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Abstract. The properties of AlSi10Mg produced by Laser Powder Bed Fusion (PBF-LB) are defined 
by a multitude of different machine and laser parameters. This multi-parameter space presents the 
challenge of optimizing the material properties for a given application by the sheer amount of possible 
parameter combinations. Characterizing this multi-parameter space empirically is limited by time and 
resources and thus yields an incomplete picture of the process capabilities and local optima, 
respectively. To improve on this situation, machine learning to map the process parameters on the 
tensile properties of AlSi10Mg was used. The Hybrid Neural Network (HNN) used in this study 
consisted of a Convolutional Neural Network (CNN) to process the micrographs and a Dense Neural 
Network (DNN) to process the LPBF process parameters as well as the output of the CNN. The 
micrographs given to the CNN part of the network were printed with the same parameters given to 
the DNN part to include the information of the bulk microstructure as it strongly influences the tensile 
properties of the material. With the HNN, we observed good accuracy of the predicted tensile 
properties, given the small amount of training data. Furthermore, we explore which features of the 
micrographs were extracted by the CNN. 

Introduction 
Laser Powder Bed Fusion (PBF-LB) offers great freedom to additively manufacture both complex 
3D shapes and a variety of different materials with AlSi10Mg as one of the most common Aluminium 
alloys. The laser process itself offers highly customizable parameters which affect the resulting 
materials properties [1].  However, the amount of possible parameter combinations renders the global 
process optimization a highly demanding task, which requires both a lot of resources and time. In this 
context, machine learning was reported to offer a data-driven approach to optimization [2-3]. Liu et 
al. [4] demonstrated the benefits of ML, by modelling the relative density with respect to laser power 
and laser scan speed to obtain suitable process parameters. Furthermore, mechanical properties were 
determined with those parameters and linked to the corresponding microstructure captured with SEM 
at 12000x magnification and EBSD imaging.  

Since relative density is not the most relevant material characteristic from an industrial standpoint, it 
might be advantageous to model mechanical properties directly. Furthermore, easy-to-obtain 
microstructure features could enhance the model’s performance by adding relevant information. To 
determine which features would be suitable – other than global density/ porosity - we use machine 
learning (ML) to map the LPBF process parameters to mechanical properties after printing using a 
hybrid neural network architecture. It combines a Convolutional Neural Network (CNN) to extract 
microstructure features with a Dense Neural Network, which incorporates the scalar process 
parameters. The feature maps of the first convolutional layer were analyzed to yield relevant 
microstructure features.  
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Materials and Methods  
Sample Manufacturing. For this study, two build jobs were printed on the machine SLM 500, 
equipped with two lasers, by SLM Solutions Group AG to create the data for machine learning. Gas-
atomized AlSi10Mg powder was used as the feedstock. In total, 50 parameter combinations were 
chosen, and for each combination, a density cube of 10 mm x 10 mm x 10 mm and three tensile 
specimens with the geometry A4x20 according to DIN 50125 were printed.  

Table 1. Variation of hatch, contour, and fill line parameters. 

Parameter Hatch Contour Fill line 
Laser power PL [W] 300-700  233-580  350 
Laser scan speed vL [mm/s] 500-3000 628-1400 600, 800 
Laser spot diameter dB [µm] 116.4-137.5 116.4 116.4 
Scan distance s [mm] 0.15-0.23 0.17-0.20 0.20 

 
The specimens were built by scanning in stripes and a subsequent rotation of 67° in each layer. Both 
the hatch and contour parameters were randomly varied (see Table 1) to achieve good distribution of 
parameters for the ML-model to learn. The fill line parameters were kept constant, except for its laser 
scan speed for three parameters which were an artefact of previous trials. Each build job used a 
different layer thickness of 50 µm and 100 µm, respectively. The build platform temperature was kept 
at 200 °C for each job, and nitrogen was used as shielding gas.  

Sample Characterization. The mechanical properties of the printed samples were determined 
according to DIN EN ISO 6892-1 on the testing machine AllroundLine Z100 with robotic testing 
system roboTest L by ZwickRoell GmbH & Co. KG. The micrographs of the density cubes were 
taken on a light microscope Leica DM6 M with the camera Gryphax NAOS by Jenoptik AG at 25x 
magnification and stitched together to yield an image of the entire cross-section.  

Image Preparation. Before training, images were transformed to a grayscale format to remove 
colour artefacts on the learning procedure. Afterwards, a local contrast enhancement was performed 
by means of the CLAHE-algorithm with the aim of equalizing image brightness and enhancing 
contrast [5]. It was implemented in Python with OpenCV [6] with 'cliplimit' set to 2.0 and 
'tileGridSize' equal to (16,16). Furthermore, all images were scaled down in resolution to 1024 x 1400 
and a center crop of size 256 x 256 was taken. Hereby, computational requirements could be met 
without losing a significant amount of micrograph information. 

Available Data. With the 50 parameter combinations, 148 valid tensile tests were conducted and for 
every specimen, yield Strength Rp0,2, Ultimate Tensile Strength Rm and Elongation at Break A were 
evaluated. These values served as the target values we tried to predict with the HNN. As input 
parameters for the HNN, the laser power and scan speed for both hatch and contour, the hatch laser 
diameter and hatch distance, as well as layer thickness, were used.  

Moreover, we used five dimensionless hatch parameters as additional input to increase the 
information content of the physical laser-material-interaction, derived from Patel et al. [7] (Eq. 1-5):  

dl. Laser Power: 𝑞𝑞∗  =  
𝐴𝐴𝐴𝐴

𝑟𝑟𝐵𝐵𝜆𝜆(𝑇𝑇𝑚𝑚 − 𝑇𝑇0)
 (1) 

dl. Energy Input: 𝐸𝐸∗  =  
𝑞𝑞∗

𝑣𝑣∗𝑙𝑙∗
 (2) 

dl. Layer Thickness: 𝑙𝑙∗  =  
2𝑙𝑙𝑡𝑡
𝑟𝑟𝐵𝐵

 (3) 

dl. Heat Input: 𝑄𝑄∗  =  
𝑞𝑞∗

𝑙𝑙∗
 (4) 
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dl. Velocity: 𝑣𝑣∗  =  
𝑣𝑣𝑟𝑟𝐵𝐵
𝛼𝛼

 (5) 

Hybrid Neural Network Architecture. A hybrid neural network (HNN) architecture was 
constructed that combined a Dense Neural Network and a Convolutional Neural Network to use 
micrograph images and process parameters simultaneously as input. All networks were built in 
Python with PyTorch [8].  

Table 2. Hyperparameters of the Hybrid Neural Network. 

Hyperparameter Value 
Hidden Activation Function Leaky ReLU 
Output Activation Function Linear 
Number of Filters 4, 8, 16 
Convolutional Kernel Size (7,7) 
Convolutional Stride (2,2) 
Maxpooling Kernel Size (2,2) 
Maxpooling Stride (2,2) 
Optimizer AdaMax 
Batch Size 8 
Learning Rate 0.02 
Weight Decay 0.002 
Reduced Learning Rate Factor: 0.5,  

Patience: 50 

The convolutional network part consists of alternating convolutional and maxpooling layers, with 
batch normalization after each pair of layers. Results of the convolutional part of the network were 
flattened and concatenated with a layer of the Dense Neural Network. In total, three pairs of 
convolutional and maxpooling layers were utilized and fed into a dense layer with eight neurons. The 
first hidden layer of the Dense Neural Network also consists of eight neurons resulting in 16 inputs 
for the next hidden layer after concatenating. Subsequently, another hidden layer with eight neurons 
processed the data before passing it to the output layer consisting of one neuron. Batch normalization 
was additionally used after each dense layer of the network. A sketch of the hybrid architecture is 
shown in Fig. 1 with corresponding hyperparameters provided by Table 2. With the aim of improving 
weight optimization of the HNN, the learning rate was reduced on plateau. This means that once no 
major decrease of test loss was present anymore for a certain number of time steps (patience), the 
learning rate was reduced by a fixed factor to increase chances of approximating a minimum of the 
loss function. Learnable biases were used as well.  

 
Fig. 1. Hybrid Neural Network Architecture. 
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Model Evaluation. To assess the model’s performance, the Mean Absolute Error (MAE) and the 
Coefficient of Determination R² were used.  The MAE offers the mean deviation of the model’s 
prediction from the real data [9]. The Coefficient of Determination R² yields the fit of the model to 
the real data [10]. The model optimization pursues to maximize R² between 0 and 1 and to minimize 
the MAE simultaneously. 4-fold cross-validation was applied, and the results were averaged. The 
model was trained for 500 epochs and the epoch with best test metrics was chosen for evaluation.  

Results  
Prediction Accuracy. Fig. 2 depicts the results for the HNN on each target value. It predicts yield 
strength with a coefficient of determination of R²test = 0.78 and an Error of MAEtest = 13.1 MPa for 
the test set (training: R²train = 0.81, MAEtrain= 13.6 MPa). For ultimate tensile strength the HNN 
delivers a slightly better fit with R²test = 0.83 but also a higher error of MAEtest = 22.9 MPa for testing 
(training: R²train = 0.80, MAEtrain = 25.3 MPa). The HNN performs worst for elongation at break with 
R²test = 0.69 and MAEtest = 0.66 % (training: R²train = 0.86, MAEtrain = 0.46 %). Compared to the 
training metrics, yield strength shows little, and ultimate tensile strength no overfitting. For 
elongation the HNN overfits noticeably with R²train = 0.80 for training compared to the test set. 
Qualitatively, the HNN delivers good prediction accuracy for both lower and higher strength values. 
The HNN also predicts values for elongation rather consistent across its range, with a slightly higher 
deviation for larger values. They were, however, much more spread out, compared to the strength 
values, as the metrics suggested. It can be assumed that the Elongation at break is more sensitive to 
additional influences, e.g., residual stresses, different surface roughness or imperfections, or general 
noise inherent to tensile testing. Overall, the HNN prediction for Elongation at Break could be 
improved upon. However, it delivers usable predictions for the Yield and Ultimate Tensile Strength, 
given the small dataset. 

a) Rp0,2 [MPa] b) Rm [MPa] c) A [%] 

   
Fig. 2. Test results of the HNN model, a) yield strength, b) ultimate tensile strength, c) elongation 

at break. 

Feature Map Interpretation. To analyze which microstructural features were extracted by filters of 
the HNN, outputs of the first convolutional layer are shown in Fig. 3 and 4. Deeper hidden layers 
were not visualized due to the decreased resolution, which were hard to interpret. To generate the 
feature maps, the micrograph images were passed through the first layer of filters and the activation 
function before being normalized between 0 and 1 for plotting. Three representative images were 
chosen with little to high amounts of porosity. By means of filtering, the network detected contours, 
edges and areas which appeared as contrast in the feature maps. The used colormaps displayed small 
outputs as dark, interpreted as less relevant, and large outputs as light, interpreted as more relevant.  

Fig. 3 shows the feature maps of all four filters of the first convolutional layer in the case of yield 
strength prediction. As the results of the model’s fit indicate, the HNN predicted yield strength and 
ultimate tensile strength almost identically well. Their feature maps were also mostly identical in our 
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qualitative analysis. Thus, merely the feature maps of yield strength are presented in this study, being 
representative for both strength values.  
The feature maps of image a) filter 1 displays a dark noisy image with a slight indication of the 
horizontal layer structure. Regarding image b) and c), more pore focused characteristics were 
observed. Here, high contrast edges between pores and the surrounding material were visible, which 
was especially pronounced for the high porosity image c). Filter 2 yielded a rather soft and noisy 
image focused on the solid material. The weld bead structure is recognizable in example image b), 
yet the porosity is not highlighted specifically. Filter 3 and 4 showed similar feature extraction 
characteristics. The horizontal layer structure of image a) was highlighted by these filters. 
Additionally, weld bead structures are recognizable in the image b). Especially filter 3 highlighted 
local contrasts between individual weld beads. Porosity was not emphasized by these two filters, as 
observed by image b) and c). 
 

 
 
 
a) 

 
 
 
b) 

 
 
 
c) 

 
Fig. 3. Feature maps yield strength; a) low, b) medium, c) high porosity, image 

plane parallel to build direction. 
 
 
a) 

 
 
 
b) 

 
 
 
c) 

 
Fig. 4. Feature maps elongation at break; a) low, b) medium, c) high porosity, 

image plane parallel to build direction. 
 
For Elongation at Break (Fig. 4) the feature maps 1-4 for image a) showed similar local contrasting 
of the layer structure of the material, which is comparable to image a), filter 3 of yield strength 
prediction. For image b) and c) filter 1 highligh-ted pores, as they appeared white with dark sur-
roundings in example. A few pixels are very bright, which we interpreted as noise, yet which led to 

Key Engineering Materials Vol. 964 69



a reduced total brightness of the images due to the normalization. Filter 2 depicts a comparable pore 
extraction for image b), in image c) bright-ness peaks of some pores are so pronounced, that the rest 
of the image appeared black. Filters 3 and 4 focus more on the solid material, and especially filter 4 
depicts the layered structure of the material. 

Conclusion 
This study demonstrates that a Hybrid Neural Network delivers sufficient prediction of tensile 
properties, given the parameters of the LPBF process, dimensionless process parameters and 
corresponding micrographs. In detail, the results show the following:  
- Yield and ultimate tensile strength can be modelled with > 80% accuracy and reasonably small 

errors evenly across the entire target value spectrum.  
- Elongation at break was less accurately predicted with R²test = 0.69, which was significantly lower 

compared to the strength values. Yet the error was relatively low, with MAEtest < 1%. It seems that 
elongation is more sensitive to additional influences and noise, which is information, the input 
data lacked.  

- Considering the small amount of data, the HNN did not experience severe overfitting for the 
strength values, when comparing the training metrics against the test set. Elongation, however, 
was more affected by overfitting and would benefit from improved or higher amounts of data.   

Furthermore, the feature map analysis reveals that meaningful microstructure features were 
interpretable from the first convolutional layer, which can be summarized as the following:  
- Yield and Tensile strength show very similar feature extraction. For both targets, the HNN 

extracted the layer structure and weld beads, as well as the edges of pores present.  
- For elongation at break, the layer structure and weld beads were highlighted. Regarding the 

porosity, entire pore areas were visible in the feature maps, instead of pore contours.  
- It should be mentioned, that in following convolutional steps, the feature maps are suspect to 

further convolution, which could also inverse the feature maps and thus alter the extracted features. 
However, taking the pore contours into account, which are a prominent feature of high contrast 
change, this may seem to be unlikely, yet remains to be proved.  

The findings of the feature maps prompt the question, of whether conventionally measured scalar 
microstructure features could be used as additional input parameters instead of the CNN-part of the 
network. Here we suggest using the following features for future experiments:  
- For strength prediction, the actual layer thickness and weld bead geometries can be extracted, both 

as a global mean value or as a distribution. Additionally, the sphericity or sphericity distribution 
could be used to add porosity information.  

- To augment the model for Elongation at break, actual layer thickness and weld bead geometries 
could be used analogously to the strength values. However, it seems to be advantageous to use the 
global porosity and the pore size distribution for the Elongation at Break. 
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