic data
generated by our framework always preserve much closer
joint distributions and correlations to real data. Moreover,
with a local privacy guarantee ϵ = 8, we achieve around
2% ∼ 15% improvement in classification accuracy compared
to the baseline algorithms. Extensive evaluation experiments
show that our framework has outperforming capability and
efficiency in collecting high-dimensional data while offering
a favorable utility-privacy balance.

2 RELATED WORK
2.1 Data Analysis on Vertically-Partitioned

Data
In recent decades, data analysis on vertically-partitioned data has
attracted increasing attention. Different from the horizontal setting,
vertical partitioning refers to the scenario that local parties collect
different attributes of the same set of users. Existing applications
on vertically-partitioned data include, for instance, jointly training
ML models using attributes of all the local parties, or publishing an
integrated dataset for future data mining.

2.1.1 Machine Learning Under Vertical Setting. In the context of
ML, prior studies by Vaidya et al. proposed a series of secure multi-
party computation (SMC) protocols [66] for training different mod-
els on vertically-partitioned data, including Bayes classifier [55],
and decision trees [56], etc. Hardy et al. [22] proposed a vertical fed-
erated learning (VFL) framework, which trained LR models using
homomorphic encryption (HE) [14]. Yang [65] further applied the
quasi-Newton method in VFL to reduce the number of communica-
tion rounds. Some other works [12, 63] also proposed solutions for
tree-based models and neural networks [48]. Besides using crypto-
based technologies such as HE and SMC to ensure security in VFL,
recent works [11, 59] further proposed to incorporate DP into the
training process to provide strict privacy guarantees for local data.

On the other hand, some recent works also investigate potential
privacy attacks against VFL, which include label inference attacks
and feature reconstruction attacks. In the label inference attacks, the
parties without ground-truth labels aim to use the back-propagated
gradients to infer the sample labels. Several existing attacks pro-
posed to explore the difference of the gradient norms [39] or the
sign of the last-layer gradients [40, 73]. Other research [19] also
proposed a semi-supervised learning approach that first estimated
the bottom-layer parameters and then used the “completed” model
to “generate” the label of arbitrary samples. Apart from the label
leakage, some other works [27, 41] also studied the feature leakage
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in VFL, where the party obtaining the model predictions tries to re-
construct the input features of other parties. Nevertheless, existing
attacks against VFL only focused on classification models, where
the attackers either try to infer the ground-truth labels or need to
use the model predictions to reconstruct local features. In contrast,
in this paper, we use the GAN model for data synthesis, which
does not involve such label (or prediction) information. Hence, the
above-mentioned attacks in VFL are no more applicable.

2.1.2 Data Publication Under Vertical Setting. Compared to the ex-
tensive set of studies on machine learning under the vertical setting,
there are still only limited prior works on publishing vertically-
partitioned data. Prior works in [26, 36] proposed SMC-based pro-
tocols for two-party data publication under k-anonymity guar-
antees [52]. Nevertheless, later studies [51, 62] pointed out that
k-anonymity models are vulnerable to various privacy attacks and
cannot provide sufficient privacy protection. In contrast, DP [18]
is considered as a more principled approach for private data publi-
cation. Mohammed et al. proposed DistDiffGen [44], the first algo-
rithm for publishing vertically-partitioned data under DP guaran-
tees. DistDiffGen first generalizes the raw data using a distributed
exponential mechanism and then adds noise to the distributions to
ensure ϵ-DP. However, the algorithm is limited to two-party sce-
narios and requires pre-defined taxonomy trees for all categorical
attributes, which may not always be available in practice. Later
work by Tang et al. [53] proposed an improved differentially private
latent tree (DPLT) algorithm, which first uses a latent tree model
[70] to represent the cross-attribute distributions in the original
dataset and then privatizes the latent tree parameters via a dis-
tributed Laplace protocol to achieve ϵ-DP for each local dataset.
The latent tree model will then be used for generating a synthetic
dataset. Although [53] significantly improves the data utility and
efficiency in comparison to [44], it is still limited to discrete at-
tributes. Moreover, since the privacy budget is evenly split over all
the attribute pairs, the noise scale may increase exponentially with
the increased data dimensionality and cause a large utility loss.

In this paper, we propose a distributed GAN-based protocol for
publishing vertically partitioned data in a private manner. Com-
pared to previous works, our solution can support the publication
of high-dimensional datasets with strict DP guarantees. Moreover,
the framework can be further extended to support other types of
data such as numerical data and images.

2.2 Differentially-Private Data Synthesis
DP data synthesis has been extensively studied over recent years
as one of the solutions for privacy-preserving data publishing. Pre-
vious statistics-based works [38, 68] computed joint distributions
of original structured data under DP guarantees and used them to
generate synthetic datasets. However, these methods can only be
applied to structured data and may suffer from a significant utility
loss with the increase in data dimensionality.

Inspired by the rapid evolution of deep learning, later works
proposed to directly train generative models such as autoencoders
[3, 35] and generative adversarial networks (GANs, [20]) and to
generate high-utility synthetic data. Nevertheless, simply training
these generative models without protection may still lead to privacy
leakage. For instance, prior work [4, 57] showed that GANs may

unintentionally memorize the training data. Moreover, Hayes et
al. [23] proposed different membership inference attacks against
the trained generator and discriminators. Later works also demon-
strated that the membership information can be revealed from the
generated synthetic data [10, 24, 50]. In addition, Zhou et al. [72]
performed a property inference attack, which uses the released
synthetic data to infer the macro-level information of training data
(e.g., the ratio of samples regarding a certain property).

DP has been considered one of the countermeasures against such
privacy attacks. Existing DP data synthesis algorithms are generally
divided into two categories, namely by using differentially-private
stochastic gradient descent (DPSGD, [1]) or private aggregation of
teacher ensembles (PATE, [45]). The DPSGD-based algorithms [64,
71] perturb the model gradients in each iteration by clipping and
adding Gaussian noise to ensure DP guarantees. The PATE-based
algorithms [31, 58] first train a group of teacher models (e.g., the
discriminator in GAN) on non-overlapping subsets of original data
and then use the noisy predictions from the teacher group to train
the student model (e.g., the generator). Nevertheless, previous data
synthesis algorithms mainly focus on the centralized setting, where
the server has already collected the clients’ real data. This may
not always be realistic since the clients may refuse to share their
personal local data with untrusted servers. Therefore, some recent
works also proposed to train the generative autoencoders [28] and
GANs [54, 69] under the FL framework to avoid the collection
of original data. However, existing solutions only focus on the
horizontal setting, where the local data shares the same set of
attributes. In contrast, in this paper, we conduct the first attempt at
the GAN-based DP data synthesis for vertically-partitioned data.

3 BACKGROUND
3.1 Differential Privacy
DP [18] is a state-of-the-art anonymization technique that provides
rigorous privacy guarantees for data analysis. The classic definition
of DP is as follows:

Definition 1 ((ϵ, δ )-DP [18]). A randomized mechanismM sat-
isfies (ϵ, δ )-DP if for any two adjacent datasets X,X′ differing in one
data sample and any measurable subset of outputs Y ⊆ ranдe(M)
we have

Pr [M(X) ∈ Y] ≤ eϵ · Pr
[M(X′) ∈ Y]

+ δ , (1)
where ϵ is the privacy loss and δ is the probability of privacy leakage.
When δ = 0, we have ϵ-DP.

The original DP defined an upper bound of the privacy cost.
Recent works further proposed various relaxations of DP to achieve
tighter bounds for the privacy cost, especially for iterative algo-
rithms. One of the widely used definitions is Rényi DP (RDP) [43],
which uses the Rényi divergence to measure the distance between
two probabilities. The definition of RDP is as follows:

Definition 2 ((α, ϵ(α))-RDP [43]). A randomized mechanism
M satisfies (α, ϵ(α))-RDP if for any two adjacent datasets X,X′
differing in one data sample, the Rényi α-divergence betweenM(X)
andM(X′) satisfies

Dα (M(X)||M(X′))) ≜ 1
α − 1 logE

[( M(X)
M(X′)

)α ]
≤ ϵ . (2)
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Similar to DP, a Gaussian mechanism can also be used to achieve
(α, ϵ(α))-RDP:

Definition 3 (Gaussian mechanism). For a real-valued function
f : X → Rd with l2 sensitivity ∆f defined as

∆f = max
X,X′
| | f (X) − f (X′)| |2 (3)

over all adjacent datasets X and X′. The following Gaussian mecha-
nismMσ satisfies (α, ϵ(α))-RDP:

Mσ (x) = f (x) +N(0,σ 2I ), where ϵ(α) =
∆2
f α

2σ 2 . (4)

Moreover, RDP also preserves the composition property for accu-
mulating the privacy cost over a sequence of mechanisms. Namely:

Theorem 1 (Composition property). Suppose n mechanisms
{M1, · · · ,Mn } respectively satisfy (α, ϵi (α))-RDP, and are sequen-
tially computed on the same set of private data X, then a mechanism
formed by (M1, · · · ,Mn ) satisfies (α,∑n

i=1 ϵi (α))-RDP.

Theorem 2 (Robustness to post-processing). LetM be an
(α, ϵ(α))-RDP mechanism and д be an arbitrary mapping from the
set of possible outputs to an arbitrary set. Then, д ◦M also satisfies
(α, ϵ(α))-RDP.

Additionally, the accumulated privacy cost under RDP can be
further amplified by the subsampled mechanism:

Lemma 1 (RDP for Subsampled Mechanism [60]). Given a
dataset of n points drawn from a domain X and a randomized mech-
anismM that takes an input from Xm form ≤ n, let the randomized
algorithmM ◦ subsample be defined as: (1) subsample: subsample
without replacementm data points of the dataset (sampling parame-
ter γ =m/n), and (2) applyM: a randomized algorithm taking the
subsampled dataset as the input. For all integers α ≥ 2, ifM obeys
(α, ϵ(α))-RDP, then the new randomized algorithmM ◦ subsample
obeys (α, ϵ ′(α))-RDP where

ϵ ′(α) ≤ 1
α − 1 log

(
1 + γ 2

(
α

2

)
min

{
4(eϵ (2) − 1),

eϵ (2)min{2, (eϵ (∞) − 1)2}}
+

α∑
j=3

γ j
(
α

j

)
e(j−1)ϵ (j)min{2, (eϵ (∞) − 1)j }

)
.

(5)

Finally, the privacy guarantees under RDP can be converted to
the original DP guarantees:

Lemma 2 (RDP to DP [43]). If a mechanismM satisfies (α, ϵ(α))-
RDP, thenM satisfies (ϵ(α) + log 1/δ

α−1 , δ )-DP for any δ ∈ (0, 1).

3.2 Generative Adversarial Network
The GAN [20] is a class of unsupervised learning algorithms that
have been extensively studied in the last decade due to its strong
capability in generating high-fidelity synthetic data. A GAN model
usually consists of a generator G and a discriminator D. The gen-
erator G takes as input a random noise z from a certain latent
distribution Pz and generates synthetic data x̃ = G(z). The discrim-
inator D learns to distinguish between data drawn from the real

distribution x ∼ Pr and from the synthetic distribution x̃ ∼ Pд ,
where Pд is determined by G and Pz . This can be considered a
binary classification task. Both models are trained simultaneously
through an adversarial process, where the generator keeps improv-
ing the quality of the synthetic data to fool the discriminator while
the discriminator tries to discriminate between real and synthetic
data with high accuracy. The ultimate goal is to approximate the
real distribution Pr with the synthetic distribution Pд such that the
discriminator cannot correctly distinguish between the real and
the synthetic data. The problem can be formulated as a min-max
training process with the following objective [20]:

LGAN = E
x∼pr
[logD(x)] + E

x̃∼pд
[log(1 − D(x̃))], (6)

where Pr is the distribution of real data and Pд is the distribution
of synthetic data x̃ = G(z) with z ∼ Pz .

By utilizing different generator and discriminator structures,
GANs have been adjusted to generate various types of synthetic
data such as tabular data [46], images [33], and time-series data
[67]. Nevertheless, the original GAN models usually suffer problems
such as training instability and failure to converge. Therefore, some
other works proposed to modify the loss function to improve the
model convergence. The Wasserstein GAN (WGAN) [3, 61] is one
of the well-known improved GANs. In comparison with the original
loss function, WGAN-GP uses the Wasserstein-1 distance with an
additional gradient norm penalty to achieve Lipschitz continuity.
Given the real data x , the input noise z ∼ Pz and the synthetic data
x̃ = G(z), the gradient penalty term can be written as

(∥∇x̂D(x̂)∥ − 1)2, where x̂ = µx + (1 − µ)x̃ . (7)
Here x̂ is a weighted average between the real and synthetic data
and µ ∼ U(0, 1) is a randomly sampled weight. Thus, the loss func-
tion for the generator and discriminator is formulated as follows:

LG = D(x̃) = D(G(z)), (8)
LD = D(x) − D(x̃) + λ(∥∇x̂D(x̂)∥ − 1)2, (9)

where λ is the weight for the gradient penalty.
In this paper, we choose Pz to follow the standard Gaussian

distribution N(0, I ) and λ = 10 for the gradient penalty. Similar to
Equation (6), the loss function of WGAN can be formulated as:
LWGAN = E

x̃∼pд
[D(x̃)] − E

x∼pr
[D(x)] + λ E

x̂∼px̂
[(∥∇x̂D(x̂)∥ − 1)2].

(10)

4 PROBLEM STATEMENT
In this paper, we focus on the scenario where the user data are
vertically partitioned and distributed over multiple local parties.
Each party possesses a different set of attributes of the same group
of samples. A central server aims to integrate these local datasets
in a private manner and publish a joint dataset containing all the
attributes. The joint dataset will be further used by external data
analysts for downstream data mining and model training tasks.

An illustration of the system setting is shown in Figure 1. We
assume there are M local parties P1, · · · ,PM . Each party Pi has a
local dataset containing a different set of attributes Ai = {ai1, · · · ,
ai|Ai |}. Here, the attribute sets can be either partially overlapping
or non-overlapping. Moreover, each party may hold samples not
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Figure 1: Overview of the system model.

covered by other parties. Therefore, we assume that the local data
have certain alignable sample IDs (e.g., ID number, cellphone num-
ber, etc.). The local parties can use private set intersection (PSI)
protocols (e.g., [13, 15, 25]) to determine the intersecting sample IDs
without exposing the non-intersect samples. Then, each party sorts
the common samples according to their IDs and obtains the final
training dataset X i ∈ RN×|Ai | , where N is the number of samples
and |Ai | is the number of attributes.

The goal of the task is to design a privacy-preserving framework,
where a central server can collaborate with all the local parties and
publish a private joint dataset X̃ ∈ RN×|∪Mi=1A

i | that contains the
full set of attributes. The joint dataset X̃ preserves both single-party
and cross-party attribute correlations. More specifically, consider
local parties Pi and Pj respectively holding local datasets X i ∈
RN×|Ai | and X j ∈ RN×|Aj | , then the distribution of X̃ should
satisfy

PX̃ (Ai ) ≈ PX i (Ai ), PX̃ (Ai ,Aj ) ≈ PX i ,X j (Ai ,Aj ). (11)
Following previous works, we assume that the local parties

and the central server are honest-but curious, who correctly fol-
low the protocols but try to infer sensitive information of other
local datasets. Moreover, we also consider the threat posed by ex-
ternal data analysts, who aim to use the published joint dataset
to re-identify sensitive information of specific users. Based on the
considerations above, it is required that there is no information
exchange among local parties and each party does not know the
attribute set of other parties. Moreover, we assume that the server
cannot directly access the raw local data but is aware of the full
attribute set and the size of the training dataset. Finally, the pub-
lished dataset should satisfy strict DP guarantees and not reveal
the privacy of individual users in the local datasets.

5 PROPOSED FRAMEWORK
Although previous works proposed statistics-based algorithms for
publishing vertically-partitioned data under DP guarantees, the
solutions are only limited to low-dimensional structured data and
may suffer from large utility loss with the increase in domain size.
Following the idea of data synthesis, we propose VertiGAN, the
first GAN-based framework for differentially-private publication of
vertically-partitioned data. The overall workflow of the framework
is presented in Figure 2, which consists of two phases, namely
the collaborative training process and the synthetic data generation

Figure 2: General workflow of the VertiGAN framework.

process. In the first process, a GAN model is collaboratively trained
by the server and all the local parties to learn the correlations
and distributions of all the local datasets in a private manner. In
the second phase, the generator part is used to directly generate
synthetic integrated data that contains attributes held by all the local
parties. The synthetic data preserves similar statistical properties
to real data and can be alternatively used for downstream data
analysis and AI training tasks.

Nevertheless, training the GAN model on distributed vertically-
partitioned data faces several challenges. To start with, in this paper,
we focus on the scenario where the real data are distributed on
the local side and cannot be directly shared with the server. Hence,
the model cannot be simply trained as in the centralized setting
due to data inaccessibility. Moreover, in the vertical setting, the
attribute sets held by the local parties are usually different from
each other, which is referred to as attribute inconsistency in this
paper. This causes existing solutions that train GANs in the horizon-
tal FL framework to be inapplicable. Finally, recent contributions
(e.g., [9, 49]) point out that the ML models may memorize infor-
mation in training data and suffer from different privacy attacks.
Therefore, privacy protection techniques should be applied during
model training to prevent potential privacy leakage. We apply cor-
responding solutions in the VertiGAN framework to address the
above-mentioned challenges. In the following sections, we will
respectively introduce each solution in detail.

5.1 Distributed GAN Against Data
Inaccessibility

Different from other generative models, GANs are usually built with
two independent networks, namely a generator and a discriminator.
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Figure 3: Workflow of the local training process.

The two networks are trained in an adversarial manner to improve
their own performance. By taking advantage of GANs’ separate
generator-discriminator architecture, the VertiGAN framework
applies a distributed training strategy to address data inaccessibility
problems. More specifically, the framework deploys a global genera-
torG on the server side and multiple discriminators {D1, · · · ,DM }
on the local side. The global generator takes in random latent fea-
tures and outputs synthetic data for each local party, while the local
discriminators are trained on the local side to distinguish between
real data and synthetic data. The ultimate goal of the framework is
to obtain a well-trained global generator on the server side that is
capable of producing high-utility synthetic data without violating
the privacy of real local data.

The training process is conducted in cooperation with the server
and all the local parties, as shown in Figure 2. During each global
training round, the server broadcasts the current global generator
to all the local parties for generating synthetic data. Each party first
uses its real local data and the corresponding part of synthetic data
to train its local discriminator and then uses the trained discrimi-
nator to compute the generator’s gradient. Finally, the gradients
from all the local parties will be aggregated on the server side and
used to update the global generator. In Figure 3, we also present
a detailed illustration of the local training process. It can be seen
that the local data are only used for training the local discriminator
Di , and the global generator G is only updated based on the gra-
dient computed by the trained discriminators. Moreover, only the
information (weights and gradients) of the generator is exchanged
between the local and server side, while the discriminators and the
real data are always kept on the local side. In this way, the frame-
work can facilitate the training of the global generator without
direct access to the real local data.

5.2 Multi-Output Generator Against Attribute
Inconsistency

Moreover, in this paper, we consider the scenario where the user
data are vertically-partitioned and distributed among M local par-
ties. Since the local parties under this setting may hold different
sets of attributes, the conventional single-output generators are
not applicable for the framework. In order to address the attribute
inconsistency problem, we propose a multi-output structure for the
global generator. The generator consists of several common lay-
ers (denoted as G0) and M separate follow-up branches (denoted
as {G1, · · · ,GM }). Each branch Gi produces synthetic data with
attributes of one local party Pi . Given a batch of input feature Z ,
the global generator is capable of concurrently producing synthetic
data {X̃ 1, · · · , X̃M } for all the local parties. Here, X̃ i = Gi (G0(Z ))
corresponds to the data generated from the i-th branch.

We follow the optimization approach of WGAN introduced in
Section 3.2 to iteratively train the global generator and local discrim-
inators in the proposed framework. On the one hand, the training
of the discriminators on the local side is conducted as under the
centralized setting. Here, the loss function for the i-th local discrim-
inator Di is:

LiD = Di (x i ) − Di (x̃ i ) + λ(∥∇x̂ iD(x̂ i )∥ − 1)2, (12)

where x i is the real data of the i-th local party, x̃ i = Gi (G0(z))
is the synthetic data generated by the i-th branch of G, x̂ i is the
gradient penalty as defined in Equation (7), and λ is the weight for
the gradient penalty. Once the discriminators have been trained
for several iterations, they will be used to compute the gradient
of the global generator. The loss function for the global generator
G can be computed as the sum of the loss regarding all the local
discriminators, each of which is derived following Equation (8):

LG =
M∑
i=1
LiG =

M∑
i=1

Di (Gi (G0(z))). (13)

The generator’s gradient ∇LG can be further derived as

∇LG =
∂
∑M
i=1 LiG
∂G

=

M∑
i=1

∂LiG
∂[G0,G1, · · · ,GM ]

=

[
∂L1

G
∂G0 ,

∂L1
G

∂G1 , 0, · · · , 0
]
+ · · · +

[
∂LM

G
∂G0 , 0, 0, · · · ,

∂LM
G

∂GM

]

=

[ M∑
i=1

∂LiG
∂G0 ,

∂L1
G

∂G1 , · · · ,
∂LM

G
∂GM

]

(14)
which is the sum of the generator gradients from all the local par-
ties. Hence, by aggregating all the returned generator gradients, the
server achieves to use the sum of the gradients to update the global
generator. It can be seen from Equation (14) that the parameters
of each branch Gi are updated based on the gradients from party
Pi , while the parameters of the common layers G0 are updated by
the gradients from all the local parties. Therefore, the multi-output
structure enables the global generator to automatically capture the
correlations and distributions of attributes across local parties dur-
ing the training process and directly generate synthetic integrated
data with the entire attribute set.

5.3 Collaborative Training with DP
In the previous sections, we illustrate how the VertiGAN frame-
work enables a global generator to learn the hidden correlations of
attributes across all the local parties without actually accessing the
real local data. Nevertheless, recent studies (e.g., [9, 49]) showed
that the trained generator may reveal sensitive information of real
local data under various privacy attacks. In order to mitigate poten-
tial privacy risks, we further apply DP during the training process,
which provides strict privacy guarantees to the local datasets.

Considering the global generator does not directly access real
local data, we follow previous DP-GAN algorithms [64, 71] and
only perturb the gradients of local discriminators to achieve privacy
protection. Specifically, in each update step of the discriminator, we
first sample a batch of real local data and synthetic data, and then
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compute the corresponding gradients {дi ,bD }b ∈B . Each gradientдi ,bD
is then clipped by a pre-defined L2-norm bound C , namely

д̄i ,bD = clip(дi ,bD ,C) = д
i ,b
D /max(1, | |дi ,bD | |2/C). (15)

Next, we sum up all the clipped gradients, add random Gaussian
noise N(0,σ 2C2I ), and divide the perturbed gradient by the batch
size B as shown below:

д̃iD =
1
B

( B∑
b=1

д̄i ,bD +N(0,σ 2C2I )
)
. (16)

The gradient д̃iD is used to update the discriminator parameters.
Since the local discriminator is repeatedly updated during the

training process, according to the composition property, the total
privacy cost should be accumulated. Considering that RDP achieves
a much tighter privacy estimation in comparison to the traditional
DP (as mentioned in Section 3.1), we first compute the overall
privacy cost under the RDP definition and then convert it back to
the traditional DP definition. To start with, the privacy cost of each
gradient perturbation under RDP is derived as follows:

Corollary 1. With a noise scale N(0,σ 2C2), the perturbed gra-
dient д̃iD satisfies (α,α/2σ 2)-RDP.

Proof. Let f =
∑B
b=1 д̄

b
D =

∑B
b=1 clip(дbD ,C) be the sum of all

the gradients clipped by an L2-norm bound of C . The sensitivity of
f can be derived as:

∆f = max
D,D′

| | f (D) − f (D ′)| |2 ≤ C . (17)

Furthermore, the gradient perturbation process can be denoted as
Mf = f +N(0,σ 2C2I ). Based on Section 3.1, the privacy cost of
Mf under the order α is

ϵ(α) =
(∆f )2 · α
2 · σ 2C2 =

C2 · α
2 · σ 2C2 =

α

2σ 2 . (18)

As shown in Equation (16), the perturbed gradient will be divided
by a batch size B, and the result д̃iD will be actually used to update
the discriminator. Since B is unrelated to the real data, according to
the post-processing property (Theorem 2), the final discriminator
update д̃iD also satisfies (α, ϵ(α))-RDP. □

According to Lemma 1, the privacy guarantee can be further
amplified by subsampling. Given N as the total number of training
data and B as the batch size, we compute the sampling rate as
γ = N /B and derive the amplified privacy cost ϵ ′(α) following
Equation (5). Next, assume the discriminator has updated for T
steps during the entire training process, then the overall privacy
cost is (α,T · ϵ ′(α))-RDP. We further convert privacy cost back to
the traditional (ϵ, δ )-DP definition according to Lemma 2. Finally,
since the global generator is trained on the local discriminators,
according to the post-processing property (Theorem 2), the global
generator also satisfies (ϵ, δ )-DP for the corresponding local dataset.

5.4 Overall Training Process
With the above design considerations, we now describe the overall
training process presented in Algorithm 1 and Algorithm 2.

Before the training starts, the server initializes the global gen-
erator G. On the local side, each party also initializes its local dis-
criminator Di . Moreover, considering that the local parties may

Algorithm 1: VertiGAN - Workflow of Server
Input: G: global generator; M : number of local parties;

Tдlobal : global training rounds; η: learning rate;
OPT : optimizer for the GAN model.

Output: Trained global generator G
Server executes:

1: Initialize global generator G
2: for each local party i = 1, · · · ,M do
3: LocalInitialization() // Run on the local side
4: end for
5: for each global round t = 1, · · · ,Tдlobal do
6: Sample random seed τ
7: for local party i = 1, · · · ,M do
8: Distribute τ and G to the local party i
9: Get local gradient дiG = LocalUpdate(τ ,G)

10: end for
11: Aggregate local gradients дG =

∑M
i=1 д

i
G

12: Update generator G ← OPT.update(G,дG ,η)
13: end for
14: return G

have personalized privacy requirements, we let each local party
individually compute the noise scale σ i . With the universally con-
figured batch size B, global rounds Tдlobal , and local steps Td , the
discriminator’s total update step is derived as T = Tдlobal · Td .
Following the privacy accounting process described in Section 5.3,
the required σ i under the target privacy budget (ϵi , δ i ) can be de-
termined accordingly. Finally, since each local party holds different
attributes of the same group of samples, the local training data
should be sample-wise aligned during each global round. A naive
solution is to let the server randomly sample multiple batches of
data indices for selecting the real data as well as input features for
generating the synthetic data, and then broadcast all the informa-
tion to the local side. However, this may cause extra communication
costs, especially for large training batches. To address the issue, our
framework applies a pseudorandom number generator (PRNG) Φi
at each local party to realize the data alignment. Following prior
works [6, 42], we use secure PRNGs to achieve comprehensive se-
curity guarantees. Moreover, we require that all the local PRNGs
use the same algorithm and are deployed with the same configura-
tion. Therefore, according to the reproducibility of PRNG, given the
same random seed, each Φi is able to produce the same sequence
of indices of real data or input features sampled from the standard
Gaussian distribution. By using the PRNG, the server only needs
to randomly sample a random seed and broadcast it to all the local
parties in each global round, which significantly improves commu-
nication efficiency. Also, considering that existing secure PRNGs
based on standard cryptographic primitives can have an output rate
of gigabytes per second on modern CPUs [32], their computation
cost is negligible compared to the local training time.

In each global training round, the server broadcasts the current
global generator G as well as the random seed τ to all the local
parties. Each party Pi first sets Φi with the random seed τ and
then updates the local discriminator Di for Td steps using the real
data X i and the synthetic data X̃ i = Gi (G0(Z )) sampled by Φi . We
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Algorithm 2: VertiGAN - Workflow of Local Party i

Input: G: global generator; Di : party i’s local discriminator;
X i : party i’s local data; Φi : party i’s local PRNG;
Tдlobal : global training rounds; Td : discriminator’s
local update steps; B: batch size; η: learning rate; C:
L2 clipping bound; (ϵi , δ i ): party i’s privacy budget;
OPT : optimizer for the GAN model.

LocalInitialization():
1: Initialize local discriminator Di , local PRNG Φi

2: Given the target (ϵi , δ i ) and the pre-defined (B,T ,Td ),
compute the required noise scale σ i

LocalUpdate(τ ,G):
3: Get local data X i , set Φi .set_seed(τ)
// Train local discriminator

4: for t = 1, · · · ,Td do
5: Sample indices J = Φi .random_choice(size=B)
6: Sample input noise Z = Φi .random_normal(size=B)
7: for b = 1, · · · ,B do
8: Let x = X i [J [b]], x̃ = Gi (G0(Z [b]))
9: Compute Li ,bD (x, x̃) and дi ,bD = ∇Li ,bD (x, x̃)

10: Clip gradient д̄i ,bD = дi ,bD /max(1, | |дi ,bD | |2/C)
11: end for
12: Aggregate gradients and add noise

д̃iD =
1
B (

∑B
b=1 д̄

i ,b
D +N(0,σ i

2
C2I ))

13: Update discriminator Di ← OPT.update(Di , д̃iD ,η)
14: end for

// Compute generator gradient

15: Sample input noise Z = Φi .random_normal(size=B)
16: Compute дiG =

1
B

∑B
b=1 ∇LG (Gi (G0(Z [b])))

17: return дiG

apply the DP perturbation in each update step, where the batch
of gradients is clipped by L2 bound C and perturbed with random
Gaussian noise N(0,σ i 2

C2I ). The noise scale σ i is determined in
the initialization process. Then, the local discriminator is used to
compute the gradient дiG of the current global generator, which will
be returned to the server for updating the parameters of the global
generator parameters. The global training process is conducted for
Tдlobal rounds. Once the training completes, the server can use the
global generator G to directly generate the synthetic dataset with
attributes of all the local parties.

6 EXPERIMENTS AND RESULTS
We implemented the proposed framework using the Tensorflow
library and performed comprehensive experiments with a number
of open-source datasets to evaluate its performance. In this section,
we first introduce the experimental settings and then discuss the
evaluation results.

6.1 Experiment Setup
6.1.1 Datasets and Models. We used six multi-dimensional classi-
fication datasets for evaluating the performance of the VertiGAN
framework:

Table 1: Datasets details

Dataset Type Num. Num. Domain
Records Attributes Size

Census Integer 2,458,285 68 2150

Twitter Integer 140,707 78 2181

Web Binary 36,974 124 2124

Vehicle Binary 98,528 101 2101

HAR Binary 10,299 561 2561

Dilbert Binary 10,000 1501 21501

Table 2: One-hot dimensions and the number of model pa-
rameters under the two-party setting

Party 1 Party 2 Server

Dataset One-hot #Param. One-hot #Param. #Param.
Dim. D1 Dim. D2 G

Census 137 9,592 145 10,732 53,760
Twitter 195 19,307 174 15,313 94,768

Web 124 7,813 123 7,751 39,416
Vehicle 100 5,101 102 5,305 26,857

HAR 562 158,485 566 160,745 812,949
Dilbert 1,500 788,551 1,505 794,190 2,681,446

Web [47] contains records with 124 binary attributes extracted
from each web page. The goal was to train a classifier to determine
whether the web page belongs to a category.

Vehicle [17] contains data collected in wireless distributed sen-
sor networks. Each record has 100 binary attributes representing
data collected from different acoustic and seismic sensors. The goal
was to train a classifier for vehicle type classification.

Census [16] contains records drawn from the 1990 United States
census data, including 68 personal attributes such as gender, income,
and marital status. We used the dataset to classify the duration of
people’s active duty service.

Twitter [34] contains records with 77 attributes such as the
number of discussions and average discussion length, which are
used to predict the popularity magnitude of each instance. In our
experiment, we quantified the values of each attribute into five bins.
The goal was to classify the level of popularity of each instance.

Activity [2] contains sensor records describing six daily activi-
ties. Each data record has 561 attributes representing different time
and frequency domain variables. We normalize each attribute and
convert the data to binary form.

Dilbert was originally provided in [37] for object recognition.
We use the processed version in [21], where the records are cate-
gorized to five classes. We take the first 1500 attributes from the
processed data to exclude the irrelevant variables mentioned in
[21]. Then, we normalize each attribute and convert the data to
binary form.

Details of each dataset are presented in Table 1, including the data
type, the number of records and attributes, and the domain size. In
the experiments, we assume that each party holds 105 data records.
To this end, we randomly sample 105 records from each original
dataset and partition the datasets by feature. If the original dataset

243



Proceedings on Privacy Enhancing Technologies 2023(2) Xue Jiang, Yufei Zhang, Xuebing Zhou, and Jens Grossklags

contains fewer records, the data are sampled with replacements.
We further use one-hot encoding to convert the original categorical
attributes to the numerical form for model training.

We design the global generator and local discriminators as multi-
layer neural networks (NNs) and determine their layer size ac-
cording to the one-hot dimension of the local datasets. The local
discriminators are two-layer NNs whose output is a scalar between
0 and 1. The global generator is a multi-output model, which has
two common layers followed by a number of separate branches.
Each branch contains two fully-connected layers, which outputs
the synthetic data of one party. In Table 2, we report the one-hot
dimensions and the model size under the two-party setting.

6.1.2 Baseline Methods. Considering the objective and setting of
existing works on the publication of vertically-partitioned data, we
use the DPLT algorithm proposed by Tang et al. [53] as our baseline
in the following experiments. The algorithm uses a latent tree
model to represent the cross-attribute correlations in the original
dataset and perturbs the tree parameters via a distributed Laplace
protocol to achieve DP guarantee for each local dataset. Additionally,
a tree index based method TICQ can also be used to determine the
minimum set of latent attribute pairs for constructing the latent tree,
which helps to reduce the noise scale. The total privacy budget is
consumed by three parts, namely the generation of latent attributes,
quantification of latent attributes’ correlations, and privatization of
the tree parameters. For each dataset, we respectively compare the
synthetic data utility of using the DPLT algorithm (referred to as
DPLT) as well as the improved TICQ-DPLT algorithm (referred to
as DPLT+). Moreover, we also present the utility of synthetic data
generated under the non-private setting as a reference.

6.1.3 Parameter Configurations. In the following experiments, we
conduct the collaborative training process for T = 1500 rounds.
During local training, each local discriminator is updated for Td =
10 steps with a batch size of B = 1000. For both the generator and
discriminator, we use the RMSprop optimizer with a default learning
rate of η = 0.001. Moreover, we apply the gradient perturbation
when training the local discriminators, where the L2-clip boundC is
set to 1 and the noise scale σ varies according to the target privacy
budget. We choose a different privacy budget ϵ ∈ {0.5, 1, 2, 4, 8}
and δ = 10−5 so as to explore the influence of privacy on the
framework performance. The ϵ here follows the traditional DP
definition (Definition 1).

6.1.4 Evaluation Metrics. We evaluate the performance of our Ver-
tiGAN framework from two perspectives, namely the utility eval-
uation and the privacy evaluation. For the utility evaluation, we
first compare the statistical similarity of synthetic data and real
data. Then, we apply commonly-used machine learning models to
investigate the utility of synthetic data in AI training tasks. For the
privacy evaluation, we investigate the capability of our framework
against membership inference attacks, where an attacker aims to
use the synthetic dataset to determine whether a target record is
used for training the GAN model.

6.1.5 Computation Environments. We perform all the experiments
on a NVIDIA Quadro RTX 6000 GPU. In Table 3, we compare the
training time (sec) of our VertiGAN framework and the baseline
DPLT+ algorithm regarding all the datasets.

Table 3: Computation time (sec) of the proposed VertiGAN
framework and baseline DPLT+ algorithm regarding differ-
ent datasets. For VertiGAN, we perform 1500 global rounds
and report the total training time.

Dataset Web Vehicle Census Twitter HAR Dilbert
DPLT+ 1516.20 1116.81 1341.47 3954.03 19598.39 34413.66

VertiGAN 485.35 396.35 424.42 510.26 3296.08 8387.30

Figure 4: Average total variation distance (AVD) of four-way
joint distributions between the real and synthetic data with
respect to different privacy levels.

6.2 Utility: Statistical Similarity
We start our evaluation under the two-party setting, which is com-
monly used in existing VFL frameworks. Here, each party holds half
of the attributes. We first evaluate the performance of VertiGAN
by investigating whether the generated synthetic data can preserve
similar statistical properties as real data. To this end, we respec-
tively compare the k-way joint distributions and cross-attribute
correlations of the real data and synthetic data and analyze their
statistical similarity.

6.2.1 Comparison of Joint Distributions. For the analysis of joint
distributions, we used the Average Variant Distance (AVD) to quan-
tify the distribution difference between the real data and synthetic
data, as used in [53], which is defined as

AVD =
1
2

∑
ω ∈Ω
|Pr eal (ω) − Psyn (ω)|, (19)

where Ω is the domain of all the k-way attribute combinations, ω
is one of the combinations, Pr eal (ω) and Psyn (ω) are joint distri-
butions of real and synthetic data. More specifically, assume the
attribute combination ω has a domain size of |ω |, Pr eal and Psyn
are |ω |-dimensional vectors, where each entry is the probability
of a specific value combination (namely the ratio of occurrence in
the entire real or synthetic dataset). For each dataset, we randomly
chose 100 k-way attribute combinations and compute the average
distribution difference.

AVD Regarding the Privacy Budget ϵ . In Figure 4, we first com-
pare the four-way AVD of the synthetic data generated by the
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VertiGAN framework as well as the two baseline algorithms under
different privacy levels. We also report the results under the fully-
centralized setting and the results of the proposed framework under
the non-private setting as a reference. The error bars represent the
95% confidence interval (also for the remaining experimental re-
sults). It can be seen that the AVD of all the algorithms reduces
with the increase of ϵ . Nonetheless, for all the datasets, the syn-
thetic data generated by the VertiGAN framework consistently
achieve a smaller AVD in comparison with the baseline methods,
which indicates a better capability of our VertiGAN framework
in capturing the multivariate distributions. Moreover, there is a
more distinctive gap in AVD between the baseline algorithms and
VertiGAN for the datasets with a larger domain size. It can be
observed that when ϵ ≥ 4, the AVD of the baseline algorithms is
almost two to three times in comparison with VertiGAN. This is
because a larger domain size refers to more cross-attribute combina-
tions. Since the baseline algorithms are supposed to evenly split the
privacy budget to all the attribute pairs, the increase in domain size
may cause each attribute pair being allocated with an insufficient
privacy budget, which may result in serious degradation of data
utility. In comparison, VertiGAN applies DP perturbation to the
discriminator’s gradients and is not directly related to the domain
size. Therefore, the increase of domain size does not significantly
affect the utility of the synthetic data generated by VertiGAN.

AVD Regarding the Multivariate Dimension k . We further analyze
the AVD with varied multivariate dimension k to gain a deeper in-
sight into VertiGAN’s capability in the context of complex datasets.
To this end, we choose k ∈ {2, 3, 4, 5, 6} and compare the k-way
AVD of using VertiGAN as well as the baseline algorithms. We
present the results under ϵ = 2 in Figure 5. Similarly, we also report
the k-way AVD under the centralized setting and under the non-
private VertiGAN setting as a reference. It can be seen that for
all the datasets, VertiGAN steadily shows a smaller k-way AVD
compared to the baseline algorithms. Moreover, although the base-
line algorithms achieve similar AVD when k is small, the difference
gets distinctively larger with an increase of k . Especially, for all the
datasets, the 5-way and 6-way AVD of the baseline algorithms are
almost twice that of VertiGAN. This indicates that our framework
is more adept at capturing the information of high-dimensional
joint distributions of real data.

6.2.2 Comparison of Correlation. We further visualize the corre-
lation coefficient matrix of real data and synthetic data with heat
maps in order to better understand the capability of our method
in capturing and preserving the cross-attribute correlations. Fig-
ure 6 shows the comparison result of the different datasets with
ϵ = 8. For each dataset, we respectively select 10 attributes from
each party and present the correlation matrix of the 20 attributes.
From the visualization results, it can be seen that the correlation
of synthetic data is similar to the correlation of real data, which
further demonstrates that the synthetic data successfully preserves
the attribute correlations of real data.

6.3 Utility: AI Training Performance
Next, we investigate the utility of synthetic data in AI training
tasks. To this end, we train two classification models Mr eal and

Figure 5: Average total variation distance (AVD) of k-way
joint distributions between the real and synthetic data with
respect to different dimensions of the joint distribution.

Figure 6: Correlation comparison between the real and syn-
thetic data with ϵ = 8. For each dataset, we present the cor-
relations of 20 attributes, where each party contributes 10
attributes. It can be seen that the synthetic data preserves
similar correlations as real data.

Msyn , respectively, with real data and synthetic data. Then, we test
both models with an amount of held-out real data and compare the
test accuracy, namely, Accr eal and Accsyn . Intuitively, if Accsyn is
close to Accr eal , we consider the synthetic data to be of high utility
which can replace real data for AI training tasks.

In the experiments, we use the Multi-layer Perceptron (MLP)
classifier as the target AI model. We train both Mr eal and Msyn ten
times and compute the averagedAccr eal andAccsyn . In Table 4, we
present the accuracy of the MLP classifiers evaluated on different
datasets. For each dataset, we compare the Accsyn of synthetic data
generated under the non-private centralized and VertiGAN setting,
as well as that generated by the private DPLT and VertiGAN
frameworks with ϵ ∈ {0.5, 2, 8}. It can be observed that although
all the algorithms show a higher Accsyn with an increase of ϵ , the
accuracy of VertiGAN is generally higher than the baselines for
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Table 4: Classification accuracy of MLP models evaluated on
synthetic data generated under different privacy settings.

Dataset Acc.
Real

Acc. Synthetic
(No DP)

Acc. Synthetic
(With DP)

Center
GAN

Verti
GAN

ϵ DPLT DPLT+ Verti
GAN

Web 0.8453 0.8276 0.8079
0.5 0.7114 0.7124 0.6970
2 0.7251 0.7238 0.7776
8 0.7385 0.7484 0.7900

Vehicle 0.8204 0.8074 0.7984
0.5 0.7385 0.7208 0.7498
2 0.7596 0.7373 0.7627
8 0.7690 0.7729 0.7840

Census 0.9858 0.9820 0.9732
0.5 0.8822 0.8870 0.9088
2 0.9027 0.9092 0.9432
8 0.9465 0.9487 0.9655

Twitter 0.8209 0.8180 0.7871
0.5 0.7277 0.7274 0.7445
2 0.7371 0.7397 0.7701
8 0.7520 0.7580 0.7822

HAR 0.9532 0.8990 0.8414
0.5 0.4228 0.4570 0.5368
2 0.5519 0.5702 0.7022
8 0.6038 0.6284 0.7746

Dilbert 0.9394 0.8651 0.8010
0.5 0.2722 0.2988 0.5525
2 0.4331 0.4353 0.6241
8 0.5434 0.5672 0.7134

all privacy levels, especially for complex datasets. In particular,
with ϵ = 8, the synthetic data generated by VertiGAN achieves
around 2% ∼ 15% improvement of Accsyn compared to the baseline
algorithms. The results indicate that our framework has a better
capacity for preserving the hidden patterns and correlations of real
data compared to the baselines. The generated synthetic data can
be effectively used for data mining and AI training tasks.

6.4 Ablation Study
We further conduct a series of ablation studies to investigate how
the size of local datasets, the imbalanced splitting of attribute sets,
and the increase of local parties impact the performance of the
VertiGAN framework and synthetic data utility.

6.4.1 Impact of the Number of Records. To start with, in the pre-
vious experiments, we assume that the local parties share data of
105 records. We further investigate how varying the number of
local records affects the framework’s performance. To this end, we
respectively vary the size of local datasets with 104, 105, and 106

records and conduct experiments under different privacy levels.
In Figure 7, we present the 4-way AVD of the Vehicle, Census,
and HAR datasets with ϵ = {0.5, 2, 8}. It can be seen that using a
larger number of records can significantly improve the data utility,
especially in high-privacy regimes. For instance, when ϵ = 0.5, for
all the datasets, the AVD with 104 records is 2 ∼ 4 times the results
with 105 records. This is because the privacy loss of each iteration
is related to the sampling rate γ , as shown in Lemma 1. Therefore,
with a fixed batch size of B, increasing the total number of records

Figure 7: 4-way AVD under the two-party settings with 104,
105, and 106 records under the privacy level ϵ = {0.5, 2, 8}.

Figure 8: 4-way AVD under the two-party settings with ϵ =
8 and attribute split ratio from {0.1/0.9, 0.3/0.7, 0.5/0.5}. For
each dataset, we compare the results of random splitting and
correlated splitting, where the strongly-correlated attributes
are assigned to one of the parties.

leads to a decrease in privacy loss. In other words, the framework
only needs to add a smaller amount of noise to achieve the same
privacy level, which largely enhances the utility of synthetic data.
On the other hand, for ϵ = 8, the AVD with 106 is similar to the re-
sults with 105 records. This is because larger privacy budgets result
in less noise being injected during training, hence the model can
already converge well with 105 records. In this case, using larger
datasets offers a comparatively smaller contribution to the utility.

6.4.2 Impact of Imbalanced Attribute Sets. Next, in addition to ex-
ploiting the setting where the entire attribute set is evenly split
and held by two local parties, we also investigate whether the util-
ity of the synthetic data will differ if the local parties possess an
imbalanced number of attributes. To this end, we split the entire
attribute set with a ratio of 0.1/0.9, 0.3/0.7, and 0.5/0.5 (i.e., an even
split) and compare the data utility under different privacy levels.
Moreover, we also explore whether the imbalanced split of strongly-
correlated attributes affects the data utility. To this end, we first
compute the pair-wise correlation of all the attributes and apply hi-
erarchical clustering to group the most correlated attributes. Then,
we construct the imbalanced attribute sets in two ways: random
split and correlated split. The former randomly splits the attribute
set according to the split ratio, while the latter manually assigns
the strongly correlated attributes to one of the local parties. We
conduct experiments under different split ratios following both
split fashions and report the results in Figure 8. It can be observed
that an imbalanced attribute set can lead to a degradation of frame-
work performance. In contrast, assigning the strongly-correlated
attributes to one of the parties slightly improves the data utility
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Figure 9: 4-way AVD under the two-party settings with ϵ = 8
and the number of clients from {2, 4, 8, 16}. For each dataset,
we compare the results of random splitting and correlated
splitting, where the strongly-correlated attributes are as-
signed to a subset of the parties.

compared to the random setting. Intuitively, when the attributes
belong to different generator branches, the framework may suffer
from a certain information loss on the pair-wise correlations. In
contrast, the correlation information can be better preserved when
both attributes belong to the same branch, hence leading to higher
data utility.

6.4.3 Impact of the Number of Local Parties. Besides the impact
of imbalanced splitting, we also analyze the effects of varying the
number of local parties on the framework performance. To this
end, we respectively perform the data publication process using
the different methods under the settings consisting of 2, 4, 8, and 16
local parties and compare the utility of synthetic data. In Figure 9,
we present the 4-way AVD with different numbers of local parties
under ϵ = 8. It can be observed that the framework performance
degrades with the increase of local parties. This might be because
the joint distributions and correlations are more difficult to be cap-
tured when the correlated attributes are spread over multiple local
parties. On the other hand, similar to observations in Section 6.4.2,
when assigning all the strongly-correlated attributes to a subset of
local parties (i.e., by using correlated splitting), the cross-attribute
correlations can be better preserved and the data utility can be
further improved.

6.5 Empirical Privacy Analysis
Although choosing a larger privacy budget ϵ can distinctively im-
prove the data utility, this may lead to increased privacy leakage.
In order to obtain a better understanding of the utility-privacy
trade-off, we conduct a membership inference attack to empirically
analyze the privacy protection capabilities of our framework under
different privacy settings. We follow the black-box MIA protocol
proposed in [24], which uses the distance of a target record to
the synthetic dataset to infer the membership information. The
intuition is that the generator tends to generate synthetic data
close to the training data. Therefore, given a target record x , let
Uτ (x) = {x ′ |d(x, x ′) ≤ τ } denote the τ -neighborhood of x with
respect to the distance metric d . Then, we randomly generate a
synthetic dataset Xsyn with n records and compute the ratio that
the synthetic records fall into the neighborhood of x , namely

f̂τ (x) = 1
n

n∑
i=1

1[x isyn ∈ Uτ (x)], (20)

Table 5: MIA accuracy under different privacy settings.

CenterGAN
No DP

VertiGAN
No DP ϵ=8 ϵ=2 ϵ=0.5

Vehicle 0.5841 0.5758 0.5538 0.5448 0.5287
Web 0.6008 0.5844 0.5633 0.5367 0.5223

Census 0.6509 0.6394 0.6171 0.5800 0.5421
Twitter 0.6746 0.6672 0.6320 0.5980 0.5676

HAR 0.5784 0.5637 0.5324 0.5241 0.5160
Dilbert 0.6044 0.5856 0.5623 0.5433 0.5386

where x isyn is the ith synthetic record. Obviously, the higher the
f̂τ (x), the more likely it is that x is included in the training data.

In our experiments, we construct the target dataset by randomly
sampling 100 training records (denoted as Xin ) and 100 testing
records (denoted as Xout ). Then, we generate a synthetic dataset
Xsyn with 104 records and use the normalized Hamming distance
to measure the minimum distance between each target record and
the synthetic data. Following [24], we set τ as the median of the
minimum distance of each record. Given the ground truth label and
the predicted membership probability, we compute the averaged
attack accuracy under different privacy settings. The results are
reported in Table 5. It can be observed that synthetic data generated
by non-private GANs are still likely to reveal the membership
information of the target record. In particular, for Twitter and
Census dataset, the attack accuracy under the non-private setting
is more than 65%. On the other hand, applying DP to our VertiGAN
framework can effectively reduce attack accuracy. With ϵ = 8, the
attack accuracy is reduced by 2% ∼ 4%, while with ϵ = 0.5, the
attack accuracy is reduced by 5% ∼ 10%. The results demonstrate
that our framework is able to mitigate the risk of membership
inference attacks and can provide strengthened privacy protection
to the local data.

7 DISCUSSIONS AND FUTURE WORK
In this section, we discuss potential extensions of our framework,
current limitations, and directions for future work.

7.1 Extension to Other Data Types
In Section 6, we demonstrated that the VertiGAN framework is ef-
fective in publishing vertically-partitioned categorical datasets and
achieves better data utility compared to previous statistics-based
baselines. Moreover, our framework can be further extended to
more complex settings where each party holds different types of
data. For instance, in a healthcare scenario, a group of hospitals can
use the framework to publish a joint dataset containing patients’
CT images and physical symptoms for future medical research.
This can be realized by modifying the structure of the models and
using the advanced layers. For instance, we can respectively adopt
convolution layers and recurrent layers to enhance the feature ex-
traction on image data and time-series data. Despite the variation
of the layers and model structures, the main workflow of the Ver-
tiGAN framework remains unchanged. In Figure 10, we further
demonstrate the framework’s feasibility in the context of image
data. Here, we assume that there are three local parties respectively
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Figure 10: Results of image data synthesis under a three-
party setting. Each row represents the synthetic images gen-
erated by one local party under different privacy settings.

holding handwritten digits from MNIST, handwritten letters from
Extended MNIST, and article images from Fashion-MNIST. We
construct a global generator with three output branches and the
corresponding local discriminators and analyze the quality of syn-
thetic images generated under different privacy settings. Note that
the synthetic data are randomly generated and hence are not iden-
tical to the real data. Nevertheless, it can still be observed that our
framework is capable of jointly synthesizing all three categories of
images of different local clients, and the generated data enjoys a
satisfactory level of quality under a larger privacy budget.

7.2 Reduction of Communication Cost
As described in Section 5.4, in each global round, the parameters
and gradients of the global generator are repeatedly exchanged
between the server and local parties. This may result in a high
communication cost, especially for high-dimensional models. One
possible approach for mitigating the upload communication cost is
to process the generator’s gradients with top-k sparsification and
send the sparsified gradients to the server. In Figure 11, we inves-
tigate how the sparsification level affects the utility of synthetic
data. Here, we choose the top-k ratio from {0.25, 0.5, 0.75, 1} and
compare the corresponding 4-way AVD of the synthetic data under
the privacy level of ϵ ∈ {2, 8}. It can be observed that even process-
ing the gradients with a top-k ratio of 0.25 can still achieve data
utility comparable to returning the entire gradients. The results
demonstrate the effectiveness of gradient sparsification in reducing
the upload communication cost. On the other hand, a few recent
studies also proposed to use dropout [8] and model pruning [30] to
reduce the size of the broadcast global model. Our framework can be
further improved following this idea: before the training starts, the
server broadcasts the initialized global generator to all the local par-
ties. Then, during training, instead of broadcasting the entire global
generator, the server only sends the parameters of the common
layers G0 and the corresponding branch Gi to the party Pi , which
is enough for Pi to produce the synthetic data X̃ i = Gi (G0)(Z ) on
the local side (see Section 5.2). The improvement not only reduces
the download communication but also prevents the local parties
from inferring the inputs of the other parties.

7.3 Protection for the Uploaded Gradients
In this paper, we apply DP perturbation to the discriminator and
enforce privacy guarantees to the generator according to the post-
processing property. Nevertheless, even though the global generator

Figure 11: Four-way AVD between the real and synthetic
data with respect to different gradient sparsity ratios.

is not directly trained on the local data, the gradients derived by
the local discriminators may still reveal sensitive information about
local data. Considering that recent studies in FL [6, 29] adopt SMC
or local differential privacy (LDP) for encrypting or perturbing local
updates, such protection techniques may also be applicable to our
framework. For instance, we can use SMC protocols to encrypt the
real gradients on the local side before sending them to the server.
In this way, the server cannot obtain the individual real gradients
but only the sum of all the gradients after the decryption. However,
the use of SMC protocols may increase the communication and
computational cost of the framework due to the key generation
and exchange process. On the other hand, LDP-based solutions add
random noise to the local gradients, which will not largely affect
efficiency. Nevertheless, it may cause significant utility loss due to
the limited number of local parties under the vertical setting. Hence,
how to protect the uploaded gradients regarding security, utility,
and efficiency will be an important direction for future work.

8 CONCLUSION
Due to the great variety in service scenarios, user data in real-
life applications are often vertically partitioned and distributed
among different local parties. Although it is of great benefit for data
analysts to explore the hidden correlations of attributes of all the
local parties, publishing the vertically-partitioned data raises both
privacy and utility concerns.

In this paper, we follow the idea of synthetic data generation
and propose VertiGAN, the first GAN-based framework for pri-
vately publishing vertically-partitioned data. Different from the
prior statistics-based solutions, our framework adopts a distributed
GAN architecture, where a global generator is adversarially trained
with a group of local discriminators to learn the distribution of all
parties’ local data and used to directly generate synthetic integrated
data on the server side. Moreover, we apply DP perturbation during
the training process to ensure strict privacy guarantees for the
local data. Experimental evaluation with real-world datasets shows
that our framework significantly outperforms the statistics-based
baseline algorithms for publishing high-dimensional vertically-
partitioned data. The synthetic data generated by our framework
preserves very similar statistical properties as real data and can
replace real data for data mining and model training tasks.
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