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I. INTRODUCTION 
 

Pancreatic cancer has one of the worst prognoses among all gastrointestinal tumor entities (Ilic and Ilic 

2016). The vast progress made in determining molecular mechanisms of pancreatic ductal 

adenocarcinoma (PDAC) has so far been unrewarding regarding the development of targeted therapies 

due to the high genetic, metabolic and structural heterogeneity of the disease. To this day, the search 

for meaningful biomarkers for human pancreatic ductal adenocarcinoma (PDAC) across all modalities 

is ongoing and has been unavailing (Costello, Greenhalf et al. 2012, Zhou, Xu et al. 2017, Zhang, 

Sanagapalli et al. 2018, O'Neill and Stoita 2021). Imaging biomarkers are well suited to represent the 

heterogeneity of PDAC, as they are able to better represent the whole extend of the disease. This is an 

advantage over molecular and histopathological evaluation of biopsy material that is derived of a 

single tumor sample. This work aims at expanding on the structural and metabolic properties of PDAC 

using a multimodal in-vivo imaging protocol (T2-weighted MRI, DWI, 1-13C-pyruvate MRSI, 18F-

FDG PET) that are validated by ex-vivo techniques (histology, immunohistochemistry, cytology, 

immunofluorescence) in different disease models. In order to structure this depiction, this work is 

divided into three parts, each of which may be read separately. 

In Part One (III.) a multimodal imaging platform (including T2-weighted MRI, DWI, 1-13C-pyruvate 

MRSI, and 18F-FDG-PET) for endogenous PDAC is established, and the results are correlated to ex-

vivo findings. In this part, questions regarding the biological meaning of metabolic imaging data are 

discussed. Furthermore, the role of MCT4 as a relevant structural and metabolic biomarker is 

ventilated.  

Part Two (IV.) focuses on the ties of morphometric and texture-derived determinants of PDAC 

samples and monocarboxylate transporter 4 (MCT4) expression. Thereby it is commenting on a 

connection of form and function in PDAC spanning multiple murine models (orthotopic and 

endogenous) and probes (cytology and immunohistochemistry (IHC)). 

Part Three (V.) evaluates the meaning of MCT4 tissue expression and its association to established 

tumor subtypes in human PDAC. Thereby, it seeks to clarify its standing in terms of diagnostic 

relevance as a biomarker for human PDAC and its suitability as a biological reference for 1-13C-

pyruvate MRSI. 

Finally, the Conclusion (VI.) critically evaluates the knowledge gain of these experiments and their 

contribution to future developments in imaging and characterization of PDAC. 
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Further additions to Parts One to Three as well as the acknowledgement of contributions may be found 

in the Appendix (IX.). 

II. BACKGROUND 
 

This chapter includes a depiction of pathophysiological features of PDAC, its subtypes, mouse models 

and imaging modalities. It provides a short overview on the basics and current literature in each 

chapter that are important to comprehend the experimental setup in the following experiments. 

 

1. PANCREATIC DUCTAL ADENOCARCINOMA (PDAC) 
 

The majority (80-90%) of pancreatic cancers are derived from epithelial tissue of pancreatic ducts and 

acini. It is widely acknowledged that human PDAC emerges from precursor lesions of exocrine 

pancreatic tissue (Gnoni, Licchetta et al. 2013, Goral 2015) that are classified as pancreatic 

intraepithelial neoplasia (PanIN) 1-3. These stages incorporate underlying genetic modifications as 

well as changes in the phenotype of the epithelium. Several well-known mutations (e.g. KRAS, p53, 

CDKN2, SMAD4) accumulate during tumorgenesis and in the following change the tissue’s 

morphology. KRAS is the most commonly altered oncogene in PDAC that is already present in early 

precursor lesions. Furthermore the presence or KRAS mutations is directly associated with grade of 

dysplasia (36% in PanIN-1a, 44% in PanIN-1b, 87% in PanIN 2-3) (Kanda, Matthaei et al. 2012). In 

addition, it has been shown in a KRASG12D-driven PDAC mouse model that its activity is essential for 

tumor maintenance (Ying, Kimmelman et al. 2012). KRAS generally increases glycolytic flux (Ying, 

Kimmelman et al. 2012) and is indispensible for the retention of tumor metabolism and growth. 

Moreover, 76% of human PDAC reveal mutated TP53 resulting in its loss of function (Rozenblum, 

Schutte et al. 1997). The normal role of TP53 is to prevent flawed DNA from replication and 

spreading by directing the affected cell towards cell cycle arrest or cellular apoptosis. Therefore, 

functionally impaired TP53 supports proliferation and growth of abnormal cells.  

Interestingly, this genetic predetermination of carcinogenesis yields highly heterogeneous tumors that 

pose large challenges to diagnostics and therapy. 
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2. THE ROLE OF GLUCOSE, LACTATE AND MONOCARBOXYLATE TRANSPROTERS 

IN PDAC 
 

Glucose is the dominant in vivo substrate for ATP synthesis (through glycolysis, TCA cycle and 

respiratory chain), anabolic pathways including DNA composition (through the pentose-phosphate 

pathway) and protein glycosylation (through the hexosamine biosynthesis pathway). All of these are 

altered during carcinogenesis and become essential for tumor cell survival. Compared to normal cells, 

proliferating tumor cells use proportionally more glucose to entertain biosynthesis (Lunt and Heiden 

2011). In murine models of PDAC, it has been shown that mutant KRAS directly promotes glucose 

uptake through an increased expression of GLUT1 and hexokinase as well as glucose flux into 

glycolysis, pentose-5-phosphate pathway and hexosamine biosynthetic pathway (Ying, Kimmelman et 

al. 2012). 

Under normoxic conditions, healthy tissue further oxidizes pyruvate, the end product of glycolysis, to 

acetyl-CoA, which then enters the mitochondrial TCA-cycle. As early as 1924, it has been recognized 

by Otto Warburg that tumor cells exhibit increased levels of anaerobic glycolysis with the generation 

of lactate even with sufficient supply of oxygen. An increased lactate production has also been 

confirmed for human PDAC further influenced by an hypoxic microenvironment (Feig, Gopinathan et 

al. 2012). This so called “Warburg-shift” is thought to have beneficial effects for the tumor cells 

regarding oxygen-independence of energy supply as well as biosynthetic capacities. It is based on an 

increased induction of lactate dehydrogenase A (LDHA) by a multitude of mutant oncogenes (Chang, 

Liu et al. 2022) as well as increased levels of other glycolytic enzymes and required transporters (such 

as MCT1 and MCT4) that export excessive lactate (Halestrap and Wilson 2012) out of the cell to 

prevent oxidative stress and stalling of the glycolytic flux. The role of increased levels of LDHA, 

MCTs and glycolytic capacity exceeds mere metabolic considerations as they influence invasiveness 

of cancer cells (Kong, Nøhr-Nielsen et al. 2016), their power to establish metastases according to the 

“seed” and “soil” theory (Lehuédé, Dupuy et al. 2016, Nimmakayala, Leon et al. 2021) as well as 

survival (Baek, Tse et al. 2014). 
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Fig.II-1: Illustration of altered glycolytic determinants – The illustration shows the effect of several 

factors (on the left) on parts of the glycolytic pathway including Glucose Transporter 1 (GLUT1), 

Hexokinase, lactate dehydrogenase A (LDHA) and monocarboxylate transporter 4 (MCT4) 

 

3. SUBTYPES OF PDAC 
 

Three transcriptional subtypes (classical, quasi-mesenchymal [i.e. squamous] and exocrine-like) of 

PDAC have been identified in cytology-derived and laser-microdissected transcriptome samples 

(Collisson, Sadanandam et al. 2011). The classical subtype shows high expression of genes mainly 

found in epithelial tissue for example adhesion-related proteins Cytokeratine CK7 and E-Cadherine. 

As the name suggests the quasi-mesenchymal subtype exhibited high expression of genes associated 

with mesenchyme, such as Vimentine and N-Cadherine (Collisson, Sadanandam et al. 2011). 

Furthermore, cell lines of the classical subtype showed high sensitivity to inhibitors of lipogenesis 

whereas cells from quasi-mesenchymal lesions showed high sensitivity to inhibitors of glycolysis. 

Additionally, they differed in their use of glutamine and glucose (Daemen, Peterson et al. 2015). From 

these findings the genetic and transcriptional classification in classical and quasi-mesenchymal 

subtypes has been expanded by metabolic classifications of lipogenic and glycolytic.  

Kalimuthu et al. demonstrated how morphologic growth patterns evaluated in PDAC histology are 

associated with transcriptional subtypes and overall survival. Non-gland forming lesions were 

correlated to worse survival and quasi-mesenchymal subtype (S, Wilson et al. 2020). This illustrates 

that observed and morphologically characterized patterns can be regarded results of genetic changes.  
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Furthermore, Heid et al. introduced a structural classification, assigning murine PDAC lesions into 

groups of PDAClow, PDACmed and PDAChigh depending on the amount of tumor cells and their 

clustering within the tissue in histopathological examination. They showed that these classifications 

correlate with in-vivo imaging findings of Diffusion-weighted MRI (DWI) (Heid, Steiger et al. 2017). 

More transcriptionally defined subtypes and different classifications have been presented and certainly 

are of high interest (Moffitt, Marayati et al. 2015, Bailey, Chang et al. 2016). Nevertheless, in this 

work I will focus on the two main subtypes classical epithelial and quasi-mesenchymal with their 

respective ties to metabolism and morphology. This is due to the shift in metabolism that is expected 

between those two distinct subgroups (the exocrine-like subtype will not be regarded in this work as 

its status as a distinct subtype is unclear) (Puleo, Nicolle et al. 2018).  

 

4. MOUSE MODELS 
 

Mouse models imitating human pathophysiology allow investigating pathophysiological processes. In 

this work, two different mouse models – one model with orthotopic implantation of characterized cell 

lines, the other a genetically engineered mouse model (GEMM) with endogenously grown 

heterogeneous lesions – were used. It will be discussed in further detail below in which way insights 

gained on murine PDAC in these models may be transferred to human PDAC.  

 

4.1 ORTHOTOPIC MOUSE MODEL OF PDAC 
 

Orthotopic mouse models of PDAC are implemented by surgically seeding tumor cells into pancreatic 

tissue of immunodeficient mice. Thereby the specific tumor microenvironment is thought to better 

mimic human disease than subcutaneous tumor models with a higher translational value of the results 

while maintaining experimental advantages such as controlled genetics and growth. It has been shown 

for pancreatic cancer that orthotopic growth of tumor cells in contrast to heterotopic transplantation or 

culture induces different genetic translation especially of genes involved in cell migration (Nakamura, 

Fidler et al. 2007). In addition, implantation site influence pathogenesis and even response to therapy 

(Erstad, Sojoodi et al. 2018). Nevertheless, translational meaningfulness for other models may be 

limited as the orthotopic model renders tumors with dense tumor cell growth and comparably low 

portions of desmoplastic stroma. This is further underlined by the understanding that tumor evolution 

and development is bound to host specific biology (Ben-David, Ha et al. 2017).  
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4.2 ENDOGENOUS MOUSE MODEL OF PDAC (GEMM) 
 

Endogenous models of PDAC are created by introducing targeted changes into the pancreatic genome. 

Unsuccessful attempts of generating endogenous models of PDAC with mere loss of tumor 

suppressors indicate that tumor suppressor gene loss is not alone able to initiate PDAC (Donehower, 

Harvey et al. 1992, Yang, Li et al. 2002). The development of PDAC is mainly dependant on changes 

in the proto-oncogene KRAS. Common changes in KRAS include a missense mutation in Codon 12. 

Development of a Lox-Stop-Lox(LSL)-KRASG12D allele (Jackson, Willis et al. 2001) then paved the 

way for reliable PanIn and PDAC models (Hingorani, Petricoin et al. 2003). The used mice express a 

ptf1a-promoter dependant CRE-Recombinase which then cuts the stop-codon placed in front of 

KRASG12D and initiates expression of mutant KRAS during pancreatic development. This ensures that 

these changes remain specific to the pancreatic tissue. 

Similar to human PDAC, mPDAC derived from GEMM is of predominantly glandular origin. It 

mimics clinical features such as cachexia, ascites and lethargy (Tuveson and Hingorani 2005). Tumors 

show ductal, cribriform or combined growth patterns. During tumor progression, ductal structure is 

lost and dense neoplastic growth patterns dominate. The histology observed is very similar to human 

PDAC (Heid, Steiger et al. 2017). 

 

5. IMAGING MODALITIES 
 

In this work, a multimodal imaging approach combining structural and metabolic imaging modalities 

was used. Therefore, this chapter aims at introducing relevant literature regarding these modalities in 

PDAC and relatable models. Further information about the signal measurements and their 

interpretation may be found in the Appendix (VII.2). 

Diffusion-weighted imaging (DWI) using multiple b-values, allows the calculation of apparent 

diffusion coefficient (ADC)-Maps depicting the water diffusivity of the tissue. Low ADC values 

indicate diffusion restriction as it can be imposed by e.g. increased cell density and/or loss of ductal 

structures. This has been shown in murine as well as human PDAC, where decreased ADC values of 

PDAC lesions correlated with increased tumor cellularity (Heid, Steiger et al. 2017, Jeon, Jang et al. 

2021, Zhu, Zhang et al. 2021) and worse disease-free survival (Jeon, Jang et al. 2021). Furthermore, it 

has been recognised that quantitative ADC maps enable the prediction immunohistochemical 

expression patterns of epithelial-to-mesenchymal transition in human PDAC potentially enabling 

patient stratification for targeted therapies (Mayer, Kraft et al. 2021).  
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Metabolic imaging is a promising tool to further enable non-invasive subtype stratification of PDAC. 

Magnetic resonance spectroscopic imaging (MRSI) enables the imaging of hyperpolarized 1-13C-

pyruvate accumulation and conversion in tumorous tissue. In breast cancer, it has been demonstrated 

that the ratio of area under the curve (AUC) of lactate and pyruvate (1-13C-lactate/1-13C-pyruvate) 

signals correlates with MCT1 and HIF1A expression (Gallagher, Woitek et al. 2020) and therapy 

response (Woitek, McLean et al. 2021). Furthermore, studies conducted in prostate cancer found ties 

between a high 1-13C-lactate-to-1-13C-pyruvate ratio, LDHA, MCT4 expression and tumor grade 

(Chen, Aggarwal et al. 2020). In murine PDAC hyperpolarized 1-13C-pyruvate MRSI has been used to 

detect malignant lesions (Dutta, Pando et al. 2020) and stratify them depending on their glycolytic 

metabolism and heterogeneity (Heid, Münch et al. 2022). First study performed on 2 patients confirms 

that this method is usable for PDAC(Stødkilde-Jørgensen, Laustsen et al. 2020). 

Other than 1-13-C-pyruvate MRSI, which enables dynamic imaging of enzymatic process downstream 

of glycolysis, 18F-FDG PET is used to detect glucose uptake and phosphorylation (“metabolic 

trapping”) in the tumor. Its methodology is further explained in the appendix. In pancreatic cancer, it 

has been used to reliably detect tumors (Serrano, Chaudhry et al. 2010) and stratify lesions (Hyun, 

Kim et al. 2016). Because of its limitation to solely detect glucose uptake a low specifity mainly 

regarding the differentiation of cancerous lesions and pancreatitis has been attributed to this modality 

(Wang, Yang et al. 2014).  

 

6. DIGITAL ANALYSIS OF EX-VIVO DIAGNOSTICS 
 

In this work H&E stained histology, immunohistochemistry and immunofluorescence stained cytology 

are analyzed and referenced to in-vivo imaging data. These ex-vivo diagnostics are analyzed from 

digital images to extract quantifiable features.  

Images of immunofluorescence (IF) with fluorescent-labeled antibodies are used to detect the 

expression of specific antigens. In this study, it is applied on cytology that was drawn from 

orthotopically and endogenously grown tumors. Indirect immunofluorescence works by incubating the 

cells with a primary antibody that binds a specific antigen. After that, a second fluorophore-labeled 

antibody is added that binds the first. This two-step process amplifies available signal and thereby 

increases sensitivity (Odell and Cook 2013). Using multiple antibodies that are only sensitive to their 

specific wavelength enable collocation of expression patterns and thereby effective biological 

characterization. Based on the technique of indirect immunofluorescence the signal is in close vicinity 

to the binding site. Furthermore, higher signal intensities correlate with higher expression of the 

antigen. Nevertheless, there is not a linear proportionality to signal intensities because of spatial 

overlapping effects and multiple antibody binding. That is why, data derived from images with this 
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technique display semi-quantitative ratios that are of high quality for comparison between groups but 

do not equal absolute measurements.  

DAPI (4’,6-diamidino-2-phenylindole dichloride) is a rather specific fluorescent probe for DNA 

attaching to the minor groves of Adenine and Thymine rich sequences (Kapuscinski 1995) and is 

consequently used to display nuclei in immunofluorescence cytology. DAPI images can be used to 

assess the number and shape of nuclei contained in an image. Also antibodies for E-Cadherin (a cell-

cell adhesion molecule – indicative of the epithelial subtype of PDAC), Vimentin (an intermediate 

filament protein – expressed in mesenchymal and migrating cells – indicative of the 

(quasi)mesenchymal subtype of PDAC)  and MCT4 were used.   

Comparable to the two-step process of indirect immunofluorescence, immunohistochemistry (IHC) is 

at its core based on an antigen specific binding of an antibody-reporter complex. Most commonly 

visualization is implemented using a reporter complex containing DAB (brown chromogen). 

Immunohistochemistry allows the detection of biomarkers in the context of their original tissue and 

consequently is very useful for describing spatial distribution and structural dependences of biomarker 

expression. Similarly to IF staining is more intense with multiple antibody binding events – however a 

linear proportionality is not given. 

Images from histology, IF and IHC are taken as images in the RGB color space (red, green, blue) 

using a microscopy camera and processed as grey value image matrices, where an intensity value (I) 

between 0 and 255 is assigned to each pixel. These image matrices allow complex calculations. A 

standard image analysis workflow contains the following steps: Reading the Image – preprocessing – 

segmentation – feature extraction and classification. For image analysis platforms such as MATLAB, 

Image J or packages such as Aperio’s Imagescope are used. For segmentation of a biological image – 

in this work – mainly thresholding-based techniques are used. Thresholding works by assigning a 

value of 1 to all pixels above a threshold (T) and 0 to all pixels below T. T can be a numeric value or - 

as the matrix definition of an image allows algebraic calculations - a ratio or sum. T can be determined 

manually or by performing calculations based on the image matrix values. Second order thresholding 

may derive a threshold not using image matrix values but classification results for determining a 

threshold (this is further illustrated in IV.2.3, Fig.IV-2, Fig.IV-3). Furthermore, T can be assigned 

generally or localized for portions of an image.  
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III. PART ONE: IMAGING METABOLISM OF ENDOGENOUS 

MURINE PDAC IDENTIFIES AUCLACTATE/AUCPYRUVATE AS 

A STABLE MULTIDIMENSIONAL PARAMETER 

DEPENDING ON CELLULAR METABOLISM, TUMOR CELL 

DENSITY AND PERFUSION 
 

1. INTRODUCTION 
 

Endogenous mPDAC derived from a GEMM including the mutation of KRAS and TP53 mimics the 

pathogenesis of human PDAC (Hingorani, Petricoin et al. 2003, Tuveson and Hingorani 2005). These 

tumors show a high similarity to human PDAC concerning morphology, growth patterns and subtypes 

(Heid, Steiger et al. 2017). Furthermore, they show distinct recruiting of desmoplastic stroma and 

complex patterns of angiogenesis (Heid, Münch et al. 2022) 

In this sub-study a multimodal imaging platform including structural (T2-weighted MRI, DWI) and 

metabolic (hyperpolarized 1-13C-pyruvate MRSI, 18F-FDG PET) modalities was established for 

endogenous mPDAC. Furthermore, the imaging results are referenced to corresponding histology, 

immunohistochemistry and cytology using a novel image analysis tool implemented in MATLAB. 

Additionally, the micro-structural and metabolic short-term stability of these tumors is evaluated using 

a longitudinal study protocol. 

The goal of this study is to shed light on the following questions: 

- In which way do such determinants as cellularity, stromal content and perfusion influence 

metabolic imaging in endogenous mPDAC? 

- Are MCT4 and GLUT1 relevant tissue biomarkers for tumor stratification in endogenous 

mPDAC? 

These questions were chosen in order to evaluate the multiparametric study protocol as a platform for 

future therapy trials. 
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Fig.III-1: Study design of Part One (III.) – the tumors of genetically engineered mice were imaged 

longitudinally using Diffusion-weighted imaging (DWI), Magnetic resonance spectroscopic imaging 

with hyperpolarized 1-13C-pyruvate and 18F-FDG PET. These in-vivo findings were validated using 

immunohistochemistry and cytology stained for markers of vascularization (CD31), of metabolism 

(MCT1, MCT4, GLUT1) and differentiation (E-Cadherin and Vimentin) 

 

2. MATERIALS & METHODS 
	

Chapter 2.1 reveals information about the tumor model and detailed information about the study 

collective. Chapter 2.2 describes the applied imaging. The Chapters 2.3 and 2.4 explain the 

methodology of ex-vivo referencing. Image data of these were analyzed using the Image Analysis 

Tool further described in the Appendix (see VII.4). 
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2.1 ANIMALS AND TUMOR MODEL 
 

 nmice nTumor regions 

DWI   

Endpoint 24 30 

Longitudinal 1h 2 2 

Longitudinal 24h 1 2 

Longitudinal 48h 10 17 

Longitudinal 72h 2 6 

Hyperpolarized 1-13C-pyruvate 

MRSI 

  

Endpoint 24 30 

Longitudinal 48h 5 7 
18F-FDG PET   

Endpoint 21 57 

Longitudinal 48h 2 3 

Cell lines 17 35 

IHC   

CD31 31 57 

MCT4 38 65 

MCT1 38 65 

GLUT1 36 63 

HIF-1-α 18 24 

IF (cytology)   

Vimentin 4 4 

E-Cadherin 4 4 

MCT4 4 4 

Table III-1: Study collective 

As genetic background mixed C57BL/6/S129 was used. Mice with the following alterations have been 

included in the experiments: 

(1) CRE-Recombinase under the Ptf1a promoter (ptf1awt/CRE = C) 

(2) Mutated KRAS with loxed STOP-Sequence (KRASwt/LSL-KRASG12D = K) 

(3) Loxed p53 (TP53fl/fl = P) 

(4) TGFaR (EGFR) overexpression (= T) 

The mice were held in ZPF-Klinikaustauschraum (Zentrum für Präklinische Forschung, Klinikum 

rechts der Isar der Technischen Universität München, Ismaningerstr. 22, 81675 München, Bau 557, 

Raum 1.11). The room accounts for all special needs of animal housing as it was specifically designed 

for that purpose. It grants access only to authorized personnel. It has a night/day rhythm of 12h and a 

smooth transition phase and possesses special ventilation and air-conditioning. 
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The hygiene status of the animals corresponds to an SPF status according to the recommendations of 

FELASA (Federation of European Laboratory Animal Science Associations) and is reassessed 

regularly with sentinel animals. 

The animals were kept in special single-aerated cages (Tecniplast-IVC). 3-5 mice live together in one 

cage with an area of 16x37cm2. The mice were fed ad libidum with autoclaved pellets (No. 1324SP, 

Fa. Altromin). The mice also received acidified (pH = 3-3.5) water ad libidum with a bottle exchange 

every week. Special granules (Select Fine, Ssniff) served as bedding and were changed twice a week. 

For nest-construction autoclaved cellulose was added. In each cage were two houses of red 

polycarbonate (Bioscape, Otterndorf). 

Animal care attendants checked the mice daily. Furthermore mice are weighed at age of 3 weeks and 8 

weeks, and then from the start of the experiment on were scored at least once per week. Scoring 

included weighing, visual inspection of subcutaneous fat, eyes, ears, hygiene and general behaviour of 

the animal alone and in the group. 

All animals were identified by ear markings that were punched during deep narcosis. 

 

2.2 IMAGING 
	

In order to perform imaging, the mice were anesthetized by continuous gaseous infusion of isoflurane 

(Abbott, Illinois) using a veterinary anaesthesia system (Vapor 2000, Drägerwerk AG&Co. KGaA, 

Lübeck, Germany). Anaesthesia was introduced with 5% and sustained with 2% gaseous infusion of 

isoflurane with 1.5-2 L Oxygene. During anaesthesia, the temperature of the mice was monitored. To 

prevent hypothermia, mice were placed on to a heating mat. During imaging a special heater ensured 

stable temperatures of the animals. 

The protocol includes weighing of mouse, glucose measurements before and after the scan, continuous 

temperature and breathing measurements and adaptation of isoflurane concentrations during the 

imaging. The animal’s eyes were protected through application of eye ointment. Before the imaging 

mice were laid in prone position.  

Special positioning was necessary to yield imaging with little noise and enable transport from the PET 

facility to the 7T preclinical MRI scanner. Mice were laid into a mouse bed with the attached 

isoflurane tube, thermometer, breathing patch and 13C-urea phantom (see Fig. III-2). For transport this 

mouse bed could be placed into a special transport tube, flooded with isoflurane, which allowed 

transport and direct insertion into the MRI scanner, minimizing movement of the abdominal region of 

the mouse. Thereby PET could be correlated to T2-weighted imaging data. 
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Fig.III-2: Mouse setup illustration showing (A) isoflurane 2% (B) abdominal tumor mass (C) 1-13C-

urea phantom (D) desired imaging slice and (E) breathing patch connected to monitor (F) 

thermometer connected to monitor. 

 

MRI experiments were performed at 7T MRT (BioSpec) by Bruker (Billerica, MA) located in the 

department of nuclear medicine of Klinikum rechts der Isar (Munich, Germany) using a small 1H/13C 

volume receiver coil (31mm ID) by RAPID Biomedical GmbH (Rimpar, Germany). 

Axial T2-weighted (T2w) TSE was performed for tumor detection and detailed planning of Diffusion-

weighted (DWI) and hyperpolarized 1-13C-pyruvate MRSI. All parameters for this and following 

sequences are summarized in the Table III-2.  

DWI was performed during free breathing with low breathing frequencies of 30-50 min-1 and 

temperatures above 37°C. ADC-Maps were calculated using MATLAB (R2018b) by MathWorks, Inc. 

(Natick, MA). Further Analysis of the before calculated ADC Maps was performed using HOROS.  

To achieve signal enhancement of hyperpolarized 1-13C-pyruvate in solution for 1-13C-pyruvate MRSI 

experiments a HyperSense Dynamic Nuclear Polarizer by Oxford Instruments (Abingdon, England) 

was used. The 1-13C-pyruvate-sample consists of 1-13C-pyruvate, Dotarem and a stable radical by 

Sigma Aldrich (St. Louis, MO). 1-13C-pyruvate MRSI was performed with low breathing frequencies 

of 30-50 min-1 and temperatures above 37°C. Dynamic scans were performed with measuring 

timepoints of 5s-6s and a Flip Angle of 5°. Reference Power was calibrated every time (0.275-

0.325W) using a 13C-urea phantom, which was placed in line with the abdominal tumor mass. The 

scans were analyzed using MATLAB (R2018b) by MathWorks, Inc. (Natick, MA) and a previously 

published methodology (Hill, Orton et al. 2013). 
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 T2-weighted MRI 

technical data 

(Scout/Planning) 

DWI technical data 1-13C-pyruvate MRSI 

technical data 

Resolution [mm2] 0.250x0.250 / 

0.133x0.133 

0.250x0.250  3x3 

Number of slices 35/9-15 9-15 1 

Slice thickness 

[mm] 

1/1 1 3 

TE [ms] 48/48 38.59 1.101 

TR [s] 4/4 5 44.643 

Averages 2/4 1 1 

Repetitions 1/1 10 42 

Bandwidth [Hz]  1*105 2000 

Flip Angle [°] 90/90 90 5 

b-values [s/mm2] - 12.37; 112.78; 215.04; 

316.77; 418.24; 519.52; 

620.69; 721.76; 822.75; 

1024.58; 1226.22; 

1528.45 

- 

Table III-2: Technical data of MRI imaging experiments 

PET measurements were performed on Inveon PET-CT by Siemens (Munich, Germany) located in the 

department of nuclear medicine of Klinikum rechts der Isar (Munich, Germany). The injected tracer 

had an activity of 10-13 MBq.  Static PET was performed with breathing frequencies of 30-40 min-1 

and temperatures above 35° for 15 minutes after 45 min of uptake in sleep. Mice were starved for 1h 

prior imaging. Data was reconstructed using the OSEM 3D algorithm. Sybille Reder and Markus 

Mittelhäuser performed the PET experiments.  

Regions of interest (ROI) were drawn manually on delineable tumor regions. ROI size ranged from 2 

to 30 mm2 and no correlation was noted between size of ROI and PDAC group. All ROIs were 

manually defined based on visible tumor borders and quality of imaging data. Histologically 

confirmed areas of necrosis or tumor areas influenced by partial volume effects were excluded from 

all imaging analyses. Imaging and corresponding histology ROIs were correlated slice based for every 
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tumor region. In animals with several slices of the same tumor subtype, the central tumor slice was 

chosen.  

The study for the longitudinal sample was implemented as depicted in Fig.III-3. After 48 hours the 

second imaging was performed including 18F-FDG PET. After the imaging dissection of the mice and 

sampling of the tumors was performed. In some cases longitudinal imaging was performed in a 24h to 

72h time frame, the protocol was implemented identically; data is represented accordingly. 

 

Fig.III-3: Schedule of longitudinal study protocol 

	

2.3 IMMUNOHISTOCHEMISTRY  
 

Murine PDAC tissue samples were fixed in 4% PFA/PBS solution, dehydrated and paraffin-embedded 

(FFPE) according to the standard pathology core conditions of Technical University of Munich. FFPE 

slices of 2-4 µm were stained with Mayer’s haemalaun and eosin (H&E), according to a standard 

protocol for tissue visualization. 

For immunohistochemical (IHC) stainings slides were sent to the Pathology department of the 

Technical University of Munich and stained in the laboratory of PD Dr. Katja Steiger. FFPE slices 

were pretreated 30 min with citrate buffer pH=6.0 and stained with antibodies against GLUT1 (rabbit, 

ab 115730, 1:750, Abcam, USA), MCT1 (rabbit, ab 85021, 1:1500, Abcam, USA) and MCT4 (rabbit, 

sc-50329, 1:150 for mPDAC, mouse sc-376140 1:150 for hPDAC, Santa Cruz Biotechnologies, USA) 

on a Bond RXm system (Leica Biosystems, Wetzlar, Germany). Antibody binding was detected using 

DAB as chromogen after pre-incubation with respectively Bond Polymer Refine Detection Kit 

(Leica). Nuclei were counterstained with haemalaun. All slides were digitalized using Aperio Scanner 
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(Leica). Analysis of IHC intensity was carried out using Aperio Image viewer (Leica), Aperio positive 

pixel count algorithm (Version 9) and our new in-house IAT (see VII.4). ROIs for analysis were 

drawn after co-registration with imaging data and identification of respective regions on the histologic 

slides as demonstrated in Fig.V-3 (Average ROI size ± SD [mm2] = 11 ± 6). A Color Saturation 

Thresholding (CST) method was used for all slides of each staining (CSTGLUT1 = 0.20, CSTMCT4 = 

0.17, CSTMCT1 = 0.10) where signals above CST were counted. Final values were normalized to the 

area ((Npixels>CST /Npixels)×100 =  stained area [%]). 

 

Fig.III-4: Imaging data and corresponding histology (A) T2-weighted planning scan (B) From left to 

right H.E., MCT4, GLUT1 stained histology (C) From left to right - DWI, 1-13C-pyruvate MRSI, 18F-

FDG PET 

 

2.4 CYTOLOGY 
 

Primary pancreatic tumor cells were isolated from 4 tumors after the endpoint imaging, by studious 

cutout of the tumor tissue and culturing of it under standard conditions. The isolated murine PDAC 

cells were cultured in high glucose Dulbecco’s Modified Eagle Medium (DMEM, Thermo Fisher 

Scientific, Waltham, USA) supplemented with 10% fetal bovine serum (FBS, Thermo Fisher 

Scientific, Waltham, USA) and 1% Penicillin/Streptomycin (P/S, Thermo Fisher Scientific, Waltham, 

USA). For immunofluorescence (IF) staining, cells were cultured in DMEM supplemented with 5mM 

D-glucose (Thermo Fisher Scientific, Waltham, USA), 2 mM L-glutamine (Sigma-Aldrich, St. Louis, 

USA) and 5% FBS for 48h prior experiments.  

For immunofluorescence (IF) staining, cells were washed and fixed for 10 min at RT using 4% PFA, 

treated with 0.15% glycine for 5 min, permeabilized with 0.2% Triton-X 100 in PBS. After washing, 

cells were blocked for 1.5 h in 10% donkey serum and 0.1% BSA diluted in PBS. The primary 

antibodies were incubated overnight at 4°C in 0.1% BSA diluted in PBS Anti-CDH1 (1:200, AF748, 
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R&D Systems), Anti-Vimentin (1:50, MAB2105, R&D Systems), Anti-MCT4 (1:100, rabbit, sc-

50329, Santa Cruz Biotechnology). After washing, the secondary antibodies were incubated for 2.5 h 

at RT in the dark (donkey anti-goat AF488, donkey anti-rat AF594, donkey anti-rat AF680, 1:250, 

Invitrogen). Thereafter, cells were treated for 2 min with DAPI, washed and mounted. Slides were 

kept at 4°C until further analysis using the Leica TCS SP8 Confocal Microscope (Leica). The 

immunofluorescence staining was performed by Katja Peschke. Analysis of immunofluorescence 

intensity was carried out on six randomly selected images of each cell line (on average including 117 

± 71 cells) using our in-house script for MATLAB (R2018b) by MathWorks, Inc. (Natick, MA). 

Signal intensities of Vimentin, E-Cadherin and MCT4 stainings were referenced to DAPI signal 

intensity. Cell count was determined via threshold segmentation (see IV.2.3, Fig.IV-2, Fig.IV-3).  

 

2.5 STATISTICAL METHODS 
 

Statistical analysis was performed in GraphPad Prism (version 7 and 8, GraphPad Software Inc., San 

Diego, CA). For all statistical tests, a level of significance of 5% was used. A two-sided Student’s t-

test was performed for group comparisons of normally distributed quantities. All datasets with sample 

size below 10 were considered normally distributed. The strength of association between quantitative 

measures was assessed by Pearson's (r, normally distributed data) correlation coefficient. Data 

presented as mean values including standard deviation or 95% confidence interval (95%-CI).  

 

3. RESULTS 
 

The presentation of results is structured in order to answer the following questions: 

- In which way do determinants such as cellularity, stroma and perfusion influence metabolic 

imaging in endogenous mPDAC? (see III.3.1 – III.3.3) 

- Are MCT4 and GLUT1 relevant markers for tumor stratification in endogenous mPDAC? (see 

III.3.3) 

In order to contemplate these questions, the results are discussed further in chapter 4 (Discussion). 
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3.1 MULTIPARAMETRIC ENDPOINT IMAGING OF ENDOGENOUS MPDAC 
 

Diffusion-weighted imaging displayed tumors with heterogeneous diffusion restriction and was 

capable of predicting tumor cellularity accurately (Mean ADC PDAClow = 1601 ± 53, Mean ADC 

PDAChigh = 1306 ± 93, p < 0.001, see Fig.III-5 B). The AUCl/AUCp correlated significantly with these 

subgroups (Mean AUCl/AUCp PDAClow = 0.491 ± 0.120, Mean AUCl/AUCp PDAChigh = 0.798 ± 

0.3365, p = 0.010, see Fig.III-5 C). However this could not be seen in the metabolic data derived from 

PET (Mean SUVmean PDAClow = 1.930 ± 0.731, Mean SUVmean PDAChigh = 2.090 ± 0.576, p = 0.373, 

see Fig.III-5 D).  

 

 

Fig.III-5: Endpoint Imaging: (A) Tumors with low (PDAClow) and high cellularity (PDAChigh) with 

H.E. stained histology (left) and corresponding ADC-Map (right) (B) ADC in relation to tumor 

cellularity (C) AUCl/AUCp in relation to tumor cellularity (D) SUVmean in relation to tumor cellularity 

 

The two subgroups differed in the suggestive inflow/perfusion marker 1-13C-pyruvate maximum 

signal intensity (Mean pyruvate-peak-intensity PDAClow = 14714 ± 6712, Mean pyruvate-peak-

intensity PDAChigh = 8688 ± 4578, p = 0.0374) with highly cellular tumors displaying lower 1-13C-
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pyruvate signal intensities. However, no association between CD31 staining and PDAClow and 

PDAChigh was observed (CD31 PDAClow = 8.35 ± 2.24, CD31 PDAChigh = 7.02 ± 2.52, p = 0.503).  

Correlating the ADC with the AUCl/AUCp, outliers were identified. Five tumors showed a higher 

AUCl/AUCp (“overperformers”) and 5 tumors showed a lower AUCl/AUCp (“underperformers”) than 

the main trend observed in other tumors and their respective ADC value (defined by the 95%CI in 

highly cellular tumors, see Fig.III-6 A). Among the group of underperformers are two tumors that 

showed mucinous differentiation whereas growth patterns in the overperforming group were mainly 

dense cellular growth. Furthermore, we could observe a marked trend that tumors of the 

overperforming group showed lower pyruvate AUC (Mean AUCp Underperformer = 36121 ± 9506, 

Mean AUCp Overperformer = 20070 ± 12336, p = 0.073) and higher areal MCT4 expression (Mean 

MCT4 Underperformer = 6.33 ± 3.39, Mean MCT4 Overperformer = 13.25 ± 5.49, p = 0.165, see 

Fig.III-6 B) and areal GLUT1 expression (Mean GLUT1 Underperformer = 13.33 ± 11.8, Mean 

GLUT1 Overperformer = 29.50 ± 8.29, p = 0.132, see Fig.III-6 C).  

 

Fig.III-6: Decoupling cellularity from metabolic imaging results (A) Correlation of ADC and 

respective AUCl/AUCp (B) Areal MCT4 expression in Over- and Underperformers (C) Areal GLUT1 

expression in Over- and Underperformers 

 

3.2 IMMUNOHISTOCHEMICAL BIOMARKER EXPRESSION OF ENDOGENOUS MPDAC 
REFERENCED WITH ENDPOINT IMAGING 

 

As described in 3.1 no significant connection between tumor cellularity and vascular tissue biomarker 

CD31 expression was found. Furthermore, there was no distinct coherent pattern of vessel distribution 

observed that could be assigned to cellularity or tumor subtype.  
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Fig.III-7: Immunohistochemical expression of metabolically relevant biomarkers in endogenous 

mPDAC (A) AUCl/AUCp in tumors with low (MCT4low) and high (MCT4high) MCT4 expression (B) 

SUVmean of 18F-FDG in tumors with low (GLUT1low) and high (GLUT1high) GLUT1 expression (C) 

Correlation of areal GLUT1 and MCT4 expression 

 

The areal expression of MCT4 (r = 0.727, 95%-CI = 0.458 - 0.874, p < 0.001) as well as the areal 

expression of GLUT1 (r = 0.621, 95%-CI = 0.246 -0.834, p = 0.004) were correlated to the 

AUCl/AUCp. Thereby the AUCl/AUCp is reliable in differentiating the two phenotypes MCT4low and 

MCT4high (Mean AUCl/AUCp MCT4low = 0.538 ± 0.111, Mean AUCl/AUCp MCT4high = 0.863 ± 

0.349, p = 0.006, see Fig.III-7). These mimic the metabolic phenotype found in epithelial and 

mesenchymal cell lines in the orthotopic model. Furthermore, the expression of GLUT1 and MCT4 is 

linked quantitatively in the whole tumor (r = 0.833, 95%-CI = 0.736 – 0.897, p < 0.001, see Fig.III-7 

C) as well as in its intratumoral distribution (see Fig.III-8 A). Interestingly, MCT4 expression was not 

exclusively observed in tumor cells but also in stroma cells (see Fig.III-8 B). Stromal expression levels 

of MCT4 were not directly connected to tumor cell expression. Some tumors were observed in which 

the mainly ductal tumors cells were MCT4 negative and stromal expression of MCT4 was present, 

mainly surrounding the ductal structures. Furthermore, also tumors with high tumor cell expression of 

MCT4 were found in which stroma was classified as MCT4 negative. These circumstances seemed to 

have no relevant influence on AUCl/AUCp as stromal positive tumors were distributed amongst 

MCT4low and MCT4high equally, with low and high production of lactate in the hyperpolarized 1-13C-

pyruvate MRSI. Additionally, areal MCT4 expression was linked to diffusion restriction measured 

with the ADC (r = -0.615; 95%-CI: -0.816 to -0.282; p= 0.001) indicative of tumor cellularity. 
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Fig.III-8: Intratumoral distribution and stromal expression of GLUT1 and MCT4 (A) Intratumoral 

distribution of GLUT1 (right) and MCT4 (left) expression (B) Exemplary image of stromal MCT4 

expression (grey scale bar = 100µm) 

As observed in chapter 3.1 outliers have been identified: Tumors with rather low cellularity and high 

AUCl/AUCp (titled “overperformers”) and tumors with a relatively high ADC for their comparably 

low AUCl/AUCp (titled “underperformers”).  

Interestingly, PET derived parameters such as SUVmean (but also SUVmax, Tumor/Liver, Tumor/Muscle 

and Tumor/Kidney) showed no correlation with areal expression of GLUT1 (r = 0.108, 95%-CI = -

0.233 – 0.426, p = 0.5354). 

Referencing metabolic data quantitatively with information on tumor cellularity via ADC or apparent 

tumor perfusion via hyperpolarized 1-13C-pyruvate signal intensities or 1-13C-pyruvate time-to-peak 

did not yield better representation of metabolic tissue markers (MCT4 and GLUT1). Moreover, an 

association of MCT1 expression and CD31 was not observed in this tumor model. 

 

3.3 IMMUNOFLUORESCENCE CYTOLOGY DERIVED FROM ENDOGENOUS MPDAC  
 

Four cell lines from the endogenous tumors were established and stained for their E-Cadherin, 

Vimentin and MCT4 expression. These four cell lines were not chosen at random; but from each 

subgroup (PDAClow and PDAChigh) two cell lines were selected that showed vastly different behavior 

in metabolic imaging (see Fig.III-9 A). Conclusively, one cell line from PDAClow showing little 

AUCl/AUCp and one cell line showing high AUCl/AUCp were chosen. The same was repeated for 

PDAChigh tumors. In culture these cells showed a similar metabolic behavior as their primaries. Cell 

lines with comparably high AUCl/AUCp also displayed high MCT4 and Vimentin expression (see 

Fig.III-9 D-F). MCT4 and Vimentin correlated very well in all analyzed cell cultures (r = 0.817; 95%-

CI: 0.644 to 0.911; p < 0.001). Interestingly, the cell lines of high Vimentin and MCT4 expression 

also showed higher E-Cadherin expression (see Fig.III-9 D-F). Cells from tumors that had higher 
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AUCl/AUCp ratios than their subtype counterpart also exhibited higher Vimentin (Mean 

Vimentin/DAPI: 3.580 and 3.049 vs. 1.911 and 1.799) and MCT4 expression (Mean MCT4/DAPI: 

6.770 and 4.722 vs. 4.230 and 3.505). 

 

Fig.III-9: Expression patterns of cytology derived from endogenous mPDAC (A) Explanatory plot of 

the origin/primaries of the cell lines (B/C) Respective biomarker expression (upper left = DAPI, upper 

right = Vimentin, lower left = E-Cadherin, lower right = MCT4) of (B) cell line I (C) cell line IV (D) 

Vimentin expression in I-IV (E) E-Cadherin expression in I-IV (F) MCT4 expression in I-IV 

 

4. DISCUSSION 
 

In this part a multimodal imaging protocol – including structural and metabolic imaging – was 

established and proven to be useful for the longitudinal tumor characterization.  

Vast intra- and intertumoral heterogeneity was observed using different methods: DWI revealed 

significant microstructural differences and exhibited a wide range of detected ADC values observed in 

mPDAC. These findings obtained on the 7T Scanner with a substantially higher amount of b-values (3 

at 1.5T and 15 at 7T) correlate well to our previous studies in endogenous mPDAC and confirm the 
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comparability of methods (Trajkovic-Arsic, Heid et al. 2017). Hyperpolarized 1-13C-pyruvate MRSI 

revealed differing metabolic patterns ranging from low to very high lactate production and revealed an 

association to tumor cellularity. Similarly, also 18F-FDG PET showed very heterogeneous metabolic 

inclines of the observed tumors. The high intra- and intertumoral heterogeneity was confirmed by 

histology, IHC and IF cytology. The mere existence of this vast diversity in tumors stemming from a 

GEMM is supportive of the similarities between the endogenous mPDAC model and human PDAC 

where heterogeneity is one of the main defining properties (Daemen, Peterson et al. 2015, Bailey, 

Chang et al. 2016). This supports a high translational value of this study and used model. 

The strong association between ADC values and cellularity in PDAC was already reported in literature 

for this model (Heid, Steiger et al. 2017). The hypothesis behind it – dense cellular growth hindering 

free isotropic diffusion – is further supported by the observation that the intracellular compartment 

that does only marginally contribute to the ADC12-1528 is proportionally more distinctive in more 

cellular tumors. Also the AUCl/AUCp is correlated to cellularity with highly cellular tumors showing 

more lactate production. This is consistent with observations made in related tumor entities and 

modalities (Hundshammer, Braeuer et al. 2018, Gallagher, Woitek et al. 2020). It is consistent with the 

hypothesis that increasing metabolic dysregulation and hypoxic conditions progress with tumor 

development – as cellularity does (see VII.5.3, Fig.VII-11) – and both are highly interconnected. As 

the signal of hyperpolarized 1-13C-pyruvate decays with the T1, it can only service fast measurements 

that are then dependent on perfusion within these two minutes. This is further supported by the 

observation that highly cellular tumors showed lower signal intensities of 1-13C-pyruvate indicating 

lower perfusion. The missing confirmation of this in CD31 stained histology can have various reasons: 

First, the tissue was not perfusion fixed – therefore, exact interpretation of vessel sizes is not possible. 

Secondly, the CD31 positive pixel count is assumed as a proportional parameter to vessel size but as 

the area of a round vessel is calculated by the squared radius of it, small vessels – which are more 

often observed in parts of the tumor with ongoing active angiogenesis – can have a disproportionally 

high influence on the CD31 PPC.  

As the tie between cellularity and AUCl/AUCp is intriguing, the Over- and Underperformers (see 

III.3.1, Fig.III-6) were identified. Compared to their respective ADC, they had AUCl/AUCp values that 

could not be explained merely by their cellularity. Therefore, either metabolism or perfusion could be 

a major influencing factor. That these tumors indeed differ in their metabolic phenotype was supported 

by different MCT4 expression patterns; the Overperformers also showed higher MCT4 expression. 

However, it is to note that the PPC and thereby calculated stained area of MCT4 staining is by its 

nature a parameter that is influenced by tumor cell density as the expression is not exclusively but 

mainly found in tumor cells. That is why a good overlap between areal MCT4 and AUCl/AUCp is still 

observed. In summary, our study indicates that multimodal/multiparametric imaging may be necessary 

to characterize and stratify PDAC correctly. 
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Moreover, our observations also position the AUCl/AUCp as a potentially valuable biomarker as it is 

the areal MCT4 expression that is associated with worse survival and quasi-mesenchymal subtype in 

human PDAC (Baek, Tse et al. 2014). That is why the circumstance that these tumors did not receive a 
18F-FDG PET scan is a limiting factor to the significance of that thought. The mere normalization of 

AUCl/AUCp with ADC values did not produce such a clear possibility of characterization. That could 

be attributed to a non-linear relationship between cellularity and AUCl/AUCp as well as a changing 

weighting of cellularity, metabolism and perfusion in different subtypes and stages of progressing 

disease. 

In literature increasing evidence is found that MCT4 has disease-defining characteristics beyond 

increasing glycolytic flux (Kong, Nøhr-Nielsen et al. 2016, Lee, Hwang et al. 2021). Also in human 

PDAC, it is associated with a quasimesenchymal subtype, tumor invasiveness and worse survival. 

Therefore, the characterization of tumors into MCT4low and MCT4high is pathophysiologically justified. 

The good correlation of AUCl/AUCp to areal expression of MCT4 and GLUT1 is in part due to their 

dependence on cellularity.  

This might explain why the SUVmean/SUVmax of 18F-FDG are not correlated with these parameters 

even though GLUT1 is functionally coupled to them. In literature this independence of PET derived 

parameters and cellularity has been described in human PDAC (Higashi, Tamaki et al. 1998, 

Tanimoto, Yoshikawa et al. 2010). As proposed in literature and supported by the results, MCT1 plays 

a secondary role as a relevant biomarker in PDAC (Kong, Nøhr-Nielsen et al. 2016).  

The four cell lines mimicked the metabolic expression patterns of the primary tumors well. Also the 

association of Vimentin and MCT4 could be seen as a hint to its relevance in tumor cell 

transformation. Interestingly, in this endogenous model both were associated with E-Cadherin 

expression. To my knowledge, this has not been described before for this model and is therefore 

noteworthy as it contradicts observations in similar models (Wang, Dong et al. 2018). As E-Cadherin 

and Vimentin are generally attributed to the two differing subtypes of epithelial and 

quasimesenchymal tumors respectively, the biological relevance of this does not become clear from 

this experiment and requires further investigation.  

The good correlation between IHC and results from IF cytology already suggests a certain metabolic 

stability of the tumor cells. That this is also true for PDAC in-vivo was reassured by stable metabolic 

measurements. This can be seen as a confirmation that the 1-13C-pyruvate MRSI measurement is 

repeatable in vivo and no severe metabolic changes are expected during a time frame of 48 hours if no 

relevant changes in animal physiology are observed (see VII.5.3, Fig.VII-12). This may be regarded as 

an encouraging result for further therapy studies aiming to use metabolic data for therapy response 

monitoring or direct pharmacodynamic monitoring in case a direct metabolic inhibitor is used. This is 

relevant as pyruvate metabolism can be significantly altered following therapy (Aggarwal, Vigneron et 
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al. 2017, Michel, Zieliński et al. 2019). Moreover, 1-13Cpyruvate MRSI is able to detect the Warburg 

shift, whereas 18F-FDG PET may only detect increased glycolytic flux decoupled of its origin (Gutte, 

Hansen et al. 2015) – a valuable property that may be exploited. 

 

5. CONCLUSION 
 

Conclusively, this study demonstrated the establishment and feasibility of a reproducible micro-

structural and metabolic imaging platform for endogenous murine PDAC. A high heterogeneity was 

observed as an inherent property of PDAC that poses large challenges to imaging and ultimately 

individualized therapy, but confirms the clinical relevance of the characterized animal model. As the 

placement of the AUCl/AUCp in the field of available biomarkers (see Fig.VII-20) was described in 

this work, it can be seen as a step to metabolic characterization of therapy response in different tumor 

subtypes and therefore individualized approaches. However, due to the strong dependency of the 

tumor biology on tumor cellularity, we propose to use metabolic imaging in combination with 

structural imaging methods.  
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IV. PART TWO:  COMPREHENSIVE MORPHOLOGICAL 

CHARACTERIZATION AND QUANTIFICATION OF 

NUCLEAR PROPERTIES IN MPDAC AND THEIR TIES TO 

BIOMARKER EXPRESSION 

 

1. INTRODUCTION 
 

Evaluation of tumor cell nuclei is an integral part of cytological and histopathological examination. As 

nuclear atypia are indicative of malignant lesions, nuclear descriptors such as nuclear size, shape and 

heterogeneity are evaluated. Nevertheless, intra- and inter-observer variability remain problematic and 

potentially biologically meaningful information is lost when relying solely on qualitative assessment. 

In order to find nuclear morphologic parameters, nuclear segmentation in cytology and histopathologic 

slides is to be implemented: Doing this, threshold based techniques remain the most prevalent but are 

prone to under-segmentation of clustered nuclei. Therefore, they are often combined with seed-based 

analysis (Xu, Lu et al. 2017, Zhao, An et al. 2017). Nevertheless, nuclear segmentation remains 

difficult, especially with the goal of morphologic description as these separation techniques impact the 

afterwards measured nuclear morphology (see Fig.IV-1). 

In this study a novel approach to nuclear segmentation is assessed, as morphologic characterization is 

dependent on morphologic preservation of nuclei during the segmentation process. Previously 

described techniques (including watershed and line of sight based segmentation) distort nuclear 

morphology because should nuclei overlap, the overlapping area is only attributed to one nucleus. 

Thereby parts of the other nuclei (or nucleus) in that respective cluster are cut out (see Fig.IV-1). That 

is why this study aims at improved morphologic preservation through a novel segmentation algorithm.   
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Fig.IV-1: Illustration of lacking morphological preservation of nuclei in common segmentation 

methodology (A) Bw-image of overlapping circles (illustration of nuclei) (B) Segmentation results 

using a watershed algorithm (arrow indicates morphologic loss) (C) Segmentation results using a line 

of sight algorithm (arrow indicates morphologic loss) (D) Segmentation result using the algorithm 

proposed in this study – morphologic shape preservation with proportional reduction of nuclear area 

Successful nuclear segmentation allows for selective extraction of nuclear features. In biological 

image processing, biological relevance in different models has been attributed to histogram-derived 

parameters such as Mean, SD, Kurtosis, Skewness and morphologic descriptors such as nuclear Area, 

nuclear Eccentricity and nuclear Solidity. After the description of Grey-level-co-occurrence matrix 

(GLCM) derived texture parameters by Haralick et al. in 1973 (e.g. Contrast, Correlation, Energy and 

Homogeneity), they also have been added to the catalogue of important descriptors in biological image 

processing and their role has been evaluated in numerous studies (Jørgensen, Yogesan et al. 1996, 

Gupta, Gupta et al. 2010). In this protocol, these parameters are used to characterize nuclei in different 

disease models including cytology and histopathology slides of murine PDAC. These features are then 

used to assess the ties of nuclei characteristics to relevant biomarkers in PDAC that have been 

introduced above. 

In Part One (III.), monocarboxylate transporter 4 (MCT4) has been described as a relevant metabolic 

biomarker in mPDAC. The expression of MCT4 was correlated to cellular metabolism and cellularity 

and thereby subtypes. Furthermore, MCT4 seems to play an important role in PDAC cancer cell 

migration as its inhibition/knockdown reduces invasiveness (Kong, Nøhr-Nielsen et al. 2016). 

Generally, the role of MCT4 for the occurring metabolic shift in PDAC is assumed greater than the 

one of MCT1 (Kong, Nøhr-Nielsen et al. 2016, Sukeda, Nakamura et al. 2019). MCT4 is also being 

evaluated as a metabolic therapeutic target in prostate cancer (Choi, Xue et al. 2016). The importance 
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of MCT4 for metabolic imaging such as 1-13Cpyruvate MRSI has been investigated and confirmed in 

related tumor entities such as prostate and breast cancer (Gallagher, Woitek et al. 2020).  

In this part of the work, the role of tissue biomarkers of PDAC (MCT4, GLUT1 and KRT81) were 

evaluated using murine PDAC cytology and histopathology. The patterns of biomarker expression 

were then evaluated regarding pertinent nuclear characteristics. 

 

2. MATERIALS & METHODS 
 

The study is descriptive and retrospective in terms of case selection. It involves different tumor 

models (orthotopically implanted and endogenously grown mPDAC) and several modalities (cytology 

+ histology (H.E. & IHC stainings)). The following Materials & Methods section mainly focuses on 

performed procedures on these existing data sets. The image analysis workflow introduced starting 

from 2.3 is novel and therefore described in detail in this chapter. 

 

2.1 STUDY COLLECTIVE 
 

The murine probes were collected during the imaging experiments partially described in Part One 

(III.). Four cell lines used for orthotopically implanted mPDAC (2 characterized as epithelial, 2 

characterized as mesenchymal (Mueller, Engleitner et al. 2018)) and four cell lines derived from 

endogenously grown mPDAC (2 from tumors characterized by in-vivo imaging as highly glycolytic, 2 

from tumors characterized by in-vivo imaging with signs of low glycolysis) were included in the 

study. Seven orthotopically-implanted tumors (3 epithelial, 4 mesenchymal) were extracted and 

H.E./IHC (MCT1, MCT4, GLUT1, CD31) stained.  

 

2.2 MURINE CYTOLOGY (ORTHOTOPIC & ENDOGENOUS) 
 

Primary pancreatic tumor cells were isolated from 4 GEMM: CK tumors in the Lab of Dieter Saur (2 

epithelial, 2 mesenchymal) (Mueller, Engleitner et al. 2018) and 4 endogenously grown tumors were 

isolated from (GEMM: CKPlox) tumors by studious cutout of the tumor tissue and culturing of it 

under standard conditions. The established mPDAC cells were cultured in high glucose Dulbecco’s 

Modified Eagle Medium (DMEM, Thermo Fisher Scientific, Waltham, USA) supplemented with 10% 

fetal bovine serum (FBS, Thermo Fisher Scientific, Waltham, USA) and 1% Penicillin/Streptomycin 
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(P/S, Thermo Fisher Scientific, Waltham, USA). For immunofluorescence (IF) staining, cells were 

cultured in DMEM supplemented with 5mM D-glucose (Thermo Fisher Scientific, Waltham, USA), 

2 mM L-glutamine (Sigma-Aldrich, St. Louis, USA) 5% FBS for 48h prior experiments.  

For immunofluorescence (IF) staining, cells were washed and fixed for 10 min at RT using 4% PFA, 

treated with 0.15% glycine for 5 min, permeabilized with 0.2% Triton-X 100 in PBS. After washing, 

cells were blocked for 1.5 h in 10% donkey serum and 0.1% BSA diluted in PBS. The primary 

antibodies were incubated overnight at 4°C in 0.1% BSA diluted in PBS Anti-CDH1 (1:200, AF748, 

R&D Systems), Anti-Vimentin (1:50, MAB2105, R&D Systems), Anti-MCT4 (1:100, rabbit, sc-

50329, Santa Cruz Biotechnology). After washing, the secondary antibodies were incubated for 2.5 h 

at RT in the dark (donkey anti-goat AF488, donkey anti-rat AF594, donkey anti-rat AF680, 1:250, 

Invitrogen). Thereafter, cells were treated for 2 min with DAPI, washed and mounted. Slides were 

kept at 4°C until further analysis using the Leica TCS SP8 Confocal Microscope (Leica). The 

immunofluorescence staining was performed by K.P.  

 

2.3 NUCLEAR SEGMENTATION AND ANALYSIS IN MURINE CYTOLOGY 
 

The entire image processing and analysis algorithms were used to analyze 5-9 representative images of 

each cell line using MATLAB (R2018b) by Mathworks, Inc. (Natick, MA). The images were acquired 

at a resolution of 1024x1024 pixels and stored in TIF (tagged image file) format. No shade or other 

correction was performed on the images prior to processing.  

Segmentation for cell counting was implemented using a novel second order thresholding method 

(LPA, see VII.4.6.1, Fig.VII-7) as standard thresholding techniques such as Otsu’s method delivered 

unreliable results concerning nuclear counting. After reading the image the 2-dimensional image 

matrix of the blue channel is chosen (DAPI3) for the DAPI fluorescence molecule emits wavelengths 

in the blue spectrum. After that the LPA is implemented creating a loop segmenting the image with a 

preset number of thresholds (x) specified by an x-dimensional vector (ThresholdVector).  

 

[x y] = size(DAPI3); 
Start = 5; 
TresholdVector = [Start:1:50]; 
[b sizeThresholdVector] = size(TresholdVector); 
Resultsvektor = 0; 

for k = 1:sizeThresholdVector  
Threshold = TresholdVector(b,k); 
DAPIT = DAPI3; 

for i = 1:x 
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for j = 1:y  

if DAPIT(i,j) > Threshold 
DAPIT(i,j) = 255; 
else DAPIT(i,j) = 0;            
end 

end 

end 

[LABELEDDAPI, numNuclei] = bwlabel(DAPIT); 
Resultsvektor(1,k) = numNuclei; 

end 

 

Code IV-1:  Implementation of LPA (1) 

 

The nuclear counts at x thresholds are plotted and smoothed. Then the first low-point of the graph is 

selected using the function islocalmin(). Finally, the image is binarized using that threshold. 

 

MIN = min(Resultsvektor); 
ResultsvektorSmooth = smooth(Resultsvektor); 
TF = islocalmin(ResultsvektorSmooth); 
[row,col] = find(TF==1); 
LowestCount = Resultsvektor(1, row(1,1)); 
[row1,col1] = find(LowestCount == Resultsvektor); 
TT = 5+col1; 
DAPITT = DAPI; 
[x y] = size(DAPITT); 
 

for i = 1:x 

for j = 1:y  

if DAPITT(i,j) > T; 
DAPITT(i,j) = 1; 
else  
DAPITT(i,j) = 0; 
end 

end 

end 

 

Code IV-2:  Implementation of LPA (2) 

Through a subtraction of y pixels at the borders of nuclei (equals the mathematical operation of 

erosion using a square the size of y) a successful separation of overlying cells could be reached. This 

approach was even improved when successively increasing the threshold on a distance transform 

matrix of the segmented nuclei and simultaneous counting of the regions. As the threshold on the 



	 31	

distance transform map increases, more and more overlapping nuclei are separated. When the 

threshold further increases some nuclei are lost to under-segmentation. That is why the region counts 

with increasing thresholds were plotted. The local maximum was chosen and considered the final 

automated count (see Fig.IV-2). 

 

Fig.IV-2: Separating overlapping nuclei by distance transform matrix thresholding (A) Segmented 

nuclei by LPA (B) nuclear counts at increasing thresholds on distance transform matrix (DTM) (C) 

Segmentation used for nuclear count after segmenting at local maximum 

 

Furthermore, a comprehensive analysis of nuclear morphological descriptors as well as the selective 

extraction of nuclear textural features was sought after. 

Morphological descriptors of the segmented nuclei were extracted using the function regionprops(), 

especially including nuclear Area, Eccentricity (ratio of the distance between the foci of an ellipse and 

its major axis length). A value of 0 indicates a circular ellipse, while an Eccentricity of 1 indicates a 

line) and Solidity (part of the shape that is convex to the modeled elliptic center – Area of the 

region/Convex area; therefore, unrounded potentially dysmorphic nuclei are expected to have a higher 

Eccentricity than round nuclei).  

The extraction of textural features was performed creating a synthetic image (DAPITexture) only 

consisting of the image information contained within nuclei. 

 

for i = 1:x 

for j = 1:y  

if DAPITT(i,j) > 0 
DAPITexture(i,j) = DAPI(i,j); 
else  
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DAPITexture(i,j) = 0; 
end 

end 

end 

  

DAPITexture01 = DAPITexture(DAPITexture > 0); 
[x1 y1] = size(DAPITexture01); 
XX = sqrt(x1); 
XX = floor(XX); 
Xsquare = XX*XX; 
DAPITexture01 = DAPITexture01(1:Xsquare,1); 
TextureNuclearImage = reshape(DAPITexture01,[XX,XX]); 

  

Code IV-3:  Creating a synthetic image only containing nuclear area 

 

From this synthetic image a grey-level co-occurrence matrix was created using the function 

graycomatrix() and the textural parameters Contrast, Correlation, Energy and Homogeneity were 

taken using the function graycoprops(). 

Furthermore, histogram derived descriptors (mean, SD, kurtosis and skew) were derived from the 

synthetic nuclear image.  
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Fig.IV-3: Segmentation and virtual nuclear image (A) DAPI-Image of nuclei (B) LPA-Graph (C) 

segmented image (D) virtual nuclear image (augmented) 

 

2.4 STAINING OF MURINE HISTOLOGY 
 

Murine PDAC tissue samples were fixed in 4% PFA/PBS solution, dehydrated and paraffin-embedded 

(FFPE) according to the standard pathology core conditions of Technical University of Munich. FFPE 

slices of 2-4 µm were stained with (Mayer’s hematoxylin and eosin (H&E), according to a standard 

protocol) for tissue visualization (1. Xylol 2x 2min; 2. 100% Ethanol 1 min; 3. 96% Ethanol 1 min; 4. 

70% Ethanol 1 min; 5. Desalinated water 30 s; 6.Mayer’s hematoxylin 8 min; 7. Rinse with water 10 

min; 8. Eosin solution 5 min; 9. 96% Ethanol 25s; 10. Isopropanol 25 s; 11. Xylol 1,5 min). 

For immunohistochemical (IHC) stainings slides were send to the Pathology department of the 

Technical University of Munich and stained in the laboratory of PD Dr. Katja Steiger. FFPE slices 

were pretreated 30 min with citrate buffer pH=6.0 and stained with antibodies against CD31. Antibody 

binding was detected using DAB as chromogen after pre-incubation with respectively Bond Polymer 
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Refine Detection Kit (Leica). Nuclei were counterstained with hematoxylin. All slides were digitalized 

using Aperio Scanner (Leica). For analysis representative images of all tumor regions were taken – 

large vessels were excluded, as nuclear feature extraction was the goal of this study. 

 

2.5 NUCLEAR SEGMENTATION AND ANALYSIS OF MURINE HISTOLOGY 
 

Nuclear segmentation of complex histologic images with compact growth patterns requires more 

intricate automated segmentation techniques. After reading the image the first channel of the RGB 

image was selected due to its high nuclear contrast after staining with hematoxylin. Prior to image 

segmentation, a Gaussian Filter was applied to reduce the influence of noise on the segmentation 

result. For nuclear segmentation, different approaches were chosen depending on the task. First, the 

LPA approach was implemented as described above. Here, nuclear segmentation was specific – 

overlapping nuclei were not separated. That is why the LPA-based segmentation was used to create 

the virtual texture image to extract texture and histogram-derived parameters.  

For the morphological description of cells, a different segmentation technique was used. It is based on 

the observation that with increasing Gaussian filtering, more separated nuclear regions merge. 

Creating an additive image of increasing degrees of Gaussian filtering thereby enhances contrast at 

these merging zones. Then, a differential image of this additive image was created in 4 directions (0°, 

90°, 180°, 270°) revealing an image depicting these merging zones and thereby separating 

conglomerate nuclei while maintaining the overall shape of the nucleus which is relevant for the 

morphologic description. The separation between nuclei using this technique was superior to the 

implemented watershed algorithm considering the number of successfully segmented nuclei as well as 

preserving their shape.  

After Gaussian filtering, this image was treated with a Canny edge detection algorithm and then was 

binarized again. Then only negative areas within the edges of the cells were counted as positive in a 

binary image. This image represents the inner nuclear shape with incomplete separation of nuclei. Full 

separation was reached by adding a binarized distance transform an image (PEAKMAP, see Code IV-

4). When a threshold was applied to this additive image the nuclei are separated while maintaining the 

nuclear shape as far as possible (illustrated in Fig.IV-4.). 
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Fig.IV-4: Illustration of nuclear segmentation methodology for morphologic characterization in 

histology (A) Segmented nucleus (using LPA) (B) Distance transform (DTM) image where the 

intensity values of the pixels are proportional to the distance from a non-positive pixel (C) 

Thresholded DTM image labeled PEAK with morphologic preservation but areal loss (D) Additive 

image of differential Gaussian filtering adding contrast to merging zones (E) Inner Area D (F) 

Additive Image of C and E (G) Summary of procedures I and II and creation of smoothed F (on the 

left) 

 

For cell counting, the shape of nuclei is not important, solely their number and therefore their reliable 

separation in nuclear conglomerates. This is accomplished via a distance transform after LPA 

segmentation creating an image (DTM) in which the intensity of pixels in a positive region is 

proportional to its distance form a negative region. Through thresholding a virtual image containing 

only the peaks of the nuclei is created which is suitable for nuclear counting. 
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DTM = bwdist(~DAPITT); 
DTT = 8; 
PEAKMAP = DTM; 

for i = 1:x 

for j = 1:y  

if PEAKMAP(i,j) > DTT 
PEAKMAP(i,j) = 1; 
else  
PEAKMAP(i,j) = 0; 
end 

end 

end 

 

Code IV-4: Implementation of a distance transform on a LPA segmented image 

 

As strict quantitative description of cell morphology can remain difficult in this model, as the 

parameters of Eccentricity and Solidity are prone to errors from inaccurate segmentation, the 

quantitative assessment is accompanied by a descriptive morphological characterization.  

 

2.6 STATISTICAL ANALYSIS 
 

Statistical analysis was performed in GraphPad Prism (version 7 and 8, GraphPad Software Inc., San 

Diego, CA). For all statistical tests, a level of significance of 5% was used. A two sided Student’s t-

tests were performed for group comparisons of normally distributed quantities. The strength of 

association between quantitative measures was assessed by Pearson's (r, normally distributed data) 

correlation coefficient. Data presented as mean values including standard deviation or 95% confidence 

interval (95%-CI).  

 

3. RESULTS 
 

The presentation of results is structured as follows: In 3.1 the expression patterns of epithelial and 

mesenchymal cell lines are evaluated. 3.2 the quality of the automated nuclear segmentation is shown. 

3.3 to 3.5 describe findings of morphologic analysis in different tumor models of PDAC. 
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3.1 EXPRESSION PATTERNS OF EPITHELIAL AND MESENCHYMAL CELL LINES 
	

The expression patterns of MCT4 in cell lines were coherent with immunohistochemical data of the 

grown tumors. Staining for E-Cadherin, a marker for epithelial cells underlined their respective 

subtype (Mean E-CadherinE [a.u.] = 4.980 ± 1.243 vs. Mean E-CadherinM [a.u.] = 2.272 ± 0.251, see 

Fig. IV-5 B). A strong correlation between Vimentin – a marker of mesenchymal growth – and MCT4 

expression was found in stained cell samples (r = 0.874, 95%-CI: 0.704-0.949, p<0.001) while cell 

lines from mesenchymal tumors showed higher Vimentin (Mean VimentinE [a.u.] = 1.397 ± 0.280 vs. 

Mean Vimentinm [a.u.] = 2.471 ± 0.380, see Fig. IV-5 C) and MCT4 expression (Mean MCT4E [a.u.] = 

2.870 ± 0.587 vs. Mean MCT4M [a.u.] = 3.923 ± 0.41, see Fig.IV-5 D). Furthermore, strong 

correlations between the mesenchymal marker Vimentin and MCT4 expression have been found in 

grown cell lines (r = 0.874, 95%-CI = 0.704 to 0.949, p < 0.001).   
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Fig.IV-5: Expression of biomarkers in cultivated cells with clear phenotype of mPDAC (A) from left to 

right: negative image of E-Cadherin immunofluorescence in epithelial (E) and mesenchymal (M) cell 

lines, negative image of Vimentin immunofluorescence in epithelial (E) and mesenchymal (M) cell 

lines and negative image of MCT4 immunofluorescence in epithelial (E) and mesenchymal (M) cell 

lines (B) Expression of E-Cadherin in 4 cell lines (E1+E2 = epithelial cell line; M1+M2 = 

mesenchymal cell line) (C) Expression of Vimentin in 4 cell lines (E1+E2 = epithelial cell line; 

M1+M2 = mesenchymal cell line) (D) Expression of MCT4 in 4 cell lines (E1+E2 = epithelial cell 

line; M1+M2 = mesenchymal cell line) 

 

3.2 NUCLEAR SEGMENTATION 
 

The nuclear evaluation is based on the need for reliable nuclear segmentation. Using the described 

image analysis workflow, automated nuclear counts in cytology (correlation with manual count: r = 

0.993; 95%-CI: 0.968 to 0.998; p<0.001, see Fig.IV-6 C) and histology (correlation with manual 

count: r = 0.913; 95%-CI: 0.667 to 0.980; p<0.001, see Fig.IV-6 D) were satisfactory (counts were 
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compared in a representative subset including 10 images of cytology and 10 images of histology). In 

cytology as well as histology, the automated cell count of epithelial tumors did in average deviate 

more from manual cell count than mesenchymal tumors due to cell clustering and incomplete 

separation during the segmentation process (exemplary for cytology: Mean deviation in epithelial cell 

lines = 6.48% vs. Mean deviation in mesenchymal cell lines = 3.04%).  

 

Fig.IV-6: Segmentation results and comparison between manual and automated nuclear count (A) 

Segmentation in cytology of epithelial and mesenchymal cell lines (B) Segmentation in histology of 

orthotopically implanted PDAC (C) Comparison of nuclear count between manual and fully 

automated count in cytology (D) and histology of orthotopically implanted tumors 
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These results indicate a successful separation of nuclei. As explained above morphological 

preservation parallel to successful separation of nuclei was aimed for in this image analysis workflow. 

This was particularly hard to achieve in the histology of orthotopically-implanted tumors as these 

tumors showed highly cellular growth with only marginal stromal recruiting. This led to many 

overlapping and distorted nuclei in the resulting histologic slides. However, satisfactory morphologic 

preservation was achieved as shown in Fig. IV-7. In this figure, it is illustrated which morphologies 

were counted as depicted correctly and incorrectly respectively. Less than 5% of nuclei examined 

were counted as incorrectly represented. Limits of the segmentation were observed in dense clusters of 

tumor cells often including more than 5 cells where epithelial tumors were affected more than 

mesenchymal tumors by this incomplete separation and therefore incorrect morphologic description of 

nuclei.  

 

 

Fig.IV-7: Separation of tumor cell clusters with morphological preservation in histology derived from 

orthotopically implanted tumors (A) Correctly separated and morphologically preserved epithelial 

tumor cells (B) Incorrectly (under-)segmented epithelial tumor cells (red lines indicate desired 

separation, red circles indicate erroneous segmentation) (C) Correctly separated and morphologically 

preserved mesenchymal tumor cells (D) Incorrectly (under-)segmented mesenchymal tumor cells (red 

lines indicate desired separation, red circles indicate erroneous segmentation) 

 

3.3 MORPHOLOGIC CHARACTERISTICS OF NUCLEI IN EPITHELIAL AND 
MESENCHYMAL PDAC 

 

In the well-characterized cytology, relevant morphological nuclear differences between epithelial and 

mesenchymal cell lines could be mapped out (see Fig.IV-8). Nuclei of epithelial and mesenchymal cell 

lines differed significantly regarding their mean nuclear intensity (p = 0.015, Fig.IV-8 A), standard 
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deviation of nuclear intensity (p = 0.045, Fig.IV-8 A), nuclear Eccentricity (p < 0.0001, Fig.IV-8 B), 

nuclear Solidity (p = 0.002, Fig.IV-8 B), and GLCM derived Contrast (p = 0.020, Fig.IV-8 C) – with 

nuclear Eccentricity being the most selective parameter. 

 

Fig.IV-8: Overview over important nuclear descriptors in epithelial (E) and mesenchymal (M) cell 

lines (A) histogram derived descriptors (B) morphological descriptors (C) GLCM-matrix derived 

textural features as indicated 

A more heterogeneous morphological pattern could be observed in the histology of orthotopically-

implanted tumors derived from the cell lines described. Here, the characteristics blended as cells 

transformed embedded in their respective microenvironment (see Fig. IV-10). No significant 
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differences could be seen clustering lesions into epithelial and mesenchymal ones (see Fig.IV-9 A-C). 

However, tendencies observed in the cell lines remained visible in the growing tumors – regions 

containing transitioning nuclei influenced the results of morphologic characteristics (in epithelial as 

well as mesenchymal tumors, see Fig.IV-12 & Fig.IV-13). 

 

Fig.IV-9: Overview over important nuclear descriptors in epithelial (E) and mesenchymal (M) tumors 

(A) Histogram derived descriptors (B) Morphological descriptors (C) GLCM-matrix derived textural 

features 

The morphologic transition of nuclei is further illustrated in Fig.IV-9. It can be stated that 

orthotopically-implanted tumors deriving from epithelial cell lines show locally contained 
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morphologic transition to elongated, unrounded morphology characteristic for mesenchymal growth. 

Also, tumors deriving from mesenchymal cell lines have specific regions where the nuclei exhibit 

round and regular morphology, which is typical for epithelial growth (see Fig.IV-10). These transitory 

zones are specific to a certain region of the tumor and cannot be attributed to the whole lesion. 

 

Fig.IV-10: Exemplary images of nuclear morphology in orthotopically-implanted tumors (T) derived 

from epithelial PDAC cells (epithelial T) and mesenchymal PDAC cells (mesenchymal T) – (A) Main 

nuclear morphology prevalent in respective lesions with epithelial tumors showing round and 

mesenchymal tumors showing unrounded spindle shaped nuclei (B) Exemplary images of zones with 

morphologic transition – epithelial tumors containing nuclei with unrounded morphology and 

mesenchymal tumors showing epithelial nuclear morphology 

 

3.4 ASSOCIATION OF NUCLEAR MORPHOLOGY TO BIOMARKER EXPRESSION IN 
MPDAC CYTOLOGY 

 

As depicted in III, different relevant metabolic (including MCT4, GLUT1) and subtype-specific (E-

Cadherin, Vimentin) biomarkers have been identified for murine PDAC. Mesenchymal cell lines 

revealed higher expression levels of Vimentin and MCT4 in-vitro whilst having lower and less 

membranous staining for E-Cadherin. In this study the ties between morphologic characteristics and 

biomarker expression have been explored – in the description below a focus is put on subtype specific 

morphologic descriptors such as Mean nuclear intensity, standard deviation of nuclear intensity, 

nuclear Eccentricity, nuclear Solidity and GLCM derived Contrast.  

In the well characterized epithelial and mesenchymal cell lines a reciprocal relation between 

Vimentin/MCT4 expression and Mean nuclear intensity has been found (see Fig.IV-11 A). This did 

span epithelial as well as mesenchymal cell lines. Concerning E-Cadherin expression there was a 

linear reciprocal correlation with standard deviation of nuclear intensity observed. However, this was 

not true for mesenchymal cell lines with their constant low baseline expression of E-Cadherin (see 

Fig.IV-11 A). The morphologic descriptor of Eccentricity did show highly relevant subgroup 
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differentiation (see Fig.IV-11 B). However, no stringent association with biomarker expression was 

found (see Fig.IV-11 B). Nevertheless, it can be summarized that Eccentricity is positively correlated 

to Vimentin and MCT4 and reciprocally correlated to E-Cadherin expression (see Fig.IV-11 B). 

Although the texture derived parameter Contrast showed good differentiation between epithelial and 

mesenchymal tumors, it was not correlated to biomarker expression (see Fig.IV-11 C). A negative 

correlation between Contrast and E-Cadherin expression in epithelial cell lines was noted (see Fig.IV-

11 C). 

 

Fig.IV-11: Association of morphologic descriptors and biomarker expression in epithelial (black) and 

mesenchymal (red) cell lines (A) association between the histogram derived Mean nuclear intensity 

and standard deviation of nuclear intensity (SD) with biomarker expression (B) association between 

the morphologic descriptor Eccentricity and biomarker expression (C) association between GLCM 

matrix derived textural descriptor Contrast and biomarker expression 

As explained these investigated cell lines are of dichotomous nature and therefore are of high power in 

illustrating feasibility and relevance of the implemented study protocol. However, they lack impactful 
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biological meaning for the morphologic description of nuclei of other tumor models such as human 

PDAC. That is why the investigation of morphological descriptors in cytology was extended to cell 

lines that were extracted from endogenous murine PDAC, which mimics the genesis of human PDAC 

more closely. These cell lines can be perceived not as dichotomous but can be characterized on a 

spectrum between epithelial and mesenchymal growth. Interestingly in the cell lines of this tumor 

model a direct correlation between E-Cadherin and MCT4/Vimentin expression was observed as 

explained above. 

Histogram derived descriptors 

 

 E-Cadherin Vimentin MCT4 

 r 95%-CI p 

 

r 95%-CI p r 95%-

CI 

p 

Mean 

nuclear 

intensity 

-0.08010 
 

-0.5047 to 
0.3757 
 

0.7371 
 

-0.3143 
 

-0.6644 to 
0.1490 
 

0.1772 
 

-0.2215 
 

-0.6047 
to 
0.2451 
 

0.3481 
 

SD -0.4955 
 

-0.7693 to  
-0.06785 
 

0.0263 
 

-0.4863 
 

-0.7643 to 
-0.05575 
 

0.0297 
 

-0.4805 
 

-0.7612 
to -
0.04828 
 

0.0320 
 

Kurtosis 0.3242 
 

-0.1382 to 
0.6705 
 

0.1632 
 

0.4701 
 

0.03483 to 
0.7555 
 

0.0365 
 

0.4002 
 

-0.05149 
to 
0.7159 
 

0.0804 
 

Skewness 0.02893 
 

-0.4190 to 
0.4655 
 

0.9036 
 

0.1814 
 

-0.2839 to 
0.5776 
 

0.4440 
 

0.09702 
 

-0.3610 
to 
0.5173 
 

0.6841 
 

Table IV-1: Histogram derived descriptors and their correlation to biomarker expression in cytology 

of endogenously grown PDAC 
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Morphologic descriptors 

 

 E-Cadherin Vimentin MCT4 

 r 95%-CI p 

 

r 95%-CI p r 95%-

CI 

p 

Area -0.8002 
 

-0.9178 to 
-0.5538 
 

<0.0001 -0.6469 
 

-0.8470 to 
-0.2863 
 

0.0021 
 

-0.6895 
 

-0.8673 
to -
0.3554 
 

0.0008 
 

Eccentricity -0.7404 
 

-0.8940 to 
-0.4311 
 

0.0003 
 

-0.5718 
 

-0.8145 to 
-0.1588 
 

0.0105 
 

-0.5871 
 

-0.8221 
to -
0.1812 
 

0.0082 
 

Solidity  
-0.7244 
 

-0.8868 to 
-0.4027 
 

0.0005 
 

-0.5802 
 

-0.8187 to 
-0.1710 
 

0.0092 
 

-0.5803 
 

-0.8187 
to -
0.1712 
 

0.0092 
 

Table IV-2: Morphologic descriptors and their correlation to biomarker expression in cytology of 

endogenously grown PDAC 

 

GLCM derived texture descriptors (0°) 

 

 E-Cadherin Vimentin MCT4 

 r 95%-CI p 

 

r 95%-CI p r 95%-

CI 

p 

Contrast -0.5354 
 

-0.7906 to 
-0.1217 
 

0.0150 
 

-0.5386 
 

-0.7923 to 
-0.1262 
 

0.0143 
 

-0.5331 
 

-0.7894 
to -
0.1186 
 

0.0155 
 

Correlation 0.3371 
 

-0.1240 to 
0.6784 
 

0.1462 
 

0.3958 
 

-0.05665 
to 0.7134 
 

0.0841 
 

0.3815 
 

-0.07339 
to 
0.7050 
 

0.0969 
 

Energy 0.3669 
 
 

-0.09026 
to 0.6964 
 

0.1115 
 

0.3273 
 

-0.1348 to 
0.6724 
 

0.1590 
 

0.3333 
 

-0.1282 
to 
0.6761 
 

0.1510 
 

Homogeneity 0.5246 
 

0.1068 to 
0.7849 
 

0.0176 
 

0.5789 
 

0.1833 to 
0.8131 
 

0.0075 
 

0,5423 
 

0.1312 
to 
0.7942 
 

0.0135 
 

Table IV-3: Texture descriptors and their correlation to biomarker expression in cytology of 

endogenously grown PDAC 
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As shown by Table IV-1 to Table IV-3, morphologic descriptors such as Area, Eccentricity, Solidity 

and nuclear texture parameters such as Contrast and Homogeneity are correlated significantly with 

biomarker expression. Cells with smaller nuclei showed a higher E-Cadherin, Vimentin and MCT4 

expression (see Table IV-2). Interestingly, in this tumor model Vimentin and MCT4 expression of the 

cell line is reciprocally correlated to Eccentricity and Solidity (see Table IV-2). This is a highly 

significant finding, which is contrary to the findings in the well-characterized cytology as explained 

above. Furthermore, also the GLCM derived texture descriptor Contrast is negatively correlated on a 

significant level to MCT4 and Vimentin expression (see Table IV-3).  

It is important to note that nuclear morphology in these cell lines is more heterogeneous than in the 

cell lines above as depicted in Fig.IV-12. Describing nuclear morphology, it seems the contribution to 

MCT4 and Vimentin signal strength is proportionally higher for unrounded nuclei, however the data 

on hand spares quantitative evidence for that observation.  
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Fig.IV-12: Examples of biomarker expression independent of heterogeneous nuclear morphology (A) 

round nuclei with respective low MCT4/Vimentin expression (B) round nuclei with high 

MCT4/Vimentin expression (C) unrounded nuclei with low MCT4/Vimentin expression (D) unrounded 

nuclei with high MCT4/Vimentin 
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3.5 ASSOCIATION OF NUCLEAR MORPHOLOGY TO BIOMARKER EXPRESSION IN 
HISTOLOGY OF MURINE PDAC 

 

The biomarker expression of epithelial and mesenchymal tumors differed significantly regarding 

MCT4 (Mean MCT4E = 51 ± 8.06; Mean MCT4M = 74 ± 2.59; p = 0.006) as described in III. More 

precise, epithelial tumors did have a lower baseline expression of MCT4, while singular hotspots of 

high MCT4 expression (comparable to mesenchymal expression levels) were present. On the other 

hand mesenchymal tumors had higher baseline expression of MCT4 with contained areas of less 

MCT4 expression.  

Values for nuclear morphology e.g. Eccentricity averaged over the entire tumor region are distorted as 

tumors present high internuclear heterogeneity. That is why correlations of Eccentricity and MCT4 

expression (r = -0.249; 95%-CI = -0.844 to 0.620; p = 0,590) and Eccentricity and GLUT1 (r = -0.374; 

95%-CI = -0.879 to 0.528; p = 0.408) expression have limited meaning. 

However, when taking a differentiated look at the biomarker expression and nuclear morphology ties 

between morphologic transition and biomarker expression (MCT4 and GLUT1) can be found. As 

illustrated in Fig.IV-12 and Fig.IV-13 in 5 from 7 tumors the location of maximal nuclear Eccentricity 

(measured with automated image analysis) was congruent with the location of the highest levels of 

MCT4 expression (see tumors I, III, IV, V, VII in Fig.IV-12 and Fig.IV-13).  
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Fig.IV-12: Association between MCT4 expression and nuclear eccentricity in orthotopically implanted 

tumors derived from epithelial cell lines (A) MCT4 staining – tumor region and corresponding heat 

maps (yellow = higher MCT4 staining, blue = lower MCT4 staining)  (B) Location of minimal 

intratumoral nuclear Eccentricity (location in tumor region indicated by black indicators, image is 

taken from a respective slide stained for CD31) (C) Location of maximal intratumoral nuclear 

Eccentricity (location in tumor region indicated by black indicators, image is taken from a respective 

slide stained for CD31) 
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Fig.IV-13: Association between MCT4 expression and nuclear eccentricity in orthotopically implanted 

tumors derived from mesenchymal cell lines (A) MCT4 staining – tumor region and corresponding 

heat maps (yellow = higher MCT4 staining, blue = lower MCT4 staining) (B) Location of minimal 

intratumoral nuclear Eccentricity (location in tumor region indicated by black indicators, image is 

taken from a respective slide stained for CD31) (C) Location of maximal intratumoral nuclear 

Eccentricity (location in tumor region indicated by black indicators, image is taken from a respective 

slide stained for CD31) 

This cannot be shown directly for tumors II and VI as these exhibit high diffuse baseline expression of 

MCT4. Areas of maximal nuclear Eccentricity in these tumors did not coincide with areas of maximal 

MCT4 expression – nevertheless a trend towards morphological transition and MCT4 expression has 

also been observed in these tumors. 
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4. DISCUSSION 
 

Quantitative nuclear morphometrics play only a marginal role in PDAC for now. To my knowledge, 

this is the first study to comprehensively assess parameters of nuclear morphology spanning multiple 

disease models of PDAC. Although the relevance of nuclear morphology in the assessment of 

biomarker expression in pancreatic cancer has been acknowledged, it is mainly performed semi-

quantitatively (Handra-Luca, Hammel et al. 2014). Furthermore, the success of for adequate patient 

stratification of automated nuclear analysis in other tumor entities such as cervical cancer (Cheng, 

Hsieh et al. 2013) emphasizes the need for a more comprehensive morphometric description of this 

disease. 

In this study it has been shown that with the proposed algorithm a nuclear segmentation with a similar 

precision than previously described algorithms can be reached (Xu, Lu et al. 2017). Additionally, this 

algorithm potentially allows for more exact morphologic characterization due to improved 

morphologic preservation. Nevertheless, under-segmentation remains a problem, which led to a more 

precise morphologic characterization of nuclei in mesenchymal tumors than in epithelial tumors. This 

small but measurable incline makes the morphologic results in this work biased towards 

overestimating the complexity of epithelial nuclei. Therefore, subgroup differentiation by nuclear 

morphometry is expected to improve with more reliable nuclear segmentation. 

It has been shown in this study that nuclei of the epithelial and mesenchymal subtype of PDAC exhibit 

differing morphology. This is coherent with data on the different subtypes and among others their 

transcriptional patterns for cell adhesion proteins (Collisson, Bailey et al. 2019). It was interesting to 

describe the morphological changes of nuclei of well-characterized cell lines after orthotopic 

transplantation as they underwent a transition in vivo. This can be seen as support of the vast 

heterogeneity of PDAC even in this very controlled model. Nuclei of both morphologies existed side-

by-side – partially separated locally – in this tumor model. As the orthotopic tumors did only 

marginally recruit desmoplastic stroma, erroneous inclusion of stromal morphology did not influence 

the results in this study. 

Furthermore, in cytology of mPDAC the ties of nuclear morphology to MCT4, Vimentin and E-

Cadherin expression have been described. This is sensible regarding the biology associated with these 

markers for also MCT4 plays an important role in cellular transformation (Kong, Nøhr-Nielsen et al. 

2016). Here, a complex pattern of morphology derived descriptors and biomarker expression have 

been found depending on the origins of the cell lines. The endogenously derived cell lines expressing 

high levels of E-Cadherin and Vimentin are very interesting as they contradict the dichotomous 

thought of PDAC subtypes. It is possible that these cells were in the process of transition and therefore 

“still” expressing high levels of E-Cadherin and “already” expressing high levels of Vimentin and E-
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Cadherin. This would also be plausibly supported by the high nuclear heterogeneity within these 

endogenous cell lines and the high differences in metabolic behavior between these cell lines that was 

measured in Part One (III.). It is to note that further studies including a higher number of cell lines 

would be required to approach this observation. However, considering the inherent ties of nuclear 

morphology and cellular biology, further insights into this topic will prove valuable.  

In murine histology, biomarker expression was also linked to nuclear morphology. It has been shown 

that MCT4 expression was mainly observed in regions containing unrounded and eccentric nuclei. 

This justifies stating a certain tie between MCT4 and mesenchymal growth in this model, which is 

consistent with results obtained from human PDAC cell lines (Baek, Tse et al. 2014).  

 

5. CONCLUSION 
 

This study comprises comprehensive selective and automated nuclear characterization in different 

disease models of PDAC. It is descriptive, illustrating a connection between nuclear morphology and 

cellular biology that may be exploited diagnostically as the molecular subtypes of PDAC gain more 

influence into therapeutic decision making in the wake of individualized medicine. Additionally, it 

positions MCT4 as a biomarker associated with mesenchymal growth. Furthermore, the proposed 

nuclear segmentation method works reliably and may contribute to advances in this topic but will 

profit from improved nuclear segmentation. 
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V. PART THREE: MCT4 IN HUMAN PDAC AND ITS 

ASSOCIATION TO IMMUNOHISTOCHEMICALLY 

DETERMINED SUBTYPES 
 

1. INTRODUCTION 
 

In Part One (III.) it has been shown that metabolic imaging signals are correlated to areal MCT4 

expression measured in IHC. Regarding 1-13C-pyruvate MRSI, MCT4 is a relevant substrate 

transporter for lactate in- and efflux and potentially limiting for the pyruvate to lactate conversion rate 

– similar to what has been observed in cervical cancer (Rao, Gammon et al. 2020). The role of MCT4 

in PDAC exceeds other transporters of the MCT family (Kong, Nøhr-Nielsen et al. 2016). 

Furthermore, expression of MCT4 itself has been attributed to the mesenchymal subtype of PDAC and 

associated with worse survival in different models (Baek, Tse et al. 2014) and as shown in Part Two 

(IV.) it is tied to morphologic characteristics of the tumor cells. That is why, a closer look into the role 

of MCT4 in human PDAC and its association with tumor subtypes is pressing, if 1-13C-pyruvate MRSI 

is to be translated into the clinic. 

In 2016 Noll et al. introduced IHC of HFN1A (hepatocyte nuclear factor 1 homebox A) and KRT81 

(Keratin 81) as potential surrogate markers for tumor subtype in PDAC. They found that HFN1A was 

associated with the exocrine-like subtype and comparably good survival, while KRT81 was indicative 

of the quasimesenchymal subtype and worse survival. Tumors that did not show significant staining 

for either marker were named “double negative”, were attributed with the classical subtype and 

exhibited intermediate survival (Noll, Eisen et al. 2016). Building on these results, Muckenhuber et al. 

proposed a diagnostic algorithm further clarifying subtype classification (Muckenhuber, Berger et al. 

2018) and made similar observation regarding survival of the patients. Additionally, Kalimuthu et al. 

proposed a morphologic evaluation algorithm using H.E. stained histology of PDAC that was also 

indicative of translational subtypes differentiating between gland-forming and non-gland-forming 

components which were associated with the classical and quasimesenchymal subtype respectively (S, 

Wilson et al. 2020). 

In this study, randomly selected patients from the cohort of Muckenhuber et al. were chosen and their 

tumors were stained for H.E., KRT81 and MCT4. It is the aim of this study to evaluate the ties 

between morphological and immunohistochemically determined subtypes of human PDAC and their 

relation to MCT4 expression in order to gain insights into the role IHC staining for MCT4 may play in 

the future as a biomarker and biological reference for metabolic imaging in PDAC. 
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2. MATERIALS & METHODS 
 

This study is descriptive, exploratory and retrospective regarding case selection. It involves different 

staining modalities (H.E. and IHC). The human probes were chosen at random from TMAs stemming 

from the collective created by Muckenhuber et al. (2018). Therefore, detailed information about the 

patient collective may be found there. The following Materials and Methods section focuses on the 

performed procedures on these datasets. 

 

2.1 STUDY COLLECTIVE 
 

The study collective is congruent with the one described in Muckenhuber et al (2018): 262 individuals 

with primary resected PDAC between 1991 and 2006 that received partial pancreatoduodenectomy at 

the Charité University Hospital (Berlin, Germany) were included in the histologic analysis. The data 

usage was approved by the Institutional Review Board (IRB; ethics committee) of the Charité 

University (EA1/06/2004). Secondly, 130 individuals that underwent elective pancreatic resection at 

the department of Surgery at the Klinikum rechts der Isar of the Technical University of Munich 

(Munich, Germany) between 2007 and 2011 (The data usage was approved by the Institutional 

Review Board (ethics committee) of the TU Munich, Germany (documents no. 1926/2007 and 

126/2016 S)) and 125 patients with histologically proven PDAC that received primary chemotherapy 

(data usage was approved by the IRB (ethics committee) of the University of Heidelberg - nr. 160277) 

were considered.  

Histologic analysis was performed on 5 TMAs gained from the study collective. The TMAs were 

prepared the following: Two to three tumor cores (1.0mm – 1.5mm) of representative tumor areas – 

chosen by a pathologist – were newly arranged in a paraffin block. 

From these 10 patients with a HFN1A positive tumor, 10 patients with a double negative and 10 

patients with a KRT81 positive tumor were randomly selected and their tumor cores analyzed. Three 

tumors (one of each group) were not present in the TMAs as expected; therefore, they were omitted 

and analysis was performed on 9 tumors of each subgroup respectively in order to prevent subjective 

case selection. 
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2.2 IMMUNOHISTOCHEMISTRY 
 

TMAs of the collective described in Muckenhuber et al. (2018) were stained with Mayer’s 

hematoxylin and eosin (H.E.), according to a standard protocol for tissue visualization (1. Xylol 2x 

2min; 2. 100% Ethanol 1 min; 3. 96% Ethanol 1 min; 4. 70% Ethanol 1 min; 5. Desalinated water 30 

s; 6.Mayer’s hematoxylin 8 min; 7. Rinse with water 10 min; 8. Eosin solution 5 min; 9. 96% Ethanol 

25s; 10. Isopropanol 25 s; 11. Xylol 1,5 min). 

For immunohistochemical (IHC) stainings human TMAs were send to the Pathology department of the 

Technical University of Munich and stained in the laboratory of PD Dr. Katja Steiger. FFPE slices 

were pretreated 30 min with citrate buffer pH=6.0 and stained with antibodies against GLUT1 (rabbit, 

115730, 1:750, Abcam, USA), MCT4 (rabbit, sc-50329, 1:150 for mPDAC, mouse sc-376140 1:150 

for hPDAC, Santa Cruz Biotechnologies, USA) and KRT81 a Bond RXm system (Leica Biosystems, 

Wetzlar, Germany). Antibody binding was detected using DAB as chromogen after pre-incubation 

with respectively Bond Polymer Refine Detection Kit (Leica). Nuclei were counterstained with 

hematoxylin. All slides were digitalized using Aperio Scanner (Leica).  

 

2.3 ANALYSIS OF HISTOLOGY AND IHC 
 

Representative images of the tumor cores were taken and classified morphologically regarding their 

growth pattern as proposed by Kalimuthu et al. (2019) into gland-forming (conventional or 

tubulopapillary growth pattern) and non-gland-forming (composite or squamous). Due to the sole 

evaluation of the tumor cores, the evaluation was slightly adapted from the one described in 

Kalimuthu et al. (2019) as the structure defining morphology was chosen without determining 

quadrants. 

For immunohistochemical subtyping the definite classification by Muckenhuber et al. was chosen. 

Medium or strong staining for HFN1A was decisive for classifying a tumor as HFN1A positive. If over 

30% of the tumor cells by eyeball-evaluation were KRT81 positive, the tumor was classified as such. 

When both criteria were not met, the tumor was classified as double negative. 

Regarding MCT4 staining it was measured quantitatively using a Positive pixel count (PPC) from the 

IAT further described in the Appendix (VII.4) as well as qualitatively determining MCT4 positive 

tumors with medium or strong staining of tumor or stromal cells for MCT4. 
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Fig.V-1: Classification and evaluation of tumors (A) Morphological classification into gland-forming 

and non-gland-forming (B) Corresponding staining and analysis of H.E., KRT81 and MCT4 (C) 

Examples of MCT4 negative and MCT4 positive tumors 

 

2.4 STATISTICAL ANALYSIS 
 

Statistical analysis was performed in GraphPad Prism (version 7 and 8, GraphPad Software Inc., San 

Diego, CA). For all statistical tests, a level of significance of 5% was used. A two sided Student’s t-

tests were performed for group comparisons of normally distributed quantities. Data presented as 

mean values including standard deviation or 95% confidence interval (95%-CI). 

 

3. RESULTS 
 

A correlation between morphologic growth patterns and subtypes determined by IHC can be 

found 

The data shows an association between morphological growth patterns derived from the descriptions 

of Kalimuthu et al. (2019) and subtypes based on IHC first hinted by Noll et al. (2016). From 27 

evaluated human PDACs, 9 were classified as HFN1A positive, 9 as double negative and 9 as KRT81 
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positive. Of these, 16 tumors were defined by gland-forming growth of the tumor cells and 11 were 

defined by non-gland-forming growth (see Fig.V-2 A). 

Gland-forming growth (conventional or tubulopapillary - associated with longer survival) is more 

frequently the defining pattern in HFN1A positive or double negative tumors. In contrast, KRT81 

positive tumors are mainly defined by non-gland-forming growth (composite or squamous) of tumor 

cells. However, a portion of tumors exceeds the classification matrix of either nomenclature as tumors 

with non-gland-forming growth are also found in HFN1A positive and double negative tumors and 

vice versa (see Fig.V-2 B). 

 

MCT4 expression is strongly associated with morphologic subtypes previously described by 

Kalimuthu et al. 

MCT4 expression is significantly correlated to morphologic growth patterns (p = 0.035) such as gland-

forming and non-gland-forming growth (see Fig.V-2 C). Also a strong overlap of MCT4 expression 

patterns and IHC defined subtypes HFN1A positive, double negative and KRT81 positive could be 

found (see Fig.V-2 E). Interestingly, only a few outliers were observed and they indeed showed 

different biological characteristics than the rest of the study collective. One tumor with high MCT4 

expression that was classified as gland-forming in terms of morphology did show only marginal tumor 

expression of MCT4 but relevant MCT4 expression in adjacent stroma. Only one other tumor of the 

study collective amongst the KRT81 positive tumors did show high levels of stromal MCT4 

expression. Two other outliers in terms of unusually high MCT4 expression were identified amongst 

the HFN1A positive and double negative tumors. They were both characterized by non-gland-forming 

growth, which was identified as rather unusual for these tumor subtypes (see Fig.V-2 D & F). 
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Fig.V-2: MCT4 expression in association to established histologically determined subtypes of hPDAC 

(A) Tabular overview over established subtypes in the study collective (D.N. = double negative, G-F = 

gland-forming, N-G-F = non-gland-forming) (B) Association of gland-forming (G-F) and non-gland-

forming growth (N-G-F) with IHC determined subtypes (C) MCT4 expression in gland-forming (G-F) 

and non-gland-forming (N-G-F) tumors (D) MCT4 staining with stromal emphasis of outlier in C 

(marked by red circle) (E) MCT4 expression in IHC determined subtypes (F) H.E. stained histology of 

outliers in E (marked by red circle) 
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Distinct spatial expression patterns of KRT81 and MCT4 suggest specific biological meaning 

The quantitative data derived from the study collective was indicative of an association of MCT4 and 

KRT81. However, a closer look into corresponding tumor packs in the differentially stained slides 

revealed that although KRT81 and MCT4 were correlated in their quantitative expression levels, they 

were merely expressed spatially separated from each other. In pancreatic cancer the subcellular 

distribution of KRT81 in tumor cells is cytoplasmic with often pronounced staining at the cellular 

borders. Staining for MCT4 mainly reveals membranous color reactions, as it is a substrate transporter 

located in the outer cell membrane. Nevertheless, mainly in stromal or some tumor cells also a 

cytoplasmic staining of MCT4 can be found. These considerations lead to the observation that 

membranous staining for MCT4 is associated with no or at least only cytoplasmic staining for KRT81. 

Should KRT81 staining be pronounced at the tumor cell borders, MCT4 staining was mainly found in 

the cytoplasm. In tumor cell clusters that were both MCT4 and KRT81 positive, the regions of intense 

staining for these two biomarkers were not overlapping but would be separated (see Fig.V-3 A-C). 
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Fig.V-3: Spatial distribution of KRT81 and MCT4 staining (grey scale-bar equals 75 µm) (A-C) 

Examples of corresponding tumor nests stained with H.E. (left) and (from left to right) for KRT81 and 

MCT4 and their respective masks that illustrate the differential expression patterns of KRT81 and 

MCT4 

 

4. DISCUSSION 
 

In this work, an association between spatial MCT4 expression (measured in IHC) and known subtypes 

of human PDAC was shown. MCT4 expression coincides with non-gland-forming growth of tumor 

cells and levels of KRT81 expression. Therefore, it is demonstrated that increasing levels of MCT4 

expression are indicative of more malignant subtypes and worse survival. This is congruent with 

results published previously for pancreatic cancer (Baek, Tse et al. 2014, Kong, Nøhr-Nielsen et al. 

2016). Furthermore, it has been shown that there is a significant overlap between morphologically 
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determined subtypes (S, Wilson et al. 2020) and subtypes defined by IHC expression (Noll, Eisen et 

al. 2016, Muckenhuber, Berger et al. 2018).  

This data classifies MCT4 as a biomarker not only indicative of metabolism but further disease 

defining characteristics. The prognostic value of MCT4 expression has been described for tumor as 

well as stromal expression (Baek, Tse et al. 2014). Therefore, MCT4 may even have advantages over 

mere morphological or IHC based subtyping as the discussed outliers (Fig.V-2 D & F) demonstrate. 

Limits in terms of diagnostic meaning of this study can be seen in the relatively small sample size and 

the retrospective study design.  

 

5. CONCLUSION 
 

To conclude, it has been shown by these evaluations and literature that MCT4 can be considered a 

valuable biomarker with diagnostic and prognostic value for human PDAC. Furthermore, the previous 

chapters of this work highlighted the relevance of MCT4 as an ex-vivo reference for metabolic 

imaging. This leads to the conclusion that in the wake of individualized medicine and tumor 

characterization, the ongoing establishment of metabolic imaging in standard diagnostics and pressing 

need for substantial predictive biomarkers in PDAC, the immunohistochemical determination of 

MCT4 expression status will gain meaning in the future. 

 

VI. CONCLUSION 
 

In this work the feasibility and biological meaning of 1-13C-pyruvate MRSI in endogenous murine 

PDAC was evaluated. As a potentially powerful metabolic imaging modality measuring the pyruvate-

to-lactate conversion rate in vivo, 1-13C-pyruvate MRSI has already been translated into the studies of 

human prostate cancer (Nelson, Kurhanewicz et al. 2013, Tayari, Heerschap et al. 2017). Nevertheless, 

its broad application in human PDAC will be dependent on diagnostic power due to high technical 

requirements and elaborate execution of data acquisition. Therefore, this work sought to identify the 

biological basis of the measured conversion rate and found that in-vivo data could be referenced to 

MCT4 expression of pancreatic tumors. This positioned MCT4 at a theoretical lever, as the future 

relevance attributed to 1-13C-pyruvate MRSI could be dependent on the diagnostic specificity of 

MCT4 and its future meaning as a biomarker in human PDAC. Therefore, Parts Two (IV.) and Three 

(V.) sought to further characterize this biomarker with its ties to morphologic determinants and its 

expression patterns in human PDAC. It is concluded that MCT4 is a viable candidate for a prognostic 
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ex-vivo biomarker for human PDAC and a suitable reference for 1-13C-pyruvate MRSI data. 

Nevertheless, several identified obstacles will have to be overcome on the way to clinical application 

of 1-13C-pyruvate MRSI. These are mainly summarized by the vast structural heterogeneity of human 

PDAC, its low tumor cellularity compared to murine models, its high recruiting of desmoplastic 

stroma and its low as well as locally differing perfusion. These factors combined will render 

interpretation of 1-13C-pyruvate MRSI data complex in human PDAC. Therefore, I believe that the 

implementation of multimodal imaging protocols involving the assessment of morphologic, micro-

structural and metabolic determinants and the consideration of the patients’ specific clinical data will 

be the only way to sensibly characterize human PDAC in vivo and thereby set directions for individual 

therapeutic options. 
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VII. APPENDIX 

1. CONTRIBUTIONS 
 

Undoubtedly science is a team effort. That is why contributions of people working with me are noted 

and acknowledged below: 

IV. Part One  

Irina Heid and 

Geoffrey Topping 

Parts of 1-13C-pyruvate MRSI measurements 

Sybille Reder and 

Markus 

Mittelhäuser 

18F-FDG PET imaging 

Katja Peschke IF staining of cell culture 

Katja Steiger and 

Iryna Skuratovska 

Immunohistochemical staining of histological slides 

Irina Heid Valuable scientific input regarding the planning and implementation of the 

experiments as well as data interpretation 

Rickmer Braren Valuable scientific input regarding interpretation of obtained data 

  

VI. Part Two  

Katja Peschke Maintaining and IF staining of cell culture 

Katja Steiger and 

Iryna Skuratovska 

Immunohistochemical staining of histological slides 

Irina Heid 

 

VII. Part Three 

Katja Steiger and 

Iryna Skuratovska 

Alexander 

Muckenhuber 

Irina Heid 

Valuable scientific input regarding data interpretation 

 

 

Immunohistochemical staining of histological slides 

 

Providing TMAs & subtype classification 

 

Valuable scientific input regarding experimental setup and data 

interpretation 

Table VII-1: Contributions 
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2. MAGNETIC RESONANCE IMAGING 
 

Protons are positively charged and spin around their own axis. When a magnetic field is applied the 

spins align parallel or anti-parallel with the magnetic field. Slightly more spins align parallel because 

the parallel alignment is a state of lower energy. The energy difference between the parallel and anti-

parallel state is proportional to the gyromagnetic ratio, Planck constant and the strength of the 

magnetic field. Therefore, the stronger the applied magnetic field is, the more spins are aligned 

parallel to the magnetic field. That is why the sum of all single spins in a magnetic field can be 

described as a vector (sum of all parallel and anti-parallel vectors) parallel to that field. 

For the spinning proton is a moving charge it can induce a current in a receiver coil. The frequency of 

that current is the same as the precession frequency of the spin in the magnetic field (= Lamor 

frequency). The Lamor frequency is proportional to the gyromagnetic ratio and the magnetic field. 

Therefore, the frequency of the induced current is lower in a magnetic field with lower magnetic flux 

density and higher in a stronger magnetic field.  

MRI is based on the principle that a body is introduced to a steady magnetic field (B0). The spins align 

with the magnetic field: A magnetization parallel to the magnetic field (Mz) is being built up.  

By applying a radiofrequency-pulse at Lamor frequency the spins can be excited. By adjusting power 

and duration, the magnetisation may be flipped e.g. 90° into the xy-plain (Mxy). There, the spins 

induce a current into a receiver coil with Lamor frequency.  

Relaxation describes in which manner the spins return to their steady state after the excitation. With 

increasing time magnetisation returns into the Z-direction. As the projection of the magnetisation on 

the xy-plain decreases the MR-signal diminishes. The time constant describing the velocity of the 

longitudinal relaxation (increasing Mz) is called T1. The MR-signal decreases faster than Mz is 

returning. This is due to transversal relaxation. After the excitation spins precess in coherence with 

each other. Due to spin-spin interactions the spins dephase. The time constant describing the loss of 

Mxy is called T2.  

As the relaxation of Protons in macromolecules is very fast, only protons of water molecules generate 

the vast majority of measurable MR-signal.  

 

2.1 T2-WEIGHTED MRI 
 

The sequences of T2-weighted images are designed in a manner that the signal is mainly influenced by 

transversal relaxation. Echo-Time (TE) describes the time span from the excitation of the spins to the 



	 66	

measurement of the echo. The T2 of tissues is different due to their structure. They mainly range from 

30-100 ms. To receive an image where the contrast is mainly based on the differences in transversal 

relaxation rates a measurement is suitable where some tissues show high relaxation whereas others 

show little transversal relaxation. As transversal relaxation is the main cause for MR-signal loss, TE is 

a good parameter to adjust the influence of T2 on image contrast. However, T1, proton density and 

other properties (perfusion, diffusion etc.) still have a large influence on the generated image. 

 

2.2 DIFFUSION-WEIGHTED MRI 
 

Diffusion-weighted imaging (DWI) measures the displacement of water molecules in tissue. As the 

displacement is dependent on the microstructural composition of tissue (such as cell membranes, the 

distribution of cellular compartments, perfusion and macromolecules), DWI may give important 

insights into the structure of PDAC.  

Diffusion of molecules is caused by random collisions of molecules in movement. Fick’s law 

describes diffusive flux being dependant on the concentration gradient and the diffusion coefficient. 

But even in thermal equilibrium random movement of molecules (Brownian Motion) causes non-

directional diffusion, however there being no net flux on a bigger scale.   

Generally, in order to generate a Spin Echo (SE) two RF pulses are applied. The first RF pulse tilts 

magnetisation in the transverse plain. There spins dephase as described above. Due to inhomogeneities 

of the external magnetic field some spins precess faster (if they are exposed to a greater local magnetic 

field) than others (T2*). When a 180° RF-pulse is applied this system reverts. The spins that precess 

faster are now not in front of the other spins but behind. But as the T2*-effects are still present, this 

system is symmetrically reversible. Once the faster precessing spins “catch up” the spins show phase 

coherence. A SE can be measured as described by Brewer et al. in 1984.  

When gradients are applied, spins at different positions experience different magnetic fields and 

therefore show different precession. If spins diffuse, the above-mentioned reverse symmetry is 

decreased. The MR signal of the SE is reduced. It can be followed that the more spins diffuse the 

smaller the measurable MR-signal of the SE gets as explained by Carr et al. in 1954. 

There are three major possibilities to influence the effects of diffusion on the MR-signal: Strength (G) 

and duration (∂) of the applied gradients and the time interval between them (∆). 

This sensitivity to diffusion is quantified by the b-value as defined by Stejskal et al. in 1965: 
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! = !! ∗ !! ∗ !!(∆ − !/3) 

Formula VII-1: b-value 

 

By acquiring multiple diffusion-weighted-images with differing b-values, the apparent diffusion 

coefficient (ADC) can be calculated. Thereby, the influence of other contrast determining parameters 

is drastically diminished.  

The b-value quantifies the influence of diffusion on signal intensity. The higher the b-value, the more 

diffusion weighting is performed. With higher b-values the signal intensity decreases. There are 

deviations from the expected monoexponential shape of signal decay in low and high b-values. 

Considering low b-values, this deviation from the expected shape of the curve can be explained by 

flowing blood. This entails the possibility to estimate perfusion of the tissue (Riches, Hawtin et al. 

2009). Deviations in the range of high b-values can be explained by the separation of extra- and 

intracellular (and intranuclear) compartments with different diffusion properties (Mulkern, Barnes et 

al. 2006). 

Above, Brownian motion was described as a random motion of all molecules proportional to 

temperature. If the movement is truly random and a large number of molecules are observed, the 

squared displacement of molecules is proportional to the observation time as described by Einstein in 

1905. The distribution of the squared displacement can be characterized by a Gaussian curve. In-vivo 

free isotropic diffusion is impaired by bio-membranes and structural proteins. Therefore, the mean 

squared displacement of water molecules is reduced. Conclusively obstacles of diffusion that result in 

reduced ADC values can provide valuable insights into the architecture of the tissue. 

A basic pulse sequence of DWI is described above. Gradients are used so that spins of different 

position, precess at different frequencies. If there were no movement of spins, phase coherence would 

be restored after the second gradient pulse. An intense SE would be measured. However, all spins 

show random movement. The further they get displaced the stronger the phase dispersion gets. This 

leads to a decrease in signal amplitude depending on displacement and therefore apparent diffusion. 

As the squared displacement is proportional to the observation time, the observation time is one factor 

to increase diffusion weighting. This is expressed in the b-value (see above). When multiple signal 

amplitudes are measured with different b-values, a bi-exponential model can fit the ADC-value 

(Langkilde, Kobus et al. 2018). 

 

! ! =  !! ∗ !!!"#∗! 
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Formula VII-2: 2-Parameter model of ADC 

 

In tissues, there are structural barriers that hinder free isotropic diffusion. Membranes, organelles and 

macromolecules may be considered the most prominent. Knowledge of a tissues’ content of such 

barriers provides valuable insights. The more barriers a tissue contains, the lower its ADC value is set 

out to be. That is why solid cancerous tissue often displays lower ADC values than healthy tissue. In 

healthy tissue, extracellular matrix allows water molecules to diffuse with little obstacles. In cancerous 

tissue the impact of cancer cells increases the hindering aspect of cell membranes on diffusion. Cancer 

cells show a different shape, tighter growth pattern and therefore higher density than stroma cells. 

Especially in mPDAC activated stroma cells and immune cell infiltration can lead to relevant 

deviations from that simple consideration. Furthermore, water filled ductal structures may increase 

ADC values measured in neoplastic tissue. Furthermore, fibrosis, edema, necrosis and intratumoral 

vessels play important roles considering diffusive restriction.  

As described above the observed signal decay observed in spin echo experiments is mainly attributed 

to diffusion.  But there are also other contributors. Different compartments (intracellular, extracellular, 

intravascular) show varying displacement of spins. Blood flow displaces spins faster than the diffusion 

rate in the extravascular space. Therefore, ADC values fitted with low b-values include influence of 

microvascular perfusion, whereas ADC values fitted with high b-values will only show marginal 

influence of perfusion. In the following a parameter (ADCperf) value indicative of microvacular 

perfusion was proposed (Teruel, Goa et al. 2016). 

 

!"#!"#$ =  !"#!,!"" − !"#!"",!"" 

Formula VII-3: ADCperf 

Equivalently in this work a perfusion sensitive ADC will be referred to calculated as shown below: 

!"#!"#$ = !"#!",!"# − !"#!"#,!"#$ 

Formula VII-4: ADCperf equivalent 
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Based on a similar proposal the simplified perfusion fraction = SPF (Cao, Suo et al. 2017) is 

calculated as follows: 

!"# =  !"#!"#$/!"#!",!"# 

Formula VII-5: SPF 

 

2.3 1-13C-PYRUVATE MRSI 
 

1-13C-pyruvate MRSI is an imaging modality that exploits the variation of resonance frequency of 13C 

when it is incorporated in different molecules (such as pyruvate, lactate and alanine). Thereby, the 

conversion from pyruvate (that is injected) to lactate (and alanine) can be measured over time. As 

these reactions lie at an important fork in metabolism, the characterization of these metabolic 

properties may have important implications for PDAC classification. 

The differentiation of 1-13C-Pyruvate and its metabolites is possible as the electrons surrounding the 
13C-nuclei partially shield the nuclei from the external applied magnetic field and thereby changing its 

local properties. This results in changes of resonance frequencies of the nuclei dependant on local 

electron density, which is determined by bindings and geometry of the examined molecule. 

As resonance frequencies are proportional to the gyromagnetic ratio and the strength of the magnetic 

field, local changes of the magnetic field result in changes of resonance frequencies. 

This variation of resonance frequency caused by different incorporation of the same nuclei in different 

molecules is referred to as chemical shift (Harris, Becker et al. 2002). In the analysed spectra of this 

work the relevant metabolites 1-13C-pyruvate, 1-13C-alanine and 1-13C-lactate are displayed. 

The receivable signal is dependent on degree of polarisation, concentration of the metabolites, flip 

angle, repetition time, number of RF-pulses and T1-relaxation time.  

With the development of dynamic nuclear polarisation (DNP) it has been rendered possible to gain 

highly polarized nuclear spins in solution (Ardenkjaer-Larsen, Fridlund et al. 2003). This has made in 

vivo studies with 13C-labeled molecules possible by overcoming the lack of sensitivity resulting from 

low concentrations compared to 1H. To achieve the described hyperpolarized state of the nuclear spins, 

1-13C-pyruvate is mixed with a stable radical, (which provides free electrons) and cooled to ~1K with 

a high magnetic field applied. Then microwave irradiation transfers the free electrons’ polarisation, 

which at this temperature and magnetic field approaches 100%, to the 13C-nuclei (Ardenkjaer-Larsen, 

Fridlund et al. 2003). The dissolution process with heated TRIS-buffer yields a solvent at room 

temperature with considerable polarisation left that is directly injected into the mouse’s tail vein and 
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enables time resolved chemical shift imaging. For polarisation is lost in dependence to T1-relaxation 

time, imaging of 1-13C-pyruvate is limited to fast reactions, including its reduction to lactate, its 

transamination to alanine or its decarboxylation catalysed by PDH. 

1-13C-pyruvate is a common substrate for metabolic studies, for it has a relatively long T1 relaxation 

time, good solubility in water, its uptake and reaction kinetics are fast and it plays a central role in 

glycolytic metabolism.  

After being injected into the tail vein, 1-13C-pyruvate is transferred into the cells mainly via the 

monocarboxylate transporter 1 and 4 (MCT1 & MCT4). Then it can either be reduced to lactate, 

transferred to alanin or decarboxylated and enter the TCA-cycle. These first steps occur in every tissue 

of the animal. Of particular interest is the conversion to lactate. Lactate then is mainly being secreted 

by the tissue (e.g. liver, kidney, erythrocytes, tumor) and enters the blood flow again. Cancerous tissue 

which is known to use glycolysis for energy supply even in the presence of oxygen (aerobic 

glycolysis) often shows higher expression/activity of MCT1 and LDHA is therefore expected to 

absorb more lactate and metabolize it further. That is why tumors maybe could be characterized by 

their lactate signal as it hints MCT1, MCT4 and LDHA expression, which are important variables in 

tumor evaluation as described above. 

An approach to quantify the conversion of 1-13C-pyruvate to 1-13C-lactate is the AUClactate/AUCpyruvate 

(AUCl/AUCp). As the utilized multiframe CSI (=1-13C-pyruvate MRSI) sequence has a temporal 

resolution of 5-6 s the “area under the curve” is approximated by the cumulative sum of the signal 

intensities at different time steps. 

A direct comparison of scans with differing SNR with a fixed time span is not sensible due to the 

calculation used to approximate the AUCl/AUCp. The cumulative sum of signal of a measurement 

with a low SNR and short signal over noise is proportionally more influenced by noise than a scan 

with high a SNR and longer signal over noise.  
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Fig.VII-1: Introduction to 1-13C-pyruvate MRSI (A) 1-13C-lactate abdominal image of a mouse (B) 

Spectrum of a tumor region acquired after injection of hyperpolarized 1-13C-pyruvate. The peaks from 

left to right correspond to 1-13C-lactate, 1.13C-alanine and 1-13C-pyruvate (C) Temporal display of the 

signal intensity of 1-13C-pyruvate and 1-13C-lactate acquired by multi-frame CSI (D) Coloured 

visualization of the AUC of 1-13C-lactate (blue) and 1-13C-pyruvate (red) 
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3. POSITRON-EMISSION TOMOGRAPHY 
 

PET imaging may localize positron emission in tissue after the injection of a positron-emitting 

nuclide. As in this work, mainly the role of glycolysis is analyzed, 18F-FDG PET is an established 

platform to quantify PDAC’s glucose uptake. In this chapter PET Imaging and 18F-FDG are 

introduced. 

PET is a functional imaging modality, using the pharmacokinetic properties of labelled tracers to 

gather functional information about the tissue of interest.  

It uses the characteristics of β+-decay of radionuclides in the body. An unstable nucleus emits a 

positron when a proton decays into a neutron, a positron and a neutrino. In the body the positron has a 

very limited life span: After loss of kinetic energy it will bind an electron just before annihilation. 

Annihilation describes the process of the mass of the electron and the positron being completely 

transformed into electromagnetic energy. This energy is emitted with photons. In the vast majority of 

cases it is two photons with an energy of 511 keV are sent out in the opposite direction because of 

energy and momentum conservation. Given this annihilation process, the described geometric pattern 

allows localisation of the annihilation site, which is due to the short-lived positron close to the 

emission site of the photon. 

Nuclides with β+-decay that are frequently used for PET are amongst others 18F, 11C, 13N, 15O, 62Cu, 
64Cu, 68Ga and 82Rb. To produce a PET tracer, molecules of biological relevance are labelled with a 

radionuclide. The PET tracer is injected into the body. Depending on its pharmacokinetic it will be 

distributed in the body. Tissues with tracer accumulation will show a higher number of annihilations 

than parts with tracer depletion. 
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Fig.VII-2: Principles of PET  

18F decays via Positron-emission (HL = 110 min) as explained in further detail above. Glucose 

labelled with 18F (=18F-fluor-2-desoxy-glucose) is commonly used as PET tracer as it exploits the 

diagnostic possibilities that malignant tissues often have an enhanced glucose metabolism. 

Among others, the widespread KRAS mutations lead to increased glycolytic flux, underlining the 

relevance of 18F-FDG as a tracer for PDAC. First, it is transported by convection within the blood 

stream reaching tissues during the enrichment phase. Second, it is absorbed by cells via glucose-

transporters. Then it is phosphorylated but cannot be metabolised by glycolytic enzymes downstream 

of this reaction. Due to the phosphorylation it is also hindered from exiting the cell (= metabolic 

trapping). Therefore 18F-FDG accumulates in tissues of increased glycolytic flux. 

However, multiple limitations arise from these thoughts. First, increased 18F-FDG uptake is not 

specific to malignancies. It is also found in inflammatory processes (Murakami 2011). Therefore it is 

not surprising that uptake values often show non-satisfactory separation between PDAC and chronic 

pancreatitis due to similar molecular pathways being activated (Evan, Hah et al. 2017). 
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4. IMAGE ANALYSIS TOOL 
 

4.1 INTERFACE 

 

Fig.VII-3: Interface of the Image Analysis Tool 

 

4.2 PRE-ANALYSIS 
 

After reading the image, preprocessing can be performed if wanted. Using the tool, it can be chosen 

from linear normalization and Gaussian filtering.  

Linear normalization in this context adjusts the pixels in a desired range. This range can be adjusted 

using the desired minimum and maximum values. It is calculated using the following formula:  

I! = I −Min!
Max! −Min!
Max! −Min!

+Min! 

Formula VII-6: Linear normalization 
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where In is the new pixel intensity, I is the old pixel intensity, Maxn is the new maximum value (e.g. 

255), Minn is the new Minimum value (e.g. 0), Maxo is the old maximum and Mino the old minimum 

value. 

Gaussian filtering is a filtering method to smooth a picture and deprive it of single noisy pixels, 

unwantedly influencing quantification results. It is performed with the built-in function 

imgaussfilt(I,s), where the function filters an Image (I) with a 2-D Gaussian smoothing kernel with a 

standard deviation of s (sigma). 

 

4.3 ANALYSIS OF H&E STAINED IMAGES 
 

The analysis of H.E. stained images in this context was implemented to analyze the number of nuclei 

and cellular area in the image as well as receiving information about Haralick’s texture parameters. 

 

4.3.1 Cellularity 
 

As proposed by Konstandiou et al. (Konstandinou, Glotsos et al. 2018) segmentation for nuclei was 

implemented by transforming the RGB image to grayscale. Then a Gaussian filter is applied. 

Additionally specific thresholding for nuclei was implemented: In order to do that the image was 

thresholded at x different thresholds. Values were plotted and the threshold of the plateau chosen. 

Then small regions out of 1.5 standard deviations were excluded to account for false positive regions. 

An output image using that threshold was generated including mostly the segmented nuclei. 

 

4.3.2 Texture analysis 
 

In the image analysis tool the GLCM derived texture descriptors Contrast – measures the local 

variations in the gray-level co-occurrence matrix – Correlation – measures the probability occurrence 

of the specified pixel pairs – Angular second moment – a marker of homogeneity – and homogeneity 

– measures the closeness of distribution in the GLCM – were included using the function 

graycoprops() by MATLAB. 
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4.4 ANALYSIS OF IMMUNOHISTOCHEMISTRY 
 

In the analysis of immunohistochemistry positive pixel count has an important status as it reliably 

quantifies the areal stain present. Areal stain does not necessarily correlate with antigen presence, 

especially when thresholding is done poorly or incoherently. That is why different implemented 

thresholding techniques are presented below as well as image processing for positive pixel count. As it 

often arises in related projects, the measurement of vessel lumina in CD31-stained images is also 

implemented in the tool and explained below. 

 

4.4.1 Thresholding 
 

Thresholding is the key step when quantifying immunohistochemical data using positive pixel count. 

Its importance and susceptibility to error is described in literature (Johnson and Walker 2015) but not 

broadly acknowledged. Little differences in defining a threshold can change results as a relevant 

subpopulation of pixels can be discarded or falsely included. That is why tedious attention to same 

laboratory conditions, antibodies, incubation times is crucial but can be in vain if thresholding is done 

poorly. In the Image analysis tool, the user can choose between manual thresholding (using the same 

threshold for a study set is imperative) and automated thresholding. As this suggests automated 

thresholding does not use the same threshold in every analysis but defines a threshold from a plot of 

the prospective number of positive pixels at different thresholds. This plot equals a cumulative 

threshold spectrum (CTS) as proposed by Johnson et al. If two subsets are compared, also their CTS 

may be compared for a more robust discrimination. If automated threshold is clicked, the threshold t-

units after the steepest point of the CTS (in presetting t = 5) is chosen. 
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Fig.VII-4: Illustration of thresholding arbitrariness and implemented automated thresholding (A) 

depicts possible and justifiable thresholding range by an individual examiner (B) Illustration of 

influence of differing thresholds on PPC (C) Illustration of Offset by t from turning point 

 

4.4.2 Cellularity 
 

As the hematoxylin stain of nuclei is blue, a nuclear image is best generated removing the red color 

portion of the image. Subtracting the intensity values of the red channel from the ones of the blue 

channel of the image after Gaussian filtering does this. Using a Canny edge detection algorithm and 

filling the regions surrounded by the classified edges delivers a clear image showing nuclei. Their 

number is evaluated as well as their size and circularity. With this procedure a good correlation (r = 

0.995, 95%-CI: 0.976-0.999) and little deviation (Mean Error = 4.9%) between manual and automated 

count was found.  

Cellularity is then used to describe the number of pixels in relation to all that are occupied by nuclei. 

Histogram data such as Mean, Median, Standard Deviation, Skewness and kurtosis as well as textural 
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data (Contrast, Correlation, Angular second moment, Homogeneity; see IV.2.6.22) can be selectively 

drawn from the nuclei. 

 

Fig.VII-5: Workflow for assessing cellularity in images of IHC (A) Workflow (B) Exemplary images 

respective to workflow depicted in A (indicated by arrows) 

 

4.4.3 Quantification of Immunohistochemical Staining 
 

Usually immunohistochemical stain is quantified using a positive pixel count (PPC). Thereby it is 

postulated that areal stain is proportional to antigen presence. It has been shown that this assumption is 

not entirely correct. However PPC’s performance is satisfactory when evaluating expression on a 

larger scale or entire tumor region as in our context. It is implemented by counting all pixels classified 

as positive via thresholding methods explained above. Furthermore, staining can be quantified using 

staining intensities. This approach however is prone to error caused by inhomogeneous noisy staining. 

That is why only PPC is used to describe antigen expression in this study. 

 

 

4.5 MEASURING VESSEL SIZE IN CD31-STAINED IMAGES 
 

In order to be able to assess sizes of vessel lumina in perfusion-fixed CD31-stained images a function 

was added to the analysis tool. In order to achieve that 2 masks are generated from the read image. 

One is generated using thresholding for the CD31 staining. This one can also be used to do a PPC of 

the CD31 staining that can be proportional to vessels present. This is helpful if the tissue is not 

perfusion fixed. Applying Canny’s edge detection algorithm on an image that was segmented for 
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CD31 positive areas generates the second mask. By filling out the holes generated by the edge 

detection a binary image is rendered. Now pixels can be assigned a value conditional to their inclusion 

in positive areas of the first mask delivering an image depicting only vessel lumina: Their size and 

shape can be quantified. In a validation run including 5 representative images stained with CD31, a 

good correlation between manually outlined lumina and automatically measured vessels was found (r 

= 0.987, 95%CI = 0.813-0.999, p = 0.002). 

 

 
Fig.VII-6: Approximating vessel size in CD31-stained images (A) Workflow (B) Exemplary images to 

respective workflow (context indicated by arrows) 

 

 

4.6 ANALYSIS OF IMMUNOFLUORESCENT (IF) ZYTOLOGY 
 

4.6.1 Counting Cells 
 

Automated counting of cells in culture requires adequate preprocessing, reliable automated 

thresholding and prudent interpretation of results. Regarding preprocessing, in this case a Gaussian 

filter is applied (sigma 0.2). 

Widespread thresholding methods for standardized analysis include Otsu’s method for thresholding. It 

works by minimizing interclass variance performing well separating cells and background. However, 

in the context of automatically counting cells, this method is prone to error caused by noise and the 

affiliated splitting of positive regions. In this script it is implemented using the built-in graythresh()-
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function of MATLAB. As depicted in Fig.VII-7, Otsu’s method of thresholding renders unsatisfactory 

precision (Mean difference to manual count of nuclei = 90 ± 90.8). 

Therefore another novel second order thresholding method was developed and validated. Second order 

in this context means, that the thresholding method relies on the prospective number of positive 

regions counted and determines the threshold using that information. The method was created from 

observing counting results at different thresholds applied. Using thresholds that are too low, grants 

stains of noise the status of positive regions and therefore the count will be numerous. Higher 

thresholds will also overestimate the cell count present, as negative regions within the nuclei will split 

these positive regions. Therefore, the threshold retrieving the lowest number of positive regions 

excludes the possibility of noise being unwillingly counted and negative regions dividing nuclei. To 

achieve this, cell counts are determined for a preset number of thresholds (x) specified by an x-

dimensional vector. Measurements are plotted for control and the first low point is determined using 

the function islocalmin(). This approach will be referred to as the Low-Point-Approach (LPA) further 

on. Merging regions remain a problem when only using LPA. That is why it was extended by a second 

thresholding technique: Using Canny’s edge detection algorithm, a binarized image was generated 

using the threshold found using LPA. Then a periodically increasing number of pixels is subtracted 

from the margins of positive regions. Thereby groups of nuclei are separated while single nuclei are 

still counted. If plotted the clear point of inflection indicates the truest cell count. The performance of 

these cell counting techniques was compared using a dataset of 25 representative images. LPA 

delivers results nearest to manual count (relative Difference (D) to manual count = 0.05 ± 0.05) while 

LPA + the subtraction approach (ST) works better than single LPA if there are large areas of 

overlapping nuclei.  
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Fig.VII-7: Counting nuclei in DAPI-stained images (A) Workflow (B) Exemplary illustration of LPA 

(arrow indicates automatically selected low point) (C) Illustration of different thresholds applied to a 

DAPI-stained nuclear image (upper left) – with increasing threshold (upper right à bottom left à 

bottom right) (D) Performance of different common automated thresholding methods 

 

4.6.2 Determining Signal Intensities and Positive Pixel Count 
 

Signal intensities (I) were taken as the grey values that were assigned to a pixel in the respective RGB 

channel. The tool allows extraction of the cumulative sum of all pixel intensities present, as well as 

referenced values such as intensity per nucleus or intensity per DAPI signal.  

Positive Pixel Count (PPC) is a parameter of present staining not being weighted by stain intensity. 

Therefore this parameter is robust to distortion by areas of particular high or low staining. This is 

biologically relevant as staining intensity is only to a limited extend proportional to antigen presence. 

PPC is implemented using a loop classifying pixels in positive or negative dependent of the threshold 

T. T can be assigned manually or using thresholding techniques described above.  
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Fig.VII-8: Positive Pixel Count on immunofluorescent stained cytology (A) From left to right: RGB-

image of Vimentin signal, single channel image of Vimentin signal and automatically thresholded 

image of Vimentin signal used for PPC (B) From left to right: RGB-image of MCT4 signal, single 

channel image of MCT4 signal and automatically thresholded image of MCT4 signal used for PPC 

(C) From left to right: RGB-image of E-Cadherin signal, single channel image of E-Cadherin signal 

and automatically thresholded image of E-Cadherin signal used for PPC 
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4.7 AVAILABILITY 
 

The complete MATLAB code for the preprocessing tool may be received upon request (under 

mm.moritz.mayer@gmail.com). 

 

5. ADDITIONS TO PART ONE 
 

The following paragraphs devote themselves to depicting more detailed analysis of the endogenous 

tumors. This includes data on growth kinetics, perfusion of the tumors as well as data on the influence 

of technical and biological parameters on imaging results. 

 

5.1 CHARACTERISTICS OF ENDOGENOUSLY GROWN MPDAC 
 

Compared to orthotopic mPDAC, endogenously grown tumors from this GEMM displayed a high 

inter- and intratumoral heterogeneity. We observed the juxtaposition of ductal and epithelial to 

mesenchymal and undifferentiated growth within a single tumor region. Furthermore, the tumors 

revealed large regions of desmoplastic stroma similar to human PDAC. Depending on genotype 

different growth kinetics could be observed using anatomic T2-weighted imaging: CKPlox mice 

developed a tumor with the minimal size of 5x5x5mm3 around the sixtieth day, CKP+/- and CKP+/-T 

mice took significantly longer (p < 0.001) and developed their tumors around the hundredth day (see 

VII.5.1). A weak correlation was found in CKPlox mice between the time since birth and the number 

of tumorous lesions found (r = 0.394, see VII.5.1). 

In anatomic T2-weighted MRI not only neoplastic growth could be evaluated. Solid tumor growth was 

displayed hypointense in T2w while preneoplastic lesions were displayed hyperintense. It was used to 

assess tumor growth, tumor morphology and thereby select suitable tumors for further imaging. All 

tumors identified by MRI were solid PDAC. Tumors were subdivided based on their tumor cellularity 

and morphology. Tumor cellularity was evaluated examining tumor cell clusters greater equal to 1mm3 

as established by Heid et al. (Heid, Steiger et al. 2017)Tumors with high tumor cellularity meaning 

over 40% of cells in a defined cluster were considered tumor cells were named PDAChigh. 

Equivalently, tumors in which tumor cellularity was below 40% were classified as PDAClow.  

The involved genotypes of GEMM CKPlox, CKP+/-, CKP+/-T all produced tumors with very high, 

medium and low tumor cellularity. Furthermore, all described phenotypes ranging from ductal or 

cribriform to sarcomatoid and undifferentiated were found without a perceptible connection to a 

certain genotype (Heid, Steiger et al. 2017). Mice of the genotype CKP+/-T produced preneoplastic 
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lesions with more cystic phenotype (IPMN). However, solid tumor growth led to histology 

comparable to mice of the genotype CKPlox and CKP+/-. As previously described (Heid, Münch et al. 

2022) tumor progression was accompanied by a loss of ductal structures and an increase of tumor 

cellularity. 

 

5.2 ASSESSMENT OF TUMOR GROWTH USING T2-WEIGHTED MRI 
 

T2-weighted MRI provides reliable information about tumor volume. It is also a safe tool to 

distinguish solid tumor growth from preneoplastic lesions. Solid tumor growth was displayed 

hypointense in T2w while preneoplastic lesions were displayed hyperintense. It was used to assess 

tumor growth, tumor morphology and thereby select suitable tumors for further imaging. 

In an effort to quantify the mere descriptive characteristics that were used to assess tumor growth, 

several parameters have been drawn from histogram analysis including mean, standard deviation (SD), 

relative standard deviation (%SD) and kurtosis. Preneoplastic lesions could be distinguished from 

solid tumor growth by SD with preneoplastic lesions presenting high SD because of high 

heterogeneity. Further quantitative differentiation of tumors based on histogram parameters was not 

possible. SD, relative SD and kurtosis merely showed minimal correlation with parameters for 

cellularity (ADC and histologic evaluation). Nevertheless, through good histological correlation, 

further texture analysis may prove valuable. 

 



	 85	

 

Fig.VII-9: Histogram analysis of tumors in T2-weighted MRI (A,B) T2-weighted abdominal scan (left) 

and the corresponding histogram (right) of the tumor region (circled red) 

As expected the growth kinetics of CKPlox differed significantly from CKP+/- and CKP+/-T. A tumor 

of the size of at least 5x5x5mm3 marked the start point of multimodal imaging. The age of the mice 

until they have developed such tumor is significantly lower in CKPlox than in CKP+/- and CKP+/-T 

(Fig. VII-10). 
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Fig. VII-10: Growth kinetics of mPDAC (A) displays days until development of a 5x5x5mm3 tumor 

corresponding to each genotype (B) displays association of number of separate tumor lesions and age 

of the mice (CKPlox) 

 

5.3 STRUCTURAL AND METABOLIC STABILITY OF ENDOGENOUS MPDAC 
 

The stability of tumors within 48 hours was evaluated using DWI, hyperpolarized 1-13C-pyruvate 

MRSI and 18F-FDG PET. As presented in chapter VII.2.2 the ADC value measures isotropic diffusion 

in tissue and is correlated to tumor cellularity. Therefore, it was evaluated as a longitudinal parameter 

to capture tissue composition in a protocol including 24, 48 and 72 hours as well as longer 

developments reaching up to 17 days (see Fig.VII-11). There was no relevant difference between the 

values of 0 and 48h (Mean Deviation = 1.3% ± 3,2%). Therefore, we consider the ADC constant 

within shorter time frames (see Fig.VII-11 A-C). During tumor progression a decrease in ADC – 

indicating an increase in cellularity – was observed in almost all tumors over a longer period of time 

(see Fig.VII-11 D-G). It was observed that at an ADC between 1100 and 1300 µm2/s*106 tumors 

reached a steady state from which a further decrease of ADC was not observed. At this state, necrosis 

or edema in some tumors led to a slight increase in ADC values again. Instability of the ADC 

parameter due to errors or changes in the experimental setup has been obviated through breathing 

control and central position of the tumor.  
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Fig.VII-11: Longitudinal DWI (A) Longitudinal measurements of ADC in endogenous PDAC over 24 

hours (B) Longitudinal measurements of ADC in endogenous PDAC over 48 hours (nregions = 17) (C) 

Longitudinal measurements of ADC in endogenous PDAC over 72 hours (D) Longitudinal 

measurements of ADC in a mouse with endogenous PDAC over 8 days (E) Longitudinal 

measurements of ADC in a mouse with endogenous PDAC over 9 days (F) Longitudinal 

measurements of ADC in a mouse with endogenous PDAC over 10 days (G) Longitudinal 

measurements of ADC in a mouse with endogenous PDAC over 17 days 
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As there are a couple of transient factors influencing metabolism and its measurement, metabolic 

stability over a time period of 48 hours was evaluated in this study using both hyperpolarized 1-13C-

pyruvate MRSI and 18F-FDG PET. Using hyperpolarized 1-13C-pyruvate MRSI only minor changes in 

AUCl/AUCp values were observed in a 1 hour (one mouse 0h: AUCl/AUCp = 0.297; after 1h: 

AUCl/AUCp = 0.285) to 48 hour time frame (see Fig.VII-12 E). Two mice were measured with 

hyperpolarized 1-13C-pyruvate MRSI spanning longer time frames. Within nine days one mouse was 

measured three times using 1-13C-pyruvate MRSI and showed a constant AUCl/AUCp in the tumor 

measured (Day 0: AUCl/AUCp = 0.653; Day 7: AUCl/AUCp =0.753; Day 9: AUCl/AUCp = 0.755). 

This finding is supported by the other tumor that also showed no major shift in AUCl/AUCp (Day 0: 

AUCl/AUCp = 0.527; Day 7: AUCl/AUCp =0.509; Day 9: AUCl/AUCp = 0.569). As in this dataset the 

1-13C-pyruvate signal intensities are correlated stronger to the AUCl/AUCp than hyperpolarized 1-13C-

lactate signal intensities, it is noteworthy that the 1-13C-pyruvate signal intensities have a stronger 

influence on the calculated AUCl/AUCp than the 1-13C-lactate signals especially considering 

measurements were performed with a SNR between 5 and 15. In this model, we observed an 

association between tumor size (measured in anatomic T2-weighted MRI) and AUCl/AUCp (r = 0.818, 

see VII.5.9, Fig.VII-17) in the evaluated tumors. This was not due to partial volume artifacts as no 

correlation between amount of voxels and AUCl/AUCp was seen (r = 0.045, see VII.5.5, Fig.VII-17). 

Nevertheless, the low resolution of a voxel in the metabolic imaging may limit detailed interpretation 

in this regard. That the tumors are metabolically stable after 48 hours is supported by the 18F-FDG 

PET measurements where the values were constant over 48 and 72 hours (see Fig.VII-12 D). 

However, one mouse that received these measurements was excluded because of severe weight loss 

that met termination criteria and a proportional drop in SUVmean.  
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Fig.VII-12: Longitudinal metabolic imaging (A) Exemplary coronar 18F-FDG PET scan (B) Axial 18F-

FDG PET image over the corresponding T2-weighted anatomic imaging (C) Hyperpolarized 1-13C-

pyruvate MRSI – lactate image (D) Longitudinal SUVmax values 48h (E) Longitudinal AUCl/AUCp 

values 48h 

 

 

5.4 ADCPERF AND MICROVASCULAR PERFUSION 
 

Microvascular perfusion plays a huge role in the tissues milieu. It can be assessed with low b-value 

ADC maps which are sensitive to capillary perfusion when compared to high b-value ADC maps 

which are mainly only sensitive to diffusion. Comparing those, the effects based on the capillary 

perfusion may be approximated. The values calculated for the ADCperf and SPF have limited meaning 

for this study, but interesting implications for future experiments, which will be further discussed 

below.  
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Fig.VII-13 – ADCperf and SPF (A) SPF of tumors plotted with subtypes indicative of tumor cellularity 

(B) Correlation of ADCperf with an exemplary marker of perfusion (AUCpyruvate of the tumor divided by 

AUCpyruvate of the Vena cava inferior 

 

5.5 POINT SPREAD FUNCTION AND PARTIAL VOLUME ARTIFACTS 
 

Point spread function and partial volume artefacts can have a great influence on the calculated 

AUCl/AUCp. The selection of ROIs was made considering such artefacts. It is to assume that high 

pyruvate signal intensities from the vessel lead to low AUCl/AUCp in tumors close to the vessel and 

that high lactate signal intensities in the kidney lead to higher AUCl/AUCp in tumors close to the 

kidneys.  

There was no correlation found between distance from the tumor margin to a major vessel, from the 

tumor centre to a major vessel, from the tumor margin to the kidneys or from the tumor centre to the 

kidneys (Fig. VII-14). This indicates that the selection of ROIs considering those artefacts did not add 

a systematic error in the data evaluation. 
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Fig. VII-14: Point spread function and partial volume artefacts (A) 1-13C-pyruvate abdominal image 

displaying point spread function artefact from Vena cava inferior (B) 1-13C-lactate abdominal image 

displaying partial volume artefact from kidney (C) Measurement of distances (red = center to vessel; 
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white = margin to vessel) (D) Measurement of distances (red = center to kidney; white = margin to 

kidney) (E-H) Correlation of AUCl/AUCp  with parameters expressing possible susceptibility to 

artefacts 

 

5.6 REFERENCE TISSUES 
 

In order to translate metabolic measurements into the clinic, interinstitutional comparability of the 

read-out parameters is vital. One first simple approach to reach better comparability would be to 

introduce a reference tissue. This was thought to reduce the influence of variables from one scan to 

another.  

A good reference tissue should bear information about the scan (e.g. signal  intensity). Furthermore, it 

should be of constant perfusion and metabolism as it should serve as a reference and thereby should 

exhibit as little variation in its own metabolism as possible. Additionally, it would be ideal if the 

reference tissue was on the same height as the tumor because then it can be also be evaluated from a 

Single Slice CSI.  That is beneficial as Multi-Slice CSIs are possible, but reduce either temporal or 

spatial resolution of the tumor slice. Three candidates that could fit to those descriptions were tested: 

Vessel (Vena cava inferior: signal intensity is directly linked to degree of polarisation, applied 1-13C-

Pyruvate and systemic conversion to lactate), kidney (shows constant perfusion and excretion, 

produces and takes up lactate in a constant manner) and muscle (shows low constant perfusion in rest). 

Exemplary, the vessel will be elucidated. Interindividually the AUCl/AUCp showed broad varying. 

This is to be expected as every mouse of course shows different systemic lactate production and 

therefore different intensities of lactate signal in the blood pool. Longitudinal vessel AUCl/AUCp 

however painted a different picture. Here the values are constant except for one measurement. This 

outlier was recognised as such and is not incorporated in the following reflections. This finding is 

supportive of the hypothesis that after 48h one can disregard major metabolic shifts without any kind 

of inflammation or other influencing variable and supports this study design retrospectively. 

Next, it was to determine with which analysis protocol the values showed little variation over time. 

Analysis with a bandwidth of 15 Hz and double interpolation showed the smallest variation.  

Afterwards, the AUCl/AUCp of the tumor was proportioned to the AUCl/AUCp of the vessel. There is 

a correlation of the combined ratios with tumor phenotype, however the combined ratios did not 

improve upon the longitudinal results.  

To conclude, kidney, vessel and muscle did not show a better stratification of tumors and are not 

necessary/electable as good reference tissues in 1-13C-pyruvate MRSI. 
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5.7 THE INFLUENCE OF NOISE ON THE AUCL/AUCP 
 

As described above, there is a possible association of the AUC-ratios and the noise level of the 

measurement. The calculation method of the AUCl/AUCp is supported by the fact that there has been 

no association found between the average noise level, SNR and AUCl/AUCp. 

 

 

 

Fig.VII-15: Association of noise and AUC (A) Association of SNR and AUCl/AUCp (B) Association of 

Noise level and AUCl/AUCp 

 

5.8 ANALYSIS OF SINGLE METABOLITE SIGNALS 
 

The AUCl/AUCp as an approximation for kPL is dependant on pyruvate and lactate signal intensities. A 

high AUCl/AUCp can be reached via a low pyruvate signal and/or a high lactate signal. Regarding 

chemical-shift imaging it is important to realize that there are certain limitations to that thought. As the 

pyruvate signal intensity is not only indicative of the tumors pyruvate uptake but also of tumor 

perfusion and is heavily influenced by partial volume of neighbouring vessels single metabolite 

analysis is necessary in order to reliably assess tumor biology. 

There is a stronger correlation between pyruvate signal intensities and AUCl/AUCp than lactate signal 

intensities and AUCl/AUCp. This means generally the pyruvate signal intensities have more influence 

on the calculated AUCl/AUCp. Interestingly, more cellular tumors show lower pyruvate signal 

intensities indicating poor perfusion. The smaller amount of absorbed pyruvate then demonstrates why 

tumors cannot really be distinguished by lactate signal intensities. Concluding, the acquired pyruvate 

signal intensity gives more information about the tumors perfusion and cellularity while the 
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AUCl/AUCp casts light on enhanced metabolic pathways. Values need to be normalized by signals in 

the vessel, accounting for experimental deviations in measurement.  

 

Fig.VII-16: Single metabolite analysis (A) displays the influence of cumulative sum of 1-13C-pyruvate 

(left) and 1-13C-lactate (right) signal intensities on the overall AUCl/AUCp (B) correlates the 

maximum of the signal intensities with the AUCl/AUCp (C) arranges the single metabolite signals with 

tumor cellularity 
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5.9 ASSOCIATION OF TUMOR SIZE, ROI VOXELS AND AUC 
 

As shown in Fig.VII-17 there is a strong correlation between tumor size and AUCl/AUCp. In order to 

demonstrate that this is not just due to spatial volume artifacts and properties of the imaging modality 

used, it is displayed that there is no association between the voxels included in a ROI and the 

measured AUCl/AUCp. 

 

 

 

Fig.VII-17: – The influence of tumor volume on the measured AUC (A) Correlation between tumor 

volume quantified by T2-weighted MRI and AUCl/AUCp (B) Plot of Number of Voxels (2x2x2mm3) in 

1-13C-pyruvate MRSI and AUCl/AUCp 

 

5.10 FLIP ANGLE 
 

A flip angle (FA) of 5° was used in the 1-13C-pyruvate MRSI sequence. This has been found to be a 

good trade off between initial signal intensity and saturation effects (see Fig. VII-18). Here, the same 

tumor was measured with a FA of 5° and 10°. Of course, the flip angle effects blend with cofounders 

such as differences in shimming, metabolic variability of the tumor and reactive perfusion differences. 

However, they underline the expected results and confirmed that a FA of 5° delivers acceptable 

results. 
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Fig.IX-18: Flip angle: (A) 1-13C-lactate image of the same tumor measured with a  FA of 5° (left) and 

10° (right) (B) Respective spectra acquired with 5° FA (left) and 10° FA (right) C) Maximal measured 

signal intensities and cumulative sums with different FA 

 

5.11 THE INFLUENCE OF PHYSIOLOGICAL PARAMETERS 
 

As the measurements are strongly dependent on physiological processes such as metabolism and 

perfusion, knowledge about the influence of physiologic characteristic of the mice is important. 
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5.11.1 Weight 
 

The mice showed normal growth kinetics. There were no mice with visible cachexia. Mice losing 

weight were examined daily and the experiment was ended with weight loss >10%. Mice with 

significant weight loss were not included in the main study. In the results of PET it has been shown 

that significant weight loss, has a direct influence on tumor metabolism and therefore can lead to 

inaccuracies of measurements. 

 

5.11.2 Blood glucose 
 

As the applied metabolic imaging modalities PET and 1-13C-pyruvate MRSI are involved in parts of 

glucose metabolism, measurements of the blood glucose levels were part of the standard protocol. 

Glucose measurements were performed before and after every scan. Comparing blood glucose levels 

before the scans of two subsequent scans 48h apart, it becomes apparent that the blood glucose level 

drops in most mice. This significant drop mainly affects mice with high-graded tumors disclosing their 

metabolic dysregulation and impaired adaptability. After 72h the blood glucose levels seem recovered 

as all mice had stable blood glucose levels. 

This supports a therapy study design with intervals of 48h or 72h.  

There is a relation between weight and blood glucose levels. Mice harbouring highly cellular tumors 

(PDAChigh) have significantly lower blood glucose levels (p = 0.0447). In part, tumors with high 

AUCl/AUCp showed lower blood glucose levels. 
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Fig.VII-19: Physiological parameters (A) Correlation of Blood glucose levels and weight and 

association of number of separate tumor lesions and blood glucose (B) Blood glucose levels plotted 

with markers of cellularity of the tumor with the highest cellularity in the mouse (C) Blood glucose 

and its correlation with markers of glycolytic metabolism 

5.12 SUMMARY 
 

The following figure summarized the proposed view of AUCl/AUCp as a multidimensional parameter.	



	 99	

 

Fig.VII-20: Proposed characterization of AUCl/AUCp as a multidimensional parameter (A) Shematic 

flow chart of metabolites and relevant substrate channels (lower cell = tumor cell, upper cell = 

activated stromal cell) (B) Illustration of multidimensionality of the AUCl/AUCp with it being 

influenced by cellularity and cellular metabolism combined 
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5.13 COMPARISON OF 2-PARAMETER MODEL AND 3-PARAMETER MODEL IN 
DWI 

 

36 Ptf1awt/cre;Kraswt/G12D;p53fl/fl mice with 69 PDAC tumor regions were subjected to DWI at small 

animal 7 T MRI system (Agilent/GE magnet with Bruker AVANCE III HD electronics, with a 31 mm 

ID volume coil from RAPID Biomedical). DWI was conducted as free breathing using single-shot 

EPI-readout with 12 b-values (12-1528 s/mm2), TE 34 ms, TR 5000 ms, voxel size 0.25x0.25x1 mm3, 

10 repetitions, scan time 10 min. DW magnitude image series with subsets of 12 (12-1528 s/mm2) or 9 

(12-722 s/mm2) b-values were fit for the apparent diffusion coefficient (ADC) in MATLAB. 

Separately at each pixel, 10 repetitions were fit as a single data-set with least-squares nonlinear 

models, parameterized by the ADC, signal at 0 b-value (S0), and optionally a constant offset (C): Two 

parameter (2P): S(b) = S0·e-ADC·b; three parameter (3P): S(b) = S0·e-ADC·b + C. Tissue was formalin-

fixed, H&E stained, and co-registered to ADC maps.  

Murine endogenous PDAC was reliably visualized with the established high resolution DWI sequence 

at 7 T. Data, fitted with 2P equation, were equal to that achieved at 1.5 T and revealed the same 

overall distribution of values between subgroups. There was no significant separation between 

PDACmed and PDAChigh using this method.  Inclusion of DWI with b-values above 800 s/mm2 and use 

of 3P fit, caused minor reduction of the qualitative image appearance but increased regional variance 

of ADC values leading to significant separation between groups by cellularity grade. Tumor cellularity 

subgroups had statistically significantly different mean ADC  values (10-3mm2/s): PDAClow = 

1.56±0.1; PDACmed = 1.34±0.1; PDAChigh = 1.26±0.1; (p<0.0001).  

Mean ADC value reliably distinguishes previously proposed and clinically relevant subgroups of 

different cellularity. Inclusion of high b-values (>800 s/mm2) and use of 3P model is necessary for 

reliable fitting of ADC maps. This observation may warrant further investigation in clinical scanners. 

 

5.14 T2*-MEASUREMENTS 
 

T2 is the time constant describing the loss of phase coherence of spins precessing in the transverse 

plain. Therefore, it is referred to as transverse relaxation. The properties of transverse relaxation are 

influenced by many factors: The two main factors are fluctuating changes of the local magnetic field 

experienced by single protons due to other adjacent nuclei and inhomogeneity of B0. That is why the 

measurable signal decays faster than the actual T2. The measurable apparent T2 is called T2*. 

Important pathological tissue properties posses the power to heavily influence the apparent T2. 

Macromolecules including collagen, proteoglycans and so forth influence nearby protons, shortening 

their T2. Also areas of reduced perfusion show shortening of apparent T2 as in contrast to oxygenated 
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proteins, deoxygenated haemoglobin and myoglobin are paramagnetic perturbing the local fields 

experienced by single protons and thereby accelerating their dephasation. 

To conclude, while measuring apparent T2 tumorous tissue could stand out by unphysiological low 

T2*. 

Orthotopically implanted mice with mesenchymal (m.) and epithelial (e.) tumors (in total: 6 mice; 11 

Tumor regions) were imaged and analysed. Single Slice Axial T2 FSE was acquired with 8 different 

TE (6; 18; 30; 42; 54; 66; 78; 90 [ms]) and 6 Repetitions. R2 was fitted and analysed with MATLAB. 

R2 was validated with 13C-urea phantom. In orthotopically implanted murine PDAC, tumorous tissue 

indeed displayed shorter T2* than healthy adjacent tissue. The read-out parameter R2(1H2O) could be 

correlated with the apparent diffusion coefficient (r = 0.695). T2* has been found to be directly 

proportional to ADC . 

It can be concluded, that measurements of apparent T2 can yield valuable insights into tissues’ 

microstructure.  
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