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Abstract—Researchers and practitioners alike increasingly often
perceive flaky tests as a major challenge in software engineering.
They spend a lot of effort trying to detect, repair, and mitigate
the negative effects of flaky tests. However, it is yet unclear where
and to what extent the costs of flaky tests manifest in industrial
Continuous Integration (CI) development processes.

In this study, we compile cost factors introduced by flaky tests
in CI development from research and practice and derive a cost
model that allows gaining insight into the costs incurred. We then
instantiate this model in a case study of a large, commercial
software project with ∼30 developers and ∼1M SLoC. We
analyze five years of development history, including CI test logs,
commits from the Version Control System (VCS), issue tickets,
and tracked work time to quantify the cost factors implied by
flaky tests. We find that the time spent dealing with flaky tests
in the studied project represents at least 2.5% of the productive
developer time. This effort is divided into investigating potentially
flaky test failures, which accounts for 1.1% of the total time
spent, repairing flaky tests adds another 1.3%, and developing
tools to monitor flaky tests adds 0.1%. Contrary to most other
studies, we find the cost for rerunning tests to be negligible and
inexpensive. Automatically rerunning a test costs 0.02 cents, while
not rerunning and thus letting the pipeline fail results in a manual
investigation costing $5.67 in our context. The insights gained
from our case study have led to the decision to shift effort from
investigation and repair to automatically rerunning tests.

Our cost model can help practitioners analyze the cost of flaky
tests in their context and make informed decisions. Furthermore,
our case study provides a first step to better understand the costs
of flaky tests, which can lead researchers to industry-relevant
problems.

Index Terms—flaky tests, continuous integration, regression
testing, cost modeling, industrial case study

I. INTRODUCTION

Regression testing is a testing activity commonly performed
in CI environments to ensure that introduced changes do not
break existing system behavior [1, 2, 3]. The developers’ trust in
the correctness of the software depends on the reliability of test
results [4]. A test case that shows different test results on two
different occasions yet with identical environmental factors (for
example, the same code under test) is commonly referred to as
a flaky test [5]. According to recent developer surveys [6, 7, 8]
and industrial studies [4, 5, 9], flaky tests are a growing problem
in regression testing and a major source of development

costs [10, 11]. Microsoft [4] and Google [10], for instance,
report 4%–16% of tests to involve flakiness and 1.5% of CI
test runs to be flaky. Therefore, researchers and practitioners
invest a lot of effort to understand flaky tests [12, 13] and to
mitigate their negative impacts by automatically detecting flaky
tests [14, 15, 16], determining their root causes [4, 17, 18],
and repairing them [19, 20].

The existing studies either provide a qualitative overview
of the life cycle of flaky tests [12, 14, 21, 22, 23, 24, 25,
26, 27, 28] or technical solutions for one phase of the life
cycle [15, 16, 17, 18, 29, 30, 31, 32, 33, 34, 35]. However, it
is unclear how different phases contribute to the overall cost
of flaky tests in CI development processes.

In this study, we analyze and quantify the factors driving
the cost behind flaky tests in industry-scale CI development
environments together with our industry partner CQSE. There-
fore, we identify both well-studied and relatively unknown
cost factors from research and practice, synthesize them into
a cost model, and discuss common strategies for how these
factors are balanced in different contexts. Then, we conduct a
case study on up to five years of the development history of a
large-scale software project at CQSE, where we quantify and
further flesh out the cost factors from our model. In particular,
we (1) revisit the costs for rerunning failed tests and thereby
detecting flaky failures [10, 14, 36], and study the so far widely
unknown cost incurred in (2) investigating test failures, (3)
repairing flaky tests, and (4) managing and developing flaky
test monitoring.

The results of our case study indicate that in the given
context, the cost for automatically rerunning failed tests is
negligible at $3 per month (0.63% of all test executions).
In contrast, at least 2.5% of total developer time is spent
investigating, repairing, or managing flaky tests, for example,
monitoring them. We find these numbers are likely a lower
bound by asking developers from CQSE for their feedback and
experience with different cost factors related to flaky tests.

To be precise, a failed test results in a failed pipeline, which
requires average costs of $5.67 worth of manual investigation
by developers. In the case of a flaky test failure, rerunning the
test can suppress the failure, at a cost of $0.02. Based on these
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findings in this specific context, we recommend shifting effort
from expensive developer time to relatively cheap compute
time by increasing the maximum number of reruns for failed
test cases. These test cases are regression tests that support the
decision as to whether the commit under test can be merged
safely, that is, whether the commit will not introduce new
bugs. Consequently, assuming that flaky failures are caused
by a defect in the System under Test (SuT) that existed prior
to the commit under test, ignoring them is a valid option.
Nevertheless, as flaky failures might still indicate a problem in
the SuT, the flaky behavior of tests needs to be monitored and,
if necessary, repaired. At CQSE, this strategy is implemented
by automatically rerunning failed tests up to five times instead
of once, and logging flaky failures. To maintain a high-quality
test suite and prevent non-deterministic defects from going
into production, the most frequently failing tests are examined
during weekly assessments and tickets are created to repair
them. After implementing the new strategy for five months, we
find that 4.8% of all test suite executions, or every ∼20th test
suite execution, has at least one flaky failure that is detected
by the new strategy and would have gone unnoticed by the
previous strategy.
In summary, this paper makes the following main contributions:

• Flaky Test Cost Model: Our study is the first to compile
cost factors from research and practice to derive a cost
model for flaky tests in CI.

• Industrial Case Study: We analyze 5 years of development
data from an industry-scale CI development environment
to understand costs related to flaky tests. At CQSE, our
insight led to a more cost-efficient strategy for handling
flaky tests.

II. COST MODEL

As the cost of flaky tests in CI development processes is
largely unstudied, we need to identify the most relevant cost
factors associated with flaky tests in CI development. This
section first compiles a set of cost factors and their context-
specific input parameters from research and practice. These cost
factors form a cost model, which aims to create transparency
about costs incurred by flaky tests. On the one hand, this
can help practitioners properly allocate resources for dealing
with flaky tests along with domain knowledge. On the other
hand, it can help researchers identify relevant problems for
their research. The way we structure our cost model into cost
factors and their context-specific input parameters is inspired
by previous research on cost modeling in the context of
regression testing [37, 38]. Based on this model, we then
present common strategies for dealing with flaky tests from
different practical contexts and discuss scenarios where one
strategy outperforms another. While we do not expect our
cost model to be universally complete in every context, it
consolidates previous research and practical insights and thus
serves as a guideline for cost analysis in CI development.

A. Cost Factors

Below we present cost factors derived from previous studies
and discussions with our industry partner CQSE. Each cost
factor depends on input parameters that are specific to a given
context or project and aims to represent the cost for a predefined
period (for example, for one month, to reason about total
monthly cost).

1) Test Case Rerunning: The goal of regression testing is to
detect regression bugs introduced by the commit under test, and
thereby decide whether the commit can be merged safely [2].
Assuming that the reason for a flaky failure is usually not
introduced by the commit under test, flaky failures can be
ignored when deciding whether to merge a commit. However,
they do demand attention during subsequent processes. One
might argue that a test can also pass flakily, and thus require
reruns. In CI regression testing, tests are often run against small
changes, so most tests rarely cover changes. Thus, they run
under approximately the same conditions many times in the
normal development workflow, resulting in the identification of
non-deterministic issues without explicitly rerunning potentially
flaky passes. In addition, developers perceive consequences
from flaky failures, such as false alerts, as more critical than
undetected bugs resulting from “flaky passes” [26, 14]. We
therefore consider this well-established industry practice of
rerunning failed test cases to be a reasonable approach.

In academia, the supposedly high cost of rerunning failed
tests is often used to motivate the need for new approaches to
detect flaky failures or flaky tests [15, 34, 31, 39, 16, 40]. In
line with the literature on rerunning flaky tests [31, 14, 15],
the cost for test case running, Crerun, is driven by the context-
specific input parameters nrerun, the number of test case reruns,
and ctest, the cost for executing a test case.

Crerun = nrerun · ctest (1)

If tests tend to be particularly flaky, nrerun will be higher.
While ctest is typically driven primarily by test duration and
the cost for compute time, there may also be significant test or
infrastructure setup costs associated with rerunning tests, for
example, in the context of hardware-in-the-loop test stands [41].

2) Failure Investigation: CI pipeline failures can indicate
newly introduced regressions caused by changes to the software.
Accordingly, developers must investigate each pipeline failure
to determine the cause [42].

The effort of investigating pipeline failures is measured in the
time spent by developers tinv. The cost for pipeline investigation
Cinv is calculated by multiplying the time spent tinv by the
hourly developer rate cdev. As we will discuss in Section IV-B,
restarting a job that failed due to a test is a common strategy
to verify that a test failed flakily. Therefore, we also include
the number of pipeline jobs restarted, nrestart, and multiply it
by the cost per job run, cjob.

Cinv = tinv · cdev + nrestart · cjob (2)

3) Repairing Flaky Tests: A flaky test is the observed non-
deterministic behavior of a test case. Repairing a flaky test
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refers to the process of making a test case deterministic, or at
least reducing the probability of an unintended verdict. Even
though the term flaky test suggests that the reason for the
non-deterministic behavior lies in the test, it can also lie in the
SuT [21, 26]. Consequently, repairs of flaky tests can modify
the test, the SuT, or both.

Repairing flaky tests can be tedious and time-consuming, yet
crucial if the reliability of test results is to be increased [19].
While achieving complete stability may be unfeasible for certain
test types, like User Interface (UI) tests [5, 9, 43], repairing
such tests can still reduce their flakiness.

Similar to the cost for investigating pipeline failures, the cost
for repairing flaky tests, Crepair, can be inferred from the cost
for developers, cdev, multiplied by the time to repair, trepair.

Crepair = trepair · cdev (3)

Repairing flaky tests can include improvements to the
SuT [12], which also incurs costs but also has a beneficial
effect on the SuT.

4) Development Delays: Failing pipelines can delay merging
and integrating changes [8] and ultimately negatively impact
release plans [44]. In particular, if the round-trip time between
branching and merging a change is high, the probability
of merge conflicts increases, which can be costly to fix.
Flaky failures increase this time, leading to higher merge and
integration efforts and thus higher costs. On an organizational
level, delaying releases or failing to ship a feature with a
scheduled release due to blocked pipelines can reduce customer
satisfaction, resulting in additional delay costs.

We denote the additional required development time caused
by delays, as tdelay dev. Thus, the additional cost for delays
is obtained by multiplying the additional development time
tdelay dev by the developer cost per time cdev and adding the
organization-wide delay costs cdelay org (for example, reduced
customer satisfaction or market competitiveness). Note that
the organizational delay cost cdelay org is already an amount of
currency and is thus not multiplied by some cost per time. We
decided to conclude it in one variable as it is not proportional to
the delay time. A feature that is delayed but still released within
the same release cycle will not affect customer satisfaction
or market competitiveness and thus cost while only a slightly
longer delay might if it causes the feature to be released in
the next release cycle.

Cdelay = tdelay dev · cdev + cdelay org (4)

5) Flaky Test Management: Several studies [21, 45] and
blog articles (for example, from Spotify [46] and GitHub [47])
describe efforts in building flaky test management systems to
store, visualize, and manage information about flaky tests.

The costs for developing and using flaky test management
systems, Cmanage, are thus driven by the developer cost per
time, cdev, as well as the time spent for flaky test management
efforts, tmanage:

Cmanage = tmanage · cdev (5)

Note that this cost factor may also include additional
developer efforts related to systematically analyzing a system
(for example, using static or dynamic program analysis [4])
to better understand sources of flakiness as a whole, besides
investigating or repairing specific flaky tests.

6) Production Bugs: Rahman and Rigby show that ignored
(or quarantined [49]) flaky tests can degrade the product
quality [48], which can, for instance, manifest in production
bugs encountered by customers.

We define nbug to be the number of missed bugs that go to
production and cbug the average cost per production bug.

Cbugs = nbug · cbug (6)

The cost per production bug can be influenced by directly
incurred costs, such as liability issues, or indirect costs, such
as loss of prestige and, thereby new customers. These costs
also include the cost for fixing the bug, which is expected to
be generally higher after release, as localizing and fixing the
cause may take longer in hindsight [38, 50].

B. Total Cost

The cost factors form a cost model, which can be used to
calculate the total costs induced by flaky tests. The total cost
of flaky tests in CI, Ctotal, is calculated as the sum of the
individual cost factors in a given context:

Ctotal = Crerun + Cinv + Crepair + Cdelay + Cmanage + Cbugs (7)

Note that this model aims to evaluate the cost of flaky tests in a
static environment, not to predict the impact of future decisions.
However, the insights it provides and expert knowledge about
a specific project can help guide decisions.

C. Cost for Strategies in Practice

Existing studies of flaky tests present different strategies for
dealing with flaky tests in different contexts. To demonstrate
how the cost model can be used to compare such strategies,
we briefly discuss four simplified strategies:
• Heavy-rerun: The Heavy-rerun strategy implies that tests

are rerun many times before a failure is reported as such.
By not reporting flaky failures but ideally only deterministic
ones, the cost for investigating flaky failures is reduced.
The cost of this strategy is mainly driven by Crerun and
if the flakiness originates from the SuT, Cbugs. A variant
of Heavy-rerun has reportedly been used in large-scale
industrial software at Google [10] and SAP [40].

• Immediate-fix: With the Immediate-fix strategy, developers
are encouraged to investigate and repair flaky tests when
they first occur. The costs are mainly Cinv and Crepair. We
have found one mention of this strategy in the regression
testing literature [51] and a moderate form at Microsoft [21].

• Quarantine-test: The Quarantine-test strategy suggests quar-
antining, that is, ignoring known flaky tests to prevent them
from slowing down the development process. Although
initially seeming plausible, a case study has shown that
flaky tests have a strong ability to reveal deterministic
faults [52]. When quarantining, the main cost factor is
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Cbugs, as production bugs may occur more frequently if
critical parts of the software are not covered by tests other
than the ignored ones [28, 48, 49, 52]. Reportedly, the
Quarantine-test strategy has also been used at Google by
quarantining flaky tests [49, 53].

• Investigation-only: The Investigation-only strategy basically
implies that there is no systematic way to handle flaky tests.
Developers are responsible for individually investigating
the cause of pipeline failures and deciding whether the
change can still be integrated. The driving cost factors are
thus Cinv and Cbugs since developers may fail to assess the
situation correctly. We expect such a strategy to be useful
for small or rather early-stage projects, where flaky tests
are rare and a pragmatic ad hoc strategy makes sense.

III. STUDY SETUP

We will instantiate the model derived in Section II at our
industry partner CQSE in Section IV. Therefore, in this section,
we describe the context and the data sources we use to quantify
the cost factors in detail.

A. Study Subject

CQSE operates with a widely adopted tech stack and
adheres to common development practices. To facilitate a
deeper comprehension of our case study, we describe both,
the technical and the process-related aspects with a particular
emphasis on flaky tests.

1) System Description: The software system analyzed in
this study (see our case study in Section IV) has ∼1M Source
Lines of Code (SLoC) stored in a monolithic code repository
and ∼30 developers actively developing on it. The software is a
distributed system. The backend is primarily developed in Java,
runs multiple jobs for computationally intensive analysis tasks,
runs user management functionality, and provides a REST API
for the front-end. The front end is developed in Typescript and
provides a web-based user interface for the analysis results
and allows users to configure the analysis jobs.

2) Development Process: Throughout the software devel-
opment process, JIRA is used to track all issues, such as new
features, bugs, or flaky tests that need to be repaired. Tickets
are assigned to developers, who typically create a new git
branch for each ticket and develop on it locally. These feature
branches are usually directly merged into the main branch.
Release branches, branching of the main branch, are created
for every major or minor release version increment, for example,
2.8.x, 2.9.x, and 3.0.x.

Each code submission to the code repository (that is git
push) triggers a GITLAB CI pipeline, which is depicted in its
rough structure and dimensions in Figure 1. A pipeline consists
of four stages for compiling, analyzing, testing, and distributing
the code (packaging and deploying). The testing stage runs
the regression test suite in 16 jobs, 8 of which run UI tests.
The UI tests are particularly interesting in our study because
they are most prone to flakiness. Each UI test job executes,
on average, about 150 test cases, making a total of ∼1,100
UI test cases in a single pipeline. Currently, a total of ∼2,000

compile

analyze

test

distribute

ui:dashboard

ui:commons-lang

backend:api

backend:unit

…

…

MoveAppTest.testMoveUp()

MoveAppTest.testMoveDown()

MoveAppTest.testMoveTab()

AddAppTest.testAddEmpty()

AddAppTest.testAddCustom()

...

4 stages 8 jobs
executing UI tests

~1,100 UI test cases
in all jobs combined

Fig. 1: Structure and dimensions of the CI pipeline.

pipelines are executed per month. In the case of a passing
pipeline, the development continues normally. On the other
hand, a failed pipeline needs to be manually investigated, and
can have different reasons why the pipeline failed (we discuss
these in more detail in Section IV-B), such as deterministic
test failures. Developers can fix these according to their typical
workflow. In contrast, if the developer suspects the test failure
to be a flaky failure, the process is as described next.

3) Flaky Test Process: Firstly, to ensure that the failure was
not deterministic but flaky, the developer can manually restart
the entire pipeline job. Secondly, if the developer is certain that
the failing test cannot exercise the changed code and the test
is known to be prone to flakiness, the failure can be ignored.
Thirdly, in consultation with the reviewer, a change may even
be merged despite a failed test. In any case, if the test is newly
identified as flaky, a ticket is created in JIRA to repair that test.

At CQSE, flaky failures most often occur in automated UI
tests. With these tests, no functionality is mocked, so they test
the system end-to-end. All UI tests are considered potentially
flaky and are rerun exactly once after failure. For tests that
frequently fail flakily, the maximum number of reruns can be
temporarily set to 10, but in this case, a high-priority JIRA
ticket will be created to repair that test in the short term. For
tests other than UI tests, no automatic rerunning is applied.
Flaky failures detected by rerunning are centrally collected in
an internal tool called Flickering Tracker. This tool, developed
since 2019, allows for tracking the flakiness of tests. A timeline
of each test shows when it failed flakily, and information such
as the stack trace and possibly screenshots are provided for
each flickering failure. Through a JIRA integration, existing
tickets for each test are displayed, and a new ticket can be
created to fix it. As of today, the Flickering Tracker is being
used and developed by a pipeline stability project group.

This effort shows, among other things, that the awareness of
flaky tests is deeply rooted among engineers, and accordingly,
great efforts are already being made to mitigate their negative
effects. Besides rerunning and monitoring, no automated tech-
niques to mitigate the negative effects of flaky tests are applied
to date, as it is common in practice [8]. Also, no “investigation
aid” like a flaky failure detector [15, 31], or automatic approach
to find the location [29] or root cause [4, 17] is applied.
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B. Data Sources

To quantify the cost factors we need to determine the input
parameters needed to calculate the individual cost factors. To do
this, we access data from the company’s JIRA, GIT, GITLAB,
and SLACK systems. Below, we describe the available data
points and how we use them in our case study. Table I provides
an overview of the data sources and the period we use for our
case study.

TABLE I: Data sources used in our case study.

System Data Period

Jira Booked time for investigating pipeline failures 6 months
Tickets incl. description, booked work time, ... 5 years

Git Changes made in every JIRA ticket 5 years
Gitlab CI data, mainly test executions 6 months
Slack Manually labeled pipeline failure cause 6 months

Jira: At CQSE, the issue tracker JIRA contains all tickets
from software development. Each ticket includes a description,
comments, and the total work time booked. In addition, the
corresponding GITLAB merge requests are automatically linked
to the completed tickets.

Our study uses data from five years, from the beginning
of 2018 to the end of 2022. As cost is the central aspect of
our study, we use the booked work time per ticket. To put the
absolute numbers into perspective, we additionally report the
total time spent on product development by summing up the
times booked on all tickets in the investigated period.

Git: For each JIRA ticket that is resolved, we use the
corresponding Git commit to extract the changes. This is used
to determine if flaky tests have been repaired in the SuT or
the test (see Section IV-C). This information is available for
the same period as the JIRA data.

GitLab: Every resolved JIRA ticket is connected to a
merge request in GITLAB. For each merge commit in the
closed merge requests, a pipeline is executed. A pipeline is
also triggered for each push to GITLAB. We query all pipelines
and their jobs executing UI tests with available metadata, for
example, job results and duration. We parse the jobs’ logs to
extract individual test execution verdicts and rerun counts.

This data is used for the six months from September 2022
to February 2023. Due to a recent migration of the GITLAB
system, no data is available before this period. For this timespan,
we collect 13,300 pipelines with 90,500 jobs executing UI tests,
including 10.3M individual test runs. Of these pipelines, 6,880
failed, and of those 2,720 failed due to failing UI tests.

Slack: A failing pipeline targeting the main or a release
branch triggers a bot to post this event in a dedicated developer
channel in SLACK. These events are investigated by the pipeline
officer, a role assigned weekly to a member of the pipeline
stability project group. The pipeline officer labels the pipeline
failure according to the reason for failure in SLACK with one of
four categories: build failure (for example, compilation errors
due to integration issues), deterministic test failure, flaky test
failure, and infrastructure problem (for example, connection
to external services such as a remote artifact repository).

Additionally, the pipeline officer takes some action due to
the failure and adds a label for the action taken in SLACK.
This could be one of quick fix (the issue was fixed with the
next commit), restart (the job was manually restarted), or JIRA
(a ticket was created for the failing test). Since this process is
relatively new, we also use the data from September 2022 to
February 2023.

IV. CASE STUDY

To obtain transparency and a detailed understanding of costs
for flaky tests in CI for the previously described context, we
instantiate the cost model presented in Section II in a real-world
case study at CQSE. Consequently, in the first step, we must
identify the relevant cost factors in this context. We do this in
collaboration with developers from CQSE and find the factors
test case rerunning (Crerun), failure investigation (Cinv), flaky
test repair (Crepair), and flaky test management (Cmanage) to be
most relevant for the software project at hand. Contrary to
our initial assumptions, costs for potentially missed production
bugs (Cbugs) and development delays (Cdelay) are not perceived
as a relevant problem as reported by developers. Moreover,
developers perceive flaky tests as a problem mostly with UI
tests (see Section III-A), so we limit the cost analysis in our
case study to these types of tests.

After identifying the relevant cost factors in this context, we
formulated the following four Research Questions (RQs) to
quantify each factor and steer the case study:
RQ1 What is the cost for automatically rerunning failed tests?
RQ2 What is the cost for investigating failed pipelines?
RQ3 What is the cost for repairing flaky tests?
RQ4 What is the cost for management of flaky tests?
We further defined costs for one month as the target granularity
for estimating the total costs. Therefore, the cost factors
quantified based on the answers to all RQs are averaged to fit
this granularity.

A. Cost for Automatically Rerunning Tests

1) Approach: A log capturing the standard output and error
streams is available for each job. By parsing all logs from
September 2022 to February 2023, we obtain 10,266,054
individual test executions (including reruns). These test ex-
ecutions are split over 1,166 different test cases. For every
test case, between 1 and 17,517 executions, with a mean of
8,812 and a median of 10,970, are obtained. Of these test
cases, 74 have 27 or fewer executions, while the others have
at least 103 executions. These test cases with few executions
are either newly introduced or have been added for a short
period for debugging purposes. We exclude those with 27 or
fewer executions from our analysis since they do not provide
enough data to draw meaningful conclusions.

To estimate the influence of the maximum number of reruns
on the number of flaky failing pipelines, we need to understand
how flaky every test is. Henderson et al. denote the observed
flake rate of a test case t, and hence its probability to fail flakily,
as f̂t =

failing runs
total runs [54]. To obtain f̂t, we use the parsed logs.

Of all 1,092 test cases with at least 103 executions, 357 flaked
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at least once, while 735 did not. Taking into account only test
cases that flaked at least once, we find that the mean flake
rate is 0.30%, the median 0.02%, the lower quartile 0.01%,
the upper quartile 0.91%, and the maximum 10.44% over the
entire six months.

To make further statements about hypothetical scenarios
in addition to actual observations, we make the simplifying
assumption that test runs would be independent and identically
distributed, as implied by Kowalczyk et al. [9] and modeled
every test run as a Bernoulli trial with a probability of failure
of f̂t. Thus, running a test case multiple times can be modeled
as a Binomial distribution B(nmax, f̂t) with nmax being the
maximum number of reruns. The probability of at least one
test failure in a pipeline, despite the automatic rerunning
mechanism, and hence a pipeline failure is then given by

ppipeline failure(nmax) = 1−
∏

t∈tests

(1− f̂1+nmax
t ) (8)

2) Results: We find that 99.37% of all test executions are
no automatic reruns, which would have been executed just as
well without the automatic rerun mechanism. The remaining
0.63% (66,375) are reruns triggered by the automatic rerun
mechanism. This value breaks down into 0.09 percentage points
of flaky failures and 0.54 percentage points of true test failures
(tests that failed all reruns). The total run time of UI test jobs
in the period examined was 55,073 h. The presence of flaky
tests causes the need for the automatic rerun mechanism, so
we attribute the cost for all reruns, even those caused by fault-
revealing, to flaky tests. We, therefore, estimate the run time
caused by flaky tests to be 0.63% of the total run time, or
347 h or 14.46 days.

Using Equation 8, we estimate the share of pipelines that
would have failed despite nmax = {0, 1, .., 5} maximum test
reruns of the automatic rerun mechanism. Note that nmax = 0
reruns means that the initial run is still performed. We find
that the probability of a pipeline failing flakily is 66.63% with
no reruns, 3.41% with one rerun, 0.21% with two reruns, and
0.02% with three reruns. 0.00% is reached with four reruns. To
validate the model, we compare the theoretical pipeline flaky
failure probability with zero reruns (66.63%) with the actual
one assuming there would be no automatic rerun mechanism.
We find that in our study subject, 51.88% of pipelines had at
least one test failure that was detected by the automatic rerun
mechanism, which prevented the pipeline from failing. The
pipeline flaky failure probability would have been 51.88% with
zero reruns. We speculate that the difference between the actual
pipeline flaky failure probability (51.88%) and the calculated
one (66.63%) is due to our simplified assumption that test runs
are independent and identically distributed, which is not entirely
true in practice [15]. However, we believe this difference is
slight, and the general model allows rough estimations. As
briefly discussed in Section IV-C, the origin of flaky tests can
be a non-deterministic occurring fault in the SuT and thus
rerunning can mask newly introduced faults in the SuT.

3) Estimation of Cost Factor: As stated above, the total
number of reruns for September 2022 to February 2023 is

66,375. This results in a monthly average of 11,063 reruns.
The average run time per test case is 19.31 s. Our industry
partner’s computing power1 is billed with 0.044 $

h resulting
in ctest = 19.31s · 0.13 $

h = $236 · 10−6 (or 0.02 cents per
automatic test rerun). We calculate the resulting cost Crerun by
inserting nrerun and ctest into Equation 1:

Crerun = nrerun · ctest

= 11,063 · $236 · 10−6

= $3

RQ1 (Automatic Rerunning): The monthly cost for
automatically rerunning is $3 caused by 0.63% of all test
executions that were reruns. A single automatic rerun
costs 0.02 cents. Automated reruns have shown to be
an effective way to reduce the number of flaky pipeline
failures, but vouches for the risk that faults in the SuT
will go undetected.

B. Cost for Investigating Failed Pipelines

1) Approach: At CQSE, the investigation of failed pipelines
usually starts in GITLAB. Build failures and infrastructure
problems can be quickly identified by the stage of the failing job
or in combination with the error log. To differentiate between
a flaky test failure and a deterministic test failure in a failing
UI test job, developers usually compare the code section likely
covered by the failing test (as there is no testwise end-to-
end code coverage available for UI tests) with the changed
code section. When the sections do not overlap, the failure is
typically identified as flaky. In cases of overlapping sections,
the investigation becomes considerably more complex, often
necessitating local reproduction of the issue, which is both
time-consuming and costly. In doubt, developers often restart
an entire job to see if the test case fails again. Given that
only that one test case is of particular interest, this imposes a
significant overhead. We use the metadata of the executed jobs
to measure how often these job restarts occurred and sum up
the execution time.

A total of 6,878 pipelines failed during the analyzed period
(2,718 of which failed due to failing UI tests). Of all failed
pipelines targeting the main or release branch, 686 have a label
indicating the cause of the failure. Most of these pipelines are
assigned exactly one label; for 34 pipelines, multiple labels
are assigned. For pipelines targeting changes of other branches,
these labels are not available. Furthermore, the action taken in
response to the failure is indicated in 157 cases. This action
can entail job restarts, the creation of JIRA tickets, or the
designation of the failure as resolved with the next commit.

2) Results: By examining the logged work time in JIRA,
we find that the time spent on pipeline investigation during the
studied period amounts to 25:52 h for labeling 686 pipelines.
Consequently, the average time spent investigating a pipeline
failure stands at 2:16 min. This analysis includes the time spent

1Spot instances of Google Cloud’s e2-standard-4 machine
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on pipeline failures stemming from all causes. However, for
the purposes of this study, only the time spent due to flaky
tests is relevant.

Taking into account all branches, a total of 6,878 pipelines
failed between September 2022 and February 2023, with 2,718
of these failures attributed to at least one failing UI test.
For other branches, such as feature branches, the time spent
investigating pipeline failures is not separately tracked. We
deem it reasonable to generalize the average time recorded
for all types of failures to these other data. As previously
mentioned, the identification of build failures and infrastructure
problems is straightforward, while distinguishing between
deterministic and flaky test failures is a labor-intensive process,
as affirmed by developers. Consequently, we adopt the average
time of 2:16 min per investigated pipeline failure as the lower
limit for investigating pipeline failures caused by failing UI
tests. To determine the time spent on all pipeline failures, not
only the labeled set of failures, we multiply 2,718, the count
of pipelines that failed due to UI tests, by the average time
spent investigating pipeline failures (2:16 min), resulting in a
total time spent of 102 h. This accounts for 1.11% of the total
development time expended over these six months.

TABLE II: Labels for pipeline failures of 686 pipelines (36 of
which have more than one label assigned).

Cause Occurrences

Infrastructure problems 278
Flaky failures 206

of which UI tests 96
of which other tests 110

Build failures 134
Deterministic test failures 83

of which UI tests 51
of which other tests 32

Unknown 24

Table II provides an overview of the occurrence of all labeled
causes for pipeline failures. The data reveals that infrastructure
problems were the most prevalent cause for failed pipelines.
These are usually problems with connecting to the repository
manager or other external services that do not affect the testing
stage. In total, 289 pipelines failed due to test failures, with flaky
tests accounting for more than two-thirds of these instances
(206). Furthermore, the data presented in Table II indicates that
96 pipeline failures were caused by flaky tests within the UI
tests and 110 within other tests. Recall that automatic rerunning
is only applied to UI tests. This highlights the significance
of flaky tests in the context of UI tests, as more than half of
the 13,300 pipelines would have failed due to flaky UI tests
without the automatic rerun mechanism (see IV-A1). Also,
there are nearly twice as many pipeline failures caused by UI
test failures as there are true regression bugs.

Data about the action taken is available for 48 pipelines that
failed due to flaky tests. The most common action is to restart
the entire job, which occurred in 24 cases. In 22 instances, a
JIRA ticket was created, and in two instances, the issue was
immediately resolved with the next commit.

From these data, it is evident that manually restarting jobs is a
common strategy for investigation. During the analyzed period,
2.05% (1,858) of all UI test jobs were manually restarted,
accounting for 2.81% (1,493 h) of the total runtime for UI
test jobs. The specific reasons behind each job restart are not
documented, but developers report that this was exclusively
done to identify flaky failures.

In discussions with developers, they confirm that the average
time for investigating a pipeline failure of 2:16 min seems
plausible or rather too low. This time does not include context
switches, which have been shown to significantly negatively
impact developer productivity [55]. In modern development
cycles, where fast delivery plays a crucial role, large regression
test suites and a high number of pipeline executions are
indispensable. Given the substantial number of pipeline runs
and consequently the occurrence of failing pipelines, the time to
investigate test failures within CI pipelines holds significance.

3) Estimation of Cost Factor: Over six months under review,
the time spent on investigating pipeline failures amounts to
102 h. This equates to an average of tinv = 17 h per month.
Additionally, we found that 1,858 jobs were manually restarted,
yielding a monthly average of nrestart = 310. As we cannot
disclose our industry partner’s hourly rate for developers, we set
cdev to 150$/h for our calculations. Thus, we find the developer
cost for investigating one pipeline failure to be $5.67. The mean
runtime of a UI test job is 36:30 min, calculated by dividing
the total runtime over two months (55,073 h) by the total count
of UI test jobs (90,500). Multiplying this average job time
by the hourly rate of computational power at $0.044 yields
cjob = 0.027$. Utilizing these values and Equation 2, the total
cost for investigation Cinv for one month can be calculated:

Cinv = tinv · cdev + nrestart · cjob

= 17h · 150$/h + 310 · $0.027
= $2,550 + $8

= $2,558

RQ2 (Investigating): Examining a single pipeline failure
requires, on average 2:16 min causing costs of $5.67. Due
to the large number of pipeline runs and the resulting large
number of pipeline failures, the time spent investigating
pipeline failures is 1.11% of the total developer time. The
monthly cost incurred is $2,558.

C. Cost for Repairing Flaky Tests

1) Approach: Using JIRA, we search for tickets that either
have “flicker” or “flaky” in the title and were resolved between
January 1, 2018, and December 31, 2022, resulting in 416
tickets. We manually filter out 66 false positives, among
others, tickets related to the development of the Flickering
Tracker. Other excluded tickets described bugs with “flickering”
animations or flaky tests that are not UI tests. After filtering,
350 tickets remain, of which 250 are marked as Done and 100
as Discarded. The primary reason for discarding is duplicate
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TABLE III: Time spent on repairing flaky tests compared to
the total time invested in product development.

Repairing [h] Total [h] Rel. [%]

2018 133 14,600 0.91
2019 128 15,500 0.86
2020 213 20,200 1.10
2021 192 17,500 1.28
2022 211 18,300 1.15

Total 877 84,700 1.04
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Fig. 2: Time spent per ticket grouped by year and region
repaired

tickets. In some cases, tickets are discarded because the flaky
behavior could not be reproduced. Anyhow, until a decision
is made to reject a ticket, the time has already been spent
on the respective ticket, which has also been booked. Booked
times are available for 297 tickets (241 marked as Done, 56
as Discarded).

For 241 completed tickets, a merge request is linked, and the
time spent on the ticket is available. We use GITLAB’s REST
API to gather information about the merge request, particularly
the source commit hash and target commit hash. Using git,
we extract the changes made in each of the tickets on a file
level. Due to unavailable commits, for example, due to rebasing
and housekeeping, this information cannot be obtained for five
tickets, leaving 236 tickets with this information available.

Based on the file path and name, we classify each change into
the part it changed, either the SuT or the test itself. Thereby,
we filter out irrelevant changes, such as formatting adjustments
or changing the annotation from one that reruns a failed test
up to 10 times to the standard one that only reruns it once. Out
of all the merge requests, 39 only change the test annotation;
that is, close the ticket without making any relevant changes.
We filter out these tickets, leaving 197 tickets with relevant
changes. Each ticket exclusively changes either the SuT or the
test, or in some cases, both parts are changed. We determine
this information by aggregating all changes for a merge request
associated with a ticket.

2) Results: Using the time booked repairing flakiness across
all tickets, we find that 877 h were booked during the five-year
study period. The total time spent on product development
within this period accounts for 84,700 h. Throughout the studied
period, 1.04% of developer hours were spent on repairing flaky

tests. Table III shows the time spent on repairing flaky tests
broken down by year. Notably, the percentage of developer
time spent on repairs increases over the years, peaking at
1.28% in 2021 before decreasing slightly in 2023. The left
part of Figure 2 shows that the time spent per ticket constantly
increases. In 2018, the median time booked for each ticket
was 27 min, reaching its maximum of 109 min in 2022. This
suggests that as system complexity increases and test suites
run longer, reproducibility and repair become more difficult.

As changes to the SuT not only cause costs but might also
be beneficial for the developed product, we investigate changes
made when resolving these tickets. We find that 75% of all
repairs exclusively change the test, not the SuT. Of all repairs,
16% involve changes to both the SuT and the test, while 9%
exclusively change the SuT. The right part of Figure 2 breaks
down the time booked into these three categories. For repairs
that exclusively change the test, the median time per ticket is
1:08 h, amounting to a total of 346 h spent on such repairs.
In the case of repairs changing both the test and the SuT, the
median time per ticket is 5:14 h, with a total time of 260 h.
Repairs exclusively modifying the SuT exhibit a median of
1:24 h per ticket, and a combined total of 58 h was expended
on these repairs. In total, almost half of the time was spent
on tickets that at least also change the SuT and thus have
potentially added value for the product.

3) Estimation of Cost Factor: To calculate the cost for
repairs Crepair over a one-month period, we use the time booked
for this task trepair and the developers’ hourly rate cdev. For the
calculation of average monthly time spent, we use 877 h (from
Table III) and a period of five years or 60 months. Thus, we
set trepair = 15h for the target granularity of one month.

Crepair = trepair · cdev

= 15h · 150$/h
= $2,250

RQ3 (Repairing): In the investigated project, up to 1.28%
of the developer’s time was spent repairing flaky tests.
The monthly cost spent on repairing is $2,250.

D. Cost for Managing Flaky Tests

1) Approach: In our specific context at CQSE, we are
aware of various efforts related to flaky test management.
These include the development and maintenance of the internal
tool Flickering Tracker, the development of a custom rerun
mechanism, efforts for annotating tests and creating tickets,
and improving the overall build stability, for example, by
improving the infrastructure. While only the efforts associated
with developing the Flickering Tracker have been documented
in separate tickets, we limit ourselves to this activity. Similar
to the approach outlined in Section IV-C, we queried JIRA for
tickets with Flickering Tracker in the ticket title. By doing
so, we received 16 tickets between April 2020 and December
2022 and manually verified that all of them were related to the
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development of the Flickering Tracker. However, it is important
to mention that these tickets only cover the developmental
history of the Flickering Tracker after its initial development
and integration into the pipeline. As the development of this
tool is an ongoing process, numerous open feature requests
without booked times are excluded from this analysis.

2) Results: The total time spent on the development of the
Flickering Tracker during the study period was 78 h. This
represents 0.14% of developers’ total development time for
2020, 2021, and 2022 (see Table III). We are aware that
this number by no means includes all costs. Nevertheless,
it can be argued that this effort probably makes good business
sense, as visualization tools were reported as the top desire
for information and tools in a developer survey [14].

3) Estimation of Cost Factor: The calculation for the
monthly cost for managing flaky tests Cmanage follows Equa-
tion 5. As the tracked 78 h discussed in Section IV-C were
booked across 33 months, we calculate the average time for
one month and set tmanage to 2.4 h. Again, the hourly rate for
developers is assumed to be 150 $/h.

Cmanage = tmanage · cdev

= 2.4h · 150$/h
= $360

RQ4 (Management): The effort we were able to include
in our calculation represents at least 0.14% of the
developer time. The corresponding monthly costs would
thereby be $360.

E. Estimation of Total Costs

Following Equation 7, the total cost Ctotal can be calculated
as the sum of the individual factors. As previously discussed,
we received feedback from CQSE developers that Cdelay and
Cbugs are negligibly small and therefore set to 0 in this context.
We have calculated Crerun, Cinv, Crepair, and Cbugs for one month
in RQ1-4 and insert them into Equation 7 to calculate Ctotal:

Ctotal = Crerun + Cinv + Crepair + Cdelay + Cmanage + Cbugs

= $3 + $2,558 + $2,250 + 0 + $360 + 0

= $5,171

Thus, in this context, the lower bound for the monthly cost for
flaky tests is $5,171.

V. PRACTICAL IMPLICATIONS

Referring back to the strategies detailed in Section II-C,
we conclude that CQSE mostly follows a blend of the heavy-
rerun and investigation-only strategies. However, no strategy
is implemented to its full, extreme form. Within our context, a
pipeline failure amounts to a manual investigation cost of $5.67,
while automatically rerunning a failed test case, potentially
preventing a pipeline failure, incurs a mere cost of 0.02 cents.

This suggests that effort should be shifted from manually
investigating pipeline failures to automatically rerunning test

cases, so the heavy-rerun strategy should be pursued more
aggressively. As flaky failures are typically unrelated to the
tested changes, they can be ignored when deciding whether or
not to merge a commit, possibly reducing investigatory costs,
Cinv, due to fewer pipeline failures. Since flaky failures are still
an important signal that may indicate a non-deterministically
occurring defect in the SuT (which increases Cbugs), test cases
that fail flaky the most should be investigated and repaired.

As a response to these conclusions, CQSE has implemented
a new strategy for dealing with flaky test failures, favoring
detection of flaky failures through test case reruns – up to
five times instead of just once – with the most failure-prone
test cases manually investigated and possibly repaired weekly.
Implemented since March 15, 2023, this strategy significantly
reduces Cinv as it suggests weekly, instead of per failure,
investigations.

To evaluate the effectiveness of the new strategy, we examine
the period of five months post-implementation. Test results
are obtained in the same manner detailed in Section IV-A1.
Of the 9417 pipelines and 10.6M test executions (including
reruns) during these five months, 3631 pipelines had at least
one flaky test failure. Nearly 3182 of these would have passed
with only one automatic rerun as well. However, 449 pipelines
necessitated more than one rerun. This constitutes 4.8% of
all pipelines. No more undetected bugs were identified by
the developers, nor were there any perceptible changes in
addressing flaky test repairs.

VI. THREATS TO VALIDITY

External Threats: The static nature of our cost model
limits its applicability as a decision-making tool. While this may
limit the generalizability of the model, it still provides valuable
insight and knowledge about a particular project. Modeling the
impact of decisions, such as increasing repair time, requires
additional project-specific assumptions that are beyond the
scope of this study. Additionally, Our cost model may omit
cost factors or context-specific parameters significant in various
contexts. To mitigate this, we base our assumptions on existing
flaky testing literature and feedback from CQSE engineers
with long-standing experience in multiple industrial contexts.
Furthermore, as with most industrial case studies, we cannot
and do not claim that our results generalize to other projects
within CQSE, different companies, tech stacks, or timeframes.
Despite this, we intentionally designed our cost model to be
generic, anticipating other contexts will exhibit various trade-
offs between cost factors.

a) Internal Threats: An internal threat stems from po-
tentially inaccurate or incomplete development data, which
we use in our case study at CQSE. Booked work time might
be inaccurate or the costs included for the Flickering Tracker
might not fully cover flaky test management costs. While this
underestimates the actual cost, we addressed this threat by
regularly discussing our case study’s methodology and results
with CQSE engineers for validation. Another threat arises
from our evaluation scripts for data analysis and automatic
data extraction from JIRA, GITLAB, and SLACK. To mitigate
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this, we developed unit tests and manually checked results for
accuracy with CQSE engineers. As we rely on an automatic
rerun mechanism we may underestimate flaky test failures as
a test may persistently fail even on reruns, thus overestimating
true failures. However, given the less frequent occurrence of
flaky failures, this overestimation should be relatively small,
keeping our study’s overall conclusions unchanged.

VII. RELATED WORK

In the past decade, numerous studies have investigated
various phases of the flake test lifecycle. In the following,
we discuss related work that explores different flaky test cost
factors and outline the research gap this paper aims to address.

a) Cost for Test Case Rerunning: Research at Google
indicates that 16% of tests are flaky, consuming 2%-16% of
computation resources for reruns [10, 11]. An et al. report that
in the CI testing process of SAP HANA, 10% of testing time
is allocated for reruns to address flakiness [40]. Parry et al.
use machine learning and rerunning for flaky test detection.
They estimate that 2,500 runs of the APACHE AIRFLOW test
suite would cost 38,77USD on an Amazon Web Services
instance [39].

b) Cost for Investigating Test Failures: In their survey,
Parry et al. summarize from two studies [56, 57] that there
are many “false alarms” and thus developers might look for
bugs that do not exist. This might lead to a “considerable
waste of a developer’s time” [7]. Aside from meta-studies,
developer surveys are a repeatedly chosen method for obtaining
information about the elusive costs of investigating test failures.
Gruber and Fraser report wasted time as the most severe
consequence of flaky tests perceived by developers. They do
not specify at which part of the development process the time is
wasted. With their developer survey, Habchi et al. come to the
same conclusion [26]. In addition, they report that time is spent
investigating the root cause of a test failure. Parry et al. find
that developers perceive differentiating between deterministic
and flaky failures differently: while some find it hard, others
do not. Herzig et al. report that investigating a test failure,
regardless of whether it was a flaky or deterministic failure,
costs Microsoft an average of $9.60 [42].

c) Cost for Repairing Flaky Tests: Costa et al. equate
ticket comments about test flakiness with the resolution cost,
finding greater comment counts imply higher complexity and
cost [58]. Again, surveying developers is a commonly chosen
tool to estimate the effort to repair flaky tests: In their survey,
Eck et al. report that flaky tests are perceived as time-consuming
since they are not easy to reproduce. They further indicate
that flaky tests are often hard to fix and therefore “require a
certain level of knowledge to be able to fix them” [13]. Parry
et al. also report that most developers perceive reproduction
of flaky failures as difficult, which makes it harder to repair
these test [6].

d) Cost for Development Delays: Gallaba et al. found
that 47% of the manually restarted builds on Travis CI passed
without changes, suggesting failures due to flaky tests [44].
Parry et al. summarize from this study that “flaky tests can

threaten the efficiency of CI by intermittently failing builds
and requiring manual intervention, hindering the process of
merging changes and stalling a project’s development” [7].

e) Cost for Flaky Test Management: Lam et al. give an
insight into Microsoft’s CloudBuild system with its flaky test
management system called FLAKES [21]. This tool supports the
four phases of detection, reporting, suppression, and resolution.
However, no costs regarding FLAKES are reported.

f) Cost for Production Bugs: Even though flaky tests
are often implicitly assumed to have their root cause in the
test code, Rahman and Rigby show that Firefox CI builds
containing failing flaky tests receive more crash reports than
average builds [48]. Shull et al. establish heuristics on the cost
to fix a defect based on the opinion of a group of experts [50]:
For severe defects, the cost for fixing is about 100 times higher
than in the early phases of the development. For non-severe
defects, the cost is still twice as high.
In summary, we are not aware of any prior work that compiles
cost factors into a cost model for flaky tests in CI and quantifies
these costs in an industrial-scale CI development process.

VIII. CONCLUSION

Flaky tests pose a significant challenge in software devel-
opment. Despite the efforts of researchers and practitioners to
mitigate the negative consequences of flaky tests, it is unclear
what the actual cost drivers of flaky tests are.

In this study, we take a first step towards a holistic view
of the costs of flaky tests in CI by compiling cost factors
from research and practice into a cost model that depends on
context-specific input parameters. The model aims to support
practitioners in analyzing and understanding the origin of costs
and in making decisions about where to invest effort. We
conduct a case study in a large industrial software project at
CQSE, where we quantify the total cost invested in flaky tests.
Our findings reveal that flaky tests in this project account for
at least 2.5% of the productive developer time in this particular
context. This effort can be broken down into (1) investigating
failed pipelines, (2) repairing flaky tests, and (3) managing
flaky tests. Interestingly, we find that rerunning test cases,
a common industry strategy to mitigate flaky test problems,
incurs relatively negligible costs, accounting for 0.63% of all
test execution costs in CI. Due to the low cost of computing
time, this equates to $3 per month for the project studied.
The study results served as a basis for the decision to shift
efforts from investigating or repairing to rerunning tests since
the associated execution costs are comparatively inexpensive.
The implementation of this strategy in the studied project
successfully detects flaky failures that would have been missed
with the previous strategy in 4.8% of all pipelines (i.e., every
20th pipeline would have failed due to a flaky test) and thus
reduces the cost of investigating pipeline failures.

We encourage researchers and practitioners to use the cost
model to analyze costs in other contexts and contribute to a
better understanding of the costs of flaky tests.
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