
Technische Universität München
TUM School of Computation, Information and Technology

Using Affine GARCH Models in Portfolio
Optimization

Ben Spies
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Abstract

This dissertation studies different aspects of a dynamic portfolio allocation problem in a discrete-
time environment where the underlying price process of the single risky asset follows the dy-
namics of an affine GARCH model. While prior to the work contained in this dissertation, a
closed-form solution was known only in the case of a simple Gaussian GARCH model and an
investor maximizing utility from terminal wealth via a constant relative risk aversion (CRRA)
utility function, we extend this approach in three different directions. Firstly, we modify the
setup to allow for consumption at intermediate time points before the end of the investment
period. In a second step, we generalize the result for utility from terminal wealth to the class
of hyperbolic absolute risk aversion (HARA) utility functions and relax an assumption on the
investor’s risk preferences. Finally, the model complexity is increased towards Lévy GARCH
models, which, besides a Gaussian innovation, include an additional jump component. The
optimal solution is available in approximate closed form in all these settings, enabling prac-
titioners to implement the corresponding strategies efficiently. In the realm of discrete-time
models, once renowned for the challenge of obtaining convenient solutions in the context of fi-
nancial applications, this dissertation thus makes valuable contributions by addressing broadly
formulated problems. We also investigate various facets of our topic numerically, discovering
that accommodating heteroscedasticity in the underlying asset price model is highly beneficial
for medium-term investors. In a study based on S&P 500 index data, a comparison of an in-
vestor implementing the strategy of a Gaussian GARCH model and another one following a
homoscedastic variant shows a significant difference in the performance related to both con-
sumption at intermediate time points and terminal wealth, in favor of the GARCH investor.
Similarly, we use the generalizations with respect to HARA utilities and the investor’s risk
preferences to calculate the efficient frontier for an investor in the Gaussian GARCH model as
well as in the homoscedastic variant and find that, given the same expected portfolio return,
the heteroscedastic investor is exposed to significantly less portfolio variance. On the other
hand, a comparison of a Gaussian and a non-Gaussian GARCH model within the framework of
consumption and investment suggests that an extension to the latter model, which incorporates
conditional skewness and excess kurtosis of log returns, has a relatively small impact. A differ-
ent type of analysis in the context of Lévy GARCH models with jumps, based on the concept of
wealth-equivalent loss (WEL), shows that correctly calibrated jump-free GARCH models can
mimic very well the strategies suggested by models incorporating jumps.
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6.2 The Lévy GARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Optimal Investment Maximizing CRRA Utility . . . . . . . . . . . . . . . . . . . 63

6.3.1 Maximum Utility Representation . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.2 Examples of Jump Innovations . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.1 Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.2 Methodology for Comparisons and WEL . . . . . . . . . . . . . . . . . . . 68
6.4.3 Results for the Merton Jump Model . . . . . . . . . . . . . . . . . . . . . 69
6.4.4 Results for the Normal Inverse Gaussian Model . . . . . . . . . . . . . . . 73
6.4.5 Results for the Variance Gamma Model . . . . . . . . . . . . . . . . . . . 75

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Conclusion 81

Bibliography 83

A Appendix for Chapter 2 87
A.1 Proof of Theorem 2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Appendix for Affine GARCH Models 89
B.1 MGF for the HN-GARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.2 MGF for the IG-GARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C Appendix for Chapter 4 95
C.1 Proofs from Section 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.2 Complementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.2.1 Additional Plots for Section 4.4.1: Sensitivity Analysis . . . . . . . . . . . 104
C.2.2 Alternative Parametric Choice . . . . . . . . . . . . . . . . . . . . . . . . 105
C.2.3 Wealth-Equivalent Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D Appendix for Chapter 6 113
D.1 Proofs from Sections 6.2 and 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



List of Abbreviations

ARCH Autoregressive Conditional Heteroscedasticity
CPPI Constant Proportion Portfolio Insurance
CRRA Constant Relative Risk Aversion
DP Dynamic Programming
EUT Expected Utility Theory
GARCH Generalized Autoregressive Conditional Heteroscedasticity
GBM Geometric Brownian Motion
HARA Hyperbolic Absolute Risk Aversion
HN-GARCH Affine Gaussian GARCH model introduced by Heston and Nandi (2000)
HS Homoscedastic model with constant conditional variance
IG-GARCH Inverse Gaussian GARCH model
MDP Markovian Decision Process
MGF Moment Generating Function
MJ Merton Jump, referring to a possible choice for a Lévy jump innovation
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1 Introduction

In the realm of portfolio optimization and investment decision-making, the expected utility
hypothesis is a fundamental assumption on the behavior of rational agents, stating that market
participants maximize their expected subjective utility. In an uncertain environment involving,
e.g., stochastic processes for the asset price processes, expected utility theory (EUT) provides
a framework for developing portfolio strategies and evaluating their performance. Within this
framework, the problem of finding the optimal portfolio selection has many facets, consisting
of various ways to measure utility and different model choices concerning the underlying price
processes.

In modern financial literature, two large model streams can be identified, interpreting the asset
price process either as a continuous or a discrete function of time. Mossin (1968) and Samuelson
(1969) made seminal contributions to EUT in a discrete-time setting, with their work also
offering insights into the abovementioned question of how to measure an agent’s utility. The
former approach considers an investor that may re-allocate the investments at intermediate time
points, but the strategy performance is evaluated solely at the end of the investment period,
called the investor’s (finite) time horizon. This formulation was extended by Samuelson (1969),
who included the possibility of consuming parts of the allocated wealth at each intermediate
time point. In continuous time, Merton (1969, 1971) pioneered the corresponding work in terms
of optimizing consumption and portfolio allocation, delivering explicit formulas for both parts
of the optimal solution. Merton’s generalization from the earlier to the later paper shows yet
another dimension of the problem formulation: To measure utility, he used the larger class
of hyperbolic absolute risk aversion (HARA) utility functions instead of the nested constant
relative risk aversion (CRRA) family. As a referral to this groundbreaking work, the problem
of maximizing expected utility derived from terminal wealth and consumption is also known as
Merton’s portfolio problem.

Concerning the underlying asset price process model, the two streams identified above divide the
research in the field into two parts. In his continuous-time approach, Merton (1969) relied on
a geometric Brownian motion (GBM), assuming that asset prices are log-normally distributed.
More advanced ways of modeling the underlying processes were brought up later, e.g., in the form
of stochastic volatility models. One of the most famous approaches in this regard was published
by Heston (1993), and the corresponding portfolio problem was solved a few years later by
Kraft (2005). The major advantage of continuous-time models was rooted in their analytical
tractability via Itô calculus and the abovementioned availability of closed-form solutions to
pricing and portfolio allocation problems. On the other hand, practitioners always have to
work with discrete financial data because of physical limitations, forming an inherent need
for discrete-time models that can be estimated from historical data more easily than their
continuous counterparts. On the side of discrete-time models, however, the famous modeling
approaches, particularly the celebrated ARCH and GARCH family introduced by Engle (1982)
and Bollerslev (1986), respectively, did not lead to convenient formulas for similar applications.

This challenge was overcome many years later when Heston and Nandi (2000) presented the
first member of a class that would henceforth be called the affine GARCH models – the setup by
Heston and Nandi (2000) is referred to as the HN-GARCH model. The crucial and characteris-
tic property ensures that the joint moment generating function (MGF) of the log-asset return

1



1 Introduction

and its conditional variance is exponentially affine in these two variables. Initially invented for
pricing purposes, models with this property bring about the advantage that closed-form solu-
tions are available for values of various financial derivatives. Within the world of affine GARCH
models, the research focused on extending the setup in the subsequent years. Christoffersen et
al. (2006) introduced a new model and used inverse Gaussian innovations instead of the normal
distribution in the HN-GARCH, and the corresponding model was named IG-GARCH after this
choice. A few years later, Christoffersen et al. (2012) incorporated jump components in both the
asset return and its volatility process. This feature, however, led to the loss of the crucial affine
structure of the MGF and thus came at a great cost. Two years later, Ornthanalai (2014) found
a formulation, based on the original HN-GARCH model, that allows for an additional (Lévy)
jump component in the asset price process and still preserves the affine form of the MGF – the
class of Lévy GARCH models was invented. Badescu et al. (2019) finally formulated a common
framework that includes the Gaussian HN-GARCH as well as the IG-GARCH as special cases
– the Lévy GARCH models, however, are not included. This setup has been generalized to a
multi-factor model very recently (Augustyniak et al., 2023).

As mentioned previously, affine GARCH models were mainly used for pricing upon their in-
vention. Heston and Nandi (2000) and Christoffersen et al. (2006) considered S&P 500 index
options, and Badescu et al. (2019) found closed-form expressions for prices of variance swaps.
Escobar-Anel et al. (2022a) were the first to exploit the availability of the MGF in a specific
affine GARCH model in the context of portfolio optimization, solving an EUT problem with
the investor deriving utility from terminal wealth via a CRRA function, with the underlying
asset price following HN-GARCH dynamics. Figure 1.1 illustrates the state of the art in the

model
complexity

consumption

terminal utility
complexity

C
R
R
A

N
O

HN

Figure 1.1: This Figure displays the state of the literature before the publications related to this dis-
sertation, with only the solution to the EUT problem for an investor with CRRA utility
in the HN-GARCH model available. This figure is extended as we proceed through the
chapters of this dissertation, see Figures 3.1, 4.1, 5.1, and 6.1

area of optimal investment (and consumption) within affine GARCH models at that time, with-
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out the contributions to the field presented in this dissertation.1 While at the intersection
of the HN-GARCH model and CRRA utility from terminal wealth without any consumption
at intermediate time points, the solution by Escobar-Anel et al. (2022a) existed, many con-
nected research questions were still unanswered. This specifically involves the different problem
dimensions described above and visualized in Figure 1.1:

• Is it possible to obtain closed-form solutions also allowing for consumption at intermediate
time points before the end of the investment horizon?

• Can the assumption of CRRA utility from terminal wealth be relaxed and generalized to
a larger class of utilities?

• Is it possible to solve the problem in a larger and more advanced class of models?

The present dissertation addresses all three of these questions, offering affirmative responses to
each. Figure 1.1 will be extended successively as we move through the chapters and tackle the
extensions, see Figures 3.1, 4.1, 5.1 and 6.1.

In the first step, we solved the EUT problem with a CRRA utility from terminal wealth for
the class of general affine GARCH models in the formulation of Badescu et al. (2019). As
specified above, this includes the non-Gaussian IG-GARCH model. Together with a numerical
study about the impact of non-Gaussianity in conditional log-asset returns on optimal portfolio
strategies, this work was published in Escobar-Anel et al. (2021) and accepted as the author’s
Master’s thesis within the elite doctoral program TopMath. Since the theoretical results are fun-
damental for the subsequent chapters, we include the essential parts of this project in Chapter 3
in this dissertation. Chapter 3 does not contribute to the evaluation of this dissertation.

In Chapter 4, we solve a general problem including the possibility of consumption at intermediate
time points while avoiding the undesirable scenario of consuming the entire wealth before the
end of the time horizon. There are three types of numerical analysis connected to the theoretical
contributions in Chapter 4: We first study the sensitivity of the optimal solution – referring
to consumption as well as risky allocation – to important model parameters and focus on the
impact of non-Gaussianity, leading to the eye-opening finding that conditional heteroscedasticity
matters more to investors than non-Gaussianity of log-asset returns. In another numerical
investigation, we use S&P 500 index data to show that investors following a homoscedastic
instead of a Gaussian GARCH solution may face substantial losses. A complementary analysis
of losses in the context of consumption on a theoretical level and results for different parameter
sets can be found in Appendix C.2.

Chapter 5 targets another extension of the previous setup, focusing on utility from terminal
wealth. While earlier results used CRRA utility functions to measure utility at the end of the
time horizon, we prove an extension for the more general class of HARA utilities. Furthermore,
we show that a restriction on the investor’s risk aversion can be relaxed, making a connection to
problem formulations in mean-variance (MV) theory and portfolio optimization based on higher
return moments possible. Our corresponding numerical study focuses on the efficient frontier
in the special case of MV optimization and shows, again based on S&P 500 index data, that an
investor implementing an HN-GARCH strategy, given the same expected portfolio return, faces
significantly less portfolio variance than another investor following a homoscedastic variant.

Chapter 6 extends the underlying asset price process type to Lévy GARCH models. We show
that in the presence of an additional Lévy jump component, after imposing a condition on
the model parameters, we can solve the corresponding EUT problem in closed form. This

1The increase in along the three axes is not meant to be continuous. We will have different sections in each
dimension that correspond to model features, e.g., there are only going to be the two values NO and YES on
the vertical axis, see Figure 4.1.
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1 Introduction

major theoretical contribution allows for a numerical investigation of the impact of jumps on
the optimal solution and strategy performance. We simulate data from several Lévy GARCH
models involving jumps and ask the question whether the jump-free Gaussian HN-GARCH
model, with the parameters estimated based on the simulated dataset, is capable of producing
comparable results. The awakening answer is that correctly calibrated jump-free models can
produce outstanding results and suffer only minimal losses with respect to the optimal jump
models.

By further developing the diagram in Figure 1.1 in the corresponding chapters, we visualize
the main theoretical contributions of this dissertation. In summary, our contributions are the
following:

• We present the first analytical solution to a consumption and investment problem in an
affine GARCH environment in Chapter 4, based on the following article, which has been
published as:

M. Escobar-Anel et al. (2024b). “Optimal consumption and investment in gen-
eral affine GARCH models.” In: OR Spectrum. doi: 10.1007/s00291-024-

00749-z

• In Chapter 5, we extend existing results for the EUT problem to the class of HARA
functions to measure utility from terminal wealth and consider previously excluded ranges
for the investor’s risk aversion, establishing a connection to MV optimization. A short
version of this chapter is published in:

M. Escobar-Anel et al. (2024a). “Mean–variance optimization under affine
GARCH: A utility-based solution.” In: Finance Research Letters 59.104749.
doi: 10.1016/j.frl.2023.104749

• We introduce a closed-form solution to the optimal investment problem in a Lévy GARCH
environment in Chapter 6, allowing for jumps of different types in the asset price process.
This chapter is based on the following article:

M. Escobar-Anel et al. (2023). “Do Jumps Matter in Discrete-Time Portfolio
Optimization?” Working paper submitted for publication

Chapter 7 concludes this dissertation, providing a concise summary of the main findings and
contributions, and presenting prospects for potential future research.
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2 Mathematical Preliminaries

2.1 Measure and Probability

The portfolio optimization problems in this dissertation are based on discrete-time financial
market models and stochastic control. This section introduces basic notations for measurabil-
ity and probability spaces to adequately describe the corresponding environments. All of the
following results can be found in standard textbooks. Particularly concerning the part relevant
in the context of stochastic control models, we refer to Hinderer et al. (2016, Appendix B).

Definition 2.1 (σ-algebra). A σ-algebra F on a non-empty set Ω is a system of subsets of Ω
such that

(i) Ω ∈ F ,

(ii) G ∈ F implies Ω \G ∈ F ,

(iii) The countable union of sets in F still belongs to F .

The pair (Ω,F) is called a measurable space, and the sets in F are said to be (F-)measurable.

For a non-empty system C of subsets of Ω, there exists a smallest σ-algebra σ (C) that contains
C. We say that σ (C) is generated by C and call C the generator.

Definition 2.2 (Trace of a σ-algebra). For a measurable space (Ω,F) and a non-empty set
B ∈ F , we call

B ∩ F := {B ∩G | G ∈ F} = {G ∈ F | G ⊆ B}

the trace σ-algebra of F on B.

In our applications, the underlying set usually is the set of real numbers R. On this set, and in
general, on all metric spaces, the most natural σ-algebra is the one generated by the open sets,
i.e., by the generator {(−∞, α) | α ∈ R}.

Definition 2.3 (Product σ-algebra). For systems Ci of subsets of a set Ωi, for i = 1, . . . , d,
we define the Cartesian product as ×d1Ci :=

{
×d1Bi | Bi ∈ Ci, 1 ≤ i ≤ d

}
. For measurable spaces

(Ωi,Fi), i = 1, . . . , d, the product σ-algebra of the σ-algebras Fi is defined as ⊗d1Fi := σ
(
×d1Fi

)

on Ω := ×d1Ωi.

Definition 2.4 (Measurable mapping). Consider a mapping f from a non-empty set Ω into
a measurable space (Ω′,F ′). The system of preimages f−1 (F ′) :=

{
f−1 (G′) | G′ ∈ F ′

}
is a σ-

algebra on Ω. For a σ-algebra F on Ω, the mapping f is called F-F ′-measurable if f−1 (F ′) ⊆ F .
An F-F ′-measurable mapping is called a random variable on (Ω,F) with values in (Ω′,F ′). If
the use of the corresponding σ-algebras is clear from the context, we will simply call f measurable.

5



2 Mathematical Preliminaries

A collection of random variables {Xi}i=1,...,d generates a σ-algebra via σ
(⋃d

i=1 σ (Xi)
)

, where

σ (Xi) is the σ-algebra generated by the preimages of Xi.

Definition 2.5 (Probability space). On a measurable space (Ω,F), we will call a mapping
P : F → [0,∞) a probability measure if it satisfies the following conditions:

(i) P (Ω) = 1,

(ii) P is countably additive, i.e., P (∅) = 0 and for a collection of pairwise disjoint sets
A1, A2, . . . ∈ F , P satisfies

P

( ∞⋃

i=1

Ai

)
=
∞∑

i=1

P (Ai) .

The triplet (Ω,F ,P) forms a probability space.

In financial applications, market participants gain more and more information over time by
observing stock and option prices. This kind of evolution is modeled via filtrations and filtered
probability spaces.

Definition 2.6 (Filtered probability space). A collection {Fi}i=1,...,d of σ-algebras that satisfy
Fi ⊆ F for all i and Fk ⊆ Fl for 1 ≤ k ≤ l ≤ d is called a filtration. The quadruple
(Ω,F , {Fi}i ,P) is called a filtered probability space.

In the sequel, we will consider real-valued random variables on a probability space (Ω,F ,P),
i.e., the random variables are mappings into the real numbers R.

Definition 2.7 (Expectation). Let (Ω,F ,P) be a probability space and X a real-valued random
variable. The expectation of X, denoted by E [X] is defined as

E [X] =

∫

Ω
X (ω) dP(ω),

where the integral is interpreted as the Lebesgue integral.

A random variable X is said to be (absolutely) integrable if E [|X|] is finite. The expectation is
also referred to as the first moment of a random variable. Higher moments are defined below.

Definition 2.8 (Higher moments). Assuming that X is a random variable on (Ω,F ,P) such
that the expressions below are well-defined, the variance, skewness, and kurtosis, respectively,
of X, are given by:

Var [X] := σ2 := E
[
(X − E [X])2

]
,

S [X] := E

[(
X − E [X]

σ

)3
]
,

K [X] := E

[(
X − E [X]

σ

)4
]
.

6



2.2 Stochastic Control Models

Definition 2.9 (Conditional expectation). For an integrable random variable X on a probability
space (Ω,F ,P), we define the conditional expectation E [X | G] of X given G, where G ⊆ F is a
σ-algebra, as the random variable Y such that

(i) Y is G-measurable,

(ii) E [|Y |] <∞,

(iii) E [1CY ] = E [1CX] for every C ∈ G,

with 1C(ω) the indicator function of C yielding 1 if and only if ω ∈ C and 0 otherwise.

For random variables X and Y on a probability space (Ω,F ,P), we say that X = Y holds
P-almost surely if

P ({ω ∈ Ω | X(ω) = Y (ω)}) = 1.

The following properties of conditional expectation will be helpful throughout this dissertation.
the proofs are ommitted and can be found in many standard textbooks.

Proposition 2.10 (Properties of conditional expectation, cf. Bingham and Kiesel (2004),
Proposition 2.5.1). Assume that X and Y are integrable random variables on a probability
space (Ω,F ,P), and assume that G,H ⊆ F are σ-algebras.

(a) E [X | {∅,Ω}] = E [X].

(b) If X is G-measurable, then E [X | G] = X, P-almost surely.

(c) Given constants a1, a2 ∈ R, E [a1X + a2Y | G] = a1E [X | G] + a2E [Y | G], P-almost
surely.

(d) If Y is G-measurable, then E [Y X | G] = Y E [X | G], P-almost surely.

(e) If H ⊆ G, then E [E [X | G] | H] = E [E [X | H] | G] = E [X | H], P-almost surely.

2.2 Stochastic Control Models

To solve this dissertation’s discrete-time portfolio optimization problems, we first introduce
the basic notation and some relevant results concerning dynamic programming and stochastic
control models. This section is based on the comprehensive book by Hinderer et al. (2016) on
various types of control models and decision processes.

2.2.1 Model Formulation

An investor in a typical setting considered in this dissertation starts at some time t ≥ 0 with
a certain amount of initial wealth. At this point, the investor has to decide how to allocate
the available resources, choosing from the different assets available in the market, which in our
problems consist of a riskless bank account and a risky asset following the dynamics of an affine
GARCH model. According to this decision, and based on the random evolution of the asset
price, the system then moves on to time t + 1, characterized by a new value for the investor’s
wealth. This procedure continues to a predefined finite time horizon T > t.

For simplicity, we usually use t = 0 as the initial time point. In terms of a stochastic control
model (SCM), we speak of an initial state s0 ∈ S, where S denotes the space of all possible
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states, and, together with the σ-algebra S, forms a measurable space (S,S). The investor’s
allocation choice is taken from a space of actions A, endowed with the σ-algebra A. The so-
called constraint set D contains all possible combinations of states and actions and is part of
the product σ-algebra S ⊗A, equipped with the trace σ-algebra D of D in S ⊗A. For a specific
s ∈ S, we let D(s) := {a ∈ A | (s, a) ∈ D}.

While in a simpler form of a control model, the transition from one state to the next is fully
deterministic and given via a mapping from D to S, this does not apply to our investment
problem. Instead, we let (Y,Y) be another measurable space, where Y 6= ∅ is the space of
so-called disturbances, in financial market models often named innovations. The disturbances
are commonly assumed to be i.i.d., but in our applications, the distribution need not be the
same at all time points – that is, we work with a slight relaxation of the mentioned assumption.
The transition to the next state is now given by a measurable mapping T : D×Y → S, called
the transition function. The combination of a disturbance distribution and a transition function
can also be considered as a direct transition probability from D into S. The central feature of
this model is the fact that, even after the choice of an action at time point t, the state one time
step ahead is still random and subject to the realization of the disturbance. The random state
at time t + 1 is therefore denoted by St+1, its realization is st+1, and similarly Yt denotes a
random variable with values in (Y,Y), while yt is its realization. Furthermore, a decision rule
πt at time t = 0, . . . , T − 1 is a measurable mapping from S into A such that (st, πt (st)) ∈ D,
i.e., a decision rule thus yields an action dependent on the realization of the state. A collection
of decision rules π = {πt}T−1

t=0 is called policy, and we denote the set of all policies by F. In the
presence of a policy π, the random state St at some time point t = 1, . . . , T usually depends on
π, but we omit this dependence for readability.

To properly define the transitions between the different states, we need the following formal
definition of a transition probability:

Definition 2.11 (Transition probability, cf. Hinderer et al., 2016, Def. 16.1.1). A function
P : D× S → R+ is called a transition probability from D into S if

• (s, a) 7→ P (s, a,B) is D-measurable for all B ∈ S, (s, a) ∈ D.

• B 7→ P (s, a,B) is a probability measure on S for all (s, a) ∈ D.

Given a decision rule π and using the fact that the composition of measurable mappings is again
measurable, we can consider transition probabilities from S into S via

s 7→ Pπ (s,B) := P (s, π(s), B) .

The performance of the investor’s strategy is evaluated by a real-valued reward function φT at
the end of the investment horizon, i.e., at time T , and in addition by a one-stage reward function1

rw (s, a) fromD into the real numbers R. Both functions are assumed to be measurable. Finally,
β ∈ R+ denotes a discount factor. We summarize the setup in the following definition:

Definition 2.12 (Stochastic control model, cf. Hinderer et al., 2016, Definitions 16.1.2 and
16.1.13). A stochastic control model (SCM) is a tuple

(S,A,D,Y,T,Q, rw, φT , β)

with the following properties:

1The reward function is denoted by rw with a w in the subscript to distinguish it from the riskless rate r.
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• (S,S) and (A,A) are measurable spaces.

• D ∈ S ⊗ A contains the graph of a measurable mapping D : S → A, such that D(s)
describes the actions that are admissible in state s ∈ S. D is equipped with the trace D of
D in S ⊗A.

• (Y,Y) is a measurable space, with Y 6= ∅ the disturbance space.

• T : D×Y → S is a measurable mapping.

• Q satisfies the conditions of a transition probability from D into Y according to Defi-
nition 2.11, i.e., the event {Y ∈ C} for C ∈ Y occurs with probability Q (s, a, C). The
resulting transition probability P from D into S is given by

P (s, a,B) = Q (s, a, {y ∈ Y | T (s, a, y) ∈ B}) , B ∈ S, (s, a) ∈ D. (2.1)

• rw : D→ R is measurable.

• φT : S→ R is measurable.

• β ∈ R+ is the discount factor.

Instead of the combination of a disturbance and a transition function, one can define the model
via the transition law P in (2.1) directly. This variant is called the adjoint Markovian decision
process (MDP) to the SCM.

Remark 2.13 (Disturbance distributions). We note that there exist extensions towards time-
dependent transition probabilities {Qt}t=0,...,T−1 and time-dependent one-step reward functions
{(rw)t}t=0,...,T−1 (Hinderer et al., 2016, Def. 16.1.26).

2.2.2 Value Iteration

In our application of an SCM, the investor is interested in maximizing the (expected) portfolio
return via optimally choosing the investment strategy. For a policy π, define the (T − t)-stage
random gain as

Gt,π (st) := rw (st, πt (st)) +

T−1∑

i=t+1

βi−t · rw (Si, πi (Si)) + βT−tφT (ST ) . (2.2)

Based on the filtered probability space
(

Ω,F , {Ft}t∈{0,1,...} ,P
)

, the (T − t)-stage expected

reward is given by

φt,π (st) := rw (st, πt (st)) + E

[
T−1∑

i=t+1

βi−t · rw (Si, πi (Si)) + βT−tφT (ST ) | Ft
]
. (2.3)

Given our finance application, assuming that we are at some time point t ≥ 0, we intend to
solve the problem SCMT−t, which, given st ∈ S, is defined as max {φt,π (st) | π ∈ F}. That is,
the objective is to maximize the expected (T − t)-stage reward for policy π and a given initial
state st. We define the concept of optimal policies and solutions for SCMT−t as follows:

Definition 2.14 (Optimal policies and maximizers, Hinderer et al., 2016, Def. 11.3).

(a) A (T − t)-stage policy π∗ is optimal for SCMT−t if it maximizes π 7→ φt,π (st).

9



2 Mathematical Preliminaries

(b) A solution of the (T − t)-stage problem consists of the (T − t)-stage optimal policy (if it
exists) and the (T − t)-stage value function φt : S→ R, φt(s) := sup {φt,π(s) | π ∈ F}.

(c) A decision rule πt is called maximizer at time t if for all s ∈ S, the action πt(s) is a
maximum point of the mapping

a 7→ rw (s, a) + β · E [φt+1 (T (s, a, Y ))] .

Note that, without any further assumptions, we are not sure whether SCMT−t makes sense
since, e.g., φt(s) as a supremum of an uncountable set of measurable functions is not necessarily
measurable. To express the corresponding conditions adequately, certain operators turn out to
be helpful. Assume that there exists a subset M of all integrable value functions φ : S → R
such that φT ∈M. We define the following operators on M:

Lφ (s, a) := rw (s, a) + β · E [φ (T (s, a, Y ))] , (2.4a)

Uφ (s) := sup
a∈D(s)

Lφ (s, a) . (2.4b)

The dependencies on s and a may be suppressed in the sequel. We require the operators in (2.4)
to be well-defined, and U to be an endomorphism on M. Furthermore, for any φ ∈M and t ∈
{0, . . . , T − 1}, we assume the existence of some decision rule π∗t maximizing πt 7→ Lφ (s, πt (s))
on A for all s ∈ S. Under these assumptions, we obtain the following important result:

Theorem 2.15 (Value iteration for SCMT−t, Hinderer et al., 2016, Theorem 16.1.12). Let M
be a set of integrable value functions φ : S → R, and let φT ∈ M. Assume that the operators
in (2.4) exist and are well-defined at all time points 0, . . . , T − 1, and furthermore require the
following:

(i) There exists a decision rule π∗φ maximizing πφ 7→ Lφ (s, πφ (s)) on A for any φ ∈ M,
s ∈ S.

(ii) U is an endomorphism on M.

Then, for each t = 0, . . . , T − 1, the decision rule π∗t := π∗φt+1
is a maximizer at time t, and

π∗ := {π∗t }t=0,...,T−1 is an optimal policy. Furthermore, φt ∈ M for all t = 0, . . . , T and the
so-called value iteration holds:

φt = Uφt+1, t = 0, . . . , T − 1. (2.5)

Proof. See Appendix A.1.

2.2.3 Concave Value Functions

The results in this section, again primarily collected from Hinderer et al. (2016), will be helpful
in our optimization techniques. The proofs of standard results are omitted and can be looked
up in Roberts and Varberg (1973).

Definition 2.16 (Convex set). A set K ⊆ Rk is convex if, for any x, y ∈ K and α ∈ (0, 1),

αx+ (1− α) y ∈ K.

In particular, an interval I ⊂ R and the entire space Rk are convex.
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Definition 2.17 (Convex and concave functions). Let K ⊆ Rk be a convex set. The function
f : K → R is called convex if, for x, y ∈ K, where x 6= y, and α ∈ (0, 1),

f (αx+ (1− α) y) ≤ αf(x) + (1− α) f(y). (2.6)

If (2.6) holds with strict inequality, f is said to be strictly convex. f is called (strictly) concave
if −f is (strictly) convex.

Given the above relation between convexity and concavity, most results in the literature are
stated for convex functions but can be translated straightforwardly.

Proposition 2.18 (Derivatives and convexity/concavity, cf. Roberts and Varberg (1973), The-
orems I.12.B and I.12.C). Let K ⊆ R be a one-dimensional convex set, and consider f : K → R.
If the first derivative f ′ exists, then

• f is (strictly) convex if and only if f ′ is (strictly) increasing.

• f is (strictly) concave if and only if f ′ is (strictly) decreasing.

If f ′′ exists, then

• f is convex if and only if f ′′ ≥ 0. If f ′′ > 0, then f is strictly convex.

• f is concave if and only if f ′′ ≤ 0. If f ′′ < 0, then f is strictly concave.

The following result is useful for combinations of multiple convex (or concave) functions and for
functions of more than one variable. If not specified otherwise, we assume that the functions
involved are real-valued.

Proposition 2.19 (Sum of convex/concave functions, Roberts and Varberg (1973), Theo-
rem I.13.A). If both f1 and f2 are (strictly) convex/concave on K1 ⊆ Rk and on K2 ⊆ Rk,
respectively, then (x, y) 7→ f1(x) + f2(y) is (strictly) convex/concave on K1 ×K2.

In our optimization context, the next result for maximum points of concave functions, usually
formulated for minimum points of convex functions, is particularly interesting.

Proposition 2.20 (Maximum points of concave functions, Roberts and Varberg (1973), The-
orem V.51.A). Assume that f is concave on a convex set K ⊆ Rk. Then, the set of maximum
points of f , denoted by K∗, is convex. Furthermore, if f is strictly concave, it has at most one
maximum point.

Lastly, we prove an essential proposition needed in the extended portfolio problem in Chapter 4,
where parts of the wealth may be consumed at intermediate time points. The result is based on
Hinderer et al. (2016, Prop. 7.1.7), where it was formulated for deterministic decision processes.
The present extension targets an SCM as of Section 2.2.1. Note that the state space is two-
dimensional here.

Proposition 2.21 (Argumentwise concavity, cf. Hinderer et al., 2016, Prop. 7.1.7). Assume
a stochastic control model with arbitrary disturbances from a set Y, having state space S =
S1 × S2, action space A, and constraint set D = S×A. With the transition function denoted
by T : D×Y → S, the finite time horizon T , and φt the value function at time t ∈ {0, . . . , T},
assume that the model satisfies the following properties:

(i) S1, S2 and A are convex sets.
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(ii) T = (T1,T2), where T2(s1, s2, a, y) = T2(s2, y) is independent of (s1, a), and addition-
ally, T1(s1, s2, a, y) is increasing in s1 and concave in (s1, a) on S1 ×A for all s2 ∈ S2

and y ∈ Y,

(iii) The one-step return rw(s1, s2, a) is increasing in s1 for all s2 ∈ S2 and a ∈ A and concave
in (s1, a) for all s2 ∈ S2.

(iv) The supremum

sup
a∈D(s)

{
rw(s1, s2, a) + β ·E [φt+1 (T (s1, s2, a, Y ))]

}

is finite for all s1, s2, and for all t.

(v) The terminal value function φT (s) is increasing and concave in s1.

Then, all value functions s 7→ φt(s), t ∈ {0, . . . , T}, are increasing and concave in s1.

Proof of Proposition 2.21. We prove by induction on T − t that φt is increasing and concave in
s1. For t = T , this is trivially satisfied by (v). Now assume that the assertion is true for some
φt+1. We will prove that it also holds true for φt. Fixing ŝ2 ∈ S2 and ŷ ∈ Y, we investigate
φt+1 (T1(s1, ŝ2, a, ŷ),T2(ŝ2, ŷ)). Using (ii) and the inductive hypothesis, we have that T1 is
increasing in s1 and concave in (s1, a), and that φt+1 is increasing and concave in s1. Therefore,
φt+1 (T1(s1, ŝ2, a, ŷ),T2(ŝ2, ŷ)) is increasing in s1 and concave in (s1, a). Note that together
with (iii), this implies in particular that the function

Lφt+1(s1, ŝ2, a) = rw(s1, ŝ2, a) + β̄E [φt+1 (T (s1, ŝ2, a, Y ))]

is increasing in s1 and concave in (s1, a). Now define

s1 7→ Uφt+1(s1) = sup
a∈A

Lφt+1(s1, ŝ2, a).

The concavity of Lφt+1 in (s1, a) combined with (i) implies that for α ∈ (0, 1), s1, s
′
1 ∈ S1 and

arbitrary a, a′ ∈ A,

Uφt+1

(
αs1 + (1− α)s′1

)
≥ Lφt+1

(
αs1 + (1− α)s′1, ŝ2, αa+ (1− α)a′

)

≥ αLφt+1 (s1, ŝ2, a) + (1− α)Lφt+1

(
s′1, ŝ2, a

′) .

Since α, a and a′ were arbitrary, this yields

Uφt+1

(
αs1 + (1− α)s′1

)
≥ αUφt+1 (s1) + (1− α)Uφt+1

(
s′1
)
.

This reasoning is true for P-almost all ŝ2 ∈ S2. We can thus deduce that

φt (s1, s2) = Uφt+1 (s1, s2)

again is increasing and concave in s1, which concludes the proof.

2.3 Maximum-Likelihood Estimation

The models considered in this dissertation are supposed to reflect the current market situation
the investor faces in an actual application. To this end, the corresponding model parameters
need to be estimated based on market data. One of the most common methods in this regard is
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maximum likelihood estimation. A short introduction of essential definitions and results, based
on the extensive work by Bickel and Doksum (2006) and DeGroot and Schervish (2012), is given
in this section.

The general idea of maximum likelihood estimation is to choose the set of values for the model
parameters that is the “most likely”, based on the given dataset. The method avoids assump-
tions on prior distributions and the use of loss functions. We will consider a set of random
variables X1, . . . , Xn, n ∈ N, forming a random sample from a distribution with parameter
(vector) θ in a parameter space Θ. The central instrument for the maximum likelihood estima-
tion is the likelihood function:

Definition 2.22 (Likelihood function). For an observed vector x = (x1, . . . , xn) of values, the
likelihood function is the joint probability density function (PDF) fn (x | θ) of the observations
in a random sample, seen as a function of θ.

Based on this notion of a likelihood function, we introduce the terminology of a maximum
likelihood estimator:

Definition 2.23 (Maximum likelihood estimator). For each possible observed vector x, let
θ(x) ∈ Θ denote a value of θ ∈ Θ for which the likelihood function fn (x | θ) is a maximum.
The estimator θ̂ = θ(X) defined in this way is called a maximum likelihood estimator of θ. After
X = x is observed, the value δ(x) is called a maximum likelihood estimate (MLE) of θ.

Note that the parameter value maximizing fn (x | θ) is the same as the one that maximizes
log fn (x | θ), which often turns out to be more convenient to handle in our applications. The
abbreviation MLE is often used inconsistently for both the estimator and the estimate.

Definition 2.24 (Fisher information matrix, DeGroot and Schervish, 2012, Def. 8.8.4). Suppose
that X = (X1, . . . , Xn) form a random sample from a distribution with joint PDF fn (x | θ),
where the value of θ lies in an open subset Θ ⊆ Rk. Let ln (x | θ) := log fn (x | θ). Assume
that the mapping θ 7→ {x ∈ Rn | fn (x | θ) > 0} is constant for all θ and that ln (x | θ) is twice
differentiable with respect to θ. The Fisher information matrix I (θ) in the random sample X
is defined as the k × k matrix

I (θ) = Covθ [∇θ ln (X | θ)] , (2.7)

where Covθ indicates the covariance given the paramter vector θ, and ∇θ is the gradient with
respect to θ.

Assuming sufficient regularity of the underlying densities so that we can change the order of
integration and differentiation, the Fisher information matrix also admits the representation
(cf. DeGroot and Schervish, 2012, Theorem 8.8.1)

I (θ) = −Eθ
[
∇2
θ ln (X | θ)

]
(2.8)

Under certain regularity conditions, implying that the MLE θ̂ is consistent and asymptotically
normal, as well as the assumptions of Definition 2.24, one can derive that (cf. Bickel and Doksum,
2006, Theorem 6.2.2)

√
n
(
θ̂n − θ

)
n→∞−→ Y ∼ N

(
0, I (θ)−1

)
, (2.9)

where n is the sample size and the convergence is meant in distribution. In particular, the
standard errors of the estimates can be derived via the Fisher information matrix.
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3 Expected Utility Theory on General Affine
GARCH Models

3.1 Introduction

This chapter presents a first result concerning expected utility theory (EUT) in the environment
of general affine GARCH models. As visualized in Figure 3.1, the main contribution consists
of tackling the entire class of general affine GARCH models instead of the Gaussian model
version only. An extended version of this chapter was published in Escobar-Anel et al. (2021)
and accepted as the author’s M.Sc. thesis in the TopMath program at the Technical University
of Munich. Therefore, this part does not contribute to the evaluation of the present doctoral
dissertation.

model
complexity

consumption

terminal utility
complexity

C
R
R
A

N
O

HN IG

Figure 3.1: Overview of the contributions of this dissertation with regard to portfolio optimization
under affine GARCH models, increasing the model complexity as well as the complexity of
terminal and intermediate utility, see also Figures 1.1, 4.1, 5.1 and 6.1. The orange box
coresponds to Chapter 3.

As described in the context of the general motivation for this dissertation in Chapter 1, the idea
of approaching optimal resource allocation problems in multiple discrete time steps measuring
expected utility derived from terminal wealth originated from Mossin (1968) and was extended
by Samuelson (1969). In a continuous-time setting, Merton (1969) presented closed-form so-
lutions for constant relative risk aversion (CRRA) utility functions, considering a geometric
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Brownian motion (GBM) as the underlying asset dynamics. In the subsequent decades, more
advanced asset price models were introduced, for example, the popular stochastic volatility
model by Heston (1993), which Kraft (2005) solved in the context of EUT. However, just as
in the abovementioned example, most considered models were continuous-time, still bearing
difficulties regarding implementation and testing. These issues can be addressed using discrete-
time GARCH models, first introduced by Engle (1982) and Bollerslev (1986). Unfortunately,
these usually do not yield closed-form solutions in the context of derivative pricing and portfolio
optimization.

This lack of closed-form expressions for derivative pricing was overcome in Heston and Nandi
(2000), who introduced the so-called HN-GARCH model. The key feature, the availability of
the moment generating function (MGF) in exponentially affine form, allowed for closed-form
solutions to asset pricing problems. The same model property can also be exploited in the
context of portfolio optimization, as demonstrated by Escobar-Anel et al. (2022a), who solved
the EUT problem for an investor maximizing a CRRA utility function from terminal wealth,
where the underlying risky asset follows the HN-GARCH dynamics, obtaining an approximate
closed-form optimal solution.

While the innovations in the HN-GARCH model are i.i.d. normally distributed, Christoffersen
et al. (2006) introduced an extension with time-dependent non-Gaussian innovations a few years
later. Badescu et al. (2019) recently formulated general conditions for the affine structure of
GARCH models, explicitly requiring the characteristic exponentially affine form of the MGF.
The extended paper version (Escobar-Anel et al., 2021) of this chapter solves the EUT problem
for general affine GARCH dynamics as of Badescu et al. (2019) and focuses on the implications
of the non-Gaussian setting as compared to the Gaussian model or a homoscedasctic variant.

By considering the CRRA class of utility functions and allowing for utility derived from terminal
wealth only, the problem setup considered here forms a simple base case of the several extensions
considered in Chapters 4, 5 and 6. The theoretical contributions presented in this chapter are
twofold:

• Assuming a CRRA utility function for the decision maker and the implied EUT setting
of Campbell and Viceira (1999), we demonstrate that the optimal portfolio strategy in
a general affine GARCH setting is available in recursive form, and the optimal wealth
process is again an affine GARCH process.

• We demonstrate that a slight relaxation of the conditions on general affine GARCH models
suffices to include the IG-GARCH model as a special case.

This chapter is organized as follows: In Section 3.2, we define the portfolio optimization problem
and give an outline of the approach. Section 3.3 presents the main result for a general affine
GARCH model, and Section 3.4 specifically targets the necessary extensions to include the
non-Gaussian IG-GARCH model in the setup.

3.2 Outline of the Approach

This section presents the general optimization framework for our investment problem and em-
beds general affine GARCH models in this context. We assume that the log-price process

Xt = logP
(1)
t , the price at time t being P

(1)
t , follows an affine GARCH model (as defined by

Badescu et al., 2019), where for simplicity of exposition we assume ∆ = 1 for the length of the
time step. Let θ be a vector of parameters and {εt}t=1,2,... a sequence of Ft-measurable and
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Ft−1-conditional i.i.d. random variables with zero mean and a finite moment generating func-

tion. Based on the associated filtered probability space
(

Ω,F , {Ft}t=0,1,... ,P
)

with physical

measure P, the model dynamics is:

Yt := Xt −Xt−1 = f1 (ht, θ) +
√
ht εt, (3.1a)

ht+1 = f2 (ht, θ) + f3 (ht, εt, θ) , (3.1b)

where f1, f2 are affine in ht, while f3 is such that the following representation for the conditional
MGF holds:

Ψ(Xt,ht+1) (u, v | Ft−1) := E [exp {u ·Xt + v · ht+1} |Ft−1]

= exp {uXt−1 +A(u, v; t− 1, t) +B(u, v; t− 1, t) · ht} .
(3.2)

The conditional expectation w.r.t. Ft will also be denoted via the subindex t, e.g., with Et, in
the sequel. Note that the moment generating function in (3.2) can also be formulated for the log
return instead of the log price as the first element, making the term uXt−1 in the exponential
function vanish. The choice of f1, f2, and f3 for a particular application shapes the coefficients
A and B in Equation (3.2) according to this requirement. The form of said coefficients will
also play a significant role in our framework. Since it is clear from the context that we use the
one-step conditional MGF, the last two time arguments of A and B are usually obsolete, and
we will omit them where possible.

We consider a portfolio optimization problem with a finite time horizon T in a setting with one

risky asset and the cash account P
(0)
t . For t ∈ {0, . . . T − 1}, let πt denote the fraction of wealth

invested in the risky asset, let Vt be the corresponding wealth and w0 = log v0 the log of the
initial wealth. Following the reasoning in Escobar-Anel et al. (2022a), we approximate returns
in the self-financing condition (SFC) by log prices. That is, we start with the true equation

Vt
Vt−1

= πt−1
P

(1)
t

P
(1)
t−1

+ (1− πt−1)
P

(0)
t

P
(0)
t−1

= πt−1
P

(1)
t

P
(1)
t−1

+ (1− πt−1) er, (3.3)

where r is the continuously compounded riskless rate, and use the following Taylor approach:
For the log return of the risky asset, we write

Xt −Xt−1 = log

(
P

(1)
t

P
(1)
t−1

)
≈ P

(1)
t − P (1)

t−1

P
(1)
t−1

− 1

2

(
P

(1)
t − P (1)

t−1

P
(1)
t−1

)2

≈ P
(1)
t − P (1)

t−1

P
(1)
t−1

− 1

2
Var

[
P

(1)
t − P (1)

t−1

P
(1)
t−1

| Ft−1

]
, (3.4)

where we approximated the squared return by its conditional variance in the last step. Observing

from (3.4) that Var

[
P

(1)
t −P

(1)
t−1

P
(1)
t−1

| Ft−1

]
≈ Var [Xt −Xt−1 | Ft−1] = ht, we receive

P
(1)
t − P (1)

t−1

P
(1)
t−1

≈ Xt −Xt−1 +
1

2
ht. (3.5)

For the cash account, the linear approximation log x ≈ x− 1 for x around 1 yields

P
(0)
t − P (0)

t−1

P
(0)
t−1

≈ log

(
P

(0)
t

P
(0)
t−1

)
= r. (3.6)
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3 Expected Utility Theory on General Affine GARCH Models

Now, looking at the return on wealth and performing the same steps as for the return of the
risky asset above (with the variance of the return on wealth being π2

t−1ht according to (3.3)),
we arrive at

log

(
Vt
Vt−1

)
≈
(

Vt
Vt−1

− 1

)
− 1

2

(
Vt
Vt−1

− 1

)2

≈ πt−1
P

(1)
t − P (1)

t−1

P
(1)
t−1

+ (1− πt−1)
P

(0)
t − P (0)

t−1

P
(0)
t−1

− 1

2
π2
t−1ht

≈ πt−1

(
Xt −Xt−1 +

1

2
ht

)
+ (1− πt−1) r − 1

2
π2
t−1ht

All in all, for t = 1, . . . , T , this leads to an approximation Wt of the log wealth log Vt that reads

Wt = Wt−1 + πt−1(Xt −Xt−1) +
1

2

(
πt−1 − π2

t−1

)
ht + (1− πt−1)r, (3.7)

with W0 = w0. This second-order approximation is well-studied – in particular, it corresponds
to Equation (16) in Campbell and Viceira (1999). Equation (3.7) exactly equals (3.3) in the
limit for ∆→ 0, i.e., as the length of the trading interval approaches zero. We refer to the full-
length paper Escobar-Anel et al. (2021) for an investigation of the quality of this approximation
in this framework.

The goal is to maximize the expected utility from terminal wealth over the set of admissible,
self-financing, relative portfolio strategies {πt}T−1

t=0 . To this end, assume wealth is assessed by
the decision maker according to a CRRA utility function of the form U(v) = 1

γ v
γ for some

parameter γ < 1, implying a relative risk aversion of 1 − γ. Using the approximation of the
log wealth via WT as described above, the stochastic control problem can be respresented as
follows:

sup
{πt}T−1

t=0

E
[

1

γ
(VT )γ | F0

]
≈ max
{πt}T−1

t=0

E
[

exp {γ WT }
γ

∣∣∣∣F0

]
=: φ0 (w0, h1) , (3.8)

where h denotes the conditional variance process of the log return of the underlying asset.

In the spirit of Section 2.2, let A be the set of admissible portfolios, H = (0,∞) and Y = (0,∞)
be the domains of the conditional variance and the log return of the stock prices, respectively.
Let W ⊂ R be the set of possible values for the log wealth, and set S = W × H. Then, the
transition function is given by T : S×A×Y → S,

T (s, a, Y ) = T (W,h, a, Y ) :=

(
W + aY +

1

2

(
a− a2

)
h+ (1− a)r,

f2 (h, θ) + f3

(
h,
Y − f1 (h, θ)√

h
, θ

))
.

(3.9)

Now assume that there exists a subset M of all integrable value functions φ : S→ R such that
φT (WT ) = U (exp {WT }) ∈M. With the operators L and U,

Lφ (W,h, a) := E [φ (T (W,h, a, Y ))] ,

Uφ (W,h) := sup
a∈A

Lφ (W,h, a) ,

assumed to be well-defined for all φ ∈ M, we moreover require for any φ ∈ M the existence of
some a : W × H → A with a(W,h) maximizing a 7→ Lφ (W,h, a) on A for all W ∈ W and
h ∈ H, and U : M→M.
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3.3 Solution to the Portfolio Optimization Problem

With the above requirements, we ensure that the conditions of Theorem 2.15 are satisfied and
that we can use the value iteration. We thus maximize recursively step by step in order to obtain
the optimal solution {π∗t }T−1

t=0 , defined as π∗t (Wt, ht+1) := arg maxa∈ALφt+1 (Wt, ht+1, a), and
the value iteration

φt (Wt, ht+1) = Uφt+1 (Wt, ht+1) (3.10)

= max
a∈A

Et [φt+1 (T (Wt, ht+1, a, Yt))] , t ∈ {0, . . . , T − 1} ,

with the obvious terminal condition φT (WT ) = U (exp {WT }).

3.3 Solution to the Portfolio Optimization Problem

This section presents the solution to the portfolio optimization problem outlined in Section 3.2.
The optimal solution to (3.8) is provided in the next theorem, which is followed by a corollary
on the affine GARCH nature of the optimal wealth process.

Theorem 3.1 (Maximum expected utility representation). Assume γ < 0, and let the log price
of the risky asset follow an affine GARCH model, where for all t ∈ {0, . . . , T − 1}, and all
admissible πt and v, the coefficients in (3.2) satisfy

∂2

∂u2
A (γπt, v) ≥ 0 and

∂2

∂u2
B (γπt, v) > 0. (3.11)

Then at time t, the maximum expected utility from terminal wealth can be written as

φt (Wt, ht+1) =
1

γ
exp {γWt +Dt,T (π∗t ) + Et,T (π∗t ) · ht+1} , (3.12)

with Dt,T and Et,T given by the recursive representations

Dt,T (π∗t ) = Dt+1,T (π∗t+1) + (1− π∗t ) γr +A
(
γπ∗t , Et+1,T (π∗t+1)

)
, (3.13a)

Et,T (π∗t ) = B
(
γπ∗t , Et+1,T (π∗t+1)

)
+
γ

2

(
π∗t − (π∗t )

2
)
. (3.13b)

with ET,T = DT,T = 0. The optimal fraction of wealth invested in the risky asset at time t is
given as a solution π∗t to the equations

∂

∂u
A
(
γπt, Et+1,T (π∗t+1)

)
= r, (3.14a)

∂

∂u
B
(
γπt, Et+1,T (π∗t+1)

)
= πt −

1

2
. (3.14b)

Moreover, a solution π∗t satisfying (3.11), (3.14a), and (3.14b) is a maximum.

Note that an optimal solution is required to satisfy both equations in (3.14), which in general
might not be possible. However, in the special cases of HN-GARCH (c.f. Heston and Nandi,
2000) and IG-GARCH models (c.f. Christoffersen et al., 2006), (3.14a) is trivially satisfied and
there remains only (3.14b) to solve.

Proof of Theorem 3.1. As outlined above, we use Bellman’s value iteration in order to maximize
via backwards induction and the optimal solution at time t+ 1 for our approach at time t. In
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3 Expected Utility Theory on General Affine GARCH Models

general, this results in the calculations below, where for the terminal step at time t = T − 1 we
just work with

φT (WT , hT+1) := φT (WT ) = U (exp {WT }) =
1

γ
exp {γWT } ,

resulting in DT,T = ET,T = 0. We obtain:

φt (Wt, ht+1) = max
πt

Et [φt+1 (Wt+1, ht+2)]

= max
πt

Et
[

1

γ
exp

{
Dt+1,T (π∗t+1) + γWt+1 + Et+1,T (π∗t+1) · ht+2

}]
(3.15)

= max
πt

1

γ
exp

{
Dt+1,T (π∗t+1)

}

× Et
[
exp

{
γ ·
[
Wt + πt (Xt+1 −Xt) +

1

2

(
πt − π2

t

)
ht+1

+ (1− πt) r
]

+ Et+1,T (π∗t+1) · ht+2

}]

= max
πt

1

γ
exp

{
Dt+1,T (π∗t+1) + (1− πt) γr + γWt +

γ

2

(
πt − π2

t

)
ht+1

}

× Et
[
exp

{
γπt (Xt+1 −Xt) + Et+1,T (π∗t+1) · ht+2

}]

= max
πt

1

γ
exp

{
Dt+1,T (π∗t+1) + (1− πt) γr + γWt +

γ

2

(
πt − π2

t

)
ht+1

}

×Ψ(Xt+1−Xt, ht+2)

(
γπt, Et+1,T (π∗t+1)

∣∣Ft
)

= max
πt

1

γ
exp

{
Dt,T (πt) + γWt + Et,T (πt) · ht+1

}
, (3.16)

where we used the availability of the MGF in the affine GARCH setting according to (3.2) and
define D and E recursively according to (3.13). Note that γ < 0 together with the second-
order conditions in (3.11) are sufficient for the function in (3.16) to be concave in πt. The
first-order conditions in (3.14) thus characterize the optimal solution to our portfolio problem.
In particular, a solution satisfying (3.11), (3.14a), and (3.14b) is a maximum.

Corollary 3.2 (Affine GARCH process for optimal log wealth). The optimal log-wealth process
{Wt}t follows an affine GARCH process. Furthermore, the optimal solution π∗t does not depend
on the conditional variance or the wealth.

Proof. We start with the self-financing condition in Equation (3.7). The equation shows that
the conditional variance of Wt is given by π2

t−1ht. The affine GARCH representation for the
optimal log-wealth process can now be deduced from the proof of Theorem 3.1. That is, starting
in line (3.15), disregarding the maximum operator and unnecessary factors, we can proceed
to line (3.16) to solve the expectation below for the conditional bivariate moment generating
function of Wt and ht+1. Adopting also the definitions in (3.13) results in:

Ψ(Wt,ht+1) (u, v | Ft−1) = Et−1

[
exp

{
uWt + vht+1

}]

= exp
{
uWt−1 + (1− πt−1)ur +A (uπt−1, v)

+
(
B (uπt−1, v) +

u

2

(
πt−1 − (πt−1)2

))
· ht
}
.
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3.4 Application to IG-GARCH Model

This satisfies the requirements for affine GARCH processes outlined in Equations (3.1) and (3.2).
An investigation of the equations defining the optimal solution yields the second statement of
the corollary.

It is not difficult to see that the HN-GARCH model (Heston and Nandi, 2000), which was already
tackled in this context by Escobar-Anel et al. (2022a), is a particular case of Theorem 3.1. In
particular, we introduce the set of parameters θ = (λ, ω, β, α, ρ) and an i.i.d. sequence {εt}t
of standard normal innovations. Then, choosing f1 (ht, θ) = r + λht, f2 (ht, θ) = ω + βht
and f3 (ht, εt, θ) = α

(
εt − ρ

√
ht
)2

, we obtain the following dynamics for the log return and its
conditional variance process in the HN-GARCH model:

Xt −Xt−1 = r + λht +
√
htεt, (3.17a)

ht+1 = ω + βht + α
(
εt − ρ

√
ht

)2
. (3.17b)

The proof by Heston and Nandi (2000) for the exponentially affine structure of the MGF and
the derivation for the coefficients A and B can be found in Appendix B.1.

3.4 Application to IG-GARCH Model

In this section, we present the IG-GARCH model (c.f. Christoffersen et al., 2006) as a special

case of our main result. Assume the following dynamics for the log return Xt−Xt−1 = logP
(1)
t −

logP
(1)
t−1 and its conditional variance process h = {ht}t=1,...,T :

Xt −Xt−1 = r + νht + ηyt, (3.18a)

ht+1 = w + bht + cyt + a
h2
t

yt
, (3.18b)

with η < 0 and {yt}t a sequence of random variables with inverse Gaussian distribution and
single parameter δt = δ(t) = ht/η2. In particular, translating this single-parameter form to
the known representation of an inverse Gaussian distribution1 , we have yt ∼ IG

(
δt, δ

2
t

)
and

Et−1 [yt] = Var t−1 [yt] = δt.

Comparing Equation (3.18a) to (3.1), we first note that scaling of the inverse Gaussian random
variable with some parameter α > 0 yields αyt ∼ IG

(
αδt, αδ

2
t

)
. Together with the relation

ηyt =
√
ht ·

η√
ht
yt =

√
ht ·

(
− 1√

δt
yt

)
=:
√
ht · ξt, (3.19)

this implies that, in order to obtain the form of (3.1), we need to set −ξt ∼ IG
(√

δt,
√
δt

3
)

=

IG
(√

ht/|η|,
√
ht

3
/|η|3

)
. From the variance of a two-parameter inverse Gaussian variable, we obtain

Var t−1 [ξt] = 1. The minus compensates for η < 0. Standardizing this random variable further
w.r.t. the mean by subtracting −√ht/η finally allows us to present the embedding of the IG-
GARCH model into the general setting by Badescu et al. (2019). With a set of parameters
denoted by θ = (ν, η, w, b, c, a), we have

f1 (ht, θ) = r + ν · ht, f2 (ht, θ) = w + b · ht, f3 (ht, yt, θ) = cyt + a
h2
t

yt
,

1An inverse Gaussian random variable ξ ∼ IG (µ, λ) with µ, λ > 0 (see, e.g., Seshadri, 1999) has support (0,∞).

Furthermore, E [ξ] = µ and Var [ξ] = µ3

λ
.
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3 Expected Utility Theory on General Affine GARCH Models

where {εt}t, εt = ξt +
√
ht/η, are standardized inverse Gaussian random variables. However, we

usually work with f̃1 = r +
(
ν + 1

η

)
ht and use {ξt}t as innovations in (3.1). From this mean-

standardized formulation, we derive the market price of risk as λ = ν + 1
η .2 The derivation

of the exponentially affine structure of the MGF in the IG-GARCH model can be found in
Appendix B.2.

Remark 3.3 (Inverse Gaussian innovations).

(1) Note that the shape of yt still depends on ht. Thus, the IG-GARCH model only fulfills
a relaxation of the condition on the sequence of shocks in the general affine setting. In
particular, instead of explicitly relying on the innovations {εt}t=1,...T (or {ξt}t=1,...T ) in
(3.1) being i.i.d., we require that the choice of distribution allows for the exponentially
affine representation of the conditional bivariate generating function in (3.2). This slight
adjustment accommodates the IG-GARCH model while preserving our framework’s neces-
sary and important properties.

(2) Via sending η → 0, the conditional skewness S and excess kurtosis K on the one-step
distribution, which are determined by (c.f. Christoffersen et al., 2006)

St [Xt+1 −Xt] = 3η (ht+1)−
1/2 , Kt [Xt+1 −Xt] = 15η2 (ht+1)−1 , (3.20)

vanish and the standardized shock becomes standard normal in the limit. This can be used
to derive the continuous-time Heston model (Heston, 1993) in the limit (cf. Christoffersen
et al., 2006, pp. 258).3

The first two conditional moments of the log return are provided next, where we use the length
of a time step being exactly one day, i.e., ∆ = 1.

Et [Xt+1 −Xt] = r +

(
ν +

1

η

)
· ht+1, (3.21a)

Var t [Xt+1] = ht+1. (3.21b)

The following corollary applies our main results to the IG-GARCH setting.

Corollary 3.4 (IG-GARCH model). Assuming existence, the optimal solution to the stochastic
control problem in (3.8), with the log-price dynamics represented in the form of (3.18), is given
as a real solution to the equation

ν +

√(
1− 2E∗t+1,Taη

4
)

η

√(
1− 2ηγπt − 2E∗t+1,T c

) = πt −
1

2
, (3.22)

where E∗t+1,T := Et+1,T (π∗t+1), if the following two conditions are satisfied for all admissible
values of πt and t ∈ {0, . . . , T − 1}:

1− 2E∗t+1,Taη
4 > 0 and 1− 2ηγπt − 2E∗t+1,T c > 0. (3.23)

2It is possible to derive a set of HN-GARCH parameters matching the first two moments of a given IG-GARCH
parameter set (Christoffersen et al., 2006). For this pair of models, the market price of risk in the IG-GARCH
coincides with the parameter λ of the HN-GARCH model in (3.17a).

3It is known (Escobar-Anel et al., 2022a) that the optimal strategy in the HN-GARCH model converges to
the continuous-time Heston solution as of Kraft (2005) for ∆ → 0 under certain conditions. Thus, imposing
these requirements and taking the limit η → 0, our optimal solution approaches the continuous-time Heston
strategy.
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3.4 Application to IG-GARCH Model

The solutions of Equation (3.22) can be found via the roots of a cubic polynomial with real coef-
ficients, and there is exactly one real solution if the discriminant of this polynomial is negative.
A solution π∗t satisfying (3.22) and (3.23) is a maximum.

Proof. As of Christoffersen et al., 2006, and as stated in Appendix B.2, the coefficients A and
B of the conditional bivariate moment generating function in (3.2) in the IG-GARCH model
are given by

A
(
γπt, E

∗
t+1,T

)
= rγπt + E∗t+1,T w −

1

2
log
(
1− 2E∗t+1,Taη

4
)
,

B
(
γπt, E

∗
t+1,T

)
= E∗t+1,T b+ νγπt + η−2

− η−2

√(
1− 2E∗t+1,Taη

4
)(

1− 2ηγπt − 2E∗t+1,T c
)
.

Combining these formulas with Theorem 3.1, i.e., plugging the above expressions for A and B
into (3.13), we directly obtain the explicit representations for Dt,T and Et,T in terms of the
parameters of the IG-GARCH model:

Dt,T = Dt+1,T + γr + E∗t+1,Tw −
1

2
log
(
1− 2E∗t+1,Taη

4
)
, (3.24a)

Et,T (πt) =
γ

2

(
πt − π2

t

)
+ E∗t+1,T b+ νγπt

+ η−2

(
1−

√(
1− 2E∗t+1,Taη

4
)(

1− 2ηγπt − 2E∗t+1,T c
))

.
(3.24b)

Thus, the two Equations (3.14a) and (3.14b) reduce to (3.22), which needs to be solved for
πt in order to obtain the optimal fraction invested in the risky asset. With the second-order
conditions (3.23) fulfilled, we deduce that a solution must be a maximum.

Working towards solving Equation (3.22), we first isolate the radicals, square the equation and
rearrange terms in order to obtain the following cubic equation:

1− 2E∗t+1,Taη
4

η2 ·
(

1− 2ηγπt − 2E∗t+1,T c
) = π2

t − (1 + 2ν) · πt +

(
ν +

1

2

)2

⇔ 1

η2
·
(
1− 2E∗t+1,Taη

4
)

= −2ηγπ3
t +

(
1− 2E∗t+1,T c

)
π2
t

+ 2ηγ (1 + 2ν) · π2
t − (1 + 2ν)

(
1− 2E∗t+1,T c

)
πt

− 2ηγ

(
ν +

1

2

)2

πt +
(
1− 2E∗t+1,T c

)(
ν +

1

2

)2

⇔ p3 · π3
t + p2 · π2

t + p1 · πt + p0 = 0, (3.25)

where the coefficients of the polynomial in (3.25) are given by

p3 = 2ηγ, (3.26a)

p2 = −2ηγ (2ν + 1)−
(
1− 2E∗t+1,T c

)
, (3.26b)

p1 = 2ηγ

(
ν +

1

2

)2

+ (2ν + 1) ·
(
1− 2E∗t+1,T c

)
, (3.26c)

p0 =
1

η2

(
1− 2E∗t+1,Taη

4
)
−
(
ν +

1

2

)2

·
(
1− 2E∗t+1,T c

)
. (3.26d)
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3 Expected Utility Theory on General Affine GARCH Models

The polynomial in (3.25) has three roots, and the number of real solutions among these can be
deduced from the sign of the discriminant of the polynomial, which in the cubic case is known
to be (Karpfinger and Meyberg, 2013, p. 366)

D = 18 p3 p2 p1 p0 + p2
2 p

2
1 − 4 p3 p

3
1 − 4 p3

2 p0 − 27 p2
3 p

2
0,

where we have a single real solution (and two non-real complex conjugate roots) if D < 0.

The fact that the number of real solutions of a cubic polynomial can be deduced from the sign of
its discriminant makes it worth pointing out that in Equations (3.26), the arrangement ensures
that the signs of three coefficients can easily be derived. Here, we take into account Conditions
(3.23) and use that both η and γ are assumed to be strictly negative, while, according to the
estimates by Christoffersen et al. (2006, Table 2) and, more recently, by Babaoğlu et al. (2018,
Table 2), ν is positive with order of magnitude 3. In particular, we have p3 > 0 and p1 > 0,
while p2 < 0 and no immediate decision can be made for p0. However, from this position, the
sign of D cannot be told immediately. We thus refer to our numerical analyses in Escobar-Anel
et al. (2021), which show that for relevant values of γ, we have exactly one real solution to the
optimality equation.

Note that we can make sure that Condition (3.11) is satisfied by assuming that the arguments
of both square roots in (3.22) are positive, see (3.23). This implicitly imposes conditions on π∗t ,
which need to be checked in practice. However, due to the order of magnitude of the parameter
η being 10−4 (considering the estimates from Christoffersen et al. (2006) and Babaoğlu et al.
(2018) again), the conditions can be expected to be satisfied at least by the optimal terminal
solution.

3.5 Conclusion

This chapter presents an approximate closed-form solution to a portfolio optimization prob-
lem with one risky asset whose log return follows a general affine GARCH process, allowing
for non-Gaussian innovations. The investor maximizes a CRRA utility from terminal wealth.
Using a second-order approximation for the self-financing condition supported in the literature,
we apply the value iteration (Bellman’s principle) iteratively to obtain the optimal strategy
in recursive form. The optimal wealth process is shown to follow an affine GARCH process
as well. Furthermore, the IG-GARCH model is developed as a particular case of the main
result, which constitutes the first EUT closed-form solution available in the literature for a
non-Gaussian GARCH model. The analysis shows that we have a unique real solution to the
optimality equation for popular sets of parameter estimates. One outstanding advantage of the
new model is that asset returns follow a leptokurtic, negatively skewed distribution, allowing
for an investigation of the impact of these non-Gaussian features on portfolio allocation.
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4 Optimal Consumption and Investment

4.1 Introduction

After the introduction to the expected utility theory (EUT) problem in an affine GARCH frame-
work in Chapter 3, this chapter presents the solution to an extended problem, where the investor
may also derive utility from consumption at intermediate time points. Figure 4.1 illustrates that
we target the vertical dimension in the diagram. Hence, the present chapter corresponds to the
green box. This chapter is pubslished as a full-length paper, entitled “Optimal Consumption
and Investment in General Affine GARCH Models” (Escobar-Anel et al., 2024b).

model
complexity

consumption

terminal utility
complexity

C
R
R
A

N
O

Y
E

S

HN IG

Figure 4.1: Overview of the contributions of this dissertation with regard to portfolio optimization
under affine GARCH models, increasing the model complexity as well as the complexity of
terminal and intermediate utility, see also Figures 1.1, 3.1, 5.1 and 6.1. The green box to
Chapter 4.

The optimization of consumption and investment has been of great importance to insurance
companies, pension funds, and individual investors for decades. We have already mentioned the
seminal contributions made by Merton (1969, 1971), based on a geometric Brownian motion
(GBM) model for the underlying risky asset with utility functions of the constant relative risk
aversion (CRRA) and hyperbolic absolute risk aversion (HARA) type, respectively. Since then,
the problem has been tackled for a variety of different models, including stochastic factors like
volatility, interest rate, correlations, and different environments like complete and incomplete
markets settings. We have pointed out in Chapter 1 that the vast majority of models considered
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4 Optimal Consumption and Investment

in the literature have been continuous-time in nature, the reason being the availability of closed-
form, analytical solutions rooted in the convenience of Itô’s processes and partial differential
equations. For instance, Kim and Omberg (1996) explored the behavior of investors maximizing
HARA utility functions, with the risk premium of the single risky asset following an Ornstein-
Uhlenbeck process. The original solution approach was complemented by a duality-based proof
of the same problem provided by Battauz et al. (2015). As mentioned earlier, Kraft (2005)
solved the portfolio allocation problem for the famous Heston (1993) model, while Liu and
Pan (2003) found closed-form solutions in the presence of stochastic volatility and price jumps.
Various consumption and investment problems have been tackled, e.g., by Chacko and Viceira
(2005) (with Duffie and Epstein (1992a,b) utility) and in a multivariate setting by Liu (2007)
(for CRRA utility).

In the area of discrete-time models, specifically for the most important class in finance and
economics, i.e., GARCH processes, very little has been done regarding analytical portfolio
optimization solutions. This is not surprising due to the lack of analytical representations
for basic functions of the process, e.g., the conditional probability density. The difficulties
in approaching GARCH models in this context can also be observed in Chen (2005), who
could solve their rich optimization problem only via scenario generation, i.e., via finite discrete
approximations of the return distribution. As mentioned earlier in this dissertation, the picture
finally changed with the crucial paper by Heston and Nandi (2000), who introduced the first
affine GARCH model (HN-GARCH) for pricing purposes. New affine GARCH models were
added to the family in the following years, more notably, the IG-GARCH of Christoffersen
et al. (2006), who extended the innovations from Gaussian to inverse Gaussian, hence allowing
for negatively skewed and leptokurtic one-period stock returns, while incorporating the HN-
GARCH as a limiting case. More recently, Badescu et al. (2019) provided a general definition
for the class of affine GARCH models, requiring the conditional bivariate moment generating
function (MGF) of the log-asset return and its conditional variance to be exponentially affine
in the latter.

The benefit of this property, in the context of an investor maximizing a CRRA power utility
function on terminal wealth, was first exploited by Escobar-Anel et al. (2022a) for the HN-
GARCH model, and later generalized to the class of general affine GARCHs (see Chapter 3 and
Escobar-Anel et al., 2021). In both cases, the authors use a well-established approximation of the
self-financing condition (SFC) to produce explicit expressions for the optimal risky allocation,
optimal wealth process, and value function.

These developments have excluded the critical aspect of investors’ consumption preferences.
Not only is consumption a crucial decision-making component for individuals, insurers and
pension funds, but its presence can also drastically disrupt optimal risky allocations and wealth
behavior. This chapter tackles this problem by considering a large family of affine GARCH
models while allowing for consumption and terminal wealth preferences by the investor. We
assume a special HARA utility for consumption with a cap on wealth, ensuring that consumption
cannot become greater than wealth, which is a drawback of existing solutions in the literature.
After the standard approximation of the SFC, we obtain closed-form solutions for optimal
consumption, allocation strategy, wealth process, and value function. In particular, the work
in this chapter differs from Chen (2005) in that the affine nature of our model allows for an
entirely different solution approach without scenario generation.

The main contributions of this chapter are the following:

• We present the first analytical solutions for optimal consumption and allocation in an
expected utility setting for affine GARCH models.
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4.2 Problem Description

• Optimal wealth and consumption processes are shown to also follow affine GARCH mod-
els.1

• A numerical application to Gaussian and non-Gaussian GARCH, as well as to the ho-
moscedastic model, reveals a significant impact of the presence/absence of consumption
on the optimal allocation level. It also shows significant differences in risky allocations
compared to homoscedastic cases, with the greater impact coming from heteroscedasticity
rather than non-Gaussianity.

• In a study based on real-world market data, over a five-year horizon, the total consumption
of investors following a GARCH strategy can be up to 10% higher than with the optimal
homoscedastic solution at the same time also achieving 8% more terminal wealth.

The remainder of this chapter is structured as follows: In Section 4.2, we describe the consump-
tion and investment problem and derive a formulation in terms of stochastic control models,
starting with the standard approximation of the SFC in 4.2.1, formally introducing the class
of affine GARCH models in 4.2.2 and presenting the final optimization problem in 4.2.3. Sec-
tion 4.3 contains our main results, for a general affine GARCH model in Subsection 4.3.1 and
for the two special cases, HN-GARCH and IG-GARCH, in 4.3.2. The numerical analysis in
Section 4.4 is divided into a part about a study of the optimal solution to the problem in an
IG-GARCH environment (Section 4.4.1) and an assessment of the strategy performance of a
Gaussian GARCH model based on real-world data from the S&P 500 stock index in 4.4.2. We
conclude in Section 4.5.

4.2 Problem Description

This section derives a formulation of our investment problem in the context of affine GARCH
models, adapting the approach by Campbell and Viceira (1999) in the presence of consumption.

4.2.1 Self-Financing Condition

Let Vt denote the wealth at time t, and let P
(0)
t and P

(1)
t be the value of the bank account and

the risky asset at time t, respectively. With πt the fraction of wealth invested in the risky asset
and describing the consumption at time t by Ct, we start with the exact relation

Vt+1

Vt − Ct
= πt

P
(1)
t+1

P
(1)
t

+ (1− πt)
P

(0)
t+1

P
(0)
t

. (4.1)

Two Taylor expansions of order 2 around 1, using the notation C̄t = Ct/Vt for the relative
consumption, yield

log

(
P

(1)
t+1

P
(1)
t

)
≈ P

(1)
t+1

P
(1)
t

− 1− 1

2

(
P

(1)
t+1

P
(1)
t

− 1

)2

,

log

(
Vt+1

Vt
(
1− C̄t

)
)
≈ Vt+1

Vt
(
1− C̄t

) − 1− 1

2

(
Vt+1

Vt
(
1− C̄t

) − 1

)2

.

1This is beneficial in terms of closed-form risk analysis and pricing of derivatives on the optimal portfolio.
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We use the variance of the return instead of its square, denoted by ht+1 = Var
(

log
(
P

(1)
t+1/P (1)

t

))

and obtain

log

(
P

(1)
t+1

P
(1)
t

)
≈ P

(1)
t+1

P
(1)
t

− 1− 1

2
Var

(
P

(1)
t+1

P
(1)
t

− 1

)
≈ P

(1)
t+1

P
(1)
t

− 1− 1

2
ht+1,

log

(
Vt+1

Vt
(
1− C̄t

)
)
≈ Vt+1

Vt
(
1− C̄t

) − 1− 1

2
Var

(
Vt+1

Vt
(
1− C̄t

) − 1

)

≈ Vt+1

Vt
(
1− C̄t

) − 1− 1

2
π2
t ht+1.

Denoting the continuously compounded interest rate by r > 0, a linear approximation of the
logarithm around 1 furthermore leads to

r = log

(
P

(0)
t+1

P
(0)
t

)
≈ P

(0)
t+1

P
(0)
t

− 1.

All in all, this leads to the following approximation of the SFC:

log

(
Vt+1

Vt
(
1− C̄t

)
)

+ 1 +
1

2
π2
t ht+1 = πt

(
log

(
P

(1)
t+1

P
(1)
t

)
+ 1 +

1

2
ht+1

)
+ (1− πt) (1 + r) . (4.2)

Solving for Wt := log Vt, and defining Ĉt := log
(

Vt
Vt−Ct

)
as well as Xt := logP

(1)
t , we arrive at

Wt+1 = Wt − Ĉt + πt (Xt+1 −Xt) + (1− πt) r +
1

2

(
πt − π2

t

)
ht+1. (4.3)

Remark 4.1 (Relation to SFC approximation without consumption). Equation (4.2) is identi-
cal to the approach by Campbell and Viceira (1999) for a setting without consumption, used only
for the reinvested part of wealth, and thus well-supported in the literature. In a homoscedastic
setting, the authors combined this with a log-linearization around the mean consumption-wealth
ratio, which is not necessary in the above approach. Note that there is no approximation con-
cerning consumption in the procedure leading to (4.3). Thus, examining the quality of this
approach and the error of the approximation essentially boils down to the analysis performed in
Escobar-Anel et al. (2021) for the case without consumption.

4.2.2 Affine GARCH Models and Transition Function

Now assume a general affine GARCH setting as already presented in (3.1), with the log-asset
return and its conditional variance being defined as

Yt := Xt −Xt−1 = f1 (ht, θ) +
√
ht εt, (4.4a)

ht+1 = f2 (ht, θ) + f3 (ht, εt, θ) , (4.4b)

according to Badescu et al. (2019), with the innovation denoted by εt and having mean zero,
and θ being a vector of model parameters.2 In particular, assume that the conditional bivariate

2Note that we do not require the innovations to be i.i.d., but rely on the structure of the MGF in (4.5) directly to
also accommodate the IG-GARCH model. This framework forms a special case of the recent affine multifactor
model introduced in Augustyniak et al. (2023).
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4.2 Problem Description

MGF of the log-asset return and its conditional variance admits the representation

Ψ(Yt,ht+1) (u, v | Ft−1) := E [exp {uYt + vht+1} | Ft−1]

= exp {A (u, v) +B (u, v) · ht}
(4.5)

for some coefficients A and B dependent on the model parameters. On this basis, let W ⊂ R
be the set of possible values for the log wealth, and let Aπ and AĈ be the sets of admissible

values for the portfolio strategy and consumption control Ĉ, respectively. We set Y the set of
possible log return values and define H = (0,∞). The transition function according to (4.3)
thus can be written as T : W ×H×Aπ ×AĈ ×Y →W ×H,

T
(
W,h, π, Ĉ, Y

)
=
(
T1

(
W,h, π, Ĉ, Y

)
,T2 (h, Y )

)

=

(
W − Ĉ + πY + (1− π) r +

1

2

(
π − π2

)
h,

f2 (h, θ) + f3

(
h,
Y − f1 (h, θ)√

h
, θ

))
.

(4.6)

Note that W,H,Aπ and AĈ are intervals in R and thus convex sets.

4.2.3 Optimization Problem

We suppose that the investor derives utility from consumption at each time point t = 0, . . . , T−1,
and utility from terminal wealth at time T . In particular, for some constant parameter γ̄ > 1,
we consider utility functions for consumption of the form ut (Ct) = −aγ̄t

[
(Vt − Ct)+]γ̄ , with

some time-dependent at > 0 and t ∈ {0, . . . , T − 1}. This utility is concave, increasing in Ct on
the interval (0, Vt), and flat on [Vt,∞), implying that the current wealth will never be exceeded
by consumption. Note that an increase in consumption at the same time negatively affects
potential future utilities, see (4.3). This choice of utility is popularly known as HARA, see
Merton (1971), and given in general form by

UH (C) =
1− γH
γH

(
βH · C
1− γH

+ ηH

)γH
.

We can match Merton’s and our notation as follows:

γH = γ̄, ηH = βH ·
Vt

γH − 1
, βH =

a

b
,

with

a = at(γH − 1), b =

(
γH − 1

γH

) 1
γH

.

In the sequel, we will work with the parameter at := ā/Vt, for some constant ā > 0, and define

Ut(c) =

{
ut(c), c ∈ [0,∞) ,

−∞, otherwise.

In terms of the Arrow-Pratt measure for absolute risk aversion, we thus obtain for Ct ∈ (0, Vt):

At (Ct) = −U
′′
t (Ct)

U ′t (Ct)
=

γ̄ − 1

Vt − Ct
,
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4 Optimal Consumption and Investment

supporting the well-known feature of absolute risk aversion decreasing in wealth. Note that
At (Ct) is increasing in γ̄. In terms of the relative risk aversion, we obtain

Rt (Ct) = −Ct
U ′′t (Ct)

U ′t (Ct)
=

Ct
Vt − Ct

· (γ̄ − 1) =
C̄t

1− C̄t
· (γ̄ − 1) .

Furthermore, on [0, Vt], we can transform Ut (Ct) to be a function of our control on consumption
Ĉt via

Ut (Ct) = −aγ̄t
[
(Vt − Ct)+]γ̄

= −āγ̄
(
Vt − Ct
Vt

)γ̄
(4.7)

= −āγ̄ exp

{
−γ̄ log

(
Vt

Vt − Ct

)}

= −āγ̄ exp
{
−γ̄Ĉt

}
, (4.8)

which means that we are maximizing an exponential utility function w.r.t. Ĉt ∈ [0,∞). For
convenience, we denote Ut as a function of Ĉt as in (4.8) in the sequel. At time T , utility only
depends on the final wealth VT , following a CRRA power utility function UT (v) = 1

γ v
γ for

some γ < 1. This implies that the investor’s absolute risk aversion AT (v) = −U ′′T (v)

U ′T (v)
= 1−γ

v is

decreasing in γ. The Arrow-Pratt measure for relative risk aversion yields RT (v) ≡ RT = 1−γ.

Following the strict separation between evaluating the utility of consumption at all intermediate
time points and measuring the utility from terminal wealth via the power utility, we intend to
solve:

max
{(πs,Ĉs)}T−1

t

E

[
T−1∑

s=t

β̄s−t · Us (Cs) + β̄T−t · UT (VT ) | Ft
]
,

where β̄ ∈ [0, 1] is the corresponding factor for intertemporal substitution. We work with the
log wealth and, as outlined in Chapter 3, apply the value iteration in Theorem 2.15, using the
SFC approximation (4.3). This leads to the following value function:





φT (WT , hT+1) := φT (WT ) = UT
(
eWT

)
= 1

γ exp {γWT }

φt (Wt, ht+1) = max
πt,Ĉt

{
−āγ̄ exp

{
−γ̄Ĉt

}
+ β̄ · E

[
φt+1 (T (Ξt)) | Ft

]}
,

t = 0, . . . , T − 1.

(4.9)

Here, Ξt =
(
Wt, ht+1, πt, Ĉt, Yt+1

)
.

Remark 4.2 (On the choice of utility functions). Concerning the optimization setting introduced
above, note the following:

(1) For C̄t = Ct/Vt close to zero, the first-order Taylor approximation

Ĉt = − log
(
1− C̄t

)
≈ C̄t

works well. Plugging this into the utility for consumption leads to

Ut (Ct) = −āγ̄ exp
{
−γ̄Ĉt

}
≈ −āγ̄ exp

{
−γ̄C̄t

}
= −āγ̄ exp

{
− γ̄
Vt
Ct

}
.
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Calculating the Arrow-Pratt measure of absolute risk aversion for the expression on the
right-hand side yields At (Ct) = γ̄/Vt, again supporting the idea of risk aversion decreasing
with the level of wealth. Having the same relative risk aversion as for the CRRA function

measuring utility from terminal wealth requires Rt (Ct) = Ct · At (Ct) ≈ C̄tγ̄ !
= 1− γ.3

(2) Dropping the convention that CT = 0 leads to an optimization problem with one additional
variable at time T – the proportion of wealth to consume at maturity. The question of
how much to consume (value CT , measured via utility for consumption) and how much to
leave untouched (VT − CT , measured via power utility), will essentially be determined by
the exact shape of the two utility functions.

(3) Using power utility also for consumption at time t ∈ {0, . . . , T − 1} leads to absolute risk
aversion being inversely proportional to Ct and disconnected from wealth. Furthermore,
there is no inherent bound preventing consumption from exceeding the current wealth. The
approach above solves this puzzle by connecting consumption directly to wealth.

4.3 Solution to the Portfolio Optimization Problem

4.3.1 Main Results

This section presents our main theoretical results, deriving an optimal strategy for the dynamic
optimization problem in Section 4.2.3. For the sake of readability, the proofs are to be found in
Appendix C.1.

In order to prove our main result in a general context, a structural result about the concavity of
value functions in stochastic control models is needed, see Proposition 2.21 in the Mathematical
Preliminaries. In particular, we refer to our model as an stochastic control model (SCM) with
arbitrary disturbances, based on Defintion 2.12.

Remark 4.3. We can relax the requirement of i.i.d. disturbances to accommodate the IG-
GARCH model, asking that the distribution of innovations allow for the exponentially affine
representation of the conditional bivariate generating function of the log-asset return and its
conditional variance instead, since all necessary properties of the model are still given in each
individual step.

Theorem 4.4. In the environment described above, assume that the log asset price of the risky
asset follows an affine GARCH model, and that γ < 0 and γ̄ > 1. The value function can be
written as

φt (Wt, ht+1) =− āγ̄ exp
{
−γ̄Ĉ∗t

}
− Et

[
T−1∑

s=t+1

β̄s−tāγ̄ exp
{
−γ̄Ĉ∗s

}]

+
β̄T−t

γ
exp

{
Dt,T (π∗t ) + EĈt,T Ĉ

∗
t + EWt,TWt + Eht,T (π∗t )ht+1

}
,

(4.10)

3The occurrence of relative consumption in this equation can be solved via considering the initial time point
t = 0 and replacing the level of consumption implied by a homoscedastic Gaussian model in our setting with
the solution by Merton (1969). Denoting Merton’s solution at time t = 0, discretized for step length ∆t equal

to one day, by C(M), we set C̄0 = C(M)

v0
, where v0 denotes the investor’s initial wealth. For more details, see

Section 4.4.
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with the optimal solution
{(
π∗t , Ĉ

∗
t

)}
t

and coefficients D, EW , EĈ , Eh as defined in Equa-

tion (C.2) in the proof. The optimal relative consumption Ĉ∗t is affine in the log wealth and the
conditional variance, and admits the representation

Ĉ∗t = Pt,T (π∗t ) +Qt,T ·Wt +Rt,T (π∗t ) · ht+1, (4.11)

for coefficients P , Q, R as defined in (C.6). By denoting the coefficients of the bivariate MGF
of the log-asset return and its conditional variance A and B, the optimal risky allocation π∗t
satisfies

∂

∂u
A
(
EWt,Tπ

∗
t , E

h
t+1,T

(
π∗t+1

)
+ EĈt+1,TRt+1,T

(
π∗t+1

))
= r, (4.12a)

∂

∂u
B
(
EWt,Tπ

∗
t , E

h
t+1,T

(
π∗t+1

)
+ EĈt+1,TRt+1,T

(
π∗t+1

))
= π∗t −

1

2
. (4.12b)

Remark 4.5 (On Theorem 4.4).

(1) The conditional expectation in the value function (4.10) can be solved recursively using
(4.11), the SFC approximation (4.3) and the conditional bivariate MGF of the log-asset
return and its conditional variance in the underlying affine GARCH model.

(2) Note that the (first-order) optimality equations for π∗t are the same as in the CRRA case
without consumption, although the arguments of the coefficients A and B are different, of
course.

Using the approximation of the SFC (4.3) and the conditional bivariate generating function
of the log-asset return and its conditional variance in the underlying affine GARCH model
analogously to the proof of Theorem 4.4, we can establish that the optimal log-wealth process
actually is an affine GARCH process itself.

Corollary 4.6 (Affine GARCH process for optimal log wealth). The optimal log-wealth process
{Wt}t follows an affine GARCH process. Specifically,

Ψ(Wt,(π∗t )2ht+1) (u, v | Ft−1)

= exp

{
A
(
uπ∗t−1, v (π∗t )

2
)
− uPt−1

(
π∗t−1

)
+
(
1− π∗t−1

)
ur + u (1−Qt−1)Wt−1

+
1

(
π∗t−1

)2
[
B
(
uπ∗t−1, v (π∗t )

2
)
− uRt−1

(
π∗t−1

)
+
u

2

(
π∗t−1 −

(
π∗t−1

)2)
]
·
(
π∗t−1

)2
ht

}
.

(4.13)

Furthermore, the optimal investment strategy π∗t does not depend on the conditional variance
or the wealth.

Remark 4.7. Since the optimal control on consumption, Ĉ∗t , is affine in Wt and ht+1, the
MGF of Ĉ∗t is also exponentially affine in the log wealth and the conditional variance of the log
return.

Using Corollary 4.6, and the MGF (4.13) in particular, we can now establish a shorter form of
the value function (4.10).
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Corollary 4.8. For t ∈ {0, . . . , T − 1}, the value function (4.10) can be written as

φt (Wt, ht+1) = − exp
{

log (T − t+ 1) + EWt,T (1−Qt,T )Wt +
(
Eht,T (π∗t )− EWt,TRt,T (π∗t )

)
ht+1

}

−
T∑

τ=t

exp
{
D̃t,τ,T ({πk}τt )

}
,

(4.14)

for deterministic coefficients D̃t,τ,T with τ ∈ {t, . . . , T}.

We omit the dependence of D̃t,τ,T on the optimal strategy for readability.

Remark 4.9 (Wealth-equivalent loss). Given the results of Corollary 4.8, we can introduce
a concept for measuring the wealth-equivalent loss (WEL) arising from following a suboptimal
strategy instead of the optimum according to Theorem 4.4. We assume the same transition

law (4.6) for both the optimal and the suboptimal solution, dependent on
{(
π∗t , Ĉ

∗
t

)}
t

and
{(
πst , Ĉ

s
t

)}
t
, respectively. In particular, the value function for the suboptimal variant is given

by

φst (Wt, ht+1) = −āγ̄ exp
{
−γ̄Ĉst

}
+ β̄ · Et

[
φst+1

(
T
(
Wt, ht+1, π

s
t , Ĉ

s
t , Yt+1

))]
.

We now define the wealth-equivalent loss from following the suboptimal strategy instead of the
optimal as the solution Lst to the equation

φt (log (Vt (1− Lst )) , ht+1) = φst (log (Vt) , ht+1) . (4.15)

If the suboptimal allocation is deterministic and the suboptimal control on consumption is affine
in the log wealth and the conditional variance of the log-asset return, by Corollary 4.8, (4.15) is
equivalent to

exp
{
EWt,T (1−Qt,T ) log (Vt) +

(
Eht,T (πst )− EWt,TRt,T (πst )

)
ht+1

}

− exp
{
EWt,T (1−Qt,T ) log (Vt (1− Lst )) +

(
Eht,T (π∗t )− EWt,TRt,T (π∗t )

)
ht+1

}

=

T∑

τ=t

(
exp

{
D̃∗t,τ,T − log (T − t+ 1)

}
− exp

{
D̃s
t,τ,T − log (T − t+ 1)

})
.

(4.16)

Solving for Lst leads to a closed-form expression for the wealth-equivalent loss. The above re-
quirement in particular accommodates all affine GARCH models as potential candidates for
suboptimal choices.

Lastly, we note that the previously tackled investment problem for an investor deriving utility
from terminal wealth only is nested in the more general environment described here.

Corollary 4.10 (Special case without consumption). The setting in this document nests the
setup without consumption, i.e., with an investor deriving utility from terminal wealth only, as
presented in Chapter 3 (Escobar-Anel et al., 2022a, 2021), as a limiting case for the parameter
choice ā = 1 and letting γ̄ →∞.
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4.3.2 Examples of Applications to Affine GARCH Models

HN-GARCH Model

Assume that the log asset price and its conditional variance follow an affine GARCH model as
of Heston and Nandi (2000), and as already specified in (3.17), such that the set of parameters
is given by θ = (λ, ω, β, α, ρ), {εt}t is a sequence of standard normal innovations, and (4.4) is
of the form

Yt = Xt −Xt−1 = r + λht +
√
htεt, (4.17a)

ht+1 = ω + βht + α
(
εt − ρ

√
ht

)2
. (4.17b)

As presented in Appendix B.1, this implies in particular that for t = 0, . . . , T − 1,

Ψ(Yt+1, ht+2) (u, v | Ft) := E
[

exp {u · Yt+1 + v · ht+2} | Ft
]

= exp
{
A (u, v) +B (u, v) · ht+1

} (4.18)

with the two coefficients A and B given by

A (u, v) = ur + vω − 1

2
log (1− 2vα) , (4.19a)

B (u, v) = uλ+ v
(
αρ2 + β

)
+

(u− 2vαρ)2

2 (1− 2vα)
. (4.19b)

Therefore, the HN-GARCH model is an affine GARCH model and yields a special case of our
main result. Using that the equations in (4.12) have the same structure as in the case without
consumption, we obtain the following corollary:

Corollary 4.11 (HN-GARCH). In the situation of Theorem 4.4, if the underlying log asset
price process follows an HN-GARCH model and is given by (4.17), the value function and the
optimal control on consumption are given by (4.10) and (4.11), respectively, using the explicit
expressions (4.19) for the coefficients A and B. Concerning the optimal allocation, (4.19)
reduces (4.12) to

π∗t =
(λ+ 1/2) (1− 2vα)− 2vαρ

1− EWt,T − 2vα
, (4.20)

using the abbreviation

v := Eht+1,T

(
π∗t+1

)
+ EĈt+1,TRt+1,T

(
π∗t+1

)
. (4.21)

Proof. See Appendix C.1.

Remark 4.12 (On Corollary 4.11).

(1) A common way to look at an optimal allocation like (4.20) is to split the solution into two
terms. A myopic term, independent of the horizon and related to the celebrated solution by
Merton (1973), and a time-dependent term coming from hedging the extra sources of ran-
domness, see Kraft (2005) for a popular continuous-time example with stochastic volatility
without consumption. The same exercise for the HN-GARCH without consumption, which
is a special case of our equation (4.20), can be found in Escobar-Anel et al. (2022a).
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(2) In the presence of consumption, our Equation (4.20) is different from Merton’s solution
even in the absence of GARCH (i.e., in the homoscedastic case, where α = β = 0). More
importantly, in such a scenario, our optimal allocation is time-dependent and non-myopic
(i.e., π∗t = λ+1/2

1−γγ̄(γ̄−(T−t−1)γ)−1 as opposed to πMt = λ+1/2
1−γ for Merton), therefore the split

into a myopic and a non-myopic term is no longer feasible.

IG-GARCH Model

Assume that the log asset price and its conditional variance follow the IG-GARCH model (cf.
Christoffersen et al., 2006), where the set of parameters is given by θ = (ν, η, w, a, b, c), having
η < 0. The log return and its conditional variance, as presented in (3.18), are given by

Yt = Xt −Xt−1 = r + νht + ηyt, (4.22a)

ht+1 = w + bht + cyt + a
h2
t

yt
, (4.22b)

where {yt}t is a sequence of random variables with inverse Gaussian distribution and single
parameter δ(t) = δt = ht/η2. As stated by Christoffersen et al. (2006), the MGF is again given
by (4.18) with the coefficients A and B defined as (see Appendix B.2)

A (u, v) = ur + vw − 1

2
log
(
1− 2vaη4

)
, (4.23a)

B (u, v) = vb+ uν +
1

η2

(
1−

√
(1− 2vaη4) (1− 2uη − 2vc)

)
. (4.23b)

This matches the characterization of general affine GARCH models as of Section 4.2.2 and,
together with the fact that the structure of the optimality equations (4.12) for the optimal risky
allocation is the same as in the case without consumption, yields the following corollary:

Corollary 4.13 (IG-GARCH). In the situation of Theorem 4.4, if the underlying log asset
price process follows an HN-GARCH model and is given by (4.22), the value function and the
optimal control on consumption are given by (4.10) and (4.11), respectively, using the explicit
expressions (4.23) for the coefficients A and B. Concerning the optimal allocation, plugging in
(4.23) reduces (4.12) to

ν +

√
1− 2vaη4

η
√

1− 2ηEWt,Tπ
∗
t − 2vc

= π∗t −
1

2
, (4.24)

where v is again defined as in (4.21).

Proof. See Appendix C.1.

Remark 4.14 (On Corollary 4.13).

(1) Note that Equation (4.24) is not linear in π∗t . Instead, separating radicals and squaring
the equation yields a cubic equation. The optimal portfolio strategy π∗t thus is a root of a
polynomial of degree 3, the discriminant of which indicates the number of real solutions,
see Section 3.4. In the case of a CRRA utility without consumption, we could show
numerically that there is exactly one real solution (cf. Escobar-Anel et al., 2021).
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4 Optimal Consumption and Investment

(2) Given the connection between IG- and HN-GARCH models, we can show numerically, that
the real solution to equation (4.24) converges to the solution of the HN-GARCH model in
equation (4.20). To this end, we have to let η → 0 according to the parametrization
in Equation (6) in Christoffersen et al. (2006), see Figure 4.4 and the corresponding
comments.

4.4 Numerical Analysis

The purpose of this section is to investigate the behavior of the solution to our optimization
problem numerically, based on the special cases of the IG-GARCH and the HN-GARCH model
from Section 4.3.2, and on the homoscedastic case. Two different types of analysis are provided:
The first focuses on the sensitivity of the optimal allocation and consumption strategy w.r.t. the
model and investment parameters, and studies in particular the impact of conditional skewness
and kurtosis on consumption and risky allocation. The second uses real-world data from the
S&P 500 stock index to compare the strategy performance over two separate periods of five
years each.

4.4.1 Optimal Solution Analysis

This subsection shows how the optimal solution to our optimization problem as presented in
Section 4.3, implemented for the special cases of an HN-GARCH model, an IG-GARCH model,
and a homoscedastic model (HS, constant variance), depends on important model and invest-
ment parameters. In particular, provided that the inverse Gaussian distribution embeds the
HN and HS models while allowing for negatively skewed and leptokurtic innovations for the
log-asset return, we also explore the impact of skewness and kurtosis on our solution. We will
focus on the sensitivity of the optimal risky allocation and of the optimal consumption process,

measured in relative consumption C̄∗t = C∗t/Vt = 1 − exp
{
−Ĉ∗t

}
. The analysis is conducted

using the maximum likelihood estimates (MLEs) from Babaoğlu et al. (2018) as parameter val-
ues (see Table 4.1), an additional analysis with the earlier estimates from Christoffersen et al.
(2006) can be found in the appendix. If not stated otherwise, the time horizon is five years
with 252 trading days each, the interest rate is r = 0.01/252, the parameter for intertemporal
substitution is β̄ = 1 and the initial wealth is v0 = 1. In view of Corollary 4.10, we work with
ā = 1. Concerning the investor’s risk aversion, the default value for utility from terminal wealth
is γ = −4, corresponding to RT = 5 as the level of relative risk aversion. For the parameter
γ̄, we refer to Remark 4.2. The proxy for relative consumption needed to obtain the same
level of risk aversion as at time T is derived via matching the consumption of a homoscedastic
Gaussian model in our setting with the optimal solution proposed by Merton (1969) at the
initial time point t = 0. Plugging in the corresponding value for relative consumption amounts
to γ̄ = 7.559× 103.

Figure 4.2 shows how the optimal initial solution depends on the investor’s time horizon and
how solutions to different special cases of our general model compare. The plots show the
optimal relative consumption and the optimal risky allocation, respectively, for the IG-GARCH
model, for the HN-GARCH model, and for a homoscedastic Gaussian model. The MLEs for the
parameter values are taken from Babaoğlu et al. (2018), and all models are calibrated to the
same data set. For the optimal risky allocation, we also plot the solution without consumption,
i.e., for an investor deriving utility from terminal wealth only. Given that this case is nested in
our model as the limit for γ̄ →∞ (see Corollary 4.10), we calculate these solutions via setting
this parameter to a very large value and leaving the rest unchanged. Here, we use γ̄ = 1× 108.
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Table 4.1: Values for the parameters used for the IG-GARCH, the HN-GARCH model and the ho-
moscedastic Gaussian – consisting of the MLEs as of Babaoğlu et al. (2018) for all param-
eters. For the IG-GARCH model, the value of ν implies that the market price of risk is
ν + η−1 ≈ 1.16.

Panel A: IG-GARCH Panel B: HN-GARCH Panel C: Hom. Gauss.

Param. Values Param. Values Param. Values

ν 1.747× 103 λ 1.100 λ 0.78

η −5.729× 10−4 ω −1.396× 10−6 ω 1.373× 10−4

w −1.469× 10−6 β 9.000× 10−1

a 3.190× 107 α 3.761× 10−6

b −2.182× 101 ρ 1.457× 102

c 4.047× 10−6

Figure 4.2a shows that the specific model for the log-asset return within the class of affine
GARCH models is almost irrelevant for the optimal relative consumption – the difference is of
order 1× 10−6. In this context, we note that, from the proof of Theorem 4.4, the coefficient
Qt,T for the affine relation of Ĉ∗t and Wt is independent of the specific model parameters. This
picture is changed when we look at the optimal π∗0: In Figure 4.2b, we observe a clear difference
for the optimal risky allocation, with the highest fraction invested in the risky asset when
the IG-GARCH model is used, directly followed by the Gaussian HN-GARCH model. With
a larger difference to the heteroscedastic models, a homoscedastic investor invests the least
fraction of wealth in the risky asset. Note that a similar pattern has been observed without
consumption by Escobar-Anel et al. (2021). In general, the green lines reproducing the solutions
without consumption show that the relative risky allocation is increased significantly over time
as consumption is added to the model.

Since the IG-GARCH contains the HN-GARCH as a special case, we continue the analysis with
the IG-GARCH model. Figure 4.3a shows the impact of the risk aversion parameters – with γ
corresponding to the utility derived from terminal wealth (left plot) and γ̄ corresponding to the
utility derived from consumption (right plot) – on the initial value of relative consumption. We
use γ ∈ [−6,−0.1] and γ̄ ∈

[
5× 102, 1× 104

]
to cover reasonable risk aversion levels for terminal

wealth and consumption, respectively. Our default parameter choice γ = −4 corresponds to
a risk aversion level of RT = 5, and the default value γ̄ = 7.559× 103 is chosen according to
Remark 4.2 based on this value. In general, risk aversion for intermediate consumption influences
both relative consumption and the relative risky investment (right plots in Figure 4.3a and 4.3b),
but the risk aversion for utility from terminal wealth only has a minor effect on consumption
(left plot in Figure 4.3a); the decrease in C̄∗0 is much larger as R0

(
C̄∗0
)

increases. The left plot
in Figure 4.3b shows that as the investor’s risk aversion concerning utility derived from terminal
wealth decreases (RT → 0), the optimal risky allocation increases. The impact is similar to
the one caused by a decreasing risk aversion for consumption in the right plot in Figure 4.3b.
Again, the optimal risky allocation increases as the investor’s risk aversion decreases.

Given the presence of non-Gaussianity and heteroscedasticity in the model, we study the impact
of these two features on the solution to our optimization problem next. Taking advantage of the
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Figure 4.2: Values of the optimal initial strategy at time t = 0, dependent on the time horizon. The
plots include an IG-GARCH, an HN-GARCH and a homoscedastic Gaussian, all fitted to
the same data set. The solutions without consumption are obtained via setting γ̄ = 1× 108

to approximate the case without consumption. One year is assumed to have 252 trading
days. We used the parameter MLEs of Babaoğlu et al. (2018).

more general nature of the IG-GARCH among the three models, we transform this analysis into
measuring the impact of skewness and kurtosis on the optimal solution while assuming the first
two unconditional moments remain the same. As presented by Christoffersen et al. (2006), the
IG-GARCH model allows for negatively skewed and leptokurtic log-asset returns. The one-step
skewness S and excess kurtosis K are calculated dependent on the value of the parameter η via
the formulas

St [Yt+1] = 3η (ht+1)−
1/2 , Kt [Yt+1] = 15η2 (ht+1)−1 . (4.25)

Since changes in η also influence the expected log-asset return and its variance, we apply the
approach of Escobar-Anel et al. (2021) and adjust the remaining parameters in the IG-GARCH
model with changes in η such that the first two moments are kept constant. This isolates the
impact of negatively skewed and leptokurtic log-asset returns on the optimal strategy. The
right plot in Figure 4.4 indicates that relative consumption decreases as negative skewness and
excess kurtosis increase (η decreases), but the scale also shows that the impact is very little.
The left plot shows a similar picture for the optimal risky allocation; we refer to Escobar-Anel
et al. (2021) for more detailed analysis in the context of a pure investment problem and note
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(a) Optimal initial relative consumption, dependent on the investor’s risk aversion concerning utility from ter-
minal wealth (left plot) and from consumption (right plot).
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(b) Optimal initial relative risky allocation, dependent on the investor’s risk aversion concerning utility from
terminal wealth (left plot) and from consumption (right plot).

Figure 4.3: Values of the optimal initial relative consumption and optimal initial risky allocation, de-
pendent on relative risk aversion. Relative risk aversion for terminal wealth in the left plots
is governed by the parameter γ, and relative risk aversion for consumption in the right plots
is modified via γ̄, see Remark 4.2. The time horizon is five years.

that the direction of the impact of η on π∗0 is analogous if the model is extended by allowing
for consumption. For both figures, we also insert the limiting HN-GARCH solution and the
embedded HS solution, all with the same first two unconditional moments.

This figure conveys one of the main conclusions of this chapter, which is that the most conse-
quential feature between heteroscedasticity and non-Gaussianity is the former. In light of this
finding, we pick the HN-GARCH and the homoscedastic model for an application on real data
in the next section.

Further parameters of the IG-GARCH model have a small impact of the order of 1× 10−5

(0.001%) on the optimal relative consumption, see Appendix C.2.1. However, it is essential to
note that changes in the parameters w and r do change the solution, as opposed to the special
case without consumption.
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Figure 4.4: Values of the optimal initial risky allocation and relative consumption dependent on the
parameter η. The time horizon is five years. The color bar on the right-hand side indicates
the corresponding values for the skewness and excess kurtosis of log-asset returns. The
vertical dashed line marks the original MLE for η in the considered parameter set. The
first two moments are kept constant under changes in η. The blue and red dots mark the
solutions for HN-GARCH and homoscedastic models with the same first two unconditional
moments.

4.4.2 Data-based Performance Analysis

This section presents a data-based analysis of the strategy performance, using parameters es-
timated from S&P 500 return values in two periods from January 3, 2013, through December
30, 2017, and from January 3, 2018, through December 30, 2022. In our study, we focus on the
HN-GARCH model in comparison to the embedded homoscedastic variant. As explained before
in the context of Figure 4.4, skewness and kurtosis have very little effect on risky allocation and
consumption. At the same time, the impact of heteroscedasticity is more significant, particu-
larly on the optimal allocation. Therefore, we select the HN-GARCH and the homoscedastic as
the models for the comparison.

For each of the two five-year periods, we estimate the HN-GARCH and the homoscedastic
parameters using the returns-only estimation of Escobar-Anel et al. (2022b) for the path of
S&P 500 log returns {xt}t=1,...,T . Given the vector of parameters θ = (λ, ω, α, β, ρ), with
α = β = 0 in the homoscedastic case, and the log return xt−1, the law for Xt is

Xt | (xt−1, θ) ∼ N (xt−1 + r + λht, ht) . (4.26)

The joint probability density function (PDF) fX1,...,XT of the log returns can be expressed via
conditioning on the previous values:

fX1,...,XT (x1, . . . , xT ) =fX1 (x1) · fX2|X1
(x2) · . . . · fXT |XT−1

(xT ) . (4.27)

Combining (4.26) and (4.27) with the PDF of a normally distributed random variable and
subsequently taking the logarithm leads to the log-likelihood function

lT (x1, . . . , xT | θ) = −1

2

T∑

t=1

(
log (2π) + log (ht) + ε2t

)
, (4.28a)

where

εt =
xt − xt−1 − r − λht√

ht
. (4.28b)
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The estimates θ̂ for θ are given by θ̂ = arg maxθ lT (x1, . . . , xT | θ). The standard errors of the
estimates are calculated via the Fisher information matrix (see Equation 2.9). The combined
results with standard errors are provided in Table 4.2.

Table 4.2: MLEs for the HN-GARCH model and the homoscedastic model, based on the S&P 500
levels from January 3, 2013, through December 30, 2017, and from January 3, 2018, through
December 30, 2022, with standard errors in parentheses.

Param. HN-GARCH Homoscedastic

2013-17 2018-22 2013-17 2018-22

λ 8.97 1.79 8.59 1.47

(3.90) (2.13) (3.81) (2.08)

ω 2.07× 10−6 4.61× 10−8 5.58× 10−5 1.91× 10−4

(3.75× 10−7) (5.52× 10−7) (1.45× 10−6) (2.86× 10−6)

α 3.05× 10−6 1.08× 10−5

(4.91× 10−7) (9.65× 10−7)

β 5.86× 10−1 7.16× 10−1

(4.26× 10−2) (2.92× 10−2)

ρ 3.22× 102 1.41× 102

(4.26× 101) (1.30× 101)

Based on these parameters, we calculate the optimal HN-GARCH and homoscedastic strategies
for the default investment parameters described in Section 4.4.1 and evaluate the performance
in-sample, with the S&P 500 in the role of the single risky asset in the market. The plots for
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Figure 4.5: Relative consumption C̄∗
t for both periods of five years, plotting the HN-GARCH solution

and the homoscedastic variant and using the parameters from Table 4.2.

relative consumption in Figure 4.5 show that, in general, the HN-GARCH and the homoscedastic
solution follow the same major trends. However, in both Figure 4.5a and 4.5b, the blue line
for the heteroscedastic model clearly exceeds the homoscedastic line for most of the time. The
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reverse, i.e., a period where the homoscedastic investor consumes significantly more than the
one following the HN-GARCH, cannot be found.
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Figure 4.6: Cumulative consumption
∑t

s=0 C
∗
s for both periods of five years, plotting the HN-GARCH

solution and the homoscedastic variant and using the parameters from Table 4.2.

This observation is also reflected in Figure 4.6, which plots the sum of all consumption values
at intermediate time points up to time t for both periods. The HN-GARCH investor’s total
consumption exceeds the homoscedastic investor’s in both cases, although the difference is larger
in Figure 4.6a for the period 2013-2017, amounting to almost 10% more total consumption by
an HN-GARCH investor.
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(a) Wealth process from 2013-2017.
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Figure 4.7: The approximate wealth process exp {Wt} for both periods of five years, plotting the HN-
GARCH solution and the homoscedastic variant and using the parameters from Table 4.2.

The wealth processes of the HN-GARCH and the homoscedastic model again develop simul-
taneously in both periods of five years, see Figure 4.7. A significant decrease in the level of
wealth can be observed in 2015 and in the whole period from 2018 to the end of 2022. We note,
however, that in both models, the initial level is clearly exceeded between 2013 and 2015. While
there is a relatively rapid decrease in wealth in 2015, the total amount of money invested in the
risky asset and the bank account falls gradually (except for the beginning of the pandemic in
early 2020) during 2018-2022. For the period in Figure 4.7a, the non-consumed wealth of an
HN-GARCH investor exceeds the wealth of a homoscedastic investor most of the time, and the
former is 8% larger at December 30, 2018.
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4.5 Conclusion

In this chapter, we derive the first closed-form solution to a consumption and investment problem
for a model where the underlying log-asset price follows a general affine GARCH process. In
particular, this general solution includes the HN-GARCH, the IG-GARCH, and a homoscedastic
model as special cases. We show that the optimal log-wealth process and the optimal control on
consumption also follow affine GARCH processes. Our setup includes the existing solution to the
problem without consumption, i.e., for an investor maximizing only utility from terminal wealth,
as a limiting case. Our numerical findings highlight a greater impact of heteroscedasticity on the
solution than non-Gaussianity, where the latter is measured via skewness and excess kurtosis.
Based on S&P 500 index data, in two periods of five years each, we analyze the strategy
performance of a Gaussian GARCH model against a homoscedastic variant. Our real-world
study shows that the heteroscedastic strategy can lead to up to 10% more total consumption
while also ending up with 8% more wealth at the end of the investment horizon. These numbers
suggest that the model choice is highly important for the strategy performance if consumption
is included.
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5 HARA Utilities and Mean-Variance
Optimization

5.1 Introduction

This chapter presents an extension of the expected utility theory (EUT) problem for the more
general class of hyperbolic absolute risk aversion (HARA) utility functions and for risk aversion
levels previously excluded from consideration. Referring to Figure 5.1, where the contributions
of Chapters 3 and 4 are already included, we now focus on generalizing the setup for utility
derived from terminal wealth by adding the purple box. The essence of this paper was published
in Finance Research Letters (Escobar-Anel et al., 2024a).

model
complexity

consumption

terminal utility
complexity

C
R
R
A

H
A
R
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Y
E
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HN IG

Figure 5.1: Overview of the contributions of this dissertation with regard to portfolio optimization
under affine GARCH models, increasing the model complexity as well as the complexity of
terminal and intermediate utility, see also Figures 1.1, 3.1, 4.1 and 6.1. The orange box
coresponds to Chapter 3, the green box to Chapter 4, and the purple box to Chapter 5.

In the fifties, Harry M. Markowitz laid the foundation of modern portfolio theory, introducing
the classical mean-variance (MV) problem in groundbreaking publications (Markowitz, 1952,
1959), earning him the Nobel Prize in 1990. The 1997 Nobel laureate, Robert C. Merton,
further advanced portfolio analyses by finding, in the early seventies, closed-form solutions in
EUT for a large family of utilities, some of which interpretable as mean-variance objective
functions, (Merton, 1969, 1971). These timeless works remain cornerstones and sources of
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new applications in finance. In the eighties, Robert F. Engle developed the ARCH model
(Engle, 1982), fundamentally changing the way market time series are analyzed and clearing
the path to his Nobel Prize in 2003. Bollerslev (1986) extended Engle’s work with the GARCH
model before Heston and Nandi (2000) introduced the first affine GARCH, drastically improving
usability with regard to pricing problems through the existence of closed-form solutions. As
mentioned in the preceding chapters of this dissertation, other affine GARCH models were
introduced by, e.g., Christoffersen et al. (2006, Inverse-Gaussian GARCH) and Ornthanalai
(2014, Lévy GARCH). Finally, Badescu et al. (2019) defined a general framework for the class
of affine GARCH models. More recent activities in the field of affine GARCH models include a
multivariate setting introduced by Escobar-Anel et al. (2020), the derivation of semi-closed-form
solutions for VIX and target volatility options (Cao et al., 2020), and closed-form expressions
for risk-maximizing hedging strategies (Augustyniak and Badescu, 2021). A generalization of
the framework by Badescu et al. (2019) was recently presented by Augustyniak et al. (2023).

Financial institutions still heavily rely on the closed-form solutions of Markowitz and Merton
for portfolio decisions. In more sophisticated and realistic stochastic settings, such as those
involving stochastic volatility or jumps, achieving reliable estimates of the underlying Itô pro-
cesses is undeniably a challenging task. Furthermore, the lack of explicit formulas often leads
to the use of models that fail to account for important stylized facts of asset returns, such as
conditional heteroscedasticity. Our solution bridges this gap for practitioners seeking to move
beyond simplistic models while benefiting from analytical solutions.

This work connects the three branches mentioned above, extending the recent developments
in EUT for GARCH models of Escobar-Anel et al. (2021), presented in Chapter 3 in this
dissertation, in two directions. The first concerns the class of utility functions: We go beyond
the previously tackled subset of constant relative risk aversion (CRRA) and fully solve the whole
constant relative risk aversion (CRRA) as well as the HARA class of utilities in Merton (1971).
The second direction consists of solving the mean-variance problem after establishing a link via
the work of Zhou and Li (2000) and Zhu and Escobar-Anel (2022).

Numerous results have been published in the fields of EUT and MV for rich continuous-time
models – see, for instance, Liu (2007) for closed-form solutions to EUT problems, and Basak
and Chabakauri (2010) for time consistent and inconsistent solutions within MV. To the best
of our knowledge, no work concerning HARA utilities and mean-variance theory exists in the
important world of affine GARCH models.

The contributions of this chapter are the following:

• We develop an innovated approach to approximate the self-financing condition (SFC) to
accommodate HARA utility functions.

• We derive a closed-form optimal portfolio strategy for an investor maximizing a HARA
utility function with general exponent γ ∈ R \ {0, 1}, where the underlying stock exhibits
general affine GARCH dynamics.

• We use the HARA approach to reveal solutions to two interesting problems for practition-
ers, the constant proportion portfolio insurance (CPPI) and the MV problem.

• We provide numerical insight to MV optimization with affine GARCH models via an
analysis based on 20 years of S&P 500 data, showing that a heteroscedastic GARCH in-
vestor could outperform a homoscedastic strategy by three percentage points in annualized
standard deviation over a five-year horizon.

The remainder of this chapter is organized as follows: In Section 5.2, we state the general
optimization problem and present two approaches to deriving a suitable approximation for the
self-financing condition (SFC). Section 5.3 contains the main theorem concerning the optimal
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solution. Section 5.4 connects the result to mean-variance and higher-order portfolio theory,
and Section 5.5 presents the numerical analysis. We conclude in Section 5.6.

5.2 Formulation of the EUT Problem

Assume the investor maximizes a HARA utility function of terminal wealth given by

U(v) =
1− bH
bH

(
aH

1− bH
· v + dH

)bH
− eH , (5.1)

with bH < 1, bH 6= 0, aH > 0 and aH
1−bH · v + dH > 0. Dropping the intercept eH and setting

γ := bH , K := (1− γ)1−γ ·aγH ·(sgn (v − L))γ , and L := −dH(1−γ)
aH

, we can transform this function
to a shorter representation:

U(v) =
1

γ
·K · |v − L|γ , (5.2)

Note that (5.2) emerges as a direct transformation from (5.1) via the definitions of K and L.
In case γ < 1, the original constraint aH

1−bH v+ dH > 0 for (5.1) translates into v > L, and L can
be interpreted as a lower bound on wealth that is exceeded with certainty. If γ > 1, the same
constraint imposes an upper bound on wealth – in particular, the domain of v is bounded by
v − L < 0. All in all, we thus require

sgn (v − L) = sgn (1− γ) (5.3)

for (5.2), and consequently note that the expression for K simplifies to K = sgn (1− γ) · aγH ·
|1− γ|1−γ . In the sequel of this chapter, we will mainly use the representation in (5.2) and refer
to the parameters γ, K, and L, with v bounded via (5.3).

Let πt denote the share of wealth invested in the risky asset in the time interval (t, t+ 1], and

let Xt = logP
(1)
t be the log asset price. Assume that the log asset price and its conditional

variance ht follow an affine GARCH model that can be written in the general form as presented
earlier in (3.1) and (4.4) (Badescu et al., 2019):

Xt −Xt−1 = f1 (ht, θ) +
√
ht εt (5.4a)

ht+1 = f2 (ht, θ) + f3 (ht, εt, θ) , (5.4b)

for a vector of parameters θ and a sequence of innovations {εt}t. In particular, f1 and f2

are affine in ht and f3 is such that the conditional joint bivariate moment generating function
(MGF) of the log-asset return and its conditional variance has the representation

E [exp {u · (Xt −Xt−1) + v · ht+1} | Ft−1] = exp
{
A(u, v) +B(u, v) · ht

}
, (5.5)

for some coefficients A and B dependent on the model parameters.

Maximizing utility from terminal wealth and taking into account the representation of our
utility function in (5.2), we define V̂t := |Vt − Lt|, where Vt is the investor’s wealth at time t
and Lt := L · e−r·(T−t) with the continuously compounded interest rate r. The following two
subsections present two different ways of obtaining the same approximation of log V̂t, which will
play a crucial role in the derivation of the optimal solution to the EUT problem in Section 5.3.
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5.2.1 Taylor Approach

The budget constraint for the portfolio reads:

Vt − Vt−1

Vt−1
= πt−1 ·

P
(1)
t − P (1)

t−1

P
(1)
t−1

+ (1− πt−1) · P
(0)
t − P (0)

t−1

P
(0)
t−1

, (5.6)

with {Vt}t,
{
P

(1)
t

}
t

and
{
P

(0)
t

}
t

being the wealth process, the price process of the risky asset

and the price process of the riskless bank account, respectively.

Along the lines of Campbell and Viceira (1999) and Escobar-Anel et al. (2022a, 2021)1, we
transform returns into log returns by applying a second-order Taylor approximation of the

logarithm around 1 to the processes log
(

Vt−Lt
Vt−1−Lt−1

)
, log

(
P

(1)
t

P
(1)
t−1

)
, log

(
P

(0)
t

P
(0)
t−1

)
, log

(
Lt
Lt−1

)
, as

well as an approximation of the squared return, both consistent with the popular continuous-
time literature. The approximation was demonstrated to be accurate in the context of affine
GARCH models by Escobar-Anel et al. (2022a) and Escobar-Anel et al. (2021). Note that the

cited works seek an approximation for log
(

Vt
Vt−1

)
and do not include the additional terms Lt

and Lt−1. To obtain an extension based on the true SFC (5.6), we follow the steps below:

(a) Use a second-order Taylor approximation of the logarithm around 1 for log
(

Vt−Lt
Vt−1−Lt−1

)
.

(b) Use the same second-order Taylor approximation of the logarithm of the return of the
risky asset around 1 to obtain:

Xt −Xt−1 = log

(
P

(1)
t

P
(1)
t−1

)
≈ P

(1)
t − P (1)

t−1

P
(1)
t−1

− 1

2

(
P

(1)
t − P (1)

t−1

P
(1)
t−1

)2

(5.7)

⇔ P
(1)
t − P (1)

t−1

P
(1)
t−1

≈ Xt −Xt−1 +
1

2

(
P

(1)
t − P (1)

t−1

P
(1)
t−1

)2

. (5.8)

Moreover, with a small size of the time step, we can approximate the squared return by its
conditional variance in (5.8), analogously to a continuous-time setting. Subsequently, we

observe from (5.8) that Var

[
P

(1)
t −P

(1)
t−1

P
(1)
t−1

| Ft−1

]
≈ Var [Xt −Xt−1 | Ft−1] = ht. Together,

this leads to:

P
(1)
t − P (1)

t−1

P
(1)
t−1

≈ Xt −Xt−1 +
1

2
ht. (5.9)

(c) Use the linear approximation log x ≈ x− 1 with x close to 1 for the riskless asset and the
discounted floor to find

P
(0)
t − P (0)

t−1

P
(0)
t−1

≈ log

(
P

(0)
t

P
(0)
t−1

)
= r, Lt − Lt−1 = (er − 1)Lt−1 ≈ rLt−1. (5.10)

1See also Sections 3.2 and 4.2.1.
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(d) Use the same approach as in (b), now for the return on wealth, noting that, according to

(5.9), Var
[
Vt−Vt−1

Vt−1
| Ft−1

]
≈ π2

t−1 · ht. This leads to the approximation

(
Vt − Vt−1

Vt−1
− Lt − Lt−1

Vt−1

)2

≈ π2
t−1 · ht. (5.11)

All in all, with π̂t−1 = πt−1 · Vt−1

Vt−1−Lt−1
, we obtain

log

(
Vt − Lt

Vt−1 − Lt−1

)
(a)
≈

(
Vt − Lt

Vt−1 − Lt−1
− 1

)
− 1

2

(
Vt − Lt

Vt−1 − Lt−1
− 1

)2

=

(
Vt−1

Vt−1 − Lt−1

)(
Vt − Lt − Vt−1 + Lt−1

Vt−1

)

− 1

2

(
Vt−1

Vt−1 − Lt−1

)2(Vt − Vt−1

Vt−1
− Lt − Lt−1

Vt−1

)2

(c),(d)
≈

(
Vt−1

Vt−1 − Lt−1

)(
Vt − Vt−1

Vt−1
− Lt−1 (er − 1)

Vt−1

)

− 1

2

(
Vt−1

Vt−1 − Lt−1

)2

π2
t−1ht

(b),(c)
≈

(
Vt−1

Vt−1 − Lt−1

)(
πt−1

(
Xt −Xt−1 +

1

2
ht

)
+ (1− πt−1) r − Lt−1

Vt−1
r

)

− 1

2

(
Vt−1

Vt−1 − Lt−1

)2

π2
t−1ht

= π̂t−1

(
Xt −Xt−1 +

1

2
ht

)
+ (1− π̂t−1) r − 1

2
π̂2
t−1ht. (5.12)

This approach is independent of Vt−Lt being positive or negative. If Vt−Lt and Vt−1−Lt−1 are
both negative, we arrive at the same equation (5.12), but with πt−1 and π̂t−1 having different
signs. Reordering terms in (5.12), we obtain the following expression for Ŵt as an approximation
of log V̂t:

Ŵt = Ŵt−1 + π̂t−1 · (Xt −Xt−1) + (1− π̂t−1) r +
1

2

(
π̂t−1 − π̂2

t−1

)
ht. (5.13)

We note that this expression is identical to the approximation of the log wealth in (3.7) for the
CRRA case (cf. Escobar-Anel et al., 2021) if γ < 0 and L = 0, which holds exactly in continuous
time when Itô’s Lemma can be applied to the budget constraint (5.6).

5.2.2 CPPI Approach

Alternatively to the approach presented in Section 5.2.1, we may treat the modified CRRA
utility in (5.2) as a CPPI setting.2 Assume that L ≤ v0 · erT , with v0 the initial wealth. Note
that this yields an implicit condition on the parameter dH of the original HARA utility function,
since for γ < 1

L ≤ v0 · erT ⇔ dH ≥ −
aH · v0 · erT

1− γ . (5.14)

2We restrict this approach to γ < 1, where (5.3) yields the relation VT ≥ L.
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Assuming dH as fixed, this can also be seen as a restriction on the investor’s initial wealth. Now
define the current (time-dependent) level of the floor Lt as above via

Lt := L · e−r·(T−t).

Lt can be interpreted as the amount of money that needs to be invested in the riskless asset
at time t to reach the terminal threshold L for sure. Furthermore, define V̂t := Vt − Lt as the
cushion, i.e., the money beyond the threshold Lt that is used for return maximization. For this
part of the wealth, V̂t, we can choose our allocation between the riskless and the risky asset
freely. This leads to the existing approach using CRRA utility as of Chapter 3, replacing Vt
by V̂t and writing π̂t for the share of V̂t that is invested in the risky asset in the time interval

(t, t+ 1]. In particular, we approximate V̂t via eŴt , where

Ŵt = Ŵt−1 + π̂t−1 · (Xt −Xt−1) + (1− π̂t−1) · r +
1

2

(
π̂t−1 − π̂2

t−1

)
· ht, (5.15)

according to (3.7). Note that (5.15) is identical to (5.13). Furthermore, the above reasoning
implies that the wealth dropping below the floor in this environment is equivalent to the wealth
dropping below zero in the CRRA environment, which is excluded by construction.3

5.3 Optimal Investment Maximizing HARA Utility

Now, with T > 0 some finite time horizon, and the log asset price following an affine GARCH
model, consider the expected utility problem from terminal wealth for an investor maximizing
a HARA utility function U in the form of (5.2). Our goal is to solve the following optimization
problem:

max
{πs}T−1

t

K

γ
Et
[
exp

{
γŴT

}]
=: φt

(
Ŵt, ht+1

)
, (5.16)

with Et again denoting the conditional expectation under Ft at time t. On the optimal solution
to this problem, we establish the following result:

Theorem 5.1. Assume that the log asset price follows an affine GARCH model, and assume
that the investor maximizes a HARA utility function of terminal wealth in the form of (5.2) with
a general exponent γ ∈ R \ {0, 1}. Furthermore, assume that the coefficient A of the conditional
joint bivariate MGF (5.5) satisfies

∂

∂u
A (u, v) = r ∀u, v ∈ R. (5.17)

Then, the solution to the problem (5.16) is given by

φt

(
Ŵt, ht+1

)
=
K

γ
exp

{
γŴt +Dt,T (π̂∗t ) + Et,T (π̂∗t ) · ht+1

}
, (5.18)

3Since we are working with an approximation of the log wealth, the wealth process in the model is always
going to stay positive. Plugging the model parameters, e.g., of the HN-GARCH model, into the true budget
constraint (5.6) and then solving for the innovation of the log-asset return under the condition that Vt ≤ 0
yields an interval for the innovation where the actual wealth process would be pulled below zero. Working
with parameter estimates for the HN-GARCH model (Christoffersen et al., 2006) and numerically evaluating
the probability of the innovation ending up in this extreme interval (e.g., via the software R) yields zero, i.e.,
the probability is so small that it is not numerically measurable.
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with some recursive coefficients D and E dependent on the (partial) optimal solution π̂∗t , which
solves the optimality equation

∂

∂u
B (γπ̂∗t , Et,T (π̂∗t )) = π̂∗t −

1

2
(5.19)

and the second-order condition

∂2

∂u2
B (γπ̂∗t , Et,T (π̂∗t ))

{
> 1

γ , γ ∈ R \ [0, 1],

< 1
γ , γ ∈ (0, 1).

(5.20)

The optimal strategy π∗t is obtained via

π∗t = π̂∗t ·
Vt − Lt
Vt

. (5.21)

Remark 5.2 (On Theorem 5.1).

(1) Theorem 5.1 generalizes the known solution presented in Chapter 3 (Escobar-Anel et al.,
2021) in several directions. Besides the use of the more general HARA class of utility
functions, the range of exponents γ is extended to investors with very low risk aversion
levels (0 < γ < 1) and to exponents γ > 1, which establishes a connection to mean-variance
theory and higher-moment portfolio selection, as we will see in the following sections.

(2) The additional requirement ∂
∂uA (u, v) = r is satisfied for both the HN-GARCH (Heston

and Nandi, 2000) and the IG-GARCH (Christoffersen et al., 2006) model, which form
the two well-known special cases of the general formulation of an affine GARCH model as
of (5.4). The condition can be relaxed to ∂2

∂2u
A (u, v) ≥ 0, and the theorem still stands,

although with more tedious expressions, especially for the second-order conditions.

(3) The optimality equation (5.19) is the same for all values of γ. This includes, in particular,
the known case of γ < 0 with the second-order condition (5.20).

Proof of Theorem 5.1. Focusing on the partial strategy π̂t only, we assume the investor’s initial
wealth to be equal to v̂0 = v0 − L0, we set Ŵ0 = log v̂0, and approximate the log wealth via
(5.13). This sub-problem is identical to the case of an investor maximizing a CRRA utility
and can be solved recursively for the deterministic optimal strategy {π̂∗t }T−1

t=0 via guessing the
correct form for the value function, using the MGF (5.5), and then applying Bellman’s value
iteration to obtain (5.18), see Theorem 3.1. Dt,T and Et,T are defined via DT,T = ET,T = 0 and
via the coefficients A and B in (5.5):

Dt,T (π̂t) = Dt+1,T (π̂∗t+1) + (1− π̂t) γr +A
(
γπ̂t, Et+1,T (π̂∗t+1)

)
, (5.22a)

Et,T (π̂t) = B
(
γπ̂t, Et+1,T (π̂∗t+1)

)
+
γ

2

(
π̂t − π̂2

t

)
. (5.22b)

Taking derivatives of the objective function w.r.t. π̂t, using the definitions of Dt,T and Et,T ,
yields the equations (5.17) and (5.19). These first-order conditions are identical to the CRRA
case, and (5.17) is satisfied by assumption. Concerning the second-order condition, assume that
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π̂∗t satisfies (5.19) and define

f (π̂t) =
K

γ
exp

{
γŴt +Dt,T (π̂t) + Et,T (π̂t) · ht+1

}
,

g (π̂t) = −γr + γ
∂

∂u
A
(
γπ̂t, Et+1,T

(
π̂∗t+1

))

+

(
γ

2
− γπ̂t + γ

∂

∂u
B
(
γπ̂t, Et+1,T

(
π̂∗t+1

)))
· ht+1

=

(
γ

2
− γπ̂t + γ

∂

∂u
B
(
γπ̂t, Et+1,T

(
π̂∗t+1

)))
· ht+1,

using again (5.17) in the last equality. Note that g (π̂∗t ) = 0 due to (5.19), and the second
derivative of the objective function f can be expressed as

∂2

∂π̂2
t

f (π̂t) = f (π̂t)

[
g2 (π̂t) +

(
γ2 ∂

2

∂u2
B
(
γπ̂t, Et+1,T

(
π̂∗t+1

))
− γ
)
ht+1

]
. (5.23)

We distinguish between two cases to justify (5.20):

• γ /∈ [0, 1]: If γ < 0 or γ > 1, we have K
γ < 0 and negativity of (5.23) at the extreme

point can be ensured via making the coefficient in front of the conditional variance ht+1

positive.

• γ ∈ (0, 1): In this case, K
γ > 0, implying that the coefficient in front of ht+1 in (5.23)

needs to be negative.

The actual strategy π∗t can be derived via scaling the partial strategy π̂∗t , including also the
additional investment Lt in the riskless asset. Using the true process Vt, this leads to a share of
π̂∗t · Vt−LtVt

of the total wealth invested in the risky asset, and to a proportion of 1− π̂t∗ · Vt−LtVt
=

(1− π̂∗t ) · Vt−LtVt
+ Lt

Vt
for the riskless asset.

5.4 Connection to Mean-Variance Theory

In a dynamic mean-variance portfolio problem, the objective is to maximize expected terminal
wealth, given an upper bound for the variance of terminal wealth. The Pareto-optimal solutions
to this trade-off can be found by solving the Markowitz-λ problem

max
{πs}T−1

t

{
E [VT | Ft]− λ ·Var [VT | Ft]

}
(5.24)

for different values of λ > 0. The optimization problem in (5.24) is not solvable via dynamic
programming due to time inconsistency, but the following result, in its original version presented
by Zhou and Li (2000, Thm. 3.1)4 provides a workaround.

Proposition 5.3 (cf. Zhou and Li, 2000, Theorem 3.1). Any pre-commitment solution to (5.24)
will also solve

min
{πs}T−1

t

{
E
[
(VT − µ)2 | Ft

]}
, (5.25)

where µ := 1
2λ + E [VT | Ft].

4See also Zhu and Escobar-Anel (2022, Thm. 2).
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Proof of Proposition 5.3. Assume that π = {πt}T−1
t=0 is optimal for (5.24), and denote the cor-

responding wealth process by V . Furthermore, assume that π is not optimal for (5.25), i.e.,
assume the existence of a pair π∗ and V ∗ such that

Et
[
(VT − µ)2

]
> Et

[
(V ∗T − µ)2

]

⇔ Et
[
V 2
T

]
− 2µEt [VT ] + µ2 > Et

[
(V ∗T )2

]
− 2µEt [V ∗T ] + µ2

⇔ Et
[
V 2
T

]
− 2µEt [VT ] > Et

[
(V ∗T )2

]
− 2µEt [V ∗T ] . (5.26)

As in Zhou and Li (2000), we define f (x, y) := λx−λy2−y, which is a concave function in (x, y)
having first partial derivatives ∂

∂xf (x, y) = λ and ∂
∂yf (x, y) = − (1 + 2λy). It is easy to see that

f
(
Et
[
V 2
T

]
,Et [VT ]

)
yields the negative of the optimal value of the objective function in (5.24).

But by the concavity of f , using its partial derivatives mentioned above and 2λµ = 1 + Et [VT ]
according to (5.25), we obtain

f
(
Et
[
(V ∗T )2

]
,Et [V ∗T ]

)
≤ f

(
Et
[
V 2
T

]
,Et [VT ]

)

+ λ
(
Et
[
(V ∗T )2

]
− Et

[
V 2
T

])
− (1 + 2λEt [VT ]) (Et [V ∗T ]− Et [VT ])

= f
(
Et
[
V 2
T

]
,Et [VT ]

)

+ λ
(
Et
[
(V ∗T )2

]
− Et

[
V 2
T

]
− 2µEt [V ∗T ] + 2µEt [VT ]

)

< f
(
Et
[
V 2
T

]
,Et [VT ]

)
,

where we used (5.26) and λ > 0 for the last inequality. This is equivalent to

E [VT | Ft]− λ ·Var [VT | Ft] < E [V ∗T | Ft]− λ ·Var [V ∗T | Ft] ,

which is a contradiction to the assumption that π with wealth process V is optimal for (5.24).
The pair of π and V thus is also optimal for (5.25).

With Proposition 5.3, assuming existence of the optimal solution to (5.24) and uniqueness of the
optimal solution to (5.25), the mean-variance problem can be solved via the auxiliary problem
(5.25). On the other hand, (5.25) is a special case of (5.2) if we set γ = 2, K = −1, and L = µ.
Fixing λ̄ > 0 as the parameter for (5.24) and choosing L = µ̄ > 1

2λ̄
fixes the level of expected

terminal wealth to µ̄− 1
2λ̄

. Theorem 5.1 then yields the optimal solution to

max
{πs}T−1

t

{
− 1

2
E
[
(VT − µ̄)2 | Ft

]}
= max
{πs}T−1

t

{
− 1

2
E
[
V 2
T − 2VT µ̄+ µ̄2 | Ft

]}

= max
{πs}T−1

t

{
− 1

2
E
[
V 2
T | Ft

]
+ µ̄

(
µ̄− 1

2λ̄

)
− 1

2
µ̄2

}

= max
{πs}T−1

t

{
− 1

2
E
[
V 2
T | Ft

]
+

1

2

(
µ̄2 − µ̄

λ̄

)}
. (5.27)

The variance of the optimal portfolio can be recovered using this optimal value of the objec-
tive function (5.27) and the fact that Var [VT | Ft] = E

[
V 2
T | Ft

]
− (E [VT | Ft])2, yielding the

corresponding value on the efficient frontier.

Remark 5.4 (Higher-order moments in portfolio selection). Numerous authors have investi-
gated the impact of higher moments on the portfolio return (see, e.g., Guidolin and Timmer-
mann, 2008; Harvey et al., 2010; Lai, 1991). In the present version, the general formulation of
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Theorem 5.1 allows for a connection to a problem including skewness or skewness and kurtosis,
choosing exponents of 3 or 4 in the utility function. A numerical analysis studying the impact
of higher-order moments on the portfolio choice could be subject to further research.

5.5 Numerical Analysis

For our numerical analysis, we focus on the well-studied HN-GARCH model (see Section 4.3.2),
forming a special case of our general setup (5.4) with θ = (λ, ω, α, β, ρ), {εt}t a sequence of i.i.d.
standard normal random variables and

f1 (ht, θ) = r + λht, f2 (ht, θ) = ω + βht, f3 (ht, εt, θ) = α
(
εt − ρ

√
ht

)2
, (5.28)

leading the following representations of the coefficients A and B in (5.5), see Appendix B.1:

A (u, v) = ur + vω − 1

2
log (1− 2vα) , (5.29a)

B (u, v) = uλ+ v
(
αρ2 + β

)
+

(u− 2vαρ)2

2 (1− 2vα)
. (5.29b)

Our parameters are estimated based on the S&P 500 levels from January 2, 2003, through
December 30, 2022. While working with larger datasets could affect parameter stability, our
time series includes two major crises and can thus be considered a representative sample. The
20-year time span falls within the range of various other studies that estimated affine GARCH
models, such as Ornthanalai (2014) and Babaoğlu et al. (2018), with time frames of 15 and
23 years, respectively. We once more follow the lines of the returns-only estimation described
in Section 4.4.2 (cf. Escobar-Anel et al., 2022b), exploiting the normal distribution of the HN-
GARCH innovations to obtain the log-likelihood function

lT (x1, . . . , xT | θ) = −1

2

T∑

t=1

(
log (2π) + log (ht) +

(
xt − xt−1 − r − λht√

ht

)2
)
, (5.30)

for the path of log returns {xt}t=1,...,T . The estimates θ̂ for the vector of parameters θ are given

by θ̂ = arg maxθ l (x1, . . . , xT | θ). The standard errors of the estimates are again calculated
via the Fisher information matrix. The same dataset of S&P 500 returns is used to obtain
the parameter values for the corresponding homoscedastic Gaussian model (HS), i.e., an HN-
GARCH model with constant conditional variance (α = β = 0). The combined results with
standard errors are provided in Table 5.1.5

We start our numerical study with the time horizon T set to five years with 252 trading days,
aiming to study medium-term horizons. The interest rate is set to r = 2%, slightly higher than
the average Federal Funds Rate of 1.31% over the time of the underlying dataset. We choose
aH = 1 with the initial wealth V0 = 1.

Focussing on the exponent γ = 2 and the connection to mean-variance theory established in
Section 5.4, we target a special case accessible only through the generalizations in Theorem 5.1.
Figure 5.2 displays the efficient frontiers6 both for the HN-GARCH and the homoscedastic
model with the parameters from Table 5.1. The HN-GARCH dominates the homoscedastic

5Since ω < 0 in the context of the HN-GARCH model is known to render the model ill-defined and given the
large standard error, we set ω = 0 when working with the HN-GARCH parameter set from Table 5.1.

6In the presence of a riskless asset in the market, the efficient frontier (or capital market line, CML), is a straight
line with the leftmost point marking the return of this riskless asset.
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5.5 Numerical Analysis

Table 5.1: Maximum likelihood estimates (MLEs) for the HN-GARCH model and the homoscedastic
model, based on the S&P 500 levels from January 2, 2003, through December 30, 2022, with
standard errors in parentheses.

Param. HN-GARCH Homoscedastic

λ 2.46 (1.19) 1.94 (1.17)

ω −1.31× 10−7 (1.53× 10−7) 1.48× 10−4 (1.09× 10−6)

α 5.85× 10−6 (2.85× 10−7)

β 7.69× 10−1 (1.16× 10−2)

ρ 1.76× 102 (8.40)
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Figure 5.2: Efficient frontiers for the HN-GARCH and the homoscedastic model with the parameter
values as of Table 5.1. The time horizon is five years with 252 trading days; the results are
annualized.

solution in this context, yielding lower values in terms of the standard deviation for the same
expected return. The annualized difference between the two models increases as the expected
return is increased and amounts to about three percentage points in standard deviation for an
expected return of 10%. This emphasizes the importance of accounting for the time-changing
nature of return volatility in portfolio selection and thus concerns a widely debated feature in
the area.

Figure 5.3 shows the optimal initial strategy π∗0 for different lengths of the time horizon T . While
the optimality equation (5.19) delivers the partial strategy π̂∗0, the optimal overall strategy π∗0 is
obtained via scaling the partial strategy by the factor V0−L0

V0
. For the plot in Figure 5.3, we used

V0−L
V0

with V0 = 1 and L as described in Section 5.4 as a proxy for this factor. Note that (5.3)

implies that V0−L
V0

< 0. The plot shows that, while the homoscedastic strategy is independent of
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Figure 5.3: Optimal initial risky allocations for the HN-GARCH and the homoscedastic model with
the parameter values as of Table 5.1 and γ = 2, dependent on the time horizon T.

T , the initial HN-GARCH strategy decreases significantly for short horizons below half a year.
Since there are no significant changes for longer time horizons, we limit Figure 5.3 to T ≤ 1.
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(a) Efficient frontiers for a one-year horizon.
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(b) Efficient frontiers for a ten-year horizon.

Figure 5.4: Efficient frontiers for the HN-GARCH and the homoscedastic model with the parameter
values as of Table 5.1. One year is assumed to have 252 trading days, the results are
annualized.

Figure 5.4 targets the changes in the difference between the two models as the time horizon
varies. Both plots show that the HN-GARCH model outperforms the homoscedastic variant.
However, the difference increases significantly as the time horizon is extended to ten years, while
it is relatively small for one year with 252 trading days. Overall, the results emphasize the key
finding that incorporating the heteroscedasticity of log returns in the underlying model is of
significant importance for investors.
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5.6 Conclusion

5.6 Conclusion

In this chapter, we present a dynamic portfolio optimization problem within the class of affine
GARCH models for an investor maximizing a HARA utility function under significantly gener-
alized conditions. Theorem 5.1 not only extends the family of utilities in use but also solves the
problem for previously excluded ranges of risk aversion. Choosing the exponent of the utility
function to be 2, we establish a connection to mean-variance theory, which we analyze numeri-
cally using real-world market data. Based on 20 years of S&P 500 log returns, we estimate the
parameters both for an HN-GARCH model and a homoscedastic variant, and show that the
heteroscedastic strategy clearly dominates by calculating the efficient frontier. The numerical
results suggest that the advantage of a heteroscedastic investor is larger if longer time horizons
are considered.
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6 Expected Utility Theory within Lévy GARCH
Models

6.1 Introduction

In this chapter, we extend the expected utility theory (EUT) approach presented in Chapter 3
to a different model class, allowing for jumps in the asset price process. While we considered
only one – potentially non-Gaussian – innovation per time step in the setting of the previous
chapters, the model for the underlying price process used here allows for a Gaussian and an
additional jump component at each time step. As visualized in Figure 6.1, we thus add more
complexity concerning the model for the underlying asset. This chapter was submitted for
publication in a similar form (Escobar-Anel et al., 2023).

model
complexity

consumption

terminal utility
complexity

C
R
R
A

H
A
R
A

N
O

Y
E

S

HN IG Lévy

Figure 6.1: Overview of the contributions of this dissertation with regard to portfolio optimization
under affine GARCH models, increasing the model complexity as well as the complexity of
terminal and intermediate utility, see also Figures 1.1, 3.1, 4.1 and 5.1. The orange box
coresponds to Chapter 3, the green box to Chapter 4, the purple box to Chapter 5, and the
blue box to Chapter 6.

Jumps have been a topic of immense interest in portfolio optimization for decades, particularly in
a continuous-time setting thanks to analytical solutions – see, for instance, Merton (1971). Since
empirical evidence suggests that financial markets exhibit occasional large price movements,
considering jump components allows investors to model the underlying asset price movements
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more adequately with the corresponding improvement in financial decisions, from derivative
pricing to risk analysis and portfolio management. On the other hand, models are desired
to remain mathematically tractable and, in the best case, deliver closed-form expressions for
pricing and portfolio optimization problems, a property that is easily imperiled.

The first affine GARCH models by Heston and Nandi (2000) and Christoffersen et al. (2006)
overcame the lack of analyitical solutions, but did not account for potential jumps in the un-
deryling processes. The most common approach to extending these models and incorporate
jumps consists of adding a (dynamic) Compound Poisson component in addition to the normal
noise. In this manner, Christoffersen et al. (2012) introduced a model of GARCH type with
stochastic volatility and separate dynamics for jumps, related to the non-affine work by Maheu
and McCurdy (2004) and Duan et al. (2006a,b). In their version, however, Christoffersen et al.
(2012) allow for jumps not only in the dynamics of the log-price process but also in the variance
of the normal innovation and in the jump intensity, jeopardizing the exponentially affine form
of the moment generating function (MGF). Ornthanalai (2014) formulated the corresponding
model with jumps incorporated in the return dynamics only, preserving the affine nature of
the model. The model includes two contemporaneously independent innovations: A Gaussian
innovation and a Lévy jump component. The general framework for the latter allows for finite
and infinite-activity jumps and extends the range of jump innovations beyond the Compound
Poisson approach. This framework has been generalized recently and forms a special case of
the affine multi-factor model introduced by Augustyniak et al. (2023).

Both the HN-GARCH and the Lévy GARCH framework were originally introduced for option
pricing; Escobar-Anel et al. (2022a, 2021) first used the form of the generating function to
derive the solution to a discrete-time portfolio optimization problem based on the jump-free
model formulation by Badescu et al. (2019), as presented in Chapter 3. This chapter extends
this approach to the Lévy GARCH framework and thus provides the opportunity to study
the relevance of modeling jumps for portfolio optimization problems in the affine GARCH
environment.

The impact of capturing extreme events on investment strategies has been studied extensively,
although mostly in continuous time.1 The analysis by Liu et al. (2003) suggests that price
jumps have a larger effect than jumps in volatility. Ascheberg et al. (2016) claim that jumps
matter more if the expected jump size or the jump intensity is large. These lines serve as a
guideline for creating extreme jump settings to challenge the capability of jump-free models to
deliver comparable investment strategies. Our paper differs from the existing literature on one
key aspect. We take advantage of the capacity of the HN-GARCH model to deliver accurate
estimates of the parameters (cf. Escobar-Anel et al., 2022b) in order to assess if the portfolio
of an investor with a simple model could perform as well as that of an investor with the most
advanced Lévy GARCH model. In other words, given that the true model of reality is unknown,
we act as practical investors, working with a simple model to make decisions. This allows us
to check in a control experiment if a simple, albeit wrong, model could match the performance
of a correct advanced model. Our conclusions are eye-opening concerning the power of simple
models in a discrete-time portfolio optimization setting.

Many authors have investigated the role of non-Gaussianity in asset returns in the context of
portfolio selection. One prominent example is the work by Bekaert et al. (1998) suggesting that
it is rather immaterial for an investor considering emerging market allocations to accommodate
skewness and excess kurtosis. The crucial point that a wide range of expected utility problems
can be well approximated by a mean-variance approach was summarized by Markowitz (2012).

1We are unaware of any work investigating the impact of jumps in discrete-time portfolio optimization.
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Our results are not contradictory with the continuous-time literature for three main reasons.
Firstly, a continuous-time investor, although hypothetical, could, in principle, realize small
benefits between a true and a wrong model more frequently. Such dynamics could be very
profitable in the long term, and a detailed analysis in this regard could certainly be subject
to further research. Secondly, most studies of complex models rely on sensitivity analyses for
the parameters. However, the same model with different parameters does not describe the
same reality, so results could be misleading. Lastly, even when two models are estimated on
the same data, small sample sizes may incorporate estimation errors into the analysis, possibly
creating a distorted conclusion since the estimation error could exacerbate a small difference
in performance. In conclusion, our analyses provide a fresh perspective on the importance of
jumps for portfolio decisions.

Our main contributions are:

• We fully develop a discrete-time dynamic portfolio optimization problem in an affine
GARCH framework with jumps and provide a closed-form solution based on an established
and reliable approximation of the self-financing condition.

• We apply the general result to three different types of jump structures: the Merton jump,
the Normal Inverse Gaussian, and the Variance Gamma model. Furthermore, we derive
the well-known HN-GARCH model as a jump-free special case of our setting.

• We study the impact of jumps on investment strategies via a comparison to the HN-
GARCH model and a homoscedastic variant. We find that correctly calibrated jump-free
models can imitate all three investigated jump models very well. This result is reflected in
a low wealth-equivalent loss (WEL) for investors following suboptimal jump-free strategies,
and it is robust with respect to more extreme jump environments.

The remainder of this chapter is organized as follows: In Section 6.2, we introduce the framework
for the portfolio optimization problem, which is solved in Section 6.3, providing optimality con-
ditions in general form and explicitly for three different types of jump increments. The numerical
analysis follows in Section 6.4, targeting specifically the impact of jumps and a comparison to
jump-free HN-GARCH and homoscedastic models. We conclude in Section 6.5.

6.2 The Lévy GARCH Model

Adopting the setting proposed by Ornthanalai (2014), we use two contemporaneously indepen-

dent random variables zt and yt to model the log return Xt−Xt−1 = log
(
P

(1)
t /P (1)

t−1

)
of the risky

asset. While zt follows a normal N (0, hz,t) distribution, yt is a pure Lévy jump innovation with
generalized conditional Fourier transform

Fy (u; t− 1, t) = Et−1 [euyt ] = exp {ψy (u; t− 1, t)} ,

where ψ denotes the cumulant exponent (or cumulant generating function) of yt. The Lévy jump
innovation yt is assumed to be time-homogeneous in one of the parameters of its distribution,
which we will denote by hy, meaning that (Ornthanalai, 2014, Def. 1) the cumulant exponent
is multiplicatively separable with respect to hy and thus admits the representation

ψy (u; t− 1, t) = hy,t · ξy(u), (6.1)

for some ξy(u) independent of hy,t. Note that the explicit distribution of yt remains unspecified
at this point. Potential choices include the Merton jump (MJ), a Normal-inverse Gaussian
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(NIG) or a Variance Gamma (VG) innovation. Note that the Gaussian innovation zt is time-
homogeneous in its variance. In particular, we have

ψz (u; t− 1, t) = hz,t ·
u2

2
, i.e., ξz(u) =

u2

2
.

Let the log-return process follow the dynamics given in the equation

Rt := Xt −Xt−1 = rt + (λz − ξz(1)) · hz,t + (λy − ξy(1)) · hy,t + zt + yt, (6.2)

where ξz and ξy are involved as convexity adjustments making zt + yt a martingale, rt is time-
deterministic, and λzhz,t+λyhy,t is referred to as the conditional equity premium (rate of return
in excess of the risk-free rate). Note that by the properties of the cumulant generating function,
Equation (6.2), in connection with the setting introduced above, implies that

Var t [Xt −Xt−1] ≡ σ2
t = hz,t + hy,t · ξ′′y (0). (6.3)

Concerning the evolution of the parameters hz,t and hy,t, we follow Ornthanalai (2014) and
Heston and Nandi (2000), respectively, and assume the following dynamics:

hz,t+1 = ωz + bz · hz,t +
az
hz,t

(zt − czhz,t)2 , (6.4a)

hy,t+1 = ωy + by · hy,t +
ay
hz,t

(zt − cyhz,t)2 . (6.4b)

This is equivalent to the evolution of the conditional variance in the HN-GARCH model by
Heston and Nandi (2000), adapted for non-standardized innovations, but nonetheless converging
to the Cox-Ingersoll-Ross process if the length of the time step is shrunk to zero (cf. Badescu
et al., 2019).

Following the approach by Campbell and Viceira (1999) and Escobar-Anel et al. (2021) pre-
sented in Chapter 3, we use a second-order approach in order to approximate the self-financing
condition. With (6.3) as the variance of the log return, we obtain

Wt = Wt−1 + πt−1Rt +
1

2

(
πt−1 − π2

t−1

)
σ2
t + (1− πt−1) rt

= Wt−1 + πt−1Rt +
1

2

(
πt−1 − π2

t−1

) (
hz,t + hy,tξ

′′
y (0)

)
+ (1− πt−1) rt. (6.5)

In order to derive a representation of the maximum expected utility later, we investigate the gen-
erating function of the log-price process under the physical measure. For enhanced readability,
proofs are postponed to Appendix D.1. We establish the following result:

Proposition 6.1. Let T be some finite time horizon and let t < T − 1. In the setting of a
Lévy GARCH model as introduced above, the one-step multivariate generating function of the
log return Rt+1 and the homogeneous parameters hy,t+2 and hz,t+2, under the physical measure,
conditioned on the information available at time t, is given by

Ψ(Rt+1, hz,t+2, hy,t+2) (u, vz, vy | Ft) := Et
[
exp {uRt+1 + vzhz,t+2 + vyhy,t+2}

]

= exp
{
A (u, vz, vy; t, t+ 1)

+B (u, vz, vy; t, t+ 1) · hz,t+1

+C (u, vy; t, t+ 1) · hy,t+1

}
,

(6.6)
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where we define

A (u, vz, vy; t, t+ 1) = urt+1 + vzωz + vyωy −
1

2
log (1− 2 (vzaz + vyay)) , (6.7a)

B (u, vz, vy; t, t+ 1) = u (λz − ξz(1)) + vz
(
bz + azc

2
z

)

+ vyayc
2
y +

(u− 2vzazcz − 2vyaycy)
2

2 (1− 2 (vzaz + vyay))
,

(6.7b)

C (u, vy; t, t+ 1) = u (λy − ξy(1)) + vyby + ξy(u). (6.7c)

In the sequel, we will omit the arguments t and t+1 from A, B, and C if the use of the one-step
generating function is clear.

6.3 Optimal Investment Maximizing CRRA Utility

6.3.1 Maximum Utility Representation

The main result concerning dynamic portfolio optimization in the setting introduced in Sec-
tion 6.2 is presented in Theorem 6.2. Again, for the sake of readability, the proofs in this section
are postponed to Appendix D.1.

Theorem 6.2 (Maximum utility representation). Assume that the decision maker maximizes
a power utility function with corresponding parameter γ < 0. Furthermore, let the log price of
the risky asset be described by a Lévy GARCH model as outlined above, satisfying the additional
condition that hy,t+1 = Λ · hz,t+1 holds for some Λ ∈ R, for all zt ∈ R and t ∈ {0, . . . , T − 1}.
Then, the optimal value function at time t can be written as

φt (Wt, hz,t+1, hy,t+1) =
1

γ
exp

{
Dt,T (π∗t ) + γWt + Ezt,T (π∗t ) · hz,t+1 + Eyt,T (π∗t ) · hy,t+1

}
,

=
1

γ
exp

{
Dt,T (π∗t ) + γWt +

[
Ezt,T (π∗t ) + ΛEyt,T (π∗t )

]
· hz,t+1

}
,

(6.8)

with Dt,T , Ezt,T and Eyt,T given via DT,T = EzT,T = EyT,T = 0 and the recursive equations

Dt,T (π∗t ) = Dt+1,T (π∗t+1) + (1− π∗t ) γrt+1 +A
(
γπ∗t , E

z
t+1,T (π∗t+1), Eyt+1,T (π∗t+1)

)
, (6.9a)

Ezt,T (π∗t ) =
γ

2

(
π∗t − (π∗t )

2
)

+B
(
γπ∗t , E

z
t+1,T (π∗t+1), Eyt+1,T (π∗t+1)

)
, (6.9b)

Eyt,T (π∗t ) =
γ

2

(
π∗t − (π∗t )

2
)
· ξ′′y (0) + C

(
γπ∗t , E

y
t+1,T (π∗t+1)

)
. (6.9c)

The optimal solution π∗t satisfies

[
λz − π∗t +

γπ∗t − 2Ezt+1,T

(
π∗t+1

)
azcz − 2Eyt+1,T

(
π∗t+1

)
aycy

1− 2Ezt+1,T

(
π∗t+1

)
az − 2Eyt+1,T

(
π∗t+1

)
ay

]

+Λ ·
[
ξ′′y (0)

(
1

2
− π∗t

)
+ (λy − ξy(1)) + ξ′y (γπ∗t )

]
= 0,

(6.10)

together with the second-order condition

Λ · ξ′′y (γπ∗t ) >
1 + Λξ′′y (0)

γ
− 1

1− 2Ezt+1,T

(
π∗t+1

)
az − 2Eyt+1,T

(
π∗t+1

)
ay
. (6.11)

63



6 Expected Utility Theory within Lévy GARCH Models

In the case of hy,t+1 6= Λ · hz,t+1, the optimal strategy needs to satisfy two equations to meet
the corresponding optimality condition (explicitly given as (D.5) in the proof) for any values
of hz,t+1 and hy,t+1. In particular, both coefficients in square brackets in (6.10) need to be
set to zero. Since the coefficient corresponding to hz,t+1 (first square bracket) is linear in πt,
we obtain an explicit expression for the optimal strategy dependent on the other parameters.

Note that this solution candidate – name it π
(z)
t – is time-dependent because of Ez,∗t+1,T and

Ey,∗t+1,T .2 Concerning the coefficient corresponding to hy,t+1 (second square bracket), this yields
a condition for ξy, stating that

ξ′′y (0)

(
1

2
− π(z)

t

)
+ (λy − ξy(1)) + ξ′y

(
γπ

(z)
t

)
= 0, (6.12)

for all t ∈ {0, . . . , T − 1}. These T different conditions, however, need to be satisfied for all

investors, i.e., for all possible choices for γ and the corresponding values of π
(z)
t . Thus, we need

to look at (6.12) as a differential equation for ξy, which after the substitution u = γπ
(z)
t has the

form

ξ′y(u) =
k2

γ
u+ k1 −

k2

2
− λy, (6.13)

subject to the two conditions ξy(1) = k1 and ξ′′y (0) = k2. This still – counter-intuitively –
imposes a condition on the statistical properties of log-asset returns related to the investor’s
risk aversion parameter γ. Furthermore, integrating yields

ξy(u) =
k2

2γ
u2 +

(
k1 −

k2

2
− λy

)
u+ C (6.14)

for some constant C ∈ R, with

ξy(1) =
k2

2γ
+ k1 −

k2

2
− λy + C = k1, (6.15a)

ξ′′y (0) =
k2

γ
= k2. (6.15b)

It is easy to see that (6.15b) requires γ = 1 for the risk aversion parameter, which implies
C = λy from (6.15a). Hence, this restricts the analysis to risk-neutral investors and contradicts
our assumption that γ < 0.

An analog to our condition hy,t = Λhz,t can be found, e.g., in the setting by Liu and Pan
(2003), where the stochastic jump intensity is connected to the instantaneous variance process.
In practice, we ensure the linear dependence of time-homogeneous factors by connecting the
parameters in (6.4b) to the ones in (6.4a), i.e., by assuming the initial condition hy,1 = Λhz,1
together with

cy = cz, by = bz, ωy = Λωz, and ay = Λaz, (6.16)

implying a slightly simplified expression for (6.10). We emphasize that a simple reduction of
our model delivers a well-known special case without jumps:

2Ex,∗t+1,T is short for Ext+1,T (π∗t+1), with x ∈ {y, z}

64



6.3 Optimal Investment Maximizing CRRA Utility

Corollary 6.3 (HN-GARCH). Disregarding the jump innovation, i.e., setting ξy(u) = 0, Λ = 0
and λy = 0, yields the HN-GARCH model.3 Note that due to the convexity adjustment present
in (6.2), we need to choose λz = λHN + 1

2 , where λHN is the maximum likelihood estimate (MLE)
for the risk premium in the HN-GARCH model. In particular, (6.10) leads to

π∗t =
λz

(
1− 2Ez,∗t+1,Taz

)
− 2Ez,∗t+1,Tazcz

1− 2Ez,∗t+1,Taz − γ
, (6.17)

and 1− 2Ez,∗t+1,Taz > 0 ensures (6.11).

Note that the HN-GARCH model satisfies the second-order condition

Λξ′′y (γπt) >
1 + Λξ′′y (0)

γ
− 1

1− 2Ezt+1,T

(
π∗t+1

)
az − 2Eyt+1,T

(
π∗t+1

)
ay

(6.18)

on the entire real line for πt, i.e., we know that the objective function is concave in this case,
and the solution to the first-order condition is a global maximum.

6.3.2 Examples of Jump Innovations

This section considers several choices for the Lévy jump innovation and its distribution. First,
the above optimality problem is investigated under the well-known MJ model. Subsequently,
we also tackle NIG and VG innovations.

Merton Jump Model

In the Merton jump (MJ) model (cf. Ornthanalai, 2014), each jump size is drawn independently
from N

(
θ, δ2

)
. The number of jumps ηt+1 occurring in the interval (t, t+1] is a Poisson process

with predictable intensity hy,t+1 = Λ ·hz,t+1, i.e., this intensity serves as the time-homogeneous
parameter in our Lévy GARCH model. Thus, let yt+1 =

∑ηt+1

k=1 Yk, with {Yk}k i.i.d. according
to N

(
θ, δ2

)
. Note that

Et

[
exp {u · yt+1}

∣∣∣∣∣ ηt+1 = n

]
= exp

{(
uθ +

1

2
δ2u2

)
· n
}
,

which allows us to deduce from the tower property that

Et [exp {u · yt+1}] = exp

{(
exp

{
uθ +

1

2
δ2u2

}
− 1

)
· hy,t+1

}
.

Having performed the above analysis conditioned on the information at time t, we obtain the
cumulant exponent from the last equation and state that in the Merton jump model,

ξy(u) = exp

{
uθ +

1

2
δ2u2

}
− 1. (6.19)

3The HN-GARCH model was originally introduced by Heston and Nandi (2000). The notation λHN thus refers
to this original formulation without convexity adjustment, see, e.g., Chapter 3. Contrary to the previous
chapters, this chapter will use the HN-GARCH model in the Lévy GARCH parametrization for clarity.
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Transferring this representation back to our optimality equation (6.10), we now need to solve


λz − πt +

γπt − 2
(
Ez,∗t+1,T − ΛEy,∗t+1,T

)
azcz

1− 2az

(
Ez,∗t+1,T + ΛEy,∗t+1,T

)




+Λ ·
[(
θ2 + δ2

)(1

2
− πt

)
+

(
λy − exp

{(
θ +

1

2
δ2

)}
+ 1

)

+
(
θ + δ2γπt

)
· exp

{
θγπt +

1

2
δ2γ2π2

t

}]
= 0.

(6.20)

The optimality equation above yields the following statement on existence and uniqueness of
an optimal solution in the prevailing model:

Corollary 6.4. Suppose (6.18) holds with strict inequality for all t ∈ {0, . . . , T − 1} in the
Merton jump model with normally distributed jump size. Then, a unique solution exists for the
optimal relative portfolio strategy π∗t .

However, the strategy πt is involved both in linear and in exponential terms, making (6.20)
difficult to solve for πt explicitly. One straightforward way to an approximate solution uses
that the values for the parameters θ and δ are very small (referring to the MLEs reported by
Ornthanalai, 2014), which implies that the approximation exp{x} ≈ 1 + x is sufficiently good
in this case.

Normal Inverse Gaussian Model

A Normal-inverse Gaussian (NIG) process (Barndorff-Nielsen, 1997; Ornthanalai, 2014) can be
constructed via a Brownian motion, which is time-changed using an inverse Gaussian process.
In particular, we introduce α > 0 and β with |β| < α. In order to obtain an innovation that
is time-homogeneous in one of its parameters later, we refer to Barndorff-Nielsen (1997) and
set the starting point for the bivariate Brownian motion, which is used to construct the NIG
process, to zero (corresponding to µ = 0 in the original parametrization). This then leads to:

ψy (u; t, t+ 1) = −
(√

α2 − (β + u)2 −
√
α2 − β2

)
· hy,t+1,

with the part excluding hy,t+1 (note the minus in front!) as ξy(u). In this setting too, we rely
on the condition hy,t+1 = Λ · hz,t+1, which then yields the following optimality equation:


λz − πt +

γπt − 2
(
Ez,∗t+1,T − ΛEy,∗t+1,T

)
azcz

1− 2az

(
Ez,∗t+1,T + ΛEy,∗t+1,T

)




+Λ ·
[
α2 − 2β2

(α2 − β2)
3
2

(
1

2
− πt

)
+ λy +

√
α2 − (β + 1)2 −

√
α2 − β2

+
β + γπt√

α2 − β2 − 2βγπt − γ2π2
t

]
= 0.

(6.21)

Variance Gamma Model

Another potential choice concerning the model for the jump innovation is the increment of a
Variance Gamma (VG) process (Madan and Seneta, 1990). Following Ornthanalai (2014), we
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consider a normal density N (θx, x), conditional on x ∼ Gamma (α, β), for α, β > 0. Again
referring to Ornthanalai (2014), we obtain via conditioning on x:

Et [exp {u · yt+1}] =

(
β

β − 1
2u

2 − θu

)α

= exp

{
−α · log

(
1− θu+ 1

2u
2

β

)}
.

Thus, choosing hy,t+1 to take the role of α, we arrive at

ξy (u) = log

(
β

β − 1
2u

2 − θu

)
. (6.22)

Using this in (6.10) yields the optimality equation


λz − πt +

γπt − 2
(
Ez,∗t+1,T − ΛEy,∗t+1,T

)
azcz

1− 2az

(
Ez,∗t+1,T + ΛEy,∗t+1,T

)




+Λ ·
[
β + θ2

β2

(
1

2
− πt

)
+ λy − log

(
β

β − θ − 1
2

)
+

θ + γπt

β − θγπt − 1
2γ

2π2
t

]
= 0.

(6.23)

Multiplying both sides with the denominator of the last term leads to a third-order polynomial.

Remark 6.5. Although Equations (6.20), (6.21) and (6.23) seem to be tedious to solve for πt,
we can check numerically that the second-order condition is satisfied for the entire real line at
all time points (for reasonable parameter values), i.e., that the objective function is concave in
πt and that a solution will be a unique maximum.

6.4 Numerical Analysis

This section is devoted to the numerical study of the prevailing Lévy GARCH model. In
particular, the sensitivity of the optimal portfolio allocation to the central parameters of the
model is investigated, as well as the WEL occurring when the investor follows suboptimal
strategies. We are interested specifically in the impact of jumps on the optimal strategy and
on potential losses and want to compare the Lévy GARCH models to the nested HN-GARCH
(which does not incorporate jumps) and a homoscedastic variant. All analyses are going to be
presented for the MJ model as well as for NIG and VG innovations.

If not specified otherwise, the choices for the model’s investment parameters are given in Ta-
ble 6.1.

Table 6.1: Standard values for the investment parameters used for the plots in Section 6.4.

Parameter T r γ

Value 252 0.01/252 -1
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6.4.1 Parameter Estimates

Our analysis is based on the MLEs provided by Ornthanalai (2014). Since in the estimation
process for these MLEs the linear dependence between the two time-homogeneous parameters,
hy,t = Λhz,t for t ∈ {1, . . . , T}, was not assumed, we need to modify the original parameter set.
The central question in this regard is how to derive the value for the parameter Λ, since this, by
construction, will govern the behavior of the process {hy,t}t. The approach presented here uses
the unconditional mean of the process {hy,t}t and derives a value for Λ such that the uncondi-
tional means of Λhz,t and hy,t are matched. Assuming that both time-homogeneous parameters
hz and hy satisfy the stationarity conditions bz + azc

2
z < 1 and by < 1, the unconditional first

moments of hz and hy, respectively, are given by (Ornthanalai, 2014, Equation (9))

h̄(1)
z =

ωz + az
1− bz − azc2

z

, h̄(1)
y =

ωy + ay + ayc
2
yh̄

(1)
z

1− by
. (6.24)

We replace the parameters ay, by, cy and ωy in (6.24) according to the relations in (6.16) to

obtain the Λ-dependent version ĥ
(1)
y . Subsequently, we choose the value for Λ such that ĥ

(1)
y

and h̄
(1)
y are equal, leading to the equation

Λωz + Λaz + Λazc
2
zh̄

(1)
z

1− bz
=
ωy + ay + ayc

2
yh̄

(1)
z

1− by
, (6.25)

which is equivalent to

Λ =
(1− bz)

(
ωy + ay + ayc

2
yh̄

(1)
z

)

(1− by)
(
ωz + az + azc2

zh̄
(1)
z

) . (6.26)

Note that one could also include higher unconditional moments in the above approach and then
derive the best value for Λ, e.g., based on the method of least squares. This, however, would
sacrifice an exact match of the long-term mean of hy, forming the reason why we remain with
the exact choice in (6.26).

6.4.2 Methodology for Comparisons and WEL

In order to correctly investigate the impact of jumps on the solution to our portfolio optimization
problem, we want to compare the prevailing jump model to the closest HN-GARCH model,
which is nested in our setup as described in Corollary 6.3 and does not incorporate jumps. In
order to avoid estimation errors from small samples, for every jump model, we simulate 100
paths with a long sample of N = 2× 104 steps of log returns for the prevailing jump model
and then derive MLEs for the HN-GARCH parameters based on this dataset. To this end, we
follow the lines of the returns-only estimation of Escobar-Anel et al. (2022b) that we described
in Section 4.4.2, exploiting the normal distribution of the HN-GARCH innovations to obtain
the log-likelihood function l. For one path of log returns {xn}n=1,...,N , the estimates θ̂ for
θ = (λz, ωz, az, bz, cz) are given by

θ̂ = arg max
θ
l (x1, . . . , xN | θ) . (6.27)
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After finding estimates θ̂1, . . . , θ̂100 for all paths, we take the median as the best proxy for the
HN parametrization4, which can be understood as the best HN-GARCH approximating a given
Lévy GARCH. The same dataset is used to obtain the corresponding homoscedastic Gaussian
model (HS), i.e., an HN-GARCH model with az = bz = cz = 0. In the following, the jump
models – we use the MJ, the NIG and the VG model as examples – are always compared to
their re-calibrated versions of the HN-GARCH and the homoscedastic variant.

We use the exponentially affine value function from Theorem 6.2 to measure investors’ losses
when following suboptimal strategies. In particular, we compare the optimal value function at
time t, φt, which is obtained via using the optimal strategy {π∗t }t in the recursive parameters, to
the expected utility corresponding to the suboptimal strategy {πst }t, denoted by φst . The WEL
Lst is the percentage of wealth at time t that an investor following the optimal strategy can
forgo in order to obtain the same expected utility as another investor following the suboptimal
strategy {πst }t. Thus, Lst satisfies the equation

φst (log Vt, hz,t+1, hy,t+1) = φt (log (Vt (1− Lst )) , hz,t+1, hy,t+1) . (6.28)

Using (6.8) and exploiting hy,t+1 = Λhz,t+1 yields the following closed-form representation of
the WEL:

Lst = 1− exp

{
1

γ
·
[
Ds
t,T (πst )−Dt,T (π∗t )

+
(
Ez,st,T (πst )− Ezt,T (π∗t ) + ΛEy,st,T (πst )− ΛEyt,T (π∗t )

)
hz,t+1

]}
.

(6.29)

6.4.3 Results for the Merton Jump Model

This subsection presents an analysis of the sensitivity of the optimal solution to the most
relevant investment parameters and aims at comparing the Merton jump model to the closest
HN-GARCH and homoscedastic solution. To this end, we derived MLEs for the latter two
jump-free models according to the methodology presented in Section 6.4.2, based on the MJ
parameters from Ornthanalai (2014), adapted to our setting as described in Section 6.4.1. We
add that, compared to the sample statistics for the original S&P 500 dataset used to estimate
the MJ parameters in Table 6.2, namely a sample skewness of −0.194 and a kurtosis of 11.15
(Ornthanalai, 2014), the first 15 years of observations in our artificial dataset created with
these MJ parameters yield a sample skewness of 0.010 and a kurtosis of 3.47.5 For all three
investigated models, similar sample statistics are obtained when simulating with or without
modifying the parameter set according to Section 6.4.1 to achieve the dependence in (6.16).

Comparing the solutions to the portfolio optimization problem for MJ to its no-jump analogues
as of Table 6.2, Figure 6.2 shows that the re-calibrated HN-GARCH model without jumps
replicates the MJ very well, with the difference in the optimal initial allocation decreasing
as shorter time horizons are considered. In contrast to this, the homoscedastic solution is
not sensitive to the length of the time horizon and stays constant, also causing an increasing
difference to the MJ as the time horizon increases.

Figure 6.3a addresses the sensitivity of the optimal solution with respect to the investor’s level of
relative risk aversion, which in the prevailing setting of a power utility function with parameter

4We use the median rather than the average due to outliers in the estimates (i.e., potential local minima on
some samples). We also report the standard error from the 100 samples to confirm the estimate’s accuracy.

5While these numbers for the artificial set of MJ returns are less extreme than the actual sample statistics of
the original dataset, this picture changes when looking at different Lévy GARCH models, see Section 6.4.4
for the NIG model.
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Table 6.2: MLEs for the MJ model and the recalibrated HN-GARCH and homoscedastic model, respec-
tively. Standard errors for the recalibrated models are in parentheses. The MJ parameters
are based on Ornthanalai (2014) and the methodology presented in Section 6.4.1, the two
jump-free models have been estimated according to Section 6.4.2.

Par. MJ HN HS

λz 1.47 2.67 (2.70× 10−1) 2.66 (1.85× 10−1)

ωz −2.39× 10−6 −1.23× 10−6 (5.67× 10−7) 6.88× 10−4 (3.50× 10−5)

az 2.98× 10−6 4.45× 10−6 (5.80× 10−7)

bz 9.41× 10−1 9.59× 10−1 (5.59× 10−3)

cz 1.35× 102 9.04× 101 (1.19× 101)

λy 6.18× 10−2

Λ 2.31× 102

θ −2.39× 10−3

δ 2.85× 10−2

0 1 2 3 4 5

T (years)

1.35

1.40

1.45
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π
∗ 0
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Figure 6.2: Values of the optimal strategy π∗
0 in the MJ model and the corresponding re-calibrated

HN-GARCH and homoscedastic model, dependent on the length of the time horizon, for
T up to five years. The parameters are given in Table 6.1 (investment parameters) and in
Table 6.2 (MJ, HN, HS).

γ < 1 is given viaR = 1−γ. Clearly, the fraction of wealth invested in the risky asset increases in
all three models as the level of relative risk aversion decreases. This can lead to major differences
between investors using the same model, but having different risk preferences. Following the
MJ, for instance, with a relative risk aversion of R ≈ 1.3 yields an initial risky allocation of
around 200%, whereas R ≈ 4 leads to an allocation below 100%. For the entire plotted range,
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(a) Values of π∗0 dependent on R. The lines for the MJ
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Figure 6.3: Values of the optimal initial allocation π∗
0 and of wealth-equivalent losses, dependent on

the investor’s level of relative risk aversion R = 1− γ ∈ [1.1, 5]. The parameters are given
in Table 6.1 (investment parameters) and in Table 6.2 (MJ, HN, HS).

the HN-GARCH strategy remains very close to the optimal strategy in the MJ, while investors
following the homoscedastic variant have a slightly lower risky allocation. Figure 6.3b uses
the same parameter range and considers the WEL that investors incur when following the HN-
GARCH or the homoscedastic strategy, while log returns actually evolve according to an MJ. In
general, the losses remain at a very low level for a one-year time horizon, yielding values below
5 basis points for the homoscedastic model and even less for the HN-GARCH. This confirms the
impression from Figures 6.2 and 6.3a that the jump-free models lead to very similar investment
strategies.
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(a) WEL dependent on θ, up to an absolute increase
by a factor of 10.
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(b) WEL dependent on δ, up to an increase by a factor
of 10.

Figure 6.4: Values of the wealth-equivalent losses, dependent on the jump parameters in the MJ model.
For each grid point, both the HN-GARCH and the homoscedastic model are re-calibrated
using the methodology in Section 6.4.2. The time horizon is one year with 252 trading
days, and we consider an investor with γ = −1.

In Figure 6.4, we consider more extreme jump settings, which are obtained via increasing the
absolute mean of the normally distributed jump size in the MJ up to a factor of 10 and via
increasing the standard deviation of the jump size by the same factor. For each grid point
between the original parameter estimate as of Table 6.2 and the most extreme setting, we re-
calibrate the jump-free models to a set of simulated log return according to Section 6.4.2.6 Both

6The recalibration exercise leads to natural inaccuracies in the estimates, which explains the minor variation in
the calculation of WEL among grid points.
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plots suggest that the capability of the HN-GARCH and the homoscedastic model to imitate
the MJ is not significantly weakened, i.e., losses remain negligible for all considered parameter
settings.

Besides modifications concerning the jump size in the MJ, the jump intensity can of course play
a huge role too, bearing in mind, e.g., the analysis by Ascheberg et al. (2016), suggesting that
jumps matter more if the intensity is large. In the Merton jump model, the intensity can easily
be modified via the parameter Λ, governing the jump intensity given by Λhz,t in the interval
(t, t+ 1]. One has to take into account, however, that the long-run equity premium, obtained
via

λ̄ := λzh̄
(1)
z + λyh̄

(1)
y = λzh̄

(1)
z + λyΛh̄

(1)
z , (6.30)

changes accordingly, which will have a major impact on the optimal solution. Since we wish to
isolate the effect of modifications to the jump size, we compensate for changes is the long-run
equity premium by adapting λz such that λ̄ remains constant. Figure 6.5 uses this approach
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Figure 6.5: Values of the wealth-equivalent losses for the HN-GARCH and the homoscedastic model, de-
pendent on the jump intensity in the MJ model. For each grid point, both the HN-GARCH
and the homoscedastic model are re-calibrated using the methodology in Section 6.4.2. The
time horizon is one year with 252 trading days, and we consider an investor with γ = −1.

and increases Λ up to one order of magnitude from the original value in the MJ model (see
Table 6.2). Again, both jump-free models are re-calibrated for every grid point. As seen for
the parameters affecting the jump size, the parameter Λ does not have a significant impact on
the WEL occurring for the closest HN-GARCH and homoscedastic models, as all values stay
below or close to 2 basis points, with the HN-GARCH outperforming the constant solution and
yielding even lower values.

To conclude our numerical investigation of the Merton jump model, we modify both the mean
jump size and the intensity at the same time. In particular, we increase the parameters θ and
Λ by a factor of 10. Concerning changes in the jump intensity, implied by an increase in Λ,
we again use the approach described above to avoid changes in the long-run equity premium.
Figure 6.6a shows the values of the initial optimal risky allocation for investors with different
risk aversion levels, for the MJ as well as for the two jump-free models. The plot once more
suggests that the strategies obtained from the HN-GARCH and the homoscedastic model are
similar to the one in the MJ. Concerning the WEL investors incur when following the former
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Figure 6.6: Values of the optimal initial allocation π∗
0 and of wealth-equivalent losses, dependent on

the investor’s level of relative risk aversion R = 1− γ ∈ [1.1, 5]. These plots are based on a
modified, extreme parameter setting for the MJ with θ and Λ one order of magnitude larger
than the original estimates in Table 6.2. The HN-GARCH and the homoscedastic model
have been re-calibrated according to Section 6.4.2. The time horizon is one year with 252
trading days.

two suboptimal strategies, Figure 6.6b suggests a very good performance of the re-calibrated
models, yielding values below one basis point for the entire range of relative risk aversion.

6.4.4 Results for the Normal Inverse Gaussian Model

In this subsection, we address the Normal Inverse Gaussian model in terms of the sensitivity of
the optimal solution to the main model parameters and compare the model to the Gaussian HN-
GARCH model without jumps and to a homoscedastic variant. The parameters for these three
models are displayed in Table 6.3. The estimates for the NIG model are based on Ornthanalai
(2014), adapted to our setting according to Section 6.4.1. As described in 6.4.2, the HN-GARCH
and the homoscedastic model parameters are re-estimated based on a set of simulated log returns
from the NIG model. The sample skewness for the first 15 years of the simulated log returns is
−2.99, the kurtosis amounts to 73.90.7

Concerning the evolution over time, Figure 6.7 shows that an investor with a time horizon
of more than 1.5 years will invest 2.5 percentage points more than an investor with a very
short time horizon. While the HN-GARCH solution only shows slight differences in the initial
allocation for very small values of T , the homoscedastic solution does not change for different
time horizons.

Plotting the values of the initial optimal portfolio allocation for a one-year time horizon for
investors with different levels of relative risk aversion, Figure 6.8a shows that the small differ-
ences observed in Figure 6.7 for the special case of R = 2 are confirmed for other reasonable
values, too. This is also reflected in Figure 6.8b, suggesting extremely low values for the WEL
occurring when following the HN-GARCH or the homoscedastic solution, while returns actually
evolve according to the NIG model.

The interpretation of the NIG innovation as a normal variance-mean mixture yt ∼ N (βx, x),

with x ∼ IG
(
hy,t,

√
α2 − β2

)
, helps to get an intuition about the role of the different parameters

7These values are much more extreme than the numbers observed in the original dataset from the S&P 500
(see Section 6.4.3), similar to the picture for implied average conditional skewness and kurtosis observed by
Ornthanalai (2014).
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Table 6.3: MLEs for the NIG model and the recalibrated HN-GARCH and homoscedastic model, respec-
tively. Standard errors for the recalibrated models are in parentheses. The NIG parameters
are based on Ornthanalai (2014) and the methodology presented in Section 6.4.1, the two
jump-free models have been estimated according to Section 6.4.2.

Par. NIG HN HS

λz 8.00× 10−1 1.83 (4.30× 10−1) 1.83 (3.97× 10−1)

ωz −1.65× 10−6 3.40× 10−6 (8.81× 10−8) 3.21× 10−4 (2.96× 10−5)

az 2.41× 10−6 4.21× 10−7 (4.62× 10−8)

bz 9.40× 10−1 7.04× 10−1 (2.25× 10−2)

cz 1.43× 102 6.70× 102 (6.14× 101)

λy 6.88× 10−1

Λ 2.62

α 1.16× 101

β −6.86
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Figure 6.7: Values of the optimal strategy π∗
0 in the NIG model and the corresponding re-calibrated

HN-GARCH and homoscedastic model, dependent on the length of the time horizon, for T
up to five years. The parameters are given in Table 6.3.

in this setting. As for the MJ model in Section 6.4.3, we intend to increase the average jump size,
which can be achieved via modifications to β. As we change β, we correct the inverse Gaussian
distribution to remain the same by adapting α accordingly. Increasing the absolute value of
β up to one order of magnitude in this manner, and then re-calibrating the HN-GARCH and
the homoscedastic model leads to the WEL plotted in Figure 6.9a. The loss increases towards
higher absolute jump sizes for both suboptimal strategies, but the numbers remain on a very
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Figure 6.8: Values of the optimal initial allocation π∗
0 and of wealth-equivalent losses in the NIG model,

dependent on the investor’s level of relative risk aversion R = 1 − γ ∈ [1.1, 5]. The time
horizon is one year with 252 trading days, the parameters are given in Table 6.3.
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Figure 6.9: Values of the wealth-equivalent losses, dependent on the jump parameters in the NIG model.
For each grid point, both the HN-GARCH and the homoscedastic model are re-calibrated
using the methodology in Section 6.4.2. The time horizon is one year with 252 trading
days, and we consider an investor with γ = −1.

low level in general. It is remarkable that in this case, the homoscedastic model could produce
a lower WEL than the heteroscedastic HN-GARCH for some very extreme settings.

We add that the third parameter that can influence the jumps, Λ, plays a different role in the
NIG as compared to the MJ model. While we were looking at an increase of said parameter in
the MJ to raise the jump intensity, we may now increase Λ to obtain a larger mean of the inverse
Gaussian random variable in the normal variance-mean mixture. Looking at an increase of up
to one order of magnitude and re-calibrating the HN-GARCH and the homoscedastic model at
each of the grid points also shows insignificant values for the WEL. The WEL evaluated for an
investor with R = 2 does not exceed one basis point.

6.4.5 Results for the Variance Gamma Model

This subsection is devoted to the numerical results for the special case of the Variance Gamma
model, see Section 6.3.2. We follow the lines of Sections 6.4.3 and 6.4.4 and investigate the
impact of more extreme jump settings in the VG model on the capability of the HN-GARCH
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5 10 15 20 25
Λ

0

2

4

6

8
L
s 0

×10−5

HN

HS

Figure 6.10: Values of wealth-equivalent losses for HN-GARCH and homoscedastic model, compared
to the NIG model and dependent on the parameter Λ. For each grid point, both the
HN-GARCH and the homoscedastic model are re-calibrated using the methodology in
Section 6.4.2. The time horizon is one year with 252 trading days, and we consider an
investor with γ = −1.

Table 6.4: MLEs for the VG model and the recalibrated HN-GARCH and homoscedastic model, respec-
tively. Standard errors for the recalibrated models are in parentheses. The VG parameters
are based on Ornthanalai (2014) and the methodology presented in Section 6.4.1, the two
jump-free models have been estimated according to Section 6.4.2.

Par. VG HN HS

λz 6.82× 10−1 2.33 (3.34× 10−1) 2.35 (2.76× 10−1)

ωz −1.75× 10−6 1.25× 10−7 (3.18× 10−7) 4.49× 10−4 (2.13× 10−5)

az 2.57× 10−6 2.85× 10−6 (3.23× 10−7)

bz 9.38× 10−1 9.44× 10−1 (6.50× 10−3)

cz 1.47× 102 1.31× 102 (1.50× 101)

λy 1.68× 10−2

Λ 1.17× 102

θ −8.19

β 9.49× 102

and the homoscedastic model when it comes to dynamic investment strategies. Table 6.4 shows
the estimates for the VG model, derived from Ornthanalai (2014) and adapted according to
Section 6.4.1. The HN-GARCH and the homoscedastic parameter estimates are obtained ac-
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cording to the methodology described in Section 6.4.2. In this case, the sample skewness for
the first 15 years of simulated log returns is −0.13, the sample kurtosis is 4.29.
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Figure 6.11: Values of the optimal strategy π∗
0 in the VG model and the corresponding re-calibrated

HN-GARCH and homoscedastic model, dependent on the length of the time horizon, for
T up to five years. The parameters are given in Table 6.4.

Figure 6.11 shows that the re-calibrated HN-GARCH model, based on a simulated dataset
of VG returns, produces an initial value for the risky allocation which is quite close to the
one obtained directly from the VG model for all time horizons up to five years. The initial
allocation resulting from the homoscedastic model is constant over different time horizons and
almost identical to the HN-GARCH and the VG strategy for very small T .
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Figure 6.12: Values of the optimal initial allocation π∗
0 and of wealth-equivalent losses in the VG model,

dependent on the investor’s level of relative risk aversion R = 1 − γ ∈ [1.1, 5]. The time
horizon is one year with 252 trading days, the parameters are given in Table 6.4.

This is also reflected in the plots in Figure 6.12, showing the difference of the initial risky
allocations for a one-year time horizon across different levels of relative risk aversion. The
HN-GARCH yields a value almost identical to the one from the VG model, the homoscedastic
model seems to be quite close, too. Concerning the WEL, the picture observed for the MJ
and the NIG models in Sections 6.4.3 and 6.4.4 is confirmed once more, since the values for
the losses when following the HN-GARCH are very low, exceeded by the losses produced with
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the homoscedastic solution, which, however, also remain small – around one basis point for R
between 2 and 4.

Concerning the jump parameters in the VG model, we again look at the normal variance-mean
mixture interpretation of the underlying distribution. In particular, considering yt ∼ N (θx, x),
based on x ∼ Gamma (hy,t, β), we quickly identify θ as the key to modifications in the jump
size. Since the mean of x is given by hy,t/β, and this again is reflected in both the mean and the
variance of yt, we can modify these two measures via decreasing β and leaving the behavior of
the process hy,t unchanged. Repeating the same procedure as for the other WEL evaluations
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(a) WEL dependent on θ, up to an absolute increase
by a factor of 10.
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Figure 6.13: Values of the wealth-equivalent losses, dependent on the jump parameters in the VG
model. For each grid point, both the HN-GARCH and the homoscedastic model are re-
calibrated using the methodology in Section 6.4.2. The time horizon is one year with 252
trading days, and we consider an investor with γ = −1.

here yields a very familiar picture, as shown in Figure 6.13: Re-calibrated using simulations
from the jump model for different parameter values, the losses for the HN-GARCH and the
homoscedastic model remain very low, barely exceeding one basis point for a one-year time
horizon in the VG setting.

The evidence in this section indicates that Gaussian models excel at replicating the simulated
data of jump processes across different jump models and parameter scenarios. In this context, we
note that our Gaussian models are fitted based on a relatively large data set, see Section 6.4.2.
Other results, e.g., in the context of regime switches (Ang and Bekaert, 2002; Guidolin and
Timmermann, 2007; Campani et al., 2021, among others), are based on comparatively short
time series. This suggests that the large amount of data points we use helps to eliminate the
estimation error and significantly improves the performance of the Gaussian models.

6.5 Conclusion

This chapter establishes an approximate closed-form solution for a discrete-time portfolio opti-
mization problem in a Lévy GARCH framework and therefore extends the results presented in
Chapter 3 in a different direction than Chapters 4 and 5 do. We provide optimality criteria for
different special cases of the framework, including both finite-activity and infinite-activity jump
components. Our numerical study focuses on the impact of jumps on the optimal strategy. It
compares three different jump models to the jump-free Gaussian HN-GARCH model and a ho-
moscedastic Gaussian model. Across all considered jump models, the results demonstrate that
investors following the closest possible jump-free variants obtain similar strategies and incur only
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insignificant wealth-equivalent losses. Our finding remains true for modified parameter settings
indicating extreme jump behavior in the Lévy GARCH models. This surprising performance of
simple models might be explained by two factors. One is the connection between expected utility
maximization and mean-variance (MV) theory, stating that expected utility maximization can
be well approximated using MV, i.e., by the first two moments (Markowitz, 2012). This high-
lights the importance of matching the first two moments of the wealth distribution. The quality
of this approximation in other settings, e.g., with a disappointment-averse investor (Dahlquist
et al., 2017) could be subject to further research. Secondly, the frequency of re-balancing in a
discrete-time setting leaves little room to take advantage of sudden jumps. Overall, our analysis
shows that correctly calibrated jump-free models in the discrete-time GARCH framework could
diminish the necessity of modeling jumps for investors.
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After the first closed-form solution to the EUT problem in a general affine GARCH environ-
ment presented in Chapter 3, we tackled the extension towards consumption at intermediate
time points in Chapter 4. Our construction with a HARA type utility function at all time points
t = 0, . . . , T − 1 and a change of control for the investor’s consumption avoid the consumption
of the entire available wealth before the end of the investment horizon. We furthermore proved
that the optimal log-wealth process again follows an affine GARCH process and that the simpler
case without consumption at intermediate time points is still nested in this setup. In Chap-
ter 5, we established two generalizations concerning the utility derived from terminal wealth.
The first allows for the more general class of HARA utilities instead of the embedded CRRA
family. For a risk-averse investor, we learned that the HARA function of terminal wealth can be
interpreted as a CRRA utility based on a surplus beyond some fixed threshold that is achieved
with certainty, which provides us with an intuitive interpretation as a CPPI approach. The
second generalization relaxes an assumption on the investor’s risk aversion, allowing in partic-
ular also for a quadratic utility and a connection to the prominent field of MV optimization.
In this generalized framework, one may even include higher moments of the portfolio return
and consider investors’ preferences on skewness and excess kurtosis. While Chapters 3, 4 and 5
extended the problem formulation in several directions, the theory was based on the log asset
price evolving according to a general affine GARCH model. Chapter 6 finally broke through
these barriers and considered the Lévy GARCH setting, where an additional jump component
besides a Gaussian one drives asset price evolution. Potential choices for the distribution of
the jump innovation include the Merton jump (MJ) with finite activity and more involved con-
structions such as Normal-inverse Gaussian (NIG) and Variance Gamma (VG) processes. By
disregarding the jump innovation, the setup still nests the Gaussian HN-GARCH model.

We have seen various numeric examples throughout this dissertation. In the model with con-
sumption in Chapter 4, we studied the impact of including consumption at intermediate time
points on optimal portfolio strategies and noted that this additional possibility of deriving utility
disrupts optimal allocation levels. Since the model setup allows for Gaussian and non-Gaussian
innovations, we also investigated the effect of non-Gaussianity, i.e., of conditional skewness and
excess kurtosis in asset returns, on the optimal strategy. This led to the eye-opening conclu-
sion that, among conditional non-Gaussianity and heteroscedasticity, the latter is the more
important feature in asset return models. In a study based on S&P 500 index returns, we
estimated the Gaussian HN-GARCH model and a homoscedastic variant. The five-year period
from 2013 through 2017 revealed that following a homoscedastic strategy can lead to 10% less
total consumption and, at the same time, 8% less terminal wealth as compared to the Gaussian
GARCH model. Focusing on utility derived from terminal wealth again in Chapter 5, we chose
the newly established connection to MV theory and studied the efficient frontiers for a Gaus-
sian GARCH and a homoscedastic model. The results indicated that, given the same expected
portfolio return, a GARCH investor faces significantly less variance, with the difference to a
homoscedastic investor increasing with the length of the investment horizon. This confirmed
the general numerical finding of Chapter 4 and can be summarized in the brief statement that
heteroscedasticity matters. The numerical study in Chapter 6 took a different point of view and
considered the question of whether jumps in the asset price process make an impact. Instead of
calibrating all involved models based on the same dataset, which in real-world applications is
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usually limited to small time series, we wanted to know if the best possible jump-free Gaussian
GARCH model is capable of imitating a Lévy GARCH model with jumps. To this end, we
sampled a large number of returns with jumps and calibrated the HN-GARCH model as well as
a homoscedastic variant based on this artificial dataset. Although the results are hypothetical
because of the limited availability of market data in real applications, the results indicate that
correctly calibrated GARCH models produce only negligible losses in various extreme jump
environments. This finding is extremely relevant for practitioners and connects very well to
the numerical studies from Chapters 4 and 5, as the most significant feature to consider in the
underlying asset return model among heteroscedasticity, non-Gaussianity, and jumps, seems to
be the first one.

The results presented in this dissertation leave room for open questions. The most natural ones
target the unfilled space in Figure 6.1, i.e., the connection between HARA utilities for terminal
wealth, consumption at intermediate time points, and more general asset price models. Since
all the extensions presented in this dissertation preserve the exponentially affine structure of
the MGF, a bold conjecture could be that the combination works in a similar fashion. In the
projects related to this dissertation, we chose to deal with these issues separately for brevity
and lucidity. In addition to these opportunities, a new class of affine multi-factor models
was introduced very recently by Augustyniak et al. (2023), nesting all models of the present
dissertation. In particular, while the IG-GARCH model is not included in the Lévy GARCH
setup, both are contained in the new family, paving the way to further generalizations of our
existing results. Another natural extension of our environment concerns the presence of more
than one risky asset, i.e., the transition to a multivariate setting, which in the world of affine
GARCH models was introduced by Escobar-Anel et al. (2020). Note, however, that the general
multi-factor model of Augustyniak et al. (2023) is formulated for the univariate case. Last but
not least, it would be interesting to study many of the numerical results in this dissertation with
respect to their dependence on the length of the time step. For simplicity, we assume this length
to be exactly one day throughout this dissertation, and so it remains an open question whether
more intermediate time points change the effect that heteroscedasticity, non-Gaussianity, and
jumps have on optimal portfolio strategies and strategy performance. For clarity and in the
spirit of addressing challenges methodically, we chose not to delve into the abovementioned
extensions in this dissertation.

82



Bibliography

Ang, A. and G. Bekaert (2002). “Regime Switches in Interest Rates.” In: Journal of Business
& Economic Statistics 20.2, pp. 163–182. doi: 10.1198/073500102317351930.

Ascheberg, M., N. Branger, H. Kraft, and F. T. Seifried (2016). “When do jumps matter for
portfolio optimization?” In: Quantitative Finance 16.8, pp. 1297–1311. doi: 10 . 1080 /

14697688.2015.1131844.

Augustyniak, M. and A. Badescu (2021). “On the computation of hedging strategies in affine
GARCH models.” In: Journal of Futures Markets 41.5, pp. 710–735. doi: 10.1002/fut.
22187.
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A Appendix for Chapter 2

A.1 Proof of Theorem 2.15

The following proof is based on Hinderer et al. (2016, Theorem 16.1.12), relying on further
results that can be found in earlier chapters of the same book.

Proof of Theorem 2.15. We verify the result by induction on n ≥ 1, using the assertion (In)
that the three following properties hold:

• φT−n+1 ∈M,

• π∗T−n is a maximizer at time T − n,

• φT−n = UφT−n+1.

Note that (I1) holds since φT ∈ M by assumption and π∗T−1 is a maximizer by Condition (i).
Furthermore, by (2.4b) and Definition 2.14, we deduce φT−1 = UφT . Assuming that for some
n ≥ 1, the hypothesis (Iν) is true for all ν = 1, . . . , n, Condition (ii) immediately yields φT−n ∈
M. We know by Condition (i) that π∗T−n−1 is a maximizer at time T − n− 1, since φT−n ∈M.

The set of true hypotheses (In) , . . . , (I1) shows that {π∗t }T−1
t=T−n is an optimal policy for the

problem SCMn. Thus, there remains to show that φT−n−1 = UφT−n. Note that for s ∈ S,
denoting π′ := {πt}T−1

T−n,

φT−n−1 (s) = sup
(πT−n−1,π′)

φT−n−1,(πT−n−1,π′) (s)

= sup
πT−n−1

sup
π′

{
rw (s, πT−n−1(s)) + β · E

[
φT−n,π′ (T (s, πT−n−1(s), Y ))

]}

= sup
πT−n−1

{
rw (s, πT−n−1(s)) + β sup

π′
E
[
φT−n,π′ (T (s, πT−n−1(s), Y ))

]}
. (A.1)

If we can change the order of taking the supremum and the expectation in the last line, then
we are done. For all s ∈ S, by Definition 2.14, we have that φT−n,π′(s) ≤ φT−n(s). Since this
inequality also holds after taking the conditional expectation and the supremum over π′, we
arrive at

sup
π′

E
[
φT−n,π′ (T (s, πT−n−1(s), Y ))

]
≤ E [φT−n (T (s, πT−n−1(s), Y ))] . (A.2)

On the other hand, since there exists an optimal policy π∗ = {π∗t }T−1
t=T−n, we have

sup
π′

E
[
φT−n,π′ (T (s, πT−n−1(s), Y ))

]
≥ E [φT−n,π∗ (T (s, πT−n−1(s), Y ))]

= E [φT−n (T (s, πT−n−1(s), Y ))] .
(A.3)
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This shows that we can change the order of expectation and supremum in (A.1) and with the
maximizer π∗T−n−1 at time T − n− 1 we obtain

φT−n−1 = UφT−n, (A.4)

also implying that {π∗t }T−1
t=T−n−1 is an optimal policy for SCMn+1.
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B Appendix for Affine GARCH Models

B.1 MGF for the HN-GARCH Model

This section contains the proof for the exponentially affine nature of the moment generating
function (MGF) of the log-asset return in an HN-GARCH model as presented and used through-
out the main body of this dissertation. In the setting of Heston and Nandi (2000), in general
denoting the length of the time step by ∆, we let θ = (λ, ω, β, α, ρ) be a vector of parameters,
and r be the continuously compounded riskless rate for the bank account P (0). Assume the
following dynamics for the log-asset return and its conditional variance, respectively:

Xt+∆ −Xt := log

(
P

(1)
t+∆

P
(1)
t

)
= r + λht+∆ +

√
ht+∆εt+∆, (B.1a)

ht+∆ = ω + βht + α
(
εt − ρ

√
ht

)2
, (B.1b)

with {εt}t a sequence of i.i.d. standard normally distributed random variables. Note that we
consider only the single-lag version here, where P (1) and h are allowed to be autoregressive
and dependent only on the previous realization, and that in the main body, we work with the
length of the time step set to one day, i.e., ∆ = 1. Along the lines of Heston and Nandi (2000,
Appendix A), we prove the following result:

Proposition B.1 (Heston and Nandi, 2000). Assuming the dynamics described in (B.1), the
generating function takes the form

ΨXT (u; t, T ) := Et
[(
P

(1)
T

)u]
=
(
P

(1)
t

)u
exp {A(u; t, T ) +B(u; t, T )ht+∆} , (B.2)

with the coefficients satisfying

A(u; t, T ) = A(u; t+ ∆, T ) + ur + ωB (u; t+ ∆, T )− 1

2
log (1− 2αB(u; t+ ∆;T )) , (B.3a)

B(u; t, T ) = u (λ+ ρ)− 1

2
ρ2 + βB(u, t+ ∆, T ) +

1
2 (u− ρ)2

1− 2αB(u; t+ ∆, T )
, (B.3b)

and the terminal conditions A(u;T, T ) = B(u;T, T ) = 0.

Proof. We prove Proposition B.1 via induction on n := T−t
∆ . That is, we start at the end of the

time horizon and move backwards step by step. The terminal conditions follow directly from
evaluating Equation (B.2) at t = T , corresponding to n = 0. Now, assuming that the induction
hypothesis is true up to some n − 1 ≥ 0 corresponding to t + ∆, we start by using the tower
property and apply the induction hypothesis in the second equation. This yields:

ΨXT (u; t, T ) = Et [ΨXT (u; t+ ∆, T )]

= Et [exp {uXt+∆ +A(u; t+ ∆, T ) +B(u; t+ ∆, T ) · ht+2∆}] (B.4)
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= Et
[
exp

{
uXt + ur + uλht+∆ + u

√
ht+∆εt+∆ +A(u; t+ ∆, T )

+B(t+ ∆, T, u)

(
ω + βht+∆ + α

(
εt+∆ − ρ

√
ht+∆

)2
)}]

= Et
[
exp

{
u (Xt + r) +A(u; t+ ∆, T ) +B(u; t+ ∆, T )ω

+B(u; t+ ∆, T )α
(
ε2t+∆ − 2εt+∆ρ

√
ht+∆ + ρ2ht+∆

)

+uεt+∆

√
ht+∆ + (uλ+B(u; t+ ∆, T )β)ht+∆

}]
. (B.5)

Via completing the square and using that everything except for εt+∆ is known at time t, we
obtain, continuing from (B.5):

ΨXT (u; t, T ) = Et
[
exp

{
u (Xt + r) +A(u; t+ ∆, T ) +B(u; t+ ∆, T )ω

+B(u; t+ ∆, T )α

(
εt+∆ −

(
ρ− u

2αB(u; t+ ∆, T )

)√
ht+∆

)2

+

(
uλ+B(u; t+ ∆, T )β + ρu− u2

4αB(u; t+ ∆, T )

)
ht+∆

}]

= exp

{
u (Xt + r) +A(u; t+ ∆, T ) +B(u; t+ ∆, T )ω

+

(
uλ+B(u; t+ ∆, T )β + ρu− u2

4αB(u; t+ ∆, T )

)
ht+∆

}

+ Et
[
exp

(
a (εt+∆ + b)2

)]
, (B.6)

setting a = α · B(u; t + ∆, T ) and b = −
(
ρ− u

2αB(u;t+∆,T )

)√
ht+∆ in (B.6). For a standard

normally distributed variable z, an integration by substitution and completing the square shows
that (Heston and Nandi, 2000, p. 619; Badescu et al., 2019, p. 33)

E
[
exp

(
a(z + b)2

)]
= exp

(
−1

2
log(1− 2a) +

ab2

1− 2a

)
. (B.7)

We use (B.7) in (B.6) in order to derive:

ΨXT (u; t, T ) = exp

{
u (Xt + r) +A(u; t+ ∆, T ) +B(u; t+ ∆, T )ω

− 1

2
log (1− 2αB(u; t+ ∆, T )) + (uλ+B(u; t+ ∆, T )β + ρu)ht+∆

+

[
1

1− 2αB(u; t+ ∆, T )

(
αB(u; t+ ∆, T )ρ2 − ρu

+
u2

4αB(u; t+ ∆, T )

)
− u2

4αB(u; t+ ∆, T )

]
ht+∆

}

= exp

{
u (Xt + r) +A(u; t+ ∆, T ) +B(u; t+ ∆, T )ω

− 1

2
log (1− 2αB(u; t+ ∆, T ))

+

(
u(λ+ ρ)− 1

2
ρ2 +B(u; t+ ∆, T )β +

1
2(u− ρ)2

1− 2αB(u; t+ ∆, T )

)
ht+∆

}
,

90



B.2 MGF for the IG-GARCH Model

which gives exactly the coefficients in (B.3) and thus proves the hypothesis for also for n and t,
respectively. It is easy to check that the following representation for B is equivalent to (B.3b):

B(u; t, T ) = uλ+B(u, t+ ∆, T )
(
αρ2 + β

)
+

(u− 2αρB(u, t+ ∆, T ))2

2 (1− 2αB(u; t+ ∆, T ))
. (B.8)

Remark B.2. Instead of the general form in (B.2) with the coefficients (B.3), we will use the
conditional bivariate one-step MGF of the log return Yt+∆ = Xt+∆ − Xt and the conditional
variance ht+2∆, which is defined as

Ψ(Yt+∆,ht+2∆) (u, v | Ft) := Et [exp {u · Yt+∆ + v · ht+2∆}] , (B.9)

for t ≤ T − 2∆. Analogously to the calculations in the proof of Proposition B.1, we can show
that:

Ψ(Yt+∆,ht+2∆) (u, v | Ft) = exp {A(u, v; t, t+ ∆) +B(u, v; t, t+ ∆) · ht+∆} , (B.10)

with the coefficients A and B given by

A(u, v; t, t+ ∆) = ur + ωv − 1

2
log (1− 2αv) , (B.11a)

B(u, v; t, t+ ∆) = u (λ+ ρ)− 1

2
ρ2 + βv +

1
2 (u− ρ)2

1− 2αv
. (B.11b)

In this dissertation, we omit the last two time arguments of A and B in the one-step MGF where
they are obsolete. Furthermore, note that the representations in (B.11) assume that 1−2αv > 0.

B.2 MGF for the IG-GARCH Model

In the setting of Christoffersen et al. (2006), let the vector of parameters be θ = (ν, η, w, a, b, c).
We assume the following dynamics for the log asset price and its conditional variance, respec-
tively:

log

(
P

(1)
t+∆

P
(1)
t

)
= r∆ + νht+∆ + ηyt+∆, (B.12a)

ht+∆ = w + bht + cyt + a
h2
t

yt
, (B.12b)

where {yt}t is a sequence of random variables with inverse Gaussian distribution and single
parameter δ(t) = δt = ht/η2. Christoffersen et al. (2006, Appendix A) proved the following
result:

Proposition B.3 (Christoffersen et al., 2006). Assuming the dynamics described in Equa-
tion B.12, the generating function takes the form

ΨXT (u; t, T ) = Et
[(
P

(1)
T

)u]
=
(
P

(1)
t

)u
exp {A(u; t, T ) +B(u; t, T )ht+∆} , (B.13)
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with the coefficients satisfying

A(u; t, T ) = A (u; t+ ∆, T ) + ur∆ + wB (u; t+ ∆, T )

− 1

2
log
(
1− 2η4aB (u; t+ ∆, T )

)
,

(B.14a)

B(u; t, T ) = bB (u; t+ ∆, T ) + uν +
1

η2

− 1

η2

√
(1− 2aη4B (u; t+ ∆, T )) (1− 2uη − 2B (u; t+ ∆, T ) c),

(B.14b)

and the terminal conditions A(u;T, T ) = B(u;T, T ) = 0.

Proof. We again use induction on n := T−t
∆ . The terminal conditions follow directly from

evaluating ΨXT (u;T, T ), proving the hypothesis for n = 0. Assuming that this hypothesis holds
true up to some n− 1 ≥ 0, corresponding to t+ ∆, we apply the tower property to find:

ΨXT (u; t, T ) = Et [ΨXT (u; t+ ∆, T )]

= Et

[(
P

(1)
t

)u
exp

{
u log

(
P

(1)
t+∆

P
(1)
t

)
+A (u; t+ ∆, T ) +B (u; t+ ∆, T )ht+2∆

}]

=
(
P

(1)
t

)u
· Et

[
exp

{
u (r∆ + νht+∆ + ηyt+∆) +A (u; t+ ∆, T )

+B (u; t+ ∆, T )

(
w + bht+∆ + cyt+∆ + a

h2
t+∆

yt+∆

)}]

=
(
P

(1)
t

)u
· Et

[
exp

{
ur∆ +A (u; t+ ∆, T ) +B (u; t+ ∆, T )w

+ (uν +B (u; t+ ∆, T ) b) · ht+∆

+ (uη +B (u; t+ ∆, T ) c) · yt+∆

+B (u; t+ ∆, T ) a · h
2
t+∆

yt+∆

}]
.

(B.15)

Note that the only parameter that is not known by time t is yt+∆, so the first to lines in
(B.15) can just be taken out of the expectation. For what is left in the expectation we use the
generalization of the MGF of the inverse Gaussian distribution, Formula (2) in Christoffersen
et al. (2006). If y inversely Gaussian distributed with single parameter δ, and α, β ∈ R, then
(Christoffersen et al., 2006, Equation (2))

E
[
exp

(
αy +

β

y

)]
=

δ√
δ2 − 2β

exp
{
δ −

√
(δ2 − 2β) (1− 2α)

}
. (B.16)

Continuing from (B.15), we set α = uη+B (u; t+ ∆, T ) c and β = B (u; t+ ∆, T ) ·a ·h2
t+∆, and

δ = ht+∆/η2. Writing At+∆ and Bt+∆ short for A (u; t+ ∆, T ) and B (u; t+ ∆, T ), respectively,
we obtain:

ΨXT (u; t, T ) = exp {ur∆ +At+∆ +Bt+∆w + (uν +Bt+∆b) · ht+∆}

×
(
1− 2η4aBt+∆

)− 1
2

× exp

{(
1

η2
−
√(

1

η4
− 2aBt+∆

)
(1− 2uη − 2Bt+∆c)

)
ht+∆

}
.

(B.17)

92



B.2 MGF for the IG-GARCH Model

Comparing coefficients gives the recursions in (B.14), proving the hypothesis also for n.

Remark B.4. In the spirit of Remark B.2, we can derive the conditional bivariate one-step
MGF of the log return and the conditional variance as

Ψ(Yt+∆,ht+2∆) (u, v | Ft) = Et [exp {u · Yt+∆ + v · ht+2∆}]
= exp {A(u, v; t, t+ ∆) +B(u, v; t, t+ ∆) · ht+∆} ,

(B.18)

with the coefficients

A (u, v; t, t+ ∆) = ur + vw − 1

2
log
(
1− 2vaη4

)
, (B.19a)

B (u, v; t, t+ ∆) = vb+ uν +
1

η2

(
1−

√
(1− 2vaη4) (1− 2uη − 2vc)

)
. (B.19b)

Note that the above calculations assume that 1− 2vaη4 > 0 and 1− 2uη − 2vc > 0.
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C.1 Proofs from Section 4.3

Proof of Theorem 4.4. We start by guessing the correct form of the value function and using
it as an ansatz. For lack of better terms, the factors in (4.11) are denoted by P , Q, and R.
The recursive parameters P , R, D, and Eh depend on the optimal solution, but we omit the
dependencies in the following lines for readability. Furthermore, referring to the coefficients A
and B of the moment generating function of the affine GARCH model in (4.5), let us introduce
the following short notation:

Ā = A
((
EWt+1,T + EĈt+1,TQt+1,T

)
πt, E

h
t+1,T + EĈt+1,TRt+1,T

)
, (C.1a)

B̄ = B
((
EWt+1,T + EĈt+1,TQt+1,T

)
πt, E

h
t+1,T + EĈt+1,TRt+1,T

)
. (C.1b)

Using the above-mentioned ansatz and the affine form of the optimal control on consumption,
we arrive at:

φt (Wt, ht+1)

= max
πt,Ĉt

{
−āγ̄ exp

{
−γ̄Ĉt

}
+ β̄ ·Et

[
φt+1 (T (Wt, ht+1))

]}

= max
πt,Ĉt

{
− āγ̄ exp

{
−γ̄Ĉt

}
− β̄ ·Et

[
T−1∑

s=t+1

β̄s−t−1āγ̄ exp
{
−γ̄Ĉ∗s

}]

+
β̄

γ
·Et

[
β̄T−t−1 exp

{
Dt+1,T + EĈt+1,T · Ĉ∗t+1

+EWt+1,T ·Wt+1 + Eht+1,T · ht+2

}]}

= max
πt,Ĉt

{
− āγ̄ exp

{
−γ̄Ĉt

}
−Et

[
T−1∑

s=t+1

β̄s−tāγ̄ exp
{
−γ̄Ĉ∗s

}]

+
β̄T−t

γ
·Et

[
exp

{
Dt+1,T + EĈt+1,T · Pt+1,T

+
(
EWt+1,T + EĈt+1,TQt+1,T

)
·Wt+1

+
(
Eht+1,T + EĈt+1,TRt+1,T

)
· ht+2

}]}
.

Together with the approximation of the self-financing condition (4.3) and the bivariate gener-
ating function of the log return and the conditional variance in the underlying affine GARCH
model (4.5), this leads to:

φt (Wt, ht+1)
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= max
πt,Ĉt

{
− āγ̄ exp

{
−γ̄Ĉt

}
−Et

[
T−1∑

s=t+1

β̄s−tāγ̄ exp
{
−γ̄Ĉ∗s

}]

+
β̄T−t

γ
·Et

[
exp

{
Dt+1,T + EĈt+1,T · Pt+1,T

+
(
EWt+1,T + EĈt+1,TQt+1,T

)

×
(
Wt − Ĉt + (1− πt) r + πt (Xt+1 −Xt) +

1

2

(
πt − π2

t

)
ht+1

)

+
(
Eht+1,T + EĈt+1,TRt+1,T

)
· ht+2

}]}

= max
πt,Ĉt

{
− āγ̄ exp

{
−γ̄Ĉt

}
−Et

[
T−1∑

s=t+1

β̄s−tāγ̄ exp
{
−γ̄Ĉ∗s

}]

+
β̄T−t

γ
exp

{
Dt+1,T + EĈt+1,TPt+1,T

+
(
EWt+1,T + EĈt+1,TQt+1,T

)
(1− πt) r

+
(
EWt+1,T + EĈt+1,TQt+1,T

)(
Wt − Ĉt

)

+
1

2

(
EWt+1,T + EĈt+1,TQt+1,T

) (
πt − π2

t

)
ht+1

}

×Et
[
exp

{(
EWt+1,T + EĈt+1,TQt+1,T

)
πt (Xt+1 −Xt)

+
(
Eht+1,T + EĈt+1,TRt+1,T

)
ht+2

}]}

= max
πt,Ĉt

{
− āγ̄ exp

{
−γ̄Ĉt

}
−Et

[
T−1∑

s=t+1

β̄s−tāγ̄ exp
{
−γ̄Ĉ∗s

}]

+
β̄T−t

γ
exp

{
Dt+1,T + EĈt+1,T · Pt+1,T + Ā

+
(
EWt+1,T + EĈt+1,TQt+1,T

)
· (1− πt) r

+
(
EWt+1,T + EĈt+1,TQt+1,T

)
·
(
Wt − Ĉt

)

+

[
1

2

(
EWt+1,T + EĈt+1,TQt+1,T

) (
πt − π2

t

)
+ B̄

]
· ht+1

}}
,

using the coefficients A and B from the generating function of the affine GARCH model. This
justifies (4.10) with the recursive definitions1

Dt,T (πt) = Dt+1,T

(
π∗t+1

)
+ EĈt+1,T · Pt+1,T

(
π∗t+1

)
+ Ā

+
(
EWt+1,T + EĈt+1,TQt+1,T

)
· (1− πt) r,

(C.2a)

1For completeness, dependencies on the optimal solution are displayed in (C.2), but omitted again afterwards.
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EĈt,T = −
(
EWt+1,T + EĈt+1,TQt+1,T

)
, (C.2b)

EWt,T =
(
EWt+1,T + EĈt+1,TQt+1,T

)
, (C.2c)

Eht,T (πt) =
1

2

(
EWt+1,T + EĈt+1,TQt+1,T

)
·
(
πt − π2

t

)
+ B̄, (C.2d)

for all t < T , where in the terminal case DT,T = EĈT,T = EhT,T = 0 and EWT,T = γ. Note that in
particular, for all t < T − 1,

EWt,T =
(
EWt+1,T + EĈt+1,TQt+1,T

)
= EWt+1,T (1−Qt+1,T ) = −EĈt+1,T (1−Qt+1,T ) .

Concerning the solution to the optimization problem, we apply the first-order conditions w.r.t.
πt to find the optimality equations from

∂

∂πt
Dt,T (πt) = 0 ⇔ ∂

∂u
Ā = r, (C.3a)

and

∂

∂πt
Eht,T (πt) = 0 ⇔ ∂

∂u
B̄ = πt −

1

2
. (C.3b)

Taking derivatives w.r.t. Ĉt yields the following first-order condition:

γ̄āγ̄ exp
{
−γ̄Ĉt

}
= −

β̄T−tEĈt,T
γ

exp
{
Dt,T + EĈt,T Ĉt + EWt,TWt + Eht,Tht+1

}
, (C.4)

which is equivalent to

Ĉ∗t = − 1

γ̄ + EĈt,T

(
log

(
−
β̄T−tEĈt,T
γγ̄āγ̄

)
+Dt,T + EWt,TWt + Eht,Tht+1

)
. (C.5)

Requiring that EĈt,T > 0 for all t < T , this justifies (4.11) with2

Pt,T (π∗t ) = − 1

γ̄ + EĈt,T

(
log

(
−
β̄T−tEĈt,T
γγ̄āγ̄

)
+Dt,T (π∗t )

)
, (C.6a)

Qt,T = −
EWt,T

γ̄ + EĈt,T
, (C.6b)

Rt,T (π∗t ) = −
Eht,T (π∗t )

γ̄ + EĈt,T
. (C.6c)

Since CT = 0, we start the recursion with PT,T = QT,T = RT,T = 0. Plugging (C.6b) into
(C.2b) and using that γ̄ > 0 yields for t < T − 1:

EĈt,T = EĈt+1,T − EĈt+1,TQt+1,T = EĈt+1,T +
EĈt+1,TE

W
t+1,T

γ̄ + EĈt+1,T

2Again, we display dependencies on the optimal solution in (C.6) for completeness.
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= EĈt+1,T −

(
EĈt+1,T

)2

γ̄ + EĈt+1,T

> EĈt+1,T − EĈt+1,T = 0,

Now since EĈt,T > 0 and EWt,T = −EĈt,T for all t < T , we also find that EWt,T < 0 for all
t ∈ {0, . . . , T}. With all these ingredients, we can use Proposition 2.21 to show that the
objective function is concave onAπ×AĈ . To see this, note that in the notation and terminology
of stochastic control models, our state space is W×H, containing elements (W,h). The action
space is Aπ × AĈ = R × [0,∞). We emphasize that the set of admissible actions stays the
same for all states, implying in particular that the constraint set of states and actions is given
by W × H × Aπ × AĈ . The space of disturbances is Y, containing all possible log returns
Yt = Xt − Xt−1, t ∈ {1, . . . , T}. The transition function is given by (4.6). Note that the
first component of the transition function, denoted by T1, is increasing in W and concave in
(W,π, Ĉ) on W ×Aπ ×AĈ for all h ∈ H and Y ∈ Y, since for λ ∈ (0, 1) and W1,W2 ∈ W,

π1, π2 ∈ Aπ and Ĉ1, Ĉ2 ∈ AĈ , we find, using that x 7→ −x2 is concave,

T1

(
λW1 + (1− λ)W2, h, λπ1 + (1− λ)π2, λĈ1 + (1− λ)Ĉ2, Y

)

= λW1 + (1− λ)W2 − λĈ1 − (1− λ)Ĉ2 + (λπ1 + (1− λ)π2)Y

+ (1− λπ1 − (1− λ)π2)) r

+
(
λπ1 + (1− λ)π2 − (λπ1 + (1− λ)π2)2

)
h

≥ λW1 + (1− λ)W2 − λĈ1 − (1− λ)Ĉ2 + (λπ1 + (1− λ)π2)Y

+ (1− λπ1 − (1− λ)π2)) r

+
(
λπ1 + (1− λ)π2 − λπ2

1 − (1− λ)π2
2

)
h

= λ ·
[
W1 − Ĉ1 + π1Y + (1− π1) r +

(
π1 − π2

1

)
h
]

+ (1− λ) ·
[
W2 − Ĉ2 + π2Y + (1− π2) r +

(
π2 − π2

2

)
h
]

= λT1

(
W1, h, π1, Ĉ1, Y

)
+ (1− λ)T1

(
W2, h, π2, Ĉ2, Y

)
.

The second componentT2 of the transition function is independent of (W,π, Ĉ). The ”one-step”
return of the present stochastic control model is given via the utility derived from immediate
consumption in the current time step. For t ∈ {0, . . . , T − 1}, we defined this utility to be

Ut

(
Ĉt

)
= −āγ̄ exp

{
−γ̄Ĉt

}
,

which is an increasing and concave function in Ĉt on AĈ if γ̄ > 0. Finally, note that for γ < 0,
the value function is bounded from above by zero, and the terminal value function, defined as

φT (WT ) =
1

γ
exp {γWT } ,

is increasing and concave in WT . All in all, this leads to the requirements (i)-(v) in Proposi-
tion 2.21 being satisfied, implying in particular that the objective function at time t, denoted
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by

ft(Wt, ht+1, πt, Ĉt) = −āγ̄ exp
{
−γ̄Ĉt

}
−Et

[
T−1∑

s=t+1

β̄s−tāγ̄ exp
{
−γ̄Ĉ∗s

}]

+
β̄T−t

γ
exp

{
Dt,T + EĈt,T Ĉt + EWt,TWt + Eht,Tht+1

}

for t ∈ {0, . . . , T − 1}, is concave on W ×Aπ ×AĈ for all t ∈ {0, . . . , T − 1}, and thus that a

solution
{
π∗t , Ĉ

∗
t

}
to (C.3) and (C.5) is actually a maximum.

Proof of Corollary 4.6. From (4.3), we deduce that

Var t−1 [Wt] =
(
π∗t−1

)2 · ht.

Concerning the required conditional bivariate moment generating function of Wt and its con-
ditional variance, we note that the optimal strategy {π∗t }t is non-random. For the sake of
readability, we drop the asterisk for the optimal risky allocation and calculate:

Ψ(Wt,π2
t ht+1) (u, v | Ft−1)

= Et−1

[
exp

{
u ·Wt + v · π2

t ht+1

}]

= Et−1

[
exp

{
u ·
(
Wt−1 − Ĉt−1 + πt−1Yt + (1− πt−1) r +

1

2

(
πt−1 − π2

t−1

)
ht

)
+ v · π2

t ht+1

}]

= exp
{
u
(
Wt−1 − Ĉt−1

)
+ (1− πt−1)ur +

u

2

(
πt−1 − π2

t−1

)
ht

}

×Et−1

[
exp

{
uπt−1Yt + vπ2

t ht+1

}]

= exp

{
A
(
uπt−1, vπ

2
t

)
+ (1− πt−1)ur + u

(
Wt−1 − Ĉt−1

)

+
1

π2
t−1

[
B
(
uπt−1, vπ

2
t

)
+
u

2

(
πt−1 − π2

t−1

)]
· π2

t−1ht

}

= exp

{
A
(
uπt−1, vπ

2
t

)
− uPt−1 + (1− πt−1)ur + u (1−Qt−1)Wt−1

+
1

π2
t−1

[
B
(
uπt−1, vπ

2
t

)
− uRt−1 +

u

2

(
πt−1 − π2

t−1

)]
· π2

t−1ht

}
.

This shows that the conditional bivariate moment generating function is affine in the conditional
variance, implying that {Wt}t follows an affine GARCH process (cf. Badescu et al., 2019).

Checking the optimality equations for the optimal risky allocation, we note that there is no
dependence on the conditional variance or on the level of wealth.

Proof of Corollary 4.8. We start by deriving the closed-form expression

φt (Wt, ht+1) = −
T∑

τ=t

exp
{
D̃t,τ,T ({π∗k}τt ) + ẼWt,τ,T ·Wt + Ẽht,τ,T ({π∗k}τt ) · ht+1

}
. (C.7)
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Again, for the sake of readability, we omit the dependencies of recursive parameters on the
optimal solution except for definitions. Comparing (C.7) and (4.10), it is clear that

D̃t,t,T (π∗t ) = log
(
āγ̄
)
− γ̄Pt,T (π∗t ) , (C.8a)

ẼWt,t,T = −γ̄Qt,T , (C.8b)

Ẽht,t,T (π∗t ) = −γ̄Rt,T (π∗t ) , (C.8c)

for the first term corresponding to the utility derived from consumption at time t, and further-
more that

D̃t,T,T (π∗t ) = log

(
− β̄

T−t

γ

)
+Dt,T (π∗t )− EWt,TPt,T (π∗t ) , (C.9a)

ẼWt,T,T = EWt,T · (1−Qt,T ) , (C.9b)

Ẽht,T,T (π∗t ) = Eht,T (π∗t )− EWt,TRt,T (π∗t ) . (C.9c)

For brevity, we now define, based on the coefficients A and B from (4.5):

Ã = A
(
−γ̄Qτ,T · π∗τ−1,−γ̄Rτ,T ; τ − 1, τ

)
,

B̃ = B
(
−γ̄Qτ,T · π∗τ−1,−γ̄Rτ,T ; τ − 1, τ

)
.

With this notation, we now use the conditional bivariate MGF of (Wτ , hτ+1) from Corollary 4.6
to obtain the recursive parameters for general τ ∈ {t+ 1, . . . , T − 1}:

Eτ−1

[
exp

{
−γ̄Ĉ∗τ

}]
= Eτ−1 [exp {−γ̄Pτ,T − γ̄Qτ,TWτ − γ̄Rτ,Thτ+1}]
= exp {−γ̄Pτ,T } ·Ψ(Wτ ,hτ+1) (−γ̄Qτ,T ,−γ̄Rτ,T | Fτ−1)

= exp

{
− γ̄Pτ,T + Ã−

(
1− π∗τ−1

)
γ̄Qτ,T r − γ̄Qτ,T

(
Wτ−1 − Ĉ∗τ−1

)

+

[
B̃ − 1

2
γ̄Qτ,T

(
π∗τ−1 −

(
π∗τ−1

)2)
]
· hτ
}

= exp

{
− γ̄Pτ,T + Ã−

(
1− π∗τ−1

)
γ̄Qτ,T r + γ̄Qτ,TPτ−1,T

− γ̄Qτ,T (1−Qτ−1,T )Wτ−1

+

[
B̃ − 1

2
γ̄Qτ,T

(
π∗τ−1 −

(
π∗τ−1

)2)
+ γ̄Qτ,TRτ−1,T

]
· hτ
}
,

leading to

D̃τ−1,τ,T

(
{π∗k}ττ−1

)
= log

(
β̄τ−(τ−1)āγ̄

)
− γ̄Pτ,T (π∗τ ) + Ã

−
(
1− π∗τ−1

)
γ̄Qτ,T r + γ̄Qτ,TPτ−1,T

(
π∗τ−1

)
,

ẼWτ−1,τ,T = −γ̄Qτ,T (1−Qτ−1,T ) ,

Ẽhτ−1,τ,T

(
{π∗k}ττ−1

)
= B̃ − 1

2
γ̄Qτ,T

(
π∗τ−1 −

(
π∗τ−1

)2)
+ γ̄Qτ,TRτ−1,T

(
π∗τ−1

)
.

In general, if t < τ , we can use the conditional bivariate moment generating function of the
log wealth and the conditional variance of the log-asset return from Corollary 4.6 again to
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recursively calculate

β̄ ·Et
[
exp

{
D̃t+1,τ,T

(
{π∗k}τt+1

)
+ ẼWt+1,τ,TWt+1 + Ẽht+1,τ,T

(
{π∗k}τt+1

)
ht+2

}]

= exp
{
D̃t,τ,T ({π∗k}τt ) + ẼWt,τ,T ·Wt + Ẽht,τ,T ({π∗k}τt ) · ht+1

}
,

with

D̃t,τ,T ({π∗k}τt ) = log
(
β̄
)

+ D̃t+1,τ,T

(
{π∗k}τt+1

)
+A

(
ẼWt+1,τ,T · π∗t , Ẽht+1,τ,T ({π∗k}τt )

)

+ (1− π∗t ) ẼWt+1,τ,T r − ẼWt+1,τ,TPt,T (π∗t ) ,
(C.10a)

ẼWt,τ,T = ẼWt+1,τ,T (1−Qt,T ) , (C.10b)

Ẽht,τ,T ({π∗k}τt ) = B
(
ẼWt+1,τ,T · π∗t , Ẽht+1,τ,T

(
{π∗k}τt+1

))

+
1

2
ẼWt+1,τ,T

(
π∗t − (π∗t )

2
)
− ẼWt+1,τ,TRt,T (π∗t ) .

(C.10c)

We can continue repeating this last step until we have reached time point t to obtain an
expression which is exponentially affine in Wt and ht+1. Concerning the factors ẼWt,τ,T for
τ ∈ {t, . . . , T}, given by (C.8b), (C.9b) and (C.10b), we note that

ẼWt,t,T
(C.8b)

= −γ̄Qt,T
(C.6b)

= γ̄
EWt,T

γ̄ + EĈt,T
= EWt,T

(
EĈt,T + γ̄ − EĈt,T

γ̄ + EĈt,T

)

= EWt,T

(
1−

EĈt,T

γ̄ + EĈt,T

)
(C.6b)

= EWt,T (1−Qt,T )
(C.9b)

= ẼWt,T,T .

(C.11)

This implies in particular that at time t = T − 1, both coefficients corresponding to the log
wealth are equal. For t < T−1 and each τ ∈ {t+1, . . . , T−1}, we know that ẼWt,τ,T is determined

recursively, starting with ẼWτ,τ,T and then (repeatedly) using (C.10b). Thus, combining these
steps leads to

ẼWt,τ,T
(C.10b)

= ẼWt+1,τ,T (1−Qt,T )

(C.10b)
= ẼWτ,τ,T (1−Qτ−1,T ) · . . . · (1−Qt+1,T ) (1−Qt,T )

(C.11)
= ẼWτ,T,T · (1−Qτ−1,T ) · . . . · (1−Qt+1,T ) (1−Qt,T )

(C.9b)
= EWτ,T (1−Qτ,T ) · (1−Qτ−1,T ) · . . . · (1−Qt+1,T ) (1−Qt,T )

(C.2c)
= EWt,T (1−Qt,T ) (C.12)

(C.9b)
= ẼWt,T,T ,

showing that all coefficients corresponding to the log wealth are equal. The same reasoning for
Ẽht,τ,T with τ ∈ {t, . . . , T}, given by (C.8c), (C.9c) and (C.10c) yields:

Ẽht,t,T (π∗t )
(C.8c)

= −γ̄Rt,T (π∗t )
(C.6c)

= γ̄
Eht,T (π∗t )

γ̄ + EĈt,T
= Eht,T (π∗t )

(
EĈt,T + γ̄ − EĈt,T

γ̄ + EĈt,T

)

= Eht,T (π∗t )

(
1−

EĈt,T

γ̄ + EĈt,T

)
(C.6c)

= Eht,T (π∗t )− EWt,TRt,T (π∗t )
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(C.9c)
= Ẽht,T,T (π∗t ) . (C.13)

Furthermore, using the next to last expression in (C.11) and (C.13), respectively, in (∗), we
obtain

Ẽhτ−1,τ,T

(
{π∗k}ττ−1

) (C.10c)
= B

(
ẼWτ,τ,T · π∗τ−1, Ẽ

h
τ,τ,T (π∗τ ) ; τ − 1, τ

)

+
1

2
ẼWτ,τ,T

(
π∗τ−1 −

(
π∗τ−1

)2)− ẼWτ,τ,TRτ−1,T

(
π∗τ−1

)

(∗)
= B

(
EWτ,T (1−Qτ,T ) · π∗τ−1, E

h
τ,T (π∗τ )− EWτ,TRτ,T (π∗τ ) ; τ − 1, τ

)

+
1

2
EWτ,T (1−Qτ,T )

(
π∗τ−1 −

(
π∗τ−1

)2)

− ẼWτ,τ,TRτ−1,T

(
π∗τ−1

)

(C.2d)
= Ehτ−1,T

(
π∗τ−1

)
− ẼWτ,τ,TRτ−1,T

(
π∗τ−1

)

(C.11)
= Ehτ−1,T

(
π∗τ−1

)
− EWτ,T (1−Qτ,T )Rτ−1,T

(
π∗τ−1

)

(C.2c)
= Ehτ−1,T

(
π∗τ−1

)
− EWτ−1,TRτ−1,T

(
π∗τ−1

)

(C.13)
= Ẽhτ−1,τ−1,T

(
π∗τ−1

)
. (C.14)

Using this step (C.14), we can show by backward induction on t, for t ∈ {1, . . . , τ}, that

Ẽht,τ,T
(
{π∗k}τt

)
= Ẽht,t,T (π∗t ). In particular, using the induction hypothesis Ẽht+1,τ,T

(
{π∗k}τt+1

)
=

Ẽht+1,t+1,T

(
π∗t+1

)
in (∗′) and proceeding as in (C.14), we arrive at

Ẽht,τ,T ({π∗k}τt )
(C.10c)

= B
(
ẼWt+1,τ,T · π∗t , Ẽht+1,τ,T

(
{π∗k}τt+1

))

+
1

2
ẼWt+1,τ,T

(
π∗t − (π∗t )

2
)
− ẼWt+1,τ,TRt,T (π∗t )

(∗′)
= B

(
ẼWt+1,t+1,T · π∗t , Ẽht+1,t+1,T

(
π∗t+1

))

+
1

2
ẼWt+1,t+1,T

(
π∗t − (π∗t )

2
)
− ẼWt+1,t+1,TRt,T (π∗t )

(∗)
= B

(
EWt+1,T (1−Qt+1,T ) · π∗t , Eht+1,T

(
π∗t+1

)
− EWt+1,TRt+1,T

(
π∗t+1

))

+
1

2
EWt+1,T (1−Qt+1,T )

(
π∗t − (π∗t )

2
)
− ẼWt+1,t+1,TRt,T (π∗t )

(C.2d)
= Eht,T (π∗t )− ẼWt+1,t+1,TRt,T (π∗t )

(C.11)
= Eht,T (π∗t )− EWt+1,T (1−Qt+1,T )Rt,T (π∗t )

(C.2c)
= Eht,T (π∗t )− EWt,TRt,T (π∗t )

(C.13)
= Ẽht,t,T (π∗t ) , (C.15)

implying that all coefficients corresponding to the conditional variance of the log-asset return
are equal. Using (C.11), (C.12), (C.13) and (C.15) in (C.7) and re-ordering terms now yields
(4.14).

Proof of Corollary 4.10. We show that in the limit for γ̄ → ∞, all three coefficients Pt,T , Qt,T
and Rt,T in (4.11) become zero for all t ∈ {0, . . . , T − 1} if ā = 1, resulting in Ĉt = 0, which
is equivalent to Vt = Vt − Ct and thus Ct = 0. In particular, take into account that PT,T =
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QT,T = RT,T = 0. Now, fixing t ∈ {0, . . . , T − 1} and assuming that Ps,T = Qs,T = Rs,T = 0
for all s ∈ {t+ 1, . . . , T} in (C.2), we find that

Dt,T (π∗t ) = Dt+1,T

(
π∗t+1

)
+ EWt+1,T (1− π∗t ) r +A

(
EWt+1,Tπt, E

h
t+1,T

(
π∗t+1

))
, (C.16a)

EĈt,T = − EWt+1,T · 1{t<T}, (C.16b)

EWt,T = EWt+1,T = γ, (C.16c)

Eht,T (π∗t ) =
1

2
EWt+1,T

(
πt − π2

t

)
+B

(
EWt+1,Tπ

∗
t , E

h
t+1,T

(
π∗t+1

))
, (C.16d)

are independent of γ̄. Checking (C.6) now reveals that Qt,T and Rt,T approach zero as γ̄ →∞.
Furthermore, we calculate for γ < 0, using the above independences and de l’Hôpital’s rule in
(∗):

lim
γ̄→∞

Pt,T (π∗t ) = lim
γ̄→∞

{
− 1

γ̄ + EĈt,T

(
log

(
−
β̄T−tEĈt,T
γγ̄āγ̄

)
+Dt,T (π∗t )

)}

= lim
γ̄→∞



−

log
(
β̄T−tEĈt,T

)
− log (−γγ̄āγ̄)

γ̄ + EĈt,T
− Dt,T (π∗t )

γ̄ + EĈt,T





= lim
γ̄→∞




−

log
(
β̄T−tEĈt,T

)

γ̄ + EĈt,T︸ ︷︷ ︸
→0

+
log (−γγ̄āγ̄)

γ̄ + EĈt,T
− Dt,T (π∗t )

γ̄ + EĈt,T︸ ︷︷ ︸
→0





= 0 + lim
γ̄→∞

log (−γγ̄āγ̄)

γ̄ + EĈt,T
+ 0

(∗)
= lim

γ̄→∞
log (ā) + 1/γ̄

1

= log (ā) .

This shows that the coefficient Pt,T approaches zero in the limit for γ̄ →∞ if and only if ā = 1
holds. Together with EWT,T = γ, having Pt,T = Qt,T = Rt,T = 0 for all t ∈ {0, . . . , T} reproduces
the formulas from Escobar-Anel et al. (2021) in (C.16) (i.e., in (C.2)) and (C.3).

Proof of Corollary 4.11. The formulas for the value function and optimal control on consump-
tion follow directly from the fact that the HN-GARCH model is a special case of an affine
GARCH model and that Theorem 4.4 can be applied. With A and B defined according to
(4.19), we can easily check that (4.12a) is always satisfied. Using the abbreviation in (4.21),
Equation (4.12b) requires

λ+
2EWt,Tπ

∗
t − 4vαρ

2 (1− 2vα)
= π∗t −

1

2

⇔
EWt,Tπ

∗
t

1− 2vα
− π∗t =

2vαρ

1− 2vα
− λ− 1

2

⇔
EWt,T − 1 + 2vα

1− 2vα
· π∗t =

2vαρ

1− 2vα
− λ− 1

2

⇔ π∗t =
1− 2vα

EWt,T − 1 + 2vα

(
2vαρ

1− 2vα
−
(
λ+

1

2

))
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⇔ π∗t =
2vαρ

EWt,T − 1 + 2vα
−
(
λ+ 1

2

)
(1− 2vα)

EWt,T − 1 + 2vα

⇔ π∗t =

(
λ+ 1

2

)
(1− 2vα)− 2vαρ

1− EWt,T − 2vα
.

Note that we already implicitly assumed that 1−2vα > 0 for the representations of A and B in
(4.19), see Appendix B.1. Furthermore, we showed in the proof of Theorem 4.4 that EWt,T < 0 for
all t = 0, . . . , T . Together, this implies that the above representation of the optimal allocation
is well-defined.

Proof of Corollary 4.13. Analogous to Corollary 4.11, we plug the expressions from (4.23) into
(4.12). While (4.12a) is again trivially satisfied, (4.12b) with the abbreviation in (4.21) yields

ν − 1

η2




(
1− 2vaη4

)
2η

2

√
(1− 2vaη4)

(
1− 2EWt,Tπ

∗
t η − 2vc

)


 = π∗t −

1

2

⇔ ν −
√

1− 2vaη4

η
√

1− 2EWt,Tπ
∗
t η − 2vc

= π∗t −
1

2
,

where the conditions for the arguments of the squareroots have already been assumed to be
positive for the representations of A and B in (4.23), see Appendix B.2.

C.2 Complementary Material

C.2.1 Additional Plots for Section 4.4.1: Sensitivity Analysis

In addition to the analysis in Section 4.4.1 regarding the sensitivity of the optimal solution to
changes in parameter values, this section presents some additional insights, again using the set
of maximum likelihood estimates (MLEs) from Table 4.1.

0 1 2

λ = ν + η−1
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(a) Values of the optimal initial relative consumption
dependent on the market price of risk.
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C̄
∗ 0

(b) Values of the optimal initial relative consumption
dependent on the parameter β̄ for intertemporal
substitution.

Figure C.1: Values of the optimal initial relative consumption, dependent on the market price of risk
(modified via ν) and on the parameter β̄ for intertemporal substitution. The time horizon
is five years with 252 trading days each.
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The first of these additional investigations targets changes in the market price of risk (MPR),
which in the IG-GARCH model is given via λ = ν+η−1. Keeping the parameter η constant, we
investigate sensitivity w.r.t. the market price of risk via changes in ν. Figure C.1a shows that
the initial relative consumption increases with the market price of risk, although the changes
are relatively small with an order of 1× 10−5 for the entire displayed range λ ∈ [0, 2.5] (with
the original MPR for the set in Table 4.1 being 1.16). Another interesting analysis considers the
factor β̄ for intertemporal substitution. As Figure C.1b shows, the initial consumption-wealth
ratio increases as the value β̄ is decreased, i.e., as utilities at future time points are valued less.

0.0 0.5 1.0

w ×10−7

0.00080225

0.00080250

0.00080275

0.00080300

C̄
∗ 0

(a) Values of the optimal initial relative consumption,
dependent on w.
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(b) Values of the optimal initial relative consumption,
dependent on r.

Figure C.2: Values of the optimal initial relative consumption, dependent on the parameters w and r.
The time horizon is five years with 252 trading days each.

Contrary to the optimal relative investment strategy {π∗t }t, the optimal consumption process
does depend on the parameters w and r. In both cases, the level of relative consumption
increases as the parameter increases. For w, which has an impact mainly on the conditional
variance of the log-asset return and the long-term mean of this variance, we consider the positive
part of the confidence interval for the MLE, since negative values of w may allow for negative
values for the variance. Concerning the interest rate r, we consider the range [0.1%, 10%] of
annualized interest rates.

We note that the initial level of relative consumption slightly increases as the parameters a, b
and c of the underlying IG-GARCH model are increased within the corresponding confidence
intervals reported with the MLEs presented in Table 4.1.

C.2.2 Alternative Parametric Choice

Complementary to the analysis in Section 4.4, we provide the central figures also for the MLEs
by Christoffersen et al. (2006). As in Section 4.4, the analysis is based on the MLEs for the
three different models – IG-GARCH, HN-GARCH and the homoscedastic variant – using the
same underlying data set for all models. The parameter values for all three models can be
found in Table C.1. Again, if not stated otherwise, we use the default investment parameters
as described in Section 4.4.1.

Figure C.3a shows that the behavior of the optimal initial relative consumption C̄∗0 , as the time
horizon changes, is quite similar to what is observed for the first parameter set in Figure 4.2a.
In particular, the value for initial relative consumption decreases as the length of the time
horizon increases. Comparing Figure C.3b to 4.2b, however, shows a different picture in terms
of the optimal risky allocation. While the special cases without consumption still lead to the
smallest fractions of wealth invested in the risky asset, the IG-GARCH now yields the lowest
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Table C.1: Values for the parameters used for the IG-GARCH, the HN-GARCH and the homoscedastic
Gaussian model – consisting of the MLEs as of Christoffersen et al. (2006) for all parameters
and models. The value of ν for the IG-GARCH model implies that the market price of risk
is ν + η−1 ≈ 2.150.

Panel A: IG-GARCH Panel B: HN-GARCH Panel C: Hom. Gauss.

Param. Values Param. Values Param. Values

ν 1.625× 103 λ 2.772 λ 3.106

η −6.162× 10−4 ω 3.038× 10−9 ω 9.520× 10−5

w 3.768× 10−10 β 9.026× 10−1

a 2.472× 107 α 3.660× 10−6

b −1.933× 101 ρ 1.284× 102

c 4.142× 10−6

risky allocation among the strategies with consumption, followed by the HN-GARCH model. It
is also interesting to observe that the numbers for π∗0 are significantly higher in general for this
parameter set from Table C.1 than in the plot in Figure 4.2b created with the estimates from
Table 4.1.

Given the similar behavior of the initial optimal relative consumption seen in Figure C.3a as
compared to Figure 4.2a, it is not surprising to see that changes in risk preferences have a
comparable impact on this value under the new parametric environment, too, see Figure C.4.
As in Figure 4.3a, we use γ ∈ [−6,−0.1] and γ̄ ∈

[
5× 102, 1× 104

]
to modify risk aversion

for terminal wealth and consumption, respectively. If the risk aversion for utility derived from
consumption is decreased, both relative consumption and the relative risky investment increase.
Decreasing risk aversion regarding utility from terminal wealth leads to an increase in the risky
allocation.

Figure C.5 once more shows that the impact of skewness and kurtosis on the optimal initial risky
allocation and relative consumption, respectively, is relatively small. For this analysis, we again
use the approach described in Section 4.4.1 and keep the first two moments of the IG-GARCH
parameter set constant, while the parameter η is modified, to observe the isolated impact of
skewness and excess kurtosis. In both cases, the optimal solution decreases as log asset-returns
become more negatively skewed and leptokurtic, but the differences are very little. Again, as in
Figure 4.4, we also plot dots for the optimal solutions to the original IG-GARCH parametrization
as of Table C.1 as well as to the corresponding HN-GARCH and homoscedastic models with
the same first two unconditional moments. Concerning the optimal initial risky allocation
π∗0, the homoscedastic solution suggests investing around 2% less in the risky asset than the
heteroscedastic models, while the difference between HN-GARCH and IG-GARCH solution is
much less. A similar pattern can be observed for the optimal initial relative consumption in the
right plot.
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(a) Optimal initial relative consumption, dependent on the time horizon.
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(b) Optimal initial relative risky allocation, dependent on the time horizon.

Figure C.3: Values of the optimal initial strategy at time t = 0, dependent on the time horizon. The
plots include an IG-GARCH, an HN-GARCH and a homoscedastic Gaussian, all fitted to
the same data set. The solutions without consumption are obtained via setting γ̄ = 1× 108

to approximate the case without consumption. One year is assumed to have 252 trading
days. We used the parameter MLEs of Christoffersen et al. (2006).

C.2.3 Wealth-Equivalent Loss

This section presents an extra analysis concerning the wealth-equivalent loss (WEL) arising
from subobtimal strategies. We follow the method described in Remark 4.9 to measure losses
in closed form via the expected utility and iterated expectations. This study complements the
real-world analysis presented in Section 4.4.2, where the outcome was calculated explicitly for
a five-year time horizon based on S&P 500 index data.

For the following plots, we assume that log asset-returns actually evolve according to an IG-
GARCH model, while the investor implements the strategy originating from an HN-GARCH
model or a homoscedastic variant. The parameters are taken from Tables 4.1 (for Figures C.8,
C.9, C.10) and C.1 (for Figures C.6 and C.7).

Figure C.6, based on the parameter set displayed in Table C.1, illustrates that losses are highest
for investors with very low risk aversion. We observe this pattern both for HN-GARCH and
homoscedastic investors, and for risk aversion concerning both terminal wealth and consump-
tion. The heteroscedastic HN-GARCH model clearly outperforms the homoscedastic variant.
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(a) Optimal initial relative consumption, dependent on the investor’s risk aversion concerning utility from ter-
minal wealth (left plot) and from consumption (right plot).
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(b) Optimal initial relative risky allocation, dependent on the investor’s risk aversion concerning utility from
terminal wealth (left plot) and from consumption (right plot).

Figure C.4: Values of the optimal initial relative consumption and optimal initial risky allocation,
dependent on relative risk aversion. Relative risk aversion for terminal wealth in the left
plots is governed by the parameter γ, relative risk aversion for consumption in the right
plots is modified via γ̄, see Remark 4.2. The time horizon is five years.

Furthermore, a comparison of the loss levels in Figure C.6 shows that the attitude towards con-
sumption has a higher impact than risk-aversion concerning the utility derived from terminal
wealth. This results in losses up to 4% for a homoscedastic investor with low risk aversion for
consumption over a five-year horizon.

Figure C.7a confirms that conditional skewness and excess kurtosis have minimal impact on
the investment strategy’s performance. For modifications in the parameter η of the IG-GARCH
model, the remaining parameters are adjusted such that the first two moments are kept constant,
and the effect of changes in skewness and kurtosis is isolated. As seen above, the HN-GARCH
model outperforms the homoscedastic variant. For both models, however, even for rather ex-
treme values for the third and fourth moments (see the corresponding scale in Figures 4.4 and
C.5), the losses show little difference to the original values on the right end of the horizontal
axis. For the plot in Figure C.7b, we adjust the market price of risk (MPR) in all models to the
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Figure C.5: Values of the optimal initial risky allocation and relative consumption dependent on the
parameter η. The time horizon is five years. The color bar on the right-hand side indicates
the corresponding values for skewness and excess kurtosis of log asset-returns, the vertical
dashed line marks the original MLE for η in the considered parameter set. For this plot,
the first two moments are kept constant under changes in η.
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(a) WEL dependent on risk aversion concerning util-
ity from terminal wealth.
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Figure C.6: WEL for the HN-GARCH and the homoscedastic model, dependent on risk aversion con-
cerning utility from terminal wealth and from consumption. Relative risk aversion for
terminal wealth in the left plot is governed by the parameter γ, and relative risk aversion
for consumption in the right plot is modified via γ̄, see Remark 4.2. The time horizon is
five years. The parameters are given in Table C.1.

same value. This is implemented via changes in ν for the IG-GARCH model and via changes
in λ in the suboptimal models. The original value for the MPR in the IG-GARCH model with
the parameters from Table C.1 is λ = ν + η−1 ≈ 2.15. The first finding resulting from this
plot is that matching the MPR decreases the overall level of losses for both suboptimal models.
Secondly, the losses for the homoscedastic model exceed the losses originating form the HN-
GARCH model significantly, leading to a flat line for the heteroscedastic model in a joint plot
(see Figure C.7b). The WEL increases as the MPR increases.

The observations from Figures C.6 and C.7 are confirmed when performing the same analysis
with the parameter set presented in Table 4.1 (Christoffersen et al., 2006) instead of the one
in Table C.1. In this case, however, the difference between the losses for the heteroscedastic
HN-GARCH model and the homoscedastic variant is so large that plotting the losses for both
models at once would result in a seemingly flat line close to zero for the heteroscedastic GARCH
model.
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(a) WEL dependent on the parameter η.
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(b) WEL dependent on the MPR. In this plot, all
models are modified to share the same MPR.

Figure C.7: WEL for the HN-GARCH and the homoscedastic model, dependent on the parameters
η and ν. Modifications in η lead to different levels of conditional skewness and excess
kurtosis, see Figures 4.4 and C.5. The parameter ν is used to modify the MPR. The time
horizon is five years. The original parameter set is given in Table C.1.

In general, Figure C.8 again verifies that losses increase as the investor’s level of risk aversion
decreases. This trend is observed for both models and for both types of risk aversion. Fur-
thermore, the impact of risk aversion concerning consumption, governed via the parameter γ̄,
is larger than the effect changes in the level of risk aversion concerning utility from terminal
wealth. Overall, however, the losses resulting from the parameter sets in Table 4.1 are smaller
than the ones presented in Figures C.6 for the parameter sets in Table C.1. In particular, even
for very low risk aversion concerning consumption, the WEL for the homoscedastic model does
not exceed 1% for a five-year horizon.

The plots in Figure C.9 seem surprising at first since more negative skewness and more excess
kurtosis, both induced by a decrease in η, lead to lower WEL levels for both the HN-GARCH and
the homoscedastic model. A closer look at Figures 4.2 and 4.4, however, reveals that a decrease
in η also decreases the optimal risky allocation (left plots in Figures 4.4 and C.5, respectively),
and furthermore that the IG-GARCH yields the highest fraction of wealth invested in the
risky assets (Figure 4.2b). That is, the changes induced by conditional skewness and excess
kurtosis are eclipsed by the original pattern stemming from the differences in the first and
second moments. As opposed to that, the parameter set from Table C.1 leads to the inverse
pattern regarding the risky allocation (with the IG-GARCH yielding the lowest fraction invested
in the risky asset, see Figure C.3b), and thus a decrease in η also leads to higher WEL levels
for the HN-GARCH and the homoscedastic model. We also note that significant changes in
the levels of conditional skewness and excess kurtosis do not lead to large differences in the
corresponding WEL – the effect is practically negligible for both models.

As in Figure C.7b, we adjust the MPR in all three models to obtain the WEL values plotted in
Figures C.10a and C.10b. Again, matching the market price of risk leads to lower WEL levels
in general, with all values remaining far below one basis point. As observed previously, the level
of losses increases as the MPR increases.

In summary, the key observation deduced from the plots in this section is that heteroscedasticity
matters, which can be concluded from the fact that the HN-GARCH model outperforms the
homoscedastic variant in all studies. An interpretation of the specific numbers quantifying the
loss, and especially a comparison to the real-world study in Section 4.4.2, remains difficult since
the approaches are fundamentally different.
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Figure C.8: WEL for the HN-GARCH and the homoscedastic model, dependent on risk aversion con-
cerning utility from terminal wealth and from consumption. Relative risk aversion for
terminal wealth in the left plot is governed by the parameter γ, and relative risk aversion
for consumption in the right plot is modified via γ̄, see Remark 4.2. The time horizon is
five years. The model parameters are given in Table 4.1.
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Figure C.9: WEL for the HN-GARCH and the homoscedastic model, dependent on the parameter η.
Modifications in η lead to different levels of conditional skewness and excess kurtosis, see
Figures 4.4 and C.5. The time horizon is five years. The original parameter set is given in
Table 4.1.
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Figure C.10: WEL for the HN-GARCH and the homoscedastic model, dependent on the MPR. In this
plot, all models are modified to share the same MPR. The time horizon is five years. The
original parameter set is given in Table 4.1. The original MPR for the IG-GARCH model
with the parameters as of Table 4.1 is 1.16.
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D.1 Proofs from Sections 6.2 and 6.3

Proof of Prop 6.1. According to the model setup presented in Section 6.2, the innovations zt+1

and yt+1 are contemporaneously independent. Furthermore, for zt+1 ∼ N (0, hz,t+1), integrating
by substitution and completing the square shows that (Badescu et al., 2019, p. 33)

Et
[
exp

{
αzt+1 + βz2

t+1

}]
= exp

{
α2hz,t+1

2 (1− 2βhz,t+1)
− 1

2
log (1− 2βhz,t+1)

}
. (D.1)

Using (D.1) in the last step, we prove Proposition 6.1:

Ψ(Rt+1, hz,t+2, hy,t+2) (u, vz, vy | Ft)
= Et

[
exp {u ·Rt+1 + vz · hz,t+2 + vy · hy,t+2}

]

= Et
[
exp

{
u

[
rt+1 + (λz − ξz(1))hz,t+1 + (λy − ξy(1))hy,t+1 + zt+1 + yt+1

]

+ vz · hz,t+2 + vy · hy,t+2

}]

= exp

{
u

[
rt+1 + (λz − ξz(1))hz,t+1 + (λy − ξy(1))hy,t+1

]}

× Et
[
exp

{
u · (zt+1 + yt+1)

+ vz

[
ωz + bzhz,t+1 +

az
hz,t+1

(zt+1 − czhz,t+1)2

]

+vy

[
ωy + byhy,t+1 +

ay
hz,t+1

(zt+1 − cyhz,t+1)2

]}]

= exp

{
u · rt+1 + vz · ωz + vy · ωy

+
[
u · (λz − ξz(1)) + vz ·

(
bz + azc

2
z

)
+ vyayc

2
y

]
· hz,t+1

+
[
u · (λy − ξy(1)) + vy · by

]
· hy,t+1

}

× Et
[
exp

{
u · yt+1 + [u− 2vzazcz − 2vyaycy] · zt+1

+

[
vz ·

az
hz,t+1

+ vy ·
ay

hz,t+1

]
· z2
t+1

}]
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= exp

{
urt+1 + vzωz + vyωy

+
[
u · (λz − ξz(1)) + vz ·

(
bz + azc

2
z

)
+ vyayc

2
y

]
· hz,t+1

+
[
u · (λy − ξy(1)) + vyby + ξy(u)

]
· hy,t+1

+
(u− 2vzazcz − 2vyaycy)

2

2 [1− 2 (vzaz + vyay)]
· hz,t+1 −

1

2
log (1− 2 (vzaz + vyay))

}
,

justifying (6.6) together with the definitions in (6.7). This completes the proof of Proposi-
tion 6.1.

Proof of Theorem 6.2. We use Bellman’s principle in order to maximize via backwards induction
and use the optimal solution at time t + 1 for our approach at time t. This results in the
calculations below, where for the terminal step at time t = T − 1 we just work with

φT (WT ) = U (VT ) =
1

γ
exp {γWT } ,

resulting in DT,T = EzT,T = EyT,T = 0. We obtain:

max
πt

Et [φt+1 (Wt+1, hz,t+2, hy,t+2)]

= max
πt

Et
[

1

γ
exp

{
Dt+1,T (π∗t+1) + γWt+1

+Ezt+1,T (π∗t+1) · hz,t+2 + Eyt+1,T (π∗t+1) · hy,t+2

}]

= max
πt

1

γ
exp

{
Dt+1,T (π∗t+1)

}

× Et
[
exp

{
γ ·
[
Wt + πt ·Rt+1

+
1

2

(
πt − π2

t

)
·
(
hz,t+1 + hy,t+1 · ξ′′y (0)

)
+ (1− πt) rt+1

]

+Ezt+1,T (π∗t+1) · hz,t+2 + Eyt+1,T (π∗t+1) · hy,t+2

}]

= max
πt

1

γ
exp

{
Dt+1,T (π∗t+1) + (1− πt) γrt+1 + γWt

+
γ

2

(
πt − π2

t

)
·
(
hz,t+1 + hy,t+1 · ξ′′y (0)

)}

× Et
[
exp

{
γπtRt+1 + Ezt+1,T (π∗t+1) · hz,t+2 + Eyt+1,T (π∗t+1) · hy,t+2

}]

= max
πt

1

γ
exp

{
Dt+1,T (π∗t+1) + (1− πt) γrt+1 + γWt

+
γ

2

(
πt − π2

t

)
·
(
hz,t+1 + hy,t+1 · ξ′′y (0)
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×Ψ(Rt+1, hz,t+2, hy,t+2)

(
γπt; E

z
t+1,T (π∗t+1), Eyt+1,T (π∗t+1)

∣∣∣Ft
)

= max
πt

1

γ
exp

{
Dt,T (πt) + γWt + Ezt,T (πt) · hz,t+1 + Eyt,T (πt) · hy,t+1

}
, (D.2)

where we used the multivariate generating function from the proof of Proposition 6.1 in the
Lévy GARCH setting and the definitions from Equations (6.9) in the last step. We seek to
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maximize (D.2) with respect to the single variable πt. Thus, we approach this step by taking
derivatives, setting the first derivative to zero while having a negative second derivative at this
point (or globally in case of concave functions). Concerning the first of the above-mentioned
steps, note that, given some γ 6= 0, the first derivative is equal to zero if and only if

D′t,T (πt) +
(
Ezt,T

)′
(πt) · hz,t+1 +

(
Eyt,T

)′
(πt) · hy,t+1 = 0, (D.3)

which, according to (6.9), is equivalent to

−γrt+1 +
∂

∂u
A
(
γπt, E

z,∗
t+1,T , E

y,∗
t+1,T ; t, t+ 1

)
· γ

+

[
γ

2
− γπt +

∂

∂u
B
(
γπt, E

z,∗
t+1,T , E

y,∗
t+1,T ; t, t+ 1

)
· γ
]
· hz,t+1

+

[
ξ′′y (0) ·

(γ
2
− γπt

)
+

∂

∂u
C
(
γπt, E

y,∗
t+1,T ; t, t+ 1

)
· γ
]
· hy,t+1 = 0,

(D.4)

where Ex,∗t+1,T is short for Ext+1,T (π∗t+1) with x ∈ {y, z}. Now, using Definitions (6.7), we note
that the first line reduces to zero, and, also dividing by γ, we arrive at

[
1

2
− πt + λz − ξz(1) +

γπt − 2Ez,∗t+1,Tazcz − 2Ey,∗t+1,Taycy

1− 2Ez,∗t+1,Taz − 2Ey,∗t+1,Tay

]
· hz,t+1

+

[
ξ′′y (0)

(
1

2
− πt

)
+ (λy − ξy(1)) + ξ′y (γπt)

]
· hy,t+1 = 0.

Exploiting the Gaussian distribution of z, we further use ξz(1) = 1/2 to obtain

[
λz − πt +

γπt − 2Ez,∗t+1,Tazcz − 2Ey,∗t+1,Taycy

1− 2Ez,∗t+1,Taz − 2Ey,∗t+1,Tay

]
· hz,t+1

+

[
ξ′′y (0)

(
1

2
− πt

)
+ (λy − ξy(1)) + ξ′y (γπt)

]
· hy,t+1 = 0.

(D.5)

Remember that the two time-homogeneous parameters are assumed to be linearly dependent,
i.e.,

hy,t+1 = Λ · hz,t+1 (D.6)

holds for some Λ ∈ R. This yields the single equation

[
λz − πt +

γπt − 2Ez,∗t+1,Tazcz − 2Ey,∗t+1,Taycy

1− 2Ez,∗t+1,Taz − 2Ey,∗t+1,Tay

]

+Λ ·
[
ξ′′y (0)

(
1

2
− πt

)
+ (λy − ξy(1)) + ξ′y (γπt)

]
= 0.

(D.7)

How easily the resulting equation can be solved for πt now largely depends on the shape of
ξy, i.e. on the explicit distribution of the Lévy jump innovation y. In order to ensure that the
solution to (D.7) is actually a maximum, we require (6.11). This concludes the proof.

Proof of Corollary 6.4. If we require (6.18) with strict inequality, then the continuous function
on the left-hand side in the optimality equation (6.20) is strictly decreasing in πt. Furthermore,
using that γ < 0, we obtain that the left-hand side goes to ±∞ if πt → ∓∞. Using the
intermediate value theorem, the existence of a unique solution follows.
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