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Abstract
Solving inverse problems using Bayesian methods can become prohibitively
expensive when likelihood evaluations involve complex and large scale numer-
ical models. A common approach to circumvent this issue is to approximate
the forward model or the likelihood function with a surrogate model. But also
there, due to limited computational resources, only a few training points are
available in many practically relevant cases. Thus, it can be advantageous to
model the additional uncertainties of the surrogate in order to incorporate the
epistemic uncertainty due to limited data. In this paper, we develop a novel
approach to approximate the log likelihood by a constrained Gaussian process
based on prior knowledge about its boundedness. This improves the accur-
acy of the surrogate approximation without increasing the number of training
samples. Additionally, we introduce a formulation to integrate the epistemic
uncertainty due to limited training points into the posterior density approx-
imation. This is combined with a state of the art active learning strategy for
selecting training points, which allows to approximate posterior densities in
higher dimensions very efficiently. We demonstrate the fast convergence of our
approach for a benchmark problem and infer a random field that is discretized
by 30 parameters using only about 1000 model evaluations. In a practically
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relevant example, the parameters of a reduced lung model are calibrated based
on flow observations over time and voltage measurements from a coupled
electrical impedance tomography simulation.

Keywords: Bayesian inverse problem, Gaussian process, active learning

1. Introduction

Computational modeling of physical phenomena has gained huge importance in all fields of
engineering and applied science. However, most models rely on parameters that can not be
measured directly and have to be calibrated. Some selected recent applications from our own
group range from photoacoustic image reconstruction [1], calibration of multiphase porous
media model parameters to predict tumor growth [2], the determination of diffusion paramet-
ers for laser powder bed fusion models [3] to the analysis of material parameters in coupled
multi-physics biofilmmodels [4]. A common approach is to solve this problem by formulating
it as a least-square minimization problem with a regularization term [5, 6]. However, this leads
to ill-posed problems and a.o., the resulting point estimates do not capture measurement errors
and can be misleading. By formulating the calibration task as a Bayesian inverse problem,
the uncertainty of the measurements can be incorporated, and additionally, prior knowledge
can be integrated. Rather than a point estimate, the Bayesian solution provides a probability
distribution for the uncertain parameters given the noisy measurements. For practically relev-
ant problems, the inference task can not be solved analytically. Nevertheless, the distribution
can be approximated using sampling [7–9], particle [10–13], or variational methods [14–17].
Generally, sampling and particle methods require a large number of evaluations of the compu-
tational model, which can be prohibitive for expensive models. Most variational methods, on
the other hand, need the gradient of the model outputs with respect to the uncertain parameters,
which can be impractical for complex, potentially coupled solvers.

In scenarios where the likelihood function is intractable, Approximate Bayesian
Computation (ABC) methods can be applied to estimate posterior distributions [18–20]. ABC
methods generate samples from the posterior distribution by comparing observed data to data
simulated from the model, typically using a distance metric and accepting samples that fall
within a predefined threshold. While ABC is a powerful tool for complex models, it often
requires a large number of model evaluations to generate sufficiently many accepted samples,
especially in high-dimensional parameter spaces. Additionally, the choice of the distance met-
ric and acceptance threshold can significantly affect the efficiency and accuracy of the results.
In this work, we assume that the likelihood function is tractable but requires the evaluation of
an expensive simulation model.

In order to reduce the number of computationally expensive forward model evalu-
ations, various surrogate modeling approaches have emerged, ranging from polynomial chaos
expansion [21, 22], adaptive sparse grid collocation methods [23], Bayesian neural networks
[24], to Gaussian process regression [4, 25–28]. Nevertheless, in higher stochastic dimensions,
surrogate methods often fail to capture the true posterior as the necessary number of forward
evaluations increases exponentially with the number of input dimensions in order to cover the
whole input space sufficiently.

In addition to conventional black box surrogate modeling approaches, there has been an
increasing trend within the research community towards physics-constrained surrogate mod-
els. These models integrate prior knowledge of the underlying physics, governing equations,
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or constraints into the modeling process. Due to the additional information also higher dimen-
sional inverse problems or uncertainty quantification tasks can be tackled as demonstrated
in [29–31]. However, for the application of these approaches, the surrogate model has to be
adjusted to each investigated forward model, which is often inconvenient when, like in our
case, quite different classes of problems should be tackled. Hence, our attempt in this paper is
to develop and present efficient black box surrogate approaches.

In [27], it is shown how the epistemic uncertainty due to a limited number of forward solver
evaluations can be incorporated into the posterior of the uncertain parameters using a Bayesian
surrogate such as a Gaussian process. Similarly, [32] models the surrogate uncertainties and
extends on this idea by choosing the training samples systematically in high posterior prob-
ability regions to reduce the necessary number of forward model calls. Nevertheless, for high
dimensional and independent model outputs, even the Gaussian process model can become
prohibitively expensive as an independent Gaussian process has to be trained and evaluated
for each output. In such cases, it can be beneficial to approximate the (unnormalized) log like-
lihood function instead of the model outputs, as only a scalar value has to be approximated.
Kandasamy et al [33] follow this approach and propose to select new training samples by max-
imizing the exponentiated variance of the surrogate model response. Similarly, [34] chooses
new training samples by maximizing the entropy of the approximated posterior distribution.
However, both approaches do not consider the boundedness of the log likelihood function,
which can serve as substantial additional information for the surrogate approximation without
the necessity for additional forward solver evaluations.

In this work, we approximate the log likelihood function by a Gaussian process to reduce
the number of computationally expensive forward model evaluations. Further, we exploit the
knowledge about the boundedness of the log likelihood function by constraining the surrogate
response for improved predictive accuracy. To avoid overconfident and potentially inaccurate
results, we incorporate the epistemic uncertainty of the surrogate due to limited training points
into the posterior distribution of the uncertain parameters. The scalability of our approach to
higher dimensions is additionally enabled by an adaptive sampling scheme adopted from [33].

The rest of the paper is structured as follows: In section 2, we introduce our novel approach
to solve Bayesian inverse problems. In section 3, we investigate three numerical examples to
test our approach. Finally, we provide a conclusion in section 4.3

2. Methodology

Consider a computationally expensive forward model M : Rnx → Rnobs which takes the para-
meters x ∈ Rnx as inputs. For given noisy observations of themodel output yobs ∈ Rnobs , the goal
is to infer the corresponding input parameters x. The one-dimensional vector yobs can consist
of measurements at different times, at different locations, of vector-valued quantities, or taken
from different fields. For simplicity, we assume that the measurement error ϵ is additive:

yobs =M(x)+ ϵ. (1)

In a Bayesian framework, we aim to find a posterior distribution of the input parameters:

p(x|yobs)∝ p(yobs|x)p(x) , (2)

3 Generally, we use plain letters for scalar, boldface letters for vector-valued, and capital letters for matrix-valued
quantities. The code for this paper is implemented in the in-house code QUEENS [35].
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where p(yobs|x) denotes the likelihood and p(x) the prior distribution. Here, we model the
likelihood by a normal distribution with covariance Σn:

p(yobs|x)∝ exp

(
−1
2
∥yobs −M(x)∥2Σn

)
. (3)

This is just one popular choice and the extension of our approach to other distributions that
are based on a distance measure between yobs and M(x) is straightforward.

2.1. Surrogate Modeling of the Log Likelihood

For complex forward models, the posterior distribution in (2) is typically not available analyt-
ically. Furthermore, classical sampling methods such as Markov Chain Monte Carlo (MCMC)
would require an enormous amount of likelihood evaluations, which is infeasible for compu-
tationally expensive forward models. Therefore, we propose to approximate the log likelihood
(up to a constant) by a surrogate model in order to reduce the number of likelihood eval-
uations drastically compared to classical sampling methods. To be precise, the exponent of
the likelihood function f(x) =− 1

2 ∥yobs −M(x)∥2Σn
is approximated by a Gaussian process

fs ∼ GP(µ(x),k(x,x ′)), which is defined by a mean function µ(x) and covariance function
k(x,x ′) [36]:

µ(x) = E [fs(x)]

k(x,x ′) = E [( fs(x)−µ(x))( fs(x
′)−µ(x ′))] . (4)

The distribution of the function values fs at N given points X ∈ RN×nx can be derived as:

fs|X∼N (µ(X) ,K(X,X)) , (5)

where the covariance matrix is evaluated as K(X,X)i,j = k(Xi,Xj). For a given set of training
observationsD = {(x(i), f(i))|i = 1, . . .,N)} the function value fs at a point x follows a normal
distribution [36, 37]:

fs|x,D ∼N
(
m,s2

)
m= µ(x)+ k(x,X)

[
K(X,X)+σ2

f IN
]−1

( f−µ(X)) ,

s2 = k(x,x)− k(x,X)
[
K(X,X)+σ2

f IN
]−1

k(X,x) (6)

where σ2
f denotes an independent and identically distributed Gaussian measurement noise on

the observed function values f. Here, we only consider deterministic forward solvers, meaning
we can observe the log likelihood function without uncertainty, as we do not consider model
inaccuracies. Nevertheless, we optimize the variance term as this can often lead to improved
predictive accuracy in sparse data scenarios [38]. As a covariance function, we use the squared
exponential kernel with signal variance σ2

s and characteristic lengthscales l ∈ Rnx :

k(x,x ′) = σ2
s exp

(
−

nx∑
i=1

(xi− x ′i )
2

2l2i

)
, (7)

but there is no restriction to choose another kernel. Besides the training set D, the surrogate
response fs is also dependent on the hyperparameters θ = [σ2

f ,σ
2
s , l].
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Evidently, the approximated unnormalized log likelihood function f(x) =
− 1

2 ∥yobs −M(x)∥2Σn
can not be larger than zero as ∥yobs −M(x)∥2Σn

⩾ 0. We can even

find a lower estimate b̂< 0 for the upper bound of f(x), which further improves the predictive
accuracy of the surrogate. The estimate is based on the distribution of

b(yobs) =−1
2
∥yobs −M(x)∥2Σn

=−1
2
γ, γ ∼ χ2 (nobs) , (8)

where χ2 denotes the chi-squared distribution (see appendix). We choose a conservative estim-
ate for the upper bound b̂ that satisfies Pr(b⩽ b̂) = 0.95, meaning that the probability that the
actual upper bound b is larger than b̂ is only 5%. In the unlikely event that we encounter a
training point with a value larger than b̂, we update the upper bound to this value. The con-
straint is enforced on the Gaussian process based on virtual observation points as described in
[37, 39]. To enable efficient predictions, the approach is simplified by using only one virtual
observation point xv that coincides with the point x, meaning that we do not enforce the con-
straint in the whole domain, but only at xv = x. Conditioned on the event ζ := fs(xv)⩽ b̂ this
leads to a truncated normal predictive distribution (see appendix):

p( fs|x, ζ,θ,D) = T N (m,s2,−∞, b̂))

=
1

0.5(1+ erf( b̂−m√
2s
))

1√
2πs

exp

(
− ( fs−m)2

2s2

)
Ifs⩽b̂, (9)

where the mean m and the variance s2 are defined as in equation (6) and depend on the hyper-
parameters θ. The posterior of the hyperparameters can be obtained using Bayes’ rule:

p(θ|D)∝ p(D|θ)p(θ) , (10)

with the likelihood p(D|θ) =N (0,K(X,X)+σ2
f IN) [36]. For the prior p(θ), we choose inde-

pendent exponential distributions with small rate parameters, such that the prior is rather unin-
formative but still has a regularizing effect. The posterior p(θ|D) is analytically intractable,
but we can draw samples from it using sampling methods such as Hamiltonian Monte Carlo
[8, 9]. The computational cost of evaluating the likelihood p(D|θ) increases cubically with
the number of training samples N due to the inversion of the covariance matrix K(X,X). With
more elaborate techniques, the computational cost can be reduced to O(N2) [40]. However,
this is beyond the scope of this work, as we only consider problems where the evaluation of
the forward model for more than several thousand times would be infeasible. Similar to [37],
we neglect the dependency of the hyperparameters on the constraint ζ to reduce the numerical
complexity of the surrogate model, i.e. p(θ|D, ζ)≈ p(θ|D). With the approximated posterior
p(θ|D, ζ) the hyperparameters can be marginalized to propagate their uncertainty to the pos-
terior of fs:

p( fs|x, ζ,D) =

ˆ
p( fs|x, ζ,θ,D)p(θ|D, ζ)dθ

≈ 1
nθ

nθ∑
j=1

p( fs|x, ζ,θj,D) , θj ∼ p(θ|D) . (11)

This is referred to as fully Bayesian Gaussian process regression, whereas the approach of
taking a maximum likelihood estimate for the hyperparameters is called type II maximum
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likelihood or ML-II [41]. Analogously we will refer to the approach using the maximum-
a-posteriori (MAP) estimate for the hyperparameters as MAP-II.

In the following, we derive an approach to incorporate the surrogate uncertainties into
the approximation of the posterior p(x|yobs) in (2). As we approximate the likelihood in the
log space, we have to transform the uncertainties into the original space where we solve
the Bayesian inverse problem. Therefore we introduce the random variable g := exp( fs),
which serves as our approximation of the unnormalized likelihood. Using the rule for the
transformation of random variables, the probability density function for g can be derived as
(see appendix):

p(g|x, ζ,D)≈ 1
nθ

nθ∑
j=1

2

g
√
2πsj

(
1+ erf

(
b̂−mj√

2sj

)) exp

(
−
(lng−mj)

2

2s2j

)
I0⩽g⩽exp(b̂), (12)

where mj and s2j are defined as the mean and the variance in equation (6) for a given hyper-
parameter sample θj. The cumulative density function (CDF) of this distribution is given as:

Fg (g|x, ζ,D)≈ 1
nθ

nθ∑
j=1

1+ erf
(

lng−mj√
2sj

)
1+ erf

(
b̂−mj√

2sj

) . (13)

The CDF provides the probability that the unnormalized likelihood is smaller or equal to a cer-
tain value g. So we can prescribe Fg(g|x, ζ,D) = q, solve the equation for the corresponding
value g, and use this value as our approximator for the unnormalized likelihood Zp(yobs|x),
where Z is a constant. In other words, the inverse CDF F−1

g (q) = g gives us an approxim-
ation g of the unnormalized likelihood, which we are certain about with probability q, that
the true unnormalized likelihood is smaller or equal to this value. With increasing quantile
q the values of the approximation of the unnormalized likelihood grow in regions with high
epistemic uncertainties due to limited training points. The idea is here that we prefer to overes-
timate the likelihood instead of underestimating it in order to reduce bias and explore regions
with high epistemic uncertainty due to limited data points in an adaptive sampling setting
(see section 2.3). Analogously, the inverse CDF or upper confidence bound is also commonly
used in Bayesian optimization as an acquisition function to choose new training points for
the Gaussian process [42–44]. Although the inverse CDF of (13) can not be written in closed
form, it can be solved efficiently using iterative methods such as Newton’s or Chandrupatla’s
method [45]. As the cost of evaluating our estimator of the likelihood increases linearly with
the number of hyperparameter samples nθ, we also consider a more efficient approximator
based on the MAP estimate of θ:

θMAP = argmax
θ

p(θ|D) . (14)

If we approximate the posterior of the hyperparameters with p(θ|D)≈ δ(θ−θMAP) the
inverse CDF can be written as:

F−1
g (q)≈ exp

[
erf−1

{
q

(
1+ erf

(
b̂−mMAP√

2sMAP

))
− 1

}
√
2sMAP +mMAP

]
. (15)

Finally, the posterior distribution of the input parameters in (2) is approximated as:

p(x|yobs,D) ∝̃F−1
g (q)p(x) . (16)
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Figure 1. Approximation of the likelihood p(yobs|x) =N (0.5,0.001) with three train-
ing points. The left plot shows the unconstrained Gaussian process approximation of the
log likelihood (up to a constant). The middle plot shows the constrained Gaussian pro-
cess approximation. The right plot shows the target likelihood and the approximations
using the GPMAP-I and CGPMAP-II approach with q= 0.90.

Figure 2. Approximation of the likelihood p(yobs|x) =N (0.5,0.001) with two train-
ing points. It shows the target likelihood and the approximations using the GPMAP-
I, CGPMAP-II, and CFBGP (nθ = 100) approach with q= 0.90 (left) and q= 0.99
(right).

In the following, we denote the approach using the MAP estimate of the unconstrained
Gaussian process predictions fs, and therefore not considering any surrogate uncertainties, as
GPMAP-I. Whereas, if the Gaussian process is constrained, the MAP estimate for the hyper-
parameters is used, and the uncertainties are incorporated using the inverse CDF in (15) we
refer to this approach as CGPMAP-II. Accordingly, if the hyperparameters are marginalized
we refer to the constrained fully Bayesian Gaussian process approach as CFBGP.

In figure 1, the approximation of a generic one-dimensional Gaussian likelihood p(yobs|x) =
N (0.5,0.001) using three training points is shown. The left plot shows the unconstrained
Gaussian process approximation of the unnormalized log likelihood f. The middle plot shows
the constrained Gaussian process approximation, which narrows the confidence intervals and
reduces the epistemic uncertainty. The right plot shows the corresponding true target likeli-
hood and the approximations using the GPMAP-I and CGPMAP-II approach with q= 0.90.
It can be seen that due to the consideration of the surrogate uncertainty, the support of the
likelihood approximation is wider and covers the whole support of the target likelihood when
using the CGPMAP-II approach compared to GPMAP-I. The approximation using GPMAP-I
is overconfident and can lead to more biased posterior approximations.

Figure 2 visualizes the different approximations of the same likelihood but with only two
training points. The approximation is most biased when using the GPMAP-I approach and the
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least biased when using the CFBGP approach. The bias is also reduced when using a higher
quantile q= 0.99 compared to q= 0.90 for CGPMAP-II or CFBGP.

2.2. Sequential Monte Carlo for Bayesian Inference

Generally, the normalized posterior in (16) can not be solved analytically. Nevertheless, we
can obtain a particle representation of the form [27]:

p(x|yobs,D)≈
np∑
i=1

wi δ (x− xi) (17)

using Sequential Monte Carlo (SMC). Several variations of this method have been studied,
but the key idea is to start from a particle presentation of the known prior distribution and
sequentially move these particles toward the posterior distribution via bridging distributions.
Most algorithms consist of an importance sampling step between the bridging distributions,
a resampling step based on the weights wi, and rejuvenation steps to mitigate degenerate
weights. The rejuvenation steps are usually performed using MCMC. For technical details the
interested reader is referred to [10–13]. Here we use the waste-free algorithm of the Python
particles library, which uses the samples of the intermediate MCMC steps as particles [11, 46].
Nevertheless, also other methods such as variational inference or gradient-based Monte Carlo
methods can be used to compute an approximation of the posterior distribution in (16).

2.3. Adaptive sampling strategy

The accuracy of the approximated posterior distribution of the input parameters in (2) is
strongly influenced by the choice of the training points for the surrogate. A common approach
is to draw (quasi-)random samples from the prior distribution and use them as training points.
In low stochastic dimensions, this can work well. However, the necessary number of training
points increases exponentially with the number of input dimensions with this approach. For
expensive forward models, this can become infeasible rapidly. Numerous criteria have been
proposed for the selection of optimal training points, such as maximizing the mutual inform-
ation between the chosen points and the points that are not selected [47] or minimizing the
posterior integrated variance [48].

The main difference between the use case here and most other regression problems is that
a high accuracy of the surrogate model is only required in regions of x with high posterior
probability. In [34], the authors use this insight and propose to choose a new training point
that maximizes the entropy of the posterior distribution approximation of x, which is a random
variable itself. Similarly, [33] proposes to choose a new training point where the exponentiated
variance of the Gaussian process that approximates the log of the joint probability p(x,yobs)
is maximal.

Here, we adapt the approach proposed in [32] as shown in algorithm 1: we first draw a
few initial samples from the prior distribution to train the surrogate. Here, this means drawing
samples from the hyperparameter posterior p(θ|D) or calculating θMAP. Based on this sur-
rogate, we can draw samples from the approximated posterior distribution in (16) and use a
few of these samples as additional training samples. Again the surrogate is constructed using
all evaluated samples of the forward model to draw samples from the approximated posterior
distribution. This process is repeated until the difference between the approximated posterior
distributions between the iterations is negligible.
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Algorithm 1. Adaptive sampling strategy.

1. Set j= 0
2. Draw samples from prior distribution and evaluate forward model to obtain training set

Dj = {(xi, f(xi)}N0
i=1, xi ∼ p(x)

3. Train surrogate model based on Dj

4. Use SMC to obtain particle representation of intermediate posterior distribution
p(x|yobs,Dj)≈

∑np
i=1wi δ(x− xi)

5. do
i. Set j = j+ 1
ii. Draw samples from intermediate posterior distribution and evaluate forward model to

obtain training set D̂j = {(xi, f(xi)}Nada
i=1, xi ∼ p(x|yobs,Dj−1)

iii. Train surrogate model based on Dj = {D̂j,Dj−1}
iv. Use SMC to obtain particle representation of intermediate posterior distribution

p(x|yobs,Dj)≈
∑np

i=1wi δ(x− xi)
while D̂CS (p(x|yobs,Dj),p(x|yobs,Dj−1))> αtol

To assess the difference between the particle representation of two distributions, we intro-
duce a discrepancy measure that is reliable, computationally cheap, and symmetric. First, we
compute a kernel density estimate (KDE) of the particle representation of the distribution with
a Gaussian kernel. Subsequently, we can calculate the Cauchy–Schwarz divergence between
the two KDEs in closed form [49]. Still, for a large number of mixture components, meaning
particles, this becomes computationally expensive, and in high dimensions, a large number of
particles is necessary for an accurate representation of the distribution. Hence, we only com-
pute the divergence measure between the marginal distributions and just use a subset of 5000
particles, which is sufficient for an accurate representation of the distribution in one dimen-
sion. In essence, we evaluate the maximal Cauchy–Schwarz divergence between the marginal
distributions of the two compared distributions:

D̂CS (p(x) ,q(x)) : = max
xj∈{1,...,nx}

DCS(p(xj)q(xj))

= max
xj∈{1,...,nx}

− ln

 ´
p(xj)q(xj)dxj√´

p(xj)
2 dxj
´
q(xj)

2 dxj

 , (18)

using KDE approximations of the particle representations. In the following, we use the
discrepancy measure defined in (18) as a convergence measure by evaluating the measure
between intermediate posterior distributions (see algorithm 1). Further, we use the measure to
assess the accuracy of posterior approximations by comparing them to a reference posterior
approximation.

The adaptive sampling strategy using CFBGPwith nθ = 100,N0 = 5,Nada = 5 is visualized
in figure 3. The current training points Dj and newly drawn training points D̂j are indicated
by white dots for each iteration j. For the underlying problem the prior distribution p(x) is
uniform with bounds [−5,5] and the likelihood is taken from [15]: p(yobs|x)∝ exp(−U(x)),
where U(x) = 1

2 (
∥x∥−2
0.4 )2 − ln(exp{− 1

2 [
x1−2
0.6 ]2}+ exp{− 1

2 [
x1+2
0.6 ]2}).

Using adaptive sampling, the number of forward model evaluations can be reduced drastic-
ally compared to naively drawing samples from the prior distributions. Nevertheless, there is
a chance that not all regions of the true posterior distribution with significant probability are
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Figure 3. Visualization of adaptive sampling strategy using CFBGP with nθ = 100,
N0 = 5, Nada = 5. Current training points Dj and new training points D̂j are shown
for each iteration j. The prior distribution p(x) is uniform with bounds [−5,5] and the

likelihood is taken from [15]: p(yobs|x)∝ exp(−U(x)), where U(x) = 1
2

(
∥x∥−2
0.4

)2
−

ln
(
exp

{
− 1

2

[ x1−2
0.6

]2}
+ exp

{
− 1

2

[ x1+2
0.6

]2})
.

discovered. This risk can be reduced by choosing a high quantile q in (13) to weigh the sur-
rogate uncertainties stronger. This underlines the importance of modeling the uncertainties of
the surrogate model in order to capture the true posterior distribution with a feasible amount
of forward solver evaluations. In the adaptive sampling setting, the quantile q can be viewed
as a trade-off factor between exploitation and exploration, as high values of q lead to more
exploration, and low values of q lead to more exploitative sampling. Additionally, we would
like to point out that the used adaptive sampling strategy allows for batch-wise evaluations
of the forward model and consequently the possibility of using the available computational
resources efficiently.

3. Numerical examples

In the following, we test our approach on three numerical examples. First, we investigate
the convergence of the algorithm to the true solution for a generic Gaussian likelihood.
Subsequently, we infer the diffusivity field for a diffusion problem and finally, we look at
a practically relevant example with a coupled forward solver.
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Figure 4. KL-divergence over the number of solver calls for nx = 10. The number of
initially and adaptively drawn training samples is set to N0 = 20 and Nada = 10.

3.1. Artificial inverse problem with generic Gaussian likelihood

To test the convergence to the true posterior, we analyze an artificial inverse problemwhere the
posterior distribution of the uncertain parameters can be derived analytically. The prior is given
as p(x) =N (0, Inx) and the likelihood follows a normal distribution p(yobs|x) =N (a,σ2Inx),
where the mean vector is sampled from a standard normal distribution a∼N (0, Inx) and
the likelihood variance is set to σ2 = 10−4. The posterior distribution can be derived as
p(x|yobs) =N ( 1

1+σ2 a, σ2

σ2+1 Inx). We quantify the accuracy of the approximated posterior dis-
tribution p(x|yobs,D) by evaluating the Kullback–Leibler (KL) divergence [50]:

DKL (p(x|yobs) ,p(x|yobs,D)) =

ˆ
p(x|yobs) ln

p(x|yobs)
p(x|yobs,D)

dx. (19)

To evaluate the KL divergence, we approximate the particle representation of p(x|yobs,D) by
a normal distribution, parameterized with the empirical mean and covariance of the particles.

Subsequently, we can compute the KL divergence between the approximated and the true
posterior analytically. In figure 4, the KL-divergence is plotted over the number of solver
calls for nx = 10. For better comparability, the KL-divergence is averaged over ten runs of
the algorithm with different training point initializations drawn from the prior. The number of
initially and adaptively drawn training samples is set to N0 = 20 and Nada = 10. We compare
the convergence for the three considered approaches GPMAP-I, CGPMAP-II, and CFBGP
with quantile q= 0.90 and nθ = 100 hyperparameter samples and use 2000 particles and 25
rejuvenation steps for the SMC algorithm. It can be seen that when the samples are drawn
naively from the prior distribution, the convergence of the approximation to the true posterior
distribution is comparatively slow. On the other hand, when the samples are drawn adaptively
using Algorithm 1, all considered approximations converge to a good approximation of the
true posterior within less than 100 solver calls. The marginal posterior distributions of the true
posterior and an approximation using the CFBGP approach with 100 solver calls are shown in
figure 5. The results might imply that the uncertainty of the Gaussian process does not have to
be modeled. However, the log likelihood function of the investigated problem is very simple,
which is not the case in more realistic applications, such as in the following examples.
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Figure 5. KDE of marginal posterior distributions of the true posterior p(x|yobs) and an
approximation using the CFBGP approach with 100 solver calls and nθ = 100.

3.2. Inference of diffusivity field

In the second example, we consider the following diffusion problem:

∇· (D(c)∇u(c)) = 10, c ∈ Ω (20)

u(c) = 0, c ∈ ∂Ω (21)

where c denotes the coordinates in the domain Ω, D(c) denotes the diffusivity coefficient at
location c and u(c) is a spatially varying density. The PDE is solved using the finite element
FEniCS library [51, 52] with a 20× 20 mesh of bilinear quadrilateral elements. The prior of
the diffusivity coefficient is modeled as a lognormal random field based on a normal random
field G with zero mean and covariance function

Cov [G(c) ,G(c ′)] = exp

[
−
∥c− c ′∥22

2l2G

]
(22)

where lG = 0.2. The prior of the field is discretized using the Karhunen–Loève expansion [53]:

D(c|x) = exp(G(c|x)) = exp

(
k∑

i=1

xiϕi (c)

)
(23)

where ϕi are the eigenfunctions of the covariance function, weighted by the square root of the
corresponding eigenvalues, and the coefficients xi are normally distributed random variables
with unit variance. The number of expansion terms is set to k= 30, which allows to preserve
99% of the variance of the field G. The goal is to infer a posterior distribution of the coef-
ficients xi for given observations of the density u. In order to create artificial observations,
we draw a random sample from the prior distribution p(x), reconstruct the diffusivity field
using equation (23), solve the discretized forward problem in (21), evaluate the density u at
all 361 nodes inside the domain Ω, add independent and normally distributed noise with vari-
ance 10−4 and collect the observations in the vector yobs. The generated diffusivity field and
corresponding solution field are shown in figure 6.
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Figure 6. Ground truth of the diffusivity field D and the corresponding solution u.

Figure 7. Reference solution of the inverse problem using SMC. The mean and the
standard deviation of the posterior of the diffusivity field D are shown.

As a reference solution, we solve the inverse problem without a surrogate using SMC with
3000 particles and 30 rejuvenation steps, which leads to almost three million model evalu-
ations. Figure 7 shows the mean and the standard deviation of the obtained posterior distri-
bution. It can be seen that the mean aligns well with the ground truth solution and that the
uncertainty of the posterior is maximal in the bottom corners.

For our proposed approach, we set N0 = 40 and Nada = 20 and use 3000 particles and 30
rejuvenation steps for the SMC algorithm. As a convergence criterion, we choose αtol = 10−2.
The convergence of the algorithm using the CGPMAP-II approach and using the CFBGP
approach with q= 0.90 and nθ = 100 hyperparameter samples is visualized in figure 8. It
shows the discrepancymeasure defined in (18) between the intermediate posterior distributions
D̂CS (p(x|yobs,Dj),p(x|yobs,Dj−1)) that is used as a convergence measure. Further, it shows the
discrepancy measure between the posterior approximations and the reference solution using
MCMC D̂CS (p(x|yobs,Dj),p(x|yobs)), which serves as an accuracy measure.
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Figure 8. Discrepancy measure defined in (18) between the intermediate posterior dis-
tributions D̂CS (p(x|yobs,Dj),p(x|yobs,Dj−1)) that is used as a convergence measure
(left). Discrepancy measure between the posterior approximations and the reference
solution usingMCMC D̂CS (p(x|yobs,Dj),p(x|yobs)), which serves as an accuracy meas-
ure (right).

The convergence criterion is met after 980 solver calls using the CGPMAP-II approach and
after 1080 solver calls if the CFBGP approach is used. However, the discrepancy D̂CS to the
reference solution indicates that the accuracy of the approximated posterior is slightly higher
when using the CFBGP approach. Nevertheless, the approximated posterior mean and standard
deviation of the field are very accurate in both cases, as they align well with the reference
solution (see figures 7 and 9). The high accuracy is also evident when looking at the posterior
marginals of the inferred coefficients in figure 10. It can be seen that the marginal posterior
approximations align well with the reference solution. As the coefficients xi correspond to the
weighted eigenfunctions ϕi with decreasing eigenvalue with increasing index i, the marginal
posterior variance of xi increases with increasing index i. It must be noted that due to the added
measurement noise and the used prior information, the ground truth does not usually align with
the mode of the posterior marginals but lies within regions of significant probability mass.

On the other hand, when using the GPMAP-I approach, the SMC algorithm becomes
unstable and terminates due to numerical issues after 320 solver calls. Due to the exploitative
nature of the GPMAP-I approach, the algorithm puts new training points in local maxima of
the posterior far off the global maximum, and due to the unboundedness and exponentiation
of the Gaussian process, the posterior approximations become very sharp with small variance.
Ultimately, this leads to a failed Cholesky decomposition in the MCMC step of the SMC
algorithm due to extremely close training points. This highlights the importance of consider-
ing the surrogate uncertainties for more complex likelihoods if the adaptive sampling strategy
in algorithm 1 is applied, as this encourages exploration and prevents getting stuck in local
optima.

3.3. Inference of stiffness field in a human lung model

To this day, respiratory diseases are one of the leading causes of death and affected patients
often require mechanical ventilation as a life-saving measure. Especially for diseased, i.e. het-
erogeneous lungs, adequate adjustment of ventilation parameters is a balancing act between
sufficient oxygenation of the blood and removal of carbon dioxide from the lungs, and min-
imizing damage to lung tissue, a potential side effect triggered and exacerbated by ventilation.
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Figure 9. Posterior mean and standard deviation of the diffusivity field D using the
CGPMAP-II approach (top row) and using the CFBGP approach with nθ = 100 hyper-
parameter samples (bottom row).

Due to the high inter-patient variability, a patient-specific ventilation strategy is crucial, but
also challenging: at the bedside, physicians usually only have the global ventilation measure-
ments at hand to customize the ventilation parameters, which do not deliver insight into the
local lung behavior. However, it is the individual heterogeneity of diseased lungs that requires
deeper local insight and understanding. Computational and patient-specific models can help
providemore information about local phenomena and tissue conditions and ultimately advance
the development of protective and patient-specific ventilation strategies.

With the presented method to solve inverse problems, we investigate in a simplified
application-oriented example a well-established reduced dimensional model of the human
lungs. Assuming measurements observable at the bedside (ventilation measurements and elec-
trical impedance tomography, see below), we determine with the presented approach inversely
the material parameters of the lung model, which eventually may allow to draw conclusions
about the local conditions in a patient’s lungs. The lung model was developed in our group (see
e.g. [54, 55]) and is implemented in the in-house code 4C [56]. The human lungs are supplied
with air by a conducting airway tree that begins at the trachea and gradually branches to distal
regions of the organ. In each so-called generation, an airway branches into two smaller air-
ways. In total, the human lungs comprise around 23 generations, with the first 17 generations
acting as a purely conducting airway network. Under various assumptions, the Navier–Stokes
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Figure 10. KDE of marginal posterior distributions of the field coefficients x of the
reference solution, using the CGPMAP-II approach and using the CFBGP approach
with nθ = 100 hyperparameter samples and the ground truth.

equations that describe the 3D fully resolved air flow in conducting airways and their visco-
elastic wall mechanics can be integrated along the coordinates of the idealized cylindrical air-
ways. This leads to the following simplified equations for each airway element of the model
[54, 55, 57]:

C
d
dt

(
1
2
(Pin +Pout)− P̃ext

)
+Qout −Qin +C ·Rvisc

d
dt

(Qout −Qin) = 0,

I
2
d
dt

(Qin +Qout)+
1
2
(Rµ +Rconv) · (Qin +Qout)+Pout −Pin = 0, (24)

where C describes capacitive, I inductive and R resistive effects of the system. The airways
are coupled by the interfacing pressures Pin,Pout and flow rates Qin,Qout at the in- and out-
lets. In this example, the airways are resolved down to the fifth generation, and the remaining
generations are modeled by terminal units which are described by a four-element Maxwell
model reproducing the nonlinear viscoelastic behavior of the distal lung regions. For such a
reduced-dimensional terminal unit, the following relation can be derived from an Ogden-type
material law [58] to mimic its elastic component:

Pa −Ppl/intr =
κ

η

(
Va

Va,0

)−1
(
1−

(
Va

Va,0

)−η
)
, (25)

where Pa denotes the internal alveolar pressure, Ppl/intr the external pleural pressure, Va the
current volume of the terminal unit and Va,0 the initial, stress-free volume. κ and η determine
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the stiffness and curvature of this pressure-volume relation, respectively. For further details on
the lung model, the reader is referred to [54, 55, 57]. We simulate the mechanical ventilation of
an endotracheally intubated patient and therefore prescribe the inlet pressure at the proximal
end of the tube, connected to the ventilator. Besides the measurement of the resulting flow
at the ventilator, the physicians use also electrical impedance tomography (EIT) [59] at the
bedside to get insight into the local ventilation and to adapt the medical therapy accordingly.
Therefore, a belt with 32 electrodes is placed on the chest and small voltages are applied.
The measured voltages at the remaining electrodes depend on the local conductivity inside the
lungs. We can use the strains in the terminal units in a specific time step to evaluate the local
resistivity ρeff based on the conductivity of the alveolar tissue σalv = 0.7284Ω−1m−1 and the
tortuosity τ̄ = 1.71 [55, 60]:

ρeff =
τ̄

σalv

(
5
Va

Va,0
− 4

)
. (26)

As the current volume of the terminal unit Va is time dependent, we can solve the Laplace
equation for a corresponding time step:

∇·
(

1
ρeff (c)

∇u(c)
)
= 0, c ∈ Ω, (27)

using EIDORS [61] where u denotes the voltage and Ω the thorax domain. Diseased lungs of
patients that undergo mechanical ventilation often exhibit a very heterogeneous state of lung
tissue resulting in inhomogeneous straining and thus ventilation of the organ. This alternating
material behavior is included in the model by a local variation of the stiffness parameter κ
similar to [55]. This functions in the following as quantity of interest in the inverse problem
as these are crucial parameters for clinical application and patient-specific models. However,
in this study, we will not elaborate further on the clinical case but just use this highly relevant
problem as motivation to construct a challenging example. Similarly to the previous numerical
example, the prior of the stiffness parameter is modeled as a lognormal random field based on
a normal random field G with zero mean and the covariance function in (22) with lG = 100.
Again, the prior of the field is discretized using the Karhunen–Loéve expansion:

κ(c|x) = κmin +κscale exp(G(c|x)) = 500 [Pa] + 2000 [Pa]exp

(
k∑

i=1

xiϕi (c)

)
. (28)

We set k= 11 such that 99% of the variance of the field G can be reproduced. The choice for
the parameters κmin = 500Pa and κmax = 2000Pa is based on experiments about the mechan-
ical behavior of lung tissue [62, 63]. For the inverse analysis, we use flow measurements at the
ventilator at 539 time points as well as 928 EIT voltage measurements at eight time points as
observations. In this paper, we focus on demonstrating the suitability of our approach for such
kinds of problems. Hence, we refrain from using and explaining in detail, real clinical meas-
urements. Thus, analogously to the previous example, the artificial observations are generated
by drawing a random sample from the prior p(x), solving the reduced dimensional lung model,
solving the Laplace equation at the defined eight time steps (see figure 12), and adding inde-
pendent and normally distributed noise to the observations. In total, this yields 7424 voltage
measurements and 539 flow measurements. We set the noise variance for the voltage meas-
urements to 10−8[V2] and for the flow measurements to 10−4[(l/s)2]. The realization of the
stiffness field κ that is used to generate the observations is shown in figure 11 and the obtained
measurements are visualized in figure 12.
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Figure 11. Ground truth of the stiffness field κ. The airway branches are shown in grey
and the colored spheres represent the terminal units.

Figure 12. Flowmeasurements at the ventilator (left). The dotted lines indicate the eight
points in time when the EIT measurements are conducted. The right plot shows the
measurements of all 32 electrodes at the first time of measurement. In total, there are 32
configurations with 29 measurements leading to 928 measurements at each time step,
which are indicated here by the measurement index.

We create a reference solution of the posterior p(x|yobs) without a surrogate model using
SMC with 2000 particles and 25 rejuvenation steps, which leads to 652 000 model evalu-
ations. For our proposed method, we set N0 = 16, Nada = 8, αtol = 10−2, q= 0.90 and use
2000 particles and 25 rejuvenation steps for the SMC algorithm. Figure 13 shows that the con-
vergence criterion is met after 312 solver calls using the CGPMAP-II approach and after 304
solver calls using the CFBGP approach with nθ = 100. Whereas, when using the GPMAP-I
approach, the solution oscillates and does not reach the convergence criterionwithin 400model
evaluations. In this example, the algorithm converges slightly faster when we marginalize
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Figure 13. Discrepancy measure defined in (18) between the intermediate posterior
distributions D̂CS (p(x|yobs,Dj),p(x|yobs,Dj−1)) that is used as a convergence meas-
ure (left). Discrepancy measure between the posterior approximations and the reference
solution using SMC D̂CS (p(x|yobs,Dj),p(x|yobs)), which serves as an accuracy measure
(right).

Figure 14. KDE of marginal posterior distributions of the field coefficients x of the
reference solution, using the CGPMAP-II approach, using the CFBGP approach with
nθ = 100 hyperparameter samples and the ground truth.

the hyperparameters (CFBGP) compared to using the MAP estimate of the hyperparameters
(CGPMAP-II). Moreover, the accuracy of the approximated posterior distribution is consider-
ably higher when using the CFBGP approach. Still, both approaches (CFBGP and CGPMAP-
II) deliver a good approximation, which is also visible from the posterior marginals of the field
coefficients x in figure 14, which shows that the marginal posterior approximations align well
with the reference solution using SMC.

Further, the posterior marginals of the field κ at the terminal units in figure 15 support the
impression that the approximations align well with the reference solution. Nevertheless, the
marginal posterior distributions in figure 14 also reveal that the approximation using CFBGP
is slightly more accurate compared to CGPMAP-II and that the posterior approximation using
CGPMAP-II is a little overconfident due to the neglection of the hyperparameter uncertainty.
As in the previous example, the ground truth does not usually align with the mode of the pos-
terior marginals but lies within regions of significant probability mass due to the added meas-
urement noise and the used prior information. There is a trend of increasing marginal posterior
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Figure 15. KDE of marginal posterior distributions of the field κ at the terminal units
(e.g. κ1 := κ(c1|x), where c1 is the location of terminal unit 1) of the reference solution,
using the CGPMAP-II approach, using the CFBGP approach with nθ = 100 hyperpara-
meter samples and the ground truth.

variance of the coefficients xi with increasing index i, as they correspond to the weighted eigen-
functions ϕi with decreasing eigenvalue with increasing index i. However, the variance of the
marginal posteriors of xi is not strictly increasing with index i due to locally varying influence
on the observations, especially to the EIT observations. Generally, the variance of the posterior
marginals of the field κ at the terminal units increases with increasing distance to the plane of
the EIT electrode belt due to the decreasing influence on the measured voltages.

In this example, we also conduct a comparison with waste-free SMC [46] in terms of the
number of forward model evaluations as well as the overall computation time (see figure 16).
For the comparison, we parameterize the SMC algorithm with 256 particles and use nrs = 5
and nrs = 10 rejuvenation steps, respectively. We prescribe that at most eight forward mod-
els can be executed in parallel on a remote CPU cluster, and the training and evaluation of
the surrogate models is conducted on a local GPU (Quadro RTX 4000). It can be seen that
SMC with nrs = 5 yields the least accurate result and that the accuracy of SMC with nrs = 10
is comparable to the accuracy of the CGPMAP-II approach. However, the number of forward
model evaluations and the total computation time of SMC with nrs = 10 is about two orders
of magnitude higher than for CGPMAP-II. In this example, the computational overhead due
to training and evaluating the surrogate model is relatively small for CGPMAP-II, and con-
sequently, the reduced number of forwardmodel evaluations also translates to a large reduction
in overall computation time. The accuracy of CFBGP is significantly higher than for the other
approaches, and the number of forward model evaluations is more than two orders of mag-
nitude lower than for SMC with nrs = 10. Nevertheless, the computational overhead due to the
surrogate model is significantly larger than for CGPMAP-II. Still, the computational time is
around 38 times lower than for SMC with nrs = 10. It can be expected that for an SMC con-
figuration that yields the same degree of accuracy, the factor by which the computational time
is reduced is significantly higher. Additionally, the computational time of one forward model
evaluation is still rather small at approximately 50 seconds in this example. This is due to
the deliberate choice of the rather small fidelity of the reduced lung model, which still allows
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Figure 16. Discrepancy measure between the posterior approximations and the refer-
ence solution using SMC D̂CS (p(x|yobs,Dj),p(x|yobs)), which serves as an accuracy
measure. Accuracy is plotted against the number of forward model calls (left) and
against the total computation time (right). As a comparison, SMC with 256 particles
and nrs = 5 and nrs = 10 (rejuvenation steps) is shown.

us to generate an accurate reference solution in order to quantify the quality of our proposed
approach. For models with higher fidelity, the computational time of one model evaluation
can take several hours, drastically reducing the relative computational time overhead due to
the surrogate model.

4. Conclusion

In this work, we propose an approach to solve Bayesian inverse problems with expensive like-
lihood models and high dimensional model outputs using Gaussian processes. In this novel
approach, the number of likelihood evaluations is drastically reduced by choosing the training
samples of the Gaussian process adaptively by sampling from intermediate posterior distri-
butions. In addition, we incorporate the prior knowledge about the boundedness of the log
likelihood function in our regression model for increased accuracy of the predictions. As a
further improvement, we incorporate the epistemic uncertainty of the surrogate model due to
limited training points, where we use the inverse CDF of the transformed predictive distribu-
tion. We show accuracy and efficiency in terms of the number of forward model evaluations of
the method for a generic problem with analytical solution, as well as for a diffusion problem
with 30 uncertain parameters. In a practically relevant example, the stiffness field of a reduced
dimensional human lung model that is coupled with an EIT simulation is inferred using only
a small number of model evaluations. The given examples, investigating the proposed method
in the context of a diffusion problem and a human lung model, underlined the necessity to
model the surrogate model uncertainties in high dimensional and complex inverse problems,
as the adaptive algorithm does not converge within the given computational bounds when the
uncertainty and boundedness of the Gaussian process were neglected (GPMAP-I). Integrating
out the hyperparameters increases the computational cost of the Gaussian process predictions
significantly, such that only a small number of hyperparameter samples can be used to solve
the integral. Therefore, significant improvements are only visible in the final and most com-
plex example when marginalizing the hyperparameters (CFBGP) compared to using the MAP
estimate of the hyperparameters (CGPMAP-II).
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The efficiency of our proposed black box surrogate algorithm relies on the combination
of three techniques, namely adaptive sampling, the consideration of epistemic uncertainties,
and the enforcement of the constraint on the surrogate model. The first numerical example
shows how the adaptive selection of training samples reduces the necessary number of forward
model evaluations, especially in higher stochastic dimensions. The second and third numer-
ical examples show how important the consideration of the surrogate uncertainties is for the
stability of the algorithm in combination with the active learning approach. Finally, the con-
straint on the Gaussian process helps to improve the accuracy of the approximation without
any additional forward model evaluations.

In this paper, we use SMC as inference scheme andGaussian processes as surrogate models.
It must be noted that for the proposed approach, also other inference schemes besides SMC can
be used, such as variational inference. In addition, other surrogate models besides Gaussian
processes can be employed as long as they possess the ability to quantify the predictive uncer-
tainty and accommodate the upper bound constraint. Here, we only consider Gaussian likeli-
hoods, but the approach can be extended to other likelihoods by modifying the upper bound
constraint.
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Appendix

A.1. Upper bound estimate

The random variable b(yobs) =− 1
2 ∥yobs −M(x)∥2Σn

follows a chi-squared distribution:

b(yobs) =−1
2
∥yobs −M(x)∥2Σn

, yobs ∼N (M(x) ,Σn)

=−1
2
ϵ⊤Σ−1

n ϵ, ϵ∼N (0,Σn)

=−1
2

nobs∑
i=1

ϵ̂2i , ϵ̂i ∼N (0,1)

=−1
2
γ, γ ∼ χ2 (nobs) (29)
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A.2. Simplified constrained Gaussian process

Following [37] the predictive distribution of the constrained Gaussian process with one virtual
observation point xv = x and the event ζ := fs(xv)⩽ b̂ is given as:

fs|x, ζ,D ∼N (µ(x)+A(ζ −µ(xv))+B( f−µ(X)) ,Σ) , (30)

where

ζ ∼ T N
(
µ(xv)+A1 ( f−µ(X)) ,B1,−∞, b̂

)
, (31)

and

A1 = k(xv,X)
(
K(X,X)+σ2

f IN
)−1

A2 = k(x,X)
(
K(X,X)+σ2

f IN
)−1

= A1

B1 = k(xv,xv)−A1k(X,xv)

B2 = k(x,x)−A2k(X,x) = B1

B3 = k(x,xv)−A2k(X,xv) = B1

A= B3B
−1
1 = IN

B= A2 −AA1 = 0

Σ= B2 −AB⊤
3 = 0. (32)

Consequently, the predictive distribution simplifies to:

fs|x, ζ,D ∼ T N
(
µ(x)+A2 ( f−µ(X)) ,B2,−∞, b̂

)
. (33)

A.3. Transformation of continuous random variable

g= exp( fs) =: T( fs)

pg (g) = pfs
(
T−1 (g)

)∣∣∣∣ ddgT−1 (g)

∣∣∣∣
pg (g|x,D) = pfs (lng|x,D)

1
g

=
1
nθ

nθ∑
j=1

2

g
√
2πsj

(
1+ erf

(
b̂−mj√

2sj

)) exp

(
−
(lng−mj)

2

2s2j

)
I0⩽g⩽exp(b̂) (34)

A.4. Consistency of likelihood estimation

For an infinite number of training points N, the predictive distribution of the Gaussian pro-
cess in (6) becomes a Dirac distribution with exact mean, independent of the hyperparameter
sample. Consequently, the addends in (13) become identical to each other and for q ∈ (0,1)
the inverse CDF can be written as:
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lim
s→0

m→lng

exp

[
erf−1

{
q

(
1+ erf

(
b̂−m√

2s

))
− 1

}
√
2s+m

]
= g,

which shows that our chosen estimator for the unnormalized log likelihood is consistent.
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