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Abstract

Modeling and analyzing deformable 3D geometric objects is a fundamental challenge in
computer vision. In this thesis, we consider the specific tasks of 3D shape correspon-
dence and shape interpolation. The former aims at predicting dense point-to-point maps
between pairs of input objects, whereas the latter yields continuous sequences of inter-
mediate poses. There are numerous potential applications of such approaches, including
3D reconstruction, virtual and augmented reality, shape retrieval, predicting object dy-
namics, information transfer, 3D content creation, and computer graphics pipelines.

We provide an extensive overview of the field of shape analysis, summarizing com-
mon concepts and mathematical tools for processing 3D shapes. We further define the
challenges of shape correspondence and interpolation, outlining specific techniques and
possible solutions relevant for our own contributions. Finally, we introduce the frame-
work of optimal transport, as a central paradigm for computing distances between ar-
bitrary probability distributions. Beyond its basic definition, we include several applica-
tions in shape analysis for different, concrete distance metrics.

While classical shape analysis methods obtain solutions through optimization-based
algorithms, many recent works leverage geometric deep learning. In practice, both ap-
proaches have distinct advantages, informed by a trade-off between offline and online
computation cost, as well as the robustness to samples outside the training distribution.
Hence, the main contributions of this thesis comprise both classes of approaches.

Despite significant synergies, shape correspondence and interpolation are often ad-
dressed as separate challenges in the existing literature. Instead, we propose several
novel, holistic techniques that integrate intrinsic matching with extrinsic shape align-
ment. In this manner, the extrinsic alignment serves as a strong prior constraining the
space of admissible correspondence maps, and vice versa.

The main contributions of this dissertation comprise a number of specific practical al-
gorithms, as well as general technical contributions in three major areas. For once, we in-
troduce a shape deformation technique based on parameterized, volumetric, divergence-
free vector fields. We find that such vector fields yield a compact yet expressive represen-
tation for volume preserving shape morphing. In our second technical contribution, we
perform multi-scale shape registration in the product space of extrinsic coordinates and
intrinsic spectral features. This coarse-to-fine alignment yields high-quality maps, even
for challenging, non-isometric pairs. Finally, we propose several techniques that enable
self-supervised learning on geometric data. Such models are trained on collections of
3D shapes without requiring ground truth correspondence annotations.





Zusammenfassung

Das Modellieren und Analysieren geometrischer 3D-Objekte ist eine fundamenta-
le Herausforderung in der Computer Vision. In dieser Doktorarbeit behandeln wir
die konkreten Problemstellungen der Korrespondenz und Interpolation von 3D-
Formen. Ersteres bezieht sich auf das Bestimmen von dichten Punkt-zu-Punkt Abbil-
dungen zwischen Objektpaaren, während zweiteres kontinuierliche Zwischensequen-
zen berechnet. Es existieren zahlreiche potentielle Anwendungen solcher Ansätze,
z.B. 3D-Rekonstruktion, Virtuelle und Augmentierte Realität, das Finden von For-
men in Datenbanken, Modellierung von Objektdynamiken, Informationstransfer, 3D-
Inhalteerstellung, und Computergrafik-Pipelines.

Wir bieten einen umfassenden Überblick gängiger Konzepte und mathematischer
Werkzeuge zur Verarbeitung von 3D-Formen. Des Weiteren definieren wir die konkre-
ten Herausforderungen der Formen-Korrespondenz und Interpolation, wobei spezielle
Verfahren und mögliche Lösungsansätze umrissen werden. Anschließend geben wir ei-
ne Einleitung in das Feld des Optimalen Transports, was einen grundlegenden Formalis-
mus zur Berechnung von Distanzen zwischen beliebigen Wahrscheinlichkeitsverteilun-
gen darstellt. Zusätzlich zur grundlegenden Definition, beschreiben wir einige konkrete
Anwendungen für die Analyse von 3D-Formen, wobei jeweils verschiedene Distanz-
Metriken verwendet werden.

Während klassische Ansätze optimierungsbasierte Algorithmen entwickeln, ver-
wenden neuere Methoden oft Geometrisches Deep Learning. Beide Ansätze haben ver-
schieden Vorteile in der Praxis, bezüglich der benötigten Rechenressourcen, und der Ro-
bustheit für Beispiele außerhalb der Trainingsdatenverteilung. Die Hauptbeiträge dieser
Dissertation behandeln daher beide Ansätze.

Trotz klarer Synergien, werden Korrespondenz und Interpolation von Formen in
existierender Literatur oft als unabhängige Herausforderungen behandelt. Stattdessen
definieren wir verschiedene holistische Ansätze, welche intrinsisches Matching mit ex-
trinsischer Ausrichtung kombinieren. Auf diese Weise haben die beiden Komponenten
einen regularisierenden Effekt aufeinander.

Die Hauptbeiträge dieser Dissertation behandeln sowohl mehrere konkrete, prakti-
sche Algorithmen, als auch allgemeine technische Beiträge in drei Bereichen. Zum einen
stellen wir einen Ansatz zur Deformation von Formen vor, basierend auf parametrisier-
ten, volumetrischen, divergenzfreien Vektorfeldern. Solche Felder bieten eine kompak-
te und flexible Repräsentation volumenerhaltender Verformungen. Unser zweiter Bei-
trag bezieht sich auf eine mehrskalige Registrierung von 3D-Formen, im Produktraum
der extrinsischen Koordinaten und der intrinsischen Frequenzkomponenten. Sogar für



x

nicht-isometrische Paare liefert dieser Ansatz hochwertige Korrespondenzabbildungen.
Schließlich stellen wir verschiedene Ansätze vor, die selbstüberwachtes Lernen auf geo-
metrischen Daten ermöglichen. Derartige Modelle werden auf Sammlungen von 3D-
Formen trainiert, wobei keine annotierten Korrespondenzen benötigt werden.
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Part I

Introduction and Preliminaries





Chapter 1

Introduction

Reasoning about the 3D world is a long-standing challenge for machine learning sys-
tems. As humans, we effortlessly predict the spatial layout of real-world scenes and
behaviors of everyday objects. This accomplishment, however, is far from trivial, consid-
ering the intricate physical properties and complex dynamics underlying common object
interactions. Not surprisingly, it has long been established that a significant percentage
of the human brain’s cortex is devoted to vision and visuospatial processing [111]. In
recent times, there has been a significant increase in the availability of digitized 3D data,
from advances in acquisition devices, image-based 3D reconstruction, and generative
machine learning models. On the other hand, measuring and extracting the 3D geome-
try of observed objects is only the first step towards building a functional model of the

Figure 1.1: A sample shape interpolation sequence (gray) between a pair of input poses (yellow),
showcased as 3D prints and photographed against the backdrop of the Mathematics & Informat-
ics building at the Technical University of Munich.
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world. The crucial missing link is devising techniques that help us gain a practical, se-
mantic understanding of perceived objects and their environments. The field of shape
analysis provides a framework for studying properties of geometric shapes, measuring
similarities, reasoning about statistics in object collections, and extracting compact rep-
resentations. Hence, it offers a promising avenue for capturing the various modes of
objects’ behaviors. In Fig. 1.1, we visualize a shape interpolation sequence capturing the
continuous motion between two hand geometries.

A fundamental challenge in this context is establishing maps between different ob-
servations. Depending on the specific application, common formulations involve in-
stances of the same object in different poses, or semantically similar but distinct shapes.
According to an often cited anecdote, the famous researcher Takeo Kanade, after be-
ing asked about the three most important challenges in computer vision, once replied:
“Correspondence, correspondence, correspondence!” [130]. Indeed, we find that many
relevant properties of 3D shapes naturally arise from comparing salient features and ex-
amining shape variations between multiple object instances. Obtaining correspondence
maps allows us quantify similarities and define metrics in shape collections, fuse multi-
ple sensor observations, enhance 3D reconstruction, identify related objects in different
contexts, and extrapolate acquired information across object categories.

1.1 Motivation

Shape correspondence and interpolation are fundamental challenges in shape analysis
that lie at the core of many 3D computer vision applications. Naturally, there is a large
body of literature on both topics [104, 124, 138], documenting a plethora of possible
approaches and methodologies. On the other hand, despite targeting similar domains of
practical applications, a majority of existing approaches address shape correspondence
and interpolation as separate tasks. For instance, many shape interpolation approaches
require dense correspondence maps as input [26, 37, 58–60, 68, 132]. Conversely, shape
interpolation can be interpreted as a special case of extrinsic shape registration, where
a given object instance is continuously deformed into a target pose. In this manner,
correspondence maps can be extracted from an interpolation, by propagating individual
points along the deformation sequence. We propose to leverage these evident synergies
and jointly address the challenges of correspondence and interpolation.

In mathematical terms, the nearly-isometric shape matching problem specifies a
quadratic assignment problems (QAP) [72] – predicting optimal permutations that pre-
serve the pairwise distance metric. While this formulations occasionally results in am-
biguous matchings in the context of intrinsic symmetries, for the most part, its solutions
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are well-defined and accurate. On the other hand, the QAP in its basic form is NP-hard
and, thus, computationally intractable for most practical applications. While there ex-
ist different relaxations in the literature [13, 34, 67, 88, 98, 127], any concrete algorithm
necessarily introduces simplifying assumptions, leading to approximate solutions. A key
observation of our work is that, in most relevant applications, nearly-isometric corre-
spondences between two surfaces can be explained through an extrinsic shape deforma-
tion. Several existing matching methods [21, 53, 79] leverage this assumption by mod-
eling shape alignment in terms of an explicit template mesh or a parametric deformable
model [74, 78, 139]. In most cases, such approaches rely on additional domain knowledge
and are limited to specific shape categories, such as human bodies [78]. Instead, we pro-
pose hybrid approaches that simultaneously predict an intrinsic correspondence map,
as well as an extrinsic shape interpolation sequence, cf . Chapters 4 and 8. Moreover, to
extend this methodology to non-isometric matching tasks, we propose to combine in-
trinsic functional maps [88] with extrinsic shape registration in a multi-scale framework,
cf . Chapters 5, 7 and 9. Again, the extrinsic deformation acts as a regularizer constrain-
ing the space of admissible correspondence maps. In either case, we find that the holistic
approach of combining intrinsic matching with extrinsic alignment often yields superior
results, compared to modeling the two tasks separately.

Classical approaches in the field of shape analysis often devise optimization frame-
works, comprising energy functions that summarize relevant prior assumptions about a
considered task. Specific common formulations of shape correspondence and interpola-
tion in the literature are assignment problems [70, 72] and geodesics in shape space [60,
68, 132], respectively. On the other hand, more recent approaches often define ma-
chine learning models, trained on large collections of geometric data. For instance,
in the context of shape correspondence, geometric deep learning techniques [29] en-
able learned feature representations, exhibiting superior predictive accuracy compared
to hand-crafted descriptors in classical pipelines. For shape interpolation, autoencoder-
type 3D generative models produce compressed latent space representations [69], cap-
turing the different deformation modes of an object category.

In recent times, the availability of geometric data saw a marked increase, further ben-
efiting the development of machine learning techniques. Moreover, querying a learned
model typically requires less computational resources than solving an optimization prob-
lem for the same task, reducing the runtime cost for unseen test poses. On the other
hand, specific assumptions are often more explicit in optimization approaches, which
makes their predictions more transparent and controllable. They further do not require
an initial offline training phase, which constitutes the bulk of the computation cost in
most learning methods. Moreover, since optimization pipelines are not specifically tuned
to the training set distribution, they often lead to more robust predictions for out-of-
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domain test data. Hence, they are readily deployed to diverse practical scenarios. The
main contributions of this dissertation include aspects of both classical optimization-
based approaches (cf . Chapters 4 to 6) and geometric deep learning (cf . Chapters 7 to 9).

Despite the significant progress, to date there is still a domain gap between state-of-
the-art shape correspondence algorithms and noisy real-world scans. Many benchmarks
considered in earlier works [15, 22, 28] comprise synthetic meshes with the same number
of vertices and a consistent triangulation. One advantage of such synthetic data is that
it simplifies evaluation, since the ground truth maps correspond to the identity matrix.
However, for more recent learning-based approaches this bears the risk of overfitting,
limiting generalization to unseen test poses. In recent times, real-world 3D data has be-
come readily available from different sources through advances in acquisition devices,
3D reconstruction techniques, and 3D generative models. Predicting correspondences
for real scans leads to distinct challenges, including non-isometric deformations, topo-
logical changes, partial views, self-occlusions, disconnected components, outliers, and
varying degrees of scanning noise.

Compared to synthetic data, obtaining ground truth maps for real scans necessi-
tates extensive manual annotation by human experts. Thus, in order to circumvent
this classical annotation bottleneck, we advocate for learning correspondences in a self-
supervised manner. To this end, we leverage geometric cues for obtaining correspon-
dence maps, such as optimal transport alignment (cf . Chapter 7), extrinsic shape inter-
polation (cf . Chapter 8), or multi-matching (cf . Chapter 9).

1.2 Thesis Outline

This cumulative thesis is structured as follows.
In the remainder of Part I, we introduce the considered research challenges of

deformable shape correspondence and shape interpolation, as well as providing an
overview of the existing literature and central references. In Chapter 2, we outline our
major contributions in three main areas, focusing on vector field based shape registra-
tion [1, 3], multi-scale shape correspondence [2, 5], and self-supervised learning ap-
proaches [4, 6], respectively. In Chapter 3, we define important concepts and mathemat-
ical tools that form the basis of our work. Specifically, we introduce the topic of shape
analysis and properties of 3D shapes. We further formulate the challenges of shape corre-
spondence and interpolation, summarize techniques relevant for our contributions, and
outline existing approaches in the literature. Subsequently, we introduce the framework
of optimal transport which is a fundamental formalism in the correspondence literature,
and central to many of our own approaches.
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In Part II, we include all six core publications which constitute the main part of this
thesis. Firstly, Chapter 4 defines a divergence-free vector field formulation of extrinsic
shape deformation. In Chapter 5, we introduce a multi-scale shape registration approach,
which is further applied in a learning setting in Chapter 7. In Chapter 6, we discuss
a Hamiltonian dynamics approach to shape interpolation, which leverages a momen-
tum preservation term to obtain time-dependent, divergence-free deformation fields.
In Chapter 8, we specify a self-supervised learning approach capable of jointly predicting
correspondence maps and interpolation sequences in a single forward pass. Moreover,
in Chapter 9 we devise a learnable multi-shape matching approach that simultaneously
predicts correspondences for two or more shapes, while enforcing cycle-consistency.

In Part III, we conclude the thesis, summarize our key findings, and provide reflec-
tions on relevant directions for future research.

Lastly, in Part IV we include the supplementary materials of our main publications.





Chapter 2

Contributions

We propose several novel techniques aimed at advancing the field of shape analysis,
with a specific focus on the challenges of shape correspondence and shape interpola-
tion. In the following, we provide an overview of individual publications and the major
contributions that constitute the core of the thesis.

2.1 List of Publications

A summary of the the publications over the course of this thesis is provided in Table 2.1
with the core publications highlighted in Table 2.2. This work was done in collaboration
with the exceptional researchers Daniel Cremers, Aysim Toker, Zorah Lähner, Laura
Leal-Taixé, Florian Bernard, Maolin Gao, Paul Roetzer, Viktoria Ehm, Michael Moeller,
Lukas Kondmann, Mark Weber, David Novotny, Gael Kerchenbaum, Patrick Labatut,
Natalia Neverova, and Andrea Vedaldi. Each reference is the result of extensive research
conducted at the Technical University of Munich [7, 1–3, 8, 5, 6, 9, 10] and Facebook AI
Research [4], as well as collaborations with the University of Oxford, the University of
Bonn, Nvidia, Planet Labs, the University of Siegen, and the German Aerospace Center.
Individual references correspond to peer-reviewed publications at esteemed computer
vision and machine learning venues, including CVPR, NeurIPS, ECCV, ICCV, 3DV, and
the Symposium on Geometry Processing (SGP). Several of the works received either
a spotlight [1] or full oral presentation [2, 3]. The publication NeuroMorph [4] was
developed in the fall of 2020 as part of an internship at Facebook AI Research, London.
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M. Eisenberger, Z. Lähner, and D. Cremers. Divergence-free shape correspondence
by deformation. In Computer Graphics Forum, volume 38 of number 5, pages 1–12,
2019 [3]

M. Eisenberger, Z. Lahner, and D. Cremers. Smooth shells: multi-scale shape regis-
tration with functional maps. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12265–12274, 2020 [2]

M. Eisenberger and D. Cremers. Hamiltonian dynamics for real-world shape interpo-
lation. InComputer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part IV 16, pages 179–196. Springer International Publishing,
2020 [1]

M. Eisenberger, A. Toker, L. Leal-Taixé, and D. Cremers. Deep shells: unsupervised
shape correspondence with optimal transport. Advances in Neural information pro-
cessing systems, 33:10491–10502, 2020 [5]

M. Eisenberger, D. Novotny, G. Kerchenbaum, P. Labatut, N. Neverova, D. Cremers,
and A. Vedaldi. Neuromorph: unsupervised shape interpolation and correspondence
in one go. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7473–7483, 2021 [4]

A. Toker, L. Kondmann, M. Weber, M. Eisenberger, A. Camero, J. Hu, A. P. Hoderlein,
Ç. Şenaras, T. Davis, D. Cremers, et al. Dynamicearthnet: daily multi-spectral satellite
dataset for semantic change segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 21158–21167, 2022 [10]

M. Eisenberger, A. Toker, L. Leal-Taixé, F. Bernard, and D. Cremers. A unified frame-
work for implicit sinkhorn differentiation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 509–518, 2022 [8]

M. Eisenberger, A. Toker, L. Leal-Taixé, and D. Cremers. G-msm: unsupervised multi-
shape matching with graph-based affinity priors. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 22762–22772, 2023 [6]

M. Gao, P. Roetzer, M. Eisenberger, Z. Lähner, M. Moeller, D. Cremers, and F. Bernard.
Sigma: scale-invariant global sparse shape matching. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 645–654, 2023 [9]

V. Ehm, P. Roetzer, M. Eisenberger, M. Gao, F. Bernard, and D. Cremers. Geometrically
consistent partial shape matching. In 2024 International Conference on 3D Vision (3DV).
IEEE, 2024 [7]

Table 2.1: A full list of peer-reviewed publications over the course of the thesis. The list is in
chronological order, according to the date of publication. While we include all references for
completeness, only the six publications highlighted in black contribute to this dissertation.
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5. M. Eisenberger, D. Novotny, G. Kerchenbaum, P. Labatut, N. Neverova, D. Cremers,
and A. Vedaldi. Neuromorph: unsupervised shape interpolation and correspondence
in one go. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
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6. M. Eisenberger, A. Toker, L. Leal-Taixé, and D. Cremers. G-msm: unsupervised
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Conference on Computer Vision and Pattern Recognition, pages 22762–22772, 2023 [6]

Table 2.2: A list of core publications that contribute to this dissertation. The list is in chronological
order, according to the date of publication.
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2.2 Major Contributions

We include a total of six major publications that contribute towards this thesis [1–6].
Each of these works constitutes a fundamental building block towards the goal of apply-
ing shape correspondence and interpolation algorithms to real-world geometric data –
beyond the classical assumption of near-isometry. Our contributions include both works
on classical, optimization based approaches [1–3], as well as geometric deep learning
models trained on collections of shapes [4–6].

We distinguish between three major formalisms, where we propose tools to model
shape deformation in terms of divergence-free vector fields (Sec. 2.2.1), compute multi-
scale correspondences in hybrid embedding spaces of both intrinsic and extrinsic ge-
ometric features (Sec. 2.2.2), and devise self-supervised geometric deep learning tech-
niques to enable representation learning for shape analysis tasks (Sec. 2.2.3). All three
components are central to several of our proposed approaches, and indeed there is a
substantial overlap between the different areas. For a complete picture, we outline the
contributions of two key publications for each topic.

2.2.1 Vector Field Based Shape Registration

Divergence-Free Shape Correspondence by Deformation [3] In Chapter 4, we
introduce a novel formalism of modeling shape deformation in terms of parameterized,
volumetric vector fields. One of our key contributions is representing of such fields as
a linear combination of spatially dense, divergence-free basis functions. The individual
components of this basis are constructed by applying Helmholtz’s theorem, where the
corresponding potential fields are defined as Fourier basis functions – ordered from low
to high frequencies. Since individual basis functions are divergence-free, any possible
linear combination retains this property. Thus, the volume preservation property is built
into the parameterization as a hard constraint. For a pair of input surfaces X and Y , we
obtain a deformation of X by propagating its vertices along a given vector field through
time-integration. We then optimize for the unknown correspondences and vector field
coefficients, such that the deformed shape coincides with a second reference pose Y .

Hamiltonian Dynamics for Real-World Shape Interpolation [1] While the vec-
tor field representation yields compact and highly expressible shape deformations, in
the formulation presented in [3] it is limited to stationary fields. This poses a significant
limitation, since, for many relevant types of motion, different parts of an object move
through the same location in 3D space at different times. In Chapter 6, we extend this
formulation to time-dependent fields, by introducing additional assumptions about the
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dynamics of the considered, deformable surfaces X and Y . To this end, we formulate
the Hamiltonian energy of an object in terms of its local surface distortion, as well as its
kinetic energy. Moreover, each individual surface point onX is embedded in the product
space of its position at each time, as well as its momentum represented as a divergence-
free field. The principles of Hamiltonian mechanics then yield laws of motion for an
object X and a given initial velocity field, which we integrate over time with an implicit
Euler scheme. To obtain a shape interpolation, we optimize for the initial velocity field
that minimizes the distance between the deformed shape X and the reference pose Y .

2.2.2 Multi-Scale Shape Correspondence

Multi-Scale Shape Registration with Functional Maps [2] In Chapter 5, the
smooth shells formalism is introduced, which is defined as a sigmoid weighted low-
pass filtering of a 3D shape. This procedure yields a simplified geometry, which can
be either slightly smoothed or entirely devoid of fine-scale details, depending on the
frequency parameter of the filtering. Based on this smoothing operator, we then de-
vise a multi-scale matching approach. For a pair of input shapes X and Y , we initially
match very coarse approximations, and then gradually upsample the level of detail in
an iterative scheme. In each step, we compute dense correspondence maps, as well as
shape registrations in the product space of extrinsic shells, and intrinsic spectral fea-
tures. We further propose a specialized initialization algorithm based on Markov chain
Monte Carlo sampling. Overall, our experiments demonstrate that the coarse-to-fine
optimization strategy yields superior local minima, even for challenging non-isometric
matching tasks.

Unsupervised Shape Correspondence with Optimal Transport [5] In Chapter 7,
the smooth shells methodology is applied in the context of geometric deep learning. To
this end, a differentiable variant of the multi-scale matching algorithm in [2] is intro-
duced, based on optimal transport. Specifically, the distance between two shapes in the
product space of smooth shell geometries and spectral features is defined as the Wasser-
stein 2-metric, with an additional entropy regularization term. Overall, this results in a
matching operator that produces a transport plan, i.e., a soft correspondence map, be-
tween a pair of 3D shapes X and Y . To initialize the optimal transport matching, we
additionally introduce a feature extraction backbone based on learnable spectral convo-
lution layers. The resulting model can be trained in a self-supervised manner, where the
training loss is defined as the Wasserstein 2-metric in the joint embedding space. Com-
pared to the optimization-based approach [2], the deep shells method [5] has distinct
advantages. While [2] requires several minutes of optimization, a single forward pass



14 Chapter 2. Contributions

in [5] typically takes only a few seconds. On the other hand, the performance of [5]
depends, to a certain degree, on the quality of the training data. Moreover, [2] can be
applied to any matching problem without requiring an initial offline training phase.

2.2.3 Self-Supervised Learning Approaches

Unsupervised Shape Interpolation and Correspondence in One Go [4] In Chap-
ter 8, the self-supervised learning approach NeuroMorph is outlined, which jointly pre-
dicts correspondence maps and interpolation sequences in a single forward pass. The
concrete network architecture is based on a novel graph neural network model, inter-
leaving EdgeConv message passing layers with global feature pooling. Overall, the pro-
posed pipeline integrates two consecutive modules, responsible for predicting corre-
spondences and interpolated poses, respectively. Related to our observations discussed
in Sec. 2.2.1, we find that there are significant synergies between the two challenges
of correspondence and interpolation. In this manner, the interpolation module serves
as a strong prior constraining the correspondence maps, which enables self-supervised
learning in an alignment-based formulation. Moreover, NeuroMorph is computationally
inexpensive, compared to our previous approaches involving an expectation maximiza-
tion algorithm [3], or an inner optimization loop during each forward pass [5]. On the
other hand, in contrast to [5], the resulting correspondence maps contain a degree of
fine-scale noise and, hence, require post-processing with [2] in certain scenarios.

Unsupervised Multi-Shape Matching with Graph-based Affinity Priors [6] A
majority of learning-based matching models in the shape analysis literature, includ-
ing [4, 5], are trained in a pairwise manner – predicting correspondence maps for ran-
dom pairs of shapes X and Y during each forward pass. In contrast, in Chapter 9 we
present a novel approach that jointly predicts correspondences for a collection ofN > 2

input shapes. To this end, we construct a weighted, undirected shape graph G, whose
scalar edge weights reflect similarity scores between two surfaces. During training, we
enforce cycle-consistency along shortest paths in the shape graph, promoting optimal
multi-matches. The overall architecture consists of a learnable feature extractor, a multi-
scale pairwise matching module based on [5], as well as the shape graph multi-matching
module. We find that the multi-shape formulation increases the correspondence accu-
racy over earlier, pairwise approaches [4, 5] on several benchmarks. These improve-
ments are especially significant for real scans corrupted by topological changes from
self-contact, where the additional poses help to infer the latent topology of a considered
shape category.



Chapter 3

Theoretical Background

We now define important concepts and terminology on shape analysis and relevant tasks
in geometry processing. These will form the basis for the mathematical toolbox used
throughout our own contributions in Part II. We further provide an overview of the
pertinent literature.

3.1 3D Shapes

The primary objective of the field of shape analysis is studying geometric objects X .
In the following, we focus on the specific case of compact, 2-dimensional Riemannian
manifolds [43] with an explicit embedding in 3D spaceX ⊂ R3. This perspective closely
aligns with real-world sensor data from observed objects (3D scans) that we try to model.
On the other hand, it is often beneficial to devise algorithms that are fully intrinsic,
i.e., are agnostic to the specific coordinate embedding. In the following, we provide
definitions of central properties and tools used to analyze 3D shapes X .

3.1.1 Invariance

Consider the equivalence class [X ]T = {T (X ) ⊂ R3|T ∈ T } induced by a given cat-
egory of transformations T . We then call any property f(·) of the shape X invariant
under the class of transformations T , if it holds ∀X ′ ∈ [X ]T : f(X ) = f(X ′). One
common example is the class of rigid-body transformations T ∈ SE(3)

T : R3 → R3,p 7→ Rp+ t, (3.1)

where R ∈ SO(3) is a rotation matrix and t ∈ R3 a translation vector. The rotation and
translation determine an object’s position, in absolute terms, and thus reflect coordinate
conventions and the viewpoint of the observer. Indeed, we intuitively assume many
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properties of real-world objects to be preserved under such rigid maps, e.g., the surface
area of X or the pairwise Euclidean distance of two points on the surface. In practice, it
is often beneficial to constrain the space of solutions and promote useful inductive biases
by restricting computations to such invariant properties of geometric objects [29].

3.1.2 Isometry

Another useful class of transformations in the context of deformable object categories
are isometric maps T : X → X ′. If we consider the metric space (X , dX ) with the
geodesic distance metric dX , then this property can be defined as the set of distance pre-
serving maps dX (p,q) = dX ′(T (p), T (q)) for p,q ∈ X . From the perspective of dif-
ferential geometry, such maps can be characterized as diffeomorphisms T that preserve
the metric tensor [43] of the manifold X . A simple example are rigid transformations
defined in Eq. (3.1), which are a special case of isometric maps. Isometries are a power-
ful tool to model deformable object categories, such as humans, hands, or animal bodies.
They closely align with our intuition of real-world dynamics, since the distance along
the shortest path between points on the surface dX is approximately preserved across
different poses. On the other hand, under real-world conditions the isometry property
is often violated, to a certain extent, due to small degrees of surface stretching and scan-
ning noise. To reflect these deviations, such transformations are commonly referred to
as nearly-isometric maps [17, 27, 48, 88] in the applied literature.

3.1.3 Intrinsic/Extrinsic

We call a property f(·) of shapes X intrinsic, if it does not depend on the explicit coor-
dinate embedding of the underlying Riemannian manifold X . Since isometric maps T
preserve the metric tensor [43] on X , we assert that intrinsic properties f are invariant
under isometric transformations f(X ) = f ◦ T (X ). In contrast, we call f extrinsic, if it
is influenced by the specific coordinate embedding of X ⊂ R3. Common examples of
extrinsic properties are, e.g., the outer normals and the local curvature of the surface.

Intrinsic shape descriptors are useful, in practice, to constrain the space of admis-
sible solutions and simplify optimization. By design, they have a built-in robustness to
challenging non-rigid deformations that we commonly observe in deformable shape dy-
namics. On the other hand, there are several well-known failure modes where intrinsic
descriptors are insufficient to capture all the necessary information about an observed
surface. For many real-world objects, there exist so-called intrinsic symmetries, which
are isometric self-maps T : X → X not equal to the identity map. For instance, humans
are approximately mirror-symmetric w.r.t. the sagittal plane (left-right symmetry). Ex-



3.1. 3D Shapes 17

trinsic information is thereby required to convey the left-right orientation. Moreover,
the isometry assumption is often violated for real scans, e.g., due to topological changes
from self-contact, corrupted scans/noise, or partial views.

3.1.4 Laplace-Beltrami Operator

The Laplace-Beltrami operator (LBO), sometimes dubbed the ‘Swiss Army knife’ of ge-
ometry processing [114], is a ubiquitous tool in the shape analysis literature, defined
as

∆Xf := div(∇f), (3.2)

where f ∈ C2(X ) is a twice continuously differentiable scalar function and div and
∇ are the divergence and gradient operators defined on the Riemannian manifold X ,
respectively. The LBO is a generalization of the Laplacian in Euclidean space and allows
us to extend familiar concepts, such as heat diffusion, fluid flow, or wave propagation,
to curved Riemannian domains. We summarize a few of its relevant key properties:

Proposition 1. Let∆X be the LBO defined in Eq. (3.2) and let f, g ∈ C2(X ) and a, b ∈ R
be arbitrary, then it holds that ∆X is

i. Linear: ∆X (af + bg) = a∆Xf + b∆Xg.

ii. Self-adjoint: ⟨f,∆Xg⟩X = ⟨∆Xf, g⟩X .

iii. Negative semidefinite: ⟨f,∆Xf⟩X ≤ 0.

iv. Intrinsic, as defined in Sec. 3.1.3.

In the geometry processing literature, the LBO has been applied to a range of tasks,
including mesh editing [118], smoothing [42], deformation [116], geodesic distance com-
putation [38], shape descriptors [16, 120], correspondence [88], and interpolation [133].

3.1.5 Spectral Decomposition

Several applications model shape properties through the LBO’s spectrum. To this end,
we consider the eigenvalue problem [33]

−∆Xϕk = λkϕk, (3.3)

where λk and ϕk : X → R are the k-th eigenvalue and the corresponding eigenfunction,
respectively. The eigenpairs further admit the following properties:
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ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

. . .

Figure 3.1: We visualize the first eight LBO eigenfunctions ϕ1, . . . , ϕ8 for an example shape X
from the TOSCA dataset [28]. Each ϕk : X → R is a scalar field, displayed with a color coding
showing ϕk > 0 as blue, ϕk < 0 as red, and ϕk = 0 as white. According to Proposition 2, the
eigenfunctions ϕk are ordered w.r.t. the frequency values λk ≥ 0. For shapes without boundary,
as the one shown above, ϕ1 ≡ C is a constant function and λ1 = 0.

Proposition 2. Let (λ1, ϕ1), (λ2, ϕ2), . . . be the eigenpairs defined in Eq. (3.3), then

i. 0 ≤ λ1 ≤ λ2 ≤ ... <∞, where limk→∞ λk =∞.

ii. The set {ϕ1, ϕ2, . . . } forms an orthonormal basis of L2(X ).

These results are a special case of the spectral theorem [56] and follow from the fact
that ∆X is a compact, self-adjoint, negative-semidefinite operator on X . Refer to [33,
Ch. 1] for a formal proof. As a common convention, in i., the eigenvalues λk are ordered
increasingly w.r.t. their magnitude. This results in a natural ordering of the eigenbasis
{ϕ1, ϕ2, . . . } from low to high frequencies, see Fig. 3.1 for a visualization. While there
exist repeated eigenvalues, the eigenspaces associated with each distinct value are finite.
As a direct consequence of ii., we can represent arbitrary square-integrable functions
f ∈ L2(X ) in terms of the orthonormal eigenbasis

f =
∞∑

k=1

akϕk, where ak := ⟨f, ϕk⟩X =

∫

X
f(p)ϕk(p)dp. (3.4)

This identity is analogous to Fourier analysis for signal processing in Euclidean domains.
According to the min-max principle, the basis representation in Eq. (3.4) is optimal for
compressing smooth functions f ∈ L2(X ), when only a fixed, finite number K ∈ N of
basis functions are retained f ≈∑K

k=1 akϕk, refer to [92, Ch. 10] for more details.

3.1.6 Discretization

So far, we defined 3D shapes X as continuous, differentiable manifolds [43]. In prac-
tice, we need to introduce discrete approximations of such manifold surfaces to obtain a
computationally tractable, finite parameterization. To this end, we focus on the widely
used polygonal mesh representation [24].
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Figure 3.2: Examples for the two main cases of degenerate triangular meshes, refer to [24, Ch. 1.3]
for a detailed discussion. Non-manifold vertices are connected to two separate surface segments
‘pinched’ together at a single point, whereas non-manifold edges coincide with more than two
triangle faces.

Specifically, we consider triangular meshes specified by a finite number of vertices
V = {v1, . . . ,v|V|} ⊂ R3 and faces F = {τ1, . . . , τ|F|} ⊂ V × V × V . For convenience,
we often denote V ∈ R|V|×3 and T ∈ N|F|×3 in matrix notation, where Vi,: = vi for any
i ∈ {1, . . . , |V|} and Ti,: = [j, k, l]⊤ for any τi = (vj,vk,vl) ∈ F and i ∈ {1, . . . , |F|}.
Not every possible simplicial complex (V ,F) constitutes a valid approximation of a 2D
manifold surface X . We call a triangular mesh 2-manifold, if it is free of non-manifold
vertices and edges [24, Ch. 1.3], see Fig. 3.2 for a visualization. Moreover, we require
that a given mesh is free of self-intersections, meaning that triangles shall only intersect
at adjacent edges. Avoiding these degenerate cases ensures that, in the limit |F| → ∞,
the mesh (V ,F) approximates a smooth manifold surface.

Scalar fields f : X → R on X are commonly approximated as piecewise linear
functions on the triangles F . They are fully specified by scalar coefficients fi at each
vertex vi, resulting in the coefficient vector f ∈ R|V|. Likewise, linear operators on X ,
such as the LBO ∆X defined in Eq. (3.2), can be discretized as matrices L ∈ R|V|×|V|.
For the specific case of the LBO, we utilize the standard cotangent discretization based
on finite element analysis. This results in a matrix L := M−1S defined in terms of an
invertible, sparse, symmetric mass matrixM ∈ R|V|×|V| and a sparse, symmetric stiffness
matrix S ∈ R|V|×|V|, refer to [93] for technical details on how to construct M and S.

Applying the discrete operator L to a scalar field f simply amounts to a matrix-
vector multiplication g := Lf ∈ R|V|. On the other hand, explicitly storing the dense
matrix L ∈ R|V|×|V| can be computationally expensive, depending on the resolution
|V|. Hence, for many applications, it is preferable to directly retain the sparse mass
and stiffness matrices M and S. For instance, we can discretize the eigenpairs (λk, ϕk)
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defined in Eq. (3.3) by solving a generalized eigenvalue problem

−Sϕk = λkMϕk. (3.5)

SinceM is invertible, this expression is mathematically equivalent to the standard eigen-
value problem −Lϕk = λkϕk, while allowing iterative solvers to take advantage of the
sparsity of M and S. In matrix notation, we denote Φ ∈ R|V|×|V| where Φ:,k = ϕk

and Λ := diag
(
λ1, . . . , λ|V|

)
∈ R|V|×|V|. The eigenvectors Φ form an orthonormal basis

w.r.t. the inner product associated with the mass matrix M, i.e., Φ⊤MΦ = I.

3.2 Shape Correspondence

Computing correspondences between 3D shapes is a central challenge in shape anal-
ysis. There is a growing demand for such algorithms since, in recent times, applica-
tions involving 3D avatars and digitized objects are becoming increasingly wide-spread.
Establishing correspondence maps allows us to reason about similarity in shape col-
lections, understand object dynamics, perform sensor fusion of multiple observations,
detect anomalies, or perform information and style transfer in computer graphics appli-
cations. Moreover, such geometric data is becoming broadly available due to improve-
ments in acquisition devices, 3D reconstruction techniques, and 3D generative models.

3.2.1 Problem Formulation

We consider the problem of estimating dense correspondence maps π : X → Y between
pairs of deformable shapes X and Y . Depending on the specific application, X and
Y either depict different poses of the same object or instances of semantically similar,
but distinct objects. To determine π, we require that corresponding points p ∈ X and
q = π(p) ∈ Y are identical or semantically equivalent.

It is often useful to make additional assumptions about the class of transformations
π. For instance, in the case of rigid object registration, we can apply the popular iter-
ative closest point algorithm [20], limiting the optimization to the 6-dimensional space
of transformations defined in Eq. (3.1). Some approaches assume that π are diffeomor-
phisms, defined as bijective maps where both π and π−1 are differentiable. However,
the resulting optimization problems are computationally expensive and thus limited to
coarse resolutions of a few hundred triangles [100, 131]. Moreover, the diffeomorphism
assumption is often violated in noisy real-world data due to partial views, self-occlusions,
disconnected components, scanning noise, and topological changes from self-contact.

In most cases, the dynamics of non-rigid shapes are accurately approximated by
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nearly-isometric transformations as defined in Sec. 3.1.2. This assumption can be lever-
aged, in practice, by parameterizing π with intrinsic functional maps (cf . Sec. 3.2.2) or
through intrinsic local descriptors (cf . Sec. 3.2.3). On the other hand, there are many ap-
plications where the isometry assumption is too restrictive, e.g., considering noisy scans,
or for inter-class pairs with distinct body shapes. For practical algorithms, we find that
integrating both intrinsic and extrinsic information often yields the most robust results.
This is a common theme in many of our proposed approaches discussed in Chapter 2.

In the discrete case, we formulate the correspondence problem for a pair of triangular
meshes

(
V(X ),F (X )

)
and

(
V(Y),F (Y)

)
as finding a point-to-point map π : V(X ) → V(Y).

In practice, we represent π with binary row-stochastic matrices Π ∈ {0, 1}|V(X )|×|V(Y)|,
where Π1 = 1 and 1 is the vector of ones. An entry Πij = 1 indicates a match between
v
(X )
i and v

(Y)
j . For deep learning approaches and robust optimization, we sometimes

relax the binary constraint {0, 1} to [0, 1], resulting in soft correspondence matrices Π.

3.2.2 Functional Maps

We provide a brief introduction to the functional map formalism [88] here and refer to
the SIGGRAPH ASIA 2016 course notes [89] for an in-depth discussion.

3.2.2.1 Definition

The main idea of functional maps (FM) is to reframe the problem of determining a point-
wise map π : X → Y as finding a linear functional C : L2(X )→ L2(Y) from functions
f ∈ L2(X ) to functions g = C(f) ∈ L2(Y). According to Eq. (3.4), any such func-
tions can be represented compactly in their respective LBO eigenbases f =

∑
k akϕk

and g =
∑

l blψl. In this basis representation it then holds

∑

l

blψl =g = C(f) = C
(∑

k

akϕk

)
linearity
=

∑

k

akC (ϕk)

=
∑

k

ak
∑

l

⟨C (ϕk) , ψl⟩︸ ︷︷ ︸
=:clk

ψl. (3.6)

To make this expression computationally tractable, we commonly consider truncated
eigenbases, retaining only a finite basis of K ∈ N dimensions. Assuming that f ∈
span {ϕ1, . . . , ϕK} and g ∈ span {ψ1, . . . , ψK}, we obtain from Eq. (3.4) that

bl ≈
K∑

k=1

clkak, for all l ∈ {1, . . . , K}. (3.7)
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In matrix notation, we can simply write b ≈ Ca for the coefficient vectors a,b ∈ RK

and the matrix C ∈ RK×K . Thus, the problem of estimating the functional C : L2(X )→
L2(Y) is simplified to estimating the coefficient matrix C.

While other choices of bases are possible, the LBO basis is the standard choice in
the literature due to its natural ordering from low to high frequencies. Specifically,
the min-max principle [92, Ch. 10] guarantees that the finite-dimensional subspace
span {ϕ1, . . . , ϕK} ⊂ L2(X ) is provably optimal for representing smooth functions.
Since the LBO is known to be intrinsic (cf . Prop. 1), the eigenbasis representation of
C is naturally biased towards nearly-isometric maps. Hence, a relatively small num-
ber of retained basis functions K ≈ 100 often suffices, in practice, to capture the
variability of nearly-isometric poses – significantly reducing the number of variables
K2 ≪ |V(X )| · |V(Y)|.

3.2.2.2 Optimization

In order to estimate C for a given pair of shapes X and Y , we consider the following
optimization problem [88]

argmin
C

∥CA−B∥2F + λregEreg(C), (3.8)

consisting of a descriptor preservation term of some spectral features A,B ∈ RK×L and
a regularization energyEreg. One major advantage of the functional map representation
is that assumptions about the shapes X and Y and correspondence maps π can be for-
mulated in terms of the matrix representation C. We summarize several examples for a
pair of triangular meshes

(
V(X ),F (X )

)
and

(
V(Y),F (Y)

)
and their truncated eigenbases

ΦK ∈ R|V(X )|×K and ΨK ∈ R|V(Y)|×K in the following.

Local Descriptors If we have some local descriptor fields fi ∈ R|V(X )| and gi ∈ R|V(Y)|

available on the input meshes, then we can formulate a local descriptor similarity term
between fi and gi by setting the spectral features ai := Φ†

Kfi and bi := Ψ†
Kgi.

Input Landmarks If a sparse set of corresponding landmarks v(X )
i and v

(Y)
j are given

as input, we can again incorporate this information by defining corresponding scalar
fields fi and gi, e.g., in terms of a smooth indicator function around the landmark vertices.

Operator Preservation In the case of isometric transformations, functional maps are
known to commute with the LBO [88, Thm. 5.1 (2)]. Hence, we can devise a regulariza-
tion term based on the LBO eigenvaluesEreg(C) :=

∥∥Λ(Y)C−CΛ(X )
∥∥2
F

. Other popular
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variants include preservation of the resolvent operator (∆X−αId)−1 introduced by [97],
or slanted diagonal regularization for partial shape correspondence [99].

Area Preservation If we assume that a given correspondence map is locally area-
preserving, it was shown in [88, Thm. 5.1 (1)] that we can limit the optimization
in Eq. (3.8) to orthogonal matrices C⊤C = I. This can be enforced as a hard constraint
through Procrustes analysis, or by adding a soft penalty Ereg(C) :=

∥∥C⊤C− I
∥∥2
F

.

3.2.2.3 Pointwise Map Recovery

For most constraints discussed in Sec. 3.2.2.2, the optimization problem in Eq. (3.8) can
be solved in closed form – either through linear least squares or Procrustes analysis.
After obtaining an optimal functional map C, we still need to convert it to a pointwise
correspondence map Π ∈ {0, 1}|V(X )|×|V(Y)|. To this end, we consider the following
optimization problem

argmin
Π1=1

∥∥ΦKC
⊤ −ΠΨK

∥∥2
F
. (3.9)

Minimizing this energy for Π entails a per-vertex nearest neighbor search, which can
be solved efficiently with kd-trees.

Overall, obtaining a correspondence map Π for a pair of shapes X and Y requires
two individual computations where we minimize Eq. (3.8) and Eq. (3.9), respectively.
In [88], the authors additionally introduce an iterative refinement technique, where the
correspondences obtained in Eq. (3.9) are utilized as landmark features which, in turn,
improve the functional maps C obtained in Eq. (3.8). If the functional maps are restricted
to orthogonal matrices C ∈ O(K), then the resulting iterative scheme constitutes a di-
rect extension of the iterative closest point (ICP) algorithm [20] to K dimensions. Thus,
the problem of non-rigid correspondence in 3D space is effectively reformalized as a rigid
alignment problem in the K-dimensional spectral domain. This approach was further
improved in [83] by combining the alternating optimization with a progressive upsam-
pling of the spectral resolution K for iterative map refinement.

3.2.3 Shape Descriptors

Most correspondence methods rely on local descriptor fields F ∈ R|V|×L to convey in-
formation about geometric features of a given input mesh (V ,F). For each vertex, F
specifies an L-dimensional feature vector. The utility of F for correspondence algo-
rithms is contingent on a few central properties. For once, F should be distinctive, al-
lowing us to differentiate between different vertices. We further expect F to be robust
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to common shape deformation modes to make reliable predictions across different ob-
served poses. Other considerations concern the spatial localization of features, and the
computation cost of obtaining and storing F. Designing appropriate features is a topic
of ongoing research and generally requires a trade-off between these different proper-
ties. For instance, leveraging fully intrinsic shape properties yields descriptors that are
robust to nearly-isometric transformations, but they often lack distinctiveness due to
self-similarities and intrinsic symmetries of X .

Two examples of intrinsic local descriptors are the heat kernel signature (HKS) [120]
and the wave kernel signature (WKS) [16] features defined as

f(p) :=
∞∑

k=1

w(λk)ϕk(p)
2, (3.10)

where (λk, ϕk) are the LBO eigenpairs defined in Eq. (3.3) and w : R → RL is a vector
valued function. Depending on the exact choice ofw [16, 120], we obtain features whose
entries correspond to the heat kernel for HKS or to quantum particle distributions on
the surface X for WKS. To obtain a finite expression, we can approximate Eq. (3.10) by
using a truncated basis of eigenfunctions {ϕ1, . . . , ϕK}. Another popular class of shape
descriptors are histogram-based features [103, 123] which count point and outer normal
occurrences in specific regions subdividing a fixed sphere {q ∈ R3|∥p− q∥2 < r} with
radius r > 0 around a given point p ∈ X .

Given local feature descriptors, we can quantify the similarity of points via the stan-
dard Euclidean metric d(·, ·) in the L-dimensional feature space. If we assume perfectly
distinctive and robust features F and G, the correspondence problem for a pair of in-
put meshes can be addressed through a simple algorithm, based on a nearest neighbor
search in the shared feature space Πij∗ = 1 ⇐⇒ j∗ = argminj d(fi,gj). In practice,
however, the direct feature correspondences are prone to mismatches and local noise,
requiring additional refinement and filtering [127].

3.2.4 Representation Learning

Rather than defining shape descriptors manually, many recent works devise data-driven
approaches that obtain optimal geometric descriptors through deep feature learning [44,
54, 75, 81, 108]. A central challenge, in this context, is designing appropriate neural net-
work architectures capable of processing triangular mesh data. The umbrella term geo-
metric deep learning [29] summarizes several such techniques appropriate for learning
on irregular non-Euclidean domains. In the following, we focus on specific approaches
relevant to our own contributions summarized in Part II.
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3.2.4.1 Feature Extraction

One of the first building blocks of geometric deep learning pipelines often involves deep
feature extraction, specified as a learnable mapping

Θ : (V ,F) 7→ F ∈ R|V|×L, (3.11)

that computes a local descriptor field F. In contrast to hand-crafted descriptors intro-
duced in Sec. 3.2.3, the mapping Θ is parameterized by learnable weights, which are ad-
justed during training through gradient-based optimization. There are several desirable
properties relevant for defining concrete modules Θ, such as robustness and distinctive-
ness. These considerations are, however, for the most part analogous to our discussion
of hand-crafted descriptors in Sec. 3.2.3. Designing efficient and flexible architectures is
still a topic of ongoing research. We now provide brief descriptions for several examples
of such models.

Optimal Spectral Descriptors The definitions of the HKS and WKS features are
based on two concrete choices of vector-valued transfer functions w : R → RL

in Eq. (3.10). While the motivations for both approaches are based on concrete phys-
ical processes, there are no guarantees that these choices of w yield descriptors that are
optimal for the correspondence task. Instead, [76] proposes to parameterize each entry
of w as a linear combination of a B-spline basis, which can be optimized for specific
tasks.

Refining Hand-Crafted Features Several works [54, 75, 102] devise set-learning ar-
chitectures based on refining hand-crafted input descriptor fields, such as the ones de-
fined in Sec. 3.2.3. While different definitions are possible, one simplest example is [75],
which refines hand-crafted SHOT features [123] through seven consecutive deep resid-
ual layers [57]. Each such layer processes local features independently per point. One
advantage of this approach is that the predicted features inherit certain desirable prop-
erties from the input descriptors, such as rotation-invariance [123]. On the other hand,
the quality of input features varies across different datasets as shown in [82], limiting
the stability of learned features when generalizing to unseen test poses.

Charting-based Methods Another class of approaches aim at learning features
through local geodesic patch operators [23, 81, 86, 94]. The primary motivation is to
define feature refinement on irregular mesh domains analogous to convolution filters in
Euclidean space. The obtained patch operators are intrinsic, and often consider a region
with a fixed geodesic radius around each point. Possible choices of weighting functions
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include geodesic polar weights [81], anisotropic heat kernels [23], and generic parame-
teric kernel functions [86].

Point Cloud Learning A special case of set-learning architectures are point-based
models [95, 96, 122], which treat the input vertices V of a mesh as an unstructured
point cloud. While such models do not utilize all available information – omitting the
connectivity F – they are nevertheless common in the shape correspondence literature
due to their simplicity and flexibility [44, 53, 62, 80, 107]. Notably, the obtained features
are, in general, not invariant to the rigid pose, necessitating careful data augmentation.

Heat Diffusion A recent approach yielding state-of-the-art results in correspondence
problems is the DiffusionNet [108] architecture. It is based on the heat-equation on the
surface X , defined as

∂

∂t
f(p, t) = ∆Xf(p, t). (3.12)

Intuitively, simulating the heat dispersion process results in local information flow,
which can be leveraged for feature refinement. Specifically, the updated feature fields
f(·, t) are obtained as solutions of Eq. (3.12) for an input feature field f(·, 0) and time
intervals t > 0. The support of the resulting filters depends on the evaluation time t,
which is learned adaptively. The heat diffusion is further combined with an anisotropic
spatial gradient term and a pointwise multilayer perceptron (MLP) refinement layer. The
resulting network architecture is robust to different meshing densities, and can even be
applied to different input representation such as point clouds, through an alternative
discretization of the Laplacian [109].

3.2.4.2 Deep Functional Maps

The deep functional maps framework [75] is a dominant paradigm in recent shape cor-
respondence approaches. The main idea is to combine a learnable feature extractor
with a differentiable functional maps layer. For a pair of input meshes

(
V(X ),F (X )

)

and
(
V(Y),F (Y)

)
, most existing models adopt variants of the following procedure.

1. Compute local feature embeddings F := Θ
(
V(X ),F (X )

)
and G := Θ

(
V(Y),F (Y)

)

through Eq. (3.11), in a siamese manner.

2. Project the obtained descriptors onto the truncated eigenbases to convert them to
the spectral domain A := Φ†

KF and B := Ψ†
KG.

3. Compute the functional map C through Eq. (3.8).
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The inner optimization in step 3. requires solving a linear system, resulting in a differen-
tiable operation. Overall, the steps 1.-3. specify an end-to-end trainable model, mapping
the two input meshes to a functional map C ∈ RK×K . Existing works in the litera-
ture vary in the choice of the concrete feature extractor Θ, as discussed in Sec. 3.2.4.1,
as well as the training loss function. Supervised loss functions measure the discrep-
ancy between the model’s predictions and the ground truth correspondence maps [44,
75]. Unsupervised approaches, on the other hand, leverage geometric priors as training
losses, promoting the preservation of geodesic distances [54] or structural properties of
C [32, 102]. During test time, the predicted functional map C can be converted to a
pointwise correspondence map Π through Eq. (3.9).

3.2.5 Multi-Shape Correspondence

The objective of multi-shape correspondence is to jointly compute correspondence maps
Π(i,j) ∈ {0, 1}|V(i)|×|V(j)| between all pairs of poses in a collection of N ∈ N shapes{(
V(1),F (1)

)
, . . . ,

(
V(N),F (N)

)}
. Compared to standard pairwise matchingN = 2, the

predicted correspondences are required to be compatible with each other, defined as a
cycle-consistency constraint

Π(i1,i2)Π(i2,i3) . . .Π(iK−1,iK) ≈ Π(i1,iK), where i1, . . . , iK ∈ {1, . . . , N}. (3.13)

Intuitively, we expect that mapping a given point repeatedly across different shapes
yields comparable correspondences for fixed endpoints V(i1) and V(iK), irrespective
of the intermediate sequence. One straightforward approach of enforcing cycle-
consistency in learning frameworks is to add a soft penalty based on Eq. (3.13). Since the
number of possible sequences increases exponentially in the path length, this approach
is often limited to cycles up to a certain length, e.g., three-cycles.

A prevalent solution to the multi-matching problem is modeling correspondences
through canonical embeddings [18, 31, 48, 62, 63]. To this end, we define auxiliary maps
Π(i) ∈ {0, 1}|V(i)|×|V̄| from each pose

(
V(i),F (i)

)
to an implicit universe shape

(
V̄ , F̄

)
.

The pairwise correspondences can then be extracted by concatenating the respective
shape-to-universe maps Π(i,j) := Π(i)

(
Π(j)

)⊤. For simplicity, we assume here that the
correspondence maps Π(i) are permutation matrices, where all considered shapes have
the same number of vertices. Under these simplified conditions, cycle-consistency is
guaranteed for the pairwise maps Π(i,j) in the following sense:

Proposition 3. The cycle-consistency constraint in Eq. (3.13) holds exactly for any sequence
of poses i1, . . . , iK ∈ {1, . . . , N}, iff all pairwise matches can be decomposed into shape-
to-universe mapsΠ(i,j) = Π(i)

(
Π(j)

)⊤.
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Refer to [64, Prop. 1] for a formal proof. In the literature, there are different variants
of this approach, allowing for partial permutation matrices [18, 31] or defining canonical
functional maps [48, 62, 63].

3.3 Shape Interpolation

We define shape interpolation as the task of determining a family of intermediate poses
between two given 3D shapes, continuously deforming one into the other. It is closely
related to the challenge of shape correspondence; in both cases, we model meaningful
semantic relationships between pairs of shapes X and Y . While correspondences are
specified by an intrinsic point-to-point map π : X → Y , interpolation sequences con-
sider the underlying shape dynamics to obtain plausible extrinsic pose predictions.

3.3.1 Problem Formulation

For a given pair of 3D shape poses X ,Y ⊂ R3, we define shape interpolation as predict-
ing a sequence of poses Z(t) ⊂ R3 for the time interval t ∈ [0, 1], respecting the bound-
ary conditions Z(0) = X and Z(1) = Y . Since such sequences continuously morph X
into Y , we often characterize Z in terms of a displacement field φ : [0, 1] × X → R3

deforming the first input shape Z(t) := φ(t,X ). In this formulation, the first boundary
condition simplifies to φ(0, ·) = Id(·). Individual deformations φ(t, ·) are defined as dif-
feomorphic maps, specifying dense correspondences between X and Z(t). Considering
the special case of t = 1, this formulation also includes the correspondence map φ(1, ·)
between X and Y , confirming strong synergies between the two tasks. We further re-
quire that the resulting trajectory of each initial vertex p ∈ X is a smooth differentiable
path, i.e., φ(·,p) ∈ C∞([0, 1],R3).

3.3.2 Eulerian Flow

For a given displayement field φ, we obtain the corresponding extrinsic Eulerian flow
field as [60]

v(t,p) :=
∂

∂t
φ(t, φ−1(t,p)), (3.14)

where φ−1(t, ·) : Z(t) → X denotes the inverse of the diffeomorpism φ at time t. The
resulting field v denotes the direction of the time-dependent flow for each surface point
p ∈ Z(t). Vice versa, we can define a concrete parameterization of φ via the extrinsic
volumetric flow v : [0, 1]×R3 → R3. We then recover the displacement fields φ from v
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through time integration of each individual initial vertex p ∈ X
{

∂
∂t
φ(t,p) = v(t, φ(t,p)),

φ(0,p) = p.
(3.15)

In this formulation, we obtain an interpolation sequence Z(t) by optimizing for the
flow field v(t,p). One advantage of this approach is that we can incorporate certain
assumptions about the resulting shape deformation, such as volume preservation, in
terms of mathematical properties of the flow v [35]. The extrinsic flow formulation has
further been employed in learning frameworks for 4D reconstruction [87] and modeling
object dynamics [66], where v is parameterized by a neural network. In the time-discrete
setting, we can solve the ordinary differential equation in Eq. (3.15) through a numeric
integration method, such as the explicit Euler method, or the Runge-Kutta method [49].

3.3.3 Geodesics in Shape Space

We now consider a pair of discrete meshes
(
V(X ),F

)
and

(
V(Y),F

)
with an identical

number of vertices D :=
∣∣V(X )

∣∣ =
∣∣V(Y)

∣∣ and compatible triangulation F . We further
assume that the vertices are in a canonical ordering, such that the ground truth corre-
spondences are the identity map Π = I. In matrix notation, we then define the 3 · D
dimensional shape space corresponding to the triangles F as [68]

SF :=
{
(V,F)|V ∈ RD×3

}
. (3.16)

Interpreting individual poses V as points in the space of vertex embeddings, the shape
space (SF , g) specifies a 3 ·D dimensional Riemannian manifold [58, 59, 61, 65] with the
metric tensor gV : RD×3 × RD×3 → R at each point (V,F) ∈ SF . There are several
possible choices for g depending on the specific deformation model [25, 50, 113, 117].
For an exact derivation of g for the thin shell surface model, refer to [58, Thm. 1].

Considering piecewise linear displacement fields φ per triangle, we obtain interpola-
tion sequences that are fully specified by the vertex displacements V(t) := φ(t,V(X )).
We further quantify the path length of {(V(t),F) ∈ SF |t ∈ [0, 1]} on the shape space
manifold as [119, Ch. 9]

Λ
(
V(t)|t∈[0,1]

)
:=

∫ 1

0

√
gV(t)

(
V̇(t), V̇(t)

)
dt, (3.17)

where V̇(t) := d
dt
V(t) denotes the local flow at V(t). We then obtain geodesics on the
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Figure 3.3: The predicted interpolation sequence (gray, 2nd-6th) for a sample pair of shapes from
the MANO [101] dataset (yellow, left and right), obtained by solving Eq. (3.19) with the as-rigid-
as-possible [117] deformation modelWarap.

shape space manifold SF as curves that minimize the path length

argmin
V(t)

Λ
(
V(t)|t∈[0,1]

)
s.t. V(0)

!
= V(X ),V(1)

!
= V(Y), (3.18)

where the boundary conditions at times t ∈ {0, 1} are specified by the two input shape
poses

(
V(X ),F

)
,
(
V(Y),F

)
∈ SF .

3.3.4 Surface Deformation Models

For practical implementation, we introduce a temporal discretization of interpolation
sequences Vk := V

(
k
K

)
for an equidistant set of timesteps k = 0, . . . , K . Based

on Eq. (3.17), we then obtain interpolation sequences as solutions of [60, 68]

argmin
(V0,...,VK)

K−1∑

k=0

W (Vk,Vk+1) s.t. V0
!
= V(X ),VK

!
= V(Y). (3.19)

There are several possible choices for the concrete deformation modelW in the litera-
ture [25, 50, 113, 117]. We introduce the as-rigid-as-possible deformation model [117],
which is most relevant to our own contributions summarized in Part II, defined as

Warap (Vk,Vk+1) :=
1

2

D∑

i=1

min
Ri∈SO(3)

∑

j∈N (i)

∥Ri(vk,j − vk,i)− (vk+1,j − vk+1,i)∥22 ,

(3.20)
whereN (i) denotes the set of neighboring vertices vj of vi in the graph induced by the
triangulation F . In Fig. 3.3, we show a sample interpolation sequence, obtained by min-
imizing Eq. (3.19) based on the as-rigid-as-possible deformation model from Eq. (3.20),
using a standard first-order optimizer.
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3.3.5 Variational Autoencoder Formulation

Autoencoders offer a convenient formulation of shape interpolation for a collection of
input poses. The key idea is to learn a compressed representation z := E(V,F) ∈ RL for
any shape in a considered shape space (V,F) ∈ SF . For the concrete choice of encoder
network E : SF → RL, we can employ any of the local feature extraction architectures
described in Sec. 3.2.4.1, in combination with a global pooling operation over the vertex
dimension such as max pooling, average pooling, or attention [126].

The corresponding decoder architecture D : RL → SF then generates an output
shape (V̂, F̂) := D(z) ∈ SF from the latent code representation z ∈ RL. Devising
generative models, i.e., architectures capable of synthesizing novel geometric objects,
is a topic of ongoing research with output formats ranging from voxel grids [36, 55],
template mesh deformation [53, 66, 129], skinning-based deformable models [74, 78, 101,
139] and point clouds [11, 47, 136] to neural implicit representations [51, 85, 91]. Since
we assume a fixed, global meshing F , a simple choice in this context is modeling D as a
fully connected multilayer perceptron (MLP) network with 3 ·D output dimensions, as
well as setting F̂ := F .

To train the encoder E and decoderD networks for a given collection of input meshes{(
V(1),F

)
, . . . ,

(
V(N),F

)}
⊂ SF , we devise multiple training loss signals. For once,

we enforce that D ◦ E ≈ Id with a reconstruction loss

ℓrec(V,F) :=
∥∥V̂ −V

∥∥2
F
, where (V̂,F) := D (E(V,F)) . (3.21)

The learned latent space yields a compressed global representation L ≪ 3 · D which
is to a certain degree lossy, i.e., there exist input shape poses (V,F) ∈ SF such that
ℓrec(V,F) ̸= 0. Beyond the dimensionality reduction, variational autoencoders [69]
further regularize the learned latent space to endow it with specific algebraic properties.
For instance, to learn shape spaces that are useful for shape interpolation, we can enforce
an interpolation loss [37]

ℓinterp(V
(i),V(j);F) :=

∫ 1

0

∥∥∥Dα −
(
(1− α)D̂(i) + αD̂(j)

)∥∥∥
2

F
dα, (3.22)

where D̂(i), D̂(j),Dα ∈ RD×D denote the pairwise geodesic distance matrices between
(V̂(i),F), (V̂(j),F), and (Vα,F), respectively, and where Vα := D

(
(1−α)z(i)+αz(j)

)
.

Intuitively, minimizing the loss ℓinterp enforces geodesic metric interpolation along
straight paths in the learned latent shape space. Hence, we can obtain continuous inter-
polation sequences by decoding linear interpolation paths in the latent encoding space
Z(α) := D

(
(1− α)E

(
V(X ),F

)
+ αE

(
V(Y),F

))
for any α ∈ [0, 1].
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3.4 Optimal Transport

The framework of optimal transport involves techniques to establish geometrically
meaningful distance measures between arbitrary probability distributions. This has di-
rect implications for shape analysis, where optimal transport has been successfully ap-
plied for both correspondence [90, 110, 137] and interpolation tasks [40, 115]. Similar
methodologies lie at the core of several of our own contributions in Part II.

3.4.1 Basic Definition

Optimal transport describes the problem of computing distances between two generic
measure spaces (X,µ) and (Y, ν) [128]. In this context, we assume that µ and ν are
probability measures, i.e., µ(X) = ν(Y ) = 1 and µ(A), ν(B) ∈ [0, 1] for any measurable
subsets A ⊂ X and B ⊂ Y . We further require a measurable cost function c mapping
from X × Y to (−∞,∞] that defines the transportation cost between the two domains.
In this context, values c(A,B) =∞ denote that transporting fromA toB is precluded. A
transportation plan is defined as a probability measure π on the product space of the two
input domains X × Y . We then define Kantorovich’s formulation of optimal transport
as solutions to the following optimization problem [128]

d(µ, ν) := inf
π∈Π(µ,ν)

∫

X×Y

c(x, y)dπ(x, y). (3.23)

The set of admissible transportation plans is further specified as

Π(µ, ν) :=

{
π prob. measure on X × Y

∣∣∣∣
∫

X

dπ(x, y) = dν(y),

∫

Y

dπ(x, y) = dµ(x)

}
.

(3.24)
The optimal transport plans determined in Eq. (3.23) indicate, how much probability
mass π(A,B) ∈ [0, 1] is transported between measurable sets A ⊂ X and B ⊂ Y .
Constraining π to Π(µ, ν) further ensures, that the total probability mass transported
from X to Y at each point matches the input marginal distributions. In Fig. 3.4, we
provide a toy example visualization of the resulting plan π where we consider two input
marginals µ, ν defined on X = Y = [0, 1].

3.4.2 Application to Shape Analysis

When applying the optimal transport framework to shape analysis tasks, we typically
model X and Y as pairs of input surfaces in R3. While it is possible to specify the
optimization problem in Eq. (3.23) for continuous surfaces, we focus on the discrete
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Figure 3.4: (left) We provide a visualization of two continuous marginal distributions µ and ν, de-
fined on X = Y = [0, 1]. We then solve the optimal transport problem defined in Eq. (3.23) with
a squared Euclidean cost metric c(x, y) := d(x, y)2. (right) The resulting optimal transportation
plan π describes a curve in the product space X × Y . For further details, refer to [112].

setting common in concrete practical algorithms. To this end, we formulate the optimal
transport problem between the sets of vertices X := V(X ) and Y := V(Y) with a cost
matrix C := R|V(X )|×|V(Y)|. The unknown transport plans P are further contained in the
transport polytope, defined as

Π̄(a,b) :=
{
P ∈ [0, 1]|V

(X )|×|V(Y)|
∣∣∣P1 = a,P⊤1 = b

}
, (3.25)

where a ∈ [0, 1]|V
(X )| and b ∈ [0, 1]|V

(Y)| are the input marginals, specifying discrete
probability distributions a⊤1 = b⊤1 = 1. The discrete optimal transport problem is
then defined as

d(a,b;C) := min
P∈Π̄(a,b)

⟨P,C⟩F . (3.26)

There are several potential applications in shape analysis, depending on the concrete
choices of cost matricesC and marginals a,b. We provide two examples in the following.

Shape Correspondence To model correspondences between V(X ) and V(Y), a com-
mon approach is to define C as the squared Euclidean feature distance matrix

Ci,j := ∥Fi,: −Gj,:∥22, (3.27)



34 Chapter 3. Theoretical Background

Figure 3.5: An example interpolation (2nd-5th sample) of two binary images from the MNIST
dataset (left, right), obtained by minimizing the Wasserstein barycenter objective in Eq. (3.28).

where F ∈ R|V(X )|×L and G ∈ R|V(Y)|×L are generic L-dimensional feature embed-
dings per input vertex. Under these conditions, Eq. (3.26) is often referred to as the
Wasserstein 2-distance in feature space. The resulting optimal transportation plan
P ∈ [0, 1]|V

(X )|×|V(Y)| further specifies a soft correspondence matrix. Informally, we can
interpret Pi,j ∈ [0, 1] as the probability of matching the vertices v(X )

i and v
(Y)
j .

Although different vertex weightings are possible, for convenience, we often choose
uniform marginal distributions a := 1

|V(X )|1|V(X )| and b := 1
|V(Y)|1|V(Y)|. Moreover, if the

two input shapes have an equal number of vertices |V(X )| = |V(Y)|, the optimization
in Eq. (3.26) simplifies to the special case of a linear assignment problem. In this setting,
there exist explicit algorithms with a polynomial runtime complexity ofO(|V(X )|3), such
as the auction algorithm [19] or the Hungarian algorithm [70].

Barycentric Interpolation Optimal transport defines geometrically meaningful dis-
tance measures between probability distributions. This makes it viable as a shape defor-
mation prior, related to our discussion in Sec. 3.3.4. In the literature, this is commonly
referred to as barycentric interpolation [14, 40, 115]. Instead of surface-based represen-
tations, we consider explicit grid-based representations in 2D or 3D space (i.e. pixels or
voxels), where individual entries of the marginals a indicate either high ≈ 1 or low oc-
cupancy ≈ 0 values of the i-th grid point. In this setting, we can compute intermediate
shapes between a collection of input poses b1, . . . ,bN as

argmin
a∈[0,1]D

N∑

i=1

wid(a,bi;C) s.t. a⊤1 = 1, (3.28)

where C is a Euclidean distance matrix similar to Eq. (3.27), defined between the grid
point center positions. The scalars wi ≥ 0 define a weighted average of the input poses
bi. In Fig. 3.5, we provide an example interpolation for two binary imagesb1,b2 from the
MNIST dataset [73], where we choose interpolation weights (w1, w2) := (1− α, α) for
α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. Intuitively, the deformation prior d(·, ·;C) yields average
shapes that require minimal transportation cost in terms of Euclidean distances, but do
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not minimize local surface distortions such as [50]. Hence, while this definition allows
for compelling interpolation results for 2D and 3D objects [115], the scope is different
compared to Sec. 3.3, focusing mostly on non-deformable object categories.

3.4.3 Entropy Regularization

To make the optimization problem in Eq. (3.26) computationally tractable, a common
solution involves additional regularization terms. For the popular entropy regularizer,
this is defined as [39]

d(a,b;C) := min
P∈Π̄(a,b)

⟨P,C⟩F − τh(P), (3.29)

where the entropy function h(z) := −z (log(z)− 1) is applied to the unknown transport
plan P ∈ [0, 1]|V

(X )|×|V(Y)| per entry. Intuitively, this term h promotes values in the
interior of the transport polytope P ∈ Π̄(a,b). Since d

dz
(−h(z)) |z=0 = −∞, any value

Pi,j = 0 incurs a steep cost, encouraging non-binary entries Pi,j /∈ {0, 1}. For any
τ > 0, it has been shown in [39] that the regularized objective in Eq. (3.29) can be
optimized efficiently with Sinkhorn’s algorithm, specified as

Algorithm 1: Sinkhorn’s algorithm
Input: Cost matrix C, marginals a,b.
Output: Resulting (regularized) transport plan P.

1 Initialize u = 1|V(X )| and v = 1|V(Y)| as vectors of ones ;
2 Compute K = exp(−C/τ);
3 while not converged do

4 v← b⊘ (K⊤u);
5 u← a⊘ (Kv);
6 end while

7 P = diag(u)Kdiag(v);
8 return P;

The main computation steps of the algorithm involve an iterative scheme of alter-
ating row-wise and column-wise normalizations of diag(u)Kdiag(v), denoted with the
Hadamard division⊘. There are different potential choices of stopping criteria in Line 3,
refer to [39, Ch. 5] for examples. Besides yielding a simple and efficient explicit al-
gorithm, the regularized objective in Eq. (3.29) further makes the solution operator
(C, a,b) 7→ P differentiable. Hence, it allows for gradient-based optimization, mak-
ing it possible to incorporate it as a building block in deep neural networks to model soft
permutations [12, 41, 46, 84, 105] or for learning correspondences [77, 90, 106, 135, 137].
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Chapter 4

Divergence-Free Shape Correspondence by

Deformation

Computing correspondence between pairs of 3D shapes generally requires that we spec-
ify the underlying class of transformations. Making such additional assumptions often
results in more compact parameterizations, e.g., six degrees of freedom for rigid transfor-
mations. This further helps constrain the optimization and ultimately yields more accu-
rate results. A popular class of non-rigid deformations are nearly-isometric maps, which
preserve the intrinsic surface distance metric. In this case, we often consider the differ-
ent non-rigid poses of the same deformable object. For most real-world examples, such
pose differences can be explained through explicit extrinsic object dynamics. We include
this assumption in our approach by modeling explicit deformation fields v : R3 → R3

for two given input shapes X and Y . We then continuously deform the initial pose X
into Y through time-integration of v. Besides the shape alignment, we also obtain a pose
interpolation, i.e., a sequence of intermediate poses. One advantage of our framework
is that properties about the underlying transformation can be specified directly in terms
of v. For instance, we obtain volume preserving maps by requiring that the deformation
fields are divergence-free ∇ · v = 0. Beyond the total volume of the input shape X , the
local volume of any possible domain Ω ⊂ R3 is preserved, leading to strong structural
preservation throughout the predicted pose sequence. To parameterize the deformation
field v, we leverage Helmholtz’s theorem, and decompose the associated potential fields
as a linear combination of a finite number of Fourier basis functions. This representation
has a natural ordering from low to high frequencies and results in spatially continuous
fields v with an explicit analytical expression. For a given pair of poses, we optimize for
v by using an expectation-maximization algorithm alternating between computing the
optimal correspondence map and deformation field. In our experiments, we obtain com-
pelling results on several shape benchmarks, both in terms of correspondence accuracy
and qualitative interpolation results.
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Figure 1: Given two input shapes we propose to morph the source shape along a divergence-free deformation field in order align it with the
target. (Left) Example of a deformation field in 3D. (Right) Example of the results of our framework. We alternate between optimizing for the
deformation field and calculating correspondences and therefore generate highly accurate correspondences (color coded) as well a sequence
of natural intermediate shapes as a by-product (white). The translation is only added for visibility.

Abstract
We present a novel approach for solving the correspondence problem between a given pair of input shapes with non-rigid,
nearly isometric pose difference. Our method alternates between calculating a deformation field and a sparse correspondence.
The deformation field is constructed with a low rank Fourier basis which allows for a compact representation. Furthermore, we
restrict the deformation fields to be divergence-free which makes our morphings volume preserving. This can be used to extract
a correspondence between the inputs by deforming one of them along the deformation field using a second order Runge-Kutta
method and resulting in an alignment of the inputs. The advantages of using our basis are that there is no need to discretize the
embedding space and the deformation is volume preserving. The optimization of the deformation field is done efficiently using
only a subsampling of the orginal shapes but the correspondence can be extracted for any mesh resolution with close to linear
increase in runtime. We show 3D correspondence results on several known data sets and examples of natural intermediate
shape sequences that appear as a by-product of our method.

1. Introduction

Handling non-rigid, nearly isometric deformations of 3D shapes
is at the heart of numerous problems in computer vision and
graphics. Applications range from shape comparison, information
and style transfer to the automatic generation of new, meaningful
shapes. In comparison to rigid shape registration, the complexity
increases significantly in the presence of non-rigid deformations.
Many methods rely on purely intrinsic or very local measures be-
cause these are robust under extreme extrinsic changes [OBS*12;
ADK16]. While this helps to reduce the complexity of the corre-
spondence problem, it also often leads to artifacts in the matching

coming from intrinsic symmetries, which are indistinguishable in
the intrinsic view, or areas with indiscriminative features.

A different line of work aims at deforming shapes by directly
manipulating their geometry in the embedding space [vFTS06;
MS10; MZT*14]. Having an explicit notion of extrinsic deforma-
tions yields more regular, continuous matchings which is relevant
in many applications. In particular, this approach allows for the cre-
ation of new, intermediate versions of the input shapes. On the other
hand, these methods are in general more prone to get stuck in local
minima and therefore dependent on a good initial alignment of the
inputs. Unfortunately, many extrinsic matching methods use linear

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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mappings to model surface deformations [MS10; MZT*14]. While
this is feasible for small changes, it is often not compatible with
how objects deform in the real world. On the other hand, finding a
physically correct morphing between two shapes is highly complex
and computationally intense, even when the perfect correspondence
or prior knowledge about the input is given [WBRS11; GCLX17].
In this paper, we propose a more plausible morphing model that
takes into account volume-preservation during the entire deforma-
tion. This is possible by modeling volume-preservation through
zero divergence in a deformation field. This property makes our
intermediate shapes more natural and our results are less likely
to end up in a local minimum than with a linear mapping. In our
method, the deformation field is represented in a spatially continu-
ous, coarse-to-fine basis which allows for an efficient optimization.
Moreover, we can apply the final deformation to shapes of arbitrary
resolution with a minimal increase in complexity.

2. Related Work

2.1. Shape Registration and Matching

Much work has been done in the direction of shape registration
and matching and we would like to point the interested reader
to in-depth surveys of these topics for an overview [vKZHC11;
SMFF07; TCL*13]. Here we will focus on work that is directly
related to our approach.

One recent line of work in shape matching is based on spectral
decomposition of the surface Laplace-Beltrami operator [DK10].
This is popular because it reduces the dimensionality of the prob-
lem from the number of vertices to the number of basis func-
tions chosen [OBS*12]. Nevertheless, extracting the correspon-
dence from the low dimensional representation is still a complex
problem and often retrieved solutions are noisy or hard to compute
[RMC15]. One major problem with purely spectral approaches is
that intrinsic symmetries can not be distinguished, [RPWO18] be-
ing one of few exceptions. We also use a spectral approach but,
instead of a basis for functions on the surface, we represent defor-
mation fields in the embedding space using the eigenfunctions of
the standard Laplacian. Among other things the embedding space
allows us to distinguish between intrinsincally symmetric but op-
posite points.

Methods based on Multi-Dimensional Scaling find correspon-
dences by reembedding and then aligning shapes in a (possi-
bly smaller) embedding space where the complexity is reduced
[BBK06; ADK16]. [CK15] calculate a robust non-rigid registration
based on Markov random fields but cannot retrieve a continuous
deformation which we do. In [MS10] and [MZT*14] the authors
address the non-rigid registration problem by modeling one point
cloud as a Gaussian mixture model, similar to our method. More-
over, they also determine the correspondences and point mappings
in an alternating manner using a expectation maximization algo-
rithm. This work is strongly related to our framework but no in-
termediate deformation is modeled. There also exist extensions of
this method which additionally include descriptor values [MZY16;
MJLL17]. [HAWG08] achieve accurate non-rigid alignments but
rely on good initial correspondence and expensive geodesic dis-
tance computation to find these.

2.2. Deformation Fields

Deformation fields have a long history in image registration. One
of the first approaches in that direction is the LDDMM frame-
work [BMTY05]. Ashburner and colleagues made use of defor-
mation fields for autonomous shape morphing [Ash07]. They con-
sider temporally constant deformation fields offering limited flex-
ibility to capture more complex deformations. Solving for a space
and time dependent deformation field is a highly underdetermined
problem. A remedy for this issue is provided by the geodesic shoot-
ing approach advocated by [MTY06] which only estimates the ini-
tial velocity field for each pixel and then how the velocity has to
propagate in the image domain in order to preserve the kinetic en-
ergy and the momentum of the whole system. Further improve-
ments of this framework were proposed in subsequent work, in-
cluding a Gauss-Newton approach [AF11] and a particularly effi-
cient adjoint calculation [VRRC12].

Closely related to our work is [vFTS06] in which the authors also
model volume preserving shape deformations using divergence-
free vector fields. Here, deformation fields are constructed from
hand crafted templates which are meant to be used as interactive
shape transformation tools whereas our method is fully automated.
As in our work, in [AOW*08] the deformations are based on a sub-
sampling of the input shapes and can be efficiently applied to the
full resolution but the correspondence is assumed to be given.

Probabilistic interpretations of deformation fields are a popular
formulation. Such a model for image registration and 2D shape
registration with a Gaussian process modeling of the correspon-
dence mapping is proposed in [ALV08]. Further work [LJGV16;
DGL*17] specified how one can extend this approach to Gaus-
sian processes on the surface of a three dimensional shape. The
authors in [BHB00], [THB08], [ALV08] and [PDS*09] also model
non-rigid transformations using a PCA type representation of per-
mitted motions. Analogously, [MS10] and [MZT*14] pursue a re-
producing kernel Hilbert space approach to model the vector field
interpolation. However, for all these references the respective vec-
tor fields are not defined on the whole embedding space surround-
ing the shapes but rather only at the elements of the considered
point clouds and they do not admit an interpretation as a deforma-
tion field which makes is harder to impose global properties, e.g.
volume-preservation.

Another classical approach to shape deformation is based on a
rotation invariant representation of triangle meshes [LSLC05]. In
[ZSC*08] this deformation model is used to compute a sparse set
of correspondences but this method is hard to scale to high resolu-
tions.

3. Contribution

We introduce a mathematical framework which solves the corre-
spondence problem on two shapes with approximately the same
volume. For this purpose, we propose to alternatingly estimate the
correspondences and a smooth 3D deformation field aligning the
two input shapes. Our shape morphing model solves an initial value
problem to shift the first shape along this deformation field. Nu-
merically, this differential equation is integrated using a second or-
der Runge-Kutta scheme. Our framework allows us to incorporate

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 2: Overview over our complete pipeline.

physical assumptions about the deformations by directly building
them into our model. We suggest to impose volume preservation
by enforcing the deformation fields to have zero divergence. More
specifically, we define a coarse-to-fine basis representation of these
vector fields where each basis function is divergence-free. This al-
lows us to reduce the complexity by optimizing only over the most
significant coefficients. We use an expectation-maximization ap-
proach to simultaneously compute a subset of the unknown point-
to-point correspondences and the optimal deformation field coeffi-
cients. A schematic diagram of the complete pipeline can be found
in Figure 2. We demonstrate that the proposed framework can be
used to solve for correspondences which are on par with state-of-
the-art methods. Moreover, our method can produce a sequence of
reasonable intermediate shapes between the inputs as a by-product.
Both can be scaled up to arbitrary resolution without a significant
increase in complexity which we demonstrate on on a datset of real
scans with over 100k vertices.

4. Problem Formulation

In the following, we define the problem we want to solve and
the mathematical background we use in later sections. In gen-
eral we consider two point clouds X = {x1, . . . ,xN} ⊂ Ω and
Y = {y1, . . . ,yM} ⊂ Ω contained in a compact domain Ω ⊂ RD.
In practice we choose Ω = [0,1]D. These points xn and ym are sam-
ples from the surface of two similar (D−1)-dimensional Rieman-
nian manifolds embedded in RD. Our method aims at aligning the
point clouds X and Y in a meaningful manner. In particular, we are
looking for a mapping f : X → Ω which provides the coordinates
for a new embedding of each point on X . In the end, f (X ) should
be well aligned with Y .

4.1. Deformation field shape morphing

We propose to model the shape morphing f : X → Ω using the
following initial value problem:

{
ẋ(t) = v(x(t)).
x(0) = xinit.

(1)

In this context, v : Ω→RD is some fixed deformation field shift-
ing any point xinit ∈Ω over time. If we solve this differential equa-
tion until some fixed time teval, we get the flow ϕ : [0, teval]×Ω→Ω
of Equation (1). The flow ϕ morphs the space Ω over time, it maps
any input point xinit to its destination ϕ(t,xinit) at time t ∈ [0,1]. Ap-
plying Equation (1) to all points xinit := xn ∈ X yields a morphing
model for the source shape X :

f (xn) := fn := ϕ(teval,xn). (2)

In order to make those shape deformations more plausible, we re-
quire them to be smooth in space and in time. For this purpose, we
assume that the deformation fields v ∈C∞(Ω,RD) which, accord-
ing to the Picard-Lindelöf Theorem, yields smooth point trajecto-
ries x(·) := ϕ(·,xinit) ∈C∞([0,1],Ω), see [Tes12, Lemma 2.3,The-
orem 2.5]. For convenience we choose teval = 1 in our experiments.

Our morphing model computes natural shape deformations
which can be transformed into correspondences through nearest
neighbor search (See Section 5.3). Due to the time dependency of
the flow, we additionally get intermediate poses of the input shape
at times t ∈ (0,1) which constitute the underlying transformation.
Those are typically more meaningful than naive approaches like
linear interpolation between the points. We believe that having a
continuous correspondence and a natural deformation are inher-
ently connected and solving for both simultaneously improves the
results considerably.

4.2. Divergence-free deformations

One advantage of our morphing model (1) is that it allows us to
incorporate assumptions about the deformation fields v into our
model. In our framework we restrict these velocity fields to be
divergence-free, an assumption that is commonly used in mathe-
matical modeling of incompressible fluids [CM93]:

∇· v = 0. (3)

A well known consequence of this local property is that it yields
volume preservation over time for any subpart U ⊂ Ω of the em-
bedding space. In particular, we can consider the set of solutions of
Equation (1):

U(t) :=
{

ϕ(t,xinit) ∈Ω
∣∣xinit ∈U

}
. (4)

Then the assumption in Equation (3) yields that each morphed
set U(t) has the same volume as U [Tes12, Lemma 8.8]. Therefore,
each subvolume of the input shape X , as well as of the embedding
space, is preserved at any given time. Notice that this property is
stronger than global volume preservation of the interior of X only.
In general, two very differently shaped objects can have the same
volume. However, for our method the volume of all, potentially
very small, subparts is preserved. In our experiments, we found that
this is a reasonable assumption for real world deformations and it
provides a good regularization of our morphing model (1).

4.3. Helmholtz decomposition

Helmholtz’s theorem [Ari62] implies that any sufficiently smooth
vector field on the compact domain Ω can be decomposed into
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the sum of a curl-free, a divergence-free and a harmonic compo-
nent. It furthermore provides us with an explicit construction of the
divergence-free component that we are interested in:

v :=∇×Φ. (5)

In this context, Φ : Ω→ RD is a potential function and ∇×· is
the curl operator. Indeed,[CNT15, Lemma 2.2] shows that such a
Φ exists for any divergence-free, C∞ vector field v : Ω→ RD with
no outflow at the boundary:

〈v,n〉= 0 on ∂Ω. (6)

Furthermore, for a given Φ we always get a divergence-free vec-
tor field v as a basic property of the curl operator:

∇· (∇×Φ) = 0. (7)

To further restrict the space of admissible deformation fields,
we additionally require the potential functions to admit Dirichlet
boundary conditions Φ|∂Ω = 0. This guarantees that the potential
functions are tangential to the outer normals at ∂Ω which is a neces-
sary condition in the existence proof [CNT15, Lemma 2.2]. More-
over, we are only interested in a high expressibility in the interior
of Ω and choosing Dirchlet boundary conditions makes the repre-
sentation of our deformation fields even more compact. Intuitively,
it guarantees that for the resulting deformation fields v there is no
flow in and out of the domain Ω (see Equation (6)). In the case of
D = 3 spatial dimensions the construction of v in (5) admits the
following form:

v =




∂2Φ3−∂3Φ2
∂3Φ1−∂1Φ3
∂1Φ2−∂2Φ1


=




0
∂3Φ1
−∂2Φ1


+



−∂3Φ2

0
∂1Φ2


+




∂2Φ3
−∂1Φ3

0


 .

(8)

Remark. The harmonic component in the Helmholtz decomposi-
tion corresponds to global translations of the input shape X but we
refrain from including them in our framework. For once, we would
like the flow ϕ : [0,1]×Ω→ Ω to map all points xn ∈ Ω back to
the same domain. Furthermore, modeling global translations is not
necessary because we shift the input shapes a priori such that their
empirical mean corresponds to the center of Ω.

5. Method

In the following, we outline the core components of our method.
First, we construct a coarse-to-fine deformation field basis with
certain built-in properties like volume preservation (Section 5.1).
Then, we show how to integrate the initial value problem of Equa-
tion (1) (Section 5.2). Finally, we provide details about our ex-
pectation maximization algorithm (Section 5.3) where we simul-
taneously optimize for the unknown correspondences and an ap-
propriate deformation field. We refer the reader to the supplemen-
tary material for full details. Regarding relevant applications, we
will mainly restrict ourselves to the case of 2D shapes embedded in
R3. However, extensions to higher dimensions D > 3 or D = 2 are
straightforward.

5.1. Spatial representation

Standard discretizations of vector fields v using voxel grids have
cubic complexity which makes them too costly for any reasonable
resolution. To get a more compact representation, we introduce a
low rank basis {v1, ...,vK} of spatially dense, divergence-free de-
formation fields. The number of basis functions can be adjusted for
either speed or expressiveness. Without loss of generality we set the
domain to a D-dimensional cube Ω := [0,1]D. In practice, we then
translate and scale any shape to generously fit inside. We begin with
defining a basis for the potential fields Φ. For this purpose, consider
the eigenfunctions {φ1,φ2, ...} and eigenvalues {λ1,λ2, ...} of the
scalar Laplacian ∆ on Ω:

∆φk = λ∆
k φk. (9)

This basis of eigenfunctions {φ1,φ2, ...} is ordered with de-
scending eigenvalues 0 ≥ λ∆

1 ≥ λ∆
2 ≥ .... Furthermore, we require

the potential fields to admit Dirichlet boundary conditions Φ|∂Ω =
0. These φk can be computed analytically, they are exactly the sine
elements of the Fourier basis:

Bφ =

{
φ : [0,1]D→ R, x 7→

D

∏
d=1

1
2

sin(xdπ jd)
∣∣∣∣ j ∈ ND

}
. (10)

The set Bφ = {φ1,φ2, ...} is ordered by ascending Dirichlet
energy of the φk. These φk form an orthonormal basis wrt. the
〈·, ·〉L2(Ω) inner product for scalar functions on Ω. We can now use
Bφ to construct a basis for the deformation fields Bv according to
Equation (5). Note that the basis Bφ consists of scalar functions
while the potential functions Φ : Ω→ RD are vector valued. How-
ever, due to the linearity of the curl∇×·we obtain a basis by using
(5) one entry at a time. For D = 3 this can be done as follows:

Bv =
∞⋃

k=1

{
∇×




φk
0
0


 ,∇×




0
φk
0


 ,∇×




0
0
φk



}
=

∞⋃

k=1

{


0
∂3φk
−∂2φk


 ,



−∂3φk

0
∂1φk


 ,




∂2φk
−∂1φk

0



}
. (11)

We get three deformation basis functions for each φk in (10).
Analogously to the potential fields, the basis elements Bv =
{v1,v2, ...} are again sorted according to the eigenvalues λ∆

k of the
corresponding φk in descending order. Note that there are in gen-
eral multiple basis functions vk for each eigenvalue λ∆

k . Overall, we
obtain arbitrary deformation fields v as the linear combination of
the first K basis elements vk with some coefficients ak:

v(x) =
K

∑
k=1

vk(x)ak. (12)

Remark One aspect we would like to discuss in this context is our
choice of domain Ω= [0,1]D. The first basis function v1 in Figure 3
is equivalent up to first order to a rotation around the x3 axis. This
especially holds near the center of the domain Ω and deteriorates at
its boundary ∂Ω. Those considerations raise the question whether a
cubic domain Ω is the best choice for our purposes. Following the
work in [ZB07; ZB08] we could pursue our approach in a spherical
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Figure 3: Cross section of some deformation field basis functions
vk : Ω→ R3 at x3 = 0.5. Notice the low frequency structures for
low k and increasing frequencies with higher indices. Furthermore,
one can see that our deformation fields have no flow in and out of
the domain Ω at the boundary.

domain. This would lead to more complex basis functions vk but the
first three eigenfunctions would span the space of rotations without
undesirable artifacts at the boundaries of the domain. Although this
would be a nice theoretical property, we refrain from using these
basis functions here due their complex structure.

5.2. Temporal discretization

In order to evaluate the correspondence mapping f in (2) we have
to solve the initial value problem (1) with a numerical integration
scheme. The simplest choice in this context is the explicit Euler
method. However, we decided to use a second order Runge-Kutta
method [GH10, Ch. 9] because it has a significantly higher accu-
racy and therefore allows for a coarser time discretization. We sub-
divide the time domain in an equidistant grid with T ∈ N intervals
and set the step size h = 1

T . This yields an explicit iteration scheme:





x(0)n := xn.

x(t+1)
n := x(t)n +hv

(
x(t)n + h

2 v
(
x(t)n
))

.

fn := x(T )n .

(13)

We typically choose T ∈ {1, ...,100} in our experiments. In gen-
eral, we have to make a trade off between runtime and accuracy
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Figure 4: Area expansion with different step sizes using the Runge-
Kutta integration. Left: Rotation around 90 degrees on a bat shape
of the MPEG-7 dataset [Ral] (black). If executed in one step (T = 1)
the shape expands (red) whereas for ten steps T = 10 the area of
the interior stays nearly the same (green). Right: Relative area ex-
pansion when performing the same deformation with an increasing
number of steps T .

when selecting an appropriate number of steps T . If we choose T
too small, we lose some key properties of our framework like the
volume preservation. This effect is illustrated in Figure 4 for the
2D shape of a bat transformed by a 90 degree rotation around the
center. Note that the deformation field corresponding to this trans-
formation is only approximately contained in our framework due
to our choice of domain and boundary conditions, see discussion
in the previous subsection. If we choose too few time steps T , the
shape shifts outward and the area expands. On the other hand, this
effect becomes insignificantly small if we choose T ≥ 10.

5.3. Optimization

In the previous sections we derived a coherent description of shape
morphing using volume preserving deformation fields. We can now
use this framework to construct an algorithm that matches two
given point clouds X and Y by calculating a volume preserving
deformation field between them. In order to do that we simulta-
neously optimize for the deformation field coefficients a and the
unknown correspondences.

Similar to [MS10] and [MZT*14] we approach shape registra-
tion in a probabilistic manner. We interpret the point cloud X as
a Gaussian mixture model with the means located at the shifted
points fn = x(T )n and the covariance σ2ID ∈ RD×D for some σ > 0.
This enables us to simultaneously determine the deformation field
coefficients a ∈RK and the correspondences W ∈ [0,1]N×M by ap-
plying an expectation maximization approach. Expecation maxi-
mization alternates between optimizing the deformation field co-
efficients and the correspondence while assuming the other to be
fixed. The full derivation of each step, as well as additional imple-
mentation details, can be found in the supplementary material.

Expectation step The expectation step calculates correspondences
for a fixed deformation. We represent the correspondences between
the morphed f (X ) = { f1, . . . , fN} and the reference pointcloud
Y = {y1, . . . ,yM} as soft correspondence matrices W ∈ [0,1]N×M

which arise naturally from the Gaussian mixture model assumption.
High values of Wnm ≈ 1 indicate a high correspondence probability
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Figure 5: Quantitative evaluation using the Princeton benchmark protocol on the TOSCA data set [BBK08] (left), the SCAPE data set
[ASK*05] (middle), and the high-resolution TOPKIDS [LRB*16] (right). On TOSCA and SCAPE we compare against Spectral General-
ized Multi-Dimensional Scaling (SGMDS) [ADK16], Functional Maps [OBS*12], Blended Intrinsic Maps (BIM) [KLF11], Möbius Voting
[LF09], Coherent Point Drift (CPD) [MS10] and Kernel Matching [VLB*17]. On TOPKIDS we compare against the competitors of the orig-
inal paper (Isometric Embedding via Expectation-Maximization (IE-EM) [SY12], Green’s Function Embedding Alignment (GFE) [BDK17],
Random Forests (RF) [RRW*14]), Fully Spectral Partial Matching (FSPM) [LRBB17], Partial Functional Maps (PFM) [RCB*17] and Ker-
nel Matching (KM) [VLB*17]. Both the TOSCA as well as the TOPKIDS dataset contain cases which are critical for our method but our
results are still on a par with state-of-the-art. See Section 6.1 for details. On the TOSCA data set we additionally evaluate our method without
using features. The drop in performance shows that these are crucial to avoid unwanted optima.

for the point pair (xn,ym) while values close to zero indicate low
probability. The expectation maximization framework then yields
an explicit update rule for W given the deformation coefficients a:

Wnm :=
exp
(
− 1

2σ2 d2
nm

)

(2πσ2)
D
2 +∑N

ñ=1 exp
(
− 1

2σ2 d2
ñm

) . (14)

For a derivation of this formula, see the supplementary material.
Intuitively, Wnm describes the value of a Gaussian with center fn
and variance σ at point ym.Similar to [MS10], the normalization
factor in the denominator comes from the mixture model assump-
tion combined with an explicit modeling of outliers. In order to
prevent our method from getting stuck in incorrect local optima, we
include SHOT descriptor [TSS10] with standard parameters from
the authors’ implementation. We combine them with Euclidean dis-
tances to define a metric for pairs of points xn and ym:

d2
nm :=

∥∥ym− fn
∥∥2

2 +d
∥∥SHOT(xn)−SHOT(ym)

∥∥2
2. (15)

We introduce the factor d ≥ 0 to ensure that both metrics have
a comparable scaling, in particular we require both summands to
have the same mean value for all point pairs X and Y . Note that we
use descriptor values SHOT(xn) on the original shape X instead of
the morphed shape f (X ) in order to not recompute them at every
iteration.

Maximization step The maximization step updates the deforma-
tion field for given soft correspondences W . Intuitively, we are
looking for the deformation field coefficients a that best align points
with high correspondence probability Wnm. For this purpose, we in-
terpret the coefficients a = (a1, ..,aK)

> as random variables with

a normal distribution a ∼ N (0,L), where L := diag(λ1, ...,λK). If
we compute the pushforward of this Gaussian according to Equa-
tion (12), we get a prior distribution of deformation fields v. The
weights λk are constructed from the eigenvalues λ∆

k as follows:

λk :=
(
−λ∆

k
)− D

2 =

(
π2

D

∑
d=1

j2d

)− D
2

. (16)

The mathematical background of this choice for the weights λk is
provided by the Karhunen-Loève expansion [Sul15, Ch. 11] which
is an extension of the principal component analysis (PCA) for func-
tion spaces, see the supplementary material for more details. In-
tuitively, this kind of weighting promotes a damping of the high
frequency components and smoothness of the deformation field v.
The maximization step optimizes the coefficients a for their poste-
rior distribution given the current correspondences which describes
how well the deformation field of a explains W . This results in the
following energy for a:

E(a) :=
σ2

2
a>L−1a+

M

∑
m=1

N

∑
n=1

Wnmρ(‖ym− fn‖2). (17)

This energy E is the sum of the negative log prior including the
weights λk (left term) and the negative log likelihood (right term)
of a. The function ρ : R→ [0,∞) is the Huber loss [Hub64] which
helps to account for outliers and makes the deformation field esti-
mation more robust:

ρ(r) =

{
1
2 r2 |r| ≤ r0.

r0|r|− 1
2 r2

0 otherwise.
(18)

In our experiments, we choose the outer slope as r0 := 0.01. Fur-
thermore, we apply a Gauss-Newton type approach to minimize
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Figure 6: Examples of texture transfer done with our method. For each object the first image shows the source shape and texture, the second
image the texture transferred with the ground-truth map and the third image the texture transferred with our correspondences. Our results are
nearly identical to the ground-truth except for the dog which shows some artifacts on tail and chest.

the energy in (17). This results in an iterative method similar to
the Levenberg-Marquardt algorithm [Lev44]. For this purpose, the
residual term ‖ym − fn‖2 is linearized in each iteration. This re-
quires a differentiation of the Runge-Kutta scheme (13) wrt. the
weights a, see the supplementary for an explicit formulation of the
derivative d

da fn and the Gauss-Newton update step for the energy
in Equation (17).

To summarize, our method alternates between computing the
weights W (i) according to (14) and performing one Gauss-Newton
update step for (17) to obtain a(i). To initialize the algorithm we set
the deformation field to zero a(0) := 0.

6. Experiments

We evaluate our method for several applications to show that it is
general and flexible. Although we handle shapes with up to 200k
and more vertices, the computation of the deformation field is al-
ways done on a downsampled version of the inputs with 3000 ver-
tices and then applied to the full resolution. We use Euclidean
farthest point sampling. The downsampled shape should include
points of all relevant large and fine scale structures in order for the
deformation field to move these correctly but we found 3000 suf-
ficient for our applications. As a preprocessing step we shift both
inputs such that the mean of their vertex positions is in the center
of the domain and align them using PCA. To avoid wrong align-
ments along the principle component axes we choose the orienta-
tion that minimizes Eq. (15). When averaging over all experiments
presented here, our algorithm takes about 370 seconds to compute
the deformation and correspondences for one pair of shapes. Due
to our a priori downsampling the runtime is only linearly depen-
dent on the number of vertices, see Section 6.4 for a discussion of
this property. All experiments were performed with MATLAB on
a system with an Intel Core i7-3770 CPU clocked at 3.40GHz, 32
GB RAM and a GeForce GTX TITAN X graphics card running a
recent Linux distribution. In all our experiments we only use the

raw shape data and in particular do not need any ground truth in-
formation or user input.

6.1. Matching

We verify our method using the TOSCA [BBK08], SCAPE
[ASK*05] and high-resolution TOPKIDS [LRB*16] data sets. All
these shapes are synthetic and therefore the exact intraclass corre-
spondences are known. TOSCA contains 76 triangular meshes with
8 classes of humans and animals, SCAPE consists of 72 poses of
the same person and TOPKIDS contains 26 poses of the same per-
son in which topological merging, as it might appear in real scan-
ning, is imitated.

We set the hyperparameters σ2 := 0.01, T := 20 and choose
K = 3000 basis functions for the deformation field. Because W (i)

only contains 3000 correspondences we perform a nearest-neighbor
search with respect to the metric in Eq. (15) to obtain a dense map-
ping. The evaluation is done with the Princeton benchmark protocol
[KLF11]. Given the ground-truth match (x,y∗) ∈ X ×Y , the error
of the calculated match (x,y) is given by the geodesic distance be-
tween y and y∗ normalized by the diameter of Y:

ε(x) =
dGeo
Y (y,y∗)√

area(Y)

We plot cumulative curves showing the percentages of matches
that are below an increasing threshold. As zero is the value for
ground-truth matches, the ideal curve would be constant at 100. See
Figure 5 for our results and Figure 6 for example matching results
showing texture transfer. On SCAPE we are able to reach state-
of-the-art results whereas on TOSCA the intrinsic Kernel Match-
ing methods is slightly better. Our extrinsic approach makes self-
touching poses more challenging and these cases occur fairly often
in TOSCA. Although TOPKIDS is still synthetic the self-touching
poses are actually merged in the geometry which makes it more
challenging. On this dataset we are slightly better than Kernel
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Figure 7: Example registrations from the FAUST scan data set. The surface color corresponds to the Euclidean surface distance between scan
and registration. The scale of the scans is in real cm values and the same on all plots. We report the average and maximum error under each
image. Many errors occur due to the SHOT descriptors being corrupted at holes and in noisy areas (e.g. the hands). Furthermore, in some
case the assumption of exact volume preservation is too restrictive for real scans with noise and topological changes (see especially second
to the right).

Matching (see Figure 5). See the supplementary material for an
example.

To show the influence of features on the results we do an evalu-
ation of our method without using features at any point during the
optimization. Instead the distance of Equation (15) is replaced with
the pure Euclidean distance between the coordinates. The result can
be seen in Figure 5. The performance without features decreases
substancially because the Euclidean distance is a weak indicator
when large deformations take place. Therefore, our method gets
stuck in local optima more often.

6.2. Registration

We apply our framework to the FAUST Scan dataset [BRLB14]
which contains data from scans of real humans in different poses.
Each of these shapes has approximately 200k vertices, they are
sampled inconsistently and some of them are severely affected by
scanning noise, holes and topological changes. We match the null
shape of every person to its other poses. In Figure 7 we display the
surface distance of the morphed shapes to the goal shape for some
examples. We reach very tight alignments except in very challeng-
ing cases like topological changes. Furthermore, the scanned vol-
ume varies slightly even between different poses of the same hu-
mans which induces small errors in our method.

6.3. Effect of the basis size

In our evaluations we consistently use K = 3000 deformation field
basis functions. To justify this choice empirically, we compute the
mean geodesic errors of each TOSCA pair for several basis sizes
K ∈ {1, . . . ,3000}, see Figure 9. We observe that while the accu-
racy increases significantly for small K ≤ 1000, after some point
it starts plateauing. In our evaluations, we choose K = 3000 be-
cause we aim for a high accuracy. However, for some applications

where runtime is more important than accuracy a smaller basis size
K < 3000 might be sufficient.

6.4. Runtime for high resolution

One major advantage of our method is that it is scalable to high
resolution input shapes like those from FAUST because we opti-
mize for the deformation field on downsampled shapes (3000 ver-
tices). One point that we want to stress in this context is that this
is not the same as computing matchings only on low resolution
shapes. For many matching methods this scaling to the full resolu-
tion is challenging, most methods need to come up with a custom
coarse-to-fine strategy. In general, it is not straightforward to ex-
tend a shape matching or deformation from a downsampled shape
to the rest of the vertices. However, for our method this upscaling
is trivial because the deformation field basis functions (11) are de-
fined densely on the whole embedding space, therefore they can be
evaluated anywhere in Ω. This upsampling scales linearly in N be-
cause the Runge-Kutta method (13) is computed independently for
all vertices xn. See Figure 10 for an empirical verification of this
property. Here, the runtime for the shape deformation is computed
for various downsampled versions of one high resolution shape. To
sum it up, the runtime for computing shape morphings is relatively
low and increases only linearly in the number of vertices N which
makes our method scalable for high resolution input shapes.

6.5. Shape Interpolation

Interpolation Our method morphs the input shape X by solving
the ODE (1) up to time teval = 1. If we now instead evaluate it
at an intermediate time t ∈ (0,1), we get interpolated shapes as a
byproduct of our matching pipeline. Just like the morphed shapes
f (X ) those intermediate shape morphings are smooth and volume
preserving which makes them look natural. Three examples with
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(a) Centaur. (b) Human.

(c) Armadillo.

Figure 8: Three examples of shapes that are morphed into one another according to the initial value problem of Eq. (1). The centaur (a) and
the human (b) are from the TOSCA [BBK08] and FAUST [BRLB14] dataset respectively. The armadillo (c) is from the AIM@SHAPE shape
repository [AIM]. (b) is a scan of a real person and very high resolution (214k vertices). The source and target shape are shown in white and
the interpolations at times t = 0.25,0.5,0.75 in blue. The translation is not part of our deformation and was only introduced for clarity in the
figures.
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Figure 9: Dependency of the mean geodesic errors on TOSCA on-
different basis sizes K ∈ {1, . . . ,3000}. In particular, we show the
elements at the 0%,25%,50%,75% and 100% quantile.

interpolated shapes are displayed in Figure 8 and videos can be
found in the supplementary material.

Extrapolation Similarly to the idea of interpolating shapes as a
byproduct of our method we can also use the computed defor-
mation field v to solve the initial value problem (1) up to times
t > 1. This results in extrapolated shapes, see Figure 11. In con-
trast to shape interpolation, extrapolation is a severely underdeter-
mined task and it is hard to evaluate quantitatively. Nevertheless,
we observed that for moderate time spans t ∈ [1,1.5] our method
produces reasonable results. In general, the morphing speed slows
down at some point, especially when the shape is moving in pre-
viously unoccupied space. Intuitively, for the optimization there no
incentive to impose any particular movement on these parts of the
domain Ω, if it is not relevant for the surface alignment. Still, our
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Figure 10: Runtime of our method for the full resolution shape de-
formation for different number of vertices N ∈{3000, . . . ,100000}.
The full pipeline has two steps: (1) a fixed size optimization over
3000 vertices which takes around 360 seconds on average (blue
dashed line), (2) applying the deformation field to the full reso-
lution shape and extracting the correspondence for the full shape.
The plot shows that our method scales linearly in the number of
vertices and is therefore still feasible for very detailed shapes with
over 100k vertices.

extrapolated shapes are visually appealing and not too severely af-
fected by distortions.

7. Conclusion

We presented a novel extrinsic approach to shape matching. Be-
sides computing dense surface correspondences, we also determine
a smooth, volume preserving deformation field between the input
shapes. Our morphing model shifts the source shape X along this
deformation field using a second order Runge-Kutta integration
scheme in order to align it with the reference shape Y . Addition-
ally to aligning the inputs, this model can also be used to efficiently
calculate plausible interpolated shapes.

Our method addresses the coupled problem of finding an un-
known deformation and correspondence with an expectation maxi-
mization approach. Furthermore, we represent our morphing model
with a low rank deformation field basis which reduces the de-
grees of freedom and makes the optimization problem well con-
strained. This then allows for a subsampling of the inputs which
makes it computationally feasible, even for high resolution meshes,
with only a linear increase in runtime. Quantitative evaluations for
shape correspondence partly prove state-of-the-art performance of
our method. Moreover, we show convincing examples of shape in-
terpolation and extrapolation that arise naturally from our pipeline.

7.1. Limitations

Due to our choice of basis the deformation field is forced to be vol-
ume preserving. This makes sense in applications with the same
object but prevents inter-class matchings - for example between
two humans with different body shapes. The volume preservation
property applies to every subregion of the domain Ω, including the
intermediate space between parts of the shape. Therefore, separat-
ing two touching parts (for example two hands) is in theory possi-

Figure 11: Example of an extrapolated shape from the KIDS dataset
[RBW*14]. It can be determined using the temporally fixed defor-
mation field v for simulating the initial value problem (1) up to
the time t = 1.3. Source and target shape are white, one interpo-
lated shape is shown in blue and the extrapolation is pink. The de-
formation field is usually magnified in the area between the input
shapes and fans out in several directions further away from the in-
put shapes. Therefore, choosing a really high time does not lead to
broken shapes but the movement slows down more and more until
it basically stops.

ble but requires many high frequency deformation basis elements
which would make the optimization costly.

The assumption of (1) being autonomous can be problematic if
different parts of the shape move through the same region of the
embedding space in a contradictory manner. One example for this is
a hand closing to a fist. At first the index and middle finger occupy
parts of the embedding space before the thumb moves in the same
area but in a different direction. See Figure 12. A possible remedy
for this problem is making the deformation fields time dependent.

Furthermore, since there is not one unique, volume preserving
deformation between two shapes, our interpolation is not guaran-
teed to be as-rigid-as-possible which is a plausible assumption in
many applications. If the displacement is spatially far, we might
end up with squeezed intermediate states that are volume preserv-
ing but are affected by undesirable distortions. This is also visible
in Figure 12 where the tip of the thumb becomes flat.

7.2. Future Work

Right now, our method will always find a solution that is globally
volume preserving. This allows to find good deformations fields in
the case of severe non-rigid deformations but is not applicable to
partial data. In the future, we want to extend this method to work
on real scans, for example from the Kinect, which naturally only
show partial shapes. A promising approach for this is making the

c© 2019 The Author(s)
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deformation divergence-free in certain parts of the domain while
still allowing volume changes in some places and imposing an as-
Killing-as-possible constraint in the optimization. Additionally, we
want to construct an adaptive basis for this depending on the input
shapes. This might also help with the separation of close parts and
handling non volume preserving deformations like style or class
changes. Furthermore, we only calculate one time independent field
for the entire deformation which means mass at one spatial point
always needs to move in the same direction at a later time step.
This restricts the complexity of the deformations that our method
can handle, especially for large-scale motions over a longer period
of time. Future versions should allow more flexible types of defor-
mation fields to extend it to a broader range of applications. We
could for example associate different parts of the shape with differ-
ent deformations fields or let them vary over time to address more
difficult tasks.
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Chapter 5

Smooth Shells: Multi-Scale Shape

Registration with Functional Maps

The shape correspondence literature commonly differentiates between intrinsic ap-
proaches, which are invariant to the explicit coordinate embedding of a surface, and
extrinsic approaches sensitive to this embedding. Intrinsic maps allow for a compact pa-
rameterization through functional maps, which are linear maps in the spectral domain
between the Fourier eigenbasis of X and Y . While this representation helps constrain
the optimization, there are well-known failure modes, such as intrinsic symmetries, non-
isometric distortions, or topological changes from self-contact. We propose a hybrid
approach integrating both intrinsic and extrinsic information. To this end, we model
shape poses in the product space of the extrinsic vertex coordinates and the intrinsic
Laplace-Beltrami eigenfunctions. The space of admissible transformations is then pa-
rameterized through a linear map in low-rank basis representation and a functional map,
respectively. For the vertex embedding, we introduce the shell operator SK , computing
a sigmoid weighted low-pass filtering of an input shape X , where the level of detail is
modulated by the number of retained eigenfunctionsK . For a given pair of surfaces, we
optimize for both the unknown correspondence map, and the product space transfor-
mation in an alternating optimization scheme. We additionally regularize the extrinsic
vertex deformations with an as-rigid-as-possible deformation energy and the functional
maps with a local feature preservation term. After each alternating optimization step,
we gradually increase the number of Laplace-Beltrami eigenfunctions, resulting in a
multi-scale scheme. Since the resulting optimization problem is highly non-convex, we
introduce an initialization algorithm based on Markov chain Monte Carlo sampling that
performs stochastic search on the space of initial maps. In our experiments, our approach
demonstrates superior performance on classical nearly-isometric datasets, as well as spe-
cialized benchmarks focusing on different meshing densities, topological changes, and
inter-class poses.
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Abstract

We propose a novel 3D shape correspondence method
based on the iterative alignment of so-called smooth shells.
Smooth shells define a series of coarse-to-fine shape ap-
proximations designed to work well with multiscale algo-
rithms. The main idea is to first align rough approxima-
tions of the geometry and then add more and more de-
tails to refine the correspondence. We fuse classical shape
registration with Functional Maps by embedding the in-
put shapes into an intrinsic-extrinsic product space. More-
over, we disambiguate intrinsic symmetries by applying a
surrogate based Markov chain Monte Carlo initialization.
Our method naturally handles various types of noise that
commonly occur in real scans, like non-isometry or in-
compatible meshing. Finally, we demonstrate state-of-the-
art quantitative results on several datasets and show that
our pipeline produces smoother, more realistic results than
other automatic matching methods in real world applica-
tions.

1. Introduction

The wide selection of affordable 3D scanning devices in
recent years has led to an enormous growth in the amount
of 3D shapes and scans available. In contrast to synthetic
shapes, real-world scans are often noisy and many proper-
ties cannot be guaranteed. For example, topological noise
might appear in self-touching areas or the meshing density
varies depending on scanning conditions. These distortions
were proven to be difficult for state-of-the-art shape cor-
respondence methods [24, 34]. Many traditional methods
focus only on the (nearly) isometric case, clearly defined
extensions of this like partiality [28], or learn matching for
different classes of shapes under certain perturbations [18].
Unfortunately, this requires training data and knowledge
about what deformations and noise are to be expected.

In general one can distinguish between intrinsic and ex-
trinsic correspondence methods. Intrinsic methods only use
surface properties that are independent of the embedding,
for example the Laplace-Beltrami operator. On the other
hand, extrinsic methods directly use the 3D embedding of

Figure 1: Given a source (left) and target (right) shape we
propose a hierarchical smoothing procedure to iteratively
align the inputs. First, we align very coarse approximations
and then refine until we get correspondences for the original
inputs. Among other things, we can handle challenging in-
terclass pairs like matching a dog to a horse and our method
is fully automatic, i.e. we do not use any additional infor-
mation like hand-selected landmarks.

the shapes. While intrinsic methods are invariant to large
scale, near-isometric deformations, extrinsic alignment is
often more suitable for pairs with topological changes or
other non-isometric deformations. A natural step would be
to combine both to get the best of both worlds but only few
previous approaches venture in this direction [11, 13].

Contribution In this paper we combine intrinsic and ex-
trinsic information by embedding the input shapes into the
product space of intrinsic (spectral) and extrinsic (xyz) co-
ordinates. Then, we iteratively align smooth approxima-
tions of the two input shapes in this product space which we
call smooth shells. Moreover, we propose a Markov chain
Monte Carlo initialization strategy to find a meaningful lo-
cal minimum and disambiguate self-similarities. Overall,
we obtain a robust matching pipeline that works out of the
box for a broad range of inputs beyond the isometry as-
sumption and in the presence of various types of noise.

2. Related Work
2.1. Shape Correspondence and Registration

Shape correspondence is an extensively studied topic
with various applications in Computer Vision and Graphics.
Surveys of state-of-the-art methods [55, 47, 52, 46] give a
broader overview of existing approaches but here we focus
on work that is immediately related to ours.

The Functional Maps [38] paper proposes an elegant



formalism to model shape correspondences. The main
idea is to model mappings of functions on the input shape
to functions on the output shape instead of point-to-point
maps. This allows for a compact matrix representation in
a low rank basis. Over the last years, the original frame-
work has been extended and applied to various applications
[45, 29, 42, 1]. A major challenge in this context is extract-
ing a point-wise correspondence from a Functional Map
[44]. Several methods extend the original formalism but
most of them are computationally heavy or make restrictive
assumptions about the inputs [44, 42, 37]. Another common
approach is to take noisy correspondences obtained from a
Functional Map and denoise them [16, 57]. However, this
only works if the input map is sufficiently accurate. Finally,
all the methods listed above are by design prone to produce
faulty matches in the presence of intrinsic self-similarities.

Extrinsic methods explicitly deform and align the input
shapes in the 3D embedding space. [36, 31] model the de-
formation with a linear mapping in a low rank basis on the
surface of one shape. Like our approach, [15] alternates be-
tween calculating a deformation field and correspondences
but the volume-preservation constraint restricts the applica-
bility. Many deformation-based methods require expensive
preprocessing to apply the deformation model, for exam-
ple with a deformation graph [49], structural rods [3] or
deep learning [18]. Non-rigid ICP methods iteratively align
shapes but they rely on a good initialization [27, 4]. How-
ever, for many applications we do not have such a previous
alignment and in general there is no trivial way to obtain it.

There exist accurate methods to register certain classes
of shapes, e.g. humans [7, 2]. Unfortunately, these are
highly specialized and depend on class specific features
[33], or learn statistical models from data [41]. While these
methods perform extremely well for shapes within their
classes, they usually do not generalize to arbitrary exam-
ples.

2.2. Shape Approximation and Simplification

The idea of mesh simplification by smoothing is investi-
gated thoroughly in previous work. [54] use manifold har-
monics for the smoothing. In surface deformation modeling
this is usually a two stage algorithm. First, a smoothed ver-
sion of a shape is deformed and then the details are added
back to the surface, see [8] for an overview. Some classi-
cal works on shape modeling with smoothing are [19] and
[23]. [9] combines this approach with differential coordi-
nates. Although our smooth shells are related to smoothing
technique like [54], none of the mentioned approaches use
a series of approximations. We propose a novel hierarchi-
cal shape smoothing method that is particularly suitable for
coarse-to-fine matching.

Shape skeletons offer a lower-dimensional description of
the rough geometry of a shape. A recent survey of 3D skele-

ton methods can be found in [51]. Although the skeletons
are usually designed to be easily aligned between different
shapes from similar classes, most methods typically only
define a single, unique skeleton for each shape. This is use-
ful for a rough matching but does not allow for an iterative
refinement of the surface alignment. Similar to our method,
[12] extracts a skeleton based on Laplacian-based contrac-
tion but aims at getting a unique curve skeleton. Some
methods create an entire class of skeletons for each shape
[43]. Our method differs from the previously mentioned in
that we do not introduce a fixed skeleton for each shape. In-
stead we construct a whole class of approximations with an
increasing level of detail.

3. Background
A correspondence between two input shapes X and Y is

defined as a point-to-point mapping P : X → Y . Here, a
shape is a 2D Riemannian manifold with an embedding in
R3. We use triangular meshes to discretize the surfaces X
and Y and denote the coordinate matrices as X ∈ RN×3
and Y ∈ RM×3 with N and M vertices respectively.

3.1. Laplace-Beltrami Operator

The Laplace-Beltrami operator ∆ = div(∇·) is an ex-
tension of the standard Euclidean Laplacian to manifold do-
mains X . Computing solutions of ∆φk = λkφk yields the
Laplace-Beltrami eigenfunctions {φk}k∈N which form an
orthonormal basis of L2(X ). This allows for a spectral rep-
resentation of functions f ∈ L2(X ):

f ≈ f̃ =

K∑

k=1

〈
f, φk

〉
φk. (1)

According to the min-max principle, f̃ is an optimal com-
pact approximation of smooth functions f ∈ L2(X ) [39]
with a fixed basis sizeK. To compute the Laplace-Beltrami
operator on triangular meshes, we use a cotangent dis-
cretization ∆ ∈ RN×N with lumped mass matrix [40] and
we denote its firstK eigenvectors as ΦK = (φ1, . . . , φN ) ∈
RN×K (analogously ΨK ∈ RM×K for Y).

3.2. Functional Maps

The Functional Map framework [38] is a popular ap-
proach to solve for correspondences P : X → Y . In Func-
tional Maps, P is replaced with a mapping of functions to
functions C : L2(X ) → L2(Y). C is linear and can there-
fore be compactly written as a matrix C ∈ RK×K :

C = ΨKCΦ†K . (2)

To compute C for a pair of input shapes we need addi-
tional information to constrain the solution. Given pairs of



Figure 2: Overview of our pipeline. (Column 1) We initialize our method with the alignment X∗6 from our Markov chain
Monte Carlo initialization algorithm, see Section 5 for details. (Columns 2-4) On each level K we embed both shapes in
the K + 6 dimensional product space of the smoothed extrinsic coordinates XK ∈ R3, the intrinsic spectral coordinates
ΦK ∈ RK and the outer normals nXK ∈ R3. In this space we can align XK and YK by computing an extrinsic morphing
τ ∈ RK×3 for XK and a Functional Map C ∈ RK×K for ΦK . To visualize the spectral embedding ΦK only the first
three dimensions are shown. Finally, using the aligned X∗K and YK we obtain a point-to-point matching P : X → Y with
a nearest neighbor search in RK+6. We repeat this process for 50 iterations with smoothing levels on a logarithmic scale
between K = 6 : 500. Each iteration is initialized with the previous alignment.

corresponding functions fi ∈ RN and gi ∈ RM on the two
surfaces, an energy to optimize for C is:

Efeat(C) := ‖CΦ†KF −Ψ†KG‖2F . (3)

Here, F,G are matrices whose columns are the feature
functions fi, gi. Possible choices for those features range
from pointwise descriptors or surface texture to input land-
marks. Another common assumption is that the mapping
P is area preserving which leads to orthogonal Functional
Maps C>C = I, see [38, Theorem 5.1].

3.3. Shape deformation

A different approach is to align the surfaces in the em-
bedding space instead of calculating the correspondence di-
rectly. We denote the deformed version of X with X ∗ and
impose that X ∗ should align with Y . A common choice
model is a linear displacement in a low rank basis [36, 31],
e.g. the Laplace-Beltrami eigenbasis:

X∗ = X + ΦKτ. (4)

τ ∈ RK×3 are some displacement coefficients that pa-
rameterize the deformation. In the discrete case, the point-

wise correspondence is represented by the matrix P ∈
{0, 1}M×N with P>1 = 1. Using the aligned shape X∗,
we can recover P by minimizing the following energy:

Ealign,3D(P) := ‖PX∗ − Y ‖2F . (5)

This is equivalent to a nearest neighbor search in R3.
In order to get a meaningful correspondence with this ap-
proach we need to additionally regularize the deformations
X ∗. One possibility is to assume that the deformations are
as-rigid-as-possible on a local scale:

Earap(τ) :=

∫

X

∫

N (x)

∥∥R(x)
(
X(x)−X(y)

)
−

(
X∗τ (x)−X∗τ (y)

)∥∥2
2
dydx. (6)

N (x) denotes the neighborhood of x ∈ X and R : X →
SO(3) describes the local rotation, for details see [48].

4. Method
We propose to compute shape correspondences by itera-

tively aligning a series of coarse-to-fine approximations of



the input surfaces X and Y . This is based on the idea that
the alignment of two shapes can end up in unwanted local
optima in the presence of non-consistent small scale fea-
tures. In many cases the rough structure of X and Y , like
the number of extremities, is similar while the fine scale
details can differ, see Figure 1. After matching the global
features, the local features can be used to refine the align-
ment. The smooth shells we use as coarse shape approxima-
tions are defined in Section 4.1. Section 4.2 explains how
we combine extrinsic and intrinsic shape embeddings and
Section 4.3 defines our complete matching algorithm.

4.1. Smooth Shells

In this section, we propose a novel shape smoothing op-
erator SK that yields smoothed shapes similar to those from
spectral surface reconstruction [25]. In comparison, our op-
erator leads to smoother transitions between SK and SK+1

which makes it more suitable for a hierarchical alignment.

Spectral Reconstruction Spectral reconstruction [25]
smoothes X by projecting its coordinate function X onto
the first K Laplace-Beltrami eigenfunctions:

TK := TK(X) =

K∑

k=1

(
φk ⊗ φk

)
X. (7)

Here, φk ⊗ φk denotes the outer product of φk with it-
self which results in the projection of X onto φk. Since
the eigenfunctions are ordered by frequency, this creates
a coarse-to-fine approximation of the original shape. The
level of detail is controlled by the number of eigenfunctions
K. For small K only the rough geometry is reconstructed,
whereas for K →∞, TK converges to the original X .

Shell Operator The gradual smoothing from Eq. (7) is
useful for hierarchical shape matching. In each iteration we
increase K and use the alignment from the previous itera-
tion as an initialization. However, in many cases the refine-
ment with spectral reconstruction leads to undesirable ar-
tifacts. Especially the first few K projections from Eq. (7)
cause large disparities between reconstructions. This makes
the alignment from the previous iteration less useful for the
next step. We introduce the shell operator SK to circum-
vent this issue:

XK := SK(X) :=

∞∑

k=1

1

1 + exp
(
σ(k −K)

)(φk ⊗ φk
)
X.

(8)
Just like spectral reconstruction, SK smooths X using

a projection on φk. However, instead of truncating the
spectral coordinates at a certain K, we introduce a grad-
ual truncation with sigmoid weights. Those are close to 1 if
k � K and decay to 0 when k � K. This guarantees that

T6 T7

T8 T9

T100 T500

X6 X7

X8 X9

X100 X500

Figure 3: At first glance there is no significant differ-
ence between spectral reconstruction TK and smooth shells
XK := SK(X). They both converge toX forK →∞, and
for high indices K � 50 they are indistinguishable. The
crucial difference lies in their upsampling behaviour. While
smooth shells transition smoothly from XK to XK+1, con-
secutive shapes TK tend to have large displacements and
are therefore less suitable for iterative alignment methods.

the displacement from SK to SK+1 is reasonably bounded.
For small σ the transition becomes smoother, whereas for
σ → ∞ the sigmoid function converges to the indicator
function 1{k≤K} which corresponds to spectral reconstruc-
tion. In particular, we can show the following smoothness
result for S:

Theorem 1. (Transition smoothness of S)
Let X be a shape with coordinate function X ∈ L2, then
the geometric difference of state XK and XK+1 is bounded
by the upsampling variance σ in following way:
∥∥SK+1(X)− SK(X)

∥∥
L2∥∥SK+1(X)

∥∥
L2

≤ |1− e−σ| = O(σ), σ → 0.

(9)

We provide a proof in Appendix B. See Figure 3 for an
illustration of the practical implications and Table 1 for a
quantitative comparison to spectral reconstruction.

4.2. Intrinsic-extrinsic Embedding

Intrinsic and extrinsic methods are often depicted as op-
posing viewpoints and, although there are some notable ex-
ceptions [11, 13], only few methods try to combine them.
Our deformation model combines shape alignment in both
intrinsic and extrinsic space. Functional Maps is based
on rigid ICP alignment of the spectral coordinates ΦK ∈
RN×K of X and ΨK ∈ RM×K of Y in the K-dimensional
spectral domain [38].

ΦKC† ≈ ΨK .

On the other hand, extrinsic methods typically align the 3-
dimensional geometry as described in Eq. (4):

X∗K = XK + ΦKτ ≈ YK .



Figure 4: (left) Overview of of our MCMC initialization method. We sample potential initial alignments τprop ∈ R6×3 and
rate them using surrogate runs (see Section 5). Each proposal τprop is assigned a mark E(Surr(τprop)) > 0 based on the
alignment quality of the current surrogate. In the shown example, the best objective is E = 1.0614 and indeed this sample
visually shows the tightest alignment of X∗20 and Y20. (right) 2D embedding with multi-dimensional scaling of all τprop used
for one initialization. Samples with small objective values have big, yellow circles and big objectives correspond to small,
blue circles. Evidently there is a big cluster around the optimal (yellow) circle which shows that our algorithm is able to
determine the optimal initialization with high confidence.

We combine intrinsic and extrinsic alignment in order to
gain both their advantages. To this end, we embed the in-
puts X and Y in the product space of the intrinsic (spectral
coordinates ΦK) and the extrinsic (smoothed Cartesian co-
ordinates XK and outer normals nXK of X ) coordinates:

XK :=
(
ΦK , XK ,n

X
K

)
∈ RN×(K+6). (10a)

YK :=
(
ΨK , YK ,n

Y
K

)
∈ RM×(K+6). (10b)

Using the normals makes the embedding more descrip-
tive because they convey information about the inside-
outside orientation of each point. Using both the Functional
Map C and the extrinsic deformation τ (see Eq. (4)) now
yields the morphed embedding X∗K :

X∗K :=
(

ΦKC†, XK + ΦKτ ,
∗
n
X
K

)
∈ RN×(K+6). (11)

∗
n
X
K are the normals ofXK +ΦKτ . The next section will

go into detail on how to compute C and τ .

4.3. Hierarchical Matching

Putting everything together, we can define a hierarchical
correspondence algorithm with the following energy:

E(P,C, τ) := ‖PX∗K −YK‖2F+

λfeatEfeat(C) + λarapEarap(τ). (12)

The regularization terms Efeat and Earap are defined in
Eq. (3) and Eq. (6) respectively. For the former we use the
SHOT [53] and HKS [50] descriptors. To minimize the en-
ergy E we choose an alternating optimization strategy. In

particular, we first fix the correspondences P and optimize
for the alignment (C, τ) and then do the same vice versa.
This is a common approach for both intrinsic [38] and ex-
trinsic [31, 32, 36] matching methods. Our overall matching
algorithm is the following:

Algorithm 2. (Hierarchical Matching)

1. Input: X ,Y
2. For k ∈ {0, . . . , |K| − 1}:

2.1 Pk+1 := arg min
Pmn∈{0,1},P>1=1

E(P,Ck, τk).

2.2 (τk+1,Ck+1) := arg min
τ,C>C=I

E(Pk+1,C, τ).

3. Output: P|K|,X∗|K|.

The decomposition of the optimization problem E re-
sults in more tractable subproblems. For P this is a near-
est neighbor search, for C a Procrustes problem and for τ a
nonlinear least squares problem. The first two can be solved
in closed form, for the last one we use Gauss-Newton op-
timization. Our method now repeatedly solves those opti-
mization problems with shells of an increasing level of de-
tail K ∈ K on a logarithmic scale between Kinit = 6 and
Kmax = 500. See Figure 2 for a visualization of Algo-
rithm 2.

5. Initialization: Surrogate based Markov
chain Monte Carlo Sampling

Self-similarities are still a challenging problem for state-
of-the-art shape correspondence methods and many strug-
gle to distinguish them without proper initialization [56, 17,



35]. Even for humans it is difficult to distinguish between
the legs/arms of an animal without any context. In other
words, our energy from Eq. (12) is highly non-convex with
a multitude of local minima. Unfortunately, there is no ob-
vious way to compute a meaningful initial alignment for all
classes of shapes. We propose an indirect approach to this
using Markov chain Monte Carlo (MCMC) sampling.

Surrogate runs This approach is based on efficiently ex-
ploring the space of initial poses instead of heuristically
picking one. We assign a probability distribution to the dis-
placement parameter τ ∈ RKinit×3 and sample from this
distribution. In particular, we set the prior for τ to the stan-
dard normal distribution N (0, I) and the negative log like-
lihood proportional to the objective value E. By design,
this yields samples τ that have a high objective value E.
Each τ is ranked according to the objective functionE from
Eq. (12) and the lowest energy result is used to initialize the
full pipeline.

To evaluate E, we run a low cost version of the full
pipeline, a surrogate run, with Kmax = 20, no regularizers
λfeat, λarap := 0 and downsampled versions of the input
shapes to 1000 vertices. We evaluateNprop = 100 different
proposals τprop. Those can be run in parallel with an av-
erage runtime of 0.46 seconds per surrogate. See Figure 4
for a visualization of this strategy and see Appendix A for
pseudo code of our MCMC algorithm as well as the imple-
mentation in the supplementary material.

6. Experiments

We apply our pipeline to various, challenging matching
tasks using two metrics to measure the quality of a match-
ing. The first one is the accuracy, defined as the geodesic
distance to ground truth matches, see Section 6.1. The
second is the smoothness of the correspondence P which
we quantify using the conformal distortion of triangles, see

(a) (b) (c)

Figure 6: Example matchings for real scans from the
FAUST [6] dataset. The shapes have very high resolution
(200k vertices) and contain scanning noise. The FAUST in-
terclass challenge consists of (a) different humans that are
(b) subject to topological changes and (c) extreme degrees
of noise and partiality. Like [18] we match a template (left)
to each target. Here, correspondences are color coded such
that matching points have the same color.

Section 6.2. To show that our method can be used out of the
box, we use the same set of parameters for all experiments
and do not require additional information except for the in-
puts X and Y . See our implementation in the supplemen-
tary material for more details. Additionally, we perform an
ablation study in Section 6.3 and a runtime analysis in the
Appendix C to further investigate our method. Finally, there
are more qualitative examples of matchings and style trans-
fer in the Appendix.

6.1. Shape correspondence

We evaluate the matching accuracy of our method ac-
cording to the Princeton benchmark protocol [22] on multi-
ple datasets. Given the ground-truth match (x, y∗), the error
of the calculated match (x, y) is given by the geodesic dis-
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Figure 5: Our matching accuracies for four datasets in comparison to other popular fully automatic shape correspondence
methods. For more details on the datasets, see Section 6.1.



Figure 7: Example texture transfers with our method for
challenging interclass examples. The texture defined on the
source shape (horse) is transferred to two individual target
shapes (dog and human).

tance between y and y∗ normalized by the diameter of Y:

ε(x) =
dgeo(y, y∗)√

area(Y)
(13)

TOSCA, SCAPE, TOPKIDS, SHRECCONN Two
datasets contain synthetic shapes with isometric pairs,
TOSCA [10] contains 76 shapes of humans and animals,
SCAPE [5] contains 72 poses of the same person. TOP-
KIDS [24] contains 25 poses of a human child with self in-
tersections. These shapes are also synthetic but topological
changes from real scans are simulated with merged meshing
at self-touching areas. The SHREC’19 Connectivity [34]
dataset contains 430 pairs of human shapes from different
classes with severe differences in the meshing ranging from
template sized shapes (N ≈ 5000 vertices) to real scans
(N > 200K), and varying vertex densities in different ar-
eas. We compare our matching accuracy on these datasets
to other fully-automatic matching methods, see Figure 5.

FAUST The FAUST [6] dataset contains 300 real scans
of different humans in various poses, see Figure 6. Besides
being high resolution N ≈ 200K with non-compatible
meshing, the shapes are noisy and highly non-isometric.
Additionally, there are various poses with topological
changes due to self touching parts. To address this issue,
we do not compute the correspondence directly for a given
pair of shapes but, like 3D-CODED [18], FARM [33] and
LBS-AE [26], use an intermediate template from [30] to
compute correspondences for two scans. This allows our
method to separate topological changes and deal with noisy
geometry, otherwise the as-rigid-as-possible assumption
leads to faulty deformations. The accuracy (in cm) of
the best methods for the FAUST [6] interclass challenge
reported on the website faust.is.tue.mpg.de are:

Method 3D-CODED SP Ours LBS FARM FMNet
Error 2.878 (4.883∗) 3.126 3.929 4.079 4.123 4.826

For 3D-CODED (*) refers to the unsupervised version.
The striking observation is that our method is on par with
the state-of-the-art without specializing on the class of hu-
man shapes. Ours is the only method listed here that
does not train on human shapes (3D-CODED, FMNet) or
makes strong modelling assumptions holding only for hu-
mans (Stitched Puppet (SP), LBS-AE, FARM). We did not
specifically tune parameters for this challenge.

6.2. Map Smoothness

A map with good accuracy can still produce artifacts
when transferring information form surface X to Y because
small scale noise typically does not have a severe effect on
the geodesic matching error (13). This behavior is, however,
prohibitive for applications like meshing, texture or normal
map transfer, see Figure 7. The conformal distortion of each
triangle after deformation measures the local consistency of
a matching [21, Eq. (3)]. This allows for a quantification of
the smoothness of the map P.

Figure 8 shows the conformal triangle distortion of our
method on the SCAPE dataset. Remarkably, the deforma-
tions obtained with our method are even smoother than the
ground-truth provided in [5]. The reason for that lies in
the way the authors construct this ground-truth. In order
to transfer the meshes they use a classical nonrigid registra-
tion algorithm [20] to register a template in a canonical pose
to 71 noisy scans of a person. This method requires ∼ 150
markers to get a faithful alignment, some of which are hand-
selected. The main concern was to obtain a possibly tight
alignment of the markers. However, in practice the markers
are not perfectly placed and these small deviations lead to
distorted triangles. In comparison to that, we align the tem-
plates without any markers while explicitly using an ARAP
penalization term. This evidently leads to smoother defor-
mations and the few triangles that get distorted are typically
not artifacts of random noise but rather in meaningful places
like the armpits or the abdomen of the person in Figure 8.

6.3. Ablation study

We assess the effect of the different components of our
method in the ablation study in Table 1. The main insight is
that there is an intricate interplay of the different subparts of
our method and the accuracy drops significantly if any part
is removed. In particular, the MCMC initialization strategy
is vital. Without it our deformation based approach is ex-
tremely prone to run into suboptimal local minima which
leads to a failure rate of over 83%. Remarkably, even when
our rigid initialization strategy (see end of Appendix A) is
replaced with random rigid poses the failure rate is only
around 38 − 50%. In many cases, our MCMC algorithm
is able to find the correct pose, even in the presence of large
scale rotational displacements of the inputs.
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Figure 8: Correspondence smoothness measured on the SCAPE dataset using conformal distortion of triangles. (Left) Qual-
itative comparison – red triangles are distorted whereas white triangles preserve the angles. Our deformed mesh shows the
most meaningful, artifact-free result. Additionally, we provide an example texture transfer to prove that our deformed mesh
(Ours∗) is the most useful one. (Right) Accumulated distortions for all 71 pairs in the dataset. There are two possibilities to
transfer the mesh of X to the reference pose Y . Either we use the deformed geometry X ∗ directly (Ours∗) or we snap it to
the surface Y post alignment using the map P : X → Y (Ours). The former is only possible for our method because it is the
only one here to calculate a deformation instead of only a correspondence. See Section 6.2 for more details.

SCAPE Ours λfeat = 0 λarap = 0 Extr. only Intr. only w/o normals w/o MCMC random rigid spectral rec.
Avg. error 0.0088 0.0211 0.0147 0.0344 0.0121 0.0115 0.0568 0.1163 0.0139
Failure rate 0 0.2676 0.0282 0.7606 0.2254 0.0141 0.8310 0.4930 0.0282
Avg. Distortion 0.1287 0.1171 0.1604 0.1322 0.1539 0.1310 0.2594 0.2055 0.1305
TOSCA Ours λfeat = 0 λarap = 0 Extr. only Intr. only w/o normals w/o MCMC random rigid spectral rec.
Avg. error 0.0056 0.0075 0.0066 0.0441 0.0205 0.0076 0.1039 0.0694 0.0098
Failure rate 0 0.2083 0.0833 0.7500 0.4028 0.0694 0.8611 0.3889 0.1111
Avg. Distortion 0.1654 0.1641 0.1926 0.1710 0.2239 0.1716 0.3485 0.2829 0.1666

Table 1: Ablation study on TOSCA and SCAPE. We turn off certain parts of the method or replace it with an alternative to
assess its necessity and compare the average geodesic error in % of the diameter, the failure rate and the average conformal
distortion for each setting. The failure rate is the number of pairs in % where the geodesic error is twice as high than (Ours).
λfeat, λarap = 0 turns off the regularizers, Extr./Intr. only, w/o normals removes one part of the embedding (see Eq. (10)),
w/o MCMC removes the initialization, random rigid replaces our rigid alignment strategy with random rigid poses, and
spectral rec. replaces smooth shells with spectral reconstruction (see Eq. (7)). The main insight is that the accuracy decreases
whenever one of the components is removed. The conformal distortion is rather stable, except when a big percentage of the
results are totally broken (e.g. w/o MCMC) or the as-rigid-as-possible regularizer is removed.

7. Conclusion

We have presented a novel approach to shape corre-
spondence that combines geometric and spectral alignment
by embedding the input shapes into an extrinsic-intrinsic
product space. Our method introduces smooth shells as a
coarse-to-fine shape approximation with minimal geome-
try changes between iterations. This is valuable for hier-
archical approaches. Furthermore, we solve the problem of
self-similarities by starting with an efficient surrogate based
Markov chain Monte Carlo approach in which the deforma-
tion energy is used to find the optimal initialization. Fi-
nally, our method produces state-of-the-art results on estab-
lished isometry datasets as well as two datasets which focus
on specific noise, namely different meshing and topology

changes. In the FAUST real-scan interclass challenge we
are on par with the state-of-the-art although we do not train
specifically for this set-up. All results were achieved with
the same set of parameters which shows great generality.
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Chapter 6

Hamiltonian Dynamics for Real-World Shape

Interpolation

A fundamental limitation of shape interpolation approaches in the literature is their re-
liance on perfect correspondence maps. For a given pair of input posesX andY , existing
approaches often define interpolation sequences as geodesics in an underlying shape
space. While this formulation is elegant and successful in a broad range of interpola-
tion tasks, it is mostly designed for computer graphics applications with synthetic data,
requiring exact input correspondences. We address this fundamental limitation and de-
vise a robust, physically meaningful interpolation approach. Our framework is based on
Hamiltonian dynamics, modeling interpolation sequences in the six-dimensional prod-
uct space of surface points and momenta. We specify our Hamiltonian energy by com-
bining a surface distortion energy, motivated by shape space approaches, with a momen-
tum preservation term. For any initial velocity field, we then integrate Hamilton’s equa-
tions with an implicit Euler scheme. In order to predict an interpolation sequence that
deformsX intoY , we optimize for the initial velocities with gradient descent. We param-
eterize the velocity fields at each time-step with divergence-free vector fields proposed
in [3]. We further introduce an anisotropic variant of the popular as-rigid-as-possible
deformation energy to allow for more complex local distortions. Our method yields
physically plausible interpolation sequences, where the Hamiltonian dynamics defor-
mation prior serves as a strong regularizer for the intermediate poses. Thus, compared
to existing shape space approaches, it does not require exact input correspondences.
We demonstrate its robustness on several deformable shape datasets, where imperfect,
noisy input maps are obtained from state-of-the-art correspondence approaches. More-
over, our parameterization of shape deformation with extrinsic, divergence-free fields
guarantees that the obtained poses are free of self-intersections and preserve volume.
Finally, we show compelling qualitative results, including shape interpolation, shape
extrapolation, correspondence refinement, and interpolation of partial poses.
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Abstract. We revisit the classical problem of 3D shape interpolation
and propose a novel, physically plausible approach based on Hamiltonian
dynamics. While most prior work focuses on synthetic input shapes, our
formulation is designed to be applicable to real-world scans with imper-
fect input correspondences and various types of noise. To that end, we
use recent progress on dynamic thin shell simulation and divergence-free
shape deformation and combine them to address the inverse problem
of finding a plausible intermediate sequence for two input shapes. In
comparison to prior work that mainly focuses on small distortion of con-
secutive frames, we explicitly model volume preservation and momentum
conservation, as well as an anisotropic local distortion model. We argue
that, in order to get a robust interpolation for imperfect inputs, we need
to model the input noise explicitly which results in an alignment based
formulation. Finally, we show a qualitative and quantitative improve-
ment over prior work on a broad range of synthetic and scanned data.
Besides being more robust to noisy inputs, our method yields exactly
volume preserving intermediate shapes, avoids self-intersections and is
scalable to high resolution scans.

Keywords: Shape interpolation, registration, 3D computer vision

Fig. 1. An example interpolation (middle) on real scans from the FAUST dataset [7]
and the final overlap (right). Here, the input correspondences were computed with
Deep Functional Maps [36] (left).
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1 Introduction

Modeling realistic deformations of 3D shapes is at the heart of many computer
vision applications. The central motivation in this context is to give meaning
to sparse observations of a dynamically moving 3D object. Depending on the
application, these measurements are given in the form of a point cloud, a triangle
mesh, a voxel grid or a signed distance function.

In many cases, the sampling is not consistent over time and finding com-
monalities between observations is not a trivial task. While there are a lot of
approaches that try to fuse scanned data for 3D reconstruction [45, 53, 54], rel-
atively few work was dedicated to modeling the temporal transformation of the
observed object directly. In this work, we revisit this classical challenge of 3D
shape interpolation. Although there exists a multitude of elegant formulations,
we will show that a lot of these approaches are mainly designed for synthetic
shapes and therefore lack robustness to noisy real-world measurements.

The classical formulation is to define an interpolation as a sequence of shapes
with minimal local distortion between consecutive frames [12, 28, 32]. While this
is undoubtedly a reasonable assumption, it does not suffice in practice to account
for the peculiarities of real-world data. For synthetic 3D objects, the ground-
truth correspondences are typically known. For real scans, on the other hand,
we need to first estimate them, e.g. by using a shape matching method. In prac-
tice, the resulting correspondences are not perfect and contain both outliers
and fine-scale noise. This is problematic for an interpolation method that min-
imizes the local distortion between neighboring frames, because the noise from
the faulty correspondences tends to distort the local geometry throughout the
whole sequence. Moreover, most classical approaches do not model the global
geometry of an object which can lead to artifacts like self-intersections.

Contribution We propose a novel framework for real-world shape interpola-
tion that is systematically derived from Hamiltonian dynamics. It resolves the
above challenges by introducing additional, physically plausible modeling as-
sumptions like volume preservation and momentum conservation. More specifi-
cally, we formulate shape interpolation as the inverse problems of a dynamic thin
shell simulation. The Eulerian time-varying deformation fields are represented
in a low rank manner which allows us to build volume preservation directly into
our model. In qualitative and quantitative experiments, we demonstrate that
our method gives rise to high-quality interpolations for real-world inputs.

2 Related work

Shape interpolation has a long tradition in computer graphics. Originally it was
developed for planar shapes [2, 42, 52] with [16] being a more recent formalism.
A common approach for 3D surfaces is to define an interpolating trajectory as
a geodesic in some higher dimensional shape space [12, 26, 27, 60, 61]. Most of
these methods use some kind of deformation measure and then optimize for
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a sequence such that the local distortion between any two consecutive shapes
is low. In [32] this is done with an as-Killing-as-possible energy and in [28]
with a discrete shell energy motivated by [24]. Other popular examples of non-
linear shape deformation are PriMo [9] and as-rigid-as-possible [56]. For a more
thorough introduction to shape spaces, we refer the reader to the book of Younes
[63].

An alternative approach to shape interpolation is to interpolate intrinsic
quantities like dihedral angles before reconstructing the extrinsic geometry [2,
6, 62]. One class of such intrinsic quantities are rotation-invariant or differential
coordinates [1, 34, 35, 51].

Sometimes shape deformation is stated as the time-dependent gradient flow
wrt. some surface functional. Typically these functionals promote a smooth flow
[14, 15, 18, 58] but most of these methods focus on shape matching with less
emphasis on the quality of the intermediate shapes.

Recently, more and more work was dedicated to processing collections of
shapes in order to make interpolation more efficient. This can e.g. be achieved
by constructing a low-dimensional subspace of admissible poses [3, 21, 29, 57,
65]. In practice, this greatly helps to reduce the computational cost of shape
interpolation and even allows for interactive applications [47].

A common assumption of interactive shape deformation modeling is volume
preservation. This can be obtained by defining a deformation as the flow of a
divergence-free Eulerian vector field [4, 22]. Recently, [19] extended this idea by
constructing a divergence-free vector field basis that can be used to interpolate
3D objects. We will make use of this vector field representation and addition-
ally formulate shape interpolation as the inverse problem of a dynamical thin
shell simulation. The forward simulation corresponding to this is a well-known
problem in computer graphics [44] with applications like cloth [23] or fluid [37]
simulation. A recent formulation of this problem that is akin to our approach is
projective dynamics [10, 11]. Here, the Lagrangian gradient flow of a dynamical
system is restated using the variational form of implicit Euler integration from
[38] which leads to an efficient and extremely robust thin shell simulation.

3 Background

We briefly review important preliminary work on shape deformation and inter-
polation of non-rigidly deforming 3D objects. In this work, we focus on surface-
based models like point clouds and 3D meshes. This allows for a compact repre-
sentation and is in coherence with the output of real-world sensors. In particular,
the set of observations p = (p1, . . . , pn)> ∈ Rn×3 consists of n points sampled
from a two-dimensional Riemannian manifold X . Depending on the application,
these points are either part of a triangle mesh or embedded in a (knn-)graph.

3.1 Physical assumptions for shape deformation

In order to find similarities between two non-rigid poses of an object, it helps
to model geometric assumptions about the expected deformations directly. We
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review two common assumptions, namely small local distortions and volume
preservation.

Local distortion A popular deformation energy to quantify the distortion be-
tween p and a deformed counterpart p∗ ∈ Rn×3 is the as-rigid-as-possible (arap)
energy [56]:

Warap

(
p, p∗; (Ri)1≤i≤n

)
=

1

2

n∑

i=1

∑

j∈N (i)

∥∥Ri
(
pj − pi

)
−
(
p∗j − p∗i

)∥∥2
2
. (1)

The assumption behind this functional is that the local deformation of the ge-
ometry in the neighborhood N (i) of every vertex pi is approximately rigid. I.e.
one can find a rotation matrix Ri ∈ SO(3) that approximately captures the
transformation of the neighboring edges pj −pi. In turn, deviations of the defor-
mation p∗ from the approximate rigidity are penalized. The neighborhood N (i)
for a given vertex i is defined as some set of adjacent vertices j to i.

There are multiple popular alternatives with the same flavor asWarap, includ-
ing PriMo [9], discrete shells [24] and as-Killing-as-possible [55]. Most techniques
penalize deformations of the local geometry and each one of them has certain
advantages. In our formulation, we choose the arap energy because it is applica-
ble directly for point clouds and because the optimization for p∗ and Ri can be
done efficiently in closed form.

Volume preservation Another common assumption for shape deformation is that
the volume of the observed object is preserved over time [22]. This can be ob-
tained by prescribing that the deformation is the flow induced by an underlying
Eulerian deformation field v : R3 → R3 which is divergence-free div(v) = 0.
Recently, [19] proposed a formulation of a coarse-to-fine vector field basis that
has the volume preservation built in as a hard constraint. A flow field v is then
obtained as the linear combination of a finite subset of those divergence-free
basis functions:

v(x; c) =
K∑

k=1

ckφk(x), where div(φk) = 0. (2)

These deformation fields v are exactly volume preserving because the divergence
is a linear operator, see [19] for more details. In practice, a relatively small
number K ≈ 1000 of coefficients c = (c1, . . . , cK)> ∈ RK suffices to represent
arbitrary smooth, volume preserving vector fields v. We make use of this compact
representation in this work. However, while [19] only considered stationary vector
fields v(x), in this work we consider time-dependent vector fields v(t, x) in order
to account for more complex shape variation.

3.2 Shape interpolation

Computing an interpolation of two 3D objects p = p(0) and q = p(T ) is a common
problem in computer graphics and vision. In general, it is not a well-defined
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problem because there are typically infinitely many conceivable paths between
p(0) and p(T ). Therefore, we need to make additional assumptions about plausible
sequences like small local distortions or volume preservation. The common way
to do this is to define a deformation energy for the whole, time-discrete sequence
p(0), . . . , p(T ) of intermediate shapes [12, 27, 28, 31, 32]:

E
(
p(1), . . . , p(T−1)

)
=
T−1∑

t=0

W
(
p(t), p(t+1)

)
. (3)

Here,W is some local distortion measure likeWarap from Eq. (1). For symmetry
reasons, the optimization is commonly done jointly for both the standard and
the inverse sequence p(T ), . . . , p(0). W.l.o.g. we will consider the time interval
[0, tmax] = [0, 1] which leads to a discrete step size τ = 1

T .

4 Interpolation of real-world objects

The implicit assumption behind most shape interpolation approaches is that the
exact point-to-point correspondences between the two input surfaces p and q are
known. While there is a lot of synthetic data where this is feasible, for scanned
data the sampling of two given objects is typically not consistent, even if they
approximate the same real-world surface X . Not even the number of points of
the two surfaces p ∈ Rn×3 and q ∈ Rm×3 is necessarily the same in the most
general case. In order to compute an interpolation for this type of input data,
we need to first estimate the surface correspondences between p and q.

Computing shape correspondences is a problem in itself and there is a variety
of methods that focus on shape matching, either in the classical sense [20, 33,
41, 46, 48, 59] or using machine learning [8, 25, 36, 39, 43, 50]. The output of those

[32] [56] [28] [19] Ours

Fig. 2. A qualitative comparison of our approach with other popular shape interpo-
lation methods. Here, we display the intermediate shapes at t = 0.5 for an example
pair from SCAPE [5] with correspondences from BCICP [48]. Like us, [19] solves for an
approximate alignment formulated as an IVP but the stationary vector field leads to
slight distortions of the geometry (e.g. at the head and right arm). The other methods
[28, 32, 56] solve a BVP and in certain areas the high frequency noise of the correspon-
dences from BCICP leads to a severely degenerate geometry.
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methods is a point-to-point assignment of the surface p ∈ Rn×3 to q ∈ Rm×3
which can be represented with a matrix Π ∈ {0, 1}n×m. In principle, we can
now transfer the points and neighborhood information from p to q and apply
a classical interpolation method like [32] or [28] to p ∈ Rn×3 and Πq ∈ Rn×3.
However, in practice the correspondences Π are not perfect and contain faulty or
noisy matches. We found that most interpolation methods that assume perfect
correspondences are not very robust to fine-scale noise, see Figure 2.

One possible way to make interpolation feasible for real scans is to acknowl-
edge that the given matching Π is not perfect and to build this stochastic dis-
crepancy directly into our model. In particular, we add Gaussian random noise
η to the vertex position of the second shape Πq:

q̃ := Πq + η, with η ∼ N (0, σ). (4)

Instead of finding intermediate shapes by solving a boundary value problem
(BVP) as outlined in Eq. (3), we can then define an initial value problem (IVP)
similar to [19]. In particular, we will optimize for a sequence p(0), . . . , p(T ) with
p = p(0) and p(T ) = q̃ ≈ Πq.

5 From Hamiltonian dynamics to Eulerian-Lagrangian
shape interpolation

In this work, we model the motions of objects in an inertial frame of reference
as a physical phenomenon that is governed by three aspects: internal forces,
momentum conservation and volume preservation. Most existing interpolation
techniques model internal forces in some way, yet they omit the momentum con-
servation and volume preservation. Without momentum conservation, the inter-
mediate objects can be plausible but in many cases the motions lack temporal
coherence. The volume preservation helps to constrain the optimization and pre-
vents self-intersections, see Figure 3. Our formulation combines the strengths of
volume preserving fields [19] and projective dynamics [10] with those of classical
interpolation methods [28, 32].

5.1 Deformation model

We systematically derive the evolution of a surface as a physical system from
the Hamiltonian energy given by:

H(p, v) =
1

2
‖v‖22 +W(p). (5)

This energy consists of a kinetic energy term that models momentum conserva-
tion (with unit mass per point) and some potential energy component W that
penalizes intrinsic distortions. The principles of Hamiltonian mechanics now pre-
scribe how this system evolves over time:

{
ṗ = dH

dv = v.

v̇ = −dH
dp = −∇W(p).

(6)
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We couple this with the volume preservation assumption by constraining v to
the low rank vector field representation from Eq. (2). This allows us to model

displacements of a shape p(t) =
(
p1(t), . . . , pn(t)

)>
at time t with only K � n

degrees of freedom:

ṗi(t) = v
(
pi(t); c(t)

)
=

K∑

k=1

ck(t)φk
(
pi(t)

)
. (7)

Besides providing a compact representation, this approach builds volume preser-
vation directly into the deformation model, because div(v) = 0. In [19], the au-
thors model shape deformations in a similar way but with a stationary vector
field v

(
x; c(t)

)
= v

(
x; c
)
. This leads to a well-constrained optimization problem

with only K degrees of freedom c1, . . . , cK but it is also restrictive and lacks
expressivity. Instead of using a constant vector field, following Eq. (6), we define
a dynamic flow v(t, x) = v(x; c(t)):

{
v̇
(
t, p(t)

)
= −∇W

(
p(t)

)
.

div(v) = 0.
(8)

In our formulation, the internal forces are defined as the negative gradient of
our anisotropic as as-rigid-as-possible potential W which we define in the next
chapter.

[28] [32] Ours

Fig. 3. A pair of synthetic shapes with ground-truth correspondences from the KIDS
dataset [50] for which we show the intermediate shapes at t = 0.5. This example shows
that many classical methods like [32] or [28] cannot detect self-intersections of different
subparts. Here, the optimal path that minimizes a local distortion metric makes the
right arm of the kid move through itself. Our method, on the other hand, avoids self-
intersections by design: All deformations are expressed as a divergence-free Eulerian
field, therefore the resulting flow has to be globally consistent in the sense that two
close parts cannot have contradictory motions.
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5.2 Anisotropic as-rigid-as-possible deformation

For most 3D objects, not all parts are behaving similar in terms of local distor-
tions. For example, regions near joints of a human body allow for more movement
than most other parts of the surface. The classical as-rigid-as-possible potential
that we reviewed in Eq. (1) penalizes distortions of the geometry uniformly in
all directions and equal for all parts of the considered object. We generalize this
idea and introduce an anisotropic as-rigid-as-possible energy:

W
(
p(t); (Ri)i, (Σi)i

)
=

1

2

n∑

i=1

∑

j∈N (i)

∥∥(pj(0)−pi(0)
)
−R>i

(
pj(t)−pi(t)

)∥∥2
Σi
. (9)

In this context, ‖ · ‖Σi
denotes the standard Mahalanobis norm [40] with an

unknown covariance matrix Σi ∈ R3×3. This energy W allows our model to
adapt the appropriate local behavior during the optimization, see Figure 4 for
an example. Moreover, the distortion is always computed in the reference frame
of the first pose p(0). This means that we only need to compute the distortion
model of p(0) and therefore we only need one local distortion matrix per vertex
Σi for the whole sequence.

Fig. 4. An example from TOSCA where we color code the log-determinant of the
covariance matrix log det(Σi) for each point pi. Red stands for a low value which
corresponds to a high local distortion. This shows how our anisotropic as-rigid-as-
possible energy (9) automatically adapts to objects consisting of inhomogeneous parts.
Certain regions like joints allow for more local distortion throughout the sequence than
others. Notice the difference between the hind legs, the head and the rest of the body.
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5.3 Time discretization

In the time-discrete setting, we can approximate Eq. (7) and Eq. (8) using an
implicit Euler intergration scheme:





p(t+1) = p(t) + τv(t+1). (10a)

v(t+1) = v(t) − τ∇W
(
p(t+1)

)
. (10b)

div
(
v(t+1)

)
= 0. (10c)

This is a Eulerian-Lagrangian scheme: The velocity field is represented on the
surface v(t) ∈ Rn×3 but the divergence-free condition div

(
v(t+1)

)
= 0 is Eulerian.

In order to make this interaction tractable, we will use the divergence-free vector
field representation from Eq. (2) and combine it with the variational form of
implicit Euler integration introduced in [38]. This allows us to restate this scheme
as an optimization problem in terms of the vector field coefficients c ∈ RK :





c(t+1) = arg min
c,R

∥∥∥∥v
(
p(t); c

)
− v̄(t)

∥∥∥∥
2

F

+W
(
p(t) + τv

(
p(t); c

)
;R,Σ

)
.(11a)

v
(t+1)
i = v

(
p
(t)
i ; c(t+1)

)
=

K∑

k=1

c
(t+1)
k φk

(
p
(t)
i

)
. (11b)

p(t+1) = p(t) + τv(t+1). (11c)

v̄(t+1) = 2v(t+1) − v(t). (11d)

We refer the interested reader to [38] and [10] for more details on how this scheme
is derived. The update of the coefficients c in (11a) can be computed using
Gauss-Newton optimization. We use an additional extrapolation step (11d) to
get a better prediction of the velocity v(t+2) which we justify in the following:

Theorem 1. For continuously differentiable vector fields, the extrapolation step
(11d) of Algorithm 11 yields an estimate v̄(t+1) of v(t+2) with an error of order
O(τ2). For the alternative scheme without step (11d) it is O(τ).

This result implies that (11d) leads to a qualitative improvement because a
better estimate v̄(t+1) ≈ v(t+2) provides a more faithful approximation in the
next update step (11a) of c. See Appendix A for a proof of Thm. 1.

5.4 Interpolation algorithm

We will now use the scheme (11) from last chapter to define an interpolation al-
gorithm for two given shapes p and q. In each iteration, we initialize the scheme
with p(0) := p and the unknown variables c(0) := ĉ and (Σ̂i)1≤i≤n. We then com-
pute the deformed shapes p(0), . . . , p(T ) according to our scheme (11). Overall,
this forward pass can be summarized as the differentiable solution operator S:

S :

{
RK × Rn×3×3 → Rn×3×(T+1).(
ĉ, Σ̂

)
7→
(
p(0), . . . , p(T )

)
.

(12)
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The goal is now to find the input parameters ĉ and Σ̂ that lead to a tight
alignment of the deformed shape p(T ) with q in accordance with Eq. (4). Together
with our regularizer W from Eq. (9) this leads to the following energy:

E
(
p(0), . . . , p(T ); Π

)
:=

1

2σ2

∥∥p(T ) −Πq
∥∥2 +

T∑

t=0

W
(
p(t)
)
. (13)

Putting everything together, we can derive the following algorithm:

Algorithm 1 Volume preserving shape interpolation.

Require: p ∈ Rn×3, q ∈ Rm×3

ĉ← 0 ∈ RK

Σ̂i ← Id3 ∈ R3×3

Π← match shapes(p, q) ∈ {0, 1}n×m

for i = 1, . . . , Nit do(
ĉ, Σ̂

)
←

(
ĉ, Σ̂

)
− γ∇E

(
S(ĉ, Σ̂); Π

)

end for
return

(
p(0), . . . , p(T )

)
:= S

(
ĉ, Σ̂

)

In our implementation, we use a modern automatic differentiation toolbox to
compute the gradient ∇E ◦S wrt. (ĉ, Σ̂) in Algorithm 1. The choice of algorithm
to compute the input correspondences Π is not further specified here because it is
more or less arbitrary. We show various different possibilities in our experiments.

Fig. 5. Two interpolated sequences for real scans of a puppet from SHREC’19 Isometry
[17] and a human from FAUST [7] with input correspondences from Smooth Shells [20]
and Deep Functional Maps [36] respectively.
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6 Experiments

We verify the generality of our method on four different datasets with increasing
complexity. The first two are the synthetic datasets TOSCA [13] and SCAPE [5]
where we use the ground truth correspondences for the former and correspon-
dences from BCICP [48] for the latter. The last two datasets SHREC’19 Isometry
[17] and FAUST [7] contain reals scans of a puppet and different humans respec-
tively, see Figure 5. For those, we use correspondences from Smooth Shells [20]
and FMNet [36]. Our experiments show that our formulation is applicable to
a wide range of inputs with varying levels of noise. Figure 7 summarizes our
quantitative evaluations on all datasets with comparisons to four other popular
interpolation methods. The other methods are Geometric Modeling in Shape
Space [32], Time-Discrete Geodesics in the Space of Shells [28], Divergence-Free
Shape Correspondence by Deformation [19] and As-Rigid-As-Possible Surface
Modeling [56]. Although the latter does not describe an interpolation algorithm
explicitly, it is trivial to employ its shape deformation procedure in an interpo-
lation pipeline by using Eq. (3). On the surface, our method is similar to [19] in
the sense that both approaches compute divergence-free fields in a low rank ba-
sis. The decisive difference is that our method is based on a physically plausible
formulation which, among other things, allows for time-dependent vector fields
v(t, x). This makes our method more expressive, see Figure 6 for an example.

Error metrics In order to quantify the precision of a shape interpolation, we
compute three different metrics for each pair of input shapes and plot the re-
sulting cumulative curves in Figure 7. In particular, we measure the conformal
distortion [64, Eq. (6)] and volume change [30, Eq. (3)] of intermediate shapes
and the Chamfer distance to the target shapes in % of the diameter for our

Ours [19]

Fig. 6. A comparison of our method and divergence-free interpolation [19] on a pair
of synthetic shapes (green). Both methods preserve the volume but for this large scale
deformation the stationary vector field in [19] is too restrictive which leads to a distorted
geometry for t ≥ 0.5
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method and the second alignment based method [19]. If we are strict, the notion
of volume change is only meaningful for watertight meshes, which typically does
not hold for real scans. Our argument regarding this is that in theory, a flow
induced by a divergence-free deformation field is exactly volume preserving in
terms of the underlying watertight real-world manifold X . Remarkably, in this
way we can even make sense of the notion of volume for a point cloud, assuming
that it was sampled from a closed, continuous surface.

Implementation details The low rank vector field representation of divergence-
free fields in our Scheme 11 is entirely decoupled of the input resolutions n and
m. Moreover, the vector fields are represented in a spatially dense Eulerian basis
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Fig. 7. Quantitative results and comparisons with other methods on four benchmarks.
For FAUST, dashed lines correspond to the results on the high resolution scans. Those
were only computed for our method and [19] because for the other methods the reso-
lution of around 200k vertices is prohibitively high.
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which means that at any discrete time t, the resulting vector field v
(
x; c(t)

)
can

be computed for arbitrary points x in our domain, see [19] for more details. This
allows us to efficiently perform the optimization in Algorithm 1 on a subsampled
version of the input shapes p and q with a fixed resolution of 2k points. After-
wards, the computed vector field can be applied to the full resolution in a single
forward pass without any skinning strategy or the like. For once, this makes our
approach significantly faster but it also allows for an interpolation of very high
resolution objects like those from FAUST (∼200k vertices). Many other classical
interpolation methods use some multiscale scheme to allow for higher resolutions
[28, 32], but there are still upper limits for them as to what is feasible in terms of
computation cost. Our interpolation Algorithm 1 is directly applicable to point
clouds, therefore we simply subsample both input shapes using Euclidean far-
thest point sampling. However, other subsampling strategies like remeshing are
also possible if one wants to work directly with meshes. Finally, we use the same
set of parameters for all experiments, see our implementation for details.

[36] Ours

Fig. 8. We show how our method can be used to refine an imperfect shape correspon-
dence. Using the input matching from Deep Functional Maps [36], we compute an
interpolation (left half) and use it to recover the improved correspondences using the
final alignment at t = 1 (right half). We display the matching with a texture map from
the first input shape (3rd human from right) to the final pose with both methods.

t = 0 t = 0.5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 20

Fig. 9. An example of how our approach can be used to extrapolate the motion pre-
scribed by the two input frames t = 0 and t = 1. The sequences obtained with our
method are physically plausible and remain stable over a long period of time. The cat
keeps raising its paw until at t = 2, driven by the regularizer (9), the motion reverses.
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Additional evaluations As a proof of concept, we show that our physically plau-
sible formulation allows for a broad range of applications beyond shape interpo-
lation. For once, we can use our alignment at t = 1 to refine a shape matching
which we show for a real scan of FAUST in Figure 8. Furthermore, we can com-
pute plausible shape extrapolations by simply simulating the forward integration
for a longer period of time than t = 1. Remarkably, this can be done without
any additional optimization, we simply compute an interpolation between p at
t = 0 and q at t = 1 and then integrate our Scheme 11 until t > 1, see Figure 9.
Finally, we show that our method allows for input objects where only parts of
the geometry are available, see Figure 10. This is only feasible for an alignment
based method, because the classical formulation as a BVP requires that every
vertex has a corresponding point on the other surface. Partial shape interpo-
lation is an important preliminary result for many real world applications like
scanning of dynamically moving 3D objects.

Fig. 10. An example interpolation of a pair of partial shapes from the synthetic TOSCA
cuts [49] dataset with our method.

7 Conclusion

We presented a general and flexible approach to shape interpolation that is sys-
tematically derived from a formulation of Hamiltonian dynamics. For this, we
employ recent advances in dynamic thin shell simulation to get a robust defor-
mation model and solve its inverse problem by optimizing over the initial motion
and anisotropic surface properties. We demonstrated that, in comparison to prior
work, our approach is able to compute high quality, physically plausible inter-
polations of noisy real world inputs. In future work, we will apply our setup to a
broader range of applications like 3D scanning of actions or mesh compression.
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Chapter 7

Deep Shells: Unsupervised Shape

Correspondence with Optimal Transport

In recent times, geometric deep learning has proven to be a powerful formalism for di-
verse applications involving 3D shape data. A primary bottleneck for learning dense
correspondence maps is obtaining ground truth annotations, required for training su-
pervised approaches. In practice, this often involves manual pose alignment by hu-
man experts, or is limited to sparse landmark annotations. We propose an unsuper-
vised learning approach for shape correspondence based on optimal transport. To this
end, we leverage the product space representation introduced in [2], where each vertex
is associated with both extrinsic coordinates and the intrinsic Laplace-Beltrami eigen-
functions. We then define optimal matchings between surface points in terms of their
Wasserstein 2-distance in the joint embedding space. The resulting transport plans en-
code a soft correspondence, which we threshold at test time to obtain our final output
correspondences. We combine the optimal transport matching with a learnable local fea-
ture extractor, which enables representation learning by refining noisy input descriptor
fields. For the specific architecture, we devise a spectral convolution layer defined as
pointwise products in the Fourier domain of a given set of features. The overall pipeline
consists of an iterative scheme of optimization steps, alternating between updates of the
optimal transport plans and the product space alignment. The learned features are em-
ployed to initialize this iterative scheme, and the training loss is defined as the resulting
optimal transport distance. Since gradient-based optimization requires that individual
optimization steps are differentiable, we augment our optimal transport energy with an
additional entropic regularization term. In our experiments, we demonstrate that our
approach obtains highly accurate correspondence maps, even outperforming state-of-
the-art supervised approaches, and when generalizing across different datasets.
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Abstract

We propose a novel unsupervised learning approach to 3D shape correspondence
that builds a multiscale matching pipeline into a deep neural network. This approach
is based on smooth shells, the current state-of-the-art axiomatic correspondence
method, which requires an a priori stochastic search over the space of initial poses.
Our goal is to replace this costly preprocessing step by directly learning good
initializations from the input surfaces. To that end, we systematically derive a fully
differentiable, hierarchical matching pipeline from entropy regularized optimal
transport. This allows us to combine it with a local feature extractor based on
smooth, truncated spectral convolution filters. Finally, we show that the proposed
unsupervised method significantly improves over the state-of-the-art on multiple
datasets, even in comparison to the most recent supervised methods. Moreover, we
demonstrate compelling generalization results by applying our learned filters to
examples that significantly deviate from the training set.

1 Introduction

Computing shape correspondence is a fundamental component in understanding the 3D world, and
is at the heart of many applications in computer vision and graphics. It is also a notoriously hard
problem and a multitude of different solutions have been proposed over the years. Classical axiomatic
methods make assumptions about the geometric properties of the input surfaces, like small local
distortions, to compute correspondences for a well-defined class of objects. Many such methods
rely on hand-crafted features [40, 39, 3] and most of them make restrictive assumptions about the
discretization, topology or morphology of the considered objects. A promising venture for extending
shape matching methods to a broader range of inputs is to apply machine learning to geometric
data. While deep learning has achieved great success in the field of image analysis, extending the
power of deep networks to non-Euclidean data remains an important and very actively studied open
challenge. Although there has been much progress, many methods to date lack a strong geometric
foundation that fully acknowledges the underlying structure of 3D surfaces. A recent line of research
pioneered by [20] aims at combining a learnable local feature extractor with the axiomatic approach
functional maps [26]. This combination of machine learning with axiomatic methods is an important
breakthrough since it allows us to integrate geometric priors into our model which can significantly
enhance the learning process. Most follow up work inspired by deep functional maps [20] use
functional maps as a matching layer. The underlying assumption of these approaches is that the
input pairs are nearly isometric. This manifests in energy functions that try to preserve intrinsic
quantities like the Laplace-Beltrami operator [34, 10] or geodesic distances [14]. As a consequence,
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current state-of-the-art methods require expensive postprocessing via an axiomatic method and they
typically do not generalize well to previously unseen data and non-isometric pairs. Instead of the
purely intrinsic functional maps method, we build upon more recent advances in extrinsic-intrinsic
axiomatic shape matching [11].

Contribution In this work, we systematically derive a deepified version of the current state-of-
the-art axiomatic shape correspondence method smooth shells [11] from optimal transport. This
allows us to integrate it into an end-to-end trainable deep network and learn optimal local features.
Most prior work improves hand-crafted input features independently per vertex using shared weights.
We show that this approach tends to be unstable for imperfect inputs. Instead, we use a manifold
CNN architecture based on smooth spectral filters [7, 15]. Our geometric loss function measures
the alignment tightness of the obtained matching which can be computed without any supervision.
Finally, we show quantitative results that compare favorably to the state-of-the-art, both in terms
of axiomatic and machine learning methods. In comparison to closely related learning approaches,
the strong geometric nature of our method yields high-quality correspondences without the need for
expensive pre or postprocessing.

2 Background

2.1 Manifold learning

The unprecedented success of convolutional neural networks (CNNs) on tasks like image and natural
language processing suggests that there is a big potential of devising similar architectures for non-
Euclidean data. Here, we give a non-exhaustive account of these geometric deep learning techniques
on Riemannian manifolds X that directly imitate CNNs. For a more detailed review, we refer the
reader to [6]. One straightforward approach is to learn high-level features as local correlation patterns
which are explicitly defined as intrinsic patch operators [22, 5, 25, 29, 35]. While these charting based
techniques have proven to be useful for 3D shapes, they make rather strong assumptions about the
structure of the data and are therefore not trivially transferable to different domains like e.g. graphs or
general manifolds. A complementary approach is to compute a convolution of signals F : X → RL
with some filter in the spectral space where it is simply a pointwise multiplication with learnable
diagonal coefficient matrices Γl′,l [7]:

Gl′ = h

( L∑

l=1

ΦΓl′,lΦ
†Fl

)
. (1)

This indeed corresponds to a convolution on the manifold X because of the well-known property that
a convolution is a linear operator that commutes with the Laplacian. In this context, Φ is the spectral
basis and h is some non-linearity. In general, these filters are not transferable between two different
surfaces because the Laplacian eigenbasis is domain-dependent. However, it was shown in [15] that
using coefficients that are smooth in the frequency domain leads to spatially localized filters:

diag(Γl′,l) = Bγl′,l. (2)

Here, B =
(
bj(λi)

)
ij

is an alternant matrix with smooth basis functions bj applied to the Laplacian
eigenvalues λi and γl′,l are the learnable weights. Note that the idea of using such filters is also
the foundation of graph neural networks. In this particular case, the bj’s are polynomials which
alleviates the need for computing the spectral embedding of the input signals F explicitly [9, 19].
This construction vastly popularised graph neural networks, see [43] for a recent survey of subsequent
work on this topic. Unfortunately, the message passing scheme from GNN’s is not suitable for the
kind of data that we consider in this work. A continuous 3D surface is typically discretized by a
triangular mesh or a point cloud. In contrast to GNN’s however, we want to learn local features that
are independent of this discretization. Therefore, we will consider more general smooth spectral
convolution filters in this work.

2.2 Shape correspondence

Axiomatic methods Traditional approaches directly compute a matching P : X → Y between two
input surfaces X and Y by making use of certain geometric properties and invariances of deformable

2



shapes. This is an extensively studied topic and we only focus on approaches that are directly related
to ours. For a more complete overview, we refer the reader to surveys on shape correspondence
[37, 41] with [36] being the most recent one.

The functional maps [26] framework generalizes the classical correspondence problem by looking
for a functional C : L2(X )→ L2(Y) that maps not points, but functions from X to Y . The matching
P(x) = y can be recovered from C by mapping delta distributions C(δx) = δy. In practice, we can
opt for a compact representation of functions in a finite basis (φi)1≤i≤K which allows us to represent
a functional map as a matrix C ∈ RK×K . The most common choice of basis functions φi are the
Laplace-Beltrami eigenfunctions which are provably optimal for representing smooth functions on
a manifold [27]. Furthermore, this choice allows us to build certain assumptions about the input
objects, like near-isometry or area preservation, directly into the representation [26]. The original
framework has been extended to handle partial shapes [32, 21], compute refined point-to-point maps
[33], to allow for orientation preserving maps [31] and to iteratively upsample a coarse map [23].

Most recently, [11] proposed smooth shells which combines functional maps with extrinsic shape
alignment. This method is able to compute high quality correspondences for challenging pairs but it
also requires a good initialization to find a meaningful local minimum. The authors solve this issue
by performing a stochastic Markov chain Monte Carlo (MCMC) search over the space of initial poses
prior to the main pipeline. While this was shown to work well, it is also costly: In practice, roughly
100 test runs have to be performed to assess the quality of different proposal initializations.

Machine learning methods In Section 2.1, we discussed different manifold learning techniques,
many of which have been successfully applied to 3D shape correspondence [22, 5, 25, 29, 35]. A
complementary, more task-driven approach is to use a modified axiomatic method where the hand-
crafted inputs are replaced by learned features. This line of research was pioneered by deep functional
maps [20] which takes SHOT [40] features as an input and refines them independently for each
point using a fully connected neural network with shared weights. The resulting learned features are
then used as inputs to the functional maps method [26]. Overall, this yields an end-to-end trainable
pipeline because functional maps with soft correspondences is differentiable. Further extensions
have successfully coupled this framework with an unsupervised loss [14, 34] or with point cloud
learning techniques [10]. One thing that all of these methods have in common is that they are using
the functional maps pipeline as a matching layer. Moreover, all but the last one use the same network
architecture like the original deep functional maps [20] which computes features independently for
each point. Similar to our approach, [38] and [44] use a differentiable Sinkhorn layer for image
matching and rigid point cloud registration respectively. A more specialized approach to compute
correspondences for a specific class of 3D shapes was proposed by [13]. The main idea here is to
learn how to deform a template of a specific class of objects, e.g. a human template. To that end, the
authors use a pointnet spatial encoder [30] and a decoder in some latent deformation parameterization.

3 Deep shells

3.1 Product space embedding

Smooth shells [11] is a hierarchical matching method that operates on the product space of extrinsic
coordinates and intrinsic features. In particular, it embeds a given input shape X into RK+6 using the
following coordinate function:

Xk :=
(
Φk, Xk,n

X
k

)
: X → RK+6. (3)

The intrinsic features Φk are defined as the first k Laplace-Beltrami eigenfunctions, nXk are the outer
normals and Xk the smoothed extrinsic coordinates, see [11] for more details. In this embedding
space, an alignment between two shapes X and Y can be computed by appropriately parameterizing
the intrinsic deformation with a functional map [26] and the extrinsic deformation as a pointwise
translation in the Laplace-Beltrami eigenbasis Φk. Overall, the following energy is minimized:

E(P,C, τ) :=
∥∥X∗k −Yk ◦ P

∥∥2
L2

=
∥∥(ΦkC

†, Xk + Φkτ,
∗
n
X
k )−Yk ◦ P

∥∥2
L2
. (4)

Here, we need to jointly optimize for the unknown correspondences P : X → Y and the deformation
coefficients C ∈ Rk×k and τ ∈ Rk×3. To handle this coupled problem, the authors in [11] define an
iterative scheme that gradually increases k with a fixed number of iterations and alternates between
optimizing for P and (C, τ).
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Figure 1: An overview of our network. We compute SHOT [40] descriptors on the two input shapes X
and Y and apply learnable spectral convolution filters to them to obtain refined local features GX and
GY . Those are then used to initialize the main matching layer, see Eq. (13). This scheme starts with
a coarse approximation of the input geometries Xk,Yk and gradually increases k while alternating
between updating πk and (τk,Ck) by minimizing Eq. (8). Finally, we output the correspondences and
deformed shapes and use them to compute our unsupervised loss, defined as the average alignment
tightness (8).

3.2 Deepifying smooth shells

In order to deepify smooth shells, we need to assure that all computational steps are differentiable
wrt. the inputs of the method. The update of the deformation coefficients for a fixed mapping P can
be solved as a linear least squares problem and is therefore trivially a differentiable operation:

(X,Y) 7→ (C, τ) := arg min
(C,τ)

E(P,C, τ). (5)

Unfortunately, the same does not hold for the update of P . In the discrete case, P is typically
represented by an assignment matrix P ∈ {0, 1}m×n with P>1 = 1. In this representation, the
update of the correspondences for a fixed deformation is simply a nearest neighbor search. This,
however, leads to a piecewise constant energy function and therefore does not result in a differentiable
mapping. In order to make the mapping from the inputs (X,Y) to the correspondences differentiable,
we will replace the strict point-to-point assignment P : X → Y with a fuzzy correspondence π:

π ∈ Π(X ,Y). (6)

In this context, Π(X ,Y) is defined as the set of probability measures on the product domain X × Y
where the marginals correspond to the surface differentials of X and Y:

∫

X
dπ(x, y) = dy ,

∫

Y
dπ(x, y) = dx. (7)

Following the idea proposed in [8], we can then reformulate our matching energy from Eq. (4) using
entropy regularized optimal transport (OT):

E(π,C, τ) :=

∫

X×Y

∥∥X∗k(x)−Yk(y)
∥∥2
2
dπ(x, y)− λH(π). (8)
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The entropy regularization H(π) allows us to efficiently solve for the correspondences π using
Sinkhorn’s algorithm which leads to an alternating projection scheme:

dπ(x, y)

dxdy
= SX

(
SY
(
. . .SX

(
SY
(
pλ
))
. . .
))
. (9)

In this context, the operators S are projections of a given probability density p : X × Y → R on one
of the respective constraints from Eq. (7). Moreover, the input density pλ is defined as:

pλ(x, y) ∝ exp

(
− 1

λ

∥∥X∗k(x)−Yk(y)
∥∥2
2

)
. (10)

This scheme (9) is known to have a linear convergence [12] and we use a fixed number of iterations in
practice. More importantly, each individual computation step of the resulting scheme is differentiable
and [24] showed that this allows us to build Sinkhorn’s algorithm into a neural network. Overall,
we are able to minimize the OT energy (8) by alternating between updating πk and (τk,Ck) while
gradually increasing the level of detail k. For the correspondences πk, this is done with the Sinkhorn
scheme (9), and for the deformation coefficients (τk,Ck), this is a weighted least squares problem.

3.3 Spectral convolutions

In Equation (1), we discussed how we can define a convolution filter on an input signal F : X → RL
in terms of an element-wise multiplication of the spectral input features Φ†F . Following prior work
on graph convolutions [7, 15], we use spectrally smooth filters in a low rank basis B:

Gl′ = h

( L∑

l=1

Φk
(
Bγl′,l � Φ†kFl

))
. (11)

Here, � denotes the pointwise product of two vectors. Note, that we use a truncated spectral basis
Φk instead of the full basis Φ. In theory, we need infinitely many eigenfunctions k →∞ to exactly
obtain a convolution with using Eq. (11). However, in the discrete world, the possible number of
basis functions Φk is anyway bounded by the discretization coarseness and very high frequency
eigenfunctions get more and more distorted by the discrete geometry. Consequently, using a moderate
number of eigenpairs yields filters that are more agnostic to the discretization. Moreover, if we only
use a fixed number of eigenfunctions, the approximated Fourier transform Φ†kFl has linear complexity.
We choose the basis B as a variant of the Fourier basis defined on the frequency domain:

Bij := bj(λi) = cos

(
λiπj

T

)
. (12)

The Fourier basis operates on a compact or periodic domain. This is meaningful in our case because
we only use a fixed number of eigenfunctions in Eq. (11). Our overall pipeline takes SHOT [40]
features F : X → R352 as an input and extracts improved local features G on both shapes using
Equation (11). These features are then used to initialize deep shells by converting them to the initial
soft correspondences π:

Einit(π) :=

∫

X×Y

∥∥GX (x)−GY(y)
∥∥2
2
dπ(x, y)− λH(π). (13)

Our deep shells scheme then alternatingly updates the correspondences π and the deformation
coefficients (C, τ) as described in the previous chapter, see Fig. 1 for an Overview. Finally, our
loss function is defined as the objective value E(π,C, τ) from Eq. (8) averaged over all deep shell
iterations. Intuitively, this measures the alignment tightness of the output of the main pipeline X∗

with the reference shape Y which we can compute without any supervision. Our method uses both
extrinsic and intrinsic information which makes the alignment tightness a robust indicator of the
matching quality without knowing the ground truth correspondences.

4 Results

Implementation details We implemented our network in PyTorch using Adam optimizer [18]. Our
pipeline takes 352 dimensional SHOT descriptors [40] as an input that uses geometric features within
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Source SurFMNet + icp [34] Unsup. FMNet + pmf [14] Ours

Figure 2: A qualitative comparison corresponding to our inter-dataset experiment in the last two
columns of Table 1. The source shape is from the test set of FAUST, but the target shape is from
SCAPE. Our method does not require any postprocessing but still yields the best results.

5% of the shape diameter. The inputs to our method are normalized to a fixed square root area of 2
3 .

Furthermore, we compute 500 Laplacian eigenpairs on all inputs as a preprocessing step. In particular,
we use a standard cotangent discretization of the Laplace-Beltrami operator on triangular meshes
with a lumped mass matrix [28]. Our spectral convolution layer uses 120 filters on the frequency
domain represented with 16 cosine basis functions each, see Eq. (12). We use 200 eigenfunctions
for the truncated spectral filters from Eq. (11). The high frequency Laplacian eigenfunctions on
differentiable manifolds are known to grow approximately linear with a constant incline depending
on the total surface area. Consequently, the 200th eigenvalue is more or less stable across surfaces
which allows us to choose a fixed frequency domain from 0 to T = 2e4 in Eq. (12). Analogously to
smooth shells [11], we use 8 iterations from k = 6 to k = 20 on a logarithmic scale for training and
a refined pipeline with up to k = 500 eigenfunctions for testing. Finally, we use a fixed number of 10
Sinkhorn projections and the Entropy regularization coefficient λ = 0.12 in Eq. (9).

Datasets We evaluate our method on the standard benchmarks FAUST [4] and SCAPE [2]. Instead
of the normal datasets, we use the more challenging remeshed versions from [31]. These benchmarks
are known to be more realistic than the original ones. Ideally, we want correspondence methods to be
agnostic to the discretization because scanning of real world objects typically leads to incompatible
meshings. Therefore, the remeshed versions are an improvement over the classical FAUST and
SCAPE datasets which contain templates with the same number of points and connectivity. We split
both datasets into training sets of 80 and 51 shapes respectively and 20 test shapes each and randomly
shuffle the 802 and 512 pairs during training. Although both FAUST and SCAPE contain humans, the

Test on - Train on
FAUST SCAPE F - S S - F F - F+S S - F+S

A
xi

om
. BCICP [31] 6.4 11 - - - -

ZoomOut [23] 6.1 7.5 - - - -
Smooth Shells [11] 2.5 4.7 - - - -

Su
p.

3D-CODED [13] 2.5 31 33 31 - -
FMNet + pmf [20] 11 / 5.9 17 / 6.3 33 / 14 30 / 11 - -
GeoFMNet + zo [10] 3.1 / 1.9 4.4 / 3.0 6.0 / 4.3 11 / 9.2 - -

U
ns

up
. SurFMNet + icp [34] 15 / 7.4 12 / 6.1. 32 / 23 32 / 19 33 / 32 29 / 24

Unsup. FMNet + pmf [14] 10 / 5.7 16 / 10 22 / 9.3 29 / 12 11 / 6.2 13 / 7.7
Ours 1.7 2.5 2.7 5.4 1.6 2.4

Table 1: A summary of our quantitative experiments. For each result, we show the mean geodesic
error in % of the shape diameter. The table is subdivided into three sections with the current state-
of-the-art axiomatic, supervised and unsupervised learning approaches. The odd columns show the
results on the test set of FAUST remeshed trained on FAUST remeshed, SCAPE remeshed and both
datasets respectively. Analogously, the results on SCAPE are in the even columns.
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Figure 3: The cumulative conformal distortion of triangles corresponding to the first two columns
of Table 1. On both datasets, our curve closely overlaps with the one from smooth shells [11]. This
shows that while our method achieves a higher accuracy, it is at the same time able to obtain high
quality correspondences that are comparable with smooth shells. The black dashed lines show the
distortion that is caused by the remeshing of the two datasets. On FAUST remeshed, the results
obtained with our method and [11] are even slightly smoother than the ground-truth.

two datasets are subject to very different challenges. FAUST contains interclass pairs of 10 different
people in 10 different poses whereas the 71 SCAPE shapes all show the same person. On the other
hand, the poses in SCAPE are more challenging and the geometry has less fine scale details. For
example, the hands do not have discernible features like fingers which typically help disambiguate
intrinsic symmetries.

Matching accuracy We report the matching accuracy on the test sets in Table 1 for our method and
compare it to the current state-of-the-art of both axiomatic and learning approaches. The accuracy, in
this context, is defined as the mean geodesic error over all pairs and points in the dataset, normalized
by the square root area

√
area(Y). All these experiments were conducted following the Princeton

benchmark protocol [17]. What is remarkable in this context is that our method outperforms the
state-of-the-art, even in comparison to the best supervised methods. Moreover, our method does
not require any costly postprocessing because we built a powerful matching method directly into
our network. Our method also shows a quantitative improvement over the MCMC strategy from the
original smooth shells pipeline [11] and it reduces the query time during testing by a large margin.
See Table 2 for a runtime comparison with other methods.

Generalization Aside from evaluating the matching accuracy on the individual benchmarks, we
also show generalization results across different datasets, see Table 1. To that end, we apply the
filters learned on FAUST remeshed to the test set of SCAPE remeshed, and vice versa. These results

101 102 103
0

2

4

6

8

# of training samples

ge
od

es
ic

er
ro

r

GeoFMNet
GeoFMNet+zo
Ours

Figure 4: A quantitative comparison of our method and GeoFMNet [10] trained on SURREAL [42]
with a varying number of training samples, evaluated on the test set of FAUST [4]. In particular, we
show the mean geodesic error in % of the diameter with training set sizes ranging from 10 to 1000.
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B.I. [31] ZO [23] Sh. [11] 3D-C. [13] FM. [20] G.FM. [10] S.FM. [34] U.FM. [14] Ours

0.9 1.8 8.7 - 4.9 1.2 4.9 4.9 8.7
880. 41. 116. 725. 0.2 0.7 0.8 0.2 4.9
- - - - 223. 35. 43. 216. -
881. 43. 125. 725. 228. 37. 49. 221. 14.

Table 2: A runtime comparison corresponding to the experiments in the first two columns of Table 1.
In the first three rows we display the average pre-processing, query and post-processing time for one
pair at test time and in the last row the total time (in seconds). For training, [20] and [14] additionally
require geodesic distance matrices which increases the precomputation time by ∼ 35s per shape.

show that our learned filters are able to extract robust local features for previously unseen data, even
when the local geometry of the inputs varies significantly. The final experiment we present in Table 1
shows that our method can be trained across different datasets. In particular, we train our network on
all shapes of the FAUST and SCAPE training sets, including inter-dataset pairs, and test it on the
individual datasets. Note, that this is only possible for an unsupervised method because there are
no ground-truth labels between FAUST and SCAPE. In comparison to prior work, our method can
be trained stably on this challenging setup. Remarkably, it even shows a slight improvement over
the results where we trained exclusively on the individual datasets which shows that it can extract
additional information from the hybrid pairs.

Training set size Additionally to the results on FAUST and SCAPE, we show a quantative evalua-
tion on synthetic humans from the SURREAL dataset [42], evaluated on the test set of the FAUST
[4] registrations. In comparison to GeoFMNet [10], our method produces stable results for as few as
10 training shapes, see Fig. 4. These results suggest that our robust OT matching layer is particularly
useful when the amount of training data is limited.

Source SurFMNet∗ [34] Unsup. FMNet∗ [14] BCICP† [31]

Zoomout† [23] GeoFMNet∗ [10] Smooth Shells† [11] Ours

Figure 5: A qualitative comparison on a challenging non-isometric pair. The source shape is from
[14], the target shape is a real scan of the statue "Discobolus" from the British Museum in London
[1]. Methods with a star (∗) require postprocessing and (†) denotes axiomatic approaches.
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Qualitative experiments The results in the last two columns of Table 1 indicate that our method
is able to learn robust features that are applicable to hybrid pairs between FAUST and SCAPE.
Unfortunately, we cannot verify this empirically due to the lack of ground-truth correspondences
between the datasets. Instead, we show a qualitative example of an inter-dataset pair in Figure 2 with
comparisons to the other two unsupervised methods from Table 1. Additionally, we show a qualitative
evaluation on a non-isometric pair in Figure 5. Here, we use the weights trained on FAUST remeshed
from our experiments in Table 1 for all but the axiomatic methods.

Map smoothness Apart from the matching accuracy, we also evaluate the map smoothness of our
obtained correspondences. This can be quantified as the conformal distortion of individual triangles,
see [16, Eq. (3)] for a definition. Having smooth maps is crucial for most applications like information
transfer or dense pose labeling because fine scale noise can distort the information. This effect can be
visualized by mapping a texture from the surface X to Y which shows how faithfully high frequency
details are preserved. In Figure 3, we show a quantitative comparison of the conformal distortion with
other learning and axiomatic methods. Our results indicate that the quality of our maps is comparable
to smooth shells, although we do not require an expensive preprocessing or the as-rigid-as-possible
regularizer used by [11].

5 Conclusion

We presented deep shells, a new framework for 3D shape matching that is based on entropy regularized
optimal transport. While most prior learning methods on geometric domains use either extrinsic
or intrinsic information to obtain correspondences from local features, our approach operates on
both domains jointly in a hierarchical pipeline. This embedding fully acknowledges the geometric
nature of Riemannian manifolds: It is agnostic to the discretization while using both the extrinsic and
intrinsic surface geometry. We show that this greatly increases the robustness of our network, even in
an unsupervised setting. In comparison to closely related prior work, we use a spectral CNN feature
extractor instead of refining hand-crafted descriptors independently for each vertex. Finally, we show
quantitative results on 3D shape matching benchmarks that significantly increase the state-of-the-art.
Besides the standard error on individual benchmarks, our method shows compelling generalization
results across different datasets.
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Broader Impact

With the ever increasing number of surface acquisition devices and techniques, the demand for
algorithms that can process 3D data directly nowadays is higher than ever. The overarching goal is
to perform recognition tasks directly on 3D sensory inputs, similarly to the way that we as humans
make sense of our environment. In comparison to 2D images, which are a mere projection of the
world surrounding us, geometric data is more robust to secondary effects like lighting conditions
and general appearances of 3D objects. It is therefore imperative for the vision community to focus
its efforts on both 2D and 3D understanding. Regarding ethical aspects, in the context of computer
vision algorithms there is always the distinct possibility of dual use, e.g. for military aims. However,
we believe that there is not an immediate risk of misuse associated with our algorithm.

References
[1] Scan of discobolus at the british museum. https://www.myminifactory.com/object/

3d-print-discobolus-at-the-british-museum-london-7896. Accessed: 2020-05-30.

9



[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis.
Scape: shape completion and animation of people. In ACM transactions on graphics (TOG), volume 24,
pages 408–416. ACM, 2005.

[3] Matthieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quantum
mechanical approach to shape analysis. IEEE International Conference on Computer Vision (ICCV) -
Workshop on Dynamic Shape Capture and Analysis, 2011.

[4] Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST: Dataset and evaluation for
3D mesh registration. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
Piscataway, NJ, USA, June 2014. IEEE.

[5] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. Learning shape correspon-
dence with anisotropic convolutional neural networks. In Advances in neural information processing
systems, pages 3189–3197, 2016.

[6] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[7] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[8] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in neural
information processing systems, pages 2292–2300, 2013.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neural information processing systems, pages 3844–
3852, 2016.

[10] Nicolas Donati, Abhishek Sharma, and Maks Ovsjanikov. Deep geometric functional maps: Robust feature
learning for shape correspondence. arXiv preprint arXiv:2003.14286, 2020.

[11] Marvin Eisenberger, Zorah Lahner, and Daniel Cremers. Smooth shells: Multi-scale shape registration
with functional maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12265–12274, 2020.

[12] Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its
applications, 114:717–735, 1989.

[13] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry. 3d-coded:
3d correspondences by deep deformation. In The European Conference on Computer Vision (ECCV),
September 2018.

[14] Oshri Halimi, Or Litany, Emanuele Rodola, Alex M Bronstein, and Ron Kimmel. Unsupervised learning
of dense shape correspondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4370–4379, 2019.

[15] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data. arxiv
(2015). arXiv preprint arXiv:1506.05163, 2015.

[16] Kai Hormann and Günther Greiner. Mips: An efficient global parametrization method. Technical report,
Erlangen-Nuernberg University (Germany) Computer Graphics Group, 2000.

[17] Vladimir G Kim, Yaron Lipman, and Thomas A Funkhouser. Blended intrinsic maps. Transactions on
Graphics (TOG), 30(4), 2011.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[20] Or Litany, Tal Remez, Emanuele Rodolà, Alex Bronstein, and Michael Bronstein. Deep functional
maps: Structured prediction for dense shape correspondence. In Proceedings of the IEEE International
Conference on Computer Vision, pages 5659–5667, 2017.

[21] Or Litany, Emanuele Rodolà, Alex M Bronstein, Michael M Bronstein, and Daniel Cremers. Non-rigid
puzzles. Computer Graphics Forum (CGF), Proceedings of Symposium on Geometry Processing (SGP),
35(5), 2016.

10



[22] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convolutional
neural networks on riemannian manifolds. In Proceedings of the IEEE international conference on
computer vision workshops, pages 37–45, 2015.

[23] Simone Melzi, Jing Ren, Emanuele Rodolà, Abhishek Sharma, Peter Wonka, and Maks Ovsjanikov.
Zoomout: Spectral upsampling for efficient shape correspondence. ACM Transactions on Graphics (TOG),
38(6):155, 2019.

[24] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations with
gumbel-sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018.

[25] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[26] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Functional
maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (TOG), 31(4):30,
2012.

[27] Beresford N Parlett. The symmetric eigenvalue problem, volume 20. siam, 1998.

[28] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their conjugates. EXPERI-
MENTAL MATHEMATICS, 2:15–36, 1993.

[29] Adrien Poulenard and Maks Ovsjanikov. Multi-directional geodesic neural networks via equivariant
convolution. ACM Transactions on Graphics (TOG), 37(6):1–14, 2018.

[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[31] Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovsjanikov. Continuous and orientation-preserving
correspondences via functional maps. ACM Trans. Graph., 37(6):248:1–248:16, December 2018.

[32] Emanuele Rodolà, Luca Cosmo, Michael Bronstein, Andrea Torsello, and Daniel Cremers. Partial
functional correspondence. Computer Graphics Forum (CGF), 2016.

[33] Emanuele Rodolà, Michael Moeller, and Daniel Cremers. Regularized pointwise map recovery from
functional correspondence. In Computer Graphics Forum, volume 36, pages 700–711. Wiley Online
Library, 2017.

[34] Jean-Michel Roufosse, Abhishek Sharma, and Maks Ovsjanikov. Unsupervised deep learning for structured
shape matching. In Proceedings of the IEEE International Conference on Computer Vision, pages 1617–
1627, 2019.

[35] Klaus Hildebrandt Ruben Wiersma, Elmar Eisemann. Cnns on surfaces using rotation-equivariant features.
Transactions on Graphics, 39(4), July 2020.
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Chapter 8

NeuroMorph: Unsupervised Shape

Interpolation and Correspondence in One Go

Existing work on shape correspondence and shape interpolation of deformable object
categories indicates, that there are significant synergies between the two challenges [3].
For instance, most shape interpolation approaches in the literature require exact corre-
spondences as input. In turn, correspondences can be recovered from time-continuous
interpolation sequences by mapping points along individual poses. Yet, a majority of
existing approaches address the two challenges individually. We devise a novel learn-
ing approach that jointly predicts correspondence maps and interpolation sequences in a
single forward pass. To this end, we introduce a neural network model, comprising a fea-
ture extraction backbone and an interpolator. The feature backbone is based on a novel
network architecture, interleaving EdgeConv message passing layers with global fea-
ture pooling. To avoid overfitting to a specific input discretization, we apply remeshing
augmentation during training. We obtain a soft correspondence map from the learned
features by applying the cosine similarity distance and a per-row softmax. The interpola-
tor then maps the predicted correspondences to an interpolation sequence, conditioned
on the input vertex positions of X and the evaluation time t ∈ [0, 1]. Our training loss
consists of three terms, requiring that the predicted interpolation overlaps with Y at
t = 1, enforcing geodesic distance preservation, and as-rigid-as-possible deformations
for the interpolation sequence. The resulting loss is fully unsupervised, i.e., does not
require ground truth correspondence maps for training. We evaluate our approach on
several 3D shape datasets, both in terms of shape correspondence and interpolation. We
further demonstrate that it can be leveraged to synthesize novel intermediate poses as
a form of data augmentation when learning generative shape spaces. Finally, we pro-
pose a new benchmark of deformable objects with both animal and human shapes, and
provide dense ground truth maps between all poses – including inter-class pairs.
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NeuroMorph: Unsupervised Shape Interpolation
and Correspondence in One Go

Marvin Eisenberger∗,†, David Novotny∗, Gael Kerchenbaum∗, Patrick Labatut∗,
Natalia Neverova∗, Daniel Cremers†, Andrea Vedaldi∗

Facebook AI Research∗, Technical University of Munich†

Figure 1: Our NeuroMorph neural network takes as input two meshes (left and right) and produces in one go (i.e. in a
single feed-forward pass) a continuous interpolation and point-to-point correspondence between them (color coded). The
interpolation, expressed as a displacement field, changes the pose of the source shape while preserving its identity.

Abstract

We present NeuroMorph, a new neural network architec-
ture that takes as input two 3D shapes and produces in one
go, i.e. in a single feed forward pass, a smooth interpolation
and point-to-point correspondences between them. The in-
terpolation, expressed as a deformation field, changes the
pose of the source shape to resemble the target, but leaves
the object identity unchanged. NeuroMorph uses an ele-
gant architecture combining graph convolutions with global
feature pooling to extract local features. During training,
the model is incentivized to create realistic deformations
by approximating geodesics on the underlying shape space
manifold. This strong geometric prior allows to train our
model end-to-end and in a fully unsupervised manner with-
out requiring any manual correspondence annotations. Neu-
roMorph works well for a large variety of input shapes,
including non-isometric pairs from different object cate-
gories. It obtains state-of-the-art results for both shape cor-
respondence and interpolation tasks, matching or surpass-
ing the performance of recent unsupervised and supervised
methods on multiple benchmarks.

1. Introduction
The ability to relate the 3D shapes of objects is of key

importance to fully understand object categories. Objects
can change their shape due to articulation, other motions
and intra-category variations, but such changes are not arbi-
trary. Instead, they are strongly constrained by the category
of the objects at hand. Seminal works such as [33] express
such constraints by learning statistical shape models. In or-
der to do so, they need to put in correspondence large col-
lections of individual 3D scans, which they do by exploiting
the fact that individual objects deform continuously in time,
and by using some manual inputs to align different object
instances. Due to the high complexity of obtaining and pre-
processing such 3D data, however, these models remain rare
and mostly limited to selected categories such as humans
that are of sufficient importance in applications. In this pa-
per, we are thus interested in developing a method that can
learn to relate different 3D shapes fully automatically, in-
terpolating a small number of 3D reconstructions, and in a
manner which is less specific to a single category (Figure 1).

Due to the complexity of this task, authors have often
considered certain sub-problems in isolation. One is to



establish point-to-point correspondences between shapes,
telling which points are either physically identical (for a
given articulated object) or at least analogous (for simi-
lar objects). A second important sub-problem is interpo-
lation, which amounts to continuously deforming a source
shape into a target shape. Interpolation must produce a col-
lection of intermediate shapes that are meaningful in their
own right, in the sense of being plausible samples from the
underlying shape distribution. The interpolation trajectory
must be also meaningful; for instance, if the deformation
between two shapes can be explained by the articulation of
an underlying physical object, this solution is preferred.

The correspondence and interpolation problems have
been addressed before extensively, by using tools from ge-
ometry and, more recently, machine learning. Most of the
existing algorithms, however, require at least some man-
ual supervision, for example in the form of an initial set
of sparse shape correspondences. Furthermore, correspon-
dence and interpolation are rarely addressed together due to
their complexity.

In this paper, we advocate instead for an approach in
which the correspondence and interpolation problems are
solved simultaneously, and in an unsupervised manner. To
do this, we introduce NeuroMorph, a new neural network
that solves the two problems in a single feed forward pass.
We show that, rather than making learning more difficult,
integrating two goals reinforces them, making it possible
to obtain excellent empirical results. Most importantly, we
show that NeuroMorph can be learned in a fully unsuper-
vised manner, given only a collection of 3D shapes as input
and certain geometric priors for regularization.

NeuroMorph advances the state of the art in shape
matching and interpolation, surpassing by a large margin
prior unsupervised methods and often matching the qual-
ity of supervised ones. We show that NeuroMorph can es-
tablish high-quality point-to-point correspondences without
any manual supervision even for difficult cases in which
shapes are related by substantial non-isometric deforma-
tions (such as between two different types of animals, like a
cat and a gorilla, as in Figure 1) which have challenged prior
approaches. Furthermore, we also show that NeuroMorph
can interpolate effectively between different shapes, acting
on the pose of a shape while leaving its identity largely un-
changed. To demonstrate the quality of the interpolation,
we use it for data augmentation, extending a given dataset
of 3D shapes with intermediate ones. Augmenting a dataset
in this manner is useful when, as it is often the case, 3D
training data is scarce. We show the benefits of this form of
data augmentation to supervise other tasks, such as recon-
structing continuos surfaces from sparse point clouds.

Our new formulation also gives rise to some interesting
applications: Since our method learns a function that pro-
duces correspondence and interpolation in a single feed for-

ward pass, it can be used not only to align different shapes,
but also for pose transfer, digital puppeteering and other vi-
sual effects.

2. Related work
To the best of our knowledge, we are the first to con-

sider the problem of learning a mapping that, given a pair of
shapes as input, predicts in a feed-forward manner their cor-
respondences and interpolation. This should be contrasted
to other recent approaches to shape understanding such as
LIMP [7] that try to learn a shape space. These architec-
tures need to solve the difficult problem of generating or
auto-encoding 3D shapes. Unfortunately, designing good
generator networks for 3D shapes remains a challenging
problem. In particular, it is difficult for these networks to
generalize beyond the particular family of shapes (e.g. hu-
mans) experienced during training. By contrast, we do not
try to generate shapes outright, but only to relate pairs of
given input shapes. This replaces the difficult task of shape
generation with the easier task of generating a deformation
field, working well with a large variety of different shapes.

The rest of the section discusses other relevant work.

Shape correspondences. The problem of establishing
correspondences between 3D shapes has been studied ex-
tensively (see the recent surveys [55, 52, 49]). Tradi-
tional approaches define axiomatic algorithms that focus
on a certain subclass of problems like rigid transforma-
tions [63, 66], nearly-isometric deformations [39, 1, 57, 44],
bounded distortion [35, 13] or partiality [32, 45, 31]. Meth-
ods such as functional maps [39] reduce matching to a spec-
tral analysis of 3D shapes.

More recent approaches use machine learning and are
often based on developing deep neural networks for non-
image data such as point clouds, graphs and geometric sur-
faces [5]. Charting-based methods define learnable intrin-
sic patch operators for local feature aggregation [34, 3, 37,
41, 48]. Deep functional maps [30] aim at combining a
learnable local feature extractor with a differentiable match-
ing layer based on the axiomatic functional maps frame-
work [39]. Subsequent works [20, 47] extended this idea
to the unsupersived setting and combined it with learnable
point cloud feature extractors [9, 50]. Moreover, [14] re-
cently proposed to replace the functional maps layer with a
multi-scale correspondence refinement layer based on op-
timal transport. Another related approach is [18] which
uses a PointNet [42] encoder to align a human template to
point cloud observations to compute correspondences be-
tween different human shapes.

Feature extractors for 3D shapes. Several authors have
proposed to reduce matching 3D shapes to matching local
shape descriptors. A common remedy is learning to re-
fine hand-crafted descriptors such as SHOT [54], e.g. with



metric learning [30, 20, 47]. In practice, this approach is
highly dependent on the quality of the input features and
tends to be unstable due to the noise and the complex vari-
able structures of real 3D data. More recently, authors have
thus looked at learning such descriptors directly [9, 50]
with point cloud feature extractors [53, 43]. Another pos-
sibility is to interpret a 3D mesh as a graph and use graph
convolutional neural networks [29, 8]. The challenge here
is that the specific graph used to represent a 3D shape is
partially arbitrary (because we can triangulate a surface in
many different ways), and graph convolutions must dis-
count geometrically-irrelevant changes (this is often done
empirically by re-meshing as a form of data augmentation).

Shape spaces, manifolds and interpolation. 3D shapes
can be interpreted as low-dimensional manifolds in a high-
dimensional embedding space [27, 62, 23, 22]. The low-
dimensional manifold can, for example, capture the admis-
sible pose of an articulated object [65, 58, 24]. Given a
shape manifold, interpolation can then be elegantly formu-
lated as finding geodesic paths between two shapes. How-
ever, building shape manifolds may be difficult in practice,
especially if the input shapes are not in perfect correspon-
dence. Therefore, also inspired by LIMP [7], for training
NeuroMorph we follow approaches such as [12, 11] that
avoid building a shape manifold explicitly and instead di-
rectly construct geodesic paths that originate at the source
shapes and terminate in the vicinity of the target shapes.

Generative shape models. While manifolds provide a
geometric characterization of a shape space, generative
models provide a statistical one. One particular chal-
lenge in this context is designing shape-decoder architec-
tures that can generate 3D surfaces from a latent shape
representation. A straightforward solution is predicting
occupancy probabilities on a 3D voxel grid [6], but the
cost of dense, volumetric representations limits the reso-
lution. Other approaches decode point clouds [15, 64] or
3D meshes [19, 16] directly. A recent trend is encoding
an implicit representation of a 3D surface in a neural net-
work [36, 40]. This allows for a compact shape represen-
tation and a decoder that can generate shapes of an arbi-
trary topology. Following the same methodology, [38] pre-
dicts a time-dependent displacement field that can be used
to interpolate 3D shapes. This approach is related to ours,
but it requires 4D supervision during training, whereas our
method is trained on a sparse set of poses. ShapeFlow [26]
predicts dense velocity fields for template-based reconstruc-
tion. Similarly, [60] computes an intrinsic displacement
field to align a pair of input shapes, but they do not predict
an intermediate sequence.

3. Method
LetX andY be 3D shapes, respectively called the source

and the target, expressed as triangular meshes with vertices
X = (xi)1≤i≤n ∈ Rn×3 and Y = (yj)1≤j≤m ∈ Rm×3,
respectively. Our goal is to learn a function

f : (X ,Y) 7−→ (Π,∆),

that, given the two shapes as input, predicts ‘in one go’ a
correspondence matrix Π and an interpolation flow ∆ be-
tween them. The matrix Π ∈ [0, 1]n×m sends probabilisti-
cally the vertices xi of the source mesh X to corresponding
vertices yj in the target mesh Y and is thus row-stochastic
(i.e. Π1 = 1). The interpolating flow ∆(t) ∈ Rn×3,
t ∈ [0, 1] shifts continuously the vertices of the source
mesh, forming trajectories:

X(t) := X + ∆(t), (1)

that take them from their original locations X(0) = X to
new locations X(1) ≈ ΠY close to the corresponding ver-
tices in the target mesh.

The function f is given by two deep neural networks.
The first, discussed in Section 3.1, establishes the cor-
respondence matrix Π and the second, discussed in Sec-
tion 3.2, outputs the shifts ∆(t) for arbitrary values of
t ∈ [0, 1]. Both networks are trained end-to-end in an unsu-
pervised manner, as described in Section 3.3.

3.1. Correspondences and vertex features

The correspondence matrix Π between meshes X and Y
is obtained by extracting and then matching features of the
mesh vertices. The features are computed by a deep neural
network: X̃ = Φ(X ) ∈ Rn×d that takes the shape X as
input and outputs a matrix X̃ = (x̃i)1≤i≤n with a feature
vector x̃i for each vertex i of the mesh. Given analogous
features Ỹ = (ỹi)1≤i≤m ∈ Rm×d for the target shape, the
correspondence matrix is obtained by comparing features
via the cosine similarity and normalizing the rows using the
softmax operator:

Πij :=
exp(σsij)∑m
k=1 exp(σsik)

s.t. sij :=
〈x̃i, ỹj〉2
‖x̃i‖2‖ỹj‖2

, (2)

with temperature σ ∈ R+. In this way, Π1 = 1 and Π can
be interpreted as a soft assignment of source vertices xi in
X to target vertices yj in Y .
Feature extractor network. Next, we describe the neu-
ral network Φ(X ) that extracts the feature vectors that ap-
pear in Equation (2) (this network is also illustrated in Fig-
ure 2). While different designs are conceivable, we pro-
pose here one based on successive local feature aggrega-
tion and global feature pooling. The architecture makes use
of the mesh vertices X as well as the mesh topology. The



Figure 2: NeuroMorph. An overview of our model.

latter is specified by the neighborhood structure E , where
(i, j) ∈ E ⊂ {1, . . . , n}2 means that vertex xj is connected
to vertex xi by a triangle edge. Thus, the mesh is fully spec-
ified by the pair X = (X, E).

The layers of the network Φ are given by EdgeConv [61]
graph convolution operators implemented via residual sub-
networks [21]. In more detail, each EdgeConv layer takes
as input vertex features X̃ = (x̃i)1≤i≤n on X and com-
putes an improved set of features X̃′ = (x̃′i)1≤i≤n via the
expression:

x̃′i := max
j:(i,j)∈E

hφ(x̃i, x̃j − x̃i). (3)

Here, a small residual network hφ is used to combine the
feature x̃i of the i-th vertex with the feature x̃j − x̃i of one
of the edges adjacent to it. This is repeated for all edges
incident on the i-th vertex and the results are aggregated via
component-wise max-pooling over the mesh neighborhood{
j : (i, j) ∈ E

}
, resulting in an updated vertex feature x̃′i.

The EdgeConv layer can effectively learn the local geo-
metric structures in the vicinity of a point. However, that
alone is not sufficient to resolve dependencies in terms of
the global geometry, since the message passing only allows
for a local information flow. Therefore, we append a global
feature vector to the point features after each EdgeConv re-
finement, by applying the max pooling operator globally:

x̃′′i :=
(
x̃′i, max

1≤i≤n
x̃′i
)
. (4)

The network Φ is given by a succession of these lay-
ers, forming a chain X̃ → X̃′ → X̃′′ → . . . alternating
global (3) and local (4) update steps. The input features
X̃ = (X,N) are given by the concatenation of the abso-
lute position of the mesh vertices X with the outer normals
at the vertices N = (ni)1≤i≤n (the normal vectors ni are
computed by averaging over face normals adjacent to xi).

3.2. Interpolator

We are now ready to describe the interpolator component
of our model. Recall that the goal is to predict a displace-
ment operator ∆ such that the trajectory X(t) = X + ∆(t)
smoothly shifts the point of the first mesh to points in the
second. Notice that ∆(t) ∈ Rn×3 is just a collection of
3D vectors associated to each mesh vertex, just like the ver-
tex positions, normals and feature vectors in the previous
section. Thus, we offload the calculation of the displace-
ments to a similar convolutional neural network and write:
∆(t) = Ψ(X ,Y, t). The difference is the input to the net-
work Ψ, which is now given by the 7-dimensional feature
vectors Z ∈ Rn×7:

Z :=
(
X, ΠY −X, 1t

)
. (5)

These feature vectors consist of the vertices X of the source
shape X , the offset vectors ΠY−X predicted by the corre-
spondence module of Section 3.11, and the time variable t
(‘broadcast’ to all vertices by multiplication with a vector of
all ones). Just like the network Φ in Section 3.1, the network
Ψ alternates global (3) and local (4) update steps to compute
a sequence of updated features Z → Z′ → Z′′ · · · → V
terminating in a matrix V ∈ Rn×3. The final displace-
ments are then given by a scaled version of V, and are set
to ∆(t) = tV(t).

In this manner, the network can immediately obtain a
trivial (degenerate) solution to the interpolation problem by
setting V(t) = ΠY − X, which amounts to copying ver-
batim part of the input features Z. This result is a simple
linear interpolation of the mesh vertices, trivially satisfying
the boundary conditions of the interpolation:

X(0) = X + 0 ·V(0) = X, (6)
X(1) = X + 1 · (ΠY −X) = ΠY. (7)

Linear interpolation provides a sensible initialization, but is
in itself a degenerate solution as we wish to obtain ‘geo-
metrically plausible’ deformations of the mesh. To prevent
the network from defaulting to this case, we thus need to
incentivize geometrically meaningful deformations during
training, which we do in the next section.

3.3. Learning

In this section, we show how we can train the model
in an unsupervised2 manner. That is, given only a collec-
tion of example meshes with no manual annotations, our
method simultaneously learns to interpolate and establish

1Note that ∆(1) = ΠY −X.
2In practice, the only assumption we make about the input objects is

that they are in an approximately canonical rigid pose in terms of the up-
down and front-back orientation. For most existing benchmarks this holds
trivially without any further preprocessing. The recent paper by [50] calls
this setup weakly supervised.



point-to-point correspondences between them. This sets
it apart from prior work on shape interpolation which ei-
ther require dense correspondences during training or, in
the case of classical axiomatic interpolation methods, even
at test time. Learning comprises three signals, encoded by
three corresponding losses:

` := λreg`reg + λarap`arap + λgeo`geo. (8)

The loss `reg ensures that correspondences and interpolation
correctly map the source mesh on the target mesh, and the
other two ensure that this is done in a geometrically mean-
ingful way. The latter is done by constraining the trajectory
(X(t))t∈[0,1] generated by the model. Recall that the model
can be queried for an arbitrary value t ∈ [0, 1], and it is
thus able to produce interpolations that are truly continuous
in time. During training, in order to compute our losses,
we sample predictions X0, . . . ,XT for an equidistant set of
discrete time steps Xk := X(k/T ) where k = 0, . . . , T.

Registration loss. Requirement Equation (6) holds triv-
ially as ∆(0) = 0 is built into our model definition (see
Equation (1)). For Equation (7), we introduce the registra-
tion loss: `reg

(
XT ,Y,Π

)
:= ‖ΠY−XT ‖22. Since our goal

is to compute shape interpolations without any supervision,
we use the soft correspondences Π estimated by our model
instead of ground-truth annotations.
As-rigid-as-possible loss. In general, there are infinitely
many conceivable paths between a pair of shapes. In order
to restrict our method to plausible sequences, we regularize
the path using the theory of shape spaces [27, 62, 23]. As
we work with discrete time, we approximate the ‘distance’
between shapes in the shape space manifold by means of
the local distortion metric between two consecutive states
Xk and Xk+1. To that end, we choose the as-rigid-as-
possible [51] metric:

Earap

(
Xk,Xk+1

)
:=

1

2
min

Ri∈SO(3)
i=1,...,n

∑

(i,j)∈E

∥∥Ri(Xk,j−Xk,i)−(Xk+1,j−Xk+1,i)
∥∥2
2
.

Intuitively, this functional rotates the local coordinate
frame of each point in Xk to the corresponding deformed
state Xk+1 and penalizes deviations from locally rigid
transformations. Moreover, the rotation matrices Ri can
be computed in closed form which allows for an efficient
optimization of Earap (see [51] for more details). Finally,
we can use this functional to construct the first component
of our loss function for the whole sequence (Xk)k:

`arap
(
X0, . . . ,XT

)
:=

T−1∑

k=0

Earap(Xk,Xk+1) + Earap(Xk+1,Xk). (9)

err. p.p. w/o p.p.
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. BCICP [44] 6.4 — —

ZoomOut [35] 6.1 — —
Smooth Shells [13] 2.5 — —
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p.

3D-CODED [18] 2.5 — —
FMNet [30] 5.9 PMF 11
GeoFMNet [9] 1.9 ZO 3.1

U
ns

up
.

SurFMNet [47] 7.4 ICP 15
Unsup. FMNet [20] 5.7 PMF 10
Weakly sup. FMNet [50] 1.9 ZO 3.3
Deep shells [14] 1.7 — —
NeuroMorph (Ours) 1.5 SL 2.3

Table 1: Unsupervised correspondences on FAUST [2]
remeshed. Mean geodesic error in % of the diameter on
the test set. For methods that use an axiomatic technique
for refinement (PMF [57], ZO [35], ICP [39] or SL [13]),
we also show the result without.

Figure 3: Unsupervised correspondences on
SHREC20 [10]. We only compare our method to
other unsupervised methods here, since there are no dense
ground-truth correspondences for this benchmark which is
a requirement for most supervised approaches.

Geodesic distance preservation loss. The final compo-
nent of our loss function in Equation (8) aims at preserving
the pairwise geodesic distance matrices DX and DY un-
der the estimated mapping Π, this is given by `geo

(
Π
)

:=
‖ΠDYΠ> −DX ‖22. Note that this energy only regularizes
the estimation of the correspondences Π as X and Y are the
(fixed) source and target shapes.

Intuitively, this objective promotes correspondences Π
with bounded geodesic distortion. Variants of this objective
are commonly used in classical shape matching [4, 59, 57]
and have been also successfully integrated in a learning
pipeline [20] in combination with functional maps [39].

3.4. Implementation details

During training, we sample a pair of input shapes from
our training set, predict an interpolation and a set of dense
point-to-point correspondences and optimize the model pa-
rameters according to our composite loss (8). All hyper-



ZoomOut [35] UnsupFMNet[20] Deep Shells [14] Smooth Shells [13] Ours

Figure 4: Unsupervised correspondences on G-S-H. We provide the cumulative geodesic error curves (in % of the diameter)
of different approaches (left). For a detailed comparison, we display heat maps on one pose of the ’Galgo’ shape from our
dataset (right). We color code the mean geodesic error for each point of the surface, averaged over all 1024 pairs from the
test set. Our method is particularly good at discovering structural correspondences, i.e. matching extremities correctly.

Source Smooth Shells [13] Ours Ours + SL

Figure 5: Unsupervised correspondences on SHREC20. A qualitative comparison on non-isometric pairs from
SHREC20 [10]. While the correspondences predicted by our method are generally very accurate, the postprocessing still
helps to remove local noise. The baseline [13] naturally produces smooth matches, but global parts of the geometry are
sometimes mismatched (compare for instance the front legs and and head of the camel shown here).

parameters were selected on a validation set and the same
configuration is used in all of our experiments.

Two parameters are varied during training: In the begin-
ning, we set the number of discrete time steps to T = 1
and then increase it on a logarithmic scale. This multi-scale
optimization strategy, which is motivated by classical non-
learning interpolation algorithms [27, 23], leads to an over-
all faster and more robust convergence. The geodesic loss
`geo initially helps to guide the optimization such that it con-
verges to meaningful local minima. On the other hand, we
found that it can actually be detrimental in the case of ex-
tremely non-isometric pairs (e.g. two different classes of
animals). Therefore, we decay the weight λgeo = 0 of this
loss as a fine-tuning step during training after a fixed num-
ber of epochs.

As a form of data augmentation, we randomly subsample
the triangulation of both input meshes separately and rotate
the input pair along the azimuth axis in each iteration. This
prevents our method from relying on pairs with compatible
connectivity, since we ideally want our predictions to be
independent from the discretization.

At test time, we simply query our model to obtain an
interpolation of an input pair of shapes. The soft correspon-

dences Π obtained with our method are generally very accu-
rate, but the conversion to hard correspondences (i.e. point-
to-point matches) via thresholding leads to a certain degree
of local noise. To create more smooth correspondences, we
additionally post-process our results with the multi-scale
matching method smooth shells [13]. Post-processing is
standard in unsupervised correspondence learning.

4. Experiments

We now evaluate the performance of NeuroMorph
in terms of shape correspondence and interpolation
(Sec. 4.1, 4.2), as well as for data augmentation in Sec. 4.3.

4.1. Shape correspondence

Datasets. We evaluate the matching accuracy of our
method on two benchmarks. The first is FAUST [2], which
contains 10 humans with 10 different poses each. We split
it in a training and test set of 80 and 20 shapes respec-
tively. Instead of the standard meshes, we use the more
recent version of the benchmark [44] where each shape
was re-meshed individually. This makes it challenging but
also more realistic, since for real-world scans the sampling



Figure 6: Interpolation on FAUST [2] and MANO [46]. We show a quantitative comparison of interpolations obtained with
Hamiltonian shape interpolation [11], LIMP [7], ShapeFlow [26] and our method. ShapeFlow [26] computes an extrinsic
flow to interpolate a pair of objects in an unsupervised manner, but they do not model shape correspondences explicitly which
is suboptimal for the large pose variations of deformable object categories. On both benchmarks, our method outperforms
LIMP [7], despite the fact that the it uses g.t. correspondences for training. It is also on par with the axiomatic baseline
Hamiltonian interpolation [11], which is remarkable since [11] requires dense correspondences even at test time.

[7]

[11]

Ours

Figure 7: Interpolation on MANO [46]. We show the
interpolation sequence (gray) for a pair (blue) from the
test set. LIMP [7], which requires ground-truth correspon-
dences for training, explicitly reconstructs the geometry of
intermediate shapes in a variational autoencoder architec-
ture which limits the generalization to unseen poses. Hamil-
tonian shape interpolation [11] yields high quality results
that are comparable to ours, but it is an axiomatic method
that requires ground-truth correspondences at test time and
multiple minutes of optimization per pair.

of surfaces is generally incompatible. The second bench-
mark we consider is the recent SHREC20 challenge [10]
which focuses on non-isometric deformations. It contains
14 shapes of different animals, some of which are real scans
with holes, topological changes and partial geometries. The
ground truth for this dataset consists of sparse annotated
keypoints which we use for evaluation. Since there are
no dense annotated point-to-point correspondences, most
existing supervised methods do not apply here. The final
benchmark we show is G-S-H (Galgo, Sphynx, Human), for
which we created our own dataset, see ?? for more details.
It contains non-isometric pairs from three object categories

(a dog ’Galgo’, a cat ’Sphynx’ and a human) with multi-
ple challenging poses each, as well as dense ground truth
matches.

Evaluation metrics. Following the Princeton benchmark
protocol [28], the accuracy of a set of point-to-point corre-
spondences is defined as the geodesic distance of the pre-
dicted and the ground-truth matches, normalized by the
square root area of the mesh. For FAUST remeshed, we
compute the distance for all points, whereas for SHREC20
this is done for all available sparse annotations.

Discussion. As shown in Table 1, Figure 3 and Figure 4,
NeuroMorph obtains state-of-the-art results on FAUST
remeshed, SHREC20 and our own benchmark G-S-H, re-
spectively. The overall suboptimal performance of existing
methods on the latter two benchmarks can be attributed to
the fact that, expect for [13], most of them implicitly assume
near-isometry or at least compatible local features. This,
however, does not hold for most examples in SHREC20
(see Figure 5 for a qualitative comparison) and G-S-H (for
instance, on SHREC20, NeuroMorph matches 92% of the
vertices within 0.25 geodesic error vs. 79% of the second
best, smooth shells). NeuroMorph is particularly good at
discovering structural correspondences, which can then be
further refined in post-processing.

4.2. Shape interpolation

Datasets. For shape interpolation, we report results on the
FAUST [2] (see Section 4.1) and MANO [46] datasets. The
latter consists of synthetic hands in various poses — we use
100 shapes for training and 20 different samples for testing.

Evaluation metrics. We use two metrics to quantify the
precision of an interpolation. The conformal distortion met-
ric signifies how much individual triangles of a mesh distort
throughout an interpolation sequence, in comparison to the
reference pose X , see [25, Eq. (3)] for a definition. Less
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Figure 8: Data augmentation for implicit surface reconstruction. We show, as a proof of concept, that our method can
be used to augment a small training set with additional poses. We verify this by comparing the reconstruction error of an
implicit surface reconstruction method [17] with and without data augmentation. The general idea behind this is to construct
a shape space that encodes arbitrary poses in a latent representation. As we show here, supplementing collections of sparse
observations with intermediate poses constitutes a natural extension which helps to learn a meaningful shape distribution.

distortion corresponds to more realistic shapes. The other
metric we consider measures the reconstruction error of the
target shape Y , defined as the Chamfer distance between Y
and the deformed shapeX (1). A good overlap at t = 1 is an
important quality criterion because, while our interpolations
exactly coincide with the first shape X = X (0), they only
approximately align with Y ≈ X (1). The same holds true
for the three baselines [7, 26, 11] that we compare against.

Discussion. Results are shown in Figure 6. On both of
these benchmarks, our method significantly outperforms
the supervised baseline LIMP [7] which requires ground-
truth correspondences for training. Similar to our approach,
the unsupervised method ShapeFlow [26] continuously de-
forms a given input shape to obtain an interpolation. How-
ever, they do not estimate correspondences explicitly which
limits the performance on deformable object categories like
humans, animals or hands3. More surprisingly, our ap-
proach is even on par with the axiomatic, non-learning in-
terpolation baseline [11] which requires to know dense cor-
respondences at test time. See Figure 7 for a qualitative
comparison on MANO.

4.3. Application: data augmentation

Our method is, to the best of our knowledge, the first one
that jointly predicts correspondences and an interpolation of
deformable objects in a single learning framework. As an
application of unsupervised interpolation, we show how our
method can be used to create additional training samples
as a form of data augmentation. To that end, we train an
implicit surface reconstruction method [17] on a small set
of 20 SMPL shapes from the SURREAL dataset [56] and
evaluate the obtained reconstructions on a separate test set

3These types of objects typically have a high pose variation with large
degrees of non-rigid deformations, whereas ShapeFlow mainly specializes
on man-made objects like chairs or cars. The few deformable examples
that they show in [26, fig. 5] are intended as a proof of concept since they
use ground-truth correspondences and overfit on a single pair of shapes.

of 100 shapes. Additionally, we use our method to create
3 additional, interpolated training poses for each pair in the
training set and compare the results with the vanilla train-
ing. To measure the quality of the obtained reconstructions,
we report the reconstruction error on the test set, defined as
the Chamfer distance of the test shapes to the reconstructed
surface, see Figure 8.

Overall, these results indicate that using our method to
enlarge a training set of 3D shapes can be useful for down-
stream tasks, especially when training data is limited.

5. Conclusions

We presented a new framework for 3D shape understand-
ing that simultaneously addresses the problems of shape
correspondence and interpolation. The key insight we want
to advocate is that these two goals mutually reinforce each
other: Better correspondences yield more accurate inter-
polations and, vice versa, meaningful deformations of 3D
surfaces act as a strong geometric prior for finding corre-
spondences. In comparison to related existing approaches,
our model can be trained in a fully unsupervised manner
and generates correspondence and interpolation in a sin-
gle pass. We show that our method produces stable results
for a variety of correspondence and interpolation tasks, in-
cluding challenging inter-class pairs with high degrees of
non-isometric deformations. We expect that NeuroMorph
will facilitate 3D shape analysis on large real-world datasets
where obtaining exact ground-truth matches is prohibitively
expensive.
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Sharma, Peter Wonka, and Maks Ovsjanikov. Zoomout:
Spectral upsampling for efficient shape correspondence.
ACM Transactions on Graphics (TOG), 38(6):155, 2019.

[36] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4460–4470, 2019.

[37] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
5115–5124, 2017.

[38] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Occupancy flow: 4d reconstruction by
learning particle dynamics. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 5379–
5389, 2019.

[39] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian
Butscher, and Leonidas Guibas. Functional maps: a flexible
representation of maps between shapes. ACM Transactions
on Graphics (TOG), 31(4):30, 2012.

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 165–174, 2019.

[41] Adrien Poulenard and Maks Ovsjanikov. Multi-directional
geodesic neural networks via equivariant convolution. ACM
Transactions on Graphics (TOG), 37(6):1–14, 2018.

[42] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[43] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017.

[44] Jing Ren, Adrien Poulenard, Peter Wonka, and Maks
Ovsjanikov. Continuous and orientation-preserving cor-
respondences via functional maps. ACM Trans. Graph.,
37(6):248:1–248:16, Dec. 2018.

[45] Emanuele Rodolà, Luca Cosmo, Michael Bronstein, Andrea
Torsello, and Daniel Cremers. Partial functional correspon-
dence. Computer Graphics Forum (CGF), 2016.

[46] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 36(6), Nov. 2017.

[47] Jean-Michel Roufosse, Abhishek Sharma, and Maks Ovs-
janikov. Unsupervised deep learning for structured shape
matching. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1617–1627, 2019.

[48] Klaus Hildebrandt Ruben Wiersma, Elmar Eisemann. Cnns
on surfaces using rotation-equivariant features. Transactions
on Graphics, 39(4), July 2020.
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Chapter 9

G-MSM: Unsupervised Multi-Shape Matching

with Graph-based Affinity Priors

The predominant paradigm of learning methods for shape correspondence, in the liter-
ature, is based on extracting local feature maps for pairs of input poses, which are then
processed by a differentiable matching layer. On the other hand, in many real-world
applications, we have a whole collection of query poses available. For most datasets, in-
dividual poses are correlated and the collection as a whole can provide relevant cues for
pairwise matching. For instance, if there are several poses subject to topological merging
from self-contact, then statistics from all input poses help convey the latent topology,
i.e., help distinguish between geometrically meaningful shape features and noise. Hence,
we propose a learning approach for multi-shape matching, that jointly predicts corre-
spondences between a set of N > 2 input poses. To this end, we introduce the notion
of undirected, edge-weighted shape graphs G. The weight between two poses encodes
an affinity score, expressing the degree of geometric similarity. Since our approach is
fully unsupervised, i.e., does not depend on ground truth correspondences as inputs,
we derive this similarity score from a pairwise correspondence heuristic. Specifically,
this score is defined as the matching loss of the current pairwise correspondence esti-
mate. Based on the shape graph G, we then define a multi-shape correspondence map by
concatenating pairwise maps along shortest paths in G, and enforcing cycle-consistency
with the pairwise map. Our overall network architecture consists of three modules,
responsible for local feature extraction, pairwise matching, and multi-matching, respec-
tively. We demonstrate, on a broad range of shape datasets, that the multi-shape cor-
respondences are superior to pairwise approaches and multi-matching methods based
on canonical embeddings. The improvement over pairwise baselines is especially signif-
icant for datasets with topological noise, and inter-class correspondences. We further
compare our approach to several alternative, sparse graph heuristics, such as minimal
spanning trees, traveling salesman graphs, and star graphs.
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Abstract

We present G-MSM (Graph-based Multi-Shape
Matching), a novel unsupervised learning approach for
non-rigid shape correspondence. Rather than treating a
collection of input poses as an unordered set of samples,
we explicitly model the underlying shape data manifold.
To this end, we propose an adaptive multi-shape matching
architecture that constructs an affinity graph on a given
set of training shapes in a self-supervised manner. The key
idea is to combine putative, pairwise correspondences by
propagating maps along shortest paths in the underlying
shape graph. During training, we enforce cycle-consistency
between such optimal paths and the pairwise matches which
enables our model to learn topology-aware shape priors.
We explore different classes of shape graphs and recover
specific settings, like template-based matching (star graph)
or learnable ranking/sorting (TSP graph), as special cases
in our framework. Finally, we demonstrate state-of-the-art
performance on several recent shape correspondence
benchmarks, including real-world 3D scan meshes with
topological noise and challenging inter-class pairs.1

1. Introduction
Shape matching of non-rigid object categories is a central

problem in 3D computer vision and graphics that has been
studied extensively over the last few years. Especially in
recent times, there is a growing demand for such algorithms
as 3D reconstruction techniques and affordable scanning
devices become increasingly powerful and broadly avail-
able. Classical shape correspondence approaches devise
axiomatic algorithms that make specific assumptions about
the resulting maps, such as near-isometry, area preservation,
approximate rigidity, bounded distortion, or commutativity
with the intrinsic Laplacian. In contrast, real-world scan
meshes are often subject to various types of noise, including

† Currently at NVIDIA
1Our implementation is available under the following link: https:

//github.com/marvin-eisenberger/gmsm-matching

(i) Shape graph G (ii) Affinity edge weights

Source Π
(1,2)

Π
(1,3) ◦Π

(3,2)

(iii) Putative correspondences Π(1,2) vs multi-matching Π
(1,3) ◦Π

(3,2)
Figure 1. For a given collection of 3D meshes {X (i)∣1 ≤ i ≤ N},
(i) our method constructs, in a fully unsupervised manner, a shape
graph G which approximates the underlying shape data manifold.
(ii) Its edge weights (affinity scores) are derived from a putative
pairwise correspondence loss signal. (iii) During training, we
enforce cycle-consistency by propagating maps along shortest paths
in the graph G. As shown for the sample pair above (X (1), X (2)),
the resulting multi-matching Π

(1,3) ◦Π
(3,2) is significantly more

accurate than the pairwise map Π
(1,2).

topological changes [16, 33], partial views [2], general non-
isometric deformations [17, 65], objects in clutter [12], and
varying data representations [57]. In this work, we address
several of the aforementioned challenges and demonstrate
that our proposed method achieves improved stability for a
number of 3D scan mesh datasets.

The majority of existing deep learning methods for shape
matching [2, 15, 20, 21, 24, 39, 51, 56] treat a given set of
meshes as an unstructured collection of poses. During train-
ing, random pairs of shapes are sampled for which a neural
network is queried and a pairwise matching loss is mini-
mized. While this approach is straightforward, it often fails
to recognize commonalities and context-dependent patterns



which only emerge from analyzing the shape collection as
a whole. Not all samples of a shape collection are created
equal. In most cases, some pairs of poses are much closer
than others. Maps between similar geometries are inherently
correlated and convey relevant clues to one another. This
is particularly relevant for challenging real-world scenar-
ios, where such redundancies can help disambiguate noisy
geometries, non-isometric deformations, and topological
changes. The most common approach of existing multi-
matching methods is to learn a canonical embedding per
pose, either in the spatial [10] or Laplace-Beltrami frequency
domain [26,28]. This incentivizes the resulting matches to be
consistent under concatenation. However, such approaches
are in practice still trained in a fully pairwise manner for
ease of training. Furthermore, relying on canonical embed-
dings can lead to limited generalization for unseen test poses.
Concrete approaches often assume a specific mesh resolu-
tion and nearly-isometric poses [10], or require an additional
fine-tuning optimization at test time [26, Sec. 5].

Rather than interpreting a given training set as a random,
unstructured collection of shapes, our approach explicitly
models the underlying shape manifold. To this end, we de-
fine an affinity graph G on the set of input shapes whose edge
weights (i.e. affinity scores) are informed by the outputs of a
pairwise matching module. We then devise a novel adaptive
multi-matching architecture that propagates matches along
shortest paths in the underlying shape graph G. The resulting
maps are topology-aware, i.e., informed by geometries from
the whole shape collection. An example is shown in Fig-
ure 1, where the multi-matching Π

(1,3) ◦Π(3,2) obtained by
our approach is significantly more accurate than the naive,
pairwise map Π

(1,2). During training, we promote cycle-
consistency of shortest paths in the shape graph. In summary,
our contributions are as follows:

1. Introduce the notion of an edge-weighted, undirected
shape graph G to approximate the underlying data man-
ifold for an unordered collection of 3D meshes.

2. Propose a novel, adaptive multi-shape matching ap-
proach that enforces cycle-consistency for optimal
paths in the shape graph G in a self-supervised manner.

3. Demonstrate state-of-the-art performance for a range
of challenging non-rigid matching tasks, including non-
isometric matching due to topological noise [16, 33]
and inter-class pairs [17, 65].

2. Related work
Axiomatic correspondence methods Shape matching is
an extensively studied topic with a variety of different ap-
proaches and methodologies. We summarize references rele-
vant to our approach here and refer to recent surveys [54,60]
for a more complete picture. Classical methods for non-rigid

matching often devise optimization-based approaches that
minimize some type of distortion metric [7,18,49,62,64]. A
common prerequisite is the extraction of hand-crafted local
descriptors that are approximately preserved under non-rigid
shape deformations. Common definitions include histogram-
based statistics [59] or fully intrinsic features based on the
eigenfunctions of the Laplace-Beltrami operator [3, 53, 58].
Over the last few years, functional maps [44] have become
a central paradigm in shape matching. The core idea is to
reframe the pairwise matching task from functions (points to
points) to functionals (functions to functions). There are sev-
eral extensions of the original framework to allow for partial
matching [35, 36, 50], orientation preservation [48], iterative
map upsampling [19, 42] and conformal maps [14]. Our
approach utilizes functional maps as a fundamental building
block within the differentiable matching layer.

Learning-based methods More recently, several ap-
proaches emerged that aim at extending the power of deep
feature learning to deformable 3D shapes. Many such meth-
ods fall under the umbrella term ‘geometric deep learn-
ing’ [9], with analogous applications on different classes
of non-Euclidean data like graphs or general manifold
data. One class of approaches are charting-based meth-
ods [6,40,43,46,52] which imitate convolutions in Euclidean
space with parameterized, intrinsic patch operators. Like-
wise, [57] proposed a learnable feature refinement module
based on intrinsic heat diffusion.

The pioneering work of [34] proposes a differentiable
matching layer based on functional maps [44], in combina-
tion with a deep feature extractor with several consecutive
ResNet layers [25]. Numerous extensions of this paradigm
were proposed over the last few years to allow for unsuper-
vised loss functions [24, 51], learnable basis functions [39],
point cloud feature extractors [15, 26, 56] or partial data [2].
Similarly, DeepShells [21] learns functional maps in an end-
to-end trainable, hierarchical multi-scale pipeline. We adapt
parts of its differentiable matching layer in our network.
Other approaches [4, 23, 38] learn correspondences for a
specific class of deformable objects by including additional
domain knowledge, like a deformable human model [37].
Finally, [20] jointly learns to predict correspondences and a
smooth interpolation between pairs of shapes.

Multi-shape matching Classical axiomatic multi-shape
matching approaches devise optimization-based pipelines
that enforce cycle-consistent maps. Specific solutions in-
clude semidefinite programming [27], convex relaxations
of the corresponding quadratic assignment problem [30],
graph cuts [55], as well as evolutionary game theory [11].
Such optimization-based approaches are computationally
costly and therefore limited to matching sparse landmarks.
Furthermore, there are a number of optimization frame-



works that compute synchronized, cycle-consistent func-
tional maps [22, 28, 29]. Notably, such approaches are often
limited to nearly-isometric poses [22, 29] or require high-
quality initializations [28]. More recent learning-based ap-
proaches promote cycle-consistency by predicting a canon-
ical embedding for each observed pose [10, 26]. However,
obtaining stable embeddings is often difficult when generaliz-
ing to unseen test poses. Moreover, such approaches assume
a specific mesh resolution and nearly-isometric poses [10]
or require an additional fine-tuning optimization at test time
to obtain canonical embeddings [26, Sec. 5].

3. Method
3.1. Problem formulation

In the following, we consider a collection of 3D shapes
S = {X (1)

, . . . ,X (N)} from non-rigidly deformable shape
categories. Each such shape X (i) is a discretized approxima-
tion of a 2D Riemannian manifold, embedded in R3. Specif-
ically, we define X (i) = (V(i)

,T
(i)), where V

(i) ∈ Rm×3

and T
(i) ⊂ V

(i)×V
(i)×V

(i) are sets of vertices and triangu-
lar faces, respectively. The goal is then to construct an algo-
rithm that computes dense correspondence mappings Π(i,j)
between any two surfaces X (i) and X (j) from the shape
collection S. Specifically, such correspondences are repre-
sented by sparse assignment matrices Π(i,j) ∈ {0, 1}m×n,
where Π

(i,j)
1n = 1m and Π

(i,j)
i′,j ′

= 1 indicates a match

between the i
′-th vertex of X (i) and the j

′-th vertex of X (j).
Scope Our method is unsupervised and thereby requires no
additional inputs, like landmark annotations or ground-truth
correspondences, beyond the raw input geometries X (i). Fol-
lowing similar approaches in this line of work [4, 20, 39, 56],
we assume that the shapes X (1)

, . . . ,X (N) have an approx-
imately canonical orientation. In the literature, this setting
is commonly referred to as ‘weakly supervised’, see [56]
and later [20]. Existing approaches often make additional
assumptions about the input data S, focusing on nearly-
isometric correspondences [34, 51], maps with bounded dis-
tortion [20, 21] or partial views of the same non-rigid ob-
ject [2,50]. Others specialize in distinct classes of shapes like
deformable human bodies [4, 23, 38]. In contrast, we demon-
strate in our experiments that our proposed multi-matching
approach excels at a broad range of challenging settings,
including non-isometric pairs, poses with topological noise
from self-intersections, and inter-class matching.

3.2. Network architecture

We now define the neural network architecture that
forms the basis of our proposed approach. It consists
of three separate components I-III, see also Figure 2 for

an overview. The first two modules are standard com-
ponents found in most learning-based shape matching ap-
proaches [2, 15, 20, 21, 24, 39, 51, 56], namely a learnable
feature backbone I and a differentiable, pairwise matching
layer II. We briefly outline these here and provide additional
details in Appendix A.2. The multi-matching architecture
III is introduced in Section 3.3.

Feature extractor The first component I of our model is a
standard, learnable feature extraction backbone for represen-
tation learning, defined as

Φfeat ∶ X (i)
↦ F

(i) ∈ Rm×l
. (1)

For a given input shape X (i) = (V(i)
,T

(i)), the mapping
Φfeat produces an l-dimensional feature embedding F

(i)
per vertex V

(i) ∈ Rm×3. While other choices are possi-
ble, we base Φfeat on the off-the-shelf feature backbone
DiffusionNet [57]. This network refines features via intrin-
sic heat-diffusion operators. Such operators are agnostic to
the input discretization, thereby extremely robust to varying
mesh resolutions and sampling densities. At the same time,
it is computationally lightweight. For more details on the
choice of backbone, see Appendix A.2.

Pairwise matching The second component II of our
network is a differentiable, multi-scale matching scheme
based on the recent pairwise shape matching method
DeepShells [21]. The basis of this approach is the energy
function

Ematch(F,G; Π̃) ∶= m

∑
i′=1

n

∑
j ′=1

Π̃i′,j ′∥Fi′ −Gj ′∥2

2 (2)

which has its roots in the theory of optimal transport. For
a given transport plan Π̃ ∈ [0, 1]m×n, the energy Ematch

specifies the distance between the discrete measures associ-
ated with two arbitrary l-dimensional feature embeddings
F = (F1, . . . ,Fm) ∈ Rm×l and G = (G1, . . . ,Gn) ∈
Rn×l. Taking the minimum over all possible transport plans
argminΠ̃ Ematch(F,G; Π̃) results in the Kantorovich for-
mulation of optimal transport [45, 63]. Following the ap-
proach described in [21], we obtain a multi-scale shape
matching scheme that minimizes Equation (2) in an iterative
optimization. For a given pair of shapes X (i) and X (j), this
scheme defines a mapping

Φmatch ∶ (F(i)
,F

(j)) ↦ (Π(i,j)
,V

(i,j)
, ℓ

(i,j)
match). (3)

We provide further details on the exact update steps of the
optimization scheme Φmatch in Appendix A.2. From a
high-level perspective, Φmatch is defined as a determinis-
tic, differentiable function that takes local feature encodings



Figure 2. Pipeline overview. For a collection of shapes S = {X (1)
, . . . ,X (N)}, I. feature embeddings are extracted with DiffusionNet [57]

and II. pairwise correspondences Π(i,j) are predicted via an iterative, differentiable matching layer [21]. III. The pairwise matches are
utilized to construct a shape graph G = (S, w) with affinity edge weights w(X (i)

,X (j)) ≥ 0. During training, we minimize the pairwise

matching loss ℓ(i,j)match, as well as the cycle consistency loss ℓ(i,j)cyc between the pairwise registrations V(i,j) and multi-matches Π(i,j)
mult.

F
(i) ∈ Rm×l and F

(j) ∈ Rn×l as input and predicts a set of
correspondences Π(i,j) ∈ {0, 1}m×n. Additionally, Φmatch

outputs a deformed embedding V
(i,j) ∈ Rm×3 of the ver-

tices of X (i). These coordinates specify a registered version
of the first input shape X (i) that closely aligns with the pose
of the second input shape X (j). The third output ℓ(i,j)match > 0
is a training loss signal.

3.3. Graph-based multi-shape matching

Shape graph We now provide details on our multi-shape
matching architecture III. To this end, we start by defining
an affinity graph

G ∶= (S, w), with w ∶ S × S → [0,∞] (4)

on the set of training shapes S = {X (1)
, . . . ,X (N)}, see III

in Figure 2 for a visualization. W.l.o.g., we construct G as
a complete graph (i.e. undirected, fully connected), where
a missing edge between X (i) and X (j) can be specified
equivalently by setting the corresponding edge weight to
w(X (i)

,X (j)) = ∞.
We define the pairwise edge weights w(X (i)

,X (j)) ∈[0,∞] such that they represent affinity scores between
pairs of shapes X (i) and X (j). By convention, small val-
ues w(X (i)

,X (j)) ≈ 0 reflect that X (i) and X (j) have a

comparably similar geometric structure. Since our method
is fully unsupervised, we have no a priori knowledge of such
affinities and thereby have to infer them directly from the
geometries X (i) and X (j). To this effect, we propose a sim-
ple heuristic for a given pair of shapes X (i) = (V(i)

,T
(i))

and X (j) = (V(j)
,T

(j)) and define the (symmetric) affinity
score w as

w(X (i)
,X (j)) ∶= min{Ematch(V(i,j)

,V
(j)

;Π
(i,j)),

Ematch(V(j,i)
,V

(i)
;Π

(j,i))}. (5)

In this context, Ematch is the (self-supervised) matching en-
ergy defined in Equation (2), while Π

(i,j) and V
(i,j) are

the putative correspondences and registrations produced
by Equation (3), respectively. The intuition behind this
choice of edge weights w is that a small matching energy
Ematch implies a high correspondence accuracy, which is in
turn indicative of a high geometric similarity between the
input poses X (i) and X (j).
Multi-matching Since we define the edge weights w ac-
cording to the self-supervised matching score Ematch, small
weights w(X (i)

,X (j)) generally correlate with a high cor-
respondence accuracy of Π(i,j). Based on this assumption,



we obtain multi-shape matches from the putative correspon-
dences Π(i,j) via the following expression

(i, s1, . . . , sM−1, j) ∶= Dijkstra(X (i)
,X (j)

;G) (6a)

Π
(i,j)
mult ∶= Π

(i,s1) ◦Π
(s1,s2) ◦ ⋅ ⋅ ⋅ ◦Π

(sM−1,j). (6b)

Rather than matching a pair of shapes X (i) and X (j) directly,
the multi-shape correspondence maps are passed along short-
est pathsX (i)

,X (s1), . . . ,X (sM−1),X (j) in the graph G. The
approach thereby favors edges with a close affinity, i.e., a
small pairwise matching cost w(X (sk),X (sk+1)). In our ex-
periments, we demonstrate that this simple heuristic yields
significant empirical improvements for a broad range of non-
rigid matching tasks.

In practice, we utilize the multi-matching from Equa-
tion (6) for two distinct use-cases: For once, we can directly
query the improved maps Π(i,j)

mult at test time. Additionally,
we promote cycle-consistency during training via the follow-
ing loss term

ℓ
(i,j)
cyc ∶= Ematch(V(i,j)

,V
(j)

;Π
(i,j)
mult). (7)

This loss ℓ
(i,j)
cyc imposes a soft penalty on inconsistencies

between the registration V
(i,j) produced by the pairwise

matching module Φmatch, and the multi-shape correspon-
dences Π(i,j)

mult from Equation (6). As before, Ematch is the
matching energy defined in Equation (2).

3.4. Training protocol

The overall loss function that we minimize during training
consists of two individual components

ℓ ∶= EX (i),X (j)∼S[ℓ(i,j)match + λcycℓ
(i,j)
cyc ]. (8)

Our complete pipeline is depicted in Figure 2. The whole
network is trained end-to-end. In each training iteration, the
backbone I and pairwise matching module II are queried in
sequence to produce a pairwise matching for a pair of shapes
X (i) and X (j). The shape graph module III then produces
the cycle-consistency loss ℓ(i,j)cyc . The shape graph G is up-
dated regularly after a fixed number of epochs, taking into
account the pairwise matches Π(i,j) for all i, j = 1, . . . , N .
For more details on the training schedule and choices of
hyperparameters, see Appendix A.1.

4. Experiments
We provide various benchmark evaluations for non-rigid

shape matching. We consider classical nearly-isometric
datasets in Section 4.1, as well as more specialized bench-
marks for matching with topological changes in Section 4.2

Method FAUST SCAPE F on S S on F SUR SH’19

UFM [24] 5.7 10.0 12.0 9.3 9.2 15.5
SURFM [51] 7.4 6.1 19.0 23.0 38.9 37.7
WFM [56] 1.9 4.9 8.0 4.3 38.5 15.0
DiffNet [57] 1.9 2.6 2.7 1.9 8.8 11.0
DS [21] 1.7 2.5 5.4 2.7 2.7 12.1
NM [20] 1.5 4.0 6.7 2.0 9.7 2.8
IsoMuSh [22] 4.4 5.6 – – 4.8 24.6
CZO [28] 2.2 2.5 – – 2.2 6.3
UDM [10] 1.5 2.0 3.2 3.2 3.1 22.8
SyNoRiM [26] 7.9 9.5 21.9 24.6 12.7 7.5
Ours w/o III 1.7 3.3 4.2 1.7 8.1 6.2
Ours 1.5 1.8 2.1 1.5 2.1 2.7

Table 1. Nearly isometric matching. A quantitative comparison
on four nearly-isometric human shape benchmarks, FAUST [5],
SCAPE [1], SURREAL [61] and SHREC’19 [41]. Following prior
work [15,56,57], we additionally show generalization results when
training on FAUST and testing on SCAPE (F on S), and vice versa.
We consider both standard, pairwise baselines [20,21,24,51,56,57]
and multi-matching approaches [10, 22, 26, 28].

and inter-class pairs in Section 4.3. In Section 4.4, we com-
pare different types of shape graph topologies. In Section 4.5,
we provide an ablation study of our model, assessing the
significance of individual network components.

Baselines We compare G-MSM to existing deep learning
approaches for unsupervised, deformable 3D shape corre-
spondence. To this end, we consider both standard pair-
wise matching [20, 21, 24, 51, 56, 57] and multi-matching
approaches [10, 26]. Since there are, to date, only very few
learning-based multi-matching approaches, we additionally
include Consistent ZoomOut [28] and IsoMuSh [22] as re-
cent axiomatic multi-matching approaches.

Evaluation For each experimental setting, we report the
mean geodesic correspondence error over all pairs of a given
test set category. All evaluations are performed in accor-
dance with the standard Princeton benchmark protocol [31].

4.1. Nearly isometric matching

Datasets We evaluate our method on four classical, nearly-
isometric datasets. FAUST [5] contains 10 humans in 10
different poses each and SCAPE [1] contains 71 diverse
poses of the same individual. We follow the standard bench-
mark protocol from existing work [15, 56, 57]. Specifically,
we consider the more challenging remeshed geometries
from [48] to avoid overfitting to a particular triangulation.
SURREAL [61] consists of synthetic SMPL [37] meshes
fitted to raw 3D motion capture data. The last benchmark,
which is the most challenging among the four, is SHREC’19
Connectivity [41]. It contains human shapes in different
poses with significantly varying sampling density and qual-
ity, as well as a small number of non-isometric poses.



Method SH’Iso KIDS

UFM [24] 13.4 38.5
SURFM [51] 45.6 48.6
WFM [56] 38.0 47.9
DiffNet [57] 26.5 35.7
DS [21] 6.3 13.7
NM [20] 7.7 13.8
CZO [28] 7.6 39.3
UDM [10] 23.6 18.2
SyNoRiM [26] 6.2 13.8
Ours w/o III 6.3 12.0
Ours 5.2 7.9

Figure 3. Matching with topological noise. A summary of our quantitative comparisons on the topology benchmarks SHREC’Isometry [16]
and TOPKIDS [33]. For both benchmarks, we show the cumulative error curves of our approach (red) and all considered baselines.
Additionally, we provide the mean geodesic errors, averaged over all pairs of shapes, respectively (table, right).

Target UFM [24] CZO [28] DS [21] NM [20] SyNoRiM [26] Ours

Figure 4. Qualitative baseline comparison. We consider a pair of real 3D scan meshes from SHREC’Iso [16], corresponding to the
quantitative experiments shown in Figure 3. The two geometries are subject to topological merging due to self-contact of different fingers
and parts of the hand. Correspondences are shown via a colormap for our method, as well as several baseline approaches. For this example,
the best results are achieved by [21], [26] and our method. However, for both [21] and [26], the front part of the index and middle fingers are
erroneous (tip of index finger should be bright green). See our supplementary material for additional qualitative examples.

Discussion The results on these four benchmarks are sum-
marized in Table 1. Our method obtains state-of-the-art
performance in all considered settings. Remarkably, these
results were achieved directly through querying our network,
whereas many baselines require correspondence postprocess-
ing [10,20,24,51,56,57]. Furthermore, the results underline
that the shape graph module III plays a critical role in our
pipeline for optimal performance.

4.2. Matching with topological changes

Datasets The benchmarks SHREC’Isometry [16] and
TOPKIDS [33] focus on matching with topological noise.
This is a common phenomenon when working with real
scans, where the mesh topology is often corrupted by self-
contact of separate parts of the scanned objects. Such topo-
logical merging severely affects the correspondence esti-
mation since it distorts the intrinsic shape geometry non-
isometrically. The first benchmark SHREC’Isometry [16]
contains real scans of different humanoid puppets and hand

models. A majority of poses in their ‘heteromorphic’ test
set are subject to topological changes, see also Figure 4 for
an example. The TOPKIDS [33] dataset contains synthetic
shapes of human children where topological merging is emu-
lated by computing the outer hull of intersecting geometries,
see Figure 1 for an example.

Discussion Quantitative results are shown in Figure 3. We
observe that topological merging commonly leads to unsta-
ble behavior for methods that rely on intrinsic priors like
preservation of the Laplace-Beltrami operator [10, 28, 51, 56,
57] or pairwise geodesic distances [24]. It further inhibits
approaches that learn to morph input geometries [20, 26]
with explicit deformation priors, since merged regions tend
to adhere to each other, see, e.g., the discussion on failure
cases in [26, Sec. 7]. Our pipeline decreases the correspon-
dence error by a decisive margin of 19% for SHREC’Iso and
73% for TOPKIDS. We provide a qualitative comparison
in Figure 4, as well as additional examples in Appendix D.



SH’20 on SH’20 on TOSCA
SH’20 SMAL Cat Centaur Dog Horse Human Wolf

UFM [24] 39.8 32.9 39.4 39.2 37.5 34.1 49.6 4.4
SURFM [51] 53.4 37.7 54.0 57.7 57.9 57.0 65.8 55.3
WFM [56] 31.4 20.2 20.6 21.9 16.7 22.4 38.1 5.7
DiffNet [57] 40.5 18.2 14.2 8.3 13.6 9.1 24.5 2.6
DS [21] 35.0 10.8 7.6 9.1 5.5 2.5 10.1 2.1
NM [20] 10.0 9.9 16.8 12.7 14.6 11.2 29.7 1.5
CZO [28] 21.7 – – – – – – –
UDM [10] 52.6 25.5 40.7 34.3 43.6 43.0 45.8 34.3
SyNoRiM [26] 10.4 5.7 12.8 11.6 10.6 7.1 28.2 2.0
Ours w/o III 11.1 3.4 6.3 6.0 4.9 2.6 20.1 2.2
Ours 10.6 2.6 5.2 2.0 3.0 2.2 8.3 1.4

Figure 5. Inter-class matching. (left) A comparison of our approach to the considered baselines on SHREC’20 [17], as well as additional,
synthetic test sets from SMAL [65] and TOSCA [8]. (right) Additionally, we visualize the shape graph node embeddings of our approach on
TOSCA [8] through 2D multi-dimensional scaling. Since the learned edge weights express affinity scores, shapes with similar geometries
tend to cluster together. Shapes with four legs (orange ≙ horse, red ≙ cat, . . . ) and two legs (blue ≙ human, green ≙ gorilla) are linearly
separable in the 2D MDS space. Interestingly, the centaur classes’ embedding (purple) lies exactly between these two categories.

4.3. Inter-class matching

Datasets The SHREC’20 [17] challenge contains real
scans of various four-legged animal models, including: ele-
phant, giraffe, bear, and many more. These geometries were
obtained from inhomogeneous acquisition sources, i.e., dif-
ferent types of scanners and 3D reconstruction pipelines.
Sparse ground-truth correspondences were obtained through
manual annotation. We further assess the generalization
to additional test sets from the synthetic SMAL [65] and
TOSCA [8] datasets. SMAL contains inter-class pairs be-
tween different animal classes, whereas TOSCA contains
nearly-isometric pairs with both animal and human classes.

Discussion Our approach yields the most stable results
overall, see Figure 5. Several baselines suffer from unstable
behavior for animals from SHREC’20, because they depend
on either noisy SHOT [59] input features [21], intrinsic priors
that favor near isometries [28, 56, 57], or both [10, 24, 51].
While methods with an explicit deformation prior [20, 26]
perform well on SHREC’20, they do not generalize well to
unseen test poses from SMAL and TOSCA. Our method
learns a topology-aware shape graph prior and thereby gets
the best out of both worlds, i.e., robustness to inter-class
pairs and strong generalization to unseen test pairs.

4.4. Sparse graph topologies

Throughout our experiments, we use complete shape
graphs G with a full set of N(N−1)

2
edges, as specified in Sec-

tion 3.3. Here, we explore a few alternative graph topologies
with sparse connectivity patterns, i.e., O(N) edges: (ii)
Minimal spanning trees (MST), (iii) minimal paths solving
the traveling salesman problem (TSP) and (iv) star graphs,
where all nodes are connected to one center node. For a

detailed discussion and visualizations of these graph types,
see Appendix B. We compare (ii)-(iv) to (i) the standard
full graph and (v) our pipeline without the graph module
III. A given graph type can be employed either for the cycle
consistency loss in Equation (7) during training or for map
refinement at test time. For a complete picture, we report
results for all 5 × 5 = 25 possible combinations.

Our results in Table 2 indicate that, while the full graph
is generally the most accurate, the sparse topologies often
perform comparably, especially MST. This makes them a
viable alternative to the full graph in certain scenarios with
limited resources, both in terms of the required memory
and query time. We provide a comprehensive cost analysis
in Appendix C. In most cases, using the shape graph during
training is beneficial, even when no graph is available at test
time (Table 2, bottom row). This makes it relevant for online
applications where not all test pairs are available at once.
Regardless of the graph type, it is generally preferable to
include some version of our graph module III rather than
directly using the pairwise correspondences ‘w/o’.

4.5. Ablation study

Our proposed architecture consists of several basic build-
ing blocks I-III, as defined in Section 3.2 and Section 3.3.
While the shape-graph module III is unique to our approach,
the feature backbone I and matching module II can, in princi-
ple, be replaced by any analogous off-the-shelf architectures.
We compare several popular alternatives: For the feature
backbone, we consider I.a the spectral convolution archi-
tecture from [21], I.b our network with SHOT [59] input
features, I.c the ResNet architecture from [34], I.d Point-
Net [47], as well as I.e the message passing architecture
from [20]. For the differentiable matching module, we com-
pare II.a a functional map layer [44], II.b a single Sinkhorn



SH’Iso Train on
Full MST TSP Star w/o

Te
st

on

Full 5.16 5.09 5.20 5.90 5.17
MST 5.68 5.49 5.50 6.36 5.49
TSP 6.08 5.62 5.80 6.94 6.51
Star 5.54 5.26 5.44 6.71 6.02
w/o 5.32 5.27 5.42 6.33 6.27

TOPKIDS Train on
Full MST TSP Star w/o

Te
st

on

Full 7.92 8.13 8.44 11.03 9.13
MST 8.56 8.62 9.39 10.57 9.98
TSP 13.18 12.33 13.10 19.72 15.07
Star 8.61 8.84 8.34 11.92 9.63
w/o 10.62 10.64 11.61 13.62 12.02

Table 2. Graph topology comparison. We compare the quantitative performance of our model for different graph topologies G. Specifically,
we revisit the experiment from Figure 3 and report the mean geodesic error on SHREC’Iso [16] and TOPKIDS [33]. The standard ‘full’
graph is compared to three sparse topologies ‘MST’, ‘TSP’, ‘star’ graph, as well as the ‘w/o III’ variant of our pipeline.

TOPKIDS SHREC’20
with III ✓ ✗ ✓ ✗

Fe
at

ur
e

I

I.a SpecConv [21] 8.53 13.68 28.54 34.99
I.b SHOT [59] 7.93 13.66 22.74 29.81
I.c ResNet [34] 7.94 13.14 39.69 40.66
I.d PointNet [47] 8.78 14.10 11.01 11.54
I.e GraphNN [20] 14.18 25.57 14.53 18.33

M
at

ch
II II.a FM [44] 39.12 40.66 50.58 51.37

II.b Sinkhorn [13] 12.25 14.81 11.58 12.66
II.c Softmax [20] 12.78 13.46 11.49 13.47

G-MSM (ours) 7.92 12.02 10.65 11.06

Table 3. Ablation network architecture. We compare several
off-the-shelf network architectures for the feature backbone I and
matching module II to our full model, as defined in Section 3.2. For
each setting, we contrast the results obtained with (✓) and without
(✗) the graph-based multi-matching module III.

layer [13] and II.c a standard per-point Softmax [20].
We then replace either the feature backbone I.a-I.e or

matching module II.a-II.c in our method and observe how it
affects the accuracy on TOPKIDS [33] and SHREC’20 [17]
from Section 4.2 and Section 4.3, respectively. The results
are summarized in Table 3. Replacing either module I or
II in our approach leads to a drop in performance. More-
over, we see that, regardless of the concrete architecture,
our multi-matching approach III (✓in Table 3) improves the
performance over the pairwise matches (✗).

5. Conclusion
We propose G-MSM, a novel multi-matching approach

for non-rigid shape correspondence. For a given collection of
3D meshes, we define a shape graph G which approximates
the underlying shape data manifold. Its edge weights w
are extracted from putative pairwise correspondence signals
in a self-supervised manner. Our network promotes cycle-
consistency of optimal paths in G. Thus, it produces context-
aware multi-matches that are informed by commonalities and
salient geometric features across all training poses. In our
experiments, we demonstrate that this simple strategy yields

significant improvements in correspondence accuracy on a
wide range of challenging, real-world 3D mesh benchmarks.

Limitations & future work Our method can effectively
learn the underlying canonical shape topology from a col-
lection of 3D meshes. On the other hand, it relies on at
least some of the poses to convey this latent topology. In the
extreme case of N = 2 input poses, our multi-shape pipeline
does not yield an improvement over the naive pairwise maps.
The multi-matching III shows consistent improvements in
our empirical evaluations. On the other hand, it is difficult
to provide theoretical guarantees for our approach, since it
is based on a self-supervised graph heuristic. We would
like to further explore this direction in future work. While
our approach learns correspondences in a self-supervised
manner, it also assumes rigidly aligned input shapes which
might be limiting for certain applications.

A promising avenue for future research is applying our
multi-matching formulation to related but distinct settings
to extend them beyond the pairwise training paradigm. One
potential direction is extending our framework to allow for
partial views, e.g., by leveraging recent advances on learn-
able partial functional maps [2].

Societal impact Advancing the robustness and accuracy
of shape correspondence methods has the potential to open
up new avenues for future applications based on 3D scan
data. Our algorithm constitutes one small advancement in
this effort of extending computer vision algorithms to the
3D domain. Since our algorithm is fully unsupervised, it can
directly reduce deployment costs as no manual correspon-
dence annotations are required to train our model. Shape
correspondence is a fundamental building block at the heart
of many 3D vision algorithms and we do not anticipate any
immediate risk of misuse associated with this work.
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Part III

Conclusion and Outlook





Chapter 10

Summary

In this thesis, we summarize several of our novel contributions towards robust corre-
spondence and interpolation of non-rigid 3D shapes. A primary motivation is extending
such techniques to noisy real-world data. To this end, we introduce various tools and
specific approaches that address shape analysis tasks for a broad range of deformable
3D object categories, such as human bodies, animals, or hands. We primarily focus on
surface-based shape representations, specifically 3D triangular meshes. In the following,
we discuss several key aspects of our contributions.

Intrinsic/Extrinsic Shape Embeddings In many of our proposed methods, we
demonstrate that combining extrinsic shape alignment and intrinsic matching in holis-
tic frameworks yields substantial mutual benefits. While intrinsic shape embeddings are
robust to nearly-isometric, non-rigid pose deformations, they are often not sufficiently
expressive to capture relevant shape features. Common well-known failure modes in-
clude ambiguous maps in the case of self-similarities and intrinsic symmetries. More-
over, intrinsic representations are agnostic to useful geometric features of an observed
object, such as its outer normals, or the local curvature at each point. Thus, we find
that, in practice, incorporating both types of shape representations in a joint embedding
space produces more robust predictions.

Volumetric Fields vs. Surface-based Deformation An important consideration in
the context of extrinsic shape alignment is the appropriate representation of deformation
models. We mainly distinguish between Eulerian and Lagrangian flow fields. In the
Eulerian perspective, the flow of a unit of mass (i.e., a point on a 3D surface), is specified
in terms of its location in the surrounding 3D space. In contrast, in the Lagrangian
viewpoint we directly model the flow at each point on the surface. Our work comprises
instances of both volumetric [1, 3] and surface-based [2, 4–6] deformation fields. On
the one hand, volumetric fields allow for reasoning about interactions between points
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that are in close proximity. Hence, they can be constrained to avoid self-intersections
of the deformed surface, and to specify conservation laws of physical properties such as
volume-preservation. Moreover, they allow for applying existing flow fields to different
poses, and to extrapolate from a sparse set of aligned points to the full resolution [3]. On
the other hand, surface-based deformation fields yield a more compact representation,
reducing the associated computation cost. They further simplify modeling important
properties, such as translation equivariance, and enable reasoning about intrinsic shape
distortion (cf . Sec. 3.3.4).

Multi-Scale Matching Multi-scale methods for shape correspondence are character-
ized by iterative refinement and gradual upsampling of the resolution. We introduce a
specific approach in [2], which jointly predicts an extrinsic shape alignment and an in-
trinsic functional map between pairs of input surfaces. The level of detail, in this case, is
indicated by the number of retained Laplace-Beltrami eigenfunctions in both the smooth
shell low-pass filtering and the spectral embedding. Initially, the optimization yields a
coarse alignment of the input pairs, whereas subsequent iterations focus on matching
fine-scale details. The same methodology is further extended and combined with geo-
metric deep learning in several follow-up works [5, 6].

Alignment-based Shape Interpolation A common assumption in classical shape
interpolation approaches is that both input meshes X and Y have the same number of
vertices with an identical triangulation (cf . Sec. 3.3.3). A subtle difficulty in extending
this formulation to noisy real-world meshes are minor inconsistencies due to the in-
compatible discretization. In our contributions [1, 3, 4], we often define interpolation
by continuously morphing the first input shape X such that the final frame of the ob-
tained sequence overlaps closely with the second reference poseY . In practice, however,
the predicted overlap is only approximate. One alternative are generative shape space
models (cf . Sec. 3.3.5), which reconstruct intermediate sequences through latent space
interpolation. On the other hand, we assert in [4] that such approaches often yield in-
ferior predictions on unseen test poses compared to the alignment-based formulation.
Moreover, the discretization of the generated intermediate frames is again incompatible
with the input poses X and Y .

Optimization vs. Deep Learning While a majority of classical shape analysis works
obtain solutions in optimization-based frameworks, many recent methods leverage ge-
ometric deep learning. Whereas optimization approaches often rely on generic hand-
crafted shape descriptors (cf . Sec. 3.2.3), deep learning approaches leverage representa-
tion learning (cf . Sec. 3.2.4) to identify relevant geometric features in the training set
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distribution. On the other hand, the resulting feature maps are more specialized, with a
limited generalization to samples outside the training distribution. Assumptions about
solutions of an optimization problem are often incorporated in a transparent manner,
and specific formulations yield optimality guarantees and other explicit mathematical
properties of solutions. Conversely, many non-convex optimization formulations are
actually more prone to inferior local minima and, hence, reliant on high-quality initial-
izations. While learning approaches generally have a lower deployment cost of making
predictions for unseen test pairs, this is contrasted with a much larger, up-front training
cost. Nevertheless, with geometric data becoming more accessible and wide-spread, we
expect that that impact of geometric deep learning for shape analysis tasks will further
increase in the future. The contributions discussed in this thesis include examples of
both optimization [1–3] and learning [4–6] approaches.

Self-Supervised Learning Despite the significant progress of geometric deep learn-
ing for shape analysis tasks, a major limitation of state-of-the-art supervised approaches
remains the need for correspondence labels during training. While raw geometric data is
widely available, obtaining ground-truth maps requires extensive manual annotation by
human experts. As a result, existing real-world benchmarks for shape correspondence
are often limited to sparse, annotated landmarks [45]. Some datasets [22, 82] leverage
parametric deformable models [78, 79] to generate ground-truth maps, but this is only
feasible for specific shape categories, such as human bodies. Overall, most annotated
benchmarks are limited to a comparably small number of poses (≈ 100). While synthetic
datasets are often orders of magnitude larger [125], the significant domain gap between
real-world scans and synthetic meshes limits their practical utility. Hence, in our con-
tributions we address the classical data annotation bottleneck through self-supervised
learning. Specially, we devise several models [4–6] based on geometric priors, where the
ground-truth correspondences are replaced with extrinsic alignment loss functions.





Chapter 11

Future Research

Classical shape analysis benchmarks often comprise nearly-isometric, synthetic shapes
with a consistent triangulation [15, 22, 28]. Since these assumptions are too restrictive
for many relevant real-world applications, we consider real scan datasets in several of
our proposed approaches [1, 2, 4–6]. Nevertheless, even to date a significant domain
gap remains, inhibiting shape analysis algorithms from being applied to raw sensory
observations. Addressing such challenging scenarios requires approaches that are ro-
bust to severe degrees of scanning noise, outliers, disconnected components, topological
changes, partial views, and self-occlusions. While there are distinct works that consider
meshes subject to topological noise [71], varying discretization densities [82], and partial
matching [7, 48, 99], to date there is still a lack of large-scale benchmarks and methods
that address several of these challenges at once.

Another potential avenue for future work involves algorithms capable of process-
ing different data representations, such as point clouds, depth maps, voxel grids, signed
distance fields, or neural implicit surfaces. While for many of the shape analysis tools
and concepts introduced in Chapter 3 there exist analogous definitions for different for-
mats [30, 109, 134], there is still a significant demand for specialized benchmarks and
approaches, as well as hybrid frameworks between multiple representations.

Finally, there is a significant potential for future approaches that combine genera-
tive machine learning models with classical shape analysis techniques [52, 121, 134].
In this manner, specific approaches can help improve 3D synthesis through geometri-
cally meaningful priors, leverage object generation for improving shape analysis tasks,
or devise hybrid frameworks that jointly address shape generation, correspondence, and
interpolation.
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A. MCMC - pseudo code
In Section 5 we already gave a rough description of our

MCMC initialization algorithm. Here, we provide a more
detailed pseudo code:

Algorithm 3. (MCMC)

1. Initialize τbest := 0,X∗best := X.

2. For i = 1, ..., Nprop:

2.1 Sample new proposal τprop ∼ N (0, I).

2.2 Compute the current alignment X∗prop by making
a surrogate run with the initial guess τprop.

2.3 Compute the acceptance probability α :=

exp

(
− 1

2σ2
match

(
E(X∗prop) − E(X∗best)

))
using

the energy E from Eq. (12).
2.4 Sample u ∼ Unif(0, 1) and either accept or re-

ject the new sample τprop ∈ RKinit×3:

(τbest,X
∗
best) :=
{

(τprop,X
∗
prop), u ≤ α (accept)

(τbest,X
∗
best), u > α (reject)

We usually set the number of surrogates to Nprop :=
100. In the majority of cases in our experiments this is more
than sufficient. Furthermore, we usually choose a small ob-
jective variance σ2

match := 0.001 to get a sharp distribution
and therefore more accurate samples τ .

Remarks One aspect of our method that we did not talk
about yet is how to compute a good initial rigid pose.
For most datasets in our experiments this is a requirement,
e.g. SHREC’19 [34] connectivity has random rigid poses
for all inputs. In theory, our MCMC algorithm can ac-
count for rigidly displaced inputs X and Y but in prac-
tice our Nprop = 100 surrogates are not enough for ex-
treme cases. Therefore, we initially apply another surrogate
based method that initializes with different rigid poses and
determines the best one according to the objective E from
Eq. (12). A thorough description of this is beyond the scope
of this paper, but all the details can be found in our imple-
mentation.

B. Proof of Theorem 1
Theorem 1 gives an upper bound on how much the ge-

ometry of our smooth shells can change between two states
K and K + 1. For spectral reconstruction, a projection on a
new eigenfunction is added in each iteration. Depending on
the magnitude of the new projection

(
φK+1 ⊗ φK+1

)
, this

can lead to arbitrarily high changes :

‖TK+1(X)−TK(X)‖L2 = ‖
(
φK+1⊗φK+1

)
X‖L2 . (14)

In comparison, Theorem 1 states that the change from
SK(X) to SK+1(X) can be bounded by choosing a small
upsampling variance σ.

Proof. We will proof the statement for scalar functions
X ∈ L2(X ). The extension to vector valued functions
L2(X ,R3) is trivial – we just need to apply the iden-
tity to each component at a time. Now let K > 0 and
σ > 0. For brevity we will denote the sigmoid weights with
sKk := 1

1+exp
(
σ(k−K)

) . Using the spectral decomposition

of operators, we can deduce:
∥∥SK+1(X)− SK(X)

∥∥2
L2 =

∞∑

k=1

∣∣(sK+1
k − sKk

)〈
φk, X

〉
L2

∣∣2 =

∞∑

k=1

∣∣
((
sKk
)−1 −

(
sK+1
k

)−1
)
sK+1
k sKk

〈
φk, X

〉
L2

∣∣2 =

∞∑

k=1

∣∣(1− e−σ) exp
(
σ(k −K)

)
sK+1
k sKk

〈
φk, X

〉
L2

∣∣2 ≤

∞∑

k=1

∣∣(1− e−σ)

(
1 + exp

(
σ(k −K)

))
sK+1
k sKk

〈
φk, X

〉
L2

∣∣2 =

∞∑

k=1

∣∣(1− e−σ)sK+1
k

〈
φk, X

〉
L2

∣∣2 =

∣∣(1− e−σ)
∣∣2∥∥SK+1(X)

∥∥2
L2 .

Taking the square root on both sides then yields the desired
identity.

Remarkably, this bound is independent of the index K.
Small eigenfunctions φk typically represent coarse struc-
tures like limbs. Therefore, in particular the first iterations
using spectral reconstruction lead to big changes in the ge-
ometry, see Eq. (14).

C. Runtime Analysis
We analyze the time complexity of our method in com-

parison to other popular matching methods in Figure 9. In
particular, we compare the runtime of the whole pipelines
for instances of the same pair of Michael shapes from the
TOSCA dataset that was remeshed to different resolutions
between 500 and 50k vertices.

D. Additional Qualitative Evaluations
We provide some additional qualitative evaluations and

comparisons of our pipeline in order to give the reader a
better understanding about the merits of our method, see
Figure 10. Additionally, we provide a failure case in Fig-
ure 11. Our method is deformation based with an as-
rigid-as-possible assumption. This means that in places of
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Figure 9: We compare the runtimes of our method with BCICP [42], Kernel matching [56] and Zoomout [35]. To this end,
we remesh the Michael shape from TOSCA to different resolutions, on the right side we display the pair for N = 1000.
Besides the runtime we also compare the matching accuracies of all methods. Here, our method is the most accurate one and
stable across resolutions, whereas our runtime is the second best after Zoomout.

(a)
Ours Zoomout BCICP

(b)
Ours KM BCICP Zoomout

(c)
(d) (e)

X Y X∗

Figure 10: Here, we show additional qualitative evaluations of our method. (a) and (b) are comparisons for a pair from
the SHREC’19 and the SCAPE dataset respectively. (a) is challenging due to an incompatible meshing, (b) has equivalent
meshing but is still susceptible to mismatches due to self-similarities (left-right: BCICP, front-back: KM, Zoomout). (c)
shows how our method can be used to smoothly transfer meshings for interclass pairs, here for a gorilla from TOSCA to
humans from FAUST. The maps are smooth in the sense that local structures are preserved and deformations only occur in
the form of uniform, global stretching of parts. I.e. the face still looks like a gorilla after deformation although the rest of the
body adapts to the human form. (d) shows a texture transfer from a template hand (right) to a scanned hand of a puppet (left).
The latter is a scan of a real world object from [14], obtained with the handheld Space Spider scanner from Artec. This is a
challenging example due to different resultions of the inputs, different small scale features and a different size of the residual
part at the bottom. (e) shows how our method can be applied to deform an object (red chair) and align it with a reference
shape (black chair) to create a new object. The deformed red chair X∗ has the global structure of Y and the fine scale details
of X .



X Y X∗ Y ∗

Figure 11: A failure case of our method for a pair of shapes
from TOPKIDS. If we align the the canonical pose X with
the reference Y we get a meaningful alignmentX∗ and high
quality correspondences. However, if we try to apply our
method the other way around, we get undesirable ”cheese
pull” effects at the left hand of the deformed kid Y ∗. The
reason for that is that in the pose Y the fingers touch the left
knee and the meshing connects. In order to avoid this effect,
we either need a mesh separation policy or use an interme-
diate template where the original topology is known. We
prefer the latter approach in our quantitative evaluations on
FAUST and TOPKIDS because finding a meaningful topo-
logical cut is a complicated problem on its own.

topological changes the meshing cannot be separated. Our
method still tries to align the shape as good as possible with
the reference which invariably leads to a ”cheese pull” ef-
fect. This is also the main reason why we use an intermedi-
ate template to match the FAUST and TOPKIDS shapes in
our quantitative evaluations.
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A Proof of Theorem 1

We now provide a proof of Theorem 1 which states that the quality of the
approximation of v(t+2) is improved by one error order when the extrapolation
step (11d) is added after the velocity update step.

Proof. If we remove the extrapolation step (11d) from Algorithm 1, Taylor’s
Theorem implies that v(t+1) yields an estimator of error order O(τ) for the
velocity in the next timestep v(t+2):

v(t+2) = v(t+1) +O(τ). (14)

The standard backward distance approximation provides an estimation of v̇(t+1):

v̇(t+1) =
v(t+1) − v(t)

τ
+O(τ). (15)

Combining this with a Taylor expansion of v(t+2) then yields the statement from
the Theorem:

v(t+2) =v(t+1) + τ v̇(t+1) +O(τ2) = v(t+1) + τ
v(t+1) − v(t)

τ
+O(τ2) = (16)

2v(t+1) − v(t) +O(τ2) = v̄(t+1) +O(τ2). (17)

B Runtime analysis

We compare the runtime of our method to other popular shape interpolation
methods based on our experiments on TOSCA in Figure 11. Only divergence-free
interpolation [19] is faster than our method. Most importantly, for our approach
and [19] the runtime is essentially independent of the resolution because the
optimization is done on a fixed resolution of 2k vertices. Only the last forward
pass on the whole input shape p ∈ Rn×3 depends on the resolution n but this
step is cheap in comparison to the optimization.
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Fig. 11. A runtime analysis of different interpolation methods on all pairs in TOSCA.
We plot the mean computation time (solid line) and two lines corresponding to one
standard deviation (dashed).
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C Additional qualitative evaluations

To give a more complete picture, we show additional examples of interpolations
with our method on the two datasets with reals scans, SHREC’19 Isometry and
FAUST in Figure 12 and Figure 13. Finally, we show a failure case under topo-
logical changes on a scanned hand from SHREC’19 in Figure 14. Although our
method is not able to separate the touching parts for these cases, our method
still produces a more plausible result than other classical interpolation meth-
ods. In our case, the fingers appear to be glued together whereas [28] produces
undesirable artifacts.

Fig. 12. Additional examples of interpolations with our method on SHREC’19.
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Fig. 13. Additional examples of interpolations with our method on FAUST.

Ours [32] [28]

Fig. 14. An example of a scanned hand from SHREC’19 Isometry [17] where we show
the second to last frame from our method, [28] and [32] respectively. In SHREC’19
there are various pairs with topological changes. In the case presented here, the meshing
connects between the index finger and the thumb. This makes our method fail because
the input matching from [20] is not able to separate the two fingers entirely.
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A Overview

In our experiments, we showed that our method outperforms prior approaches in terms of accuracy,
map smoothness, runtime, and the ability to generalize to unseen data. Here, we provide further
insights into the proposed architecture and additional qualitative results to give a more complete
picture of Deep Shells.

Sec. B presents an ablation study that assesses the role of the different components of our method. In
Sec. C we show additional qualitative comparisons. In Sec. D, we provide the cumulative matching
curves corresponding to the numbers in Table 1 of the main paper. Finally, in Sec. E, we give more
details on the extrinsic-intrinsic product space embedding inspired by smooth shells [4].

SHOT FMNet+OT Ours

Figure 1: A comparison of the quality of different local features. Here, we show the assignment error
averaged over the test set of FAUST remeshed. Besides being more accurate in general, our learned
features are in particular able to faithfully distinguish between extremities like hands and feet.
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Ours i. SHOT+OT ii. FMNet+OT iii. SpecConv+ZO iv. SpecConv+PMF
FAUST 1.7 4.6 2.0 3.8 6.6
SCAPE 2.5 7.8 4.0 4.4 8.8

Table 1: The results of our ablation study, see Appendix B for more details.

B Ablation study

Deep Shells is comprised of a spectral CNN backbone and a differentiable optimal transport matching
layer. Here, we want to assess how these different components contribute to our results in order to
get a better understanding of our method. To that end, we replace different parts of our pipeline
and report how it affects the geodesic error on FAUST [2] remeshed and SCAPE [1] remeshed, see
Table 1 for a summary of the resulting accuracies. In particular, we perform the following ablations:

i. Using SHOT descriptors [10] as inputs to our OT layer instead of learned features.
ii. Replace the spectral convolution backbone with the 7 layer ResNet architecture from FMNet

[6] and follow-up work [5, 9], train + evaluate this modified network from scratch.
iii. Postprocessing our deep features with Zoomout [7] ...
iv. ... and with PMF [11] instead of passing them to our OT matching layer.

Additionally, we compare the quality of our obtained features with SHOT (i) and FMNet+OT (ii). To
that end, we directly compute nearest-neighbor correspondences from the raw features and show the
average error on the first shape of the FAUST remeshed test set, see Figure 1. Finally, we explore
how the number of eigenfunctions used during inference time affects the accuracies on FAUST
remeshed reported in the main paper, see Fig. 2. On one hand, these results show that our method
still achieves state-of-the-art performance for as few as 100 eigenfunctions. Nevertheless, using more
high frequency information improves the results, in particular in terms of the local error, quantified
by the conformal distortion of individual triangles.

Overall, our ablation study suggests that there is an intricate interplay between our feature extractor
and the matching layer. The spectral convolution backbone quantifiably improves over the standard
FMNet architecture which computes features independently per vertex. On the other hand, the
OT matching layer proved to be an integral part of our pipeline: Even without the spectral CNN
backbone, our results are still on par with prior work and postprocessing our deep features with
different axiomatic methods impairs the results. Moreover, our OT layer yields the most regular
correspondences with the least amount of local distortions, see Figure 3 in the main paper.

C Additional qualitative examples

To give a more complete picture, we show additional qualitative comparisons: For once, we show
generalization results from FAUST to the KIDS [8] benchmark in Fig. 3. Although the local features
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Figure 2: The accuracy of our method using a varying numbers of eigenfunctions during inference
time. In particular, we compare the mean geodesic error in % of the shape diameter (left) and the
mean conformal distortion (right) averaged over all pairs of the test set of FAUST remeshed.
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Source FMNet∗ [6] GeoFMNet∗ [3] U. FMNet∗ [5] SurFMNet∗ [9] Ours

Figure 3: A qualitative comparison with other learning based methods for examples from the KIDS
[8] dataset. Methods with a star (∗) require postprocessing. For all approaches, we use the weights
trained on FAUST from the first column of Table 1 in the main paper.

of these two datasets are similar, KIDS has several poses with self-intersections which leads to noisy
SHOT descriptors. Among the methods considered here, only GeoFMNet [3] does not rely on SHOT
features as inputs but their point cloud feature extractor is not rotation-invariant. Consequently, it
does not generalize well from the shapes in FAUST with mostly standing humans to the examples
from KIDS which have a broader variety of poses. Moreover, in Figure 4, we present three more
FAUST to SCAPE pairs analogously to the results in Figure 2 of the main paper.

D Matching curves

Here, we provide the cumulative matching curves corresponding to our quantitative results from
Table 1 in the main paper, see Figure 5. These curves show the percentage of points below a certain
error threshold, the ground truth correspondences would lead to a constant curve at 1.

E More details on smooth shells

In Eq. (3) of the main paper, we defined the K + 6 dimensional shape embedding which is the basis
of our OT matching layer. Here, we provide additional details on this extrinsic-intrinsic embedding.
For further details, we refer the interested reader to [4].

The product space embedding Xk, defined in Eq. (3) of the paper, consists of three terms: The
intrinsic features Φk, the smoothed extrinsic coordinates Xk and the outer normals nXk of Xk. In
particular, the intrinsic features are the first k Laplace-Beltrami eigenfunctions on the surface X . The
smoothed extrinsic coordinates, on the other hand, are defined as follows:

Xk :=
∞∑

i=1

sσ(k − i)
〈
X,φi〉L2

φi. (1)

Here, X : X → R3 is the original extrinsic embedding function and sσ is the sigmoid function with
a rescaling of the inputs by a scalar σ > 0. These embeddings Xk : X → R3 now constitute a family
of approximations of the input geometry X where k controls the level of detail. For once, small
values of k yield a coarse approximation of X and on the other hand limk→∞Xk = X , see Figure 6.
This property is now useful for our hierarchical matching layer: We can start with an alignment of
coarse approximations of both input surfaces X and Y and then gradually increase the level of detail
in our alternating optimization scheme, see Figure 1 of the main paper.
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Source

Ours

U. FMNet+pmf [5]

SurFMNet+icp [9]

Figure 4: Additional qualitative comparisons corresponding to our inter-dataset experiments in the
last two columns of Table 1 in the main paper. In particular, we compute a texturemap from three
different FAUST shapes to target shapes from SCAPE and compare our results to [5] and [9].
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Figure 5: The cumulative geodesic error curves corresponding to the comparison in Table 1 in the
paper. The inter-dataset experiments in the last row are only feasible for unsupervised methods
because there are no ground-truth labels between FAUST and SCAPE.
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Figure 6: Examples of extrinsic shape approximations Xk for different levels of detail k.
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A. Our dataset G-S-H
In our experiments, we showed quantitative evaluations

on multiple benchmarks, including FAUST [2], FAUST
remeshed [44], MANO [46], SURREAL [56] and the
SHREC20 challenge [10]. These five, as well as many
more existing 3D shape datasets, can be roughly classified
in two classes: (i) Synthetic datasets with dense ground-
truth, near-isometries or a compatible meshing and (ii)
real datasets with non-isometric pairs and sparse annotated
ground-truth correspondences4. In many cases, for (i) the
objects are within the same class and therefore have a simi-
lar intrinsic geometry, but they undergo challenging, extrin-
sic deformations with large, non-rigid pose discrepancies.
For (ii), the topological proportions of a pair of objects can
be quite different, but the poses are less challenging than (i).

To address this disconnect between non-isometries and
large non-rigid deformations, in existing benchmarks we
create our own dataset, where the goal is to jointly address
all the challenges mentioned above: Our benchmark has
non-isometric pairs of objects from different classes, large-
scale non-rigid poses and dense annotated ground-truth cor-
respondences for evaluation.

A.1. The dataset

We created objects of 3 different classes for our dataset
with the tool ZBrush: A dog (Galgo), a cat (Sphynx) and
a human. In modeling these shapes, we took great care to
obtain generic but anatomically correct instances of these
distinct species, see Figure 9 for example shapes from all
three classes. We furthermore endowed all objects with a
UV-map parameterization, as well as a wireframe acting as
a deformation cage. Moreover, the range of motions of one
object is specified by a hierarchical set of joints that is con-
sistent for all objects in the dataset. We then animate the
different objects by specifying different configurations in
terms of deformation handles and applying the deformation
to the full shapes with a skinning technique. The UV pa-
rameterizations were defined in a way that they are consis-
tent across all considered classes, as a patchwork of smaller
components/regions of all objects.

A.2. Experiments

We performed a number of experiments on our new
benchmark. For evaluation, we select a number of ∼ 120
uniformly sampled keyframes for training and define 32
different poses as our test set. In the main paper, the
matching accuracy for our method, as well as other unsu-
pervised matching approaches are compared for this setup.
Specifically, we followed the same evaluation protocol that

4Of course not all existing benchmarks fall under one of these two cat-
egories. Some notable exceptions are datasets that specify on a certain
class of objects (like humans) [?, 2] or a specific type of input noise (like
partiality or topological changes) [45, ?]

we mentioned earlier in Section 4.1 for the results in Fig-
ure 4. Since we have dense ground-truth correspondences
that are consistent across all surfaces, we can also display
the mean geodesic error at each individual point of the ob-
jects. Specifically, we take the UV-map parameterization on
one pose of the ‘Galgo’ shape from our dataset and display
the mean matching error of all pairs in the test set. Fur-
thermore, we show qualitative examples of interpolations
obtained with our method in Figure 10.

B. Ablation study
We now provide an ablation study where we examine

how certain parts of our method contribute to our empirical
results. Specifically, we perform the following ablations:

(i) Remove the auxiliary correspondence loss `geo.

(ii) Train for correspondences directly without the interpo-
lator module from our architecture (see Figure 2). This
means that we only use `geo and ignore the other two
loss components.

(iii) Remove the max-pooling layers in Equation (4) from
our architecture.

(iv) Replace the EdgeConv layer in Equation (3) with a
standard PointNet [42] layer.

(v) Replace our feature extractor with KPConv5 [53].

We then report how these changes affect the geodesic er-
ror and the mean conformal distortion (interpolation error)
on FAUST remeshed, corresponding to the results in Table 1
and Figure 6. Specifically, we compare the results without
post-processing:

Geo. err. Conf. dist

Ours 2.3 0.10
(i) No `geo 13.0 0.13
(ii) No interp. 4.7 –
(iii) No maxpool 2.5 0.14
(iv) EdgeConv 10.6 0.25
(v) Use KPConv 4.2 0.28

Table 2: Ablations.

These experiments indicate that both the interpolator and
the feature extractor are crucial for obtaining high quality
results: Modifying technical details of our feature extrac-
tor leads to suboptimal results (iii)-(v). The difference is
particularly large when EdgeConv is replaced by PointNet

5KPConv is a state-of-the-art architecture for point cloud learning, but
its main emphasis is on tasks like object classification and segmentation.
It was, however, used in a matching pipeline before in prior work [9].



Figure 9: The G-S-H dataset. We show 3 examples each for the 3 classes in our G-S-H dataset. Note, that all 3 classes share
the same parameterization, despite the varying body proportions. In particular this means that we can obtain dense ground
truth correspondences between all pairs of shapes, which we indicate here with a texture map.

Figure 10: Interpolation on G-S-H. Two interpolation sequences on our own benchmark G-S-H obtained with NeuroMorph.
This shows clearly that, while our method contains interesting non-isometric pairs, the non-rigid pose variety is still signifi-
cant.

(iv). Similarly, without the interpolator module, the corre-
spondence estimation is less accurate (ii), since they are not
based on an explicit notion of extrinsic deformation. Fi-
nally, without the geodesic loss `geo, the matching accuracy
deteriorates significantly (i). This can be attributed to the
fact that, without a notion of intrinsic geometry, our method
is prone to run into unmeaningful local minima.

C. Additional qualitative examples
Finally, we show a few more qualitative results from the

SHREC20 benchmark. Specifically, we display examples
of non-isometric interpolations in Figure 11 and a qual-
itative comparison of correspondences obtained with our
method and smooth shells [13] in Figure 12.

D. Digital puppeteering

One interesting property of our method is that it is able
to learn geometrically plausible pose priors for any shape
X . Given any target pose Y , we generally obtain a mean-
ingful new pose of the input object X as the last pose of the
interpolation sequence t = 1. Consequently, by considering
a distribution of target poses Y , we automatically obtain a
shape space of admissible poses with the object identity X .
This allows for digital puppeteering as an application of our
method. To that end, we jointly train NeuroMorph for a
set of poses from the TOSCA dataset of animals and hu-
mans, as well as the SURREAL dataset which consists of
a large collection of SMPL shapes. As a proof of concept,



Figure 11: Interpolation on SHREC20. We show two additional examples of interpolation sequences obtained with our
method for pairs of shapes from the SHREC20 [10] dataset. For each input pair, our method acts on the pose of the first
input objects (left) while mostly preserving its identity. The elephant uses its trunk to imitate the shape of the giraffe’s head.
While this can be considered meaningful from a geometric perspective, it also reveals a limitation of our approach. The
fully unsupervised setup occasionally fails to find semantically exact correspondences, if the geometric features have a very
different appearance. Source Smooth Shells [13] Ours Ours + SL

Figure 12: Unsupervised correspondences on SHREC20. We show two more qualitative comparisons of correspondences
obtained with different methods on the SHREC20 benchmark.



Input X

Input X

Figure 13: Digital puppeteering. We train NeuroMorph jointly for a collection of animal and human (SMPL) shapes. In
that manner, we effectively learn a pose prior for the animal shapes which allows us to animate them according to a reference
sequence of SMPL shapes from DFAUST. See also our attached videos for the full, animated versions of the two sequences
shown here.

we then query our network for a time-continuous sequence
of SMPL shapes from the DFAUST dataset and animate the
sequence by replacing the human shape with different ani-
mals, see Figure 13 and also see our attached videos in the
supplementary material.

E. Additional quantitative comparisons
For the sake of completeness, we also provide quantita-

tive comparisons on the SHREC19 [?] benchmark, see Fig-
ure 14. Note that, like for FAUST, we again use the more re-
cent remeshed version of the dataset, first introduced in [9].
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A. Implementation details
A.1. Training details

In the following, we provide additional details on our
training protocol and choice of parameters. Throughout our
experiments, our model was trained on a single NVIDIA
Quadro RTX 8000 graphics card with 48GB VRAM.

Data preprocessing For a given shape collection S, we
apply a few data standardization steps to ensure training
stability. For each X (i), we normalize the scale of the shape
by setting the approximate geodesic diameter to a constant

value
√
area(X (i)) = 2

3
. The pose is further centered around

the origin by setting the mean vertex position to 0 ∈ R3. The
eigenvalues and eigenvectors required for our method are
precomputed prior to training our model. Otherwise, our
method is directly applicable to any collection of shapes that
fulfill the weak pose alignment as discussed in Section 3.1.

Training scheduling Our general training protocol is out-
lined in Section 3.4 and illustrated visually in Figure 2 of the
main paper.

In each forward pass, we first query the DiffusionNet
backbone Φfeat to obtain sets of local features F

(i) ∶=
Φfeat(X (i)) and F

(j) ∶= Φfeat(X (j)) for a pair of input
shapes X (i) and X (j). In the second step, the matching
module (Π(i,j)

,V
(i,j)

, ℓ
(i,j)
match) ∶= Φmatch(F(i)

,F
(j)) com-

putes a set of putative correspondences Π
(i,j), registered

vertices V(i,j) and the corresponding matching loss ℓ(i,j)match.
Finally, Equation (6) produces the multi-shape correspon-
dences Π

(i,j)
mult, which then allows us to compute the loss

ℓ
(i,j)
cyc through Equation (7).

As stated in Section 3.4, the shape graph G is updated reg-
ularly after a fixed number of epochs. This interval is chosen
in dependence of the number of training shapes as a round
figure that results in around 10k − 15k training iterations
per update. To reduce the computational load, the pairwise
correspondences between all pairs of training shapes Π(i,j)

mult

are precomputed and stored each time the shape graph is
constructed. Additionally, we wait for 5 shape graph update
cycles before activating the cycle-consistency loss. This
burn-in period allows the feature extractor and putative cor-
respondence modules to converge to a certain degree which
facilitates a stable training and reduces stochasticity.

Learning Our model is trained in an end-to-end manner
with the Adam optimizer [32], using standard parameters.
All the learnable weights are contained in the DiffusionNet
backbone I. The DeepShells pairwise matching module II
and multi-matching module III convert the learned features

into correspondences, but these maps themselves are fully
deterministic. The backward pass updates the Diffusion-
Net weights both in terms of the pairwise alignment loss
ℓ
(i,j)
match and the cycle-consistency loss ℓ

(i,j)
cyc . The former

stems from Equation (3) and the latter term is defined in
Equation (7). The cycle-consistent correspondences them-
selves Π

(i,j)
mult are obtained from non-differentiable opera-

tions, since they are the quantized outputs from DeepShells
concatenated via Dijkstra’s algorithm in Equation (6a). In-
stead, the gradients from ℓ

(i,j)
cyc pass information back to the

DeepShells layer II through the registrations V(i,j).
Hyperparameters We set the cycle-consistency loss
weight to λcyc = 0.5. The number of latent dimensions
of the DiffusionNet encodings is chosen as l = 128 and the
architecture comprises 4 consecutive DiffusionNet blocks.
For the DeepShells matching layer, we directly use the hy-
perparameters specified by the original publication and the
corresponding source code [21]. Specifically, the number
of eigenfunctions used to compute the smooth shell prod-
uct space poses (see Appendix A.2.2) is upsampled on a
log-scale between kmin = 6 and kmax = 21.

A.2. Architecture details

A.2.1 Feature backbone

Our network proposed in Section 3.2 leverages the recent
DiffusionNet [57] backbone for local feature extraction. We
outline the basic architecture of this module here and refer
to [57, Sec. 3] for further technical details.

The core motivation is to model feature propagation of
signals f(x, t) on the surface of a shape X (i) as heat diffu-
sion, governed by the standard heat equation

∂

∂t
f(x, t) = ∆f(x, t). (9)

In this context, ∆ is the intrinsic Laplace-Beltrami operator
on the surface X (i). In the discrete case, a common approxi-
mation is the cotangent Laplacian L ∶= −M−1

S ∈ Rm×m,
where M and S are the mass matrix and stiffness matrix,
respectively. We further consider the truncated basis of eigen-
functions Ψ ∈ Rm×k and corresponding diagonal matrix of
eigenvalues Λ ∈ Rk×k of the discretized Laplacian. For a
given signal f ∈ Rm on X (i), the heat propagation for a
time-interval t > 0 according to Equation (9) then results in
the approximate solution

Ht(f) ∶= Ψ exp(tΛ)Ψ†
f . (10)

For a given feature matrix F ∈ Rm×l, an individual opera-
tor Ht is applied separately to each channel with different
learnable time step weights t. A key benefit of such propa-
gation operators is that they are indifferent to the sampling



density and therefore robust to remeshing and local noise.
On the other hand, pure heat diffusion is spatially isotropic
and therefore not sufficiently expressive. To break radial
symmetry, DiffusionNet additionally leverages a gradient-
based feature refinement layer. At every point on the surface,
it computes inner products between spatial gradients of the
(scalar) feature signals on the tangent plane.

Putting everything together, an individual DiffusionNet
block takes a set of features F, propagates information both
via a spatial diffusion and a spatial gradient layer, and feeds
them to a per-point multilayer perceptron (MLP). The first
layer is initialized by the input features, defined as the vertex
coordinates V(i). For further technical details, we refer the
interested reader to the original publication [57].

A.2.2 Hierarchical pairwise matching

In Section 3.2, we further introduced our differentiable
matching layer Φmatch based on DeepShells [21]. The final
map is fully specified by Equation (3). In the following, we
provide additional technical details required to derive the
exact optimization steps and compute Φmatch in practice.

Following [21, Sec. 3], we first introduce the following
latent feature representation of a shape X (i) that is used
within each DeepShells layer

F
(k)
X (i) ∶= (Ψ(k)

, S
(k)(V(i)) , N(k)) ∈ Rm×(k+6) (11)

where Ψ
(k) are the first k eigenfunctions of the intrinsic

Laplace-Beltrami operator on X (i), corresponding to the
smallest eigenvalues. The operator S(k) is the smoothing
map initially proposed in [19, Eq. (8)]. The matrix N

(k)
denotes the outer normals of the (smoothed) input geometry.

Overall, the resulting feature tensor F(k)
X (i) yields a (k+6)-

dimensional embedding per vertex V
(i) ∈ Rm×3, depending

on the number of eigenfunctions k. In order to align two
shapes in this embedding space, an affine transformation is
proposed

F̂
(k)
X (i)(C(k)

, τ
(k)) ∶= (Ψ(k)

C
(k)†

, S
(k)(V(i))+

Ψ
(k)

τ
(k)

, N̂
(k)) ∈ Rm×(k+6)

, (12)

that deforms the input shape X (i) in the (k+6)-dimensional
embedding space. This deformation is parameterized with a
functional map C

(k) ∈ Rk×k [44] and displacement coeffi-
cients τ (k) ∈ Rk×3. The outer normals of the deformed pose
are denoted as N̂(k).

As we discussed in Section 3.2, the correspondence task
in our framework is fully specified by the optimal transport

energy Equation (2). To make the resulting update steps
differentiable, an additional entropy regularization term is
added to the energy

Ematch,reg(F,G; Π̃) = Ematch(F,G; Π̃)+
λent ∑

i′,j ′

Π̃i′,j ′ log Π̃i′,j ′ . (13)

This is a common approach that was initially proposed by
the seminal work of Cuturi et al. [13]. One compelling
implication is that Ematch,reg can be minimized efficiently
with respect to the transport plans Π̃ ∈ [0, 1]m×n through
Sinkhorn’s algorithm. Moreover, each individual update step
of this algorithm is differentiable which makes it viable for
standard gradient-based optimization. The resulting map
Φmatch is specified by the following alternating scheme of
optimization steps

(C(k)
, τ

(k)) ↦ argmin
Π̃

(k)∈
T (X (i)

,X (j))
Ematch,reg(F̂(k)

X (i) ,F(k)
X (j) ; Π̃(k)),

(14a)

Π̃
(k)

↦ argmin
C(k),τ (k) Ematch,reg(F̂(k)

X (i) ,F(k)
X (j) ; Π̃(k)),

(14b)

Through this scheme, the minimization of the energy
Ematch,reg is decoupled into two separate update steps, each
of which can be solved efficiently in closed form. The
first expression is minimized via Sinkhorn’s algorithm to
obtain an optimal transport plan Π̃

(k) from the transporta-
tion polytope T (X (i)

,X (j)). The second update results in
a standard linear least squares problem, see [21, Sec. 3]
for additional details. For the initial step, we replace the(k+6)-dimensional feature embeddings with the learned fea-
tures F(i) and F

(j) produced by the DiffusionNet backbone.
The map Φmatch then alternates between the minimization
steps Equation (14a) and Equation (14b) while increasing
the number of eigenfunctions k after each step. The final
outputs are defined as

Π
(i,j) ∶=argmin

Π
Ematch(F̂(kmax)

X (i) ,F
(kmax)
X (j) ; Π) (15a)

V
(i,j) ∶=V(i) +Ψ

(kmax)τ (kmax), (15b)

ℓ
(i,j)
match ∶=∑

k

Ematch(F̂(k)
X (i) ,F(k)

X (j) ; Π̃(k)). (15c)

The matches Π
(i,j) ∈ {0, 1}m×n, with Π

(i,j)
1n = 1m,

produced by Φmatch are thereby the outputs of the final
optimization layer kmax. In practice, they are obtained as the
hard nearest-neighbor assignment between the final obtained
shape embeddings F̂(kmax)

X (i) and F
(kmax)
X (j) .



(i) Full graph. (ii) MST graph. (iii) TSP graph. (iv) Star graph.

Figure 6. An overview of different shape graph topologies G. We consider graphs that are (i) fully connected, (ii) minimal spanning trees,
(iii) minimal Hamiltonian paths, specified by the traveling salesman problem and (iv) star graphs centered around one canonical pose. We
provide a detailed discussion in Appendix B. Unless stated otherwise, the full graph (i) is the default for our approach.

B. Shape graph topology
We explore the following classes of graph topologies for

the shape graph G, see also Figure 6 for a visualization:

i. Full graph. The default setting for our method is the
fully connected graph with the edge weights defined
in Equation (5).

ii. MST graph. We consider the minimal spanning tree
corresponding to the full graph G. This graph topology
is a minimal choice, in the sense that it has the smallest
total edge weight among all subgraphs of G that span
the set of nodes S.

iii. TSP graph. Based on the traveling salesman problem,
we predict a Hamiltonian path of minimal total edge
weight. This effectively defines an optimal ordering of
the input set S.

iv. Star graph. We define a complete, bipartite graph
which connects one specific center node with all N −
1 remaining nodes. The idea is to imitate template-
based shape matching methods such as [4, 23] where
all training poses are matched to a canonical shape.

Unless stated otherwise, we use the fully connected graph
(i) by default in our experiments in Section 4. Choosing the
number of retained edges is generally subject to a trade-off
between accuracy and efficiency. Using (i) all N(N−1)

2
edges

often yields the most accurate matching Π
(i,j)
mult, since this

leads to the shortest possible path lengths in Equation (6a).
Nevertheless, the sparse graph topologies (ii)-(iv) might be
preferable for specific applications. All three definitions
(ii)-(iv) specify variants of spanning trees with exactly N −1
edges. This means, that the memory complexity for storing

the graph, as well as the full query runtime cost is in O(N),
see Appendix C for a cost analysis. Thus, they are more
suitable for very large training sets or in scenarios where
computational resources are scarce. See Section 4.4 in the
main paper for an empirical comparison of the different
topologies (i)-(iv).

Discussion Each of the variants (ii)-(iv) has interesting
properties that might give rise to potential new avenues of
applications in future work: (ii) Removing the (k-1) largest
edges in the MST graph yields a subdivision of G into k op-
timal clusters (MST clustering). (iii) The TSP graph orders
the input shapes into a sequence, i.e., predicts a canonical
ordering. (iv) Choosing an optimal star graph automatically
selects one of the shapes in the collection S as the canoni-
cal pose. By comparing the set of all possible star graphs,
we can in principle rank all input poses in terms of how
representative they are of the underlying shape manifold.

C. Empirical computation cost

Training We empirically measure the computation cost of
our full pipeline. To this end, we choose a training set of{102, 202, 502, 1002} pairs from the SURREAL [61] dataset
with a fixed mesh resolution of 6890 vertices, which is com-
mon for SMPL [37] meshes. The resulting training runtime
and memory costs are summarized in Table 4. Averaged over
all samples, our model takes around ≈ 0.4s per training pair.
The majority of the cost for constructing the graph G results
from querying all sample pairs, which is equivalent to the
epoch training cost minus the backward pass. The remaining
cost stems from precomputing the concatenated, pairwise
matches as discussed in Appendix A.1.



#pairs = 10
2

20
2

50
2

100
2

Epoch training time (s) 37.85 ± 2.48 174.82 ± 8.31 921.23 ± 25.56 4192.91 ± 142.03
Graph construction (s) 36.04 ± 1.95 157.30 ± 7.04 893.23 ± 9.05 3814.96 ± 44.48

Required RAM (GB) 3.57 ± 0.02 3.96 ± 0.04 5.81 ± 0.28 9.02 ± 1.73

Table 4. Empirical training cost. We quantify the computation cost of our pipeline for different training set sizes. For a given number of
shapes N = ∣S∣, one epoch consists of #pairs = N

2 ∈ {102, . . . , 1002} optimization steps that each match a pair of shapesX (i)
,X (j) ∈ S .

#pairs = 10
2

20
2

50
2

100
2

Total query Full graph 41.00 ± 3.32 166.91 ± 9.54 1077.06 ± 28.35 4370.36 ± 115.00
time (s) MST graph 3.62 ± 0.29 8.10 ± 0.36 22.48 ± 0.90 50.98 ± 2.57

Graph storage Full graph 10.66 ± 0.00 42.64 ± 0.01 266.47 ± 0.08 1065.89 ± 0.33
(MB) MST graph 0.96 ± 0.00 2.03 ± 0.00 5.22 ± 0.00 10.55 ± 0.00

Table 5. Total query cost. We report the computation cost of our pipeline at test time. Note, that these results only apply to the specific
setting where all pairs of a given set of shapes are queried and the graph G is precomputed. Under these circumstances, the MST graph
proves to be superior as its computation cost increases linearly O(N) in the number of shapes N . For pairwise matching at test time, or
when the graph G needs to be extracted on the fly, the advantages of MST are less prominent.

# pairs=102 1002 10002

102

104

106

Figure 7. Total training time We compare the total training time
per epoch of our approach to Deep Shells [21] for different training
set sizes on the SURREAL [61] dataset.

Query time We additionally compare the required cost
for querying our model. Aside from our main pipeline, we
also consider the sparse ‘MST’ graph type introduced in Ap-
pendix B. The resulting costs are summarized in Table 5. For
a given set of query shapes, one has to distinguish whether
the graph G is precomputed or needs to be predicted on the
fly. In the latter case, an additional cost of constructing the
graph is added, see the second row of Table 4. Notably, this
cost does not depend on the test graph topology. This also
means that the main computational advantages of the MST
graph are less prevalent when no offline graph precomputa-

tion is possible, e.g., for a pair of unseen test poses. When
the unseen pose is supposed to be added to an existing graph
in an online fashing, only N pairs between the old training
set and the new pose need to be computed. This, however,
again entails the same cost for either the full graph or MST.
On the other hand, MST is much faster for precomputed
graphs. Also, the storage cost of the MST graph is always
more efficient than the dense ‘full’ setting. This makes
sparse graph topologies relevant when memory is limited or
for very large training sets, since the required memory of the
full graph grows quadratically O(N2) with the number of
training shapes N = ∣S∣.
Comparison to [21] We show a comparison of the to-
tal training time per epoch to the baseline approach Deep
Shells [21] in Figure 7. The runtime of our approach is
on par with [21], while leading to significantly more accu-
rate correspondences, see Table 1. The comparison further
demonstrates that, in practice, the training time of both ap-
proaches increases quadratically in the number of training
shapes. Thus, they feasibly scale to a large training set of
1000

2 training pairs from the SURREAL [61] dataset.

D. Qualitative results
For a more complete picture, we provide several ad-

ditional qualitative comparisons. Figure 8 and Figure 9
show results corresponding to the benchmark comparisons
from Section 4.2 and Section 4.3 of the main paper.



Target UDM [10] DS [21] NM [20] SyNoRiM [26] Ours

Figure 8. Topological noise qualitative. We compare the quality of the predicted correspondences on three pairs from TOPKIDS [33],
corresponding to the quantitative results from Figure 3. All three pairs are corrupted by topological noise in places of self-contact, e.g.,
where the child’s arms touch its upper body or head.



Target DS [21] NM [20] SyNoRiM [26] Ours

Figure 9. Inter-class texture transfers. We assess the map smoothness of several baseline approaches, in comparison to our proposed
method. The five sample pairs are taken from the SMAL [65] test set corresponding to our benchmark comparison in Figure 5. In each case,
the obtained matches are visualized via a texture map.
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vised shape correspondence with optimal transport. Advances in Neural infor-
mation processing systems, 33:10491–10502, 2020 (cited on pp. 6, 9–14, 145–147,
149).



188 Own Publications

[6] M. Eisenberger, A. Toker, L. Leal-Taixé, and D. Cremers. G-msm: unsupervised
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cian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 175–184, 2004 (cited on p. 17).

[119] M. D. Spivak. A comprehensive introduction to differential geometry. (No Title),
1999 (cited on p. 29).

[120] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. In Computer graphics forum, volume 28,
pages 1383–1392. Wiley Online Library, 2009 (cited on pp. 17, 24).

[121] R. Sundararaman, G. Pai, and M. Ovsjanikov. Implicit field supervision for ro-
bust non-rigid shape matching. In European Conference on Computer Vision,
pages 344–362. Springer, 2022 (cited on p. 149).

[122] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas.
Kpconv: flexible and deformable convolution for point clouds. In Proceedings
of the IEEE International Conference on Computer Vision, pages 6411–6420, 2019
(cited on p. 26).

[123] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms for local
surface description. In Proceedings of European Conference on Computer Vision
(ECCV), 16(9):356–369, 2010 (cited on pp. 24, 25).

[124] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape
correspondence. Computer Graphics Forum, 30(6):1681–1707, 2011 (cited on p. 4).



Bibliography 199

[125] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and C. Schmid.
Learning from synthetic humans. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 109–117, 2017 (cited on p. 147).

[126] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information pro-
cessing systems, 30, 2017 (cited on p. 31).
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